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Introduction – The Hilbert Transform
B We consider continuous functions f on T = [−π,π] with f (−π) = f (π)

B Assume f can be represented by its Fourier series

f (t) =
∞

∑
n=−∞

cn(f )eint with Fourier coefficients cn(f ) =
1

2π

π∫
−π

f (τ)e−inτ dτ

B Its harmonic conjugate f̃ is given by

f̃ (t) =
(
Hf
)
(t) =−i

∞

∑
n=−∞

sgn(n)cn(f )eint with sgn(n) =

 −1 : n < 0
0 : n = 0
1 : n > 0

such that

f (t) + ĩf (t) = c0(f ) + 2
∞

∑
n=1

cn(f )eint .

B The transformation H : f 7→ f̃ is known as Hilbert transform.

f̃ (t) =
(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ [−π,π) . (HT)

Volker Pohl (TUM) | On the Approximability of the Hilbert Transform | ISIT 2018 1

Chair of Theoretical Information Technology

Department of Electrical and Computer Engineering

Technische Universität München



Hilbert Transform – Importance and Properties
B In physics H is known as Kramers–Kronig relation.
B It is related to causality:
− The real and imaginary part of a causal signal is related by the Hilbert transform.
− The phase of a causal signal is determined by its amplitude – phase retrieval.
− Prediction and estimation of stationary time series – spectral factorization.

B Analytic tool in information theory
− Broadband quantum channels1 – here the Hilbert transform defines the complex structure of the

quantum mechanical system corresponding to the quantum Gaussian channel.
− Hilbert transform techniques were used in the elementary solution of the Kadison–Singer

problem2

Properties
• Hilbert transform is bounded mapping H : Lp(T)→ Lp(T), 1 < p < ∞.
• The Hilbert transform is a bounded mapping H : L∞(T)→ BMO.
• H : C (T)→ C (T) is not bounded but H : C α(T)→ C (T) is bounded
• For f ∈ C (T), we have f̃ = Hf ∈ Lp(T) for every 1≤ p < ∞ but f̃ = Hf /∈ C (T), in general.

1A. S. Holevo, "The classical capacity of quantum Gaussian gauge–covariant channels: Beyond i.i.d,"IEEE Inf. Theory Soc.

Newsletter, vol. 66, no. 4, Dec. 2016.
2D. A. Singer, "The solution of the Kadison–Singer Problem,"Minerva Lectures, Princeton University, March 2016.
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Example – Causal Linear Systems
B Input-output relation of a linear system S

yn =
∞

∑
k=0

ckxn−k , n ∈ Z

B ck = 0 for all k < 0⇒ causal system

Input sequence : {xn}n∈Z ⊂ C
Output sequence : {yn}n∈Z ⊂ C
Impulse response of S : {cn}n∈Z ⊂ C

B Take discrete-time Fourier transform (DTFT) of the input-output relation yields

Y (ω) = C(ω)X (ω) , ω ∈ [−π,π)

with the transfer function C(ω) of S

C(ω) =
∞

∑
k=0

ck eikω = ℜ [C(ω)] + iℑ [C(ω)] = |C(ω)| eiarg[C(ω)]

B Because S is causal, we have

ℑ [C(ω)] = H(ℜ [C(ω)]) and arg [C(ω)] = H(log |C(ω)|) .

− So C(ω) is already uniquely determined by its real part ℜ [C(ω)] or by its amplitude |C(ω)|.
− The corresponding imaginary part or phase can be calculated using the Hilbert transform.
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Problem Statement
Given a subset B ⊂ C (T) of continuous functions on T

B Does there exists an algorithm which is able to calculate the Hilbert transform

f̃ (t) =
(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ [−π,π) . (HT)

on a digital computer for every f ∈B?

B Is it possible to characterize subspaces B for which such algorithm do exist and for which they do
not exist?

• digital computer⇒ the calculation of (Hf )(t) is based on only finitely many samples {f (tn)}N
n=1 of

the given function f at a certain sampling set TN = {tn}N
n=1 ⊂ T.

• Then only an approximation HN : {f (tn)}N
n=1 7→ f̃N of the Hilbert transform f̃ = Hf can be

determined.

• Problem: Design a sequence {HN}∞

N=1 of operators HN (each HN is concentrated on TN) such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= lim

N→∞
max

t∈[−π,π)

∣∣∣(HN f
)
(t)−

(
Hf
)
(t)
∣∣∣= 0 for all f ∈B .
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Outline of the Paper

1. We introduce a scale of Banach space
{
Bβ

}
β≥0 of continuous functions of finite energy.

− These are „good“ for the Hilbert transform.
− The parameter β ≥ 0 characterizes the energy concentration of the signals.

2. We introduce a class of sampling based Hilbert transform approximations {HN}N∈N.
− This class is characterizes by three simple axioms.
− This class contains basically all practically relevant Hilbert transform approximation methods.

3. Divergence results for the spaces Bβ with β ≤ 1.
− For these spaces, there exists no Hilbert transform approximation in our class.

4. Convergence results for spaces Bβ with β > 1.
− For these spaces, there always exist a Hilbert transform approximation in our class.
− Simple examples of convergent methods can be found.
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A Family of Sobolev-like
Signal Spaces of Finite Energy
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Signal Spaces of Finite Energy
B Let f ∈ C (T) with Fourier series representation

f (t) =
a0(f )

2
+

∞

∑
n=1

an(f ) cos(nt) + bn(f ) sin(nt) with
an(f ) = 1

π

∫
T f (τ) cos(nτ)dτ

bn(f ) = 1
π

∫
T f (τ) sin(nτ)dτ

.

B For any β ≥ 0 we define a seminorm on C (T)

‖f‖
β

=
(

∑
∞
n=1 n (1 + log n)β

[
|an(f )|2 + |bn(f )|2

])1/2
.

B Therewith, we define a family of Sobolev-like Banach spaces
{
Bβ

}
β≥0 by

Bβ =
{

f ∈ C (T) : f̃ ∈ C (T) and ‖f‖
β
< ∞

}
and equip it with the norm

‖f‖Bβ
= max(‖f‖∞, ‖̃f‖∞,‖f‖β ) .

Remarks
• β ≥ 0 characterizes the smoothness of the functions f ∈Bβ : As larger β as smoother f .

Bβ ′ ↪→Bβ ↪→B0 ↪→ C (T) for all β
′ ≥ β ≥ 0 .

• ‖·‖0 corresponds to the norm in Sobolev space H1/2(T) = W 1/2,2(T)

• ‖f‖0 is the (Dirichlet) energy of f .
• The Hilbert transform is well defined and bounded on Bβ : ‖H‖Bβ→Bβ

= 1.
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Spaces of Smooth Functions: Motivation
For sufficiently smooth functions, there are standard procedures to obtain the desired sequences
{HN}N∈N of Hilbert transform approximations:

B Assume f belongs to a Sobolev space Hs(T) = W s,12 (T) with s > 1/2.

B Sobolev embedding shows that f is Hölder continuous of index 0 < α < s−1/2, i.e. f ∈ C α(T).

B Assume TN = {t1, . . . , tN} is a sampling set with mesh size rN = minn 6=m |tn− tm|.
B There is a unique interpolating function fN which is continuous, piecewise linear, and which

satisfies
fN(λn) = f (λn) for all λn ∈ ΛN .

B Since f ∈ C α(T) it follows that for all 0 < α ′ < α

‖f − fN‖C α ′(T)→ 0 as rN → 0 .

B Since it is known that H : C α ′(T)→ C (T) is bounded, we set f̃N = HfN and obtain∥∥f̃N− f̃
∥∥

∞
= ‖H(fN− f )‖

∞
≤ ‖H‖ ‖f − fN‖C α ′(T)→ 0 as rN → 0 .

Remark:
• Procedure fails for s ≤ 1/2 because Sobolev embedding yields no longer Hölder continuity.
• Is this failure a particular property of the above procedure?
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Relation to the Dirichlet Problem
Dirichlet Problem on the Unit Circle
Let f be a given function on the unit circle T = {z ∈ C : |z|= 1}. We look for an u inside the unit circle
D = {z ∈ C : |z|< 1} such that

1.
∂ 2u
∂x2 (z) +

∂ 2u
∂y2 (z) =

(
∆u
)
(z) = 0 for all z = x + iy ∈ D

2. u(eit) = f (eit) for all t ∈ T = [−π,π)

Dirichlet’s Principle
The solution of the Dirichlet problem can be obtained by minimizing the
Dirichlet energy

D(u) =
1

2π

∫∫
D

∥∥(gradu)(z)
∥∥2
R2 dz =

∞

∑
n=−∞

|n| |cn(f )|2 =
∥∥f
∥∥2

H1/2

∆u = 0

f (eiθ )

• The boundary function of solutions of the Dirichlet problem belongs to the Sobolev space H1/2.

• If f is additionally in B then f ∈B0.
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Axiomatic
for Hilbert Transform Approximations
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Hilbert Transform Approximations – Axiomatic
Definition: Let β ≥ 1 be arbitrary and let H = {HN}N∈N be a sequence of mappings HN : Bβ → C (T)

with the associated functionals ΦN(f ) = ‖HN(f )‖
∞

. We say that H satisfies Axiom

(A) if ΦN is lower semicontinuous for every N ∈ N and if for every N ∈ N there exists a finite subset
TN ⊂ T such that for arbitrary f1, f2 ∈Bβ

f1(tn) = f2(tn) for all tn ∈ TN

implies
(
HN f1

)
(t) =

(
HN f2

)
(t) for all t ∈ T .

(B) if there exists a dense subset M ⊂Bβ such that

limN→∞

∥∥HN(f )−Hf
∥∥

∞
= 0 for all f ∈M .

Remarks
B Axiom (A) requires that the approximation f̃N = HN(f ) is uniquely determined by the values of f on

the finite sampling set TN ⊂ T. So (A) ensures that HN(f ) is computable on a digital computer.
B Axiom (B) describes {HN} as a sequence which approximates the Hilbert transform, namely it

requires that HN(f ) converges to Hf at least for all f from a dense subset of Bβ .
B The operators HN may be non-linear.
B The dense set M in Axiom (B) needs not to have a linear structure.
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Example – Sampled Fourier series
B Let f ∈Bβ arbitrary with Fourier series representation

f (t) =
a0(f )

2
+

∞

∑
n=1

an(f )cos(nt) + bn(f )sin(nt) , t ∈ T

and with the Fourier coefficients

an(f ) =
1
π

∫
π

−π

f (τ) cos(nτ)dτ and bn(f ) =
1
π

∫
π

−π

f (τ) sin(nτ)dτ . (1)

Then its conjugate function f̃ = Hf is given by

f̃ (t) = (Hf )(t) =
∞

∑
n=1

an(f )sin(nt)−bn(f )cos(nt) , t ∈ T

B We define approximation operators HN : Bβ → C (T) as follows
− For every N ∈ N we define the uniform sampling set

TN =
{

tN,k = k−N
N π : k = 0,1,2, . . . ,2N−1

}
.

− For every N ∈ N we approximate the integrals in (1) by its Riemann sums

aN,n(f ) = 1
2N ∑

2N−1
k=0 f

(
tN,k) cos(n tN,k) and bN,n(f ) = 1

2N ∑
2N−1
k=0 f

(
tN,k) sin(n tN,k)

− Therewith, we define for every N ∈ N the approximation operators

(HN f )(t) :=
N

∑
n=1

aN,n(f )sin(nt)−bN,n(f )cos(nt) , t ∈ T .
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Example – Sampled Fourier series (cont.)
B Inserting the Fourier coefficients into the sum, a closed form representations is obtained(

HN f
)
(t) =

2N−1

∑
k=0

f
(
tN,k
)
DN
(
t− tN,k

)
with DN(t) =

1
N

N−1

∑
n=1

sin(nt) .

Remarks
• {HN}N∈N satisfies Axiom (A) – each HN is concentrated on the finite sampling set

TN = {tN,k}2N−1
k=0 .

• {HN}N∈N satisfies Axiom (B) – HN f converges to Hf for all polynomials.
• All operators HN are even continuous⇒ the associated functionals are lower semicontinuous.

• Other linear approximation methods satisfying Axioms (A) and (B) are obtained by
− using other summation methods (Fejér, Cesáro, ...)
− using other numerical integration methods to approximate the exact Fourier coefficients.

• If the Fourier coefficients {an(f )}n∈N and {bn(f )}n∈N are perfectly known, the above the partial
conjugate Fourier (or Fejér) series would converge for all f ∈Bβ

⇒ Convergence problems are due to the sampling based form of the approximation operators.
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Divergence Results

for Bβ with 0≤ β ≤ 1
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Divergence of Sampling Based Approximations
Theorem
Let 0≤ β ≤ 1 be arbitrary and let H = {HN}N∈N be a sequence of mappings HN : Bβ → C (T) which
satisfies Axioms (A) and (B). Then

Rβ (H) =
{

f ∈Bβ : limsupN→∞

∥∥HN(f )
∥∥

∞
= +∞

}
is a residual set in Bβ .

Remarks
• In particular, there always exists an f ∈Bβ such that

limsupN→∞‖Hf −HN(f )‖Bβ
= +∞ .

No matter how we choose the sampling based (Axiom A) approximation operators H = {HN}N∈N
there always exist functions f ∈Bβ such that HN(f ) diverges.

• This result includes even even non-linear approximation operators HN : Bβ → C (T).
Similar result for linear methods was already proven previously3

• Divergence occurs in particular on the Sobolev space B0 = H1/2(T) = W 1/2,2(T) of signals with
finite Dirichlet energy, and even on some smoother subspaces Bβ with β > 0.

3H. Boche, V. Pohl, ISIT 2017.
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Ingredients of the Proof
Interpolation Lemma:
Let 0≤ β ≤ 1 be arbitrary and let T = {tn}N

n=1 ⊂ T be a finite sampling set. Then for every ε > 0 the
following statement is true: To every g ∈ C (T) there exists an f ∈Bβ such that

(a) f (tn) = g(tn) for all tn ∈ T
(b) ‖f‖Bβ

≤ (1 + ε)‖g‖
∞
.

B So the operators HN can’t distinguisch between f ∈Bβ and f ∈ C (T).

B Using that the Hilbert transform H : C (T)→ C (T) is unbounded.

Generalized uniform boundedness principle:
Let B be a Banach space and let ΦΦΦ be a family of lower semicontinuous functionals on Bβ such that
there exists a set S ⊂Bβ of second category so that

sup
ϕ∈ΦΦΦ

ϕ(f ) = M(f ) < +∞ for all f ∈ S .

Then there exist a constant MΦΦΦ < ∞, an f0 ∈Bβ , and a δ > 0

such that for all f ∈Bδ (f0,Bβ ) =
{

f ∈Bβ : ‖f − f0‖Bβ
< δ

}
always ϕ(f )≤MΦΦΦ for all ϕ ∈ ΦΦΦ.

B Necessary to include non-linear operators in our analysis.
Volker Pohl (TUM) | On the Approximability of the Hilbert Transform | ISIT 2018 16

Chair of Theoretical Information Technology

Department of Electrical and Computer Engineering

Technische Universität München



Convergence Results

for Bβ with β > 1
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Spaces with Convergent Approximation Methods

Theorem
For any β > 1 there exit sequences {HN}N∈N of bounded linear operators HN : Bβ → C (T) which
satisfy Axioms (A) and (B) such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bβ .

B If the energy of the signals is sufficiently concentrated then there always exist sampling based
approximation methods which converges for all signals in the space Bβ with β > 1.

B There even exist linear approximation methods.

B Theorem can be proved by a constructing particular method, e.g. the sampled Fourier series
considered at the beginning.
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Characterization of Convergent Method
Theorem
Let β > 1 and let {HN}N∈N be a sequence of bounded linear operators HN : Bβ →Bβ such that

1. For every n ∈ N holds

lim
N→∞

∥∥HN [cos(n ·)]− sin(n ·)
∥∥

∞
= 0 and lim

N→∞

∥∥HN [sin(n ·)] + cos(n ·)
∥∥

∞
= 0 .

2. There exists a constant C such that

max
(∥∥HN [cos(n·)]

∥∥
∞
,
∥∥HN [sin(n·)]

∥∥
∞

)
≤ C for all N ∈ N .

Then one has
lim

N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bβ .

Thus, if an approximation method {HN}N∈N

B converges for the sine- and cosine functions (i.e. for the pure frequencies), and

B if the approximations of the pure frequencies are uniformly bounded

then the method HN f converges to Hf for all f ∈Bβ with β > 1.

Example: The sampled Fourier series considered at the beginning.
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Conclusions and Outlook

B We introduced a scale of Sobolev-like Banach spaces Bβ , β ≥ 0 of functions
− which are continuous with a continuous conjugate
− with finite (Dirichlet) energy
− with different energy concentration, characterized by β

B In the scale
{
Bβ

}
β≥0, we characterized precisely those spaces on which

− there do not exist any sampling based Hilbert transform approximations: β ∈ [0,1]
− there do exist sampling based Hilbert transform approximations: β > 1.

B For β > 1 even very simple approximations methods (sampled conjugate Fourier series) work.

B Based on our framework, one can show that there exists no Turing computable method to
determine the Hilbert transform on the spaces Bβ with 0≤ β ≤ 1.
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Conclusions and Outlook

B We introduced a scale of Sobolev-like Banach spaces Bβ , β ≥ 0 of functions
− which are continuous with a continuous conjugate
− with finite (Dirichlet) energy
− with different energy concentration, characterized by β

B In the scale
{
Bβ

}
β≥0, we characterized precisely those spaces on which

− there do not exist any sampling based Hilbert transform approximations: β ∈ [0,1]
− there do exist sampling based Hilbert transform approximations: β > 1.

B For β > 1 even very simple approximations methods (sampled conjugate Fourier series) work.

B Based on our framework, one can show that there exists no Turing computable method to
determine the Hilbert transform on the spaces Bβ with 0≤ β ≤ 1.

Thank You! – Questions?
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