

Post Shannon Theory: Deterministic Identification With and Without Feedback

Holger Boche

1. TUM: Chair of Theoretical Information Technology, Department of Electrical and Computer Engineering

2. CASA: CASA Cyber Security in the Age of Large-Scale Adversaries Excellence Cluster, RUB Bochum

3. MCQST: Munich Center of Quantum Science and Technology - MCQST Excellence Cluster MCQST

Joint work with:

C. Deppe (TUM-LNT), W. Labidi (TUM-LTI), U. Pereg (TUM-LNT), M. J. Salariseddigh (TUM-LNT) and M. Wiese (CASA, TUM-LTI)

Session on Post-Shannon Communications

Friday 21 May

Outline

2 Deterministic Identification without Feedback (DI)

Oeterministic Identification with Feedback (DIF)

Outline

2 Deterministic Identification without Feedback (DI)

3 Deterministic Identification with Feedback (DIF)

4 Conclusions

Transmission vs. Identification

• Shannon's setting: Bob recover the message.

• Identification setting: Bob asks if a message was sent or not?

- V2X and P2MP communications
- Molecular communication and Health care
- Any event-triggered scenario

Randomized Identification (RI)¹

- Originally introduced by Ahlswede and Dueck (1989)
- Capacity was established with randomness at encoder
- Encoder employs distribution to select codewords

Remarkable Property

- Reliable identification is possible with code size growth $\sim 2^{2^{nR}}$
- Sharp difference to transmission with code size growth $\sim 2^{nR}$

¹R. Ahlswede, and G. Dueck, "Identification via channels", 1989

Deterministic Identification (DI)²

- Encoder uses deterministic mapping for coding
- Code size $\sim 2^{nR}$ for DMC as in transmission paradigm
- Achievable rates higher than transmission

Why deterministic?

- Simpler implementation (random resource not required)
- Suitable for Jamming scenarios
- Suitable for molecular communication

²R. Ahlswede and N. Cai, "Identification without randomization", 1999

Outline

2 Deterministic Identification without Feedback (DI)

3 Deterministic Identification with Feedback (DIF)

4 Conclusions

Main Contributions

- We established the DI capacity for DMC with power constraint
- We show that the optimal code size scales as $\sim 2^{nR}$
- The analysis combines techniques and ideas from works by:
 - 🚺 JáJá ³
 - Ahlswede ⁴
- We develop lower and upper bounds on the DI capacity for Gaussian channels with
 - Fast fading
 - 2 Slow fading
- We use the bounds to determine the **correct scale**
- We show that the optimal code size scales as $\sim 2^{n\log(n)R}$

³J. J. Ja, "Identification is easier than decoding", 1985

⁴R. Ahlswede, "A method of coding and its application to arbitrarily varying channels", 1980

Deterministic Identification (DI) over DMCs

DI codes

A $(L(n, R), n, \lambda_1, \lambda_2)$ -DI code for DMC \mathcal{W} is a system $\{(u_i, \mathcal{D}_i)\}_{i \in [1:L(n,R)]}$ subject to

- Code size: $L(n, R) = 2^{nR}$
- **2** Code-word: $u_i \in \mathcal{X}^n$, decoding regions: $\mathcal{D}_i \subset \mathcal{Y}^n$
- **③** Input constraint: $n^{-1} \sum_{t=1}^{n} \phi(u_{i,t}) \leq A$ with $\phi : \mathcal{X} \to [0, \infty)$
- \bigcirc Error requirement type I: $\mathcal{W}^{n}(\mathcal{D}_{i}|oldsymbol{u}_{i})>1-\lambda_{1}$
- Error requirement type II: $W^n(\mathcal{D}_i | \mathbf{u}_j) \underset{i \neq j}{<} \lambda_2$

DI Codes (Cont.)

Definition

A $(L(n, R), n, \lambda_1, \lambda_2)$ -DI code for DMC \mathcal{W} is a system $\{(u_i, \mathcal{D}_i)\}_{i \in [1:L(n,R)]}$ subject to

- Code size: $L(n, R) = 2^{nR}$
- **(**) Code-word: $u_i \in \mathcal{X}^n$, decoding regions: $\mathcal{D}_i \subset \mathcal{Y}^n$
- ◎ Input constraint: $n^{-1} \sum_{t=1}^{n} \phi(u_{i,t}) \leq A$ with $\phi: \mathcal{X} \rightarrow [0, \infty)$
- **④** Error requirement type I: $W^n(\mathcal{D}_i | \boldsymbol{u}_i) > 1 \lambda_1$
- **5** Error requirement type II: $W^n(\mathcal{D}_i | \boldsymbol{u}_j) \underset{i \neq j}{<} \lambda_2$

DI Capacity of DMC

Theorem

⁵ Let W be a DMC with distinct rows in channel matrix. Then the DI capacity with exponential code size and under input constraint is given by

$$\mathbb{C}_{DI}(\mathcal{W}) = \max_{p_X : \mathbb{E}\{\phi(X)\} \leq A} H(X)$$

⁵M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over channels with power constraints," IEEE Int'l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]

DI Capacity of DMC

Theorem (Ahlswede and Dueck, 1989⁶; Ahlswede and Cai, 1999⁷)

For DMC W let $W : \mathcal{X} \to \mathcal{Y}$ be channel matrix with distinct rows. Then the DI capacity with exponential code size is given by

 $\mathbb{C}_{\textit{DI}}(\mathcal{W}) = \log |\mathcal{X}|$

⁶R. Ahlswede, and G. Dueck, "Identification via channels", 1989

⁷R. Ahlswede and N. Cai, "Identification without randomization", 1999

DI Capacity of DMC

Theorem (Ahlswede and Dueck, 1989⁶; Ahlswede and Cai, 1999⁷) For DMC W let $W : \mathcal{X} \to \mathcal{Y}$ be channel matrix with distinct rows. Then the DI capacity with exponential code size is given by

 $\mathbb{C}_{\textit{DI}}(\mathcal{W}) = \log |\mathcal{X}|$

- A proof was not provided !
- Consequence of our result with $A = \phi_{max}$ ⁸

⁷R. Ahlswede and N. Cai, "Identification without randomization", 1999

⁶R. Ahlswede, and G. Dueck, "Identification via channels", 1989

⁸M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over channels with power constraints," IEEE Int'l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]

Proof Sketch (Achievability)

Lemma

Let R < H(X) and $\epsilon > 0$. Then, $\exists U^* = \{v_i\}_{i \in M}$ such that

$$|\mathcal{M}| \geq 2^{n(R-\theta)}$$

Proof Sketch (Achievability) Cont.

Coding Scheme

- **Enc**: given message $i \in \mathcal{M}$ transmit $x^n = \mathbf{v}_i$
- Dec: $\mathcal{D}_j = \{y^n : (\mathbf{v}_j, y^n) \in \mathcal{T}_{\delta}(p_X W)\}$
- Error Analysis
 - $P_{e,1}(i) \leq 2^{-n\alpha_1(\delta)}$ by standard type class argument
 - 2 $P_{e,2}(i,j) \leq 2^{-n\alpha_2(\epsilon,\delta)}$ by conditional type intersection lemma
- We extend the **JáJá** approach to a non-binary channel to bound the type II error.

Proof Sketch (Achievability) Cont.

Lemma (Ahlswede, 1980)

⁹ Let $W : \mathcal{X} \to \mathcal{Y}$ be a channel matrix of a DMC W with distinct rows. Then, for every $x^n, x'^n \in \mathcal{T}_{\delta}(p_X)$ with $d(x^n, x'^n) \ge n\epsilon$,

$$\frac{|\mathcal{T}_{\delta}(p_{\boldsymbol{Y}|\boldsymbol{X}}|\boldsymbol{x}^n)\cap\mathcal{T}_{\delta}(p_{\boldsymbol{Y}|\boldsymbol{X}}|\boldsymbol{x}'^n)|}{|\mathcal{T}_{\delta}(p_{\boldsymbol{Y}|\boldsymbol{X}}|\boldsymbol{x}^n)|}\leq e^{-ng(\epsilon)}$$

with $p_{Y|X} \equiv W$, for sufficiently large n and some positive function $g(\epsilon) > 0$ which is independent of n.

 $^{^{9}}$ R. Ahlswede. "A method of coding and its application to arbitrarily varying channels". 1980

Boche, Deppe, Labidi, Pereg, Salariseddigh and Wiese - Deterministic Identification With and Without Feedback

Proof Sketch (Converse)

Lemma

Distinct messages have distinct codewords, i.e.,

$$i_1 \neq i_2 \Rightarrow \boldsymbol{u}_{i_1} \neq \boldsymbol{u}_{i_2}$$

Proof. If $\boldsymbol{u}_{i_1} = \boldsymbol{u}_{i_2} = x^n$, then

$$P_{e,1}(i_1) + P_{e,2}(i_2,i_1) = W^n(\mathcal{D}_{i_1}^c|x^n) + W^n(\mathcal{D}_{i_1}|x^n) = 1$$

Proof Sketch (Converse)

Lemma

Distinct messages have distinct codewords, i.e.,

$$i_1 \neq i_2 \Rightarrow \boldsymbol{u}_{i_1} \neq \boldsymbol{u}_{i_2}$$

Proof. If $\boldsymbol{u}_{i_1} = \boldsymbol{u}_{i_2} = x^n$, then

$$P_{e,1}(i_1) + P_{e,2}(i_2,i_1) = W^n(\mathcal{D}_{i_1}^c|x^n) + W^n(\mathcal{D}_{i_1}|x^n) = 1$$

Further Steps

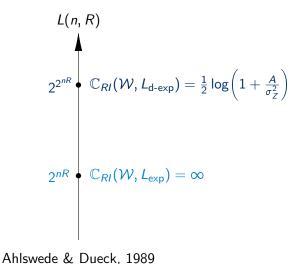
•
$$2^{nR} \le |\{x^n : n^{-1} \sum_{t=1}^n \phi(x_t) \le A\}|$$

•
$$|\{x^n : n^{-1} \sum_{t=1}^n \phi(x_t) \le A\}| \le 2^{n(\max_{p_X : \mathbb{E}\{\phi(X)\} \le A} H(X) + \alpha_n)}$$

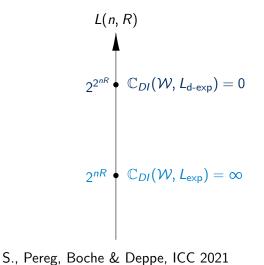
since input subspace is a union of type classes

•
$$R \leq \max_{p_X : \mathbb{E}\{\phi(X)\} \leq A} H(X) + \alpha_n$$
 for $\alpha_n \xrightarrow{n \to \infty} 0$

Coding Scale: Randomized Identification



Coding Scale: Deterministic Identification



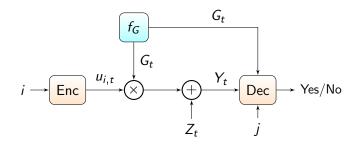
Coding Scale: Deterministic Identification

$$L(n, R)$$

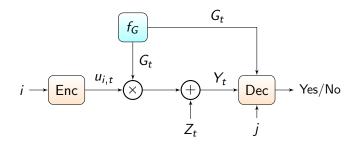
$$2^{2^{nR}} \bullet \mathbb{C}_{DI}(\mathcal{W}, L_{d-exp}) = 0$$
What is the correct scale?
$$2^{nR} \bullet \mathbb{C}_{DI}(\mathcal{W}, L_{exp}) = \infty$$

S., Pereg, Boche & Deppe, ICC 2021

DI for Fading Channel



DI for Fading Channel



Definitions

- Fast fading $\rightarrow \mathbf{Y} = \mathbf{G} \circ \mathbf{x} + \mathbf{Z}$ where $\mathbf{G} = (G_t)_{t=1}^{\infty} \stackrel{iid}{\sim} f_G$
- Slow fading $\rightarrow Y_t = Gx_t + Z_t$ where $G \sim f_G$
- Power const. $\rightarrow \|\mathbf{x}\| \leq \sqrt{nA}$, Noise $\rightarrow \mathbf{Z} \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, \sigma_Z^2)$

DI for Fast Fading Channel

Theorem

¹⁰ Let \mathscr{G}_{fast} be fast fading channel with positive fading coefficients. Then the DI capacity for $L(n, R) = 2^{n \log(n)R}$ is bounded by $\frac{1}{4} \leq \mathbb{C}_{DI}(\mathscr{G}_{fast}, L) \leq 1$

¹⁰ M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over fading channels," IEEE Inf. Theory Workshop (ITW), 2020 [arXiv:2010.10010, 2021]

DI for Fast Fading Channel

Theorem

¹⁰ Let \mathscr{G}_{fast} be fast fading channel with positive fading coefficients. Then the DI capacity for $L(n, R) = 2^{n \log(n)R}$ is bounded by $\frac{1}{4} \leq \mathbb{C}_{DI}(\mathscr{G}_{fast}, L) \leq 1$

Corollary (Traditional Scales)

¹⁰ DI capacity in traditional scales is given by $\mathbb{C}_{DI}(\mathscr{G}_{fast}, L) = \begin{cases} \infty & \text{for } L(n, R) = 2^{nR} \\ 0 & \text{for } L(n, R) = 2^{2^{nR}} \end{cases}$

¹⁰ M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over fading channels," IEEE Inf. Theory Workshop (ITW), 2020 [arXiv:2010.10010, 2021]

DI for Fast Fading Channel

Theorem

¹⁰ Let \mathscr{G}_{fast} be fast fading channel with positive fading coefficients. Then the DI capacity for $L(n, R) = 2^{n \log(n)R}$ is bounded by $\frac{1}{4} \leq \mathbb{C}_{DI}(\mathscr{G}_{fast}, L) \leq 1$

Corollary (Traditional Scales)

¹⁰ DI capacity in traditional scales is given by $\mathbb{C}_{DI}(\mathscr{G}_{fast}, L) = \begin{cases} \infty & \text{for } L(n, R) = 2^{nR} \\ 0 & \text{for } L(n, R) = 2^{2^{nR}} \end{cases}$

- Standard Gaussian channel is a special case
- Achiev. proof: sphere pkg. of rad. $n^{\frac{1}{4}} \Rightarrow 2^{\frac{1}{4}n\log(n)}$ codewords

¹⁰ M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over fading channels," IEEE Inf. Theory Workshop (ITW), 2020 [arXiv:2010.10010, 2021]

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

•
$$2^{n\log(n)R} = \Delta \cdot \frac{\operatorname{Vol}(\mathcal{S}_0(n,\sqrt{A}))}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{\epsilon_n}))} \ge 2^{-n} \cdot \left(\frac{\sqrt{A}-\sqrt{\epsilon_n}}{\sqrt{\epsilon_n}}\right)^n$$

• $R \ge \frac{1}{\log(n)}\log\left(\frac{\sqrt{A}-\sqrt{\epsilon_n}}{\sqrt{\epsilon_n}}\right) - \frac{1}{\log(n)} \xrightarrow{n \to \infty} \frac{1}{4}$

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

•
$$2^{n\log(n)R} = \Delta \cdot \frac{\operatorname{Vol}(\mathcal{S}_0(n,\sqrt{A}))}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{\epsilon_n}))} \ge 2^{-n} \cdot \left(\frac{\sqrt{A}-\sqrt{\epsilon_n}}{\sqrt{\epsilon_n}}\right)$$

• $R \ge \frac{1}{\log(n)}\log\left(\frac{\sqrt{A}-\sqrt{\epsilon_n}}{\sqrt{\epsilon_n}}\right) - \frac{1}{\log(n)} \xrightarrow{n \to \infty} \frac{1}{4}$

Chebyshev's inequality leads to the following error bounds:

1
$$P_{e,1}(i) \le \frac{c_1}{n\epsilon_n^2}$$

2 $P_{e,2}(i,j) \le \frac{c_2}{n\epsilon_n^2}$

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

•
$$2^{n\log(n)R} = \Delta \cdot \frac{\operatorname{Vol}(\mathcal{S}_0(n,\sqrt{A}))}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{\epsilon_n}))} \ge 2^{-n} \cdot \left(\frac{\sqrt{A}-\sqrt{\epsilon_n}}{\sqrt{\epsilon_n}}\right)$$

• $R \ge \frac{1}{\log(n)}\log\left(\frac{\sqrt{A}-\sqrt{\epsilon_n}}{\sqrt{\epsilon_n}}\right) - \frac{1}{\log(n)} \xrightarrow{n \to \infty} \frac{1}{4}$

Chebyshev's inequality leads to the following error bounds:

1
$$P_{e,1}(i) \le \frac{c_1}{n\epsilon_n^2}$$

2 $P_{e,2}(i,j) \le \frac{c_2}{n\epsilon_n^2}$

• Cond. 1 &
$$2 \rightarrow \epsilon_n = \frac{A}{n^{\frac{1}{2}(1-b)}}$$
 for $b > 0$ arbitrarily small

Proof Sketch. (Converse)

• We show that if two code-words satisfy $\|\mathbf{u}_{i_1} - \mathbf{u}_{i_2}\| < \sqrt{n\epsilon_n}$ then using the continuity of the Gaussian PDF, we obtain

$$\mathsf{P}_{e,1}(i) + \mathsf{P}_{e,2}(i,j) \geq 1 - \kappa_n$$

Proof Sketch. (Converse)

• We show that if two code-words satisfy $\|\mathbf{u}_{i_1} - \mathbf{u}_{i_2}\| < \sqrt{n\epsilon_n}$ then using the continuity of the Gaussian PDF, we obtain

$$\mathsf{P}_{e,1}(i) + \mathsf{P}_{e,2}(i,j) \geq 1 - \kappa_n$$

- Tight upper-bound requires:

 - 2 κ_n tends to zero
- Cond. 1 & 2 $\rightarrow \epsilon_n = \frac{A}{n^2}$

Proof Sketch. (Converse)

• We show that if two code-words satisfy $\|\mathbf{u}_{i_1} - \mathbf{u}_{i_2}\| < \sqrt{n\epsilon_n}$ then using the continuity of the Gaussian PDF, we obtain

$$P_{e,1}(i) + P_{e,2}(i,j) \ge 1 - \kappa_n$$

- Tight upper-bound requires:
 - (1) ϵ_n large as possible
 - 2 κ_n tends to zero
- Cond. 1 & 2 $\rightarrow \epsilon_n = \frac{A}{n^2}$

rate
$$\uparrow \iff \epsilon_n \downarrow$$

DI for Slow Fading Channel

Theorem

¹¹ Let \mathscr{G}_{slow} be slow fading channel with positive fading coefficients. Then DI capacity for $L(n, R) = 2^{n \log(n)R}$ is bounded by

$$\frac{1}{4} \leq \mathbb{C}_{DI}(\mathscr{G}_{slow}, L) \leq 1$$

Corollary (Traditional Scales)

¹¹ DI capacity in traditional scales is given by

$$\mathbb{C}_{DI}(\mathscr{G}_{slow}, L) = \begin{cases} \infty & \text{ for } L(n, R) = 2^{nR} \\ 0 & \text{ for } L(n, R) = 2^{2^{nR}} \end{cases}$$

¹¹ M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over fading channels," IEEE Inf. Theory Workshop (ITW), 2020 [arXiv:2010.10010, 2021]

Outline

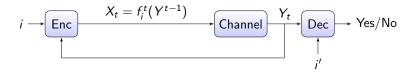
1 Motivation

2 Deterministic Identification without Feedback (DI)

3 Deterministic Identification with Feedback (DIF)

4 Conclusions

DI with Noiseless Feedback



- Previous work ¹² focused on channels with discrete alphabets
- We extend the results to the Gaussian channel ¹³

 12 R. Ahlswede and G. Dueck, "Identification in the presence of feedback-a discovery of new capacity formulas," IEEE Trans. Inf. Theory, 1989

¹³ W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback," IEEE Int'l Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021]

DIF Capacity of a DMC

Theorem

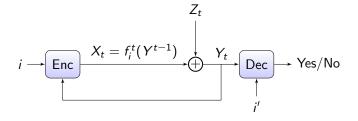
¹⁴ Let $\mathbb{C}_{DIF}(W)$ and $\mathbb{C}(W)$ be the DIF capacity and the Shannon capacity of the DMC W, respectively. Then the deterministic identification capacity with feedback is given by

$$\mathbb{C}_{DIF}(\mathcal{W}) = \begin{cases} \max_{x \in \mathcal{X}} H(W(\cdot|x)) & \text{if } \mathbb{C}(\mathcal{W}) > 0\\ 0 & \text{iff } \mathcal{W} \text{ is noiseless or } \mathbb{C}(\mathcal{W}) = 0 \end{cases}$$

- Feedback allows a double exponential growth of the identities
- Noise can increase the identification feedback capacity

 $^{^{14}}$ R. Ahlswede and G. Dueck, "Identification in the presence of feedback-a discovery of new capacity formulas," IEEE Trans. Inf. Theory, 1989

DIF Over Gaussian Channels: System Model



•
$$Z_t$$
, $t = 1, \ldots, n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

• The channel is denoted by W_{σ^2}

DIF code for Gaussian channels under average power constraint

A $(L(n, R), n, \lambda_1, \lambda_2)$ -DIF code for W_{σ^2} with $\lambda_1 + \lambda_2 < 1$ is a system $\{(f_i, D_i)\}_{i \in [1:L(n,R)]}$ subject to

- **1** Code size: L(n, R)
- ② Feedback strategy: $f_i = [f_i^1, f_i^2 \dots, f_i^n] \in \mathcal{F}_n$, decoding region: $\mathcal{D}_i \subset \mathcal{Y}^n$
- **4** Error requirement type I: $W^n(\mathcal{D}_i | \boldsymbol{u}_i) > 1 \lambda_1$

S Error requirement type II: $W^n(\mathcal{D}_i|\mathbf{u}_j) \underset{i \neq i}{<} \lambda_2$

• \mathcal{F}_n is set of all encoding functions f_i , where $f_i^1 \in \mathcal{X}$ and $f_i^t : \mathcal{Y}^{t-1} \to \text{for } t > 1$

DIF Capacity of Gaussian Channel

Theorem

¹⁵ Let $\lambda \in (0, 1)$, $\sigma^2 \ge 0$ and $P_{tot} > 0$. Then for all R > 0, there exists a blocklength n_0 such that for every $n \ge n_0$ there exists a deterministic identification feedback code $(L(n, R), n, \lambda_1, \lambda_2)$ for W_{σ^2} of blocklength n with $L(n, R) = 2^{2^{nR}}$ identities and with $\lambda_1, \lambda_2 \le \lambda$, i.e., $\mathbb{C}_{DF}(\sigma^2, P_{tot}) = +\infty$

- Change the scaling? Choose higher scaling?
- Without feedback ¹⁶, code size growth $\sim 2^{(n \log n)R}$

¹⁵W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback," IEEE Int'l Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021]

¹⁶M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over channels with power constraints," IEEE Int'l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]

Infinite DIF Capacity regardless of the Scaling

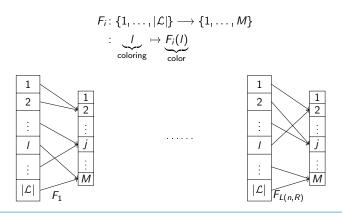
Theorem

¹⁷ Let $\lambda \in (0, 1)$, $\sigma^2 \ge 0$ and $P_{tot} > 0$. Then there exists a blocklength n_s such that for every positive integer L(n, R) and every $n \ge n_s$ there exists a deterministic identification feedback code $(L(n, R), n, \lambda_1, \lambda_2)$ for W_{σ^2} of blocklength n with L(n, R) identities and with $\lambda_1, \lambda_2 \le \lambda$

¹⁷W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback," IEEE Int'l Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021]

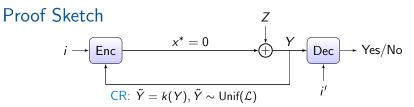
Proof Sketch ($\sigma^2 > 0$)

To send a message *i*, we prepare a set of coloring functions {*F_i*, *i* = 1,..., *L*(*n*, *R*)} known by the sender and the receiver



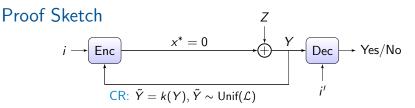
London Symposium on Information Theory (LSIT)

ISIT



2 We send **one symbol** $x^* = 0$ over the forward channel

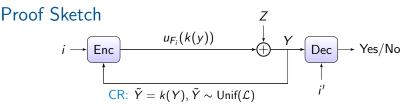
London Symposium on Information Theory (LSIT)



We generate the RV \$\tilde{Y} = k(Y) ~ Unif(\mathcal{L}), |\mathcal{L}|\$ determines the growth of \$L(n, R)\$

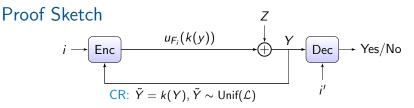
Technical University of Munich

London Symposium on Information Theory (LSIT)



• $C = \{(u_j, D_j), j = 1, ..., M\}$ is an $(m, M, 2^{-m\delta})$ transmission code, we send $u_{F_i(k(y))}, k(y) \in \mathcal{L} \implies (n, L(n, R), \lambda_1, \lambda_2)$ DIF code with n = 1 + m

London Symposium on Information Theory (LSIT)

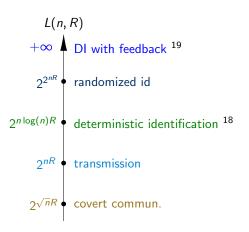


6 If $F_i(k(y)) = F_{i'}(k(y))$, then i = i'

Outline

- 2 Deterministic Identification without Feedback (DI)
- 3 Deterministic Identification with Feedback (DIF)

Conclusions: Coding Scale



 M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over channels with power constraints," IEEE Int'l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]
 W. Labidi, H. Boche, C. Deppe and M. Wiese, "Identification over the Gaussian Channel in the Presence of Feedback," IEEE Int'l Symp. Inf. Theory (ISIT), 2021 [arXiv:2102.01198, 2021]

Conclusions Cont.

- We have determined DI capacity for
 - Fading $\rightarrow 2^{n \log(n)C} = n^{nC}$ behavior

As opposed to $2^{2^{nR}}$ for randomized identification

- We have provide a coding scheme that generates infinite common randomness between TX-RX and showed that the DIF capacity is infinite regardless of the scaling
- Future directions
 - Molecular communication channel
 - Study scenario with noisy feedback over continuous channels
- Applications: 6G ²⁰

²⁰Juan Cabrera, Holger Boche, Christian Deppe, Rafael F. Schaefer, Christian Scheunert, Frank H. P. Fitzek, "6G and the Post-Shannon-Theory,", In: Emmanuel Bertin, Noel Crespi, Thomas Magedanz (Hrsg.): "Shaping Future 6G Networks: Needs, Impacts and Technologies. Wiley-Blackwel", 2021

Acknowledgements

Thank You !

- We thank the German Research Foundation (DFG) within the Gottfried Wilhelm Leibniz Prize under grant BO 1734/20-1.
- Thanks also goes to the German Federal Ministry of Education and Research (BMBF) within the national initiative for Post Shannon Communication (New-Com) with the project Basics, Simulation and Demonstration for New Communication Models under grant 16KIS1003K and with the project Coding Theory and Coding Methods for New Communication Models under grant 16KIS1005.
- Additionally, we thank the German Federal Ministry of Education and Research (BMBF) within the national initiative for Molecular Communications (MAMOKO) under grant 16KIS0914.