
Complexity Blowup if Continuous-Time LTI Systems
are Implemented on Digital Hardware

Holger Boche Volker Pohl

Technical University of Munich
Department of Electrical and Computer Engineering
Chair of Theoretical Information Technology

60th IEEE Conference on Decision and Control (CDC)
Dec. 17, 2021

Outline of the Talk

What is the computational complexity of simulating causal, time-invariant linear
systems on digital computers?

Having low-complexity input signal. What is the complexity for calculating the
output signal?

Outline
1. Linear Time-Invariant (LTI) Systems
2. Computability and Complexity
3. Examples of Complexity Blowup
4. Summary

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 1

Linear Time-Invariant (LTI) Systems

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 2

First-Order Linear Time-Invariant (LTI) Systems
▷ We consider causal, linear, time-invariant systems of first order with input x(t) and output y(t).

▷ Input-Output relation is described by linear differential equation with constant coefficients

y ′(t)+α0 y(t) = β1x ′(t)+β0x(t) , t > 0

with initial condition y(0) = y0 and x(0) = x0 ,
(1)

with coefficients α0,β0,β1,x0,y0 ∈ R, which are assumed to be polynomial-time computable.

▷ The unique solution of (1) is given for t > 0 by the closed form expression

y(t) = (Sx)(t) = y0 e−α0t +a
[
x(t)−x0 e−α0t]+b

∫ t

0
x(τ)e−α0(t−τ)dτ (2)

with the constants a := β1 and b := β0 −β1α0.

▷ Goal: Simulate the output signal y(t), for t ∈ [0,1] on a digital computer, for feasible (continuously differentiable,
computable) signals x(t).

▷ Question: Assume low-complexity input x(t). What is the complexity for computing y(t)?

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 3

Examples of First Order LTI systems
Two examples for a general LTI system S with input x(t) = uin(t) and output y(t) = uout(t).

uin(t) uout(t)C

R

RC low pass with resistor R, capacitor C, and cutoff
frequency ω0 = (RC)−1

uin(t) uout(t)R
L

LR low pass with inductor L, resistor R, and cutoff
frequency ω0 = R/L

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 4

Computability

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 5

Computable Rational Numbers
Definition: A sequence {rn}n∈N ⊂Q of rational numbers is said to be computable if there exist recursive functions
a,b,s : N→ N with b(n) ̸= 0 and such that

rn = (−1)s(n) a(n)
b(n)

, n ∈ N .

A recursive function a : N→ N is a mapping that is build form elementary computable functions and recursion and
can be calculated on a Turing machine.

Turing machine
• can simulate any given algorithm and therewith provide a

simple but very powerful model of computation.
• is a theoretical model describing the fundamental limits of

any realizable digital computer.
• Most powerful programming languages are called

Turing-complete (such as C, C++, Java, etc.).
Figure taken from Wikipedia

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. s2-42, no. 1,
1937.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 6

Computable Real Numbers
▷ Any real number t ∈ R is the limit of a sequence of rational numbers.

▷ For t ∈ R to be computable, the convergence has to be effective.

Definition (Computable number): A number t ∈ R is said to be computable if there exist a recursive function
γ : N→Q such that

|t − γ(n)| ≤ 2−n , for all n ∈ N .

In this case, we say that γ binary converges to t .

⇒ x ∈ R is computable if a Turing machine can approximate it with exponentially vanishing error.

• Rc stand for the set of all computable real numbers.
• Note that the set of computable numbers Rc ⊊R is only countable.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 7

Computable Functions
▷ We consider function-oracle Turing machines: Ordinary Turing machine TM with an additional function-oracle γ

▷ The function oracle is able to calculate the function value γ in a single operation.

▷ We neglect the computational complexity for determine t in calculating x(t).

Definition: A function x : [a,b]→ R is said to be computable on the interval [a,b]⊆ R if there exists a function-oracle
Turing machine TM so that for each t ∈ [a,b] and each γ that binary converges to t , the function x̃(n) = TMγ(n)
computed by TM with oracle γ binary converges to x(t), i.e. if∣∣x(t)−TMγ(n)

∣∣≤ 2−n , for all n ∈ N .

Remark:
If x : [a,b]→ R is a computable function on [a,b] then x ∈ C ([a,b]), i.e. x is a continuous function on [a,b].

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 8

Computational Complexity
Definition: Let x : [a,b]→ R be a computable function. We say that the complexity of x is bounded by a function
q : N→ N if there exists a function–oracle Turing machine TMγ , which computes x so that for all γ that binary
converge to t ∈ [a,b] and for all n ∈ N, TMγ(n) satisfies∣∣x(t)−TMγ(n)

∣∣< 2−n

after a computation time of at most q(n).
The function x : [a,b]→ R is said to be polynomial-time computable if its complexity is bounded by a polynomial q.

Complexity Classes

FP The class of functions, which can be computed by an function-oracle Turing machine in polynomial time.

#P The class of functions that enumerate the number of accepting computations of polynomial-time function-oracle
Turing machines.

Assumption: FP ⊊#P – Note that FP =#P would imply P = NP.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 9

Simulation of LTI Systems on Digital Computers

x S y

A general LTI system S with input signal x and out-
put signal y .

TMx
xD TMS yD

TMS,x

A Turing machine implementation TMS,x for simu-
lating S for input x consisting of a signal generator
TMx and a Turing machine TMS which simulates the
behavior of S.

▷ Digital computers can calculate exactly only with rational numbers

▷ Signal generator TMx prepares the input signal x up to n significant digits

|x(t)−xD(t)|< 2−n

▷ Assume low complexity input signal, i.e generation of xD needs time px(n) with a certain polynomial px .

▷ Question: Is the output yD again a low complexity signal?
Can yD(t) with |(Sx)(t)−yD(t)|< 2−m be computed in time py(m) with a certain polynomial py?

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 10

Complexity Blowup

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 11

Complexity Blowup

We consider causal continuous-time linear systems S mapping functions on R+ onto functions on R+.

(Sx)(t) = ax(t)+b
∫ t

0
x(τ)h(t − τ)dτ , t > 0 . (3)

Definition: Let S : L∞([0,1])→ L∞([0,1]) be an LTI system with input-output relation (3). We say that S shows
complexity blowup, if there exists a polynomial-time computable input signal x∗ : [0,1]→ R with the property that the
corresponding output signal y∗ = Sx∗ is not polynomial-time computable.
In this case, we say that S shows complexity blowup for the input signal x∗.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 12

Complexity Blowup – Results
We consider causal continuous-time linear systems S mapping functions on R+ onto functions on R+.

(Sx)(t) = ax(t)+b
∫ t

0
x(τ)h(t − τ)dτ , t > 0 .

Theorem: Assume FP ̸=#P and let S be a first-order LTI system described by (3) with polynomial-time computable
coefficients. If b = β0 −β1α0 ̸= 0 then S shows complexity blowup, i.e. there exists a polynomial-time computable
signal x∗ : [0,1]→ R so that the output y∗ = Sx∗ is not polynomial-time computable on [0,1].

Corollary: A first-order LTI system (1) with polynomial-time computable coefficients shows no complexity blowup if
and only if b = β0 −β1α0 = 0.

▷ Complete characterization of all first-order systems showing complexity blowup.

▷ Only trivial cases (b = 0) show no complexity blowup

▷ Extension to higher-order systems and non-causal systems possible

▷ Proof is based on a result of Friedman and Ko.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 13

Discussion – Practical Computability

▷ Applied science, applications, cryptogrophy ⇒ (practically) "computability"versus "non-computable"

▷ (practically) "non-computable" if the calculation time, using the best possible algorithm, grows faster than any
polynomial in the number of the parameters

▷ (practically) "computable" if the calculation time grows at post polynomially in the number of the parameters

Our results: For any first order, causal LTI system S (with b ̸= 0) there exit input signals x∗ which are practically
computable but such that the output y∗ = Sx∗ is practically non-computable.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 14

Further Examples of Complexity Blowup

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 15

Calculation of Fourier Series Approximation

▷ C2π : be the set of all computable, continuous, and 2π-periodic functions

▷ C pol
2π

: be the set of all x ∈ C2π which are polynomial-time computable

▷ For x ∈ C2π , we consider the problem of calculating for N ∈ N the partial Fourier series

(FNx)(t) = a0
2 +∑

N
k=1 [ak cos(kt)+bk sin(kt)]

with the Fourier coefficients of x given by

ak = 1
π

∫
π

−π
x(τ)cos(kτ)dτ and bk = 1

π

∫
π

−π
x(τ)sin(kτ)dτ

Theorem: If FP1 ̸=#P1 then there exists an x∗ ∈ C pol
2π

such that there is an N ∈ N so that (FNx∗)(t) is not
polynomial-time computable for t ∈ [−π,π).

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 16

Calculation of the Fourier Transform

▷ C (0,π): set of all computable continuous functions on [0,π]⊂ R
▷ C pol(0,π): the set of all x ∈ C (0,π), which are polynomial-time computable

▷ For x ∈ C (0,π), we consider the problem of calculating the Fourier transform

x̂(ω) = (Fx)(ω) =
∫

π

0
x(τ)eiωτ dτ , ω ∈ R .

pointwise for some ω ∈ R.

Theorem: For any ω ∈ R there exists an x∗ ∈ C pol(0,π) such that if FP1 ̸=#P1 then x̂∗(ω) is not polynomial-time
computable.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 17

Summary

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 18

Summary

▷ For every causal LTI system S there exist low complexity input signals x so that the corresponding output y = Sx
is high complexity.

▷ Other examples of complexity blowup: Calculation of Fourier series approximation and Fourier transform

▷ Extension to non-causal and higher-order LTI systems possible
▷ Notion of "practical non-computability": foundation of modern cryptography
− polynomial-time computable ⇒ is practically computable
− not polynomial-time computable ⇒ is practically non-computable

▷ For any (first-order) LTI system S (with b ̸= 0) there exist practically computable input signals x∗ so that the
corresponding output signal y∗ = Sx∗ is practically non-computable

H. Boche and V. Pohl, “Complexity Blowup in Simulating Analog Linear Time-Invariant Systems on Digital Computer,”
IEEE Trans. Signal Processing, vol. 69 (Aug. 2021), 5005–5020.

Volker Pohl (TUM) | Complexity Blowup if Continuous-Time LTI Systems are Implemented on Digital Hardware | CDC 2021 19

