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Adaptive vs. Non-Adaptive Approximation

Non-Adaptive Approximation:
Shannon sampling series

(UNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

Approximation UNf uses all samples {f(k)}Nk=−N.

Adaptive Approximation:
Selection of specific samples f(k) for the approximation.

Consequences:
• Non-Adaptive Approximation: sequence of linear operators.

Convergence analysis with Banach–Steinhaus theorem (uniform
boundedness principle)

• Adaptive Approximation: leads to non-linear operators.
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Signal Spaces

• Bσ is the set of all entire functions f with the property that for all ε > 0
there exists a constant C(ε) with |f(z)| 6 C(ε) exp

(
(σ+ ε)|z|

)
for all z ∈ C.

Definition (Bernstein Space)
The Bernstein space B

p
σ consists of all signals in Bσ, whose restriction to the

real line is in Lp(R), 1 6 p 6∞.

Definition (Paley-Wiener Space)
For 1 6 p 6∞ we denote by PWp

σ the Paley-Wiener space of signals f with a
representation f(z) = 1

2π

∫σ
−σ g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ,σ].

The norm for PWp
σ is given by ‖f‖PWp

σ
=
(

1
2π

∫σ
−σ |f̂(ω)|p dω

)1/p
.
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Residual Set

• A subset M of a metric space X is said to be nowhere dense in X if the
closure [M] does not contain a non-empty open set of X. M is said to be
of the first category (or meager) if M is the countable union of sets each of
which is nowhere dense in X.

• A set that is not of the first category is called a set of the second category.
• The complement of a set of the first category is called a residual set.

Baire’s Theory:
• Residual sets are “large”.
• In a complete metric space, a residual set is dense and a set of the second

category.
• The countable intersection of residual sets is always a residual set.
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Divergence of the Shannon Sampling Series

• For signals f ∈ PWp
π, 1 < p <∞, the Shannon sampling series converges

absolutely and uniformly on all of R.

• However, for p = 1, i.e., for f ∈ PW1
π we have

lim sup
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞, (1)

that is the peak value diverges as N tends to infinity.
• Recently strengthened in [BF14] : There exists a signal f ∈ PW1

π such that

lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞. (2)

Important difference in the divergence behavior of (1) and (2)

[BF14] H. Boche and B. Farrell, “Strong divergence of reconstruction procedures for the Paley-Wiener
space PW1

π and the Hardy spaceH1,” Journal of Approximation Theory, vol. 183, pp. 98–117, Jul. 2014
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Weak Divergence vs. Strong Divergence

We say a sequence {xn}n∈N ⊂ C
• diverges weakly if lim supn→∞|xn| =∞.
• diverges strongly if limn→∞|xn| =∞.

Weak lim sup divergence:
Merely guarantees the existence of a subsequence {Nn}n∈N for which we have
limn→∞ xNn =∞.
Leaves the possibility that there exist a different subsequences {N∗n}n∈N such
that lim supn→∞ xN∗

n
<∞.

Strong lim divergence:
Divergence for all subsequences {Nn}n∈N.

adaptive techniques
not convergent

⇔ strong divergence

A General Approach for Convergence Analysis of Adaptive Sampling-Based Signal Processing 7



Weak Divergence vs. Strong Divergence

We say a sequence {xn}n∈N ⊂ C
• diverges weakly if lim supn→∞|xn| =∞.
• diverges strongly if limn→∞|xn| =∞.

Weak lim sup divergence:
Merely guarantees the existence of a subsequence {Nn}n∈N for which we have
limn→∞ xNn =∞.
Leaves the possibility that there exist a different subsequences {N∗n}n∈N such
that lim supn→∞ xN∗

n
<∞.

Strong lim divergence:
Divergence for all subsequences {Nn}n∈N.

adaptive techniques
not convergent

⇔ strong divergence

A General Approach for Convergence Analysis of Adaptive Sampling-Based Signal Processing 7



Banach–Steinhaus Theorem, Weak Divergence,
and Residual Sets

Divergence results as in

lim sup
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞

are usually proved by using the Banach–Steinhaus theorem (uniform
boundedness principle).

→ The obtained divergence is in terms of the lim sup (weak divergence) and
not a statement about strong divergence.

→ Strength of the Banach–Steinhaus theorem: the divergence statement
holds for all functions from a residual set.
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Approximation Processes in Banach Spaces

General and abstract setting: two Banach spaces, B1 and B2, and a bounded
linear operator T : B1 → B2.

Goal: approximate T by a sequence of bounded linear operators {UN}N∈N (with
a simpler structure, e.g., finite dimensional range, . . . ), mapping from B1 in B2.
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Assumptions

1 There exists a dense subset S1 of B1 such that

lim
N→∞‖UNf− Tf‖B2 = 0

for all f ∈ S1.

2 We have limN→∞‖UN‖ =∞.
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Discussion of Assumptions

1 limN→∞‖UNf− Tf‖B2 = 0 for all f ∈ S1. 2 limN→∞‖UN‖ =∞.

Remarks:

• For the Shannon sampling series and PW1
π assumption 1 is fulfilled.

(PW2
π is a dense subset of PW1

π.)
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Discussion of Assumptions

1 limN→∞‖UNf− Tf‖B2 = 0 for all f ∈ S1. 2 limN→∞‖UN‖ =∞.

Remarks:

• lim supN→∞‖UN‖ =∞ is necessary.
If lim supN→∞‖UN‖ <∞⇒ convergence for all f ∈ B1, nothing needs to
be analyzed.

• If lim supN→∞‖UN‖ =∞ then the set

DBS =

{
f ∈ B1 : lim sup

N→∞ ‖UNf‖B2 =∞}
is a residual set in B1.
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Discussion of Assumptions

1 limN→∞‖UNf− Tf‖B2 = 0 for all f ∈ S1. 2 limN→∞‖UN‖ =∞.

Remarks:

• If lim infN→∞‖UN‖ <∞ then there exists a universal subsequence
{Nl}l∈N of the natural numbers such that

lim
l→∞‖UNlf− Tf‖B2 = 0

for all f ∈ B1.
• Adaptive signal processing would lead to convergence for the whole space
B1.

• Hence, interesting case is 2 .
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Set of Signals with Strong Divergence

We analyze the set

Dstrong =

{
f ∈ B1 : lim

N→∞‖UNf‖B2 =∞} .

Dstrong contains all the signals for which adaptive signal processing is useless.
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No Universal Subsequence

• 2 ⇒ there cannot exist a universal subsequence {Nl}l∈N such that
liml→∞‖UNlf− Tf‖B2 = 0 is true for all f ∈ B1.

Relevant question:

• Is possible to find for every signal f ∈ B1 a subsequence {Nl(f)}l∈N of the
natural numbers such that liml→∞‖UNlf− Tf‖B2 = 0 is true?

• In this case the subsequence {Nl(f)}l∈N is adapted to the signal f.

answer negative ⇔ Dstrong 6= ∅
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Observation

Observation
Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {UN}N∈N be a sequence of bounded linear operators
mapping from B1 to B2 such that 1 and 2 are fulfilled. If Dstrong 6= ∅ then
Dstrong is dense in B1.
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Set of Signals without Strong Divergence

Set of signals for which the approximation process diverges and adaptive signal
processing leads to a bounded approximation process:

Dsb = DBS \Dstrong

Dsb =

{
f ∈ B1 : lim sup

N→∞ ‖UNf‖B2 =∞ and lim inf
N→∞‖UNf‖B2 <∞}

Theorem
Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {UN}N∈N be a sequence of bounded linear operators
mapping from B1 to B2 such that 1 and 2 are fulfilled. Then Dsb is a residual
set in B1.
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Set of Signals with Strong Divergence

Corollary
Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {UN}N∈N be a sequence of bounded linear operators
mapping from B1 to B2 such that 1 and 2 are fulfilled. Then the set Dstrong is
either empty or a meager set.

A General Approach for Convergence Analysis of Adaptive Sampling-Based Signal Processing 16



Examples that Fit into the Framework

1 Shannon sampling series (global convergence):
B1 = PW1

π, B2 = B∞π , T = Id,

(UNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

.

2 System approximation process (global convergence):
B1 = PW1

π, B2 = B∞π , T : PW1
π → PW1

π a stable LTI system,

(UNf)(t) =

N∑
k=−N

f(k)hT (t− k),

where hT (t) = (T sinc)(t).

3 System approximation process (pointwise convergence at t ∈ R):
B1 = PW1

π, B2 = C, T : PW1
π → C, f 7→ (T̃ f)(t), where T̃ : PW1

π → PW1
π

is a stable LTI system.

4 Non-equidistant sampling series and system approximation processes.
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Examples

Strong divergence for Shannon sampling series and peak value of the system
approximation process for the Hilbert transform.

In both cases, the set of signals with strong divergence can be at most a
meager set.

A General Approach for Convergence Analysis of Adaptive Sampling-Based Signal Processing 18



Stable Linear Time Invariant Systems

A linear system T : PW1
π → PW1

π is called stable linear time invariant (LTI)
system if:

• T is bounded, i.e., ‖T‖ = sup‖f‖
PW1

π
61 ‖Tf‖PW1

π
<∞ and

• T is time invariant, i.e.,
(
Tf(·− a)

)
(t) = (Tf)(t− a) for all f ∈ PW1

π and
t,a ∈ R.

The Hilbert transform H and the low-pass filter are stable LTI systems.

Example (Hilbert transform)

The Hilbert transform Hf of a signal f ∈ PW1
π is defined by

(Hf)(t) =
1

2π

∫π
−π

−i sgn(ω)f̂(ω) eiωt dω,

where sgn denotes the signum function.
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Representation of Stable LTI Systems

• For every stable LTI system T : PW1
π → PW1

π there is exactly one function
ĥT ∈ L∞[−π,π] such that

(Tf)(t) =
1

2π

∫π
−π

ĥT (ω)f̂(ω) eiωt dω

for all f ∈ PW1
π, and the integral is absolutely convergent.

• Every ĥT ∈ L∞[−π,π] defines a stable LTI system T : PW1
π → PW1

π.

The operator norm ‖T‖ := sup‖f‖
PW1

π
61‖Tf‖PW1

π
is given by ‖T‖ = ‖ĥT‖∞.
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System Approximation
Approximate the system output Tf from the samples of f.

∞∑
k=−∞ f(k)hT (t− k).

Convergence is more problematic than the convergence behavior of the
Shannon sampling series.

Abbreviation: (TNf)(t) =

N∑
k=−N

f(k)hT (t− k).

Theorem (BM10)

For all t ∈ R there exists stable LTI system T : PW1
π → PW1

π and a signal
f ∈ PW1

π such that
lim sup
N→∞ |(TNf)(t)| =∞.

Even true for oversampling and arbitrary choice of the reconstruction kernel.

[BM10] H. Boche and U. J. Mönich, “Sampling-type representations of signals and systems,” Sampling
Theory in Signal and Image Processing, vol. 9, no. 1–3, pp. 119–153, Jan., May, Sep. 2010
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System Approximation

Divergence is only weak lim sup divergence (no strong divergence).

Adaptive choice of a subsequence {Nn}n∈N may lead to a convergent
approximation process.

The subsequence will in general depend on the signal f.
→ TNn(f) would be adapted to the signal f.

Task of adaptive signal processing:
Find an index sequence (depending on the signal f) that leads to convergence.
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System Approximation

Theorem

Let T : PW1
π → PW1

π be a stable LTI system, t ∈ R, and f ∈ PW1
π. There exists

a monotonically increasing subsequence {Nk = Nk(t, f, T)}k∈N of the natural
numbers such that limk→∞(TNkf)(t) = (Tf)(t).

• In certain cases, adaptive signal processing leads to an approximation
process that is convergent for all f ∈ PW1

π.
• Shows that strong divergence is a stronger statement than

assumption 2 (limN→∞‖UN‖ =∞).

[BM10] H. Boche and U. J. Mönich, “Strong divergence for system approximations,” Problems of
Information Transmission, 2015, to be published
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Set of Signals with a Convergent Subsequence

Set of signals for which the approximation process diverges and adaptive signal
processing leads to a convergent approximation process:

Dsc =

{
f ∈ B1 : lim sup

N→∞ ‖UNf‖B2 =∞ and lim inf
N→∞‖UNf− Tf‖B2 = 0

}
.

• Dsc ⊂ Dsb

• We already know that Dsb is a residual set.

The next theorem shows that even Dsc is a residual set.

Theorem

Let B1 and B2 be two Banach spaces and T : B1 → B2 a bounded linear
operator. Further, let {UN}N∈N be a sequence of bounded linear operators
mapping from B1 to B2 such that 1 and 2 are fulfilled. Then Dsc is a residual
set in B1.
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Dsb is a residual set: Main Steps of the Proof I

Dsb =

{
f ∈ B1 : lim sup

N→∞ ‖UNf‖B2 =∞ and lim inf
N→∞‖UNf‖B2 <∞}

D2 =

{
f ∈ B1 : lim sup

N→∞ ‖UNf‖B2 =∞ and lim inf
N→∞‖UNf‖B2 6 ‖Tf‖B2 + 1

}
We will show that D2 is a residual set. Since D2 ⊂ Dsb, this implies that Dsb is
also a residual set.

For M,N,K ∈ N we consider the set

D(M,N,K) =
{
f ∈ B1 : ‖UNf‖B2 > K and ‖UMf‖B2 < ‖Tf‖B2 + 1

}
.

We first prove that D(M,N,K) is an open set. Then, we prove that for all
N0,K ∈ N the set

D̃(N0,K) =
⋃

M,N>N0

D(M,N,K) (3)

is dense in B1.
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Dsb is a residual set: Main Steps of the Proof II
Since D̃(N0,K) is the union of open sets, it follows that D̃(N0,K) is open.
Thus, we have established that D̃(N0,K) is an open set that is dense in B1.
This is true for all N0 and K in N. It follows that

D3 =

∞⋂
K=1

∞⋂
N0=1

D̃(N0,K) (4)

is a residual set in B1.
Let f ∈ D3 be arbitrary but fixed. Form (3) and (4) we see that for every
N0,K ∈ N there exist natural numbers NN0,K and MN0,K satisfying
min{NN0,K,MN0,K} > N0, ‖UNN0,Kf‖B2 > K, and ‖UMN0,Kf‖B2 < ‖Tf‖B2 + 1.
It follows that

lim sup
N→∞ ‖UNf‖B2 =∞

and
lim inf
N→∞‖UNf‖B2 6 ‖Tf‖B2 + 1,

that is, we have f ∈ D2. This shows that D3 ⊂ D2, and since D3 is a residual
set, it follows that D2 and consequently Dsb is a residual set.
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Conclusion

• Weak divergence→ full theory given by Banach–Steinhaus (residual set)
• Examples for strong divergence: Shannon sampling series, Hilbert

transform approximation
• Strong divergence⇔ adaptive techniques not convergent
• Strong divergence at most for a meager set
• Showed examples for approximation processes that are weakly divergent

but not strongly
• Strong divergence stronger statement than limN→∞‖UN‖ =∞
• With adaptivity, reduction from a residual set to a meager set possible
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Thank you!
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