Comparison of Different Attack Classes in Arbitrarily Varying Wiretap Channels

Holger Boche and Rafael Wyrembelski

Technische Universität München
Lehrstuhl für Theoretische Informationstechnik

WIFS 2012
Oral Session 5: Secure Communications
December 5, 2012

Motivation

- In wireless systems, a transmitted signal is received by its intended users but can also easily be eavesdropped
 - Current systems usually apply cryptographic techniques to keep information secret
 - Becomes more and more insecure due to increasing computational power or improved algorithms
- Information theoretic security solely uses the physical properties of the wireless channel to establish a higher level of security
 - Another problem in practical systems is the uncertainty in channel state information due to
 - the nature of the wireless medium
 - implementational issues
 - attacks of wiretappers
 - Establish security under channel uncertainty and attacks
 - In this work: Arbitrarily varying wiretap channel (AVWC)

Motivation

- In wireless systems, a transmitted signal is received by its intended users but can also easily be eavesdropped
 - Current systems usually apply cryptographic techniques to keep information secret
 - Becomes more and more insecure due to increasing computational power or improved algorithms
- Information theoretic security solely uses the physical properties of the wireless channel to establish a higher level of security
 - Another problem in practical systems is the uncertainty in channel state information due to
 - the nature of the wireless medium
 - implementational issues
 - attacks of wiretappers
 - Establish security under channel uncertainty and attacks
 - In this work: Arbitrarily varying wiretap channel (AVWC)

Motivation

- In wireless systems, a transmitted signal is received by its intended users but can also easily be eavesdropped
 - Current systems usually apply cryptographic techniques to keep information secret
 - Becomes more and more insecure due to increasing computational power or improved algorithms
- Information theoretic security solely uses the physical properties of the wireless channel to establish a higher level of security
 - Another problem in practical systems is the uncertainty in channel state information due to
 - the nature of the wireless medium
 - implementational issues
 - attacks of wiretappers
 - Establish security under channel uncertainty and attacks
 - In this work: Arbitrarily varying wiretap channel (AVWC)

Arbitrarily Varying Wiretap Channel

For **fixed** state sequence $s^n \in \mathcal{S}^n$ the channels are

$$W^n(y^n|x^n,s^n) = \prod_{i=1}^n W(y_i|x_i,s_i) \quad \text{and} \quad V^n(z^n|x^n,s^n) = \prod_{i=1}^n V(z_i|x_i,s_i)$$

The **arbitrarily varying channels (AVCs)** to the legitimate receiver and wiretapper are the collections

$$\mathcal{W} = \left\{ W^n(\cdot|\cdot,s^n) : s^n \in \mathcal{S}^n \right\} \quad \text{and} \quad \mathcal{V} = \left\{ V^n(\cdot|\cdot,s^n) : s^n \in \mathcal{S}^n \right\}$$

Arbitrarily Varying Wiretap Channel (2)

The arbitrarily varying wiretap channel (AVWC) is given by

$$\mathfrak{W} = \{ (W^n(\cdot|\cdot, s^n), V^n(\cdot|\cdot, s^n)) : s^n \in \mathcal{S}^n \}$$

Task: Establish reliable communication to the legitimate receiver in the presence of unknown varying channel conditions and, at the same time, keeping the information secret from the wiretapper.

Strong Secrecy Criterion

- Total amount of information leaked to receiver 2 has to be small for all $s^n \in \mathcal{S}^n$ simultaneously
 - **Strong secrecy** requirement on M, i.e.,

$$\max_{s^n \in \mathcal{S}^n} I(M; Z_{s^n}^n) \le \epsilon_n$$

- Strong secrecy can be given an operational meaning:
 - Average decoding error at wiretapper goes to 1!

Role of Common Randomness

- Assume all parties (legitimate users AND wiretapper) have access to common randomness (CR)
 - Can be realized over a public channel open to everyone
- (If wiretapper would have no access, CR can be used to create a secret key keeping wiretapper completely ignorant)

Ordinary AVCs

 $u \in \mathcal{U}$

 For ordinary AVCs W (without any wiretappers) we know that for symmetrizable channels

deterministic capacity $C_{\text{det}}(\mathcal{W}) = 0$

random capacity $C_{\text{ran}}(\mathcal{W}) > 0!$

• An AVC $\mathcal W$ is called *symmetrizable* if there exists a stochastic matrix $\sigma: \mathcal X \to \mathcal P(\mathcal S)$ such that

$$\sum_{s \in \mathcal{S}} W(y|x,s) \sigma(s|x') = \sum_{s \in \mathcal{S}} W(y|x',s) \sigma(s|x)$$

holds for all $x, x' \in \mathcal{X}$ and $y \in \mathcal{Y}$.

Ordinary AVCs (2)

Random code capacity

$$C_{\mathsf{ran}}(\mathcal{W}) = \max_{p \in \mathcal{P}(\mathcal{X})} \min_{q \in \mathcal{P}(\mathcal{S})} I(p, W_q)$$

with
$$W_q(y|x) = \sum_{s \in \mathcal{S}} W(y|x, s) q(s)$$
.

Deterministic code capacity (Ahlswede's dichotomy)

$$C_{\text{det}}(\mathcal{W}) = \begin{cases} C_{\text{ran}}(\mathcal{W}) & \text{if } \mathcal{W} \text{ is non-symmetrizable} \\ 0 & \text{if } \mathcal{W} \text{ is symmetrizable} \end{cases}$$

- Common randomness is an important resource to establish reliable communication over arbitrarily varying channels
- R. Ahlswede, "Elimination of Correlation in Random Codes for Arbitrarily Varying Channels," Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 44, pp. 159–175, 1978
- I. Csiszár and P. Narayan, "The Capacity of the Arbitrarily Varying Channel Revisited: Positivity, Constraints," IEEE Trans. Inf. Theory, vol. 34, no. 2, pp. 181–193, Mar. 1988

Question

What is the impact of common randomness on the behavior and the strategies of potential wiretappers?

Passive Wiretappers

Passive wiretapper

- Does not exploit CR
- Does not influence the channel conditions
- State sequence only reflects the influence of channel uncertainty and, in particular, does **not** depend on CR!
- Strategy: Simply tries to eavesdrop the communication
 - $C_{S, ran}(\mathfrak{W})$ is CR assisted secrecy capacity of the AVWC \mathfrak{W}

Passive Secrecy Capacity

 If CR is available, legitimate users can coordinate their choice of encoder and decoder based on CR

Theorem: CR assisted secrecy capacity

Under the assumption of a best channel to the wiretapper, for the CR assisted secrecy capacity $C_{S,\mathrm{ran}}(\mathfrak{W})$ of the AVWC \mathfrak{W} with passive wiretapper it holds

$$C_{S,\text{ran}}(\mathfrak{W}) \ge \max_{p \in \mathcal{P}(\mathcal{X})} \left(\min_{q \in \mathcal{P}(\mathcal{S})} I(p, W_q) - \max_{q \in \mathcal{P}(\mathcal{S})} I(p, V_q) \right)$$

with
$$W_q(y|x) = \sum_{s \in \mathcal{S}} W(y|x,s)q(s)$$
 and $V_q(z|x) = \sum_{s \in \mathcal{S}} V(z|x,s)q(s)$.

 --, "Capacity Results for Arbitrarily Varying Wiretap Channels," will be published in Springer LNCS in Memory of Rudolf Ahlswede

Passive Secrecy Capacity (2)

If CR is not available, deterministic codes are needed

Theorem: Deterministic secrecy capacity

If $C_{S,ran}(\mathfrak{W}) > 0$, then the deterministic code secrecy capacity is given by

$$C_S(\mathfrak{W}) = C_{S,\mathsf{ran}}(\mathfrak{W})$$

if and only if the AVC $\ensuremath{\mathcal{W}}$ is non-symmetrizable.

If AVC W is symmetrizable, then $C_S(\mathfrak{W}) = 0$.

If $C_S(\mathfrak{W}) = 0$ and $C_{S, \text{ran}}(\mathfrak{W}) > 0$, then AVC \mathcal{W} is symmetrizable.

Active Wiretappers

Active wiretapper

- Exploits CR to influence the channel conditions
- State sequence depends on CR!
- Includes jamming models where the wiretapper acts as a jammer!

Active Wiretappers (2)

- Different strategies possible:
 - try to maximize information leaked to him
 - try to disturb the communication between legitimate users
 - (and anything in between)
 - $C_{S,\mathrm{ran}}^{\mathrm{active}}(\mathfrak{W})$ is CR assisted secrecy capacity of the AVWC \mathfrak{W} with active wiretapper

Positive Active Secrecy Capacity

Theorem: Positive Active Secrecy Capacity

If $C_{S,\mathrm{ran}}^{\mathrm{active}}(\mathfrak{W}) > 0$, then

$$C_{S,\mathsf{ran}}^{\mathsf{active}}(\mathfrak{W}) = C_{S,\mathsf{ran}}(\mathfrak{W})$$

Proof idea: Inspired by *random code reduction* and *elimination of correlation* techniques for ordinary AVCs

- Use (for a negligible part of transmission) a passive code to indicate which active code is used in the following!
- If active secrecy capacity is positive, an active wiretapper is as effective as a passive wiretapper
- Strategy must be to destroy communication of legitimate users, i.e., $C_{S \, \text{ran}}^{\text{active}}(\mathfrak{W}) = 0!$

Zero Active Secrecy Capacity (2)

• Study the case $C_{S,\text{ran}}^{\text{active}}(\mathfrak{W})=0$ in the following

Theorem:

Let $C_{S,\mathrm{ran}}(\mathfrak{W})>0$. We have $C_{S,\mathrm{ran}}^{\mathrm{active}}(\mathfrak{W})=0$ if and only if AVC \mathcal{W} is symmetrizable.

- Active secrecy capacity $C_{S,\mathrm{ran}}^{\mathrm{active}}(\mathfrak{W})$ displays a dichotomy behavior:
- It either equals the passive secrecy capacity $C_{S,\mathrm{ran}}(\mathfrak{W})$ or else is zero!
- Can be completely characterized in terms of symmetrizability
- ightharpoonup Depends only on the legitimate users' channel $\mathcal{W}!$

Conclusion

- Studied arbitrarily varying wiretap channels (AVWCs)
 - Passive wiretappers
 - Active wiretappers who exploit CR to control the state sequence
- For active wiretappers, CR is useless
 - Cactive (w) displays dichotomy behavior similarly as for deterministic codes!
- For passive wiretappers, CR is useful
 - Can lead to significant gains compared to deterministic codes

Thank you for your attention!

Conclusion

- Studied arbitrarily varying wiretap channels (AVWCs)
 - Passive wiretappers
 - Active wiretappers who exploit CR to control the state sequence
- For active wiretappers, CR is useless
 - $C_{S,\mathrm{ran}}^{\mathrm{active}}(\mathfrak{W})$ displays dichotomy behavior similarly as for deterministic codes!
- For passive wiretappers, CR is useful
 - Can lead to significant gains compared to deterministic codes!

Thank you for your attention!

Conclusion

- Studied arbitrarily varying wiretap channels (AVWCs)
 - Passive wiretappers
 - Active wiretappers who exploit CR to control the state sequence
- For active wiretappers, CR is useless
 - $C_{S,\mathrm{ran}}^{\mathrm{active}}(\mathfrak{W})$ displays dichotomy behavior similarly as for deterministic codes!
- For passive wiretappers, CR is useful
 - Can lead to significant gains compared to deterministic codes!

Thank you for your attention!

References I

R. Ahlswede, "Elimination of Correlation in Random Codes for Arbitrarily Varying Channels," *Z. Wahrscheinlichkeitstheorie verw. Gebiete*, vol. 44, pp. 159–175, 1978.

I. Csiszár and P. Narayan, "The Capacity of the Arbitrarily Varying Channel Revisited: Positivity, Constraints," *IEEE Trans. Inf. Theory*, vol. 34, no. 2, pp. 181–193, Mar. 1988.

I. Bjelaković, H. Boche, and J. Sommerfeld, "Strong Secrecy in Arbitrarily Varying Wiretap Channels," in *Proc. IEEE Inf. Theory Workshop*, Lausanne, Switzerland, Sep. 2012.

——, "Capacity Results for Arbitrarily Varying Wiretap Channels," will be published in Springer LNCS in Memory of Rudolf Ahlswede.