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Subject and Outline of the Talk

Is it possible to calculate the spectral factorization on a digital computer?

Is the spectral factor of a computable spectral density computable?

Outline
1. Spectral Factorization – A very short Introduction

2. Review of Computability Theory
− computable numbers, computable functions, Turing machines, etc.

3. Non-Computability of the Spectral Factorization and a Decision Problem

4. Consequences for Calculating the Causal Wiener filter
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Spectral Factorization
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Spectral Factorization
B Let φ be a spectral density. That is
− a non-negative real function on the unit circle ∂D = {z ∈ C : |z|= 1}
− satisfying the Paley–Wiener (Szegö) condition log φ ∈ L1(∂D)

B Spectral factorization is the operation of writing φ as

φ(eiω) = φ+(eiω)φ−(eiω) =
∣∣φ+(eiω)

∣∣2 , ω ∈ [−π,π) .

with the spectral factor φ+ and its para-Hermitian conjugate φ−(z) = φ+(1/z) for z ∈ C.
B The spectral factor φ+ is an outer function (a "minimum-phase system"), i.e.
− φ+(z) is analytic for every z ∈ D = {z ∈ C : |z|< 1}
− φ(z) 6= 0 for all z ∈ D.

It can be written as

φ+(z) = (Sφ)(z) = exp

(
1

4π

∫
π

−π

log φ(eiω)
eiω + z
eiω −z

dω

)
z ∈ D .

B We call S : φ 7→ φ+ the spectral factorization mapping.

Applications
• Wiener–Kolmogorov theory of smoothing and prediction of stationary time series
• causal Wiener filter: Communications, signal processing, control theory, · · ·

Holger Boche (TUM) | On the Algorithmic Solvability of the Spectral Factorization | ISIT 2019 3



Spectral Factorization Mapping – Properties
B S : φ 7→ φ+ has very complicated behavior (non-linear mapping, singular integral kernel)

B Even for very simple spectral densities φ , the spectral factor can not be written as a closed form expression.

Example (Piecewise linear spectral density):

B Left side: a piecewise linear spectral density φ

B Right side: The arc on which the spectral factor φ+ of φ is only given by a Cauchy principal value.

φ+(z) =
√

δ exp

(
1

4π

∫ a

−a
log
(

φ(eiω )
δ

) eiω + z
eiω −z

dω

)
, z ∈ C .
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Computability
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Computability – Intuition

B The true spectral factor φ+ is usually not known explicitly.
B A function φ+ is computable if it can be approximated effectively by a

function pM which can perfectly be calculated on a digital computer.
− pM might be a rational polynomial of a certain degree M
− effective approximation⇒ one can control the approximation error

Computability (an informal definition)
The spectral factor φ+ is computable if there exists an algorithm with the following properties
B It can be implemented on a digital computer (a Turing machine).
B It has two inputs: 1. the spectral density φ 2. an error bound ε > 0.
B It is able to determine in finitely many steps an approximation pM of φ+ such that the true φ+ is guaranteed to be close to pM ,

i.e. such that
φ+ ∈ {ψ ∈X : ‖ψ−pM‖X < ε}

where X is an appropriate Banach space with a corresponding norm ‖·‖X .
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Computable Rational Numbers
Definition: A sequence {rn}n∈N ⊂Q of rational numbers is said to be computable if there exist recursive functions a,b,s : N→ N
with b(n) 6= 0 and such that

rn = (−1)s(n) a(n)

b(n)
, n ∈ N .

A recursive function a : N→ N is a mapping that is build form elementary computable functions and recursion and can be
calculated on a Turing machine.

Turing machine
• can simulate any given algorithm and therewith provide a simple

but very powerful model of computation.
• is a theoretical model describing the fundamental limits of any

realizable digital computer.
• Most powerful programming languages are called Turing-complete

(such as C, C++, Java, etc.).
Figure taken from Wikipedia

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. s2-42, no. 1, 1937.
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Computable Real Numbers

B Any real number x ∈ R is the limit of a sequence of rational numbers.

B For x ∈ R to be computable, the convergence has to be effective.

Definition (Computable number): A real number x ∈ R is said to be computable if there exists a computable sequence
{rn}n∈N ⊂Q of rational numbers which converges effectively to x ,
i.e. if there exists a recursive function e : N→ N such that for all N ∈ N

|x− rn| ≤ 2−N whenever n ≥ e(N) .

⇒ x ∈ R is computable if a Turing machine can approximate it with exponentially vanishing error.

• Rc stand for the set of all computable real numbers.

• Cc = {x + iy : x ,y ∈ Rc} stands for the set of all computable complex numbers.

• Note that the set of computable numbers Rc (R is only countable.
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Computable Functions
Definition: A function f : ∂D→ R on the unit circle is said to be computable if

(a) f is Banach–Mazur computable, i.e. if f maps computable sequences {xn}n∈N ⊂ Rc onto computable sequences
{f (xn)}n∈N ⊂ Rc .

(b) f is effective uniformly continuous, i.e. if there is a recursive function d : N→ N such that for every N ∈ N and all ζ1,ζ2 ∈ ∂D
with |ζ1−ζ2| ≤ 1/d(N) always |f (ζ1)− f (ζ2)| ≤ 2−N is satisfied.

Lemma (equivalent definition of computability):
A function f : ∂D→ R on the unit circle is computable if and only if there exists a computable sequence of real trigonometric
polynomials {pm}m∈N which converges effectively to f in the uniform norm, i.e. if there exists a recursive function e : N→ N such
that for all θ ∈ [−π,π) and every N ∈ N

m ≥ e(N) implies
∣∣f (eiθ )−pm(eiθ )

∣∣≤ 2−N .
Remark:

• There exist various notions of computability e.g. Borel- or Markov computability.

• Banach–Mazur computability is the weakest form of computability.
⇒ If a function is not Banach–Mazur computable then it is not computable with respect to any other notion of computability.
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Computable Functions in Banach Spaces
We consider functions in a Banach space X of functions on ∂D with norm ‖f‖X .

Definition: A function f ∈X is said to be X –computable if

(a) f is computable (i.e. effectively approximable by rational polynomials pm).

(b) its norm ‖f‖X is computable⇒ ‖f −pm‖X converges to zero effectively as m→ ∞.

The set of all X -computable functions is denoted by Xc.

For continuous functions C (∂D), computability implies C (∂D)-computability.

Lemma:
Let f : ∂D→ R be a computable function on the unit circle. Then f is computable as a continuous function, i.e. f ∈ Cc(∂D).

J. Avigad and V. Brattka, “Computability and analysis: The legacy of Alan Turing,” in Turing’s legacy: developments from Turing’s ideas in logic, ser.
Lecture Notes in Logic, Bd. 42. New York: Cambridge University Press, 2014, pp. 1–47.

K. Weihrauch, Computable Analysis. Berlin: Springer-Verlag, 2000.
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Non-Computability
of the Spectral Factorization
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Spectral Densities
We are going to show that the spectral factor

φ+(z) = (Sφ)(z) = exp

(
1

4π

∫
π

−π

log φ(eiθ )
eiθ + z
eiθ −z

dτ

)
, z ∈ D

is not computable, even for computable spectral densities φ with very nice properties.

Definition (Set D of nice spectral densities):
A spectral density φ ∈ C (∂D) is said to belong to the set D , if it has the following properties:

B φ is strictly positive on ∂D, i.e. minζ∈∂Dφ(ζ ) = s > 0.

B φ is absolute continuous.

B φ belongs to the Wiener algebra W , i.e. φ possess an absolutely converging Fourier series

φ(eiω) =
∞

∑
n=−∞

cn(φ)einω with cn(φ) =
1

2π

∫
π

−π

φ(eiω)e−inω dω .

B φ has finite Dirichlet energy, i.e. ‖φ‖2
E = ∑

n∈Z
|n| |cn(φ)|2 < ∞ .

B The spectral factor φ+ has the same nice properties as φ , i.e.
φ+ is absolute continuous, in the Wiener algebra W , and has finite Dirichlet energy.
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The Non-Computability of the Spectral Factorization

Theorem:
To every computable point ζ ∈ ∂D on the unit circle, there exists a computable spectral density φ ∈D such that φ+(ζ ) is not a
computable number, i.e. such that φ+(ζ ) /∈ Cc.

Remark:

B φ+(ζ ) is not a computable number⇒ φ+ is not Banach-Mazur computable.

B So φ+ is not computable in any stronger notion of computability.

B Note that the input, i.e the spectral density φ is computable. However, the corresponding spectral factor φ+ might not be
computable.
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A Decision Problem
B Assume a certain algorithm A : φ → φ+ for calculating the spectral factor is given.

B If φ ∈D is a spectral density for which φ+ is not computable then the algorithm A may not halt because it is not able to
achieve the error bound in finite time.

? Can we decide algorithmically whether the spectral factor φ+ of a given density φ is computable?

Decision Problem:
Does there exist an algorithm on a Turing machine which is able to decide for a given computable density φ ∈D whether the
corresponding φ+ is computable or not?

Theorem:
There exists no algorithmic solution of the above decision problem.
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Consequences for Calculating
the Causal Wiener Filter
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Application: Wiener Filter
Estimation Problem:

B Estimating a wide-sense stationary (wss) stochastic process x = {xn}n∈Z from the observation of a correlated wss stochastic
process y = {yn}n∈Z.

B Let rx(n) = E [xkxk+n] and rx ,y (n) = E [xkyk+n] be the corresponding correlation functions given by

rx(n) =
1

2π

∫
π

−π

Φ(θ )einθ dθ and rx ,y (n) =
1

2π

∫
π

−π

Ψ(θ )einθ dθ

with densities Φ,Ψ ∈ L1(∂D).

B Find a causal linear filter of the form x̂n = ∑
∞
k=0 γk yn−k such that the minimum mean square error E

[
|xn− x̂n|2

]
is minimized.

Solution: Causal Wiener Filter
The transfer function Γ(eiω) = ∑

∞
k=0 γk eikω of this optimal filter (Wiener filter) is given by

Γ(eiω) =
1

Φ+(eiω)

(
P+

[
Ψ

Φ−

])
(eiω) , ω ∈ [−π,π) .

Therein P+ : L2(∂D)→ H2 stands for the natural projection P+ : ∑
∞
n=−∞ cn(f )eiω 7→ ∑

∞
n=0 cn(f )zn from L2(∂D) onto the Hardy

space H2 =
{

f ∈ L2(∂D) : cn(f ) = 0 ∀ n < 0
}

.
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Non-Computability of the Wiener Filter
Theorem:
There exist computable spectral densities Φ ∈D and computable cross-correlations Ψ ∈ C (∂D) with Ψ is absolute continuous,
Ψ ∈W , and Ψ has finite Dirichlet energy, such that the corresponding causal Wiener filter Γ satisfies

B Γ is absolute continuous

B Γ belongs to the Wiener algebra W

B Γ has finite Dirichlet energy ‖Γ‖E < ∞

but such that Γ(1) is not computable.

Proof:

• Choose Φ such that Φ+ is not computable (see Theorem above).

• Choose the cross-correlation density Ψ as Ψ(ζ ) = 1 for all ζ ∈ ∂D.

• Verify the properties claimed by the theorem.
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Summary
B There is no closed form expression for the spectral factor φ+ of a

spectral density, in general.
=⇒ Numerically approximation methods (on digital computers) are
applied to determine φ+.

B Numerically approximation:
Given φ and ε > 0, determine (in finite time) a confidence interval
of width 2ε in which the (unknown) spectral factor φ+ lies.
⇒ φ+ is computable.

B Main result: There exist computable spectral densities φ with very decent analytic properties (finite energy, absolute
continuous, etc. ) for which the spectral factor φ+ is not computable.

B Decision problem: It is impossible to decide algorithmically (i.e. by an algorithm on an abstract Turing machine) whether a
given computable spectral density φ possesses a computable spectral factor φ+.

B Application: The causal Wiener filter is not computable even for very simple densities with decent analytic properties.
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