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Outline of the Talk

What is the computational complexity of simulating causal, time-invariant linear
systems on digital computers?

Having low-complexity input signal. What is the complexity for calculating the
output signal?

Outline
1. Linear Time-Invariant (LTI) Systems
2. Computability and Complexity
3. Examples of Complexity Blowup
4. Summary
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Linear Time-Invariant (LTI) Systems
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First-Order Linear Time-Invariant (LTI) Systems
▷ We consider causal, linear, time-invariant systems of first order with input x(t) and output y(t).

▷ Input-Output relation is described by linear differential equation with constant coefficients

y ′(t)+α0 y(t) = β1x ′(t)+β0x(t) , t > 0

with initial condition y(0) = y0 and x(0) = x0 ,
(1)

with coefficients α0,β0,β1,x0,y0 ∈ R, which are assumed to be polynomial-time computable.

▷ The unique solution of (1) is given for t > 0 by the closed form expression

y(t) = (Sx)(t) = y0 e−α0t +a
[
x(t)−x0 e−α0t]+b

∫ t

0
x(τ)e−α0(t−τ)dτ (2)

with the constants a := β1 and b := β0 −β1α0.

▷ Goal: Simulate the output signal y(t), for t ∈ [0,1] on a digital computer, for feasible (continuously differentiable,
computable) signals x(t).

▷ Question: Assume low-complexity input x(t). What is the complexity for computing y(t)?
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Examples of First Order LTI systems
Two examples for a general LTI system S with input x(t) = uin(t) and output y(t) = uout(t).

uin(t) uout(t)C

R

RC low pass with resistor R, capacitor C, and cutoff
frequency ω0 = (RC)−1

uin(t) uout(t)R
L

LR low pass with inductor L, resistor R, and cutoff
frequency ω0 = R/L
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Computability
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Computable Rational Numbers
Definition: A sequence {rn}n∈N ⊂Q of rational numbers is said to be computable if there exist recursive functions
a,b,s : N→ N with b(n) ̸= 0 and such that

rn = (−1)s(n) a(n)
b(n)

, n ∈ N .

A recursive function a : N→ N is a mapping that is build form elementary computable functions and recursion and
can be calculated on a Turing machine.

Turing machine
• can simulate any given algorithm and therewith provide a

simple but very powerful model of computation.
• is a theoretical model describing the fundamental limits of

any realizable digital computer.
• Most powerful programming languages are called

Turing-complete (such as C, C++, Java, etc.).
Figure taken from Wikipedia

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. s2-42, no. 1,
1937.
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Computable Real Numbers
▷ Any real number t ∈ R is the limit of a sequence of rational numbers.

▷ For t ∈ R to be computable, the convergence has to be effective.

Definition (Computable number): A number t ∈ R is said to be computable if there exist a recursive function
γ : N→Q such that

|t − γ(n)| ≤ 2−n , for all n ∈ N .

In this case, we say that γ binary converges to t .

⇒ x ∈ R is computable if a Turing machine can approximate it with exponentially vanishing error.

• Rc stand for the set of all computable real numbers.
• Note that the set of computable numbers Rc ⊊R is only countable.
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Computable Functions
▷ We consider function-oracle Turing machines: Ordinary Turing machine TM with an additional function-oracle γ

▷ The function oracle is able to calculate the function value γ in a single operation.

▷ We neglect the computational complexity for determine t in calculating x(t).

Definition: A function x : [a,b]→ R is said to be computable on the interval [a,b]⊆ R if there exists a function-oracle
Turing machine TM so that for each t ∈ [a,b] and each γ that binary converges to t , the function x̃(n) = TMγ(n)
computed by TM with oracle γ binary converges to x(t), i.e. if∣∣x(t)−TMγ(n)

∣∣≤ 2−n , for all n ∈ N .

Remark:
If x : [a,b]→ R is a computable function on [a,b] then x ∈ C ([a,b]), i.e. x is a continuous function on [a,b].
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Computational Complexity
Definition: Let x : [a,b]→ R be a computable function. We say that the complexity of x is bounded by a function
q : N→ N if there exists a function–oracle Turing machine TMγ , which computes x so that for all γ that binary
converge to t ∈ [a,b] and for all n ∈ N, TMγ(n) satisfies∣∣x(t)−TMγ(n)

∣∣< 2−n

after a computation time of at most q(n).
The function x : [a,b]→ R is said to be polynomial-time computable if its complexity is bounded by a polynomial q.

Complexity Classes

FP The class of functions, which can be computed by an function-oracle Turing machine in polynomial time.

#P The class of functions that enumerate the number of accepting computations of polynomial-time function-oracle
Turing machines.

Assumption: FP ⊊#P – Note that FP =#P would imply P = NP.
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Simulation of LTI Systems on Digital Computers

x S y

A general LTI system S with input signal x and out-
put signal y .

TMx
xD TMS yD

TMS,x

A Turing machine implementation TMS,x for simu-
lating S for input x consisting of a signal generator
TMx and a Turing machine TMS which simulates the
behavior of S.

▷ Digital computers can calculate exactly only with rational numbers

▷ Signal generator TMx prepares the input signal x up to n significant digits

|x(t)−xD(t)|< 2−n

▷ Assume low complexity input signal, i.e generation of xD needs time px(n) with a certain polynomial px .

▷ Question: Is the output yD again a low complexity signal?
Can yD(t) with |(Sx)(t)−yD(t)|< 2−m be computed in time py(m) with a certain polynomial py?
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Complexity Blowup
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Complexity Blowup

We consider causal continuous-time linear systems S mapping functions on R+ onto functions on R+.

(Sx)(t) = ax(t)+b
∫ t

0
x(τ)h(t − τ)dτ , t > 0 . (3)

Definition: Let S : L∞([0,1])→ L∞([0,1]) be an LTI system with input-output relation (3). We say that S shows
complexity blowup, if there exists a polynomial-time computable input signal x∗ : [0,1]→ R with the property that the
corresponding output signal y∗ = Sx∗ is not polynomial-time computable.
In this case, we say that S shows complexity blowup for the input signal x∗.
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Complexity Blowup – Results
We consider causal continuous-time linear systems S mapping functions on R+ onto functions on R+.

(Sx)(t) = ax(t)+b
∫ t

0
x(τ)h(t − τ)dτ , t > 0 .

Theorem: Assume FP ̸=#P and let S be a first-order LTI system described by (3) with polynomial-time computable
coefficients. If b = β0 −β1α0 ̸= 0 then S shows complexity blowup, i.e. there exists a polynomial-time computable
signal x∗ : [0,1]→ R so that the output y∗ = Sx∗ is not polynomial-time computable on [0,1].

Corollary: A first-order LTI system (1) with polynomial-time computable coefficients shows no complexity blowup if
and only if b = β0 −β1α0 = 0.

▷ Complete characterization of all first-order systems showing complexity blowup.

▷ Only trivial cases (b = 0) show no complexity blowup

▷ Extension to higher-order systems and non-causal systems possible

▷ Proof is based on a result of Friedman and Ko.
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Discussion – Practical Computability

▷ Applied science, applications, cryptogrophy ⇒ (practically) "computability"versus "non-computable"

▷ (practically) "non-computable" if the calculation time, using the best possible algorithm, grows faster than any
polynomial in the number of the parameters

▷ (practically) "computable" if the calculation time grows at post polynomially in the number of the parameters

Our results: For any first order, causal LTI system S (with b ̸= 0) there exit input signals x∗ which are practically
computable but such that the output y∗ = Sx∗ is practically non-computable.
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Further Examples of Complexity Blowup
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Calculation of Fourier Series Approximation

▷ C2π : be the set of all computable, continuous, and 2π-periodic functions

▷ C pol
2π

: be the set of all x ∈ C2π which are polynomial-time computable

▷ For x ∈ C2π , we consider the problem of calculating for N ∈ N the partial Fourier series

(FNx)(t) = a0
2 +∑

N
k=1 [ak cos(kt)+bk sin(kt)]

with the Fourier coefficients of x given by

ak = 1
π

∫
π

−π
x(τ)cos(kτ)dτ and bk = 1

π

∫
π

−π
x(τ)sin(kτ)dτ

Theorem: If FP1 ̸=#P1 then there exists an x∗ ∈ C pol
2π

such that there is an N ∈ N so that (FNx∗)(t) is not
polynomial-time computable for t ∈ [−π,π).
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Calculation of the Fourier Transform

▷ C (0,π): set of all computable continuous functions on [0,π]⊂ R
▷ C pol(0,π): the set of all x ∈ C (0,π), which are polynomial-time computable

▷ For x ∈ C (0,π), we consider the problem of calculating the Fourier transform

x̂(ω) = (Fx)(ω) =
∫

π

0
x(τ)eiωτ dτ , ω ∈ R .

pointwise for some ω ∈ R.

Theorem: For any ω ∈ R there exists an x∗ ∈ C pol(0,π) such that if FP1 ̸=#P1 then x̂∗(ω) is not polynomial-time
computable.
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Summary
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Summary

▷ For every causal LTI system S there exist low complexity input signals x so that the corresponding output y = Sx
is high complexity.

▷ Other examples of complexity blowup: Calculation of Fourier series approximation and Fourier transform

▷ Extension to non-causal and higher-order LTI systems possible
▷ Notion of "practical non-computability": foundation of modern cryptography
− polynomial-time computable ⇒ is practically computable
− not polynomial-time computable ⇒ is practically non-computable

▷ For any (first-order) LTI system S (with b ̸= 0) there exist practically computable input signals x∗ so that the
corresponding output signal y∗ = Sx∗ is practically non-computable

H. Boche and V. Pohl, “Complexity Blowup in Simulating Analog Linear Time-Invariant Systems on Digital Computer,”
IEEE Trans. Signal Processing, vol. 69 (Aug. 2021), 5005–5020.
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