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Introduction

• Hans Feichtinger’s questions on convolution sum representations of
stable systems for Paley–Wiener spaces

• Signal space structure of signals/systems with “exceptional behavior”

• Standard phase retrieval problem in infinite dimensions
• Connections to Anders Hansen’s talk on solvability complexity index and

Curt McMullen’s solution of Smale’s conjecture

Curt McMullen, Families of rational maps and iterative root-finding
algorithms, Annals of Mathematics, 125, pp. 467–493, 1987.
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Approximation

General task: Approximate a bounded linear operator T by a sequence of
operators {TN}N∈N.

We consider the following setting:
• B1, B2: Banach spaces
• T : B1 → B2: bounded linear operator
• {TN}N∈N: sequence of bounded linear operators mapping from B1 into B2

Question: Does TNf converges to Tf in the norm of B2 for all f ∈ B1?
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Banach–Steinhaus Theorem

Question: Does TNf converges to Tf in the norm of B2 for all f ∈ B1?

The Banach–Steinhaus theorem gives the answer.

Answer is “yes” if and only if

1 there exists a constant C1 such that ‖TN‖B1→B2 6 C2 for all N ∈ N, and

2 TNf→ Tf for all f from a dense subspace of B1.

Further important fact:
If 1 does not hold then we have have divergence for all functions from a
residual subset of B1 (condensation of singularities).

DUB =

{
f ∈ B1 : lim sup

N→∞ ‖TNf‖B2 =∞}
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Banach–Steinhaus Theorem

Question: Does TNf converges to Tf in the norm of B2 for all f ∈ B1?

The Banach–Steinhaus theorem gives the answer.

Answer is “yes” if and only if

1 there exists a constant C2 such that ‖TN‖B1→B2 6 C2 for all N ∈ N, and

2 TNf→ Tf for all f from a dense subspace of B1.

Further important fact:
If 1 does not hold then we have have divergence for all functions from a
residual subset of B1 (condensation of singularities).

DUB =

{
f ∈ B1 : lim sup

N→∞ ‖TNf‖B2 =∞}
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Set of Divergence Creating Functions

DUB =

{
f ∈ B1 : lim sup

N→∞ ‖TNf‖B2 =∞}

• Does the set DUB have further interesting structural properties?
• Does it have a linear structure?
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Lineability

Difficult to show linear structure for DUB.

The set of convergence has always a linear structure, i.e., is a linear subspace:

• f1, f2 such that TNf1 and TNf2 converge
• TN(f1 + f2) converges

DUB has no linear structure:

• g any functions such that TNg diverges
• g1 = f1 + g, g2 = f1 − g

• TNg1 and TNg2 diverge
• But TN(g1 + g2) = TN(2f1) converges
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Basic Definition: Lineability and Spaceability

The zero function plays a special role.

Lineability:
A subset S of a Banach space X is said to be lineable if S ∪ {0} contains an
infinite dimensional subspace.

Spaceability:
A subset S of a Banach space X is said to be spaceable if S ∪ {0} contains a
closed infinite dimensional subspace of X.
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Lineability for Approximation Processes
Extension of the Banach–Steinhaus theorem.

Theorem 1

Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {TN}N∈N be a sequence of bounded linear operators,
mapping from B1 into B2, with:

1 lim supN→∞‖TN‖B1→B2 =∞, and

2 there exists a dense subset K of B1 such that limN→∞‖Tf− TNf‖B2 = 0
for all f ∈ K.

Then the set DUB =

{
f ∈ B1 : lim sup

N→∞ ‖TNf‖B2 =∞}
is lineable.

Remarks:
• The zero function is not in DUB.
• There exists an infinite dimensional subspace UUB ⊂ DUB ∪ {0} such that

lim supN→∞‖TNf‖B2 =∞ for all f ∈ UUB, f 6≡ 0.
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Key Lemma

Lemma
Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {TN}N∈N be a sequence of bounded linear operators,
mapping from B1 into B2, with:

1 lim supN→∞‖TN‖B1→B2 =∞, and

2 there exists a dense subset K of B1 such that limN→∞‖Tf− TNf‖B2 = 0
for all f ∈ K.

Then there exist a sequence of finitely linearly independent functions
{ϕn}n∈N ⊂ B1 with

3 ‖ϕn‖B1 = 1 for all n ∈ N,

and a constant C3 > 0, such that for all n ∈ N there exists a sequence of
natural numbers {Nk(n)}k∈N with:

4 lim supk→∞‖TNk(n)ϕn‖B2 =∞, and

5 supk∈N‖TNk(m)ϕn‖B2 6 C3 for all m 6= n.
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Sketch of Proof (Theorem 1)

Intuition of the proof:

Under the assumptions of the theorem, every Banach space is decomposable
into two subspaces.

B = V +U

V : functions with convergence
U: functions with divergence

The axiom of choice is used to show the decomposition.
In the decomposition U is not unique.

Using a Hamel basis for U, we can show that for all elements from U, except 0,
we have unbounded divergence.
Employing the key lemma we show that U is infinite dimensional.

In general, V and U are not closed.
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Spaceability for Approximation Processes

Theorem 2
Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {TN}N∈N be a sequence of bounded linear operators,
mapping from B1 into B2, with:

1 lim supN→∞‖TN‖B1→B2 =∞,

2 there exists a dense subset K of B1 such that limN→∞‖Tf− TNf‖B2 = 0
for all f ∈ K, and

3 there exists an infinite dimensional closed subspace B1 of B1 such that
supN∈N‖TNf‖B2 6 C4‖f‖B1

for all f ∈ B1.

Then, the set

DUB =

{
f ∈ B1 : lim sup

N→∞ ‖TNf‖B2 =∞}
is spaceable.
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Motivation from a Mathematical Point of View

• The Banach–Mazur theorem shows that every Banach space is
isometrically embeddable in C[0, 1].

• In general: For a given infinite dimensional Banach space B, all
isometrically isomorphic subspaces of C[0, 1] contain non-smooth
functions.

• Let ND be the set of nowhere differentiable functions in C[0, 1]. It is not
difficult to see that every Banach space B is isometrically embeddable in
ND ∪ {0}.
⇒ ND ∪ {0} is spaceable and has a very rich structure.

General question:
TN : C[0, 1]→ C[0, 1] with the above properties according to the key lemma.
Can we have the same behavior for DUB ∪ {0}?
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Sketch of Proof I

We use the basic fact that every infinite dimensional Banach space contains an
infinite dimensional closed subspace with a Schauder basis.
⇒ There exists an infinite dimensional closed subspace B

1
of B1, and functions

{φn}n∈N ⊂ B1
, as well as continuous linear functionals {Φn}n∈N ⊂ B∗1 , such

that

f =

∞∑
n=1

Φn(f)φn

for all f ∈ B
1
, where the series converges in the B1-norm.

The coefficient functionals {Φn}n∈N can be extended to continuous linear
functionals {Φex

n }n∈N defined on B1 which satisfy ‖Φn‖B∗
1
= ‖Φex

n ‖B∗
1
, n ∈ N.

Let qn = max{1, ‖Φex
n ‖B∗

1
}, and consider the functions

hn = φn +
1

2n+1qn
ϕn, n ∈ N,
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Sketch of Proof II
where {ϕn}n∈N are the functions from the key lemma. We have

∞∑
n=1

‖Φex
n ‖B∗

1
‖φn − hn‖B1 =

∞∑
n=1

‖Φex
n ‖B∗

1

∥∥∥∥ 1
2n+1qn

ϕn

∥∥∥∥
B1

=

∞∑
n=1

‖Φex
n ‖B∗

1

1
2n+1qn

6
∞∑
n=1

1
2n+1 =

1
2
< 1.

⇒ {hn}n∈N is a basic sequence in B1 that is equivalent to {φn}n∈N.

Let D1 =

f ∈ B1 : ∃{αn}n∈N ⊂ C with lim
N→∞

∥∥∥∥∥f−
N∑
n=1

αnhn

∥∥∥∥∥
B1

= 0

 .

D1 is a closed subspace of B1.
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Sketch of Proof III

For f ∈ D1 we have

f =

∞∑
n=1

αnhn =

∞∑
n=1

αnφn︸ ︷︷ ︸
=g

+

∞∑
n=1

αn
1

2n+1qn
ϕn︸ ︷︷ ︸

=v

. (1)

Note that g ∈ B
1
. Using (1) we obtain for N ∈ N that

TNf = TNg+ TNv

and
‖TNf− TNv‖B2 = ‖TNg‖B2 6 C4‖g‖B

1
, (2)

where the last inequality follows from assumption 3 and B
1
⊂ B1. Let n0 be the

smallest index such that αn0 6= 0. Then we have

TNv =
αn0

2n0+1qn0

TNϕn0 +

∞∑
n=n0+1

αn

2n+1qn
TNϕn. (3)
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Sketch of Proof IV

We have ∥∥∥∥∥
∞∑

n=n0+1

αn

2n+1qn
TNn0

k
ϕn

∥∥∥∥∥
B2

6
C3

2
‖g‖B

1
(4)

for all k ∈ N. From (3) and (4) we see that∥∥∥∥TNn0
k
v−

αn0

2n0+1qn0

TNn0
k
ϕn0

∥∥∥∥
B2

6
C3

2
‖g‖B

1
(5)

for all k ∈ N. Combining (2) and (5), it follows that

‖TNn0
k
f‖B2 >

|αn0 |

2n0+1qn0

‖TNn0
k
ϕn0‖B2 − C4‖g‖B

1
−
C3

2
‖g‖B

1

for all k ∈ N.
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General Remarks on Spaceability

• It is not clear whether the spaceability extension of the Banach–Steinhaus
theory is also valid in a general setting, i.e., without assumption 3.

• The key lemma seems to be to weak to prove spaceability in the general
setting.

• A better understanding of the geometry of the spaces is necessary. Most
constructions according to the proof of Theorem 2 result in a Banach
space which is decomposable into two infinite dimensional complemented
subspaces B =W1 ⊕W2.

• However, according to Gowers’ dichotomy theorem, every Banach space B
has a subspace which either has an unconditional basis or is hereditarily
indecomposable.

T. W. Gowers, An Infinite Ramsey Theorem and Some Banach-Space
Dichotomies, Annals of Mathematics, 156, pp. 797–833, 2002.
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Signal Spaces

Definition (Paley–Wiener Space)
For 1 6 p 6∞ we denote by PWp

σ the Paley-Wiener space of functions f with
a representation f(z) = 1

2π

∫σ
−σ g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ,σ].

The norm for PWp
σ is given by ‖f‖PWp

σ
=
(

1
2π

∫σ
−σ |f̂(ω)|p dω

)1/p
.

Properties:
• PWp

σ ⊃ PWs
σ for 1 6 p < s 6∞

• ‖f‖∞ 6 ‖f‖PW1
σ

• PW2
σ is the space of bandlimited functions with finite L2(R)-norm

(finite energy).

Without loss of generality, we can restrict to σ = π.
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Stable Linear Time Invariant Systems
A linear system T : PWp

π → PWp
π is called stable linear time invariant (LTI)

system if:
• T is bounded, i.e., ‖T‖ = sup‖f‖

PW
p
π
61 ‖Tf‖PWp

π
<∞ and

• T is time invariant, i.e.,
(
Tf(·− a)

)
(t) = (Tf)(t− a) for all f ∈ PWp

π and
t,a ∈ R.

By T we denote the space of all stable LTI systems.

The Hilbert transform H and the low-pass filter are stable LTI systems.

Example (Hilbert transform)

The Hilbert transform Hf of a signal f ∈ PW1
π is defined by

(Hf)(t) =
1

2π

∫π
−π

−i sgn(ω)f̂(ω) eiωt dω,

where sgn denotes the signum function.
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Finite Energy and Mixed Signal Representation

Approximate the system output Tf from the samples of f:

(Tf)(t) =

∞∑
k=−∞ f(k)hT (t− k).

Mixed signal representation:

(Tf)(t)
?
=

∞∑
k=−∞ f(t− k)hT (k).
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Finite Energy and Mixed Signal Representation

For all f ∈ PW2
π ∞∑

k=−∞ f(k)hT (t− k)
converges in L2(R) and consequently globally uniformly,

and we have

lim
N→∞max

t∈R

∣∣∣∣∣(Tf)(t) −
∞∑

k=−∞ f(t− k)hT (k)
∣∣∣∣∣ = 0.

for the mixed signal representation.
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Finite Energy and Mixed Signal Representation

Theorem 3

There exist an infinite dimensional closed subspace D(2)
sig ⊂ PW2

π and an

infinite dimensional closed subspace D(2)
sys ⊂ T such that for all f ∈ D(2)

sig , f 6≡ 0,

and all T ∈ D(2)
sys , T 6≡ 0, we have

lim sup
N→∞

∫∞
−∞
∣∣∣∣∣
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣
2

dt =∞.

All T ∈ D(2)
sys are such that ĥT is continuous.

Banach-Steinhaus Theory Revisited Holger Boche 25



Representation of Stable LTI Systems for PW1
π

• For every stable LTI system T : PW1
π → PW1

π there is exactly one function
ĥT ∈ L∞[−π,π] such that

(Tf)(t) =
1

2π

∫π
−π

ĥT (ω)f̂(ω) eiωt dω

for all f ∈ PW1
π, and the integral is absolutely convergent.

• Every ĥT ∈ L∞[−π,π] defines a stable LTI system T : PW1
π → PW1

π.
• hT = T sinc

The operator norm ‖T‖ := sup‖f‖
PW1

π
61‖Tf‖PW1

π
is given by ‖T‖ = ‖ĥT‖∞.
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System Approximation

Convergence of
∞∑

k=−∞ f(k)hT (t− k) is problematic.

Theorem 4
For all t ∈ R there exist a stable LTI system T ∈ T and a signal f ∈ PW1

π such
that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞.

Even true for oversampling and arbitrary choice of the reconstruction kernel.
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System Approximation

We know:
There exist a stable LTI system T ∈ T and a signal f ∈ PW1

π such that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞. (*)

Questions:

• What can we say about the structure of the set of systems T ∈ T and the
set of signals f ∈ PW1

π such that (*) is true.
• Do both sets contain an infinite dimensional closed linear subspace?
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Joint Spaceability for System Approximation

Theorem 5
Let t ∈ R be arbitrary but fixed. There exist an infinite dimensional closed
subspace Dsig ⊂ PW1

π and an infinite dimensional closed subspace Dsys ⊂ T

such that for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞.

All T ∈ Dsys are such that ĥT is continuous.

Joint spaceability: For any pair of signal and system (f, T) ∈ Dsig ×Dsys, f 6≡ 0,
T 6≡ 0, we have divergence.
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Joint Spaceability for Mixed-Signal Representation

The previous result implies joint spaceability for the mixed signal representation.

Corollary

Let t ∈ R be arbitrary but fixed. There exist an infinite dimensional closed
subspace Dsig ⊂ PW1

π and an infinite dimensional closed subspace Dsys ⊂ T

such that for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣ =∞.

All T ∈ Dsys are such that ĥT is continuous.
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Hilbert Transformation and Causality
Let {an}∞n=0 be a causal sequence in `2(Z+) then

f(z) =

∞∑
n=0

anz
n = u(z) + i v(z) , |z| < 1

belongs to the Hardy space H2(D) of analytic functions in D = {z ∈ C : |z| < 1}
with

‖f‖2 =

(
sup

0<r<1

1
2π

∫π
−π

∣∣f(reiθ)∣∣2 dθ
)1/2

<∞ .

• u, v are real and harmonic in D
• the boundary functions f,u, v ∈ L2(∂D) exist

f(eiθ) = lim
r→1

f(r eiθ) , u(eiθ) = lim
r→1

u(r eiθ) , v(eiθ) = lim
r→1

v(r eiθ)

• v is the harmonic conjugate of u: v = ũ (Kramers-Kronig-Relation)
• ũ is given as the Hilbert transform of u:

ũ(eiθ) =
(
Hu
)
(eiθ) = lim

ε→0

1
2π

∫
ε6|τ|6π

f(ei(θ−τ))

tan(τ/2)
dτ
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Phase Retrieval using Hilbert Transform

Problem
Let f ∈ H2(D) with f(z) 6= 0 for all z ∈ D.

Assume that only magnitude measurements
∣∣f(eiθ)

∣∣, θ ∈ [−π,π) are known.

Goal: Recover the phase information of f.

• write f(eiθ) =
∣∣f(eiθ)

∣∣ eiφ(θ)

• then log f(eiθ) = log
∣∣f(eiθ)

∣∣+ iφ(θ) is analytic in D
• recover the phase φ as the Hilbert transform of log |f|:

φ(θ) =
(
H[log |f|]

)
(eiθ) = lim

ε→0

1
2π

∫
ε6|τ|6π

log
∣∣f(ei(θ−τ))

∣∣
tan(τ/2)

dτ

In principle, the phase retrieval can be solved using the Hilbert transform!
Is this approach also practically realizable?
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Hilbert Transform – Basic Properties

• Lp-Theory
� H : L1(∂D)→ weak L1(∂D) (Kolmogoroff)
� H : Lp(∂D)→ Lp(∂D), 1 < p <∞
� H : L∞(∂D)→ BMO (Ch. Fefferman & E. M. Stein)
� H : H1 → H1 (L. Carleson & E. M. Stein)
� H1–BMO Duality (Ch. Fefferman)

• Hilbert transform on C(∂D)
� H : C(∂D)→ Lp(∂D), 1 6 p <∞
� H : C(∂D) 9 C(∂D)
� H : C(∂D)→ VMO (Ch. Fefferman)

J.B. Garnett Bounded analytic functions Academic Press, New York, 1981.
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Signal Space for Hilbert Transform Approximations

We consider the Hilbert transform on the Banach space B of all continuous
functions on the unit circle ∂D := {z ∈ C : |z| = 1} with continuous conjugate

B :=
{
f ∈ C(∂D) : f̃ = Hf ∈ C(∂D)

}
equipped with the norm∥∥f∥∥

B
:= max

{
‖f‖∞, ‖Hf‖∞} with

∥∥f∥∥∞ = max
θ∈[−π,π)

∣∣f(eiθ)∣∣ .
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Dirichlet Spaces

• Let f be an analytic function in D with finite Dirichlet integral

D(f) =
1
π

x

|z|<1

∣∣f ′(z)∣∣2 dz =
∞∑
n=1

n
∣∣f̂n∣∣2 <∞ .

• Write f = u+ iũ with the real harmonic function u and ũ = Hu. Then

D(u) =
1

2π

x

|z|<1

∥∥(gradu)(z)
∥∥2
R2 dz = 2

∞∑
n=1

n
∣∣ûn∣∣2 <∞ .

• We define the analytic and harmonic Dirichlet spaces by

Da =
{
f : f analytic in D, with D(f) <∞}

Dh =
{
u : u harmonic in D, with D(u) <∞}

with the Sobolev-H
1
2 (∂D) norms

‖f‖H1/2 =
(
f̂2

0 +D(f)2
) 1

2
and ‖u‖H1/2 =

(
û2

0 +D(u)2
) 1

2
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Functions with Finite Dirichlet Energy

Problem (Dirichlet problem)
For 1 < p 6∞, assume that u0 ∈ Lp(∂D) is given. Find a potential u such that

(∆u)(z) = 0 for all z ∈ D

u(ζ) = u0(ζ) for almost all ζ ∈ ∂D

sup0<r<1

(
1

2π

∫π
−π

∣∣u(reiθ)∣∣p dθ
)1/p

<∞ .

Dirichlet’s Principle – Solution minimizes the field energy

minD(u) s.t. u is harmonic in D
u(ζ) = u0(ζ) for all ζ ∈ ∂D

The Dirichlet Problem has a solution only if ‖u0‖H1/2 <∞.
Dh is the set of all finite energy solutions of a Dirichlet problem.
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Approximation Problem

Continuous functions of finite energy

B1/2 = B ∩Dh with ‖f‖B1/2 = max
(
‖f‖B, ‖f‖H1/2

)
The set of all functions f which are harmonic in D and such that

• f is continuous on ∂D
• f has a continuous conjugate f̃
• the Dirichlet energy D(f) is finite

Goal
Find a (realizable) sequence {HN}N∈N of bounded linear operators
HN : B→ B such that

lim
N→∞

∥∥HNf− f̃
∥∥∞ = lim

N→∞
∥∥HNf− Hf

∥∥∞ = 0 for all f ∈ B1/2 .
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Example: Approximation from Frequency Samples
Given f ∈ B be arbitrary, and let {f̂n}n∈Z be its Fourier coefficients

f̂n =
1

2π

∫π
−π

f(eiθ) einθ dθ , n ∈ Z .

Consider the Nth-order Fejér mean

(
FNf

)
(eiθ) =

N∑
n=−N

(
1 −

|n|

N

)
f̂n einθ =

N

2π

∫π
−π

f(eiθ)FN(t− θ) dθ

and define F̃N := HFN.

Theorem 6

lim
N→∞

∥∥F̃Nf− f̃
∥∥∞ = 0 for all f ∈ B .

Proof: ∥∥F̃Nf− f̃
∥∥∞ =

∥∥HFNf− f̃
∥∥∞ =

∥∥F̃Nf− f̃
∥∥∞ =

∥∥FNf̃− f̃
∥∥∞ .

Banach-Steinhaus Theory Revisited Holger Boche 39



Practical Constraints on Approximation Sequences

� Previously constructed operators
{

F̃N
}
N∈N are based on the exact

knowledge of the Fourier coefficients {f̂n}
N
n=−N.

� Equivalently, these operators are based on the knowledge of f ∈ B on the
whole unit circle ∂D.

⇒ Analog computers/devices are needed for implementation.

� Practical applications⇒ digital signal processing.

� Signals f are only known on finite number of sampling points {f(ζm)}Mm=1.

� Previous approximation sequence {F̃N}N∈N can not be implemented.

⇒ Consider approximation sequences {HN}N∈N which are based on sampled
data.
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Axiomatic Properties of Approximation Sequences

The properties of the investigated approximation sequences {HN}N∈N of
bounded linear operators are described by two axioms:

(A) Concentration on a finite sampling set: For every N ∈ N there exists a
finite sampling set ZN = {ζn : n = 1, . . . ,MN} ⊂ ∂D such that

f(ζn) = g(ζn) for all ζn ∈ ZN

implies (
HNf

)
(ζ) =

(
HNg

)
(ζ) for all ζ ∈ ∂D .

(B) Weak convergence on B: For every f ∈ B, the sequence {HNf}N∈N
converges weakly to Hf, i.e.

lim
N→∞

〈
HNf,ϕ

〉
2 =

〈
Hf,ϕ

〉
2 for all ϕ ∈ C∞(∂D) .
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Consequences & Properties

Lemma
A sequence {HN}N∈N satisfies Axiom (A) if and only if to every N ∈ N there
exists a finite sampling set

ZN =
{
ζ1,N, λ2,N, . . . , λMN,N

}
⊂ ∂D with MN ∈ N

and functions {hn,N : n = 1, . . . ,MN} ⊂ B such that

(
HNf

)
(ζ) =

MN∑
n=1

f(ζn,N)hn,N(ζ) for all f ∈ B .

Lemma
Let {HN}N∈N be a sequence which satisfies Axioms (A) and (B). Then every
f ∈ C0(∂D) = {f ∈ C(∂D) : f̂0 = 0} satisfies

lim
N→∞

〈
HNf,ϕ

〉
2 =

〈
Hf,ϕ

〉
2 for all ϕ ∈ C∞(∂D) .
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Example – Sampled (Conjugate) Fejér Mean

• Consider again the N-th order Fejér mean of f ∈ B(
FNf

)
(eiθ) =

N

2π

∫π
−π

f(eiθ)FN(θ− τ) dτ (∆)

with the so-called Fejér kernel

FN(τ) =

(
sin(Nτ/2)
N sin(τ/2)

)2

.

• Approximate the integral in (∆) by its Riemann sum based on the
rectangular integration rule yields the sampled Fejér mean

(
SNf

)
(eiθ) =

N−1∑
n=0

f
(
ein 2π/N)FN(θ− n 2π

N

)
≈ (FNf)(eiθ) .

It show the same approximation behavior as (∆):

lim
N→∞

∥∥SNf− f
∥∥∞ = lim

N→∞
∥∥FNf− f

∥∥∞ = 0 for all f ∈ C(∂D) .
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Example – Sampled Conjugate Fejér Mean

• Now we define the approximation operators HF
N := HSN. This yields

(
HF
Nf
)
(eiθ) =

(
HSNf

)
(eiθ) =

N−1∑
n=0

f
(
ein 2π/N) F̃N(θ− n 2π

N

)
with the conjugate Fejér kernel F̃N = HFN given by

F̃N(τ) =
N sin τ− sin(Nτ)

2
[
N sin(τ/2)

]2 =
1
N

(
1

tan(τ/2)
−

sin(Nτ)
2N sin2(τ/2)

)
.

� {HF
N}N∈N is an approximation sequence satisfying Axioms (A) and (B).

� Replace the rectangular integration rule by any other integration method
gives similar operators but with other kernels.
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Divergence of Hilbert Transform Approximations

Theorem 7
To every sequence {HN}N∈N which satisfies Axioms (A) and (B) there exists a
residual set DUB ⊂ B1/2 such that

lim sup
N→∞

∥∥HNf
∥∥∞ =∞ for all f ∈ DUB ,

and such that DUB is spaceable.

• Since B1/2 ⊂ B, the same results holds for B.
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Sketch of Proof – Interpolation Lemmas

A(D) is the disk algebra of functions analytic in D and continuous in D ∪ ∂D.

A1/2 = A(D) ∩Da with ‖f‖A1/2 = max
(
‖f‖∞, ‖f‖H1/2

)
Lemma (Interpolation by functions from A1/2)
There exists a universal constant Ca > 1 such that for every finite sampling set
ZN = {ζ1, . . . , ζN} ⊂ ∂D the following statement is true:
To every complex-valued f ∈ C(∂D) there exists a g ∈ A1/2 such that

g(ζn) = f(ζn) for all ζn ∈ ZN and ‖g‖A1/2 6 Ca ‖f‖∞ .

Corollary (Interpolation by functions from B1/2)
There exists a universal constant Ca > 1 such that for every finite sampling set
ZN = {ζ1, . . . , ζN} ⊂ ∂D the following statement is true:
To every real-valued f ∈ C(∂D) there exists a u ∈ B1/2 such that

u(ζn) = f(ζn) for all ζn ∈ ZN and ‖u‖B1/2 6 Ca ‖f‖∞ .
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Sketch of Proof – Divergence Theorem

(1) Using
• Corollary – Interpolation of continuous functions by functions from B1/2

• Axiom (A) – Operators {HN}N∈N, are concentrated on sampling sets

‖HN‖C(∂D)→C(∂D) = sup
f∈C(∂D)

‖HNf‖∞
‖f‖∞

6 Ca sup
u∈B1/2

‖HNu‖∞
‖u‖B1/2

= Ca‖HN‖B1/2→C(∂D) .

(2) Show that
sup
N∈N
‖HN‖C(∂D)→C(∂D) = +∞

Main technical challenge: Interpolation Lemma
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Proof Interpolation Lemma – Previous Approach

−π πζn−1 ζn ζn+1
−δ δ

• Interpolation with triangle function (B-spline of order 1)

g(t) =

N∑
n=1

f(ζn)hδ(t− ζn) with hδ(t) = max
(
1 −

|t|

δ
, 0
)

√
‖hδ‖∞ = 1 , ‖h̃δ‖∞ 6 1 − δ , |h̃δ(t)| 6 ε for |t| & δ.

� Difficulty:

Behavior of ‖hδ‖Hs for all s >
1
2

and δ small .

Therefore ‖g‖Hs cannot be controlled for N large and s > 1/2.
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Mapping Theorem of Riemann & Carathéodory

Dρ

D

ρ = 2‖f‖∞

1

sampling set:

ZN = {ζ1, . . . , ζN}

ζn

ζk

C+

ΩN

γn,k(ζn) = 0
γn,k(ζk) = +∞

Φ : Dρ 7→ C+

γn,k : D 7→ ΩN

• ΩN: open region in C, ∂ΩN: Jordan curve,

A(ΩN) = πD(γn,k) =
x

D

|γ ′n,k(z)|
2 dz =

x

|x+iy|<1

|γ ′n,k(x+ iy)|
2 dx dy

• Riemann mapping theorem: Conformal mappings γ : D 7→ ΩN
• Carathéodory: γ has an extension γ : ∂D 7→ ∂ΩN
• Uniqueness of γ: Fix the value of γ at two points on ∂D: ⇒ γn,k
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Proof of the Interpolation Lemma – Continued

• Based on the the conformal mappings γn,k and Φ, one defines the
interpolating function g as follows

qn(z) :=

N∑
k=1 ,k6=n

γn,k(z) +
1

Φ(f(ζn))
, n = 1, . . . ,N

g(z) := Φ−1
( N∑
n=1

1/qn(z)
)

• By the above construction, g has the desired properties:
• g is analytic in D
• Interpolation property: g(ζn) = f(ζn) for all n = 1, . . . ,N.
• Norm and energy bounded: ‖g‖∞ 6 2‖f‖∞ and D(g) 6 ‖f‖∞
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Further Questions, Extensions

� The previous theorem showed the weak divergence of sampling based
Hilbert transform approximations {HN}N∈N satisfying Axioms (A) and (B):

lim sup
N→∞

∥∥HNf
∥∥∞ =∞ for all f ∈ DUB ⊂ B1/2

where DUB ∪ {0} is a linear subspace of B1/2 (spaceability).

� For Hs, s > 1/2, it is a simple exercise to construct a convergent
approximation process for the Hilbert transform, satisfying Axioms
(A) and (B).

? Do these approximation methods also diverge strongly on B1/2?

lim
N→∞

∥∥HNf
∥∥∞ =∞ for some f ∈ B1/2 .

? Has the corresponding divergence set any (linear) structure?
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Remarks

• In general, it is extremely easy to approximate continuous functions by
sampling series which satisfy the two Axioms (A) and (B).

• Our connection with the Hilbert transform, implies a relation to causality.
• Causality⇒ we have to work in the framework of analytic functions to

satisfy the causality restriction.
• In Curt McMullen’s solution of Smale’s conjecture, he was restricted to

analytic rational functions.
• If one allows general rational functions, then there are always convergent

algorithms.
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Conclusions

• Lineability of divergence set in the Banach–Steinhaus theorem without any
further assumptions.

• Spaceability of divergence set in the Banach–Steinhaus theorem under the
condition that the boundedness set is spaceable.

• Joint spaceability of divergence set for mixed signal representation and
sampling type representation in different Paley–Wiener spaces.

• Convergence behavior of a classical phase retrieval problem for Sobolev
spaces.
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Thank you!
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