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Message Transmission vs. ldentification

Message Transmission Identification

" |dentify if particular message M*
of interest has been sent

o (W) =maxp, I(Px,W) e C'°(W) = maxp, I(Px,W)

o |dentification message size:
271.R

¥ Recover exact message M

e Transmission message size:
M| =27 M| =2

(exponentially) (double-exponentially)

R. Ahlswede and G. Dueck, “Identification via channels,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp.
15-29, Jan. 1989



Identification over Channels with Feedback

Yi—l

TRANSMITTER RECEIVER

v Xn, Y’FI,
N —— B A

e Encoding function is now vector-valued

f = (f(1)7f(2)7 "‘7f(n))

with f(V : Y=1 5 X the encoding function at time instant i

, “ldentification in the presence of feedback—A discovery of new capacity formulas,” IEEE Trans.
Inf. Theory, vol. 35, no. 1, pp. 30-36, Jan. 1989



Identification-Feedback (IDF) Capacity

Theorem: [Ahlswede-Dueck '89]

If the capacity C(W) of a DMC W satisfies C(W) > 0, then the deterministic
IDF capacity is
CPW) = max H(W (-|z)).

If C(W) =0, then

CPW)=0.

Theorem: [Ahlswede-Dueck '89]

If the capacity C(W) of a DMC W satisfies C(WW) > 0, then the randomized
IDF capacity is
CR(W) = H(P-W).
W)= e 8 )

If C(W) = 0, then

(W) =o0.




In the following we further study properties of the IDF capacity
(for both deterministic and randomized encoding) J
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1. Continuity of IDF capacity
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continuous discontinuous

e Need to understand whether the performance of a communication system
depends in a continuous way on the system parameters or not

" Desirable would be a continuous behavior so that small changes in
parameters result in small changes of the peformance only




Distance

e To study the continuity of the IDF capacity, we need a concept of distance

e For two DMCs W7, W5 we define the d-distance between W7 and W,
based on the total variation distance as

d(W1, W) := max 2;} (Wi (y|z) — Wa(ylz)|
ye



Continuity

The continuity of the capacity C'P(-) is defined as follows.

©® The DMC W is a continuity point of C'P(-) if for all sequences {W,}o2,
with

lim d(W,, W) =0 (1)

n— o0
we have lim,,_, C}D(Wn) = C}D(DV).

® The DMC W is a discontinuity point of C}D(-) if 1) does not hold, i.e., if
there is a sequence {W,,}°2 ; that satisfies (1) but

lim sup C}D(Wn) > lim inf C}D(Wn)

n—00 n—00

is satisfied.

© The capacity C'P(-) is a continuous function if all DMCs W are continuity
points according to 1).

W




Discontinuity Points of IDF Capacity

e We further define the set

Dy ={W: We N and gléL)}({H(LV(-|:1?))>0}

with
Neo = {W :C(W) = 0}

the set of DMCs with zero capacity.

% \We observe that these sets characterize all discontinuity points of the
deterministic and randomized IDF capacities:

Theorem (Deterministic IDF Capacity):

Dy is the set of discontinuity points of C'\(.).

Theorem (Randomized IDF Capacity):

Dr = N is the set of all discontinuity points of C1P(-).




2. Additivity of IDF capacity
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C'P (W) + C'P(Wy) = C'°O(Wy @ Wh)




Capacity of DMC
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e Capacity: C(W7)




Capacity of Parallel DMCs
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e Independent encoding/decoding:
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Capacity of Parallel DMCs
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e Independent encoding/decoding: C(W7) + C'(W3)




Capacity of Parallel DMCs
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e Independent encoding/decoding: C(W;) + C(Ws)

e Joint encoding/decoding: C(W; ® Ws)




Capacity of Parallel DMCs
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e Independent encoding/decoding: C(W;) + C(Ws)

e Joint encoding/decoding: C(W; ® Ws)




Zero Error Capacity

e Shannon conjectured in 1956 the zero-error capacity to be additive:
Co(W7 @ Wa) z Co(W1) + Co(Wa)

Theorem 4, of course, is analogous to
known results for ordinary capacity C, where the
product channel has the sum of the ordinary
capacities and the sum channel has an equivalent
number of letters equal to the sum of the equiva-
lent numbers of letters for the individual
channels. We conjecture but have not been able
to prove that the equalities in Theorem 4 hold
in general, not just under the conditions given.

@ C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. 2, no. 3, pp.
8-19, Sep. 1956

e Subsequently restated in 1979 by Lovész

@ L. Lovasz, “On the Shannon capacity of a graph,” IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 1-7, Jan.
1979

BRERERETERS



Zero Error Capacity and AVCs

e Later disproved constructing explicit counter-examples with:
Co(W1 @ Wy) > Co(W1) + Co(Wa)

e However, complete characterization is still an open problem

W. Haemers, “On some problems of Lovasz concerning the Shannon capacity of a graph,” IEEE Trans.
Inf. Theory, vol. 25, no. 2, pp. 231-232, Mar. 1979

@ N. Alon, “The Shannon capacity of a union,” Combinatorica, vol. 18, no. 3, pp. 301-310, Mar. 1998



Zero Error Capacity and AVCs

e Later disproved constructing explicit counter-examples with:
C()(VVl ® VVQ) > C()(VVl) + C(](VI/Q)

e However, complete characterization is still an open problem
W. Haemers, “On some problems of Lovasz concerning the Shannon capacity of a graph,” IEEE Trans.
Inf. Theory, vol. 25, no. 2, pp. 231-232, Mar. 1979
@ N. Alon, “The Shannon capacity of a union,” Combinatorica, vol. 18, no. 3, pp. 301-310, Mar. 1998

e Since then non-additivity of the capacity has been observed for other
scenarios as well
@ H. Boche and R. F. Schaefer, “Capacity results and super-activation for wiretap channels with active
wiretappers,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 9, pp. 1482-1496, Sep. 2013

@ H. Boche, R. F. Schaefer, and H. V. Poor, “Characterization of super-additivity and discontinuity behavior
of the capacity of arbitrarily varying channels under list decoding,” in Proc. IEEE Int. Symp. Inf. Theory,
Aachen, Germany, Jun. 2017, pp. 2820-2824

@ H. Boche and C. Deppe, “Secure identification for wiretap channels; robustness, super-additivity and
continuity,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1641-1655, Jul. 2018



Zero Error Capacity and AVCs
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@ H. Boche and R. F. Schaefer, “Capacity results and super-activation for wiretap channels with active
wiretappers,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 9, pp. 1482-1496, Sep. 2013

@ H. Boche, R. F. Schaefer, and H. V. Poor, “Characterization of super-additivity and discontinuity behavior
of the capacity of arbitrarily varying channels under list decoding,” in Proc. IEEE Int. Symp. Inf. Theory,
Aachen, Germany, Jun. 2017, pp. 2820-2824

@ H. Boche and C. Deppe, “Secure identification for wiretap channels; robustness, super-additivity and
continuity,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1641-1655, Jul. 2018

% \Worth to study this additivity problem for the IDF capacity! J




Deterministic IDF Capacity

e To characterize the case of super-additivity, we define the following region:
MR {7y, Wo):max{min{C (W), ¥ (W;)}} >0,
min {min{C(V,), (W)} =0,
min{W(Wy), ¥ (W)} > 0}

with U(W) = max,cx H(W(-|z))

We have super-additivity in (W1, W2) but no super-activation of C'P(-) if and
only if (Wl, WQ) S M;uPadd.




Deterministic IDF Capacity (2)

e To study the phenomenon of super-activation and to characterize those
points for which this is possible, we define

M}upact — {(W/l, I/VQ) IE}IlQ{C(VVl), \I’(sz)} =0,

max{C(Wy),C(W2)} > 0,
max{¥ (W), ¥(W2)} > 0}

Super-activation of C'P(-) occurs if and only if (W7, Wa) € MG,




Randomized IDF Capacity

Super-activation of C'P(-) is not possible.

% |n contrast to the deterministic IDF capacity C'P for which
super-activation occurs

e However, C},P(-) is super-additive. For this purpose, we define
M?padd _ {(Wl.,ﬁ/g) :;E?)é{min{c(ﬁ/i),\ll(l%)}} >0,
min {min{C(W;), ¥(W:)} = 0,

min{W(Wy), ¥(W2)} > 0}.

We have super-additivity in (Wl, Wg) if and only if (Wl, WQ) € M;ﬁ'padd.




Conclusions

e |dentification over channels with feedback has been considered and the IDF
capacity has been further analyzed

e Deterministic IDF capacity
¥ Discontinuity points characterized by Dy
b Syper-additivity in Msf“padd

" Super-activation in M

e Randomized IDF capacity

b Discontinuity points characterized by Dp
¥ Super-additivity in M5P*%
b Super-activation not possible!

e Outlook: Framework and techniques can be used to show that the IDF
capacity is not computable on Turing machines



Conclusions

e |dentification over channels with feedback has been considered and the IDF
capacity has been further analyzed

e Deterministic IDF capacity
¥ Discontinuity points characterized by Dy
b Syper-additivity in Msf“padd

" Super-activation in M

e Randomized IDF capacity
b Discontinuity points characterized by Dp
¥ Super-additivity in M5P*%
b Super-activation not possible!

e Outlook: Framework and techniques can be used to show that the IDF
capacity is not computable on Turing machines

Thank you for your attention!
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