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General Question
B Can every continuous-time system H be simulated on a digital computer?

B Can every continuous-time system H be approximated by a time-discrete system?

H : X → Y

Hf (t) (Hf )(t)
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This Talk – Outline
B Here we consider the spectral factorization mapping H = S.
B Answer depends on the signal space X
− For which signal space the spectral factorization can not be calculated on digital computers?
− For which it is possible?

Outline
1. Spectral Factorization – A very short Introduction
2. Signal Spaces, Sets of Spectral Densities
3. Sampling-based Algorithms – Axioms
4. Main Result - No Sampling-based Algorithms for Spectral Factorization
5. Extension, Outlook
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Spectral Factorization
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Spectral Factorization
B Let φ be a spectral density. That is
− a non-negative real function on the unit circle T= {z ∈ C : |z|= 1}
− satisfying the Paley–Wiener (Szegö) condition logφ ∈ L1(T)

B Spectral factorization is the operation of writing φ as

φ(eiθ ) = φ+(eiθ )φ−(eiθ ) =
∣∣φ+(eiθ )

∣∣2 , θ ∈ [−π,π) .

with the spectral factor φ+ and its para-Hermitian conjugate φ−(z) = φ+(1/z) for z ∈ C.
B The spectral factor φ+ is an outer function (a "minimum-phase system"), i.e.
− φ+(z) is analytic for every z ∈ D= {z ∈ C : |z|< 1}.
− φ(z) 6= 0 for all z ∈ D.

It can be written as

φ+(z) = (Sφ)(z) = exp

(
1

4π

∫
π

−π

logφ(eiω)
eiω +z
eiω−z

dω

)
, z ∈ D .

B We call S : φ 7→ φ+ the spectral factorization mapping.

Applications
• Wiener–Kolmogorov theory of smoothing and prediction of stationary time series
• causal Wiener filter: Communications, signal processing, control theory, · · ·
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Spectral Factorization Mapping – Properties
B S : φ 7→ φ+ has very complicated behavior (non-linear mapping, singular integral kernel)

B Even for very simple spectral densities φ , the spectral factor can not be written as a closed form
expression.

Example (Piecewise linear spectral density):

B Left side: a piecewise linear spectral density φ

B Right side: The arc on which the spectral factor φ+ of φ is only given by a Cauchy principal value.

φ+(z) =
√

δ exp

(
1

4π

∫ a

−a
log
(

φ(eiω)
δ

) eiω +z
eiω−z

dω

)
, z ∈ C .
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Sets of Spectral Densities
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Basic Notations
B Continuous functions on the unit circle: C (T) = {z ∈ C : |z|= 1} with norm ‖f‖

∞
=maxζ∈T |f (ζ )|.

B Fourier series and Fourier coefficients for f ∈ L2(T):

f (eiθ ) = ∑
n∈Z

cn(f )einθ with cn(f ) =
1

2π

∫
π

−π

f (eiθ )e−inθ dθ

B Dirichlet energy of f ∈ C (T)
‖f‖2

E = ∑
n∈Z
|n| |cn(f )|2

− Physical energy – related to Dirichlet principle and Dirichlet problem in potential theory
− ‖·‖E is a seminorm.

B With each f ∈ L2(T) we associate its conjugate function

f̃ (eiθ ) =−i ∑
n∈Z

sgn(n)cn(f )einθ , θ ∈ [−π,π) , .

The mapping H : f 7→ f̃ is known as Hilbert transform.
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Signal Spaces
B Continuous functions of finite Dirichlet energy ∼ Sobolev space H1/2

H1/2 =
{

f ∈ C (T) : ‖f‖E <+∞
}

with norm ‖f‖H1/2 =max
(
‖f‖

∞
,‖f‖E

)
B Set of positive spectral densities

D =
{

φ ∈ H1/2 : min
ω∈[−π,π]

φ(eiω) = s > 0
}

⇒ There is no fancy densities in D : continuous, finite energy, strictly positive

B Disk algebra

A (D) =
{

f : analytic in D and continuous in D= D∪T
}

with norm ‖f‖
∞
= sup

z∈D
|f (z)|

B Densities with well behaving spectral factor

D+ =
{

φ ∈D : φ+ ∈A (D)
}

− D+ is our primary space for investigating the spectral factorization
− D and D+ are not linear spaces⇒ we will consider often

log(D+) = {f = log(φ) : φ ∈D+}
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Signal Spaces
B Continuous functions of finite Dirichlet energy with continuous conjugate

B0 =
{

f ∈ H1/2(T) : f̃ ∈ C (T)
}

with norm ‖f‖B0
=max

(
‖f‖

∞
,‖f‖E ,‖f‖∞

)
− B0 is a separable Banach space

Lemma
B0 = log(D+) =

{
f = log(φ) : φ ∈D+

}
D+ = exp(B0) =

{
φ = exp(f ) : f ∈B0

}

B This lemma allows us to consider the spectral factorization as a mapping T = exp◦S on B0

(Tf )(z) = (S[exp(f )]) (z) = exp

(
1

4π

∫
π

−π

f (eiω)
eiω +z
eiω−z

dω

)
, z ∈ D

B If φ ∈D+ is a spectral density and f = log(φ) ∈B0, then

φ+(eiθ ) = (Sφ)(eiθ ) = (Tf )(eiθ ) = exp
(

1
2

[
f (eiθ )+ ĩf (eiθ )

])
, θ ∈ [−π,π)
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Sampling-based Computations
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Computation of the Spectral Factorization
B Often the given spectral factor φ(ζ ) is not known for all ζ ∈ T but only on a finite sampling set
{φ(ζn)}N

n=1.

B To calculate φ+ on a digital computer only finitely many samples {φ(ζn)}N
n=1 of φ can be taken into

account.

Example (A Two Step Procedure)

B Assume φ ∈D+ be an arbitrary spectral density.
B For each N, let TN = {ζn : n = 1,2, . . . ,N} ⊂ T be a sampling set.
B Let {φ(ζn) : n = 1,2, . . . ,N} be values of φ on the sampling set TN

1. Determine an approximation φN of the density φ (e.g. by spline interpolation) such that

lim
N→∞

∥∥φ −φN
∥∥

∞
= 0 .

2. Determine the spectral factor (φN)+ of the spline φN using standard algorithms for polynomial
spectral factorization.

Question
Do we have limN→∞

∥∥φ+− (φN)+
∥∥

∞
= 0 for all φ ∈D?
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Computations – General Algorithms
General Structure of Numerical Algorithms
Let D+ be the set of spectral densities.

B To every N ∈ N there is a finite sampling set TN = {ζn : n = 1,2, . . . ,N} ⊂ T.
B To every N ∈ N there exists an approximation operator

SN : {φ(ζn)}N
n=1 7→ φ

(N)
+

which determines an approximation of the spectral factor φ+ based on the samples of the given
spectral density φ on the sampling set TN .

B Requirement:

lim
N→∞

∥∥∥φ+−SN(φ)
∥∥∥

∞

= lim
N→∞

∥∥∥φ+−φ
(N)
+

∥∥∥
∞

= 0 , for all φ ∈D+ .

Question
B For a given set D , is it always possible to find such computational procedure {SN}N∈N?
B For which sets D no such computational procedure {SN}N∈N exists?
B For which sets D it will be possible to find such approximation sequences.
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Sampling-based Algorithms – Axiomatic
Let S = {SN}N∈N be a sequence of operators SN : D+→A (D). We say that S is a sampling-based
approximation method of the spectral factorization mapping S if it satisfies the following properties

(A) To every N ∈ N there exists a finite sampling set TN ⊂ T such that for arbitrary φ1,φ2 ∈D+

φ1(ζn) = φ2(ζn) for all ζn ∈TN

implies
(
SNφ1

)
(z) =

(
SNφ2

)
(z) for all z ∈ D .

(B) There exists a dense subset M ⊂B0 such that

lim
N→∞
‖φ+−SN(φ)‖A (D) = 0 for all φ ∈D+ with log(φ) ∈M .

(C) SN(φ) is an outer function for every N ∈N and for each φ ∈D+, i.e. there is a ϕN ∈ L1(T) such that(
SNφ

)
(z) = exp

(
1

2π

∫
π

−π
logϕN(eiτ)eiτ+z

eiτ−z dτ

)
.

(D) Let TN : B0→A (D) be defined for every f ∈B0 by TN(f ) = SN(exp f ). We require that for every
N ∈ N, TN is a continuous mapping, i.e. if {fn}n∈N ⊂B0 is a convergent sequence with limit
f ∈B0 then

lim
n→∞

∥∥SN
[
exp(f )

]
−SN

[
exp(fn)

]∥∥
A (D) = 0 .

Remark: Note that the operators SN might be non-linear.
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Main Negative Result
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No Sampling Based Algorithms
Theorem
Let S = {SN}N∈N be a sampling-based approximation method having the four properties (A) – (D).
Then the set R0 ⊂B0 of all f ∈B0 such that for φ = exp(f )

limsupN→∞‖φ+−SN(φ)‖A (D) > 0

holds, is a residual set in B0.

Remarks
B For any sampling-based approximation method S = {SN}N∈N there exist spectral densities

φ ∈D+ such that SN(φ) does not converge to φ+.
B The divergence set is large in the sense that all f = log(φ) for which SN(φ) does not converge to

φ+ is a residual set in B0.
B The approximation error ‖φ+−SN(φ)‖A (D) does not necessarily diverges for N→ ∞ but it does

not converges to zero.

Recall
B D+ contains spectral densities with very descent analytic properties
B The approximation operators SN might be non-linear
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Proof Idea

Recall: Let φ ∈D+ be a spectral density and f = log(φ) ∈B0, then

φ+(eiθ ) = exp
(

1
2

[
f (eiθ )+ ĩf (eiθ )

])
, θ ∈ [−π,π) .

Theorem (Boche, Pohl, ACHA 2020)
Let {HN}N∈N be a sequence of continuous operators HN : B0→ C (T) which satisfies the following
properties
(I) For every N ∈ N there exists finite subset TN ⊂ T such that for all f1, f2 ∈B0

f1(ζn) = f2(ζn) for allζn ∈TN

implies
(
HN f1

)
(ζ ) =

(
HN f2

)
(ζ ) for all ζ ∈ T .

(II) There exists a subset M ∈B0 such that for all f ∈M always limN→∞‖Hf −HN(f )‖∞
= 0 holds.

Then the set {
f ∈B0 : limsupN→∞‖Hf −HN(f )‖∞

> 0
}

is a residual (i.e. non-meager and dense) subset of B0.
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Extensions, Outlook
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Positive Result

B Let f ∈ L2(T) with Fourier coefficients {cn(f )}n∈Z. For α > 0 let

‖f‖
α
=
(

∑n∈Z |n|2α |cn(f )|2
)1/2

.

B Define the Banach spaces

Hα = {f ∈ C (T) : ‖f‖
α
< ∞} with norm ‖f‖Hα =max(‖f‖

∞
,‖f‖

α
)

− Hβ ⊂ Hα ⊂ H1/2 for all β > α > 1/2.

Theorem
For all α > 1/2 there exists a sampling-based approximation method S = {SN}N∈N such that

limN→∞‖φ+−SN(φ)‖A (D) = 0 for all f ∈D+ with log(φ) ∈ Hα .

• Sharp characterization in terms of log(φ) in the scale of Sobolev spaces Hα .
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Computability Analysis

B Results can be reformulated in the framework of computability analysis.

Theorem (Negative Result)
There exist (Turing) computable spectral densities φ ∈D+ such that

1. φ and φ+ are absolute continuous, and φ and φ+ are in the Wiener algebra, and ‖φ+‖E < ∞

2. φ+(1) is not a computable number.

Theorem (Positive Result)
Let α > 1/2 and let φ ∈D+ be a computable spectral density such that log(φ) ∈ Hα is a computable.
Then the spectral factor φ+ is a computable continuous function.
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Summary

B Spectral factorization and the Hilbert transform can not always be computed on digital computers.

B There is a fundamental difference between continuous-time and discrete-time systems.

B Important to characterize signal spaces which allow digital implementation.

B Classes of problems which can be solved by analog computers but not by digital computers.
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Thank you
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