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Introduction

Search theory deals with the problem faced by a searcher:

Finding a hidden object, in a given search space, in minimum time

In most of early developments it is assumed that an object to be
searched is stationary and hidden according to a known distribution or
it is moving and its motion is determined, by some known rules.
This model of search is called one-sided search.

In case the object can attempt to contrast the searcher’s activity and
react in some intelligent way in order not to be found, the problem is
called two-sided search.
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History

The first developments in search theory were made by Bernard
Koopman and his colleagues in the Anti-Submarine Warfare
Operations Research Group of the U.S. Navy during World War II.

Their purpose was to provide efficient ways to search for enemy
submarines. Their work which was only published later, also
mentioned two-sided search.

Here, we consider a combinatorial model of two sided search which
was proposed by the late Rudolf Ahlswede during the Workshop
"Search Methodologies II" (2010).

In a combinatorial search problem the object(s) to be found live in a
discrete space and the tests to be asked satisfy certain specified
requirements.
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Problem statement

G = (N , E): undirected graph

Search space N = {1,2, . . . ,N}: the vertices of G
The object to be found (or target) occupies some vertex of N ,
unknown to the searcher.
At any time instance and for any T ⊂ N , called a test set the
searcher can learn whether the target is located at some node in
T or not.
After each test, the target can move to any vertex adjacent to its
current location or stay at the same place.
The search finishes when the searcher is able to locate the object
with some predifined accuracy s

Problem
Find the location of the target, with a certain accuracy, in minimum time
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Formal description of the adaptive search model
dj : location of the target at time j
The sequence of target positions until time n is given by the vector
(d1, . . . ,dn) ∈ N n which defines a walk in the graph G, i.e.,
(di ,di+1) ∈ E (i = 1, . . . ,n − 1).

fT (d) =

{
0 (No) , if d 6∈ T
1 (Yes) , if d ∈ T

Tj : the test performed at time j .
The sequence (T1, T2, . . . , Tn) is called a sequential or adaptive
strategy of length n.
Di : the set of possible positions of the target after the i th test
Thus D0 = N and for i ≥ 1

Di =

{
Γ(Ti ∩ Di−1) , if fTi (di) = 1
Γ(Di−1\Ti) , if fTi (di) = 0,
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Definition
Given a G = (N , E), a sequential strategy of length n, T1, . . . Tn, is
called (G, s)–successful if for any possible sequence of the target’s
movements (d1, . . . ,dn), we have that |Di | ≤ s for some i ≤ n.

s∗(G): the minimum number s∗ such that there exists a
(G, s∗)–successful strategy
n(G, s): the minimum number n such that there exists a
(G, s)–successful strategy of length n
Such a strategy is called optimal (G, s) strategy.
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Motivation

The model has application to the area of node selection for target
tracking in sensor networks. When the task of the network is the
tracking of objects, a major initial task is to determine an area where
the object to be tracked is surely initially located, and from which the
actual tracking procedure can start. This localization together with the
minimization of the area of localization is one of the most critical and
expensive part of the tracking procedure, as it is typically done by an
exhaustive search. For the sake of reducing the bandwidth
consumption, sensors networks are also hierarchically organized in
graph and more specifically tree structures.

Therefore, our results can be used to support the localization phase
while trying to reduce the area of localization and reducing the number
of activations of sensors.
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Relation to other works

Group testing in graph has been considered both in terms of searching
for an edge and for a vertex, and for different models of the test
allowed. However, in all these works the basic assumption is that the
target is still which makes the problem significantly different.

Another area of research related to our problem is graph searching.
Graph searching a wide variety of combinatorial problems related to
the problem of capturing a fugitive residing in a graph using the
minimum number of searchers. Although there are many different
models of graph searching, none appear to cover the type of two side
combinatorial search we are considering here.

Models of search related to ours appear to be the so called cop and
robber game and domination search games.
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Optimal Strategies for Cycles and Paths

CN : a cycle on N vertices
PN : a path graph on N vertices
We consider the dual of the parameters n(CN , s) and n(PN , s)

Given integers n, s ≥ 1, we denote by Nc(n, s) (resp. Np(n, s)) the
maximum N, such that there exists an (CN , s)–successful (resp.
(PN , s)–successful) strategy of length n.

Clearly,
n(CN , s) = min{i : Nc(i , s) ≥ N}

n(PN , s) = min{i : Np(i , s) ≥ N}
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Cycles

CN = (N , E): a cycle of length N with a loop in each node.
N = {1, . . . ,N}
E = {{i , i + 1} : 1 ≤ i ≤ N − 1} ∪ {N,1} ∪ {{i , i} : i ∈ N}.

Proposition

For N ≥ 5 there does not exist a (CN , s)–successful strategy with
s ≤ 4, that is s∗(CN) ≥ 5.

For s ≥ 5, we can characterize the size of optimal (CN , s) strategies.

Theorem

For any s ≥ 5 and any n ≥ 0 we have Nc(n, s) = 2n(s − 4) + 4.
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Proof

Induction on n: The case n = 0 is trivial.
n − 1→ n: Suppose Nc(n, s) > 2n(s − 4) + 4 with (T1, . . . , Tn).
Note that
|D1| ≥ |T1|+ 2 if fT1(d1) = 1 and |D1| ≥ |N\T1|+ 2 if fT1(d1) = 0,
with equality in both cases iff T1 is a path in CN .

This implies that
|D1| ≥ dNc(n, s)/2e+ 2 > (2n(s − 4) + 4)/2 + 2 = 2n−1(s − 4) + 4,
a contradiction with the induction hypothesis
|D1| ≤ Nc(n − 1, s) = 2n−1(s − 4) + 4.

Hence Nc(n, s) ≤ 2n(s − 4) + 4.

In case N = 2n(s − 4) + 4 we take as T1 a path on N
2 vertices, which is

sufficient (and necessary) to get an optimal strategy, in view of the
induction hypothesis.
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Paths

Let PN be a path graph on N vertices, thus
E = {{i , i + 1} : 1 ≤ i < N} ∪ {{i , i} : 1 ≤ i ≤ N}.

Proposition
For N ≥ 5 there does not exist a (PN , s)-successful strategy with
s ≤ 3, that is s∗(PN) ≥ 4.

Theorem

For N ≥ 4 we have n(N,4) =

⌈
N
2

⌉
− 2

Corollary
For n ≥ 0 we have Np(n,4) = 2n + 4.

H. Aydinian (LTI TUM) A combinatorial model of two-sided search Harrachov 25/01/2016 13 / 20



Optimal strategy for s ≥ 4

We need much less tests, if we search for a final target set of size
s ≥ 5

Theorem

For n ≥ 0 and s ≥ 4 we have

Np(n, s) = (s − 4)2n + 2n + 4
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Complete q-ary trees

Bq
k = (N , E): a complete q-ary tree of depth k , where
N = {1,2, . . . ,qk+1 − 1} and |E| = |N | − 1.
Bq

k has one vertex of degree q, called the root,
qk (q − 1)− 2 vertices of degree q + 1, called the inner vertices,
and qk vertices of degree 1, called the leaves.

Theorem

For q ≥ 2 we have
(i) s∗(Bq

1 ) = q + 1
(ii) s∗(Bq

2 ) = 2q + 1
(iii) s∗(Bq

3 ) = dq+1
2 eq + q + j , where j = 0 if q = 2 and j = 1 if q ≥ 3

(iv) s∗(Bq
4 ) = dq+1

2 eq + q + i ,
where i = 1 if q is even and i = 2 if q is odd
(v) s∗(Bq

k ) = dq+1
2 eq + q + 2 for all k ≥ 5.
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General case
∆(T ): the maximum degree of a tree T
r(T ): the radius of T , i.e., r(T ) = minv∈T maxu∈T d(u, v)where
d(u, v) denote the length of the unique path between u and v in T .

Theorem

Let T be a tree, and let r = r(T ) and ∆ = ∆(T ) ≥ 3. Then we have
(i) s∗(T ) ≤ r(∆− 1) + 2 for r = 1,2.

(ii) s∗(T ) ≤
(
d∆− 1

2
e+ 1

)
(∆− 1) + u for r = 3, where u = 3 if

∆ = 3 and u = 2 for ∆ ≥ 4.

(iii) s∗(T ) ≤
(
d∆

2
e+ 1

)
(∆− 1) + 2 for r ≥ 4.

The bounds are best possible in the sense that for any r = 3,4 there
exists a tree for which a lower bound can be shown that differs by 1
and for any r 6∈ {3,4} the lower bound exactly matches the
corresponding upper bound in (i) and (iii).
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Optimal strategies when the target is restricted:

The target can change its position at most t times

Thus, there are at most t distinct elements in a target walk (d1, . . . ,dn).
The notations Nc(n, s, t) and Np(n, s, t) have the same meaning as
Nc(n, s) and Np(n, s) but for the restricted version of problem

Theorem

For s ≥ 4 we have

Nc(n, s, t) ≥ (s − 4)2n + 2n−t+2 = Nc(n, s) + 4(2n−t − 1)

It is easy to see that for paths we have

Np(n, s, t) ≥ Nc(n, s, t) + 2t
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For cases t = 1,2 and s = 3 we give optimal strategies.

Theorem
(i) For n ≥ 2

Nc(n,3,1) = 2n

(ii) For n ≥ 4 we have

Nc(n,3,2) = 2n−2
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Conclusion and Open problems
We considered a new model of combinatorial two-sided search

We described optimal search strategies for path graphs and cycles.

For arbitrary tree topologies we characterized the minimum possible
size of a target set.

An interesting open question is the characterization of strategies of
minimum length for trees
We also find it interesting to

Consider the problem for other popular network topologies like
grids, n-cubes etc
Study of probabilistic models of two-sided search
Consider two-sided search models in the case where some of test
results are incorrect, and the related coding problems.
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Thank you for your attention!
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