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Preface

It was in the summer of 2002 when the European Union launched the Sixth Frame-
work Research Programme. One of the expected outcomes of this multibillion
Euro initiative was Structuring, that is, tackling the fragmentation of European
research on a large scale. The concept of the so-called Network of Excellence (NoE)
was born, which was designed to strengthen scientific and technological excellence
on a particular research topic. Without doubt Smart Antennas, which here stands
for any multiantenna technique, is an important research topic in wireless com-
munications and is characterized by severe fragmentation in Europe. Indeed, after
the first steps were taken to establish a proposal, it quickly turned out that more
than 100 institutions from academia and from industry were devoting much effort
toward smart antenna research, so not only fragmentation but also a required crit-
ical mass of resources and of expertise were on hand. By the end of 2002, the idea
of a Network of Excellence for Smart Antenna Technology (NESAT) took a rather
concrete shape.

A series of four meetings took place up until spring 2003, where European
smart antenna experts further tightened their personal links. In addition, scientists
from overseas were also invited to encourage discussions of a worldwide scope. Al-
though the NESAT proposal failed in summer 2003 because of strong competition,
there was immediate commitment among the network partners to demonstrate
the state-of-the-art technology in smart antennas within the framework of a com-
prehensive book.

This book is now in the readers’ hands. It consists of six major parts, which
are summarized below, and each part is split into several chapters. Most often a
team of authors joining NESAT took responsibility for a single chapter, so the to-
tal number of authors is hard to count. This has made it difficult to equally thank
all involved people, so we generally apologize for the absence of personal acknowl-
edgments.

Although the first multiantenna-based products have been commercially
available in wireless communications for a few months, there is no doubt that
smart antennas were, are, and especially will remain a hot topic in research, even
beyond this decade. Hence, a book aiming at covering the state of the art of this
technology is to be seen as a snapshot. We hope that this book will serve as a com-
prehensive survey reflecting the smart antenna research in the period from 2003
to 2005.

Receiver

In this first part a collection of different receiver processing techniques and par-
adigms is presented, which are all based on multielement antennas. The second
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chapter of this part introduces a spatiotemporal interference rejection combining
(D. Astély and B. Ottersten) taking into account the spatial and temporal correla-
tion of random variables at the receiver. The next chapter presents subspace meth-
ods for space-time processing (M. Nicoli and U. Spagnolini) which are based on
the invariance of multipath parameters of the radio channel. In multiuser MIMO
channel equalization (C. F. Mecklenbräuker et al.) a space-time matrix modulation
technique is proposed, which is extended to the important cases of rank-deficient
channels and multiple users. The next chapter is devoted to a new paradigm in
joint antenna combining and multiuser detection (R. Müller and L. Cottatellucci)
which relies on multistage detection and certain properties of random matrices.
In synchronization for MIMO systems (F. Simoens et al.) the authors consider iter-
ative algorithms for estimating the required parameters for frame synchronization
and phase ambiguity resolution in MIMO systems. The following chapter deals
with turbo detection and equalization (T. Matsumoto), which rely on an iterative
channel estimation technique and a specific algorithm that takes into account the
presence of unknown interference. In architectures for reference-based and blind
multilayer detection (K.-D. Kammeyer et al.) an iterative combination of a blind
source separation algorithm and a successive interference detection technique to-
gether with a reduced complexity technique for the sorted channel decomposition
is proposed. Meanwhile, uplink robust adaptive beamforming (A. B. Gershman)
presents state-of-the-art robust adaptive beamforming techniques to overcome
spatial signature mismatches and received data nonstationarity in application to
cellular mobile radio systems. Finally, in robust and reduced-rank space-time deci-
sion feedback equalization (F. A. Dietrich et al.) another approach to mitigating the
troublesome effects of unreliable channel state information at the receiver is pre-
sented. At the same time a combination of the two paradigms of robustness and
reduced-rank signal processing is proposed.

Channel

The second part on the radio channel deals with important aspects of the com-
munication link between the antennas, or rather multiple antennas in a smart an-
tenna setting. The second chapter on propagation (P. Vainikainen et al.) gives an
update on the present state of knowledge on propagation in indoor and outdoor
environments, while in the third chapter on channel sounding measurement (R.
S. Thomä et al.) relevant channel models are described and how to measure the
channel with channel sounders. Modelling the channel can be done in many ways;
in MIMO channel models (K. Yu et al.) an overview of various methods is given.
The fifth chapter channel estimation (G. Leus and A.-J. van der Veen) describes
several ways of estimating the channel. This part concludes by finding the angular
aspects of the channel in direction-of-arrival estimation (M. Viberg).

Transmitter

This part provides several transmitter design perspectives accommodated to dif-
ferent channel types, statistical variation, and knowledge. It begins with providing
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a unified perspective of the design of linear transceivers for MIMO systems in the
case of availability of channel state information (CSI) at both sides of the link. The
chapter authored by D. P. Palomar elaborates on the design of linear precoders
at the transmit side under different optimisation criteria. The third chapter con-
siders the situation in which the transmitter has access to some limited or imper-
fect channel state information. Conventional space-time codes do not need any
channel knowledge at the transmit side, and this is a clear advantage given the
difficulties of acquiring such knowledge, but it may also be a substantial draw-
back since CSI, when available at the transmit side, can be used to improve per-
formance. This chapter, authored by G. Jöngren et al., develops the concept of
channel-side information-dependent codes. The fourth chapter, authored by M.
Johan and W. Utschick enters into the area of nonlinear transmit processing and
specifically considers Tomlinson-Harashima precoding. This technique can be un-
derstood as a generalisation in the transmit side of decision feedback equalisation
in the receiver. The fifth chapter considers the optimisation the different trans-
mission strategies in a multiuser environment. When considering optimisation of
multiuser systems, objective functions can be defined based on either global or in-
dividual performance criteria. This chapter, authored by E. A. Jorswieck, motivates
and analyses important representative problems of both classes. The last chapter
of this part concentrates on the design of the appropriate multiplexing schemes in
the presence of MIMO channel matrix ill conditioning. This chapter, authored by
D. Gesbert and J. Akhtar investigates the use of constellation multiplexing in an
attempt to robustify spatial multiplexing schemes.

Network Theory

In this part new theoretical results of multiantenna systems with special emphasis
on network aspects are presented. In order to introduce the topic, MIMO channel
capacity is examined (A. F. Molisch and F. Tufvesson) and validated by measure-
ments. In the third chapter distributed space-time coding techniques are analyzed (S.
Barbarossa et al.). In this connection a shift of paradigm in wireless communica-
tion is taking place, because here cooperation between users is not only accepted,
but even favored. This makes distributed space-time coding an active research area
with a number of very interesting open problems. In the fourth chapter towards a
better understanding of the quality-of-service tradeoff (S. Stanczak and H. Boche)
the geometry of feasible QoS regions is characterized. In particular, the authors
investigated whether the feasible QoS region is a convex set, which is highly bene-
ficial for resource allocation optimization. The problem of feasible QoS regions in
the downlink and uplink of multiantenna systems with a given SINR is surveyed
in the fifth chapter duality theory for uplink and downlink multiuser beamforming
(H. Boche and M. Schubert). The duality between uplink and downlink, which
allows to find the downlink optimum by solving an equivalent uplink problem in-
stead, is stated and an optimization strategy for the problem of jointly optimizing
beamformers and transmit power can be derived. In the sixth chapter scheduling in
multiple-antenna multiple-access channel (H. Boche et al.) a scheduler is developed
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based on network stability as one interesting criterion for optimization. To reach
maximal stability a simple weighted sum of rates has to be optimized, which vali-
dates the results from the fourth chapter. As a result it is shown that the problem
can be reduced to a convex problem, when the optimal successive interference can-
cellation (SIC) order is classified. In the appendix of this last chapter (T. Haustein)
the results are implemented and experimental results are presented.

Technology

This part focuses on the real physical elements of a multiantenna transceiver and
their nonidealities. Indeed, these systems operate in real life with physical compo-
nents or supercomponents such as antennas, front-ends, modems, and so forth.
Many of the benefits of multiantenna techniques (rate enhancements, more ro-
bust links, etc.) are dependent on the characteristics of these physical compo-
nents. The scope of the part is very broad and encompasses antenna (array) design,
parallel transceivers, analog transceiver nonidealities, emerging air interfaces, and
prototyping issues. The second chapter antenna design for multiantenna systems
(C. Waldschmidt et al.) addresses the impact of the antenna array on the spatial
channel, the link budget, and the capacity. Modelling and design for small pro-
file antennas are also addressed. The next chapter radio architectures for multiple-
antenna systems (D. Evans) discusses how multiplexing techniques can be used to
share a single transceiver between several antenna branches and, hence, reduce the
complexity of the MIMO transceiver. In the fourth chapter transceiver nonideal-
ities in multiantenna systems (A. Bourdoux and J. Liu) we look at the impact of
analog transceiver nonidealities on MIMO communications. Effects such as phase
noise, saturation, I-Q imbalance are addressed, and their impact is assessed, tak-
ing MIMO-OFDM as a test case. The fifth chapter multiple antennas for 4G wire-
less systems (F. Horlin et al.) considers a broader class of waveforms, combining
multicarrier and direct-sequence CDMA, and analyzes the combination of these
modulation/multiple access techniques with multiple antenna techniques. Finally,
the last chapter demonstrators and testbeds (A. Burg and M. Rupp) concentrates
on prototyping and provides a classification and overview of MIMO prototypes.
Digital hardware issues, design methodology, and tools are discussed in detail.

Applications and Systems

This last part takes on board two aspects. On the one hand, future applications
of multiantenna techniques in cellular communication systems are discussed. On
the other hand, two examples for multiantenna testbeds, facilitating and validat-
ing the comprehensive design of MIMO-WLAN- and MIMO-UMTS-based sys-
tems, are explained in detail. The second chapter smart antenna solutions for UMTS
(A. Czylwik et al.) addresses downlink beamforming with respect to system-level
aspects; for example, system capacity, system coverage, and electromagnetic emis-
sion. As an extension of the second chapter, the third chapter UMTS link-level
demonstrations with smart antennas (K. Freudenthaler et al.) shows that constraints
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imposed by standardization complicate the successful exploitation of multianten-
na benefits. The purpose of this chapter is to point out several low-complexity
algorithmical approaches aiming for integrated circuit solutions. The fourth chap-
ter MIMO systems for the HSDPA FDD mode UMTS service (A. Pagès-Zamora and
M. J. Heikkilä) continues with MIMO algorithms for the high-speed downlink
packet access (HSDPA) mode of UMTS. After summarizing HSDPA features rel-
evant for applying multiantenna techniques, various MIMO-HSDPA transceiver
architectures (e.g., space-time transmit diversity, vertical BLAST), and linear dis-
persion codes on the transmitter side and RAKE, reduced maximum likelihood
and turbo space-time decoder typed receivers are discussed and evaluated by sim-
ulations with respect to fading and mobility. The next chapter a MIMO platform
for research and education (T. Kaiser et al.) is focused on enabling the reader to
set up a complete MIMO testbed of his own; it covers the basic testbed concept,
an offline, hybrid, and online processing mode as well as selected network topolo-
gies. Moreover, hardware and software for BB and RF processing are highlighted;
for example, module interfacing, digital signal processor (DSP) programming and
field programmable gate array (FPGA) synthesis, and project and revision control
software. In the final chapter real-time prototyping of broadband MIMO WLAN
systems (M. Wouters and T. Huybrechts) a sophisticated testbed is presented with
special emphasis on analog front-end impairments; for example, phase noise and
amplifier nonlinearity and their cancellation. Calibration architectures and higher
layer issues are addressed as well; the contribution winds up with an outlook on
further developments.

Thomas Kaiser, André Bourdoux, Holger Boche, Javier Rodŕıguez Fonollosa,
Jørgen Bach Andersen, and Wolfgang Utschick

June 2005
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1
Introduction

Wolfgang Utschick

Technological progress has recently changed the introduction of multiple anten-
nas at the receiver unit (Rx) of wireless access points and mobile terminals from a
purely theoretical concept to a practical issue in current and future wireless com-
munication systems. The deployment of multiple Rx antennas offers an extra spa-
tial dimension which can be exploited by striving for diversity, multiplexing, or
coherence gain in order to increase achievable information rates and reception
quality. The special characteristic of multiple antennas, in addition to simply in-
creasing the dimension of the signal space, is its relation to spatial directivity which
is the linking element to the natural physical environment. Since multiple Rx an-
tennas dramatically increase the number of parameters to be estimated and to be
processed, the design of powerful and efficient receivers has become a key issue.

In this part, a collection of different receiver processing techniques and para-
digms which are all based on multielement antennas is presented.

The first chapter introduces a spatio-temporal interference rejection combining
taking not only the spatial but also the temporal correlation of random variables at
the receiver into account. Such techniques are of interest in cellular systems since
they require few assumptions on the structure of the interference and also can be
used to suppress intersystem interference and adjacent channel interference. An
understanding for when spatio-temporal interference rejection offers significant
performance enhancements as compared to spatial interference rejection will be
provided.

The next chapter presents subspace methods for space-time processing which
are based on the invariance of the multipath parameters of the radio channel
translated into the invariance of corresponding spatial and temporal invariant sub-
spaces. The proposed space-time equalization techniques are considered for single
or multiuser block-transmission systems and exploit the stationarity of the spatial
and temporal channel subspaces over the data-blocks.

In multiuser MIMO channel equalization, a space-time matrix modulation
technique is proposed which is then extended to the important cases of rank-
deficient channels and multiple users. The proposed algorithm permits joint data
detection and channel equalization without knowledge of the symbol alphabet.
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Special attention is drawn to the efficient demodulation properties and to the case
of time-variant MIMO multipath channels.

A further chapter is devoted to a new paradigm in joint antenna combining
and multiuser detection which relies on multistage detection and certain properties
of random matrices. It is shown how antenna combining and multiuser detection
can be implemented jointly without the need for matrix multiplications or matrix
inversions.

In synchronization for MIMO systems, the authors consider iterative algo-
rithms for estimating the required parameters for frame synchronization and
phase ambiguity resolution in MIMO systems. A special attention is drawn to al-
gorithms which provide reliable initial conditions for the iterative techniques.

The next chapter is devoted to turbo detection and equalization which relies on
an iterative channel estimation technique and a specific algorithm that takes into
account the presence of unknown interference. It is shown that even though the
equalizer’s complexity can be reduced considerably, the proposed algorithms can
achieve almost optimum performance.

In architectures for reference-based and blind multilayer detection, an iterative
combination of a blind source separation algorithm and a successive interference
detection technique together with a reduced complexity technique for the sorted
channel decomposition is proposed. An illustrative description of the basic at-
tempt is given.

Finally, uplink robust adaptive beamforming addresses the problem that in
practical systems the knowledge of the user’s spatial signature is likely to be unreli-
able. State-of-the-art robust adaptive beamforming techniques to overcome spatial
signature mismatches and received data nonstationarity in application to cellular
mobile radio systems are presented.

In robust and reduced rank space-time decision feedback equalization, another
approach to mitigate the troublesome effects of unreliable channel state infor-
mation at the receiver is presented. At the same time, a combination of the two
paradigms of robustness and reduced rank signal processing is proposed.

Wolfgang Utschick: Institute for Circuit Theory and Signal Processing, Munich University of Technol-
ogy, 80290 München, Germany

Email: utschick@tum.de

mailto:utschick@tum.de


2
Spatiotemporal interference
rejection combining

David Astély and Björn Ottersten

2.1. Introduction

During the last decade, the use of second-generation cellular systems such as GSM
has undergone a rapid growth, and we currently see deployments of third-genera-
tion systems based on CDMA. The success of GSM and the introduction of new
services, such as packet data and video telephony, motivate continuous efforts to
evolve the systems and to improve performance in terms of capacity, quality, and
throughput.

Receive diversity is commonly used at the base stations in cellular networks
to improve the uplink performance. Relatively simple combining methods have
been used to date. However, as the users eventually compete with each other for
the available spectrum, interference in terms of cochannel interference (CCI), ad-
jacent channel interference (ACI), and possibly also interference between different
systems will be the limiting factor. With this in mind, more sophisticated meth-
ods, that offer interference suppression, appear attractive and to be a natural step
in the evolution. Further, to improve the downlink, the use of multiple antennas
at the terminal is also of relevance. The recent interest in so-called multiple-input
multiple-output (MIMO) links and their potential gains in many environments
may lead to the development of multiple antenna terminals. The multiple ter-
minal receive antennas can then be used to increase the link performance with
both spatial multiplexing and interference suppression depending on the operat-
ing conditions.

Herein, the problem of spatiotemporal interference rejection combining (IRC)
is addressed. For burst oriented systems such as GSM, we consider the use of a vec-
tor autoregressive (VAR) model to capture both the spatial and temporal correla-
tion of interference such as CCI and ACI. Some technical background and previ-
ous work in the area are first presented below and the underlying data model is in-
troduced in Section 2.2. The VAR model is described and examined in Section 2.3.
Two basic metrics for sequence estimation are presented in Section 2.4 in addition
to reduced complexity sequence estimators. Several numerical examples are then
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presented in Section 2.5 and the application to GSM is discussed in Section 2.6.
Spatiotemporal IRC utilizing both spatial and temporal correlation of interference
is of interest also for WCDMA. As outlined in Section 2.7, a different approach not
using a VAR model may then be taken. Some concluding remarks are finally given
in Section 2.8.

2.1.1. Background and some related work in the literature

In burst oriented TDMA systems such as GSM/EDGE, the modulation and the
time dispersion in the radio channel introduce intersymbol interference (ISI).
Even though ISI can be viewed as a form of interference, it is herein considered as a
part of the signal to be detected. To handle the ISI, a maximum likelihood sequence
estimator (MLSE) [1], or a suboptimum version with lower complexity, such as the
delayed decision feedback sequence estimator (DDFSE) [2], is therefore assumed
to be used. To cope with other forms of disturbance, such as CCI and ACI, in ad-
dition to ISI, there has been renewed interest in the approach taken in [3]. In [3],
interference is modeled as a spatially and temporally colored Gaussian process, and
an MLSE that takes the second-order properties of the CCI into account is derived.
Some related contributions include [4, 5, 6, 7, 8, 9, 10], which utilize a Gaussian
assumption for the CCI to derive an MLSE which may detect the signal in the pres-
ence of ISI and simultaneously suppress CCI. In [3, 5, 10], the sequence estimator
proposed by Ungerboeck in [11] is generalized to the multiple-antenna case. The
resulting structure consists of a multiple-input single-output (MISO) filter front
end followed by a sequence estimator. The filter may be viewed as the concatena-
tion of a MIMO whitening filter and a filter matched to the whitened channel. The
MLSE proposed by Forney in [1], and generalized to multiple channels and mul-
tiple signals in [12], has been derived for temporally white but spatially colored
noise and studied for CCI rejection, see [4, 7, 13, 8]. Forney’s and Ungerboeck’s
formulations for sequence estimation are equivalent and a unification is presented
in [14].

A suboptimum approach to handle CCI with a MISO filter and a Forney form
of MLSE is proposed in [15]. Other front-end filters are considered in [16, 17].
The unified analysis of front-end filters in [18] includes a Forney form of MLSE,
derivations of optimal filters of infinite length, and, based on numerical studies,
guidelines on how to truncate the filters. In [19], a front-end filter for a decision
feedback equalizer is used with a DDFSE for joint equalization and interference
suppression.

An MLSE with spatiotemporal IRC accounts also for the temporal correla-
tion of the interference, and in general truncation is needed, both in the front-
end filter and also in the memory of the sequence estimator. A straightforward
approach is to use a finite-order linear predictor and to assume that the predic-
tion errors are temporally white and complex Gaussian. This is equivalent to us-
ing a complex Gaussian VAR model. Autoregressive modeling of interference in
single-antenna spread spectrum receivers has been proposed in [20] and a VAR
model is used in [21] to handle spatiotemporally correlated clutter in radar signal
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processing. In the field of blind channel identification from second-order statistics,
linear-prediction-based methods which exploit the simultaneous moving average,
and autoregressive nature of the received signals in the multichannel setting have
been proposed [22, 23, 24]. The use of a VAR model for interference rejection has
also been mentioned in, for example, [16] and investigated in [25, 26]. As will be
seen, with a VAR model, metrics both for Forney and Ungerboeck forms of MLSE
can be derived, which is interesting since a Forney form of sequence estimator may
offer alternative strategies as compared to the Ungerboeck form when the param-
eters are to be estimated and tracked, see [8, 14].

The prediction error filter corresponding to the VAR model introduces a fi-
nite amount of additional ISI, so that the complexity of the sequence estimator in-
creases exponentially with the amount of temporal correlation accounted for. This
motivates the use of reduced complexity sequence estimators as in [19, 27, 28]. Al-
ternatively, a general sequence estimator such as the generalized Viterbi algorithm
(GVA) [29], which includes the DDFSE as a special case, may be applied.

In direct-sequence code division multiple access (DS-CDMA) systems, such
as WCDMA, RAKE receivers are typically used in time-dispersive radio channels.
To incorporate spatiotemporal IRC in such a receiver structure, an alternative to
the VAR model may be used. Some previous work on this can be found in, for
example, [30, 31, 32]. Similar to the use of a VAR model for burst oriented TDMA
systems such as GSM, we show how both spatial and temporal correlation of the
interference are exploited.

Finally, we note that to handle digitally modulated interference, such as CCI,
the finite alphabet property may be exploited by means of joint multiuser detec-
tion [12, 33, 34]. The approach considered herein, and referred to as interference
rejection, utilizes only second-order statistics of the interference. This is in gen-
eral inferior to joint detection. On the other hand, joint detection requires the
knowledge of the channels of the interference and not only second-order statis-
tics. An interference rejecting approach is also expected to be more robust if the
finite alphabet assumption is invalid, for example, due to frequency offsets, or if
the modulation format of the interference is unknown. Interference rejection may
thus be applicable to a larger class of interfering signals, such as ACI and intersys-
tem interference in addition to CCI, if the second-order moments of the signal of
interest and the interference span sufficiently different spaces.

2.2. Data model

A discrete time model with symbol rate sampling is considered for a quasistation-
ary scenario with time dispersive propagation. A signal of interest is transmitted
with a single antenna, NT = 1. The signals received by NR antennas are modeled as

r[n] =
L1−1∑
l=0

h1[l]b1[n− l] + j[n], (2.1)

where r[n] is an NR × 1 vector modeling the received samples, the NR × 1 vector



8 Spatiotemporal interference rejection combining

h1[l] models the channel between the transmitter and the receive antennas for
a time delay of l samples, b1[n] is the nth transmitted symbol, and j[n] models
noise and interference on the channel. Oversampling with respect to the symbol
rate can be included by treating the different sampling phases as virtual anten-
nas. Properties of one-dimensional signal constellations such as binary phase-shift
keying (BPSK), or minimum shift keying (MSK) de-rotated, can be exploited in a
similar way, see [35], but this is not pursued herein.

Noise and interference are modeled as the sum of signals received from K − 1
interfering users with single transmit antennas and additive noise,

j[n] =
K∑
k=2

Lk−1∑
l=0

hk[l]bk[n− l] + v[n], (2.2)

where v[n] represents additive white Gaussian noise. The kth interferer transmits
a sequence of symbols, bk[n], and the channel is modeled with Lk symbol spaced
taps denoted hk[l].

A spatiotemporal model for a number of consecutive vector samples is used.
We stack P + 1 consecutive vector samples and define the NR(P + 1) × 1 column

vectors�rP[n],�jP[n], and�vP[n] as

�rP[n] =
[

rT[n] rT[n− 1] · · · rT[n− P]
]T

,

�jP[n] =
[

jT[n] jT[n− 1] · · · jT[n− P]
]T

,

�vP[n] =
[

vT[n] vT[n− 1] · · · vT[n− P]
]T

,

(2.3)

the NR(P + 1)× (L1 + P) matrix HP as

HP =


h1[0] h1[1] · · · h1[L1 − 1]

. . .
. . .

h1[0] h1[1] · · · h1
[
L1 − 1

]
 , (2.4)

and form the (p + 1)× 1 column vector �b1[n; p] as

�b1[n; p] =
[
b1[n] b1[n− 1] · · · b1[n− p]

]T
. (2.5)

Further, let L̂ be the maximum channel length among the interferers,

L̂ = max
2≤k≤K

Lk, (2.6)

and define the NR × (K − 1) matrix G[n] as

G[n] =
[

h2[n] · · · hK [n]
]

, (2.7)
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where hk[l] = 0 for l ≥ Lk. The NR(P + 1) × (K − 1)(L̂ + P) matrix GP is then
formed as

GP =


G[0] G[1] · · · G[L̂− 1]

. . .
. . .

G[0] G[1] · · · G[L̂− 1]

 , (2.8)

and the (p + 1)(K − 1)× 1 column vector�i[n; p] is defined as

�i[n; p] =
[
b2[n] · · · bK [n] b2[n− 1] · · · bK [n− p]

]T
. (2.9)

For model order P, we get from (2.1)

�rP[n] =HP
�b1
[
n;L1 + P − 1

]
+�jP[n], (2.10)

where�jP[n] can be written using (2.2) as

�jP[n] = GP
�i
[
n; L̂ + P − 1

]
+�vP[n]. (2.11)

For P = 0, the spatiotemporal model coincides with a space-only model.

2.2.1. Why spatiotemporal interference rejection?

With an antenna array withNR antennas, it is well known that up toNR−1 narrow-
band interferers may be rejected. If the interfering signals have propagated through
channels with time and angle dispersion, several resolvable paths are incident on
the array from each interferer. Each path requires roughly one spatial degree of
freedom, and if the antenna array is large, spatial interference rejection may be suf-
ficient. However, for a small antenna array, this may not be the case. From (2.10)
and (2.11), the observations may be written as

�rP[n] =HP
�b1
[
n;L1 + P − 1

]
+ GP

�i[n; L̂ + P − 1] +�vP[n]. (2.12)

If the rank of GP is less than NR(P+1), it is possible to form linear combinations of
the spatiotemporal observations which contain no interference. Then, if the chan-
nel HP is not completely in the space spanned by the columns of GP , these linear
combinations will contain a signal part for estimating the desired data. Consid-
ering the random nature of the radio channel, the latter condition appears to be
relatively mild, at least for deployments with low fading correlation. Further, a suf-
ficient condition for GP to have rank less than NR(P + 1) is that GP is a tall matrix,
that is, the number of rows is greater than the number of columns,

NR(P + 1) > (K − 1)
(
L̂ + P

)
. (2.13)
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As long as L̂ is finite and K − 1 < NR, this inequality may be satisfied with P suffi-
ciently large. Thus, we expect large gains for spatiotemporal interference rejection
(P > 0) as compared to space-only interference rejection (P = 0) in interference
limited scenarios when the rank of G0 is NR due to time dispersion and angular
spread of the CCI. Joint space-time processing then requires fewer antennas, or
channels, compared to space-only processing to achieve comparable interference
rejection. Important applications include two-branch spatial or polarization di-
versity, for example, in mobile terminals [13].

Finally, note that the subspace for interference rejection can be determined
from the second-order statistics of the interference only, and that this is done im-
plicitly when the parameters of the VAR model introduced below in Section 2.3 are
calculated. Thus, interference rejection only requires knowledge of second-order
statistics, which in practice requires few assumptions on the interference and is
easier to estimate than the channels and modulation formats of the interfering
transmitters.

2.3. Autoregressive modeling of interference

To reject time dispersive interference with a sequence estimator which handles
both ISI and temporally correlated interference, one may, as mentioned in the
introduction, use Ungerboeck’s formulation in [3, 10, 14]. By considering the un-
derlying structure of the interference in (2.2), it can be seen that in the general
case, the front-end filters to generate statistics for a sequence estimator as well
as the memory of the sequence estimator need to be truncated, see also [18].
Herein, a different truncation approach is taken in the sense that a measurement
model with a suitable structure is assumed. This formulation also reveals how
temporally correlated CCI may be included in Forney’s form of the sequence esti-
mator.

A straightforward way to handle the temporal correlation of the interference
is to use the prediction error filter associated with a Pth-order linear predictor.
The order of the predictor, P, is a design parameter which also controls the ad-
ditional amount of ISI introduced. By choosing the model order high enough,
we also expect the prediction error filter to be able to temporally whiten any sta-
tionary process [36]. Furthermore, for an autoregressive process, the best linear
predictor is of finite order. Thus, the finite-order prediction error filter is the true
whitening filter of some autoregressive process. We also note that methods based
on linear prediction have been developed for blind channel identification from
second-order statistics. Such methods may exploit the simultaneous moving aver-
age and autoregressive nature of the signals in the multichannel case [22, 23, 24].
In fact, with zero thermal noise and finite channel lengths, the CCI in (2.2) may be
modeled with a finite-order autoregressive model. Conditions for this to hold may
be found in, for example, [22, 23]. One condition is that the number of interferers
is strictly less than the number of antennas, K − 1 < NR. Thus, in interference-
limited scenarios, with negligible thermal noise, the use of an autoregressive model
appears to be very suitable indeed.
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It should be stressed that a VAR model for the interference and noise is an
approximation which in general does not agree with the underlying signal model
introduced in (2.2). However, by adjusting the model order, it may perform suf-
ficient whitening and it integrates in a straightforward way with a sequence es-
timator. We therefore formulate the measurement model. The Pth-order linear
predictor of j[n] is modeled as

ĵ[n | n− 1, . . . ,n− P] = −
P∑

p=1

AP
pj[n− p], (2.14)

and the corresponding prediction error is

eP[n] = j[n]− ĵ[n | n− 1, . . . ,n− P] =W
(
AP
)�jP[n], (2.15)

where the prediction error filter W (AP) is defined as

W
(
AP
) = [INR AP

1 AP
2 · · · AP

P

]
. (2.16)

The covariance of the prediction error, denoted QP , may then be written as

QP = E
{

eP[n]e∗P [n]
} =W

(
AP
)
RPW

∗(AP
)
, (2.17)

where

RP = E
{�jP[n]�j∗P [n]

}
, (2.18)

and the expectation is evaluated with respect to the interfering data symbols mod-
eled as independent sequences. If the coefficients of the Pth-order linear predictor
are chosen so that the prediction error is orthogonal to j[n− 1], . . . , j[n− P], then
the expected squared value of any component of eP[n] is minimized according to
the orthogonality principle [36]. The orthogonality principle is used for the pre-
dictor of each of the NR components of eP[n], and in this way, a set of equations is
obtained which may be written as

R j j[l] +
P∑

p=1

AP
pR j j[l − p] =

QP l = 0,

0 1 ≤ l ≤ P,
(2.19)

where

R j j[l] = E
{

j[n]j∗[n− l]
}
. (2.20)

The equations are known as the Yule-Walker equations, and for P > 0, they may
also be written in matrix form as[

INR AP
1 AP

2 · · · AP
P

]
RP =

[
QP 0NR×PNR

]
. (2.21)
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Indeed, the solution minimizes the trace of QP , the sum of the mean squared pre-
diction errors. Furthermore, the modeling assumption made is that the prediction
error of the Pth-order linear predictor is a temporally white, complex Gaussian pro-
cess,

E
{

eP[n]e∗P [n− k]
} =

QP k = 0,

0 k �= 0.
(2.22)

Thus, it is assumed that the interference may be temporally whitened with a Pth-
order linear predictor, and it is further assumed that the prediction errors are
complex Gaussian. The Gaussian assumption is not motivated by the law of large
numbers, but primarily because the solution to the sequence estimation problem
is easily obtained. The choice P = 0 will be referred to as space-only IRC, and
such a modeling assumption has been previously made to derive detectors in, for
example, [4, 7, 8]. We next consider the linear predictor for some special cases.

(i) With spatially and temporally white noise, RP is a diagonal matrix, and
the solution to the Yule-Walker equations is

W
(
AP
) = [INR 0NR×PNR

]
. (2.23)

The solution corresponds in this case to space-only processing with maximum
ratio combining.

(ii) We consider the case with negligible thermal noise, with �vP = 0 in (2.11).
For independent temporally white symbol sequences, the linear predictor is then
determined as the minimum norm solution to

W
(
AP
)
GPG

∗
P =

[
QP 0NR×PNR

]
. (2.24)

Suppose that the received signal is first filtered with the prediction error filter. If
the covariance matrix of the filtered interference, QP , is singular, then the filtered
interference is confined to a subspace and may be rejected by spatial filtering in a
second step. Using the structure of GP in (2.8), it can be shown that the rank of QP

cannot increase with P, see [25] for details. If G0 has rank less than NR, then QP is
singular for all P. Otherwise, we increase P until GPG

∗
P is singular but GP−1G

∗
P−1

is not. Then, as shown in [25],

det
(
GPG

∗
P

) = det
(

QP
)

det
(
GP−1G

∗
P−1

)
, (2.25)

from which we see that QP is low rank. Thus, for complete interference rejection
in the noiseless case, P should be chosen so that GPG

∗
P is singular. Note that as P

is increased, GP will eventually be a tall matrix if L̂ is finite and K − 1 < NR so that
GPG

∗
P is singular. This agrees with the discussion in Section 2.2.1.
(iii) We finally consider the case with high signal to noise ratio (SNR) and

assume that

RP = GPG
∗
P + σ2INR(P+1), (2.26)
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where σ2 is the noise power, and that GPG
∗
P has low rank. In [25], it is argued that

the signal to interference and noise ratio (SINR), after filtering the received signal
with the prediction error filter and whitening it with Q−1/2

P , is proportional to 1/σ2

as σ2 → 0 under mild conditions. Thus, the SINR grows as the noise vanishes.
For the case K − 1 < NR it is possible to reject all CCI given that the VAR

model order P is chosen so that GPG
∗
P is low rank.

2.4. Sequence estimation

Consider the received signal filtered with the prediction error filter for a VAR
model of order P. By combining (2.10) and (2.15) we obtain

z[n] =W
(
AP
)
�rP[n] = FP

�b1
[
n;L1 + P − 1

]
+ eP[n], (2.27)

where the NR × (L1 + P) matrix FP is defined as

FP =W
(
AP
)
HP =

[
f[0] f[1] · · · f

[
L1 + P − 1

]]
, (2.28)

and represents the concatenated response of the prediction error filter and the
channel for the signal of interest. Recall that the prediction errors, eP[n], are mod-
eled as temporally white, spatially colored complex Gaussian samples, (2.22). The
underlying process is in general not a Gaussian VAR process, and the prediction
error filter is therefore an approximate whitening filter. Using the assumed tem-
poral whiteness and neglecting terms that do not depend on the transmitted data,
the maximum likelihood estimate of the data sequence is

{
b̂1[n]

} = arg min
{b1[n]}

∑
n

∥∥Q−1/2
P

(
W
(
AP
)
�rP(n)− FP

�b1
[
n;L1 + P − 1

])∥∥2
2. (2.29)

This form of sequence estimator is referred to as the Forney form after [1], see also
[14]. To find the estimate, the minimization is to be carried out over all possible
transmitted sequences with symbols from a finite alphabet. As is well known, the
Viterbi algorithm with a memory of L1 +P− 1 symbols can be used. With a binary
symbol alphabet, the number of states in the trellis is 2L1+P−1. Thus, the complex-
ity grows exponentially with the model order P corresponding to the amount of
temporal correlation accounted for.

As shown in [10, 11, 14], the sequence estimator may also be implemented
with a matched MISO space-time filter followed by an MLSE operating on a scalar
signal. This form of the sequence estimator is referred to as the Ungerboeck form.
It can be shown, following [14], that the sequence estimate of (2.29) may also be
written as

{
b̂1[n]

} = arg max
{b1[n]}

∑
n

Re
{
b∗1 [n]

(
z[n]− sP�b1

[
n;L1 + P − 1

])}
, (2.30)
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where z[n] is obtained by filtering z[n] with a MISO filter as

z[n] =
L1+P−1∑
l=0

f∗[l]Q−1
P z[n + l]. (2.31)

In turn, z[n] is obtained by filtering the received signal with the prediction error
filter, see (2.27). The statistic for the sequence estimator, z[n], is thus obtained by
filtering the received signal r[n] with a MISO filter. The 1 × (L1 + P) vector sP is
defined as

sP =
[

1
2
s0 s1 · · · sL1+P−1

]
, (2.32)

with

sk =
L1+P−1−k∑

l=0

f∗[l]Q−1
P f[l + k]. (2.33)

The Forney form presented in (2.29) and the Ungerboeck form in (2.30) are equiv-
alent if the full trellis is used. However, when reduced complexity sequence esti-
mators are used, the two forms show different performance, see also [37] and the
two last examples in Section 2.5.

2.4.1. Reduced complexity sequence estimation

Performance may be significantly improved by accounting also for the temporal
correlation of the interference. The cost for this is an exponential increase in com-
plexity of the sequence estimator. Therefore, it is of interest to consider reduced
complexity detectors such as the GVA of [29]. The GVA uses as state, or label, the
last µ ≤ L1 + P − 1 symbols of each survivor sequence. For simplicity, only binary
alphabets are considered. There are then 2µ states in the trellis, and in each state,
S ≥ 1 survivors are retained. The GVA can be described as follows.

(1) At time n− 1 there are S survivors for each of the 2µ labels.
(2) At time n all survivors with the two possible symbols extend to form can-

didates. Calculate in a recursive way the metric for each candidate. These S2µ+1

candidates are classified according to their labels, the last µ symbols, into 2µ lists.
(3) If several candidates in each list have the same last L1 +P−1 symbols, keep

only the candidate with the best metric. This is known as path merge elimination.
(4) From each of the 2µ lists, select the S candidates with the best metric. They

will form the survivors at time n.
For µ = 0, the GVA coincides with the M-algorithm [38], and for µ < L1+P−1,

S = 1, it coincides with the DDFSE in [2]. The full MLSE implemented with the
conventional Viterbi algorithm is obtained with µ = L1 +P− 1, S = 1. If S > 1, the
GVA selects the S candidates with the best metric from a list with 2S candidates.
Thus, since the M-algorithm requires ordering of the survivors, it has a higher
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complexity than the DDFSE. The DDFSE only needs to find the survivor with the
best metric.

We also discuss the choice of metric. For the Forney form in (2.29), the analy-
sis of the single antenna case, NR = 1, of the DDFSE in, for example, [2] shows that
most of the energy must be concentrated in the first taps for best performance. It
is thus desirable that the channel is minimum phase. In a fading environment, the
phase of the channel varies and an alternative is to use the Ungerboeck form in
(2.30) together with the DDFSE as proposed in [28, 37]. The Ungerboeck form is
not dependent on the phase of the channel. On the other hand, it may be limited
by ISI, which can introduce an error floor [37].

2.5. Numerical examples

Simulations were done to illustrate the performance in terms of bit error rate
(BER) of space-only and spatiotemporal IRC. The first examples illustrate how
performance is improved with increasing model order P at the cost of higher com-
plexity when a full MLSE is used. Then, some further examples show that similar
gains can be obtained using reduced complexity sequence estimators. Thus, noise
sensitivity can be traded for interference rejecting capability by increasing P while
keeping the complexity roughly the same. Herein, the cost for calculating the met-
ric is neglected and the number of retained survivors in the trellis is used as a
measure of complexity.

Data was transmitted in bursts of 200 bits. The channel was stationary during
each burst but generated independently from burst to burst. The fading of the an-
tennas was uncorrelated and the channels between a transmitter and each receive
antenna had the same power delay profile with a number of symbol spaced rays
with the same average strength. Temporally and spatially white Gaussian noise was
added.

First, two receive antennas were used and a single cochannel interferer was
present. The SNR per antenna was 10 dB and the channels were modeled with two
rays, L1 = L2 = 2. The BER as a function of signal to interference ratio (SIR) per
antenna is shown in Figure 2.1 using a full MLSE. There are not enough degrees of
freedom to reject the time-dispersive interferer with space-only processing, P = 0.
By increasing P, the interference may be effectively suppressed.

Recall that as the noise vanishes, the SINR after the prediction error filter
grows linearly with the inverse noise power given that K − 1 < NR and that P is
sufficiently large. To illustrate this, a case with two antennas and one interferer
with the same SNR as the signal of interest is considered. The average BER as a
function of SNR is displayed in Figure 2.2. For P = 0, the interference spans the
entire space, and as the noise vanishes, performance is limited by CCI. For P > 0,
the BER decreases as the noise vanishes. Performance without CCI is also included.

The two previous examples demonstrated the advantage of spatiotemporal
processing over space-only processing since G0 spans the whole space whereas the
columns of G1 only span a subspace. Performance also depends on the structure
of the disturbance, and in the next example the number of interferers was varied.
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Figure 2.1. Two antennas and one interferer. Two uncorrelated taps of equal average power. The SNR
is 10 dB. Full MLSE.

P = 0, SIR 0 dB
P = 1, SIR 0 dB
P = 2, SIR 0 dB

P = 3, SIR 0 dB
P = 0, no CCI

−5 0 5 10 15 20

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E

R

Figure 2.2. Two antennas, one interferer, and channels with two taps of equal power. The SIR is 0 dB.
The performance with no interferer is also included. Full MLSE.

All channels were modeled with two taps, and the results are plotted in Figure 2.3
for P = 0, 3 and K = 1, 2, 3. The SNR was 20 dB for the cases with CCI. With no
CCI, the SINR is equal to the SNR, and, as can be seen, spatiotemporal processing
is equivalent with space-only processing. For one interferer, the interference con-
tribution is confined to a subspace for P large enough. For two interferers of equal
power, there is still gain with spatiotemporal processing, but since the interference



D. Astély and B. Ottersten 17

P = 0, no interferer
P = 3, no interferer
P = 0, one interferer

P = 3, one interferer
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Figure 2.3. Two antennas, different number of interferers, and two tap channels. For the cases with
interferers, the SNR is 20 dB and the SIR is varied. For the case with no interference, the SINR equals
the SNR, which is varied. Full MLSE.

is not confined to a subspace no matter how large P is made, the gain is smaller
than for the case with one interferer.

We now consider an example with reduced complexity sequence estimators.
The signal of interest had three taps, L1 = 3, and the two interferers had L2 = 2
and L3 = 3 taps. Four antennas were used and in Figure 2.4, the performance
for different P is shown. The SIR was −10 dB and the SNR was 9 dB at each an-
tenna. The complexity was constrained so that the sequence estimators retained
four survivors except for the full MLSE with complexity increasing with P. From
Figure 2.4, we see that by retaining fewer paths in the sequence estimator, spa-
tiotemporal processing may be used to reject interference without an exponential
increase in complexity. For the Forney form, it can be seen that the M-algorithm,
µ = 0, is preferable.

Another example with two antennas and one interferer was considered. The
channels for both the signal of interest and the interferer were modeled with L1 =
L2 = 2 taps. The SIR was 0 dB and the results are plotted as a function of SNR in
Figure 2.5. As can be seen, the performance of the M-algorithm with the Unger-
boeck metric degrades at high SNR. An explanation for this may be found in [37];
the accumulated metric will not account for anticausal ISI if the trellis is reduced.
This means that ISI may limit the performance, see [37], for a remedy.

2.6. Interference rejection combining for GSM

The increasing speech and data traffic in today’s GSM networks motivates the
study of techniques such as IRC. The study in [39] demonstrates that the system
capacity can be increased by about 50% in a tightly planned GSM network by using
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Forney, DDFSE (µ = 2, S = 1)
Ungerboeck, DDFSE (µ = 2, S = 1)
Forney, M-algorithm (µ = 0, S = 4)

Ungerboeck, M-algorithm (µ = 0, S = 4)
MLSE (µ = 2 + P, S = 1)
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Figure 2.4. Four antennas, two interferers, and all algorithms retain four survivors except for the
MLSE, which uses 22+P survivors. The SNR is 9 dB, the SIR is −10 dB.

P = 0, MLSE (µ = 1, S = 1)
P = 4, forney, DDFSE (µ = 1, S = 1)
P = 4, ungerboeck, DDFSE (µ = 1, S = 1)

P = 4, forney, M-algorithm (µ = 0, S = 2)
P = 4, ungerboeck, M-algorithm (µ = 0, S = 2)
P = 4, MLSE (µ = 5, S = 1)
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Figure 2.5. Two antennas and one interferer. All algorithms retain two survivors except for the P = 4
MLSE, which retains 32 survivors. The SIR is 0 dB.

a simple form of space-only IRC at the base stations. The gain depends to a large
extent on the uplink-downlink balance of the system. If the balance is neglected
and only the uplink is considered, the results indicate that the uplink capacity may
be increased by up to 150%. Downlink improvements by means of IRC have also
received much interest lately [40]. In fact, as outlined in [17, 40], IRC can be em-
ployed even with a single receive antenna.
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For the actual implementation of spatiotemporal IRC, several aspects have to
be considered. Functionality is of course required to cope with imperfections en-
countered in the down conversion to digital baseband such as DC and frequency
offsets. Algorithms developed for white interference and noise may need to be
revisited, as is done for burst synchronization in [41]. When it comes to estimat-
ing the parameters required by the sequence detector, we note that there are several
challenges. Although the channel may perhaps be regarded as time-invariant dur-
ing the burst, significant changes in the interference may occur during the trans-
mission of a burst if the network is not burst synchronized. On the other hand, if
the network is synchronized, the correlation between training sequences used in
different cells may require some care, for example, planning as well as joint detec-
tion and estimation of the channels of the interferers.

The number of parameters to estimate grows with the chosen model order
P, see also [25, 26], and estimation errors may degrade performance significantly.
Iterating between parameter estimation and data detection may be an alternative.
The simulation study in [42] shows that performance may be significantly im-
proved in this way, and that performance of a linear receiver may be better than
an MLSE structure, especially in the presence of estimation errors and time vari-
ations. Another possibility is to adapt the model order to the instantaneous inter-
ference scenario. Ungerboeck’s formulation could be considered as a starting point
since it can be trained in a different way, see also [3, 8, 14]. Another approach is
to utilize the structure of the interference. This is done in [43] to improve the esti-
mates of the parameters of the VAR model and in [44] to construct a zero-forcing
front-end filter.

2.6.1. Experimental results

Data collected with a testbed for the air interface of a DCS 1800 base station was
processed. A dual polarized sector antenna was mounted on the roof of a building
40 meters above ground, and the environment was suburban with 2–6 floor build-
ings. One mobile transmitter and one interferer were present on the air simulta-
neously. The angular separation between the two transmitters was small and never
exceeded ten degrees. The average distance to the mobile transmitter of interest
was about one kilometer, and the distance to the interferer was about 500 meters.
The SNR was high, both transmitters traveled at speeds 0–50 km/h and there was
typically no line-of-sight between the transmitters and the receiving dual polarized
antenna.

Results from processing 20000 data bursts are shown in Figure 2.6. Both trans-
mitters were synchronized so that the bursts overlapped completely. The 26 bit
long training sequence was used to estimate the parameters required for the se-
quence detector. An unstructured approach was taken in the sense that FP and
W (AP) were estimated from a least squares fit and the covariance matrix of the
residuals was used as an estimate of QP , see also [26]. Burst synchronization was
done as described in [41].
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Figure 2.6. Experimental data, dual polarized sector antenna, NR = 2, and one interferer.

As can be seen from Figure 2.6, a gain of 3–5 dB was observed at BER between
1% and 10% for spatiotemporal IRC as compared to space-only IRC. The time dis-
persion was probably small, and this may explain the modest gains, as compared
to the very large gains demonstrated in the simulations when spatiotemporal in-
terference rejection was compared to space-only interference rejection.

2.7. Interference rejection combining for WCDMA

Third-generation systems based on wideband code division multiple access
(WCDMA) are currently being deployed around the world [45]. System perfor-
mance in terms of coverage and capacity is affected by interference, and it is there-
fore of interest to consider advanced receiver algorithms that offer interference
rejection. In addition to multiple access interference from other users operating
on the same frequency band, there can be other terms of interference, referred
to herein as external interference (EI). Examples of EI include ACI from adjacent
carriers including the TDD mode and other communication systems as well as
interference from narrowband communication systems operating in the same fre-
quency band or causing intermodulation products. EI may in principle affect the
coverage and capacity already at low loads, and it can therefore be of interest to
consider interference rejection already at an early stage of system deployment.

Sequence estimators are typically used in GSM/EDGE to handle ISI, and the
use of a VAR model as described in the previous sections represents a possible
way to evolve such a receiver structure to include spatiotemporal IRC. The FDD
mode of WCDMA is based on DS-CDMA with long aperiodic spreading codes
and commonly RAKE receivers are used to handle time dispersive radio channels.
The basic receiver structure thus differs from GSM/EDGE, and the approach taken
herein to spatiotemporal IRC for WCDMA is therefore different as well. Common
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for the two cases is that both spatial and temporal correlations of the interference
are exploited in a conventional receiver structure. The present section is thus a
complement to the previous sections outlining a possible approach for WCDMA.

Commonly, a RAKE receiver with a limited number of fingers is used in
WCDMA. A delay is associated with each finger, and the receiver will for each
finger despread the received signal by correlating it with the spreading waveform
appropriately delayed [30, 31, 32, 45]. We assume that F delay estimates are used
and that the signals received by all antennas are despread for each finger. The NR

despread samples associated with finger f for symbol n may then be modeled as

z f [n] = h f b[n] + j f [n], (2.34)

where h f represents the channels of finger f , b[n] models the transmitted symbol,
and j f [n] is despread interference and noise. We define the NRF × 1 vectors�z[n],
�h, and�j[n], as

�z[n] =
[

zT1 [n] zT2 [n] · · · zTF [n]
]T

,

�h =
[

hT
1 hT

2 · · · hT
F

]T
,

�j[n] =
[

jT1 [n] jT2 [n] · · · jTF [n]
]T

,

(2.35)

and define the covariance matrix of the despread noise and interference Q as

Q = E
{
�z[n]�z∗[n]

}
. (2.36)

The expectation is evaluated with respect to the interfering data symbols and
scrambling codes which are modeled as sequences of independent QPSK symbols.
Further details on this data model, including expressions for the covariance ma-
trix and the resulting channel, may be found in [31] for the downlink with a single
antenna and for the uplink with multiple antennas in [30, 32]. The RAKE receiver
forms a decision variable as

b̂[n] = �w∗�z[n], (2.37)

from which the transmitted symbol and bits may be detected. The conventional
RAKE receiver assumes that the despread noise and interference of different fingers
is uncorrelated. Combining weights can then be expressed as

�w = (Q� INRF
)−1�h, (2.38)
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where � denotes the element-by-element matrix product. Further, a space-only
IRC RAKE, as described in, for example, [30, 45], assumes that the covariance
matrix is block diagonal. Only the spatial correlation of noise and interference is
then handled. However, narrowband interference and interfering wideband sig-
nals that have propagated through multipath channels cause temporal correlation
in the sense that the despread interference and noise of fingers with different de-
lays is correlated. A RAKE receiver with spatiotemporal IRC will determine the
combining weights as

�wIRC = Q−1�h. (2.39)

As demonstrated in [30], large gains as compared to space-only interference re-
jection and conventional RAKE combining may be obtained for rejection of EI in
the uplink, especially for cases with wideband EI when there are not enough spa-
tial degrees of freedom. In this case, a similar behavior to that in Figure 2.1 can
be observed. In the downlink, the orthogonality between the spreading codes of
different channels is destroyed and the despread interference of different channels
fingers is correlated in time dispersive multipath channels. Significant gains may
then be obtained with a single-antenna generalized RAKE receiver as shown in
[31]. Another interesting observation is that in the case of temporally correlated
interference, it is advantageous to use more fingers than there are resolvable rays
in the channel.

2.8. Concluding remarks

Spatiotemporal interference rejection combining for burst oriented systems such
as GSM was considered, and an autoregressive model was introduced to capture
both the spatial and temporal correlation of the interference. We saw that complete
interference rejection is possible if the number of interferers is less than the num-
ber of antennas and the model order is chosen so that the interference is confined
to a subspace in the spatiotemporal model formulated. The interference model was
then incorporated into a maximum likelihood sequence estimator and two metrics
were presented. Numerical examples demonstrated significant performance gains
compared to space-only processing in interference-limited scenarios at the cost of
an exponential increase in complexity of the sequence estimator. Therefore, re-
duced complexity sequence estimators were introduced, and numerical examples
illustrated that noise sensitivity can be traded for improved interference rejection
capabilities. Thus, spatiotemporal interference rejection can be performed with
roughly the same order of complexity as space-only interference rejection. For
GSM, we also showed some experimental results and discussed implementation
aspects, such as estimation of the parameters for the detector, see also [42, 44].

Finally, we also outlined interference rejection combining for WCDMA. In
this case, the conventional RAKE receiver may be generalized to account for spa-
tially and temporally correlated interference.
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Abbreviations

BER Bit error rate

BPSK Binary phase-shift keying

CDMA Code division multiple access

DCS Digital cellular system

DDFSE Delayed decision-feedback sequence estimator

DS-CDMA Direct-sequence code division multiple access

EDGE Enhanced data for global evolution

FDD Frequency division duplex

GSM Global system for mobile communications

GVA Generalized Viterbi algorithm

IRC Interference rejection combining

ISI Intersymbol interference

MIMO Multi-input multi-output

MISO Multiple-input single-output

MSK Minimum shift keying

QPSK Quadrature phase-shift keying

SIR Signal-to-interference ratio

SNR Signal-to-interference and noise ratio

TDMA Time division multiple access

VAR Vector autoregressive

WCDMA Wideband code-division multiple access
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3
Subspace methods for space-time
processing

M. Nicoli and U. Spagnolini

In wireless communication systems, where the space-time propagation channel is
time-varying, block-by-block transmission is adopted and training symbols are
inserted in each block to allow the estimation of the changing channel. The accu-
racy of the training-based estimate, usually performed on a block-by-block basis,
is known to depend on the ratio between the number of channel unknowns and
the number of pilot symbols within the block. As the reliability of channel state
information is critical in space-time receivers, methods have been widely investi-
gated in the last years to improve the channel estimate accuracy, such as paramet-
ric approaches to reduce the number of relevant channel parameters or decision-
based iterative techniques to extend the training set with hard- or soft-valued data
symbols. In the sequel we propose subspace-based methods that exploit both ap-
proaches and are designed for the estimation of a single-input multiple-output
(SIMO) channel between a single-antenna mobile transmitter and a multiple-
antenna receiver.

Two different approaches can be identified in the literature for parametric
estimation of the multipath channel: structured methods for angle and delay es-
timation [1, 2, 3] and unstructured reduced-rank (RR) techniques [4, 5, 6, 7, 8].
Here we focus on the RR approach as it is the preferred one in terms of computa-
tional complexity and stability. RR methods parameterize the space-time channel
in terms of unstructured low-rank matrices whose column space equals the sub-
space spanned by the spatial and/or temporal signatures of the multipath compo-
nents of the channel. These subspaces, here referred to as the spatial and temporal
subspaces, can be related either to instantaneous-fading parameters of the channel
(short-term subspaces) or to slowly-varying features only (long-term subspaces).
In the first case the channel estimate is derived by single-block processing (SB, sub-
space methods [4, 8]), while the second case multiblock observations are required
(MB, subspace methods [9]).

The MB approach is based on the recognition that in mobile wireless systems
the multipath channel is characterized by fast-varying features, such as fading am-
plitudes (that change from block to block), and slowly-varying parameters, such
as second-order statistics of fading, delays, and angles (that can be considered as
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constant over a large number of blocks). In subspace methods the quasistation-
arity of the above-mentioned parameters is converted into the invariance of the
corresponding spatial-temporal channel subspaces. The latter are estimated from
multiple blocks, while the fast-varying parameters are obtained on a block-by-
block basis. As the accuracy of the estimate of the subspaces increases with the
number of blocks, the parameters that affect the variance of the overall channel
estimate reduces asymptotically to the fast-varying features only. This leads to a
significant reduction of the number of parameters which is particularly relevant
in radio environments where the angle-delay spread is small compared to the sys-
tem resolution.

Further improvements of the estimate accuracy are obtained by extending the
training set with hard- or soft-valued data symbols. This is feasible in iterative
receivers where information symbols detected in previous iterations can be fed
back to the channel estimator and used as additional known data. It is well known
how soft decisions can be more effective than the hard ones, as soft information
allows to account for the reliability of the estimate and thus to avoid the error
propagation effects that usually arise in decision feedback. Focusing therefore on
soft-iterative receivers [10] where a priori information on the information-bearing
symbols are available at the channel estimator, we propose a new version of the
MB subspace method that exploits both training and soft-valued data symbols.
For perfect a priori information (i.e., at convergence of the iterative approach),
the accuracy of the estimate is the same that would be obtained from an entire
block of training symbols.

In closing this introduction, we remark that all the SB and MB subspace meth-
ods proposed in this section (either training- or decision-based) are sufficiently
general to be adopted in any block-based transmission system (such as TDMA,
CDMA, OFDM, or hybrid TD-CDMA, multicarrier CDMA, etc.), with single or
multiple antennas at the transmitter and receiver (e.g., SISO, SIMO, or MIMO).
The presentation here is carried out at first for the uplink of a TDMA SIMO sys-
tem, as this is the most intuitive case. An application to time-slotted CDMA sys-
tems, such as the third-generation TD-SCDMA mobile standards [11, 12], is pro-
posed in the final part of the section. The extension to OFDM systems can be
found in [13].

3.1. System description and problem formulation

3.1.1. Signal model

We consider a block-based transmission system where a mobile terminal trans-
mits data blocks by a single-antenna transmitter to a multiple-antenna receiver
through a frequency-selective fading channel. As routinely employed, each block
includes a known training sequence to be used for channel estimation purposes
(Figure 3.1).

A discrete-time baseband model for the signals received within each block is
derived by sampling at the symbol rate 1/T the output of a matched filter at each
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Block 1 Block 2 · · · Block � · · · Block L− 1 Block L

Training sequence Data symbols

W − 1 Zt Zs

Figure 3.1. Block-by-block transmission system.

of the N receiving antennas. The N × 1 resulting signal is

r(i; �) = H(�)s(i; �) + v(i; �), (3.1)

where s(i; �)= [s(i; �) s(i− 1; �) · · · s(i−W + 1; �)]T collectsW transmitted
symbols, s(i; �) denotes the ith (either training or information) complex-valued
symbol within the �th block, chosen from a finite alphabet set. As illustrated in
Figure 3.1, the sequence transmitted within the block contains Zt + W − 1 known
training symbols (for i = −W + 1, . . . ,Zt − 1) and Zs data symbols (for i =
Zt, . . . ,Zs + Zt − 1). The N × 1 additive noise vector v(i; �) ∼ NC(0, Q) is assumed
to be temporally uncorrelated but spatially correlated (to account for cochannel
interference) with correlation function

E
[

v(i; �)vH(i− k; � −m)
] = δ(k)δ(m)Q, (3.2)

where Q denotes the unknown spatial-covariance matrix. The latter is positive
definite, its diagonal entries [Q]n,n = σ2

v for n = 1, . . . ,N represent the noise power
at each antenna element.

The N ×W space-time matrix H(�) describes the discrete-time channel im-
pulse response for the SIMO link. It accounts for the array response, the effects of
path fading, the symbol waveform used for transmission, and the matched filter at
the receiver. Though H(�) is generally time-varying, in many practical situations
its variations within the block interval can be neglected as the block duration is
selected shorter than the channel coherence time. Therefore, we can reasonably
approximate H(�) as invariant within the block but varying from block to block
(block-fading channel).

This section is focused on the following topics: estimation of the channels
{H(�)}L�=1 and the noise covariance matrix Q from the training signals received
in L different blocks, by exploiting the knowledge of the transmitted symbols
{s(i; �)}; detection of the information-bearing symbols {s(i; �)} contained in the
data fields of each block, by using the estimate of the channel responses. Chan-
nel estimation is performed by exploiting structural properties of the multipath
propagation that are described below.
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3.1.2. Algebraic structure of the channel

According to the multipath model for propagation, H(�) is modelled as the super-
position of P paths, the ith path being characterized by direction of arrival ϑi, delay
τi, and complex-valued amplitude αi(�). As discussed in [9], in practical systems
the variations of angles and delays stay below the receiver angular-temporal resolu-
tion for several blocks, thus the pair {ϑi, τi} can be reasonably assumed as constant
for L � 1 blocks (the value of L depends on the terminal speed and multipath
geometry). On the other hand, the fading amplitude αi(�) is fast varying and it
randomly changes from block to block due to the terminal mobility. According to
these assumptions the channel matrix can be written as

H(�) =
P∑

p=1

αp(�)a
(
ϑp
)

gT(τp) = AD(�)GT, (3.3)

where the W × 1 real-valued vector

g
(
τp
) = [g(− τp

)
g
(
T − τp

) · · · g
(
(W − 1)T − τp

)]T
(3.4)

contains samples of the delayed waveform g(τ), that represents the convolution
between the transmitter and receiver filters. The complex-valued vector a(ϑp) =
[a1(ϑp) · · · aN (ϑp)]T denotes the N × 1 array response to a plane-wave im-
pinging from the direction ϑp. For instance, for a uniform linear array of half-
wavelength-spaced omnidirectional antennas, the entries of a(ϑp) are an(ϑp) =
exp(− jπ(n − 1) sin ϑp) [14]. By collecting the set of P temporal/spatial vectors
into the temporal/spatial matrices

G =
[

g
(
τ1
) · · · g

(
τP
)]

,

A =
[

a
(
ϑ1
) · · · a

(
ϑP
)]

,
(3.5)

the multipath formulation for the space-time channel matrix simplifies as indi-
cated in the third member of (3.3), where D(�) = diag[α1(�), . . . ,αP(�)] embodies
the fading amplitudes. The latter are assumed to follow the WSSUS [15] model
and to be uncorrelated from block to block:

Cα(m) = E
[

D(� + m)DH(�)
] = δ(m) diag

[
σ2

1 , . . . , σ2
P

]
(3.6)

(see [9] for the generalization to correlated fading).
In order to avoid the computationally expensive estimation of the angle-delay

pairs, in the following we reparameterize the channel (3.3) in terms of unstruc-
tured block-fading or stationary matrices. Let the spatial (qS) and the temporal
(qT) diversity orders be defined as, respectively,

qS = rank[A] ≤ N , (3.7a)

qT = rank[G] ≤ W. (3.7b)
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As a rule of thumb, the first rank order accounts for the number of angles that
can be resolved in ϑ = [ϑ1, . . . , ϑP] (given the array aperture), while the second
one equals the number of the resolvable delays in τ = [τ1, . . . , τP] (given the band-
width of the transmitted signal). Though the number of paths can be very large, in
many practical situations the diversity orders depend only on few groups of lead-
ing scatterers with moderate angle-delay spread so that it is qS < N and/or qT < W .
Under these reduced-rank constraints, the multipath channel matrix (3.3) can be
rewritten as the combination of three full-rank matrices: the spatial and tempo-
ral stationary components US (N × qS) and UT (W × qT), and the block-fading
component Γ(�) (qS × qT). The new channel model is

H(�) = USΓ(�)UH
T . (3.8)

Differently from A and G in (3.3), here US and UT are unstructured matrices,
whose column space equals the subspace spanned by the stationary spatial and
temporal responses of the multipath channel, namely the long-term spatial sub-
space R[US] = R[A] and the long-term temporal subspace R[UT] = R[G] for the
channel matrix H(�).

An example of the parameterization (3.8) can be easily obtained from the
model (3.3) by considering the singular value decompositions A = USΣSVH

S , G =
UTΣTVH

T , and by further defining Γ(�) = ΣSVH
S D(�)VTΣ

H
T . In this case, US and UT

are orthonormal bases for the spatial and the temporal subspaces, respectively.

3.2. Training-based subspace methods for channel estimation

The discrete-time model (3.1) for the signals received during the training period
of the �th block is rewritten into the standard form

Rt(�) = H(�)St + Vt(�), (3.9)

by gathering the received signals into the N × Zt matrix

Rt(�) =
[

r(0; �) · · · r
(
Zt − 1; �

)]
(3.10)

(the first W − 1 samples are discarded as affected by the interference from the pre-
ceding data symbols). TheW×Zt Toeplitz matrix St = [s(0; �) · · · s(Zt − 1; �)]

represents the convolution of the channel with the training sequence {s(i; �)}Zt−1
i=−W+1

that is assumed to be the same for all blocks. The N × Zt matrix

Vt(�) =
[

v(0; �) · · · v
(
Zt − 1; �

)]
(3.11)

collects the noise samples. We further assume that Zt > N + W .
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3.2.1. Subspace-based estimation

The problem addressed herein is the maximum likelihood estimation (MLE) of
the channel matrices {H(�)}L�=1 from the received signals {Rt(�)}L�=1, under the
constraint (3.8), for known rank orders {qS, qT} and unknown noise spatial co-
variance Q.

For qS = N and qT = W , the MLE reduces to the unconstrained or full-rank
(FR) MLE estimate [16]

Hu(�) = Rt(�)SH
t C−1

t , � = 1, . . . ,L, (3.12)

where Ct = StSH
t is the (positive definite) correlation matrix of the training se-

quence. The estimate (3.12) is unbiased with covariance matrix [16]

Cu = Cov
[

hu(�)
] = (C−1

t

)∗ ⊗ Q, (3.13)

where hu(�) = vec[Hu(�)] is the vectorized channel estimate.
For any qS ≤ N and qT ≤ W , it can be shown [17, 18] that the MLE equals

asymptotically (for Zt → ∞) the minimizer of

F =
L∑

�=1

tr
[

Q−1
u,L

(
Hu(�) − USΓ(�)UH

T

)
Ct
(

Hu(�) − USΓ(�)UH
T

)H
]

, (3.14)

where Qu,L is the unconstrained estimate (assumed to be positive definite) for the
noise covariance matrix

Qu,L = 1
ZtL

L∑
�=1

(
Rt(�) − Hu(�)St

)(
Rt(�) − Hu(�)St

)H
. (3.15)

It follows that loss function (3.14) coincides [19], apart from unimportant con-
stant terms, with the negative log-likelihood function for the model

Hu(�) = USΓ(�)UH
T + ∆Hu(�), � = 1, . . . ,L, (3.16)

where the zero-mean Gaussian noise ∆Hu(�) is now spatially and temporally corre-
lated, with spatial covariance Q = Qu,∞ and temporal covariance C−1

t (see (3.13)).
As a consequence, the constrained MLE can be seen as a parametric reestimate
from the preliminary noisy estimates {Hu(�)}L�=1 under the parameterization (3.8).

In the sequel, the minimization of loss function (3.14) with respect to channel
parameters (3.8) is performed at first for L = 1 and then for L > 1. For single-block
(SB) processing the constrained MLE coincides with the well-known reduced-rank
(RR) estimate [4], while for multiblock (MB) processing the solution is the MB
space-time (MB-ST) estimate [9].

In both cases, the reestimate is obtained from the preliminary estimates
{Hu(�)}L�=1 through the following operations: (i) weighting of the unconstrained
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channel estimate by the spatial and temporal factors, WS,L = Q−H/2
u,L and WT =

C1/2
t , to get

H̃u(�) = WS,LHu(�)WH
T ; (3.17)

(ii) estimation of the long-short term spatial-temporal channel subspaces from
{H̃u(�)}L�=1 and projection of each channel matrix H̃u(�) onto the estimated sub-
spaces; (iii) inverse weighting of the projected channel matrix to get the final esti-
mate.

It is understood that the weighting operation is simply an asymptotic whiten-
ing of the preliminary estimate error ∆hu(�) = vec[∆Hu(�)]. For Zt → ∞, it is
indeed WS,L → Q−H/2 and the weighted estimate error

∆h̃u(�) = vec
[

WS,L∆Hu(�)WH
T

] = (W∗
T ⊗ WS,L

)
∆hu(�) �→ C−H/2

u ∆hu(�) (3.18)

has covariance Cov[∆h̃u(�)] → INW .

Single-block (SB) approach. For SB processing (L = 1) parameterization (3.8) is
equivalent to the RR constraint:

q = rank
[

H(�)
] = min

(
qS, qT

) ≤ min(N ,W). (3.19)

The constrained MLE equals in this case the block-by-block RR estimate [4] that
can be expressed by any of the following equivalent formulations [8, 20]

ĤSB(�) = W−1
S,1Π̂S(�)H̃u(�)W−H

T = W−1
S,1H̃u(�)Π̂T(�)W−H

T , (3.20)

where Π̂S(�) and Π̂T(�) are the projectors onto the (short term) subspaces spanned
by the q leading eigenvectors of, respectively, the spatial and temporal SB sample
correlations:

ĈS,1 = H̃u(�)H̃H
u (�), (3.21a)

ĈT,1 = H̃H
u (�)H̃u(�). (3.21b)

Efficient implementations of estimate (3.20) can be found in [20]. Extensions
of the RR approach to both spatially and temporally correlated noise are proposed
in [21].

Multiblock (MB) approach. The MB estimate is an extension of the RR algorithm
to MB processing (L > 1). With respect to the block-by-block estimation, the MB
approach allows the estimation of both the spatial and temporal subspaces by dif-
ferentiating between the spatial (qS) and temporal (qT) rank orders.

The MB space-time (MB-ST) MLE is obtained by minimizing loss function
(3.14) with respect to the block-independent parameters {US, UT} and the block-
dependent terms {Γ(�)}L�=1. The solution is [9]

ĤMB(�) = W−1
S,LΠ̂SH̃u(�)Π̂TW−1

T for � = 1, 2, . . . ,L, (3.22)



34 Subspace methods for space-time processing

where Π̂S and Π̂T represent the projectors onto the (long term) subspaces spanned
by, respectively, the qS principal eigenvectors of the spatial sample correlation ĈS,L

and the qT principal eigenvectors of the temporal sample correlation ĈT,L:

ĈS,L = 1
L

L∑
�=1

H̃u(�)H̃H
u (�), (3.23a)

ĈT,L = 1
L

L∑
�=1

H̃H
u (�)H̃u(�). (3.23b)

In dense multipath radio environments where the temporal order rises to
qT � W , it is convenient to neglect the temporal projection and set Π̂T = IW
in (3.22). The resulting channel estimate exploits the stationarity of the spatial
subspace only and it is referred to as MB-spatial (MB-S) estimator (see also [22]).
Dually, for a large angular spread and/or a small number of antennas (qS � N),
it might be advisable not to use the spatial projection and set Π̂S = IN in (3.22).
This leads to the MB-temporal (MB-T) estimator that exploits the stationarity of
the temporal subspace only.

It can be easily seen that for L = 1, MB-ST estimate (3.22) coincides with RR
or SB estimate (3.20). On the other hand, for L → ∞ (but still stationary channel
structural properties), it is WS,∞ = Q−H/2 and the estimates {Π̂S, Π̂T} tend to the
projectors {ΠS,ΠT} onto the subspaces of the weighted channel matrix

H̃(�) = WS,∞H(�)WH
T = ÃD(�)G̃T, (3.24)

where Ã = WS,∞A and G̃ = WTG are the spatial-temporal components of H̃(�).
Namely, Π̂S tends to the projector ΠS onto the spatial subspace R[Ã] and Π̂T

tends to the projector ΠT onto the temporal subspace R[G̃]. This can be proved by
simply evaluating the sample correlation matrices (3.23a)–(3.23b) for L → ∞ [9]:

ĈS,∞ = E
[

H̃u(�)H̃H
u (�)

] = CS + WIN , (3.25a)

ĈT,∞ = E
[

H̃H
u (�)H̃u(�)

] = CT + NIW. (3.25b)

Here the spatial (CS) and temporal (CT) correlations for the true-weighted channel
matrix H̃(�) are defined as

CS = E
[

H̃(�)H̃H(�)
] = ÃΛSÃH, (3.26a)

CT = E
[

H̃H(�)H̃(�)
] = G̃ΛTG̃T. (3.26b)

ΛS = G̃TG̃	Cα(0) andΛT = ÃHÃ	Cα(0) are diagonal matrices, and 	 denotes the
element-wise product. From (3.25a) and (3.26a), it is easy to see that the subspace
spanned by the qS leading eigenvectors of the matrix ĈS,L equals asymptotically the
spatial subspace R[CS] = R[Ã]. Dually, the subspace spanned by the qT leading
eigenvectors of the matrix ĈT,L coincides, for L → ∞, with the temporal subspace
R[CT] = R[G̃].
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Remarks. In real systems the rank orders (q, or both qS and qT) have to be esti-
mated from the received signals. As discussed in [23], the order that minimizes the
mean square error (MSE) of the estimate is a trade-off between distortion (due to
under-parameterization) and noise (due to over-parameterization). Methods for
optimal trade-off selection are proposed in [24] (for uncorrelated noise) and in [8]
(for spatially correlated noise) by using the minimum description length (MDL)
criterion [25].

An adaptive implementation of the MB methods, that allows to cancel the la-
tency in providing the channel estimate and alleviate the computational burden,
can be obtained through subspace tracking techniques [26]. The estimate of the
spatial and temporal subspaces is updated on a block-by-block basis, allowing an-
gles and delays to vary continuously (but still slowly) over the blocks [9]. In case
of severe fading (i.e., for large-block duration and/or high velocity of the mobile
user), a tracking of the fast-varying channel parameters is needed as well within
each block interval [27].

Example 3.1. The advantage of the subspace methods with respect to the uncon-
strained one is illustrated by an example in Figures 3.2 and 3.3. The noise is spa-
tially white (Q = σ2

v IN ) and the training sequence is uncorrelated (Ct = σ2
s ZtIW ),

so that the weighting terms can be neglected (as H̃u(�) ∝ Hu(�)). The multipath
propagation is composed of P = 5 paths having Cα(0) = diag[0.33, 0.25, 0.19, 0.14,
0.083]. The path pattern is described in Figure 3.2a. Figures 3.2b and 3.2c show the
power-delay-angle (PDA) diagram for the channel in the first block and the un-
constrained estimate evaluated in six different blocks. As illustrated by PDA plots,
the simulated angle-delay pattern is invariant over the blocks, while the fading
amplitudes change from block to block.

The subspace-based channel estimates are shown in Figure 3.3. Since α1 = α2,
α3 = α4, and τ4 = τ5, the spatial and temporal diversity orders are, respectively,
qS = q = 3 and qT = 4. The SB and MB (for L → ∞) estimates are calculated by
using as rank orders q̂S = q̂ = 1 ÷ 3, q̂T = 1 ÷ 4. Figure 3.3 compares the PDA
diagrams of all channel estimates for � = 1 and illustrates how the projection onto
the short-long term spatial-temporal channel subspace reduces the estimate error
with respect to the preliminary unconstrained estimate. The comparison shows
that the most accurate estimate is obtained by double projection (both spatial and
temporal) onto the long-term subspaces. This is proved analytically in the follow-
ing.

3.2.2. Performance analysis and comparison

In the following we evaluate and compare the performance for the SB and MB
subspace-based estimates with the unconstrained one under the following con-
ditions: known q, Zt → ∞ and L = 1 for the SB estimate; known {qS, qT} and
{Zt,L} → ∞ for the MB estimate (performance for any L is in [8]). Notice that for
Zt → ∞ it is Qu,L = Q, as for known noise covariance matrix.
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Figure 3.2. Example of block-by-block unconstrained estimation for a block-faded channel with sta-
tionary angle-delay pattern: (a) multipath model with P = 5 paths, qS = q = 3 and qT = 4; (b) power-
delay-angle diagram for the channel in the first block; and (c) power-delay-angle diagram for the un-
constrained estimate in six different blocks.

Let Hc(�) be any of the SB or MB constrained estimates, it can be shown [8, 9]
that the relationship between the constrained ∆hc(�) = vec[Hc(�)−H(�)] and the
unconstrained ∆hu(�) = vec[Hu(�) − H(�)] estimate error is

∆hc(�) = CH/2
u ΠC−H/2

u ∆hu(�), (3.27)

where Cu is covariance (3.13) of the unconstrained estimate and Π is a projec-
tor onto a long/short term spatial/temporal channel subspace depending on the
specific constrained estimate. Namely, for the SB estimate, Π is the instantaneous-
fading projector

Π = IW ⊗ΠS(�) + Π∗
T (�) ⊗Π⊥

S (�) (3.28)

obtained from the projector ΠS(�) onto the short-term spatial subspace R[H̃(�)]
and the projector ΠT(�) onto the short-term temporal subspace R[H̃H(�)]. On
the other hand, for the MB methods the fading is averaged over L → ∞ blocks and
Π is related to the long-term projectors: Π = Π∗

T ⊗ΠS for MB-ST; Π = IW ⊗ΠS

for MB-S; Π = Π∗
T ⊗ IN for MB-T.
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(a)

q̂ = 1 q̂ = 2 q̂ = 3

(b)

q̂T = 1 q̂T = 2 q̂T = 3 q̂T = 4

(c)

q̂S = 1 q̂S = 2 q̂S = 3

(d)

q̂S = 3 q̂T = 4

(e)

Figure 3.3. Comparison between the PDA of all channel estimates in the first block for the exam-
ple in Figure 3.2. (a) Unconstrained estimate. (b), (c), (d) Subspace-based estimates: (b) single-block;
(c) multiblock time for q̂T = 1, . . . , 4; and (d) multiblock space for q̂S = 1, . . . , 3. (e) Multiblock space-
time for q̂T = qT and q̂S = qS.

From (3.27), the covariance matrix of the subspace-based estimate is

Cov
[

hc(�)
] = E

[
∆hc(�)∆hH

c (�)
]

= CH/2
u ΠC−H/2

u Cov
[

hu(�)
] = CH/2

u ΠC1/2
u .

(3.29)

As expected, the covariance of the constrained reestimate is obtained from the un-
constrained estimate covariance through following operations: (i) whitening (i.e.,
by means of the spatial-temporal weighting factors); (ii) projection onto the long-
short term spatial-temporal channel subspaces; (iii) inverse weighting. Notice that,
due to the projection, the effect of the constrained re-estimation is always a reduc-
tion of the unconstrained estimate error.

This is confirmed by the asymptotic MSE of the estimate, MSE = E[‖Ĥ(�) −
H(�)‖2], that is obtained as the trace of covariance matrix (3.29). From (3.13) and
by exploiting the Kronecker product properties [28], we get the results summa-
rized in Table 3.1 where the operator Φ[·] is defined as Φ[Π, C] = tr[CH/2ΠC1/2].
The MSE expressions simplify for spatially uncorrelated noise (Q = σ2

v IN ) and
training sequence with ideal correlation properties (Ct = σ2

s ZtIW ), as shown in the
third column in Table 3.1. In this case the MSE is linearly related to the ratio be-
tween the number of independent channel parameters to be estimated within the
block and the training sequence length (Zt). For instance, for the unconstrained
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Table 3.1. Asymptotic MSE for training-based estimates: unconstrained estimate (FR); single-block
(SB) and multiblock (MB) subspace methods.

Estimate Correlated noise and training sequence Uncorrelated

FR Φ(IW , C−1
t )Φ(IN , Q)

σ2
v

σ2
s

NW

Zt

SB Φ(IW , C−1
t )Φ(ΠS(�), Q) + Φ(ΠT(�), C−1

t )Φ(Π⊥
S (�), Q)

σ2
v

σ2
s

q[N + W − q]
Zt

MB-ST Φ(ΠT, C−1
t )Φ(ΠS, Q)

σ2
n

σ2
s

qSqT

Zt

MB-S Φ(IW , C−1
t )Φ(ΠS, Q)

σ2
v

σ2
s

WqS

Zt

MB-T Φ(ΠT, C−1
t )Φ(IN , Q)

σ2
v

σ2
s

NqT

Zt

(or FR) method, the unknowns are the NW entries of the channel matrix, while
for the SB estimate (i.e., constrained to have rank equal to q), the number of un-
knowns is reduced to q(N +W − q). On the other hand, all the MB methods have
a definite advantage with respect to the SB technique, as they can estimate the in-
variant spatial and/or temporal subspaces with any degree of accuracy provided
that L is large enough. Therefore, the MSE of the MB methods depends only on
the number of parameters to be estimated on each block: qSqT for MB-ST, qSW
for MB-S, and NqT for MB-T.

The following relation holds among the performances of the unconstrained
and the MB-constrained estimates:

MSEu ≥ {MSEMB-T, MSEMB-S
} ≥ MSEMB-ST. (3.30)

For the comparison between SB- and MB-constrained methods, the MSE of the
SB estimate (MSESB) needs to be averaged with respect to the fading amplitudes
(or, equivalently, averaged over L → ∞ blocks); the following inequalities hold:

MSEu ≥ MSESB ≥
MSEMB-T for q = qT ≤ qS,

MSEMB-S for q = qS ≤ qT,
(3.31)

which imply also MSESB ≥ MSEMB-ST for any q. For the proof of the inequalities
(3.30)–(3.31) see [9].

The analytical MSEs and the relationships (3.30)–(3.31) are verified by simu-
lations in Figure 3.4. The figure compares the asymptotic MSE (lines) with the
simulated MSE (markers) for different values of signal-to-noise ratio SNR =
E[‖H(�)‖2]σ2

s /σ
2
v and number of blocks L. The training sequence is chosen from

the UMTS-TDD standard [12] and it is composed of Zt = 456 QPSK symbols
with a cyclic prefix of 56 symbols. The training signals are received in spatially
correlated Gaussian noise by a ULA with N = 8 half-wavelength-spaced apart ele-
ments. The channel matrix is generated according to model (3.8) for W = 15 and
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Figure 3.4. MSE of the SB and MB subspace-based estimates in spatially correlated noise (a) for vary-
ing SNR and L = 40 and (b) for varying L and SNR = 20 dB.

qS = qT = 3 (rank orders are known at the receiver). The MSE of the estimate is
evaluated for L = 40 and varying SNR (Figure 3.4a), and for SNR = 20 dB and
varying L (Figure 3.4b). The numerical analysis shows that the subspace-based
methods approach the analytical MSE bound and outperform the FR estimate.
Moreover the MB bound for L → ∞ can be easily reached with a reasonable num-
ber of blocks (in practice, L ≥ 30).

3.3. Decision-based subspace methods

The performance analysis in the previous section demonstrates that, for all the
considered methods, the estimate accuracy is inversely related to the number of
training symbols used within each block for the estimation of the channel matrix.
In the following, we extend the analysis to channel estimation in soft-iterative re-
ceivers [10], where after the first iteration, a priori probabilities about the informa-
tion-bearing symbols can be used at the channel estimator to extend the training
set.

3.3.1. Extension to information-bearing signals

Let the N × Zd matrix Rd(�) = [r(Zt + W − 1; �), . . . , r(Zt + Zs − 1; �)] collect
Zd = Zs − W + 1 samples received within the �th data field (to simplify, the first
W − 1 samples are discarded as they contain overlapping between training and
data symbols). Model (3.9) can now be extended with the information-bearing
signals

Rd(�) = H(�)Sd(�) + Vd(�). (3.32)
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Similarly to (3.9), here the W × Zd Toeplitz matrix Sd(�) represents the convo-
lution of the channel with the data sequence {s(i; �)}Zt+Zs−1

i=Zt
, while the N × Zd

matrix Vd(�) contains the noise samples. To simplify the analysis, in the following
we consider QPSK modulation, that is, s(i; �) = σs(b(i; �; 1) + jb(i; �; 2))/

√
2 with

b(i; �; z) ∈ {−1, +1} being the bits corresponding to the ith symbol, z = 1, 2. The
generalization to larger constellations is straightforward.

As in a soft-iterative receiver (after the first equalization and decoding of the
L blocks) [29], we assume that the a priori log-likelihood ratio (LLR)

λ1(b) = log
P[b = +1]
P[b = −1]

(3.33)

is available at the channel estimator for every bit b = b(i; �; z). This soft infor-
mation can be used to compute the mean value s̄(i; �) = E[s(i; �)] and the vari-
ance σ2

i (�) = Var[s(i; �)] = σ2
s − |s̄(i; �)|2 for each data symbol s(i; �), for i =

Zt, . . . ,Zt + Zs − 1. Similarly to [30], the mean values {s̄(i; �)} can be used in addi-
tion to the training symbols to perform channel estimation as described below.

3.3.2. Subspace-based estimation

We arrange the mean values {s̄(i; �)}Zt+Zs−1
i=Zt

into the W × Zd matrix S̄d(�) =
E[Sd(�)]. The signals within the data field are modelled as

Rd(�) = H(�)S̄d(�) + ∆Vd(�) + Vd(�), (3.34)

where the soft-valued data estimates S̄d(�) are treated as additional known training
symbols, while the signals ∆Vd(�) = H(�)∆Sd(�) generated by the data estimate
errors ∆Sd(�) = Sd(�) − S̄d(�) are approximated as an equivalent Gaussian noise.

Within each block a soft unconstrained estimate of the channel matrix is cal-
culated by applying estimator (3.12) to the joint signal R(�) = [Rt(�) Rd(�)] and
by using as training data S̄(�) = [StS̄d(�)]. This yields

Hu(�) = (Rt(�)SH
t + Rd(�)S̄H

d (�)
)(

Ct + C̄d
)−1

, (3.35)

where C̄d is here defined as C̄d = S̄d(�)S̄H
d (�). This estimate is known to be subop-

timal, but, in addition to its simplicity, it has the advantage of being unbiased and
thus facilitates bootstrap and convergence in iterative receivers [31], as shown by
simulation results in Section 3.4. Notice that if data symbols are independent and
Zd is large enough, Cd = Sd(�)SH

d (�) ≈ σ2
s ZdIW and the matrix C̄d can be approx-

imated as C̄d ≈ σ2
s Z̃dIW , where Z̃d represents the effective number of known data
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Table 3.2. Asymptotic MSE for soft-based estimates: unconstrained estimate (FR); single-block (SB)
and multiblock (MB) subspace methods.

Estimate Correlated noise and training sequence Uncorrelated

Prior information with 0 ≤ σ̄2 ≤ σ2
s

FR Φ(IW , (Ct + C̄d)−1) · [Φ(IN , Q) + Φ(IN ,∆Q)]
σ2
v + ∆σ2

v

σ2
s

NW

Z̃

MB-ST Φ(ΠT, (Ct + C̄d)−1) · [Φ(ΠS, Q) + Φ(IN ,∆Q)]
σ2
v + ∆σ2

v

σ2
s

qSqT

Z̃

Perfect prior information (σ̄2 = 0)

FR Φ(IW , (Ct + Cd)−1) ·Φ(IN , Q)
σ2
v

σ2
s

NW

Zt + Zd

MB-ST Φ(ΠT, (Ct + Cd)−1) ·Φ(ΠS, Q)
σ2
v

σ2
s

qSqT

Zt + Zd

symbols that can be used in each block for channel estimation:

Z̃d = Zd

(
1 − σ2

d

σ2
s

)
, (3.36)

σ2
d = 1

LZd

∑
i,�

σ2
i (�). (3.37)

Starting from preliminary FR estimate (3.35), a soft ST-MB estimate can be
derived according to (3.22) by computing the weighting matrices WS = Q−H/2

u,L

and WT = (Ct + C̄d)−H/2 from both the training and the data signals. If the esti-
mated symbols are unreliable (i.e., at the first iterations of the iterative processing
for moderate SNR), it is Z̃d = 0, S̄d(�) = 0, and the soft MB-ST estimate coincides
with the training-based one (3.22). On the other hand, for perfect a priori infor-
mation (i.e., after a large enough number of iterations, provided that the iterative
approach converges), it is Z̃d = Zd, S̄d(�) = Sd(�), and therefore the soft estimate
equals the training-based estimate that would be obtained from a virtual training
sequence of Z = Zt + Zd symbols.

3.3.3. Performance analysis and comparison

The asymptotic MSE for the soft-iterative channel estimate is evaluated in Table 3.2
by assuming the errors ∆si(�) = si(�) − s̄i(�) of the soft-valued data estimates as
uncorrelated with zero mean and variance σ2

d given in (3.37). The errors are also
considered uncorrelated from the noise samples v(i; �).

We observe that the additional noise term ∆Vd(�), that affects the signals
within the data fields only, is temporally uncorrelated but spatially correlated with
covariance Cov[vec[∆Vd(�)]] = IZd ⊗ (σ2

d CS). Starting from this, it can be shown
that the covariance of the unconstrained soft estimate (3.35) is obtained from the
training-based one (3.13) by simply replacing Ct with Ct + C̄d, and Q with Q+∆Q,
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where ∆Q = (Z̃d/Z̃)σ2
d CS. The covariance of the subspace-based soft estimate is fi-

nally derived through the operations of weighting, projecting, and inverse weight-
ing from the unconstrained soft estimate covariance, as in Section 3.2.2. The trace
of the covariance matrices yields the MSEs summarized in the second column of
Table 3.2.

The MSE expressions can be easily explained in the case of uncorrelated train-
ing sequence (Ct = σ2

s ZtIW ) and spatially white noise (Q = σ2
v IN ). This is shown

in the third column of Table 3.2. As for the training-based methods, the MSE of
the soft estimates is linearly related to the following: the ratio between the number
of channel unknowns and the number Z̃ = Zt + Z̃d of effective training symbols
within each block; the variance σ2

v +∆σ2
v of the overall noise, that is, the sum of the

background noise and the noise generated by soft-decision errors, with

∆σ2
v = tr[∆Q]

N
= σ2

d
Z̃d

Z̃

E
[‖H(�)‖2]

N
. (3.38)

Clearly, for large signal-to-noise ratio and unreliable soft data, the term due to de-
cision errors is dominant (∆σ2

v > σ2
v ) and the soft-based channel estimate can be

less accurate than the training-based one. Still, it has to be noticed that this ex-
treme condition is quite unlikely when the iterative processing converges, as the
signal-to-noise ratio and the data estimate variance σ2

d are highly correlated with
each other. We finally remark that for missing prior information (i.e., at the first
iteration of turbo processing), it is ∆σ2

v = 0, σ2
d = 1, Z̃ = Zt, C̄d = 0, and the

performance in Table 3.2 reduces to the training-based one in Table 3.1. On the
other hand, for perfect prior information (i.e., close to the convergence of the
iterative approach), the MSEs simplify as indicated in Table 3.2 (rows 5–7) for
∆σ2

v = σ2
d = 0, Z̃ = Zt + Zd, and C̄d = Cd = σ2

s ZdIW .
A comparison with simulated performance is in Figure 3.5. A block transmis-

sion system is considered where L = 20 blocks are transmitted over a block-fading
Rayleigh channel to a uniform linear antenna array of N = 8 elements with half-
wavelength interelement spacing. The channel has temporal support W = 16 and
it is composed of P = 6 paths clustered into two groups: in the first set, αp = π/6
for p = 1, 2, 3, and [τ1, τ2, τ3] = [0, 1.2, 2.2]T ; in the second set, αp = 0 for
p = 4, 5, 6 and [τ4, τ5, τ6] = [7.2, 8.2, 9.2]T . The power-delay profile is the same
within each cluster: [σ2

1 , σ2
2 , σ2

3 ] = [σ2
4 , σ2

5 , σ2
6 ] = [1, 0.5, 0.25]/1.75. It follows that

qS = 2, qT = 6. The noise is spatially correlated due to an interferer with direction
of arrival ϑ = π/3: [Q]m,� = σ2

v 0.9|�−m| exp[−iπ(�−m) sin ϑ]. Each block contains
Zt = 31 training symbols (with a cyclic prefix of W − 1 symbols) and Zd = 200
information symbols. The transmitted pulse g(t) is a raised cosine with roll-off

factor 0.22.
Figure 3.5 compares the MSE of the soft SB and MB estimates for different

values of the following: number of blocks L used in the MB estimate for the pro-
jector evaluation; number of soft-valued symbols Zd used for channel estimation;
mutual information I = I[b, λ1(b)] [32] between every bit b = b(i; �; z) and the
corresponding a priori LLR λ1(b) defined in (3.33). Notice that the soft FR esti-
mate here is equivalent to the method proposed in [30]. According to [33], the
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Figure 3.5. MSE of the soft unconstrained, and MB subspace-based estimates for varying mutual
information I and number of data symbols Zd.

TS 1 TS 2 · · · TS � · · · TS L− 1 TS L

Data Training Data GP

User 1
. . .
User K

GuardZc/2 symbolsZt + W − 1 chipsZc/2 symbols

Figure 3.6. Block-by-block transmission in hybrid TD-CDMA systems.

a priori information λ1(b) is modelled as Gaussian. The signal-to-noise ratio is
SNR = 12 dB. The simulated MSE values (markers) are compared with the ana-
lytical results (solid/dashed lines) of Table 3.2. It can be seen that the soft-iterative
channel estimate becomes more accurate for increasing I (or, equivalently, for de-
creasing σ2

d ), from I = 0 (i.e., estimation from training symbols only, σ2
d = 1) to

I = 1 (i.e., estimation from the overall block of Z known symbols, σ2
d = 0). The

maximum performance gain with respect to the training-based estimate (MSEt) is
reached for I = 1 and it is MSEt/MSE = Z/Zt ≈ 9 dB as confirmed by simulations.

3.4. Subspace methods in hybrid TD-CDMA systems

The proposed SB and MB subspace methods can be also applied to communica-
tion systems dominated by multiple access interference (MAI), as block-synchro-
nous time-slotted CDMA systems such as TD-SCDMA 3G standards [11, 12].
Block-by-block transmission is organized as illustrated in Figure 3.6.

Within the same uplink time-slot K users transmit simultaneously a block
that contains a user-specific training sequence of Zt + W − 1 chips and Zc data
symbols spread by a code ck of length Q, for k = 1, . . . ,K . The discrete-time model



44 Subspace methods for space-time processing

for the signals at the antenna array receiver is obtained as in Section 3.1.1 after chip
matched filtering and sampling at the chip-rate 1/Tc:

r(i; �) =
K∑
k=1

Hk(�)sk(i; �) + v(i; �). (3.39)

Herein i is the chip index within the �th block, the N ×W channel matrix Hk(�)
and theW×1 chip sequence sk(i; �) refer to the kth user. The aim here is to evaluate
the performance of a space-time receiver for model (3.39) complete with channel
estimation and space-time multiuser detection (MUD) [34, 35].

Channel estimation can be performed jointly for theK users by imposing con-
straint (3.8) for each channel matrix Hk(�) (multiuser channel estimation). The
spatial covariance of the noise is estimated from the training data as well (provided
that KW < Zt −N). The estimation of the channel matrices and the noise covari-
ance is obtained by extending the subspace method described in Section 3.2.1 to
multiuser model (3.39) [8]. The method can effectively cope with MAI (due to
the nonorthogonality of the training sequences) and cochannel interference from
neighboring cells.

After channel estimation, data detection is carried out on the data fields of
each block, by using the estimates for the channel responses and the noise co-
variance. Even if the spreading codes are orthogonal at the transmitter, due to the
frequency-selective fading channel, the information-bearing signals at the receiver
are affected by both intersymbol-interference (ISI) and MAI. Block multiuser de-
tection is needed to properly handle the interference, such as linear minimum-
mean-square-error (MMSE) block MUD [36]. Since MAI and ISI are usually lim-
ited to few symbol intervals, block MUD can be carried out with a reduced block
size to lower the computational complexity [37].

We first consider the uplink of a UMTS-TDD system [12] with a ULA of N =
8 half-wavelength-spaced elements at the receiver. Each block contains Zc = 122
information symbols and a training sequence of Zt = 456 chips with a cyclic pre-
fix of length 56. Walsh-Hadamard codes of fixed length Q = 16 are used to spread
the user data. Blocks are transmitted by QPSK modulation at the chip-rate 3.84
Mchip/s using root-raised-cosine pulse shaping at roll-off 0.22. K = 8 users are
simultaneously active within the same cell and they have channel length W = 45.
Perfect power control is assumed so that E[‖Hk(�)‖2] = 1 for all users. The noise is
spatially correlated due to Ki = 6 intercell interferers with equal average power, di-
rection of arrival ϑk uniformly distributed within [−π/3, +π/3], for k = 1, . . . ,Ki.
The power Pk of each interfering signal is subject to Rayleigh fading and log-
normal shadowing (with standard deviation 12 dB). The resulting noise spatial
covariance is approximated as [Q]m,� = ∑Ki

k=1 Pk0.9|�−m| exp[−iπ(� − m) sin ϑk]
with

∑Ki

k=1 Pk = σ2
v .

Realistic propagation environments are simulated according to the stochas-
tic COST-259 directional channel model (COST-259 DCM) [38] that describes
both the temporal and the angular dispersion of the propagation. Four macrocell
radio environments are simulated according to COST-259 DCM specifications:
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Figure 3.7. Power-delay-angle profile for channels generated according to COST-259 DCM propaga-
tion environments: (a) GTU, (b) GBU, (c) GRA, and (d) GHT.

generalized typical urban (GTU), generalized bad urban (GBU), generalized rural
area (GRA), and generalized hill terrain (GHT). Figure 3.7 illustrates the power-
delay-angle profile for a few channels generated by COST-259 model. The example
shows that low-rank models are suitable for GTU and GRA environments as they
are characterized by small angular-delay spread.

Figure 3.8 compares the MSE of the FR and SB-MB subspace methods for
varying SNR. MB-ST estimation is carried out with L = 30 and adaptive selection
of rank orders {qS, qT} by MDL criterion (solid line with star markers). Different
SB subspace estimates are obtained by using a fixed-rank order (with q = 1, 2, 3, 4,
dashed lines) and MDL estimation of the rank order q (solid line with circle mark-
ers). Numerical results show that for low SNR the rank-1 approximation is the
preferred solution (as it minimizes the number of unknowns to be estimated),
while for large SNR the distortion becomes remarkable and a higher rank order
is needed. The SB channel estimate with MDL selection of the rank order outper-
forms the fixed-rank SB estimates and the FR estimate (thick line) for all the SNR
values. The minimum MSE among all the considered methods is obtained by the
MB-ST subspace-based estimate with adaptive rank order.

Figure 3.9 compares the channel estimation methods in terms of BER for un-
coded bits versus Eb/N0 = Qσ2

s E[‖Hk‖2]/(2Nσ2
v ). The adaptive selection of rank

order by MDL criterion (circle-line for SB and star-line for MB) is again the most
appropriate choice. The MB method outperforms both the FR and the SB esti-
mates and it approaches the performance obtained with known channels. This
confirms that the proposed algebraic structure is effective in reducing the channel
description to the minimal number of parameters.

The performance of the soft subspace methods is evaluated by simulating a
soft-iterative multiuser receiver for a convolutionally coded TD-SCDMA system
similar to the UMTS-TDD low chip-rate system [11], with chip-rate 1.28 Mchip/s.
The transmitter structure is shown in Figure 3.10. At the kth transmitter, k =
1, . . . , 4, a sequence {xk(i)} of binary information symbols is encoded with the
four-state convolutional code (7, 5)o with rate R = 1/2. Code bits are then per-
muted by a random interleaver of length 2814, mapped into QPSK symbols, spread
by a Walsh-Hadamard code of length Q = 4, and arranged into L = 16 blocks.
Each block contains Zc = 176 data symbols and a training sequence of Zt = 128
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Figure 3.8. MSE of the unconstrained (FR) and subspace-based (SB and MB) estimates in COST-259
radio environments and spatially correlated noise. (a) GTU, (b) GRA, (c) GBU, and (d) GHT.

chips (plus a cyclic prefix of length 16). Blocks are transmitted over a Rayleigh
fading three-path channel having delays [τ1, τ2, τ3] = [0, 3, 6] microseconds, av-
erage powers [σ2

1 , σ2
2 , σ2

3 ] = [1/8, 1/2, 3/8], and directions of arrival ϑ1 = ϑ2 = ϑ3

uniformly distributed within [−π/3, +π/3]. The noise is spatially correlated with
Ki = 1.

Signals are received by a ULA of N = 4 half-wavelength-spaced elements.
The turbo receiver structure (Figure 3.11) consists of a suboptimal soft-input/soft-
output (SISO) MMSE MUD with sliding window approach [39], a soft channel es-
timator, a set of K = 4 log-maximum-a-posteriori (log-MAP) SISO decoders [40]
and 4 interleavers/deinterleavers. According to the turbo principle [10], channel
estimation, multiuser detection, and decoding are repeated several times on the
same frame of 16 received blocks with exchange of reliability information.
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Figure 3.9. Performance of MMSE space-time MUD with unconstrained (FR) and subspace-based
(SB and MB) channel estimation in COST-259 radio environments and spatially correlated noise. (a)
GTU, (b) GRA, (c) GBU, and (d) GHT.

At each iteration, the soft channel estimator derives (as described in Section
3.3.2) new estimates {Ĥk(�)}L�=1 for the channel matrices of all users, by exploiting
both training chips and a priori LLRs λ1(bk(i; �)) for data chips. At the first it-
eration no a priori information is available and the channel matrices are esti-
mated from training signals only. The estimates {Ĥk(�)}L�=1 and the a priori LLR
λ1(bk(i; �)) are fed to the SISO MUD and used to compute the extrinsic LLR for
every code bit of every user. The extrinsic information is then reversed interleaved,
and passed to the K channel decoders as a priori LLR λ2(bk(i; �)). Each decoder de-
rives a refined extrinsic information that is interleaved again and fed back as new
a priori LLR λ1(bk(i; �)) for further iterations. At the last iteration, the a posteriori
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Figure 3.10. Transmitter structure for a coded CDMA system.
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Figure 3.11. Soft-iterative receiver structure for a coded CDMA system.

LLRs for the information bits xk(i) are computed as well by the decoders to provide
the final estimates x̂k(i).

Figure 3.12 shows the BER performance of the iterative receiver for differ-
ent values of Eb/N0 = Qσ2

s E[‖Hk‖2]/(2RNσ2
v ) (defined for the coded system).

The BER is evaluated at the ith turbo processing iteration for i = 1, 2, 5. Both the
training-based (Figure 3.12a) and soft-based (Figure 3.12b) channel estimators are
compared with the case of known channel. It is evident how the convergence of the
iterative processing depends on the reliability of channel state information: if the
training-based FR method is used, the BER is still high after 5 iterations due to
channel estimate inaccuracy and the convergence is prevented. A remarkable gain
in performance is reached by the training-based MB method. But the advantage
of using soft information is evident: the soft MB subspace method outperforms all
other estimation methods and at the 5th iteration it closely approaches the perfor-
mance for known channel.

3.5. Summary

Subspace methods have been proposed for the estimation of block-fading chan-
nels in block transmission systems. The proposed methods reduce the number
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Figure 3.12. Performance of soft-iterative MMSE MUD receivers with FR and MB channel estimation
for number of iterations i = 1, 2, 5: (a) training-based estimation and (b) soft-based estimation.

of relevant channel parameters by exploiting the algebraic spatial-temporal struc-
ture of the propagation and its quasistationarity over a large number of blocks. In
soft-iterative receivers subspace-based estimation has been modified to incorpo-
rate soft-valued information-bearing data. Analytical and simulation results have
shown the benefits of the proposed methods (either training- or data-based) on
the performance of space-time receivers, even in realistic and complex multipath
radio environments.

Abbreviations

BER Bit error rate

CDMA Code division multiple access

COST-259 DCM COST-259 directional channel model

GBU Generalized bad urban

GHT Generalized hill terrian

GRA Generalized rural area

GTU Generalized typical urban

ISI Intersymbol-interference

LLR Log-likelihood ratio

MAI Multiple access interference

MAP Maximum a posteriori

MB Multiblock

MB-S MB-spatial

MB-T MB-temporal

MB-ST MB space-time

MDL Minimum description length

MIMO Multiple-input multiple-output

MLE Maximum likelihood estimation

MMSE Minimum mean square error
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MSE Mean square error

MUD Multiuser detection

FR Full-rank

OFDM Orthogonal frequency division multiplexing

QPSK Quaternary phase-shift keying

RR Reduced-rank

SB Single-block

SIMO Single-input multiple-output

SNR Signal-to-noise ratio

TD-CDMA Time division-code division multiple access

TDMA Time division multiple access

UMTS-TDD Universal mobile telecommunication system-time division duplex

WSSUS Wide sense stationary uncorrelated scattering

3G 3rd generation
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[7] A. Dogandžić and A. Nehorai, “Finite-length MIMO equalization using canonical correlation
analysis,” IEEE Trans. Signal Processing, vol. 50, no. 4, pp. 984–989, 2002.

[8] M. Nicoli and U. Spagnolini, “Reduced-rank channel estimation for time-slotted mobile com-
munication systems,” IEEE Trans. Signal Processing, vol. 53, no. 3, pp. 926–944, 2005.

[9] M. Nicoli, O. Simeone, and U. Spagnolini, “Multislot estimation of fast-varying space-time com-
munication channels,” IEEE Trans. Signal Processing, vol. 51, no. 5, pp. 1184–1195, 2003.
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4
Multiuser MIMO channel
equalization

Christoph F. Mecklenbräuker,
Joachim Wehinger, Thomas Zemen,
Harold Artés, and Franz Hlawatsch

In MIMO receivers, the channel state needs to be estimated for equalization, de-
tection, and for feedback to the transmitter in case of adaptive modulation and
coding. Most current iterative [1, 2, 3] and noniterative [4] schemes in the single-
user MIMO case are training-based and rely on the transmission of pilot sym-
bols. Alternatives to pilot-based algorithms are semiblind schemes which exploit,
for example, the known structure of the space-time code to allow reliable chan-
nel estimation during ongoing data transmission [5, 6, 7, 8]. Channel estimation
and equalization for multiuser MIMO systems involve both information-theoretic
[9, 10] and signal processing aspects.

Early contributions to the field of MIMO communications assumed that the
receiver has perfect channel state information. Recently there has been increased
interest in the case where neither the receiver nor the transmitter knows the chan-
nel state [11, 12, 13, 14]. We consider this case in Section 4.2. In [5], a linear space-
time modulation technique was proposed which allows the receiver to jointly es-
timate the channel and demodulate the data without prior channel knowledge at
the transmitter or receiver. In Section 4.2, this modulation scheme is extended to
the case of multiple users.

Section 4.3 investigates iterative equalization, detection, and interference can-
cellation for CDMA with random spreading. An iterative space-time receiver is
considered for the uplink of a coded CDMA system. This type of receivers was
studied in [15, 16, 17] for perfect channel knowledge. The extension to multi-
path fading channels incorporating soft decisions for improved estimation was
presented in [18]. We show that such multiuser MIMO communication systems
achieve low bit error rates at moderate complexity.

Section 4.4 treats equalization of time-variant MIMO multipath channels. We
propose a multiuser MIMO equalizer for OFDM using a basis expansion [19, 20]
with prolate spheroidal sequences to represent the time-variant mobile radio chan-
nel. The resulting blockwise estimator-equalizer fits well to OFDM receiver archi-
tectures [21, 22].
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Figure 4.1. (a) Multiuser MIMO system model. (b) Detail for user k.

4.1. Signal and system model

We consider the multiuser MIMO signal and system model for K simultaneous
users shown in Figure 4.1. In this model, the nth received sample at the qth receiver
antenna element is described by

rq[n] =
K∑
k=1

NT∑
p=1

L−1∑
�=0

hk,p,q[n, �]bk,p[n− �] + vq[n]. (4.1)

The (generally time-variant) equivalent baseband MIMO channel impulse re-
sponse for the kth user is denoted by hk,p,q[n, �]. Here, p = 1, . . . ,NT and q =
1, . . . ,NR index the transmit and receive antenna elements, respectively. The time
sample is denoted by n and � is the delay index. The pth antenna element of the
kth user transmits the waveform bk,p[n] at sample time denoted by n. The circu-
lar complex zero-mean Gaussian noise with variance σ2

v is denoted by vq[n]. In
matrix-vector notation, (4.1) is rewritten as

r[n] =
K∑
k=1

L−1∑
�=0

Hk[n, �]bk[n− �] + v[n], (4.2)

where the receive vector r[n] and noise vector v[n] have NR elements each,
Hk[n, �] is the NR ×NT MIMO channel impulse response matrix at sample n and
lag �, and the transmit sample vector bk[n] has NT elements.
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4.2. Space-time matrix modulation and demodulation

A linear space-time matrix modulation technique was proposed in [5] allowing the
receiver to jointly estimate the channel and demodulate the data. Prior channel
state knowledge is neither required at the transmitter nor required at the receiver.
Here, we extend space-time matrix modulation to multiple users. This extension
is enabled by a close analogy between the rank-deficient single-user case and the
multiuser case [6].

4.2.1. Review of single-user space-time matrix modulation

First, we briefly review space-time matrix modulation for the single-user case. The
single-user transmission system is shown in Figure 4.1b. We consider Nd < NT

input data streams d1[n], . . . ,dNd [n] with dl[n] ∈ C (i.e., no finite-alphabet as-
sumption is made), where n is the symbol time index. The modulator generates
the transmit signal vectors b[n] of dimension NT according to

b[n] =
Nd∑
l=1

dl[n]ml[n], n = 0, . . . ,M − 1, (4.3)

where M is the block length and the ml[n] are fixed sequences of modulation vec-
tors. Equivalently, we have

B =
Nd∑
l=1

MlDl, (4.4)

with the NT × M transmit signal matrix B � [b[0] · · ·b[M − 1]], the NT × M
modulation matrices Ml � [ml[0] · · ·ml[M − 1]], and the diagonal M ×M data
matrices Dl � diag{dl[0], . . . ,dl[M − 1]}, where l = 1, . . . ,Nd. The modulation
vectors ml[n] (or modulation matrices Ml) determine how the data is mapped to
the NT transmit antennas; they are known to the receiver.

For simplicity of exposition, we assume noiseless transmission (however, in
our simulation study in Subsection 4.2.5, we will use a noisy channel). For a single-
user, flat-fading, noiseless MIMO channel, (4.2) simplifies to

r[n] = Hb[n]. (4.5)

Defining R � [r[0] · · · r[M − 1]] and inserting (4.4) into (4.5), we obtain

R = HB = H
Nd∑
l=1

MlDl . (4.6)

From the received matrix R, the receiver jointly estimates the data dl[n] and the
unknown channel H .
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A set of modulation matrices {M1, . . . ,MNd} will be called admissible if the
data sequences dl[n] can be uniquely reconstructed (up to a single constant factor)
from the received matrix R, without knowledge of H . In [5], we showed that for
a sufficiently large block length (typically, M ≥ �(N2

T − 1)/(rank{H} − Nd)�), an
admissible set of modulation matrices exists if NR ≥ NT and rank{H} = NT, and
we proposed an efficient iterative demodulation algorithm for that case. Indeed,
for Nd < NT as assumed above, the structure enforced by (4.4) corresponds to a
redundancy of the transmit matrix B which constrains the reconstructed data such
that unique reconstruction is possible.

4.2.2. Multiuser space-time matrix modulation

We now consider the multiuser case as illustrated in Figure 4.1. There are K users,
each of them equipped with NT transmit antennas and transmitting simultane-
ously to a single receiver with NR receive antennas. The kth user has Nd,k in-
put data streams dk,l[n] with associated M × M diagonal data matrices Dk,l �
diag{dk,l[0], . . . ,dk,l[M − 1]}. By a natural extension of our space-time matrix
modulation format (4.4), we construct the transmit matrix of the kth user as

Bk =
Nd,k∑
l=1

Mk,lDk,l, (4.7)

with Nd,k modulation matrices Mk,l of size NT ×M. The input-output relation of
the multiuser channel is

R =
K∑
k=1

HkBk, (4.8)

where Hk and Bk are the (unknown) NR × NT channel matrix and the NT × M
transmit matrix, respectively, associated with the kth user. Inserting (4.7) in (4.8),
we obtain the overall input-output relation (which extends (4.6))

R =
K∑
k=1

Hk

Nd,k∑
l=1

Mk,lDk,l . (4.9)

We now reformulate this input-output relation for showing the similarity of
the multiuser case to the rank-deficient single-user case. Let H � [H1 · · ·HK ]
denote the overall channel matrix obtained by stacking the individual channel ma-

trices of all users. Furthermore, let Mk,l �
[

0T · · · 0TMT
k,l 0T · · · 0T]T

denote a
“zero-padded” modulation matrix of size KNT × M that is obtained by stacking
k−1 zero matrices 0 of size NT ×M aboveMk,l and K−k such zero matrices below
Mk,l. We rewrite (4.9) as

R = HB = H
K∑
k=1

Nd,k∑
l=1

Mk,lDk,l, (4.10)
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with B � ∑K
k=1

∑Nd,k

l=1 Mk,lDk,l. Comparing with (4.6), we see that the multiuser
case is equivalent to the single-user case with KNT transmit antennas, NR receive
antennas, NK � ∑K

k=1 Nd,k data streams, a channel matrix H of size NR × KNT,
and modulation matrices Mk,l of size KNT × M that are nonzero only in the NT

rows with indices kNT + 1, . . . , (k + 1)NT. Typically, there will be NR < KNT and
thus rank{H} < KNT (rank-deficient case).

4.2.3. Unique reconstruction and flexible user allocation

Based on the formulation above, we can use a theorem on identifiability or unique
reconstruction for rank-deficient channels [6] to prove the following statements.

Let NK < rank{H} and Nd,k < rank{Hk}, that is, the total number of data
streams is smaller than the rank of the composite channel and the number of
data streams transmitted by any user k is smaller than the rank of that user’s
channel. Furthermore, assume that the block length is large enough (typically,
M ≥ �((KNT)2 − K)/(rank{H} − NK )� is sufficient but larger block lengths are
advisable for faster convergence of the iterative demodulation algorithm to be pro-
posed in Subsection 4.2.4). Then there exist sets of admissible modulation matri-
cesMk,l allowing unique reconstruction of all data streams up to a single unknown
constant factor ck ∈ C per user.

Moreover, a set of modulation matrices {Mk,l} with k = 1, . . . ,K and l =
1, . . . ,Nd,k that is admissible in the above setting is also admissible for any single
NR ×NT matrix H (provided that rank{H} is sufficient for the NK data streams),
and the same is true for an arbitrary subset of {Mk,l}. The latter result provides the
basis for a flexible multiple-access scheme. Indeed, it means that the modulation
matrices of a given admissible set {Mk,l} can be arbitrarily assigned to the individ-
ual users according to their respective data-rate requirements. In the extreme case,
all NK modulation matrices Mk,l could be allocated to a single user.

4.2.4. Iterative blind demodulation algorithm

Given a received matrix R = HB and assuming admissible modulation matrices
Mk,l, our identifiability result implies the following. If the receiver is able to find
matrices Ĥ and B̂ that satisfy the two properties

(1) ĤB̂ = R,
(2) B̂ = ∑K

k=1

∑Nd,k

l=1 Mk,lD̂k,l with D̂k,l diagonal,
then the D̂k,l contain the correct data up to a single constant factor ck ∈ C per
user. This motivates an iterative blind demodulation algorithm that is primarily
suited for the uplink of a multiuser wireless system because it yields the signals of
all users. The ith iteration executes the following two steps.

Step 1. This step aims at enforcing property (1). That is, given B̂(i−1)
2 as a result

of Step 2 of the previous iteration (see below), we wish to find Ĥ
(i)

and B̂(i)
1 such

that Ĥ
(i)

B̂(i)
1 best approximates R.
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As a first substep, we calculate Ĥ
(i)

such that Ĥ
(i)

B̂(i−1)
2 best approximates

R in the least-squares (LS) sense. This gives Ĥ
(i) = RB̂(i−1)#

2 , where B̂(i−1)#
2 de-

notes the pseudoinverse of B̂(i−1)
2 . As a second substep, we calculate B̂(i)

1 such that

Ĥ
(i)

B̂(i)
1 best approximates R in the LS sense. This gives the final result

B̂(i)
1 = Ĥ

(i)#
R =

(
RB̂(i−1)#

2

)#
R. (4.11)

Step 2. This step enforces property (2). That is, we approximate B̂(i)
1 from Step 1

above by a matrix B̂(i)
2 with the modulation structure of property (2), that is,

B̂(i)
2 = ∑K

k=1

∑Nd,k

l=1 Mk,lD̂
(i)
k,l. The diagonal matrices D̂

(i)
k,l are chosen such that B̂(i)

2

best approximates B̂(i)
1 in the LS sense. It can be shown that the nonzero (diago-

nal) elements of D̂
(i)
k,l are given by

(
D̂

(i)
k,l

)
n,n

= 1
NT

NT∑
j=1

(
B̂(i)

1

)
j,n

(
C(i)
λ(k,l)

)
j,n

, λ(k, l) �
k−1∑
κ=1

Nd,κ + l, (4.12)

where the C(i)
λ are matrices of size NT × M that are constructed as follows. Let

µk,l[n] with n = 0, . . . ,M−1 denote the (n + 1)th column of Mk,l, that is, Mk,l =
[µk,l[0] · · ·µk,l[M−1]]. Furthermore, for fixed n, letM[n] denote theNT×NK ma-
trix that contains the nth columns of all Mk,l for l = 1, . . . ,Nd,k and k = 1, . . . ,K ,
that is,

M[n] �
[
µ1,1[n] · · ·µ1,Nd,1

[n] · · ·µK ,1[n] · · ·µK ,Nd,K
[n]

]
. (4.13)

Then, the nth column of C(i)
λ is defined as the λth row of the NK × NT matrix

(Ĥ
(i)#

Ĥ
(i)
M[n])#, where Ĥ

(i)
was calculated in Step 1 above.

This algorithm yields an estimate Ĥ
(i)

of the channel matrix in Step 1 and

estimates D̂
(i)
k,l of the data matrices in Step 2. In the noise-free case, we always ob-

served the algorithm to converge to the correct channel and data matrices up to a
single complex factor per user. Results in the presence of noise will be shown next.

4.2.5. Simulation results and discussion

We carried out both a single-user experiment and a multiuser experiment, in
which we transmitted i.i.d. complex Gaussian signals dk,l[n] ∈ C over channels
with NT = 4 transmit antennas and NR = 4 receive antennas. The modulation
matrices Mk,l with block length M = 100 were constructed by taking realizations
of i.i.d. Gaussian random variables as matrix entries and then orthonormalizing
the corresponding columns of all Mk,l (in our simulations, this always resulted
in admissible modulation matrices). The channels were randomly generated for
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Figure 4.2. Performance of space-time matrix modulation and the iterative demodulation algorithm:
(a) Normalized MSE versus SNR. (b) BER versus SNR. �—�: Single-user case—two data streams
assigned to a single user; ◦—◦: multiuser case—one data stream assigned to each of two different
users.

each simulation run. The channel output signals were corrupted by white Gauss-
ian noise.

In the single-user case, we transmitted Nd = 2 data streams. In the mul-
tiuser case, we considered K = 2 users with one data stream each (thus, NK =
2). Figure 4.2a shows the total normalized mean square error (MSE) of the data
streams reconstructed by means of our iterative blind demodulation algorithm
versus the signal-to-noise ratio (SNR). We see that for high SNR, the MSE is sig-
nificantly smaller when the data streams are assigned to different users than when
one user transmits all data streams.

We discuss this result in the following. In the multiuser case, there are eight
transmit antennas (four per user) against four in the single-user case. Thus, even
though the individual users do not cooperate, the multiuser channel offers more
diversity than the single-user channel. The results show that the iterative blind
demodulation algorithm exploits some of this extra diversity in the multiuser case.
Note that we have not exploited channel knowledge, neither at the transmitter nor
at the receiver. In the multiuser case, we have to estimate twice as many unknown
channel parameters as in the single-user case.

Finally, Figure 4.2b shows the corresponding bit error rate (BER) versus the
SNR when a 4-QAM transmit alphabet is used instead of the Gaussian source.
The iterative demodulation algorithm is followed by a quantization to the 4-QAM
alphabet. It is seen that the BERs decrease more rapidly than the corresponding
normalized MSEs.

Space-time matrix modulation allows to transmit data streams from multiple
users over unknown MIMO channels. An efficient iterative receiver algorithm has
been proposed which exploits the modulation structure to jointly estimate data
and channels for multiple users. Unique demodulation in the noise-free case is
guaranteed theoretically. Simulations demonstrate good performance of the pro-
posed space-time matrix modulation/demodulation in the presence of noise.
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Figure 4.3. (a) Iterative multiuser MIMO equalization. (b) Uplink transmitter.

4.3. Iterative space-time equalization and
demodulation for coded CDMA

An iterative receiver with space-time processing is considered for the uplink of a
coded CDMA system. We assume that symbols are transmitted synchronously and
multipath propagation is modeled with a temporal granularity of a chip duration.
The receiver consists of a multiuser detector, a bank of single-user decoders, and a
channel estimator; see Figure 4.3. The behavior of iterative receivers which employ
ML channel estimation was reported in [23] for the special case of a single propa-
gation path with constant amplitude. The results in this section are obtained for a
receiver with NR antenna elements. We show that such multiuser MIMO commu-
nication systems achieve low bit-error rates at moderate complexity.

4.3.1. Signal model

We assume that the propagation channel has block-fading characteristic, that is,
the channel is constant over a block of M transmit symbols. Thus, hk,p,q[n, �]
in the system model (4.1) does not depend on n. The first J symbols are pilots
which are used for channel identification at each receiver antenna element. The
subsequent M− J symbols are QPSK symbols, derived from an uncoded informa-
tion bit stream dk[m′′] which is convolutionally encoded, randomly interleaved,
and Gray mapped. The resulting M QPSK symbols ak[m] of user k are spread by
the sequence sk of dimension N × 1. We reformulate (4.1) by separating the single
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term for � = 0 from the remaining terms at lags � > 0:

rq[n] =
K∑
k=1

(
hk[0]a

[⌊
n

N

⌋]
sk[nmodN]

+
L−1∑
�=1

hk[�]a
[⌊

n− l

N

⌋]
sk
[
(n− l) modN

])
.

(4.14)

The elements of the sequence sk are randomly drawn from the set {±1 ± j}/√2N
such that ‖sk‖2 = 1. The uplink transmitter is shown in Figure 4.3b.

The system model (4.1) reflects the superposition of intersymbol interference
(ISI) and multiple-access interference (MAI) components at the chip level n. Here,
we assume that each user has a single transmit antenna, NT = 1, and we will thus
omit the transmit antenna-element index p in the following. Note that a transmit
symbol at time m is spread to a signal of length N . The channel is modeled on the
chip level and has L taps such that the total receive vector affected by symbol a[m]
is of length N + L− 1. We denote this vector as

yq[m] �
[
rq
[
(m− 1)N

] · · · rq[mN + L− 1]
]T
. (4.15)

Note that yq[m] describes a vector of temporally successive chip samples for one
receive antenna, whereas r[n] in (4.1) describes a vector of chip samples at one
chip instant but for all receive antennas.

The receiver consists of three processing units exchanging information on
code symbols and channel estimates in an iterative manner. We will explain the
individual parts in the sequel.

4.3.2. Soft multiuser detection

We implement and investigate multiuser detection with a parallel interference can-
celling (PIC) unit and a subsequent single-user matched filter (SUMF) or a linear
minimum mean square error (LMMSE) filter. Parallel interference cancellation
is implemented using soft decisions ã′k[m] defined in (4.29). These are obtained
from the estimated extrinsic probabilities (EXT) of the code symbols available at
the output of the channel decoder; see Figure 4.3a. See Section 4.3.4 for further
details. The multiuser detector requires the signature sequences, their timing, and
an estimate for the channel state to be known. The interference canceller removes
MAI. ISI terms are explicitly considered in the cancellation since they can greatly
influence the receiver’s performance when the channel memory length L cannot
be considered much smaller than N . If exact knowledge of all interfering users’
symbols and the channel state were available, then the MAI could be eliminated
perfectly. However, due to inaccurate channel knowledge and errors in the feed-
back symbols, this cannot be achieved. Usually, the process of interchanging infor-
mation is done iteratively several times. The effective spreading sequence of user

k at antenna element q is s̃k,q = sk ∗ ĥk,q with ∗ denoting convolution and ĥk,q
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being the channel estimate. Stacking these vectors together leads to the effective
spreading matrix S̃q of dimension (N +L−1)×K . The observation window covers
ISI that is due to pre- and postcursors. The ISI length is

W =
⌈

(N + L− 1)
N

⌉
. (4.16)

The parallel interference canceller (PIC) calculates

ỹk,q[m] = yq[m] + s̃k,qã
′
k[m] −

W−1∑
w=−W+1

S̃q[w]ã′[m−w]. (4.17)

Terms indexed by w < 0 in the sum above correspond to ISI caused by future
symbols, while terms indexed by w > 0 are related to preceding symbols. The
matrices attributed to previous and current symbols are defined by

S̃q[w] =





s̃1,q[wN] · · · s̃K ,q[wN]

s̃1,q[wN + 1] · · · s̃K ,q[wN + 1]
...

. . .
...

s̃1,q[wN + ∆− 1] · · · s̃K ,q[wN + ∆− 1]

0wN · · · 0wN


for w > 0,

S̃q for w = 0,

(4.18)

with ∆ = (N + L− 1) −WN and correspondingly for w < 0. After MAI removal,
the signal is passed through a linear filter whose output is

zk,q[m] = f H
k,q[m] ỹk,q[m]. (4.19)

We focus our interest on the SUMF and LMMSE filter. The latter filter is more in-
volved due to the required matrix inversion. For certain system loads α = K/N , the
SUMF achieves the same BER as the LMMSE filter, but requires a higher number
of iterations [24]. Results for both filters are shown in Figure 4.4.

The single-user matched filter is

f k,q[m] = s̃k,q, (4.20)

and the LMMSE filter is defined as

gk,q[m] = argmin
g

E

{∣∣ak[m] − gH ỹk,q[m]
∣∣2

}
. (4.21)

A solution to (4.21) is found under the assumption of independent symbols ak[m]
and when known symbols ak[m] are replaced by their estimates ã′k[m] defined in
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Figure 4.4. BER versus Eb/N0 for the PIC-SUMF and PIC-LMMSE detectors with and without the
use of soft decisions for channel estimation. The parameters are K = 24, N = 16, L = 5, M = 250, and
J = 20.

(4.29). Then the filter becomes

gH
k,q[m] = s̃Hk,q

(
σ2
v I + s̃k,q

∣∣ã′k[m]
∣∣2
s̃Hk,q +

W−1∑
w=−W+1

S̃q[w]V[m]S̃
H
q [w]

)−1

(4.22)

with V[m] denoting the diagonal covariance matrix

V[m] = E

{(
a[m] − E

{
a[m]

})(
a[m] − E

{
a[m]

})H
}
. (4.23)

Now, we substitute E{a[m]} by the extrinsic probability (EXT) ã′[m] defined via
(4.29). The resulting V[m] has diagonal elements Vk,k[m] = 1 − |ã′k[m]|2. When
Vk,k[m] is computed for each symbol individually, the resulting filter is termed
conditional. This, however, involves a matrix inversion for each symbol and every
user. We follow on alternative approach and average over all code symbols in a
single block to construct aV = diag(V1,1, . . . ,VK ,K ) which does not depend on the
symbol index m. In this way, the filter needs to be computed only once for every
user and iteration. The resulting filter gHk,q is called unconditional [25].

We have obtained a biased filter so far. The conditioned bias is β[m] =
E{zk,q[m]/ak[m]} = gH

k,q[m]s̃k,q[m]. An unbiased and unconditional modification

of (4.22) is g′H
k,q = (1/β)gH

k,q which results in

g′H
k,q =

s̃Hk,qZ
−1
q

s̃Hk,qZ
−1
q s̃k,q

, with Zq =
W−1∑

w=−W+1

S̃q[w]VS̃
H
q [w] + σ2

v I . (4.24)
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4.3.3. Antenna combining

The unbiased and unconditional LMMSE filter g ′
k,q is applied to the receive vector

ỹk,q[m]. A soft decision is obtained by maximum ratio combining (MRC) of all

antennas by using the estimate ĥk,q for the channel impulse response defined in
(4.34):

zk[m] =
∑NR

q=1

∥∥ĥk,q
∥∥2
g ′H
k,q ỹk,q[m]∑NR

q=1

∥∥ĥk,q
∥∥2 . (4.25)

4.3.4. Decoding

The soft-decision feedback supplied to the channel and the data estimator are
computed from the a posteriori probabilities (APP) and the extrinsic probabili-
ties (EXT). A soft-input soft-output decoder for the binary convolutional code is
implemented by the BCJR algorithm [26] which estimates these quantities. The
decoder’s input is given by the channel values xk[m′] which are obtained from the
zk[m] given in (4.25) through sequential demapping to a real sequence and dein-
terleaving (see Figure 4.3a). They are the received values for the 2(M − J) code
bits ck[m′]. The conditional probability density of the multiuser detector (MUD)
output values xk[m′] can be modeled by a Gaussian distribution with mean ±µ
and variance ν2

k . The decision-directed estimate for the mean is µ̂ = 1/(2(M −
J))

∑2(M−J)−1
i=0 |xk[i]| and for the variance is ν̂2

k = (1/2(M− J))
∑2(M−J)−1

i=0 |xk[i]|2 −
µ̂. The APP for having the value +1 as the code bit when observing the channel
value xk[m′] is given as APPk[m′] = Pr{ck[m′] = +1 | xk}, where the vector xk
contains all xk[m′] of the code block. The link between the APP and the EXT is
established via the relation

APPk[m′] ∝ EXTk[m′]p
(
xk[m′] | ck[m′] = +1

)
, (4.26)

where the last term denotes the channel transition function which is assumed to
be a Gaussian probability density in this section, estimated parametrically as

p
(
xk[m′] | ck[m′] = +1

) ∝ exp

(−∣∣xk[m′] − µ̂
∣∣2

ν̂2
k

)
. (4.27)

The APP values are normalized such that Pr{ck[m′] = +1|xk} + Pr{ck[m′] =
−1|xk} = 1; the EXT values are normalized in the same way. After interleaving,
these probabilities are used to obtain an estimate of the transmitted symbols. The
QPSK mapping for the APPs and the EXTs is given by

ãk[J + m] =
[
1 − 2 APPk[2m] + j

(
1 − 2 APPk[2m + 1]

)]
√

2
, (4.28)

ã′k[J + m] =
[
1 − 2 EXTk[2m] + j

(
1 − 2 EXTk[2m + 1]

)]
√

2
, (4.29)
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with m ∈ {0, . . . ,M − J − 1}. The symbol estimates ã′k[m] are used in the feed-
back branch to the detector with PIC and SUMF/LMMSE filtering, while the soft
decisions ãk[m] are used for channel estimation as if they were additional pilot
symbols.

4.3.5. Channel estimation

In a system with multiple receive antennas, all paths to the receive antennas need
to be estimated. The initial estimate is based on training symbols in the preamble
of the block of transmit symbols. In later iterations, the estimator is enhanced by
incorporating soft decisions ãk[m] derived from the APPs as described in (4.28).

It was shown in [27] that long spreading sequences with elements taken from
the unit circle exhibit nice cross-correlation properties. These sequences are called
perfect root-of-Unity sequences (PRUS) and are particularly well suited for multi-
path channel estimation with long delay spread. In our receiver, we choose a length
of JN .

For channel estimation, we need to estimate each single propagation path and
we model the signal somewhat different from (4.1):

yq =
(W−1∑

w=0

DwAw

)
hq + vq = Uhq + vq, (4.30)

where the various quantities involved are described below. The MN × 1 vector
yq contains samples at the chip rate received at antenna q. The MN ×MKL ma-
trix Dw is block diagonal and defined as

diag(Dw · · ·Dw︸ ︷︷ ︸
M

), where Dw = [Dw,1 · · ·Dw,K ] is of dimension N × KL.

(4.31)
The matrix Dw,k is derived from the WN × L matrix

Ck =



sk[0]
sk[1] sk[0]
sk[2] sk[1] sk[0]

...
...

. . .
. . .

sk[N − 1] sk[N − 2] sk[N − 3] · · · sk[0]

sk[N − 1] sk[N − 2] · · · sk[1] sk[0]

sk[N − 1] · · · sk[2] sk[1]
. . .

. . .
...

...
...

sk[N − 1]
...

sk[N − 1]
. . .

...
. . .



.

(4.32)
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Elements which are not covered by the shifted spreading sequence are zero. The
matrix Dw,k contains the rows from wN + 1 to (w + 1)N of Ck. An exception is
the construction of the first J matrices Dw for which the corresponding PRUSs are
taken instead of the vectors sk. Aw = [A[0−w]A[1−w] · · · A[M−1−w]]T is an
MKL× KL vertically stacked matrix consisting of the diagonal KL× KL matrices

A[m] = diag
(
a1[m]a2[m] · · ·aK [m]

)
, with ak[m] = ãk[m]1L. (4.33)

hq is a KL × 1 vector obtained by vertically stacking the L × 1 chip impulse re-

sponses hk,q of all users’ channels, that is, hq = [
hT

1,q hT
2,q · · · hT

K ,q

]T
. Finally,

vq designates an NM × 1 zero-mean complex Gaussian noise vector with covari-
ance matrix σ2

v INM . A least-squares (LS) estimator of hq requires the symbols to
be known. We replace the symbols ak[m] by their soft decisions ãk[m] from (4.28).
Using U introduced in (4.30), we obtain the estimate

ĥq = (
UHU

)−1
UHyq. (4.34)

4.3.6. Simulation results and discussion

For illustration of the iterative space-time receiver concept, we use spreading fac-
tor N = 16. The encoder is a nonsystematic, nonrecursive convolutional code
with rate CR = 1/2 and generator polynomials (5, 7)8. The channel estimator uses
the approximated LS approach formulated in (4.34). We assume an i.i.d. Rayleigh
fading channel model with a delay spread L of 5 chips. The taps are normal-
ized such that E{∑NR

q=1

∑L−1
�=0 |hk,q[�]|2} = 1. We consider the channel impulse re-

sponse to be constant during the transmission of a code block. The block length
is M = 250 symbols out of which J = 20 are pilots which corresponds to 8% of
the transmitted energy. To account for the energy loss due to the pilots, we de-
fine the ratio of energy per information bit and noise power spectral density as
Eb/N0 = (1/σ2

v CR)(M/M − J).
In Figure 4.4, the BER versus Eb/N0 is shown for the PIC detectors with the

SUMF and the LMMSE filter. The plot compares the difference in BER of the two
detectors as well as the impact of using soft decisions to support the channel es-
timator. For the moment, we consider single-antenna reception in an overloaded
system with load α = K/N = 1.5. We illustrate the BER after the first, third, and
sixth iterations together with single-user bound (SUB) which is defined as the BER
in case of a single user in the system having perfect channel-state information. We
notice that using feedback symbols in the multiuser detector and the channel esti-
mator allows BERs of 10−3 after 6 iterations at an Eb/N0 of 8.6 dB using an LMMSE
filter and at 12.7 dB in case of the SUMF. The gap in Eb/N0 between the two de-
tectors at a BER of 10−3 is 4.1 dB. The LMMSE-based receiver is able to approach
the SUB as close as 0.4 dB at an Eb/N0 of 8 dB after 6 iterations. Furthermore, the
results reveal that soft-decision feedback for channel estimation improves the re-
ceiver’s performance considerably. When comparing the LMMSE receiver with a
channel estimator using soft-decision feedback with a receiver which uses pilots
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Figure 4.5. Achievable BER versus the number of users K for the PIC-LMMSE detector with one and
two receive antennas. The parameters are N = 16, L = 5, M = 250, J = 20, and Eb/N0 = 8 dB.

only for channel estimation, we observe an improvement of more than 2 dB. This
improvement becomes even more pronounced in the SUMF-based receiver where
a reasonable BER cannot be obtained with just 6 iterations.

Finally, Figure 4.5 shows the BER versus the number of users K in the one-
and two-antenna cases. These results were obtained from simulations at an Eb/N0

of 8 dB. For a single antenna and 10 iterations, the system serves up to 30 users
while operating close to a BER of 10−3. The plot shows that the number of sup-
ported users is drastically increased if two receive antennas are used. More users
can be accommodated at the cost of an increased number of iterations. With two
receive antennas, more than 50 users can be served in simultaneous links with a
BER lower than 10−3 after 10 iterations. This is enabled by the reduced variability
of the receiver-side signal power when employing multiple receive antennas.

We have demonstrated that an iterative receiver impressively increases the
number of supported users when employing antenna diversity at the base-station
receiver. These performance gains are achieved in a multipath environments when
the soft-decision feedback is used for both channel estimation and interference can-
cellation.

4.4. Basis expansion for time-variant channel equalization

This section deals with the equalization of time-variant channels by extending
the iterative receiver concept developed in Section 4.3 for block-fading channels.
The variation of a wireless channel over the duration of a data block is caused by
user mobility and multipath propagation. The Doppler shifts on the individual
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paths depend on the user’s velocity v, the carrier frequency fC, and the scattering
environment. The maximum variation in time of the wireless channel is upper
bounded by the maximum (one-sided) normalized Doppler bandwidth

νDmax = BDTS, (4.35)

where BD = vmax fC/c0 is the maximum Doppler bandwidth, vmax is the maximum
velocity, TS is the symbol duration, and c0 denotes the speed of light.

We apply orthogonal frequency-division multiplexing (OFDM) in order to
transform the time-variant frequency-selective channel into a set of parallel time-
variant frequency-flat channels, the so-called subcarriers. We consider time-
variant channels which may vary significantly over the duration of a long block
of OFDM symbols. However, for the duration of each single OFDM symbol, the
channel variation is assumed small enough to be neglected. This implies a very
small intercarrier interference (ICI). Each OFDM symbol is preceded by a cyclic
prefix to avoid intersymbol interference (ISI).

The discrete-time sequence of channel coefficients for each frequency-flat sub-
carrier is bandlimited by νDmax. It was shown by Slepian [28] that time-limited
parts of bandlimited sequences span a low-dimensional subspace. A natural set of
basis functions for this subspace is given by the so-called discrete prolate spher-
oidal sequences. A Slepian basis expansion using this subspace representation was
proposed in [21] for time-variant channel equalization. It was shown in [22] that
the channel estimation bias obtained with the Slepian basis expansion is smaller by
one order of magnitude compared to the Fourier basis expansion (i.e., a truncated
discrete Fourier transform) [20].

An iterative time-variant channel estimation scheme is developed by combin-
ing pilot symbols with soft decisions for estimating the coefficients of the Slepian
basis expansion.

4.4.1. MIMO-OFDM multiuser signal model for doubly selective channels

Every user has a single NT = 1 transmit antenna, the base station has NR receive
antennas. There are K users. We consider the equalization and detection problem
for such a K × NR multiuser MIMO communications system. Each user’s data
symbols are spread over N subcarriers by means of a user-specific spreading code.
The transmission is block-oriented; a data block consists of M − J OFDM data
symbols and J OFDM pilot symbols.

The data symbols are chosen from a QPSK symbol constellation. The data
symbols are given by ak[m] ∈ {±1 ± j}/√2 for m /∈ P and ak[m] = 0 for m ∈ P ,
where the pilot placement is defined by the index set

P =
{⌊

M

J

(
i +

1
2

)⌋
| i = 0, . . . , J − 1

}
, (4.36)

and discrete time at rate 1/TS = 1/(PTC) is denoted by m. After the spreading
operation, pilot symbols pk[m] ∈ CN with elements pk[m, e] are added, giving
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the N × 1 vectors

dk[m] = skak[m] + pk[m]. (4.37)

The elements of the pilot symbols pk[m, e] for m ∈ P and e ∈ {0, . . . ,N − 1}
are randomly chosen from the QPSK symbol set {±1 ± j}/√2N . For m /∈ P , we
define pk[m] = 0N . Subsequently, an N-point inverse discrete Fourier transform
(DFT) is carried out and a cyclic prefix of length G is inserted. An OFDM symbol
including the cyclic prefix has length P = N + G chips.

The temporal channel variation for the duration of each single OFDM symbol
is small which translates to small ICI [29]. For neglecting the temporal channel
variation within a single OFDM symbol, νDmax is assumed to be much smaller
than the normalized subcarrier bandwidth P/N , for example, νDmaxN/P < 0.01.
Under this assumption, we represent the time-variant MIMO channel by the N×1
vector gk,q[m] = √

NF[hk,1,q[mP, 0], . . . ,hk,1,q[mP,L − 1]]T. The truncated DFT

matrix F ∈ CN×L has elements [F]i,� = (1/
√
N)e−j2πi�/N for i ∈ {0, . . . ,N − 1}

and � ∈ {0, . . . ,L− 1}. The received signal at the qth antenna element after cyclic
prefix removal and DFT is

yq[m] =
K∑
k=1

diag
(
gk,q[m]

)
dk[m] + vq[m], (4.38)

where complex additive white Gaussian noise with zero mean and covariance σ2
v IN

is denoted by vq[m] ∈ CN with elements vq[m, e]. We define the time-variant
effective spreading sequences

s̃k,q[m] = diag
(
gk,q[m]

)
sk, (4.39)

and the time-variant effective spreading matrix S̃q[m] = [s̃1,q[m], . . . , s̃K ,q[m]] ∈
CN×K . Using these definitions, we write the signal model for data detection as

yq[m] = S̃q[m]a[m] + vq[m] for m /∈ P , (4.40)

where a[m] = [a1[m], . . . , aK [m]]T ∈ CK contains the stacked data symbols for K
users. Equation (4.40) is identical to the signal model for CDMA in a frequency-
flat fading environment. Thus, we apply the PIC and MMSE multiuser detection
algorithms defined in Section 4.3 with ISI length W = 1 (cf. (4.16)). However, the
effective spreading sequence (4.39) is time-variant and (4.24) must be calculated
for every symbol, now.

The performance of the iterative receiver crucially depends on the accuracy
with which the time-variant frequency response gk,q[m] is estimated, since the
effective spreading sequence (4.39) directly depends on the actual channel real-
izations. The MIMO-OFDM signal model (4.38) describes a transmission over
N ×NR parallel frequency-flat channels. Therefore, we rewrite (4.38) as a set of
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equations for every subcarrier e ∈ {0, . . . ,N − 1} and receive antenna q ∈
{1, . . . ,NR}:

yq[m, e] =
K∑
k=1

gk,q[m, e]dk,q[m, e] + vq[m, e], (4.41)

where dk[m, e] = sk[e]ak[m] + pk[m, e]. The temporal variation of each subcarrier
coefficient gk,q[m, e] is bandlimited by the normalized maximum Doppler band-
width νDmax. We estimate gk,q[m, e] for an interval with length M using the re-
ceived sequence yq[m, e]. Slepian [28] analyzed discrete prolate spheroidal (DPS)
sequences that are maximally concentrated in a given time interval and to a given
bandwidth. Thus, the properties of these DPS sequences are directly relevant to
the channel estimation problem. The DPS sequences are doubly orthogonal over
the intervals [−∞,∞] and [0,M − 1]. We use the DPS sequences on the index set
{0, . . . ,M − 1} to define an orthogonal basis. The index-limited DPS sequences
will be termed Slepian sequences.

4.4.2. Slepian basis expansion

The Slepian basis expansion approximates the sequence gk,q[m, e] by a linear com-
bination of Slepian sequences ui[m]:

gk,q[m, e] ≈ g̃k,q[m, e] =
D−1∑
i=0

ui[m]ψk,q[i, e], (4.42)

where m ∈ {0, . . . ,M−1} and e ∈ {0, . . . ,N −1}. The Slepian sequences ui ∈ RM

with elements ui[m] are defined as the eigenvectors of the matrix C ∈ RM×M de-
fined as [C]i,� = sin[2π(i− �)νDmax]/(π(i− �)), where i, � = 0, 1, . . . ,M−1, that is,
Cui = λiui. The approximate dimension of the time-concentrated and bandlim-
ited signal space is D = �2νDmaxM� + 1 [28, Section 3.3], which means that the
eigenvalues λi rapidly decay to zero for i > D. In effect, (4.42) is a reduced-rank
representation for time-limited parts (or snapshots) of bandlimited sequences.
The mean squared error for one subcarrier is defined as (where we omit k, q, and e)

MSEM = 1
M

M−1∑
m=0

E

{∣∣g[m] − g̃[m]
∣∣2

}
. (4.43)

The mean squared error of the Slepian basis expansion is given by the sum of two
terms MSEM = bias2

M + varM . The autocorrelation of the subcarrier determines
bias2

M and this term decreases with growing dimension D of the basis expansion.
On the other hand, varM is proportional to D and the noise variance σ2

v [30]. An
analytic expression for bias2

M can be found in [19, 22]

bias2
M = 1

M

M−1∑
m=0

∫ 1/2

−1/2
E(m, ν)Sgg(ν)dν, (4.44)
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where Sgg(ν) is the power spectral density of the subcarrier and

E(m, ν) =
∣∣∣∣∣1 − f T[m]G−1

M−1∑
�=0

f ∗[�] e−j2πν(m−�)

∣∣∣∣∣
2

, (4.45)

with G = ∑M−1
m=0 f [m] f H[m] and f [m] = [u0[m], . . . ,uD−1[m]]T ∈ CD. The vari-

ance is independent of the selected basis, varM ≈ σ2
v D/M. The use of the Slepian

basis offers a significantly smaller square bias compared to the Fourier basis (i.e.,
the truncated discrete Fourier transform). This was demonstrated numerically and
analytically in [21, 22].

We emphasize that the selection of a suitable Slepian basis, parameterized
by M and νDmax, exploits the band limitation of the Doppler spectrum to νDmax

only. The details of the Doppler spectrum for |ν| < νDmax are irrelevant. Our ap-
proach therefore differs from a Karhunen-Loève transform which requires com-
plete knowledge of the second-order statistics of the fading process. This approach
was chosen since MIMO channel sounder measurements have shown that wireless
fading channels show stationary behavior for less than 70 wavelengths in a pedes-
trian typical urban environment [31]. We fear that meaningful short-term fading
characteristics (second-order statistics, to begin with) can hardly be acquired in a
multiuser MIMO system when users move at vehicular speeds.

For the purposes of performance analysis for a nominal ensemble of channel
realizations, we evaluate (4.44) for a nominal Doppler spectrum Sgg(ν).

4.4.3. Signal model for time-variant channel estimation

We insert the basis expansion (4.42) for the coefficients gk,q[m, e] in (4.41):

yq[m, e] =
K∑
k=1

D−1∑
i=0

ui[m]ψk,q[i, e]dk[m, e] + vq[m, e]. (4.46)

Thus, an estimate of the subcarrier coefficients ψ̂k,q[i, e] can be obtained jointly
for all K users but individually for every subcarrier e and receive antenna q. We
define the stacked vector ψe,q = [ψT

e,q,0, . . . ,ψT
e,q,D−1]T ∈ CKD containing the basis

expansion coefficients of all K users for subcarrier e, where ψe,q,i = [ψ1,q[i, e],

. . . ,ψK ,q[i, e]]T ∈ CK . Furthermore we introduce the notation ye,q = [yq[0, e],

. . . , yq[M − 1, e]]T ∈ CM for the received chip sequence for a single data block on
subcarrier e. Using these definitions, we write

ye,q = Deψe,q + ve,q, (4.47)
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where

De =
[

diag
(
u0

)
De, . . . , diag

(
uD−1

)
De

] ∈ C
M×KD, (4.48)

De =


d1[0, e] · · · dK [0, e]

...
. . .

...

d1[M − 1, e] · · · dK [M − 1, e]

 ∈ C
M×K , (4.49)

contains the transmitted symbols for all K users on subcarrier e. For channel es-
timation, the J pilot symbols in (4.37) are used. The remaining M − J symbols
are not known; we replace them by soft decisions that are calculated from the
APP obtained in the previous iteration. This enables a refinement of the chan-
nel estimates when the soft decisions gain reliability from these iterations. For the
first iteration, the soft decisions ãk[m] are set to zero. We define the soft-decision
matrix D̃e ∈ CM×K according to (4.49) by replacing dk[m, e] with d̃k[m, e] =
sk[e]ãk[m] + pk[m, e]. Finally, we define De ∈ CM×KD according to (4.48) by
replacing De with D̃e. Thus, De contains a priori known pilot symbols and soft
decisions for the unknown data symbols.

4.4.4. LMMSE channel estimation

We use the minimum mean square error (MMSE) criterion for estimating the ba-
sis expansion coefficients ψe,q (see [32] for the block-fading single-input single-
output case):

ψ̂e,q = (
D̃

H
e ∆

−1D̃e + IKD
)−1

D̃
H
e ∆

−1ye,q, (4.50)

where ∆ = Λ + σ2
v IM . The elements of the diagonal matrix Λ are defined as

[Λ]m,m = 1
N

K∑
k=1

D−1∑
i=0

u2
i [m] var

{
ak[m]

}
, (4.51)

and the symbol variance is var{ak[m]} = 1 − ã2
k[m]. The rows of D̃e are scaled

by the elements of the diagonal matrix ∆, taking into account the variances of the
noise and of the soft decisions. After ψ̂e,q is evaluated for all e ∈ {0, . . . ,N−1} and
q ∈ {1, . . . ,NR}, an estimate for the time-variant frequency response is given by
ĝk,q[m, e] = ∑D−1

i=0 ui[m]ψ̂k,q[i, e]. Additional noise suppression is obtained if we
exploit the correlation between the subcarriers ĝk,q[m] = FFHĝk,q[m]. Finally, the
data is detected by inserting the channel estimates ĝk,q[m] into (4.39).
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Figure 4.6. BER versus SNR on the uplink for multiuser MIMO-OFDM after 4 iterations and Slepian
basis expansion for D = 3; K = 64 users are static (v = 0 km/h) or moving at v = 100 km/h; receiver
employs NR = 1, 2, or 4 antennas.

4.4.5. Simulation results and discussion

Realizations of the time-variant frequency-selective MIMO channel hk,1,q[n, �] are
generated using an exponentially decaying power-delay profile (PDP) η2[�] =
e−�/4/

∑L−1
�′=0 e−�′/4, � = 0, . . . ,L − 1, with essential support of L = 15 [33]. The

time indices n and � correspond to sampling at rate 1/TC. The PDP corresponds
to a root-mean-square delay spread TD = 4TC = 1 microsecond for a chip rate
of 1/TC = 3.84 · 106 1/s. The autocorrelation for every channel tap is given by
Rh′h′[n, �] = η2[�]J0(2πνDPn) which results in the classical Jakes’ spectrum. We
simulate the time-variant channel using the model in [34] corrected for low veloc-
ities in [35].

The system operates at carrier frequency fC = 2 GHz and the K = 64 users
move with velocity v ∈ {0, 100} km/h. This gives a Doppler bandwidth of BD =
190 Hz corresponding to νD = 0.0039. The number of subcarriers is N = 64 and
the length of the OFDM symbol with cyclic prefix is P = G + N = 79. The data
block consists of M = 256 OFDM symbols with J = 60 OFDM pilot symbols.
The system is designed for a maximum velocity vmax = 100 km/h which results in
D = 3 for the Slepian basis expansion. The base station uses NR ∈ {1, 2, 4} receive
antennas. All simulation results are averaged over 100 independently generated
data blocks.

In Figure 4.6, we illustrate the multiuser MIMO-OFDM uplink performance
with iterative time-variant channel estimation based on the Slepian basis expan-
sion in terms of bit error rate (BER) versus Eb/N0 after 4 iterations. We also display
the single-user bound (SUB) which is defined as the BER for one user and perfect
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channel knowledge at the receiver, as well as the “basis expansion SUB” which is
the achievable BER with a channel estimation scheme based on the Slepian basis
expansion. With increasing number of coherently combined receive antennas, the
channel estimation variance described by varM becomes the limiting factor for the
receiver’s performance.

Simulation results show that an iterative receiver using the Slepian basis ex-
pansion for channel equalization handles a wide range of user velocities under full
load. Accurate channel estimates obtained with the Slepian basis expansion with
soft decisions allow to exploit the Doppler diversity. This leads to decreased BER at
higher velocities.
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Abbreviations

APP A posteriori probability

BCJR Bahl, Cocke, Jelinek, Raviv

BER Bit error ratio

CDMA Code division multiple access

DFT Discrete Fourier transform

EXT Extrinsic probability

ICI Intercarrier interference

ISI Intersymbol interference

LMMSE Linear minimum mean squared error

MAI Multiple access interference

MAP Maximum a posteriori

MIMO Multiple-input multiple-output

MSE Mean squared error

MRC Maximum ratio combining

MUD Multiuser detection

OFDMA Orthogonal frequency-division multiple access

OFDM Orthogonal frequency-division multiplexing

PDP Power delay profile

PIC Parallel interference cancellation

PRUS Perfect root of unity sequence

QPSK Quaternary phase-shift keying

SINR Signal-to-interference-and-noise ratio

SNR Signal-to-noise ratio

SUB Single-user bound

SUMF Single-user matched filter

TU Typical urban
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5
Joint antenna combining
and multiuser detection

Ralf Müller and Laura Cottatellucci

Smart antenna technology combined with code-division multiple-access (CDMA)
is common in 3rd-generation cellular communication systems. The uplink of a
cellular CDMA system where each mobile and each base station is equipped with
multiple-element antennas, is exemplarily explored. Multiple reception due to
multiple receive antennas and multiple reception due to symbol repetition over
time—this is commonly referred to as spreading—are identified as two pecu-
liarities of the same concept. It is shown that joint processing of antenna signals
and multiuser interference is superior to a separated approach in terms of perfor-
mance. Utilizing multistage detection and certain properties of random matrices,
antenna combining, and multiuser detection can be implemented jointly without
the need for matrix multiplications or matrix inversions. Hereby, the complexity
per bit of the presented algorithms scales linearly with the number of users.

5.1. Introduction

In recent years, intense efforts have been devoted to two important lines of works:
multiuser techniques for direct sequence CDMA systems and signal processing
techniques in systems with antenna arrays. Multiuser receivers mitigate the cross-
talk between users taking into account the structure of interference from other
users. Typically, these techniques exploit the degrees of freedom given by the fre-
quency diversity intrinsically present in CDMA systems. Antenna arrays provide
spatial diversity and smart antennas make use of these degrees of freedom to en-
hance the system capacity. The resource pooling result, due to Hanly and Tse
[1], enlightens the fact that degrees of freedom in space and frequency are in-
terchangeable. Moreover, the total number of degrees of freedom is the product
of the degrees of freedom in space and frequency. A system with spreading fac-
tor N and NR receive antennas is in many respects equivalent to a system with a
single antenna and spreading factor NNR. This suggests the idea to treat the two
effects in the same way performing antenna array processing and multiuser de-
tection jointly. Joint processing significantly outperforms techniques that try to
exploit the degrees of freedom in space and time separately. However, the optimal
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algorithms for this task are known for prohibitive complexity. A joint array pro-
cessing and multiuser detection approach implementable in real-time systems is
offered by linear multistage detectors with asymptotic weighting: they reach an
excellent trade-off between performance and complexity. In fact, they have a com-
plexity per transmitted bit which is linear in the number of transmitting antennas
and in the number of users—the same is true for a single user matched filter—and
attain almost the same performance as the joint linear minimum mean-squared
error receiver.

In Section 5.2, we introduce the system model. Sections 5.3 and 5.4 stress
the duality between degrees of freedom in space and frequency and explain the
resource pooling result. Section 5.5 shows why the separation of antenna array
processing and multiuser detection is a severely suboptimum approach by means
of an intuitive example. Linear multistage detectors are defined in Section 5.6.
Their structure and their properties are described in Section 5.7. In Section 5.8, we
introduce asymptotic weighting—this approach works excellently for systems with
many users—to overcome the weight design problem which multistage detectors
can suffer from. The state of the art about multistage receivers with large-systems
weighting is summarized in Section 5.10.

5.2. System model

Consider the uplink (reverse link) of an asynchronous CDMA system where each
of the K users is equipped with NT transmitting antenna elements, and the base
station receiver is equipped with NR receiving antenna elements, the channel is
frequency-selective with impulse responses hk,p,q(t), 1 ≤ k ≤ K , 1 ≤ p ≤ NT,
1 ≤ q ≤ NR and impaired by additive white Gaussian noise vq(t). Transmitting
a block of M symbols and denoting the spreading sequence of user k at antenna
element p and symbol-time m by sk,p,m[n], 0 ≤ n ≤ N − 1 and the respective data
symbol by ak,p[m], 0 ≤ m ≤ M− 1, the signal transmitted by user k from antenna
element q is given (in complex baseband notation) by

bk,p(t) =
N−1∑
n=0

M−1∑
m=0

ψ
(
t − nTc −mNTc

)
ak,p[m]sk,p,m[n] (5.1)

with Tc denoting the time duration of one chip and ψ(t) denoting the chip wave-
form. The latter combines the actual chip waveform, often a rectangular waveform,
and the band-limiting influence of the pulse-shaping filter.

The received signal at antenna element q can be written in continuous time as

rq(t) =
K∑
k=1

NT∑
p=1

∫ +∞

−∞
bk,p(t − τ)hk,p,q(τ)dτ + vq(t). (5.2)
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At the receiver front end, it is passed through a chip matched filter1 ψ∗(−t) giving

r̃q(t) =
∫ +∞

−∞
rq(τ)ψ∗(τ − t)dτ. (5.3)

In order to get sufficient statistics after sampling at the chip rate, the signal r̃q(t)
should be passed through a bank of KNT filters matched to the channel impulse
responses hk,p,q(t), 1 ≤ k ≤ K , 1 ≤ p ≤ NT, before being sampled. Alternatively,
sufficient statistics could be obtained by oversampling r̃q(t) with a rate sufficiently
large to exploit the band-limitation of the chip waveform.

The first approach, matched filtering with the channel impulse response, is
difficult on wireless channels due to the time-variant nature of the channel impulse
response and the difficulties in channel estimation in the continuous time domain.
The second approach, oversampling, is the method of choice for implementations
of UMTS. For chip waveforms with roll-off factor (bandwidth extension factor)
α < 1/2, threefold oversampling is sufficient.

In the oversampled discrete-time domain, the matched filter bank can be im-
plemented by KNT digital filters per receive antenna, one for each user and each
transmit antenna. Their output signals in chip-time n are given by

yk,p,q[n] =
∫ +∞

−∞
r̃q(τ)h∗

k,p,q

(
τ − nTc

)
dτ (5.4)

for user k, transmit antenna p, receive antenna q, and chip-time 1 − L ≤ n ≤
NM +L− 2 with L denoting the length of the longest channel impulse response in
chips.

The discrete-time signal representation in (5.4) is very redundant. It con-
tains replicas of the data symbols in time due to spreading—spreading is only
a repetition code with time-variant mapping of the code symbols to the signal
constellation—and multiple receive antennas. The MKNT data symbols ak,p[m],
1 ≤ k ≤ K , 1 ≤ p ≤ NT, 0 ≤ m ≤ M − 1 are represented by the (MN + 2L −
1)KNTNR received signal samples yk,p,q[n], 1 ≤ k ≤ K , 1 ≤ p ≤ NT, 1 ≤ q ≤ NR,
1 − L ≤ n ≤ NM + L − 2. Without loss of information, the redundant signal
dimensions can be eliminated by spatial and temporal matched filtering:

xk,p[m] =
N∑
n=1

s∗k,p,m[n + mN]
NR∑
q=1

yk,p,q[n + mN]. (5.5)

Note that there is no weighting of the signals of different receive antennas in (5.5),
as the correct weighting with the channel impulse responses has already taken
place in (5.4).

1In practice, the chip matched filter is often implemented in discrete-time via oversampling.
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The overall communication channel from the data symbols ak,p[m] to the
symbol-time sufficient statistics xk,p[m] is a discrete-time KNT-dimensional addi-
tive noise channel. It is canonically described in vector notation by

x[m] =
l∑

�=−l
Φ�[m]a[�] + v[m] (5.6)

with l = �(L− 1)/N�,

x[m] =



x1,1[m]
...

xK ,1[m]
x1,2[m]

...

...
xK ,NT [m]


, a[m] =



a1,1[m]
...

aK ,1[m]
a1,2[m]

...

...
aK ,NT [m]


, (5.7)

where Φm[�] is a matrix-valued time-variant weighting function and v[m] is spa-
tially and temporally correlated Gaussian noise.

5.3. Spreading versus receive antennas

The descriptions of the multiuser MIMO channels (5.5) and (5.4) in both symbol-
time and chip-time are very involved and not so illustrative. More light onto the ef-
fect of the characterizing parametersK ,NT,NR,N is set by the concept of resource-
pooling discovered by Hanly and Tse [1]. For the purpose of explaining the con-
cept, consider the following two simplifications: Let the autocorrelation function
of the chip waveforms fulfill the Nyquist criterion and the impulse responses sat-
isfy

hk,p,q(t) = hk,p,qδ(t) ∀k, p, q. (5.8)

The latter condition means that the channels of all users are frequency-flat and the
users are synchronized.

In discrete-time notation the simplifications introduced above result in

x[m] = Q[m]HQ[m]a[m] + v[m] (5.9)

with the NNR × KNT virtual spreading matrix

Q[m] =


S1[m]H1,1 S2[m]H2,1 · · · SNT [m]HNT,1

S1[m]H1,2 S2[m]H2,2 · · · SNT [m]HNT,2

...
...

. . .
...

S1[m]H1,NR S2[m]H2,NR · · · SNT [m]HNT,NR

 (5.10)
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composed of the N × K true spreading matrices

Sp[m] =


s1,p,m[0] s2,p,m[0] · · · sK ,p,m[0]
s1,p,m[1] s2,p,m[1] · · · sK ,p,m[1]

...
...

. . .
...

s1,p,m[N − 1] s2,p,m[N − 1] · · · sK ,p,m[N − 1]

 (5.11)

depending on symbol-time m and transmit antenna p, and with the diagonal
channel weight matrices Hp,q = diag(h1,p,q,h2,p,q, . . . ,hK ,p,q) depending on trans-
mit and receive antenna indices p and q, and the vector-valued additive temporally
white Gaussian noise v[m] ∼ N (0, Q[m]HQ[m]σ2).

Compared to a communication channel where only a single-element anten-
nas is used, the structure of the mathematical formulation of the channel has not
changed. The effect of multiple transmit antennas is to blow up the user dimen-
sion of the spreading matrix by a factor equal to the number of transmit antennas.
The effect of multiple receive antennas is to blow up the spreading factor dimen-
sion of the spreading matrix by a factor equal to the number of receive antennas.
None of these two effects is surprising: additional transmit antennas create addi-
tional data signals in the same way as additional users do, provided that the data
signals at the multiple transmit antennas are statistically independent (an assump-
tion which is violated if space-time codes are used). Additional receive antennas
create replicas of the same data disturbed by independent noise samples (if the
noise is spatially white) in the same way as spreading creates replicas of the same
data over time which are also disturbed by independent noise samples if the noise
is temporally white. Unless the expansion of the spreading matrix into a virtual
spreading matrix by multiple transmit and receive antennas has a significant effect
on the crosscorrelation properties of the (virtual) spreading sequences, spreading
and multiple receive antennas must be seen as different peculiarities of the same
concept. Transmit antennas and multiple users are then related to each other in
precisely the same way.

For general spreading sequences, it is hard to investigate how much cross-
correlation properties change when a spreading matrix is blown up into a virtual
spreading matrix. Obviously, if the spreading sequences are orthogonal, the vir-
tual ones will not be. In UMTS, however, spreading sequences of different users
are not orthogonal, but pseudorandom sequences. Therefore, it is more natural
and of higher practical importance to consider random spreading sequences as
done in the following.

5.4. Resource pooling for random spreading

Let the chips of the true spreading sequences be jointly independent and identi-
cally distributed random variables with zero mean and variance 1/N . Let the chan-
nel weights of all users corresponding to all antenna pairs be independent random
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variables. Let the channel weights belonging to the same user be identically dis-
tributed with zero mean and variance Pk. These assumptions translate into the
following properties of the system.

(i) Pseudorandom spreading or scrambling sequences are used. The sequences
for different transmit antennas of the same user are different—if they were not, a
severe drawback in performance would occur.

(ii) The dual antenna array channels are spatially uncorrelated and without
line-of-sight component.

(iii) The receiving antennas are located at the same base station, that is, there
is no soft hand-off.

In addition, we will assume that the system is large, that is, there are many
users K � 1 and the spreading factor N � 1 is large, but the load

α = K

N
(5.12)

is fixed. The large-system assumption is accurate up to fractions of decibels in
predicted performance for spreading factors of about N = 32 or greater.

For a channel like (5.9), many performance measures, such as channel capac-
ity with side information and signal-to-interference-and-noise ratios of the most
popular linear multiuser detectors, depend mainly or even solely on the singular
values of the channel matrix and the signal-to-noise ratio. Showing that two chan-
nels have channel matrices with the same singular value distribution is therefore a
strong indicator, in same cases even a proof, that the two channels are equivalent
in terms of their capabilities to transport information.

In order to state the resource pooling result more precisely, we denote the
singular values of any m× n matrix A by σ1(A) ≤ σ2(A) ≤ · · · ≤ σmin{m,n}(A) and
the singular value distribution of the matrix A by

FA(x) = 1
min{m,n}

∑
i:σi(A)≤x

1. (5.13)

Resource pooling. Let the number of users K grow large for fixed load α and fixed
number of transmit and receive antennas NT and NR, respectively, then the following
singular value distributions converge with probability 1 to the same common singular
value distribution F∞(x),

FQ[m](x) �→ F∞(x) ∀m, (5.14)

FS̃H̃p
(x) �→ F∞(x) ∀p, (5.15)

where the NNR × KNT matrix S̃ is composed of independent identically distributed
entries with zero mean and variance 1/(NNR) and the singular value distribution of
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the diagonal matrix H̃p is identical to the singular value distribution of

√√√√√ NR∑
q=1

HH
p,qHp,q. (5.16)

The resource pooling result2 was proven for NT = 1 under a few additional
technical assumptions (the spreading sequences are Gaussian-distributed and the
fading weights are uniformly bounded from above) by Hanly and Tse [1]. A gen-
eralization to arbitrary number of transmit antennas NT and correlated fading is
given in [2] and Section 5.10.

The resource pooling result states that, when going from a single-antenna
CDMA system with KNT users, spreading factor NNR, and a fading distribu-
tion with NRth-order diversity to a multiple-antenna CDMA system with K users,
spreading factor N , NT transmit antennas per user, NR receive antennas at the
base station, and a fading distribution without diversity, most performance mea-
sures stay the same. This means that receive antennas are interchangeable with the
spreading factor—if we double the number of receive antennas, we can halve the
spreading factor and, therefore, save half the spectral bandwidth. It also means
that transmit antennas are interchangeable with users. Note that unlike single-user
antenna array systems, there is no need to have the number of transmit antennas
scale with the number of receive antennas to have the throughput scale with the
number of receive antennas. Adding users—which means adding antennas, since
every user has at least one antenna—does equally well in terms of total, but not
per-user throughput.

5.5. Two misconceptions

In order to exploit the potential of the resource pooling concept, the two conceptu-
ally identical tasks antenna combining and multiuser detection must be performed
jointly. Sometimes a joint approach is questioned for sake of saving complexity. It
is the central aim of this contribution to challenge the idea that a separate approach
can be given justification. In Sections 5.6–5.8, we will show how joint antenna
combining and multiuser detection can be implemented with linear complexity
per bit. In this section, we aim to give an intuitive understanding of why a sepa-
rate approach performs badly. For the latter purpose, we restrict ourselves to two
receive antennas and translate the abstract problem of joint antenna combining
and multiuser detection into the more familiar problem of equalization for analog
double-sideband amplitude modulation.

Consider an analog double-sideband amplitude modulation in the equiva-
lent complex baseband representation. Let the frequency-selective channel be as

2Actually, Hanly and Tse even showed a stronger result, that is, the convergence of the signal-to-
interference-and-noise ratio of the linear minimum mean-squared error multiuser detector.
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Lower sideband

Φnn( f )

f

Upper sideband

|H( f )|

Figure 5.1. Example of transfer function H( f ) and noise power density Φnn( f ) in double-sideband
amplitude modulation.
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Figure 5.2. Transfer functions after combining the two sidebands with (a) an optimized frequency-
dependent weighting versus (b) an optimized frequency-flat weighting.

shown in Figure 5.1. The two sidebands correspond to the two signals received at
the two elements of the receiving antenna array. The magnitudes of the trans-
fer functions in each sideband correspond to the singular value spectra of the
first and the second block row of the virtual spreading matrix Q[m], these are
[S1[m]H1,1 · · · SNT [m]HNT,1] and [S1[m]H1,2 · · · SNT [m]HNT,2]. The phases of the
transfer functions in each sideband correspond to the singular vectors of these two
block rows.

Separating antenna combining and multiuser detection is equivalent to either
ignoring the phase relations when combining the two sidebands or ignoring the
existence of the other sideband when equalizing the channel. Figure 5.2 compares
the resulting signals after combining the sidebands when the phase relations are
taken into account versus them being not taken into account. It is not surprising
that after equalization, a price in terms of a low signal-to-noise ratio within a cer-
tain frequency range has to be paid for ignoring the phase relations (cf. Figure 5.3).
This figure also shows what happens when first an equalizer, which ignores the co-
existence of the sidebands, is applied and then the two equalized (constant phase)
signals are combined. This setting would correspond in multiantenna CDMA to
the case when both receiver chains employ separate multiuser detectors and then
combine the signals of the two separate antenna chains at a later stage—this ap-
proach is common in macrodiversity scenarios where the antenna elements are
not colocated. The result is also not encouraging.

It seems questionable whether there remains a noticeable gain at all due to
the deployment of multiple antennas, that is, two sidebands, if signals are not



R. Müller and L. Cottatellucci 85

Φ′
nn( f )

f

D′( f )

(a)

Φ′′
nn( f )

f

D′′( f )

(b)

Φ′′′
nn( f )

f

D′′′( f )

(c)

Figure 5.3. Noise spectral densities (a) and (b) for the two cases of Figure 5.2 after zero-forcing equal-
ization, respectively, versus (c) an equalization-first, combining-later approach.
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f
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Figure 5.4. Noise spectral densities after reconstruction of the double-sideband signals from its single-
sidebands in Figure 5.3 (dashed and dotted lines) versus direct equalization in the double-sideband
(solid line).

processed jointly, since, in some cases, the mismatch of the detection procedure
could outweigh the benefits of multiple reception. Figure 5.4 addresses this point.
There the previous approaches to reconstruct the double sideband from the over-
lay of single sidebands are compared to straightforward equalization without any
combining. In this case, it indeed appears that, when first combining the two side-
bands separately ignoring the phase relation, the overall worst-case performance
becomes inferior to no combining at all.

5.6. Linear multistage receivers

The sufficient discrete-time statistics (5.6) are fed into a receiver algorithm which
aims to recover the transmitted data symbols in the presence of noise and inter-
ference. This algorithm is a detector in case of uncoded transmission providing
decisions on each individual symbol. If channel coding is used, the receiver algo-
rithm has to perform two tasks: exploit the structure of the interference (detection)
and exploit the code laws (decoding). Optimally, the two tasks are performed by
a jointly exhaustive search. For complexity reasons, they are often performed sep-
arately. Multiuser joint decoders are feasible only if they are implemented by suc-
cessive iterations over detection and decoding.

For sake of simplicity, consider here a separate approach where the detector
output is fed into a decoding unit. In order to not suffer from an unnecessary hit in
performance, the decoder should be fed with soft decisions—these are (in general



86 Joint antenna combining and multiuser detection

nonlinear) estimates calculated from the sufficient statistics in such way that they
minimize the mean-squared error to the true symbols.

The optimum nonlinear function is, in general and also in practice, a sum of
at least 2KNT terms. In practice, the exponential complexity is overcome when the
estimate is constrained to be a linear functional of the sufficient statistics. The best
linear functional, in terms of achievable mean-squared error, for the channel in
(5.9) is given by [3]

d[m] = (
Q[m]HQ[m] + σ2I

)−1
x[m]. (5.17)

The need for one matrix inversion per discrete-time instant makes sure that this
detector is not the method of choice in systems with many users.

In systems with many users, we can make use of the resource pooling result
and the convergence of the singular values of the virtual spreading matrix Q[m]
to some deterministic limit which is, as (5.14) shows, independent from the time
index m. In order to illustrate this approach, consider the general problem of in-
verting a nonsingular matrix R with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λK ′ . Note
that any matrix annihilates its own characteristic polynomial (Cayleigh-Hamilton
theorem)

K ′∏
k=1

(
R − λkI

) = 0. (5.18)

Expanding the product and solving for the identity matrix gives

I =
K ′∑
k=1

αkRk (5.19)

with some coefficients αk which depend only on the eigenvalues λ1 to λK ′ . Multi-
plying both sides of (5.19) by the inverse of R

R−1 =
K ′−1∑
k=0

αk+1Rk (5.20)

shows how the inverse of a K ′ × K ′ matrix can be written as a (K ′ − 1)th-order
matrix polynomial if its eigenvalues are known.

The eigenvalues of the matrix to be inverted for the linear minimum mean-
squared error (LMMSE) detector (5.17) are given by the squared singular values
of the virtual spreading matrix shifted by the noise variance. Due to the resource
pooling result, they are time-invariant, if the number of users is large, and so are
the coefficients of the matrix polynomial in (5.20).

In practice, one would neither like to calculate the matrix polynomial up to
the full order nor need to do so. In fact, the number of terms to achieve satisfactory
performance for applications in LMMSE detectors is quite small (less than ten)
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and does not scale with the number of users [4]. Therefore, we will choose the
order of the polynomial to be D − 1 with D � K ′:

d[m] ≈
D−1∑
k=0

w̃k
(

Q[m]HQ[m] + σ2I
)k

x[m] (5.21)

=
D−1∑
k=0

wk
(

Q[m]HQ[m]
)k

x[m]. (5.22)

This procedure to approximate the LMMSE detector was first proposed by
Moshavi et al. [5].

It is not a trivial problem to choose the right coefficients wk for an approxi-
mating polynomial with reduced order. In particular, it is not a wise choice to just
use the firstD coefficients of the full-order polynomial. Moshavi et al. [5] proposed
to choose the coefficients in order to minimize the mean-squared error between
the output of the exact LMMSE detector and its approximation. This leads to the
following system of Yule-Walker equations for the choice of the coefficients:


m1

...
mD

 =


m2 + σ2m1 · · · mD+1 + σ2mD

...
. . .

...
mD+1 + σ2mD · · · m2D + σ2m2D−1




w0

...
wD−1

 (5.23)

with the empirical eigenvalue moments

mn = 1
K ′

K ′∑
k=1

λnk . (5.24)

In complete analogy to the full-order polynomial, the coefficients depend only on
the singular values of the virtual spreading matrix denoted by

√
λk, 1 ≤ k ≤ KNT.

The resource pooling result states that for many users the singular value dis-
tribution (and thus all its moments) of the virtual spreading matrix for multiple-
antenna systems is identical to the corresponding singular value distribution in a
single antenna-system with an appropriately modified fading distribution. Thus,
we can apply the same approach to find the empirical eigenvalue moments in
CDMA systems with multiple antennas as in CDMA systems with single-element
antennas. This approach is presented in Section 5.8. For considerations concerning
asynchronous systems, the reader is referred to [6].

5.7. Block structure of receiver

Approximation (5.22) leads to the very simple implementation structure of the lin-
ear multistage receiver shown in Figure 5.5. The receiver consists of D−1 identical
stages each of which performs a respreading of the input signals (filtering by the
“virtual” spreading matrix Q[m]) and subsequent matched filtering (filtering by
Q[m]H).
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Figure 5.5. Linear multistage receiver structure.

Figure 5.5 suggests an alternative interpretation of the linear multistage re-
ceiver as subspace technique, an approach followed in [4]. Each stage provides the
projection of the received signal onto a one-dimensional subspace. The subsequent
weighting corresponds to a bank of filters working in a D-dimensional space. In
contrast to other subspace methods, this technique has the following properties.

(i) It does not require tracking of the signal subspace.
(ii) It shows the surprising property that the rank D required to achieve a

target SINR (e.g., within a small ε of the full-rank LMMSE receiver) does not scale
with the system size, that is, with KNT and NNR. The signal space becomes larger
but the dimension of the subspace needed to achieve certain performance level
saturates.

(iii) A few stages are sufficient for near full-rank performance. The output
SINR of the reduced rank receiver converges exponentially fast in the rank D to-
wards output SINR of the full-rank receiver.

(iv) The complexity per transmitted bit of the projection module in Figure 5.5
scales in the same way withKNT as the complexity of the single-user matched filter.
However, the computation of the empirical eigenvalue moments has cubic com-
plexity in KNT. This drawback can be overcome using the asymptotic weighting
discussed in Section 5.8.

5.8. Large-system weighting

The empirical moments md needed in (5.23) to calculate the weights depend on
the spreading matrices Sp[m], p = 1, . . . ,NT and the channel realizations. Thus,
the weights have to be recomputed if one of these parameters change. In mobile
communications the channel may change rapidly and the spreading matrices may
vary from symbol to symbol (e.g., in the frequency-division duplex mode in
UMTS). The weights have to be updated at each symbol interval or, at most, at
each frame interval. When the size of the virtual spreading matrix Q[m] is large,
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Figure 5.6. First two moments for 100 realizations of Q[m] with i.i.d. Gaussian entries.

it is computationally too demanding to determine the detector weights according
to (5.23). However, it is possible to exploit a property of random matrices which
allows for a significant simplification of the weight-computation. With some con-
ditions, usually fulfilled in practice, for the virtual spreading matrix Q[m], all em-
pirical moments md converge to deterministic limits as the system size grows large:

lim
K=αN→∞

md = µd. (5.25)

The limit µd depends on a small set of system parameters and can be computed
without much effort. Large-system weights approximate the exact weights in (5.23)
by substituting the empirical moments md with their asymptotic limits µd. When
the system size is sufficiently large, md ≈ µd and the performance degradation due
to this approximation is negligible.

We consider a simple example. Let all the entries of Q[m] be statistically inde-
pendent and identically distributed (i.i.d.) random variables with zero mean and
unitary variance. Consider matrices Q[m] with different sizes, but identical aspect
ratios.3 For each of them, generate 100 independent realizations. In Figure 5.6, the
moments m1 and m2 are shown for all realizations. It is apparent that m1 and m2

converge to 1 and 3/2, respectively, as the size of Q[m] increases. The asymptotic
moments µd depend only on the aspect ratio β and are given by

µd =
d−1∑
i=0

(
d
i

)(
d

i + 1

)
βi

d
. (5.26)

We consider now the matrix Q[m] with the structure defined in (5.10). More-
over, assume the following:

(i) the elements sk,p,m are i.i.d. with zero mean and variance 1/N ,

3This is the ratio of the number of columns to the number of rows of a matrix.
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Initialization: let β = α(NT/NR), ρ0(x) = 1, and µ0 = β−1.
Recursion:

(1) define ρd+1(x) = βx
∑d

s=0 ρsµd−s and write it as polynomial in x,
(2) replace all the monomials x, x2, . . . , xd+1 in the polynomial ρd+1(x)

by η1,η2, . . . ,ηd+1, respectively, and assign the result to µd+1.

Algorithm 5.1

(ii) the channel fading coefficients hk,p,q are independent across k, p, and
q. Their distribution is uniform in phase over [0, 2π) and arbitrary, but
upper bounded4 in amplitude. For a given transmitting antenna p and
given user k, the fading coefficients hk,p,1,hk,p,2, . . . ,hk,p,NR are identi-
cally distributed. The assumption of independence is verified in scenar-
ios with rich scattering and sufficient separation between antennas. The
identical distribution of the fading coefficients for a given transmitting
antenna element models microdiversity scenarios, in which all the re-
ceive antenna elements are placed at the same base station.

Now, we define the powers

Pk,p =
NR∑
q=1

∣∣hk,p,q
∣∣2

, (5.27)

and denote with ηd the dth moment of their cumulative distribution FP(π), that
is, ηd = ∫

πddFP(π). The positive asymptotic moments µd can be determined from
the moments of the powers ηd by the recursive Algorithm 5.1.

The asymptotic eigenvalue moments for Q[m] depend only on the aspect ra-
tio and on the eigenvalue moments of the distribution FP(π). They are easily com-
puted. The first six asymptotic eigenvalue moments are

µ1 = η1,

µ2 = βη2
1 + η2,

µ3 = β2η3
1 + 3βη1η2 + η3,

µ4 = β3η4
1 + 6β2η2

1η2 + 4βη1η3 + 2βη2
2 + η4,

µ5 = β4η5
1 + 10β3η3

1η2 + 10β2η2
1η3 + 10β2η1η

2
2 + 5βη1η4 + 5βη2η3 + η5,

µ6 = 20β3η3η
3
1 + 3βη2

3 + 6βη4η2 + 5β2η3
2 + 15β4η4

1η2 + 6βη5η1

+ 15β2η4η
2
1 + 30β3η2

1η
2
2 + 30β2η1η2η3 + β5η6

1 + η6.

(5.28)

4The widely used Rayleigh distribution is not upper bounded, but by physical reasons any fading
coefficient is upper bounded.
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Figure 5.7. BER versus Eb/N0 for β = 0.5 (K = 64,N = 64,NT = 2,NR = 4,D = 5).

5.9. Performance

In this section, we study the performance of linear multistage receivers with as-
ymptotic weighting proposed in Section 5.8 and compare it to the exact weighting
in (5.23), the large-system approximation of the multistage Wiener receiver in Q,
described in Section 5.10, and the full-rank LMMSE receiver.

The simulation results presented in this section were obtained for uncoded
transmission in flat Rayleigh fading, using π/4-offset QPSK modulation, and as-
suming perfect knowledge of the channel. The receivers are compared in terms of
their bit error rate (BER) evaluated as a function of the normalized signal-to-noise
ratio Eb/N0 where Eb is mean energy per bit and N0 is the one-sided noise spec-
tral density. Figure 5.7 shows the BER versus Eb/N0 for a five-stage detector and
β = 0.5 (K = 64, N = 64, NT = 2, NR = 4). The performance degradation due
to the large system approximation of weights is completely negligible. Figure 5.8
shows the performance improvements of the detector with large-system weighting
for increasing number of stages.

5.10. Related works

The linear multistage receivers in (5.22) with weighting (5.23) belong to a wider
class of receivers described by

d̃[m] =
D−1∑
k=0

Wk
(

Q[m]HQ[m]
)k

x[m] (5.29)

with Wk = diag(wk,1,wk,2, . . . ,wk,K ′).
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Figure 5.8. BER versus Eb/N0 for β = 0.5 for D = 2, . . . , 5 (K = 64,N = 64,NT = 2,NR = 4).

The weighted linear parallel interfering cancelling (W-PIC) receivers, gener-
alized to multiple-antenna systems provide a simple example of receivers in the
class described by (5.29).

A nonadaptive implementation of the multistage Wiener filters [4] is obtained
from (5.29) enforcing Wd, d = 0, . . . ,D − 1, to minimize the mean-squared er-
ror E{‖d̃[m] − d[m]‖2}. Throughout, we refer to it as the multistage Wiener fil-
ter in Q. This receiver was proposed and its asymptotic performance for CDMA
systems in flat fading channels analyzed in [7]. Let Qk′[m] be the matrix ob-
tained from Q[m] by suppressing the virtual spreading corresponding to the signal
k′. Under the conjecture5 that, at least asymptotically, E{∏k xH

k′(QH
k′Qk′) jk xk′ } =∏

k E{xH
k′(QH

k′Qk′) jk xk′ } with jk ∈ N, the large-system approximation of the
weights for the multistage Wiener filter for the MIMO channel model (5.9) is a
straightforward extension of the results in [1, 7]. The weights for estimating the
signal transmitted by antenna p of user k can be obtained from (5.23) by sub-
stituting md, d = 1, . . . , 2D, with ρd(Pk,p). The multistage Wiener filter performs
marginally better than the receiver discussed in Section 5.8, when applied in sys-
tems with received power imbalances among users [7] (see Figure 5.7). The two
receivers coincide for equal received powers at the receiver front end [7]. However,
the multistage Wiener filter in Q requires the inversion of equation system (5.23)
for each transmitting antenna of each user. This drawback makes it less attractive
for implementation. Often, an alternative linear multistage receiver is considered
in literature: the multistage Wiener filter in Qk′ . For each transmitted signal k′, it is

5This conjecture is supported by simulations (see Figure 5.7).
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given by

d̃[m] =
D−1∑
k=0

wk
(

Qk′[m]HQk′[m]
)k

xk′[m], (5.30)

where xk′[m] is the matched filter output corresponding to the signal k′. The
weights satisfy


τ1

...
τD

 =


τ2 + σ2τ1 + τ2

1 · · · τD+1 + σ2τD + τ1τD
...

. . .
...

τD+1 + σ2τD + τDτ1 · · · τ2D + σ2τ2D−1 + τ2
D




w0

...
wD−1

 (5.31)

with τ1 = Pk,p and τd = Pk,pβµd−1. This detector has been erroneously consid-
ered completely equivalent to the multistage Wiener filter in Q and widely studied
since it is easier to analyze. The two receivers are equivalent from the performance
point of view only. However, their implementations differ considerably. The sub-
space basis of the multistage Wiener filter in Q can be computed jointly for all the
transmitted signals, as shown in Figure 5.5, and it has linear complexity order per
signal. The subspace basis of the multistage Wiener filter in Qk′ has to be com-
puted again for each transmitted signal and the filter has a quadratic complexity
order per signal, as the linear MMSE receiver.

The convergence rate of the multistage receiver output SINR toward the full-
rank LMMSE receiver output SINR is studied in [8]. A unified framework for the
asymptotic performance analysis of multistage detectors (5.29) with any kind of
weighting in CDMA systems is provided in [9]. The weighting approximation for
large systems was proposed in [10] for communication over the AWGN channel.
Afterwards, much effort has been devoted to extend these results to more real-
istic scenarios. We can distinguish two large groups: one assumes the spreading
matrix to be a completely random matrix without additional constraints in order
to model systems with pseudonoise scrambling sequences. The second group fo-
cuses on unitary random matrices to model systems with orthogonal spreading
sequences. The extension of large-system weighting to CDMA systems in uplink
with flat fading in [9] belongs to the first group. An approximation of the widely
linear MMSE receiver for BPSK modulation in flat fading channels is proposed
in [11]. CDMA systems in uplink with multipath fading channels are studied in
[12] while the multistage Wiener filter in Qk′ for the downlink is analyzed in [13].
MMSE analysis of systems with large unitary random matrices has been intro-
duced first in [14]. This result allows the extension of asymptotic analysis based
on random matrices to OFDM and multicarrier CDMA systems. Large systems
weighting for CDMA systems in downlink with multipath fading channels and
unitary random spreading matrices has been proposed in [13]. In [1], the exten-
sion of the resource pooling result for scenarios with microdiversity to scenarios
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with macrodiversity, in which the receive antennas are not colocated is conjec-
tured. The resource pooling result by Hanly and Tse [1] has been generalized to
CDMA systems with correlated antennas in [2]. The general result includes, as
special cases, the microdiversity and macrodiversity scenarios in [1] and provides
a rigorous proof for macrodiversity. In addition, it allows for arbitrary distribu-
tions of the fading coefficients including line-of-sight scenarios.

Generalized resource pooling. Let hk,p = [hk,p,1, . . . ,hk,p,NR ]T be the known vector
of channel coefficients between the pth antenna of user k and the receive antennas.
Let hk,p be a realization of an NR-dimensional random column vector h such that its
distribution converges almost surely as K → ∞ to a limit distribution function Fh(h)
with upper bounded support. Then, as N ,K → ∞ with K/N → α and NR and NT

fixed, the SINR at the receiver output for the pth antenna signal of user k conditioned
on hk,p converges almost surely to the deterministic constant

lim
N ,K→∞

SINRk,p
a.s.= hH

k,pChk,p, (5.32)

where C is the unique positive definite NR × NR matrix solution to the fixed point
equation

C−1 = σ2I + αNT

∫
hhH

1 + hHCh
dFh(h). (5.33)

The linear multistage approach is extended to estimation of multipath fading
channels for synchronous CDMA [15]. The effects of imperfect channel knowl-
edge on the performance of linear multistage receivers is analyzed in [15].

In the previous works only synchronous systems have been considered. The
impact of asynchronicity on multistage receivers for CDMA systems in flat fading
channels has been studied in [6, 16]. A slightly modified version of the receiver
structure in Figure 5.5 has been proposed. In contrast to the linear MMSE receiver
which suffers from performance degradation due to truncation effects in asyn-
chronous systems, the proposed implementation of multistage detectors is not af-
fected by truncation effects [16]. Chip asynchronicity is taken into account in [6]
and an algorithm to determine the large-system weighting is given.
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Abbreviations

AWGN Additive white Gaussian noise

BER Bit error rate

BPSK Binary phase-shift keying
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CDMA Code-division multiple-access

LMMSE Linear minimum mean-squared error

MIMO Multi-input multi-output

OFDM Orthogonal frequency-division multiplex

QPSK Quadrature phase-shift keying

SINR Signal-to-interference-and-noise ratio

W-PIC Weighted linear parallel interfering cancelling
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6
Synchronization for MIMO systems

Frederik Simoens, Henk Wymeersch,
Heidi Steendam, and Marc Moeneclaey

In this contribution we consider the problem of carrier and symbol synchroniza-
tion in a MIMO context. We assume the transmission of frames, containing pilot
symbols and coded symbols over a flat fading MIMO channel. From the likelihood
function related to the above scenario, we derive iterative algorithms for estimat-
ing the carrier frequency offset, the time delay, and the channel gains. These algo-
rithms exchange information between the detector stage and the estimator stage.
In order to function properly, accurate initial estimates are required. We derive
algorithms that provide these initial estimates, and compare their performance to
the Cramér-Rao lower bound on the estimator error variance. The initial estimates
are further refined by means of iterative algorithms. We provide performance re-
sults of a few selected iterative algorithms in terms of their estimator error vari-
ance, and compare them to the Cramér-Rao bound. Finally, the impact of the es-
timation algorithms on the BER performance is determined.

6.1. Introduction

Using multiple transmit and receive antennas in wireless flat-fading channels has
been advocated as a means to increase capacity and mitigate fading effects [1]. In
order to fully exploit the potential of high spectral efficiency, a number of cod-
ing structures for MIMO systems have been presented: they include multidimen-
sional trellis-coded modulation [2], space-time (ST) block codes based on orthog-
onal design [3, 4], bit-interleaved coded modulation (BICM) [5, 6], and MIMO
multilevel coding [7]. These (space-time) coded schemes assume ideal coherent
detection, which means that the complex channel gains have to be estimated ac-
curately before data detection can take place. In addition, timing estimation and
carrier frequency recovery have to be carried out in order to perform optimum
demodulation.

To achieve accurate synchronization without resorting to a large amount of
pilot symbols, the parameter estimation algorithm should also make use of the
data portion of the frame containing the coded symbols. Recently, a great effort
is being devoted to develop efficient estimation techniques using soft information
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from the decoding process, in order to fully exploit the code properties during
estimation. In particular, the expectation-maximization (EM) algorithm [8] is be-
coming an attractive tool to carry out iterative joint estimation and decoding.

Most of the current technical literature in the field of estimation for MIMO
channels has been focused on channel estimation. Iterative receivers with differ-
ent coding schemes have been proposed using the EM algorithm for joint channel
estimation and data detection in a MIMO context [9, 10, 11, 12]. The EM algo-
rithm is utilized in [9] to perform joint noise variance and channel estimation for
fast fading channels with space-time coding and MAP decoding. An MMSE chan-
nel estimator that exploits knowledge of the transmitted symbols via a modified
Viterbi decoder is considered in [10, 11]. In [12], joint MIMO channel estima-
tion and MAP ST-BICM decoding is performed. Extensions to ST-OFDM have
been proposed in [13]. Rather ad hoc methods have been considered for iterative
decoding and MIMO channel estimation, such as frequency selective channel es-
timation with decision feedback for space-time codes with Viterbi decoding [14]
and MAP decoding [15].

All these channel estimation algorithms cause only a small degradation in BER
performance as compared to the ideal case with known channel state information
(CSI). However, the performance of these schemes may seriously degrade in the
presence of synchronization errors, that is, when the estimates of the frequency
offset or the symbol timing are not sufficiently accurate. In comparison with the
abundant literature on (iterative) channel estimation, the literature on synchro-
nization in a MIMO context is quite scarce: the authors of [16] investigated the
performance of data-aided joint MIMO channel and frequency offset estimators,
while data-aided joint time and frequency synchronization for MIMO OFDM is
considered in [17].

Here we propose an iterative EM-based receiver that includes the estimation
of all of the above-mentioned parameters, as was done for conventional single-
input single-output channels [18, 19]. Since initial estimates are required for a
number of parameters, we also show how these may be obtained using conven-
tional data-aided (DA) or non-data-aided (NDA) algorithms.

This contribution is structured as follows. In Section 6.2 we present the MIMO
system setup. As the EM algorithm is crucial to the operation of the considered
receiver, Section 6.3 gives a brief general overview about how this algorithm per-
forms ML estimation in an iterative way. In Section 6.4 the EM algorithm is ap-
plied to the MIMO system for performing synchronization and channel estima-
tion, while in Section 6.5 we consider conventional estimation algorithms to ini-
tialize the iterative EM estimation algorithm. Simulation results are presented in
Section 6.7. Finally, conclusions are drawn in Section 6.8.

6.2. System model

We consider a flat-fading MIMO transmission system with NT transmit and NR

receive antennas. The transmitter is shown in Figure 6.1: a block of information
bits is channel-encoded, bit-interleaved (denoted by Π in Figure 6.1), and mapped
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Figure 6.1. MIMO transmitter with channel coder and bit-interleaving.

onto a normalized Mc-point signaling constellation Ω. Pilot symbols are multi-
plexed with the coded symbols, and the resulting frame, consisting of MNT sym-
bols, is then split into NT subblocks of length M. These subblocks are each sent
over a different transmit antenna using a unit-energy square root cosine roll-off

pulse p(t).
The fading channel is characterized by a response matrix H of size NR × NT:

the (q, p)th component of H is denoted hqp, and represents the channel gain from
the pth transmit antenna to the qth receive antenna. We consider a block-fading
channel: the channel matrix H is constant during a frame, but can change from
one frame to the next. Assuming Rayleigh fading, the components hqp are mod-
eled as statistically independent complex-valued Gaussian random variables; their
real and imaginary parts are statistically independent with zero mean and variance
equal to 1/2, yielding E[|hqp|2] = 1. In addition, the path from the pth transmit
antenna to the qth receive antenna is affected by a propagation delay (τ) and a
carrier frequency offset (F), which are assumed to take on the same values for
all paths; this assumption is accurate when the path delay differences are much
smaller than the symbol duration, there is a common oscillator for up-converting
the NT transmitted signals, and a common oscillator for down-converting the
NR received signals. Finally, at each receive antenna the signal is corrupted by a
complex-valued AWGN process; the noise processes at the different receive anten-
nas are statistically independent. Hence, the input signal at the qth receive antenna
can be written as (q = 1, . . . ,NR)

yq(t) =
M−1∑
m=0

NT∑
p=1

hqpa
p
mp(t −mT − τ) exp( j2πFt) + vq(t), (6.1)

where a
p
m is the mth symbol transmitted on the pth transmit antenna, T is the

symbol interval, and vq(t) is a complex-valued zero-mean AWGN process with in-
dependent real and imaginary parts, each having a power spectral density of N0/2.
Es = E[|apm|2] will denote the energy per transmitted symbol (which is assumed
to be the same for all m and all p). Using vector notation, (6.1) becomes

y(t) = H exp( j2πFt)
M−1∑
m=0

amp(t −mT − τ) + v(t)

� s(t) + v(t),

(6.2)
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where y(t) = [yq(t)]Tq=1···NR
is the vector ofNR received samples, am = [a

p
m]Tp=1···NT

is the vector consisting of NT symbols transmitted at the different antennas at in-
stant m, H = [hqp]q=1···NR, p=1···NT is the channel matrix, s(t) = [sq(t)]Tq=1···NR

contains the NR useful contributions, and v(t) = [vq(t)]Tq=1···NR
consists of the NR

complex white noise processes. We denote by A the NT ×M space-time matrix of
transmitted symbols: A = [a0, a1, . . . , aM−1].

The main task of the receiver is to reliably detect the transmitted symbols A. In
order to do so, however, the receiver needs accurate estimates of the channel ma-
trix H, the carrier frequency offset F, and the propagation delay τ. In Section 6.4
we will consider iterative estimation of these parameters based on the expectation-
maximization (EM) algorithm. Section 6.3 gives a general overview of the opera-
tion of the EM algorithm and provides the basic equations to be used in Section
6.4.

6.3. ML estimation through the EM algorithm

Assume we want to estimate a parameter vector b from an observation r in the
presence of a so-called nuisance vector a, with distribution p(a). In the context
of the MIMO transmission system, a denotes the coded symbols, whereas b con-
tains the synchronization parameters (frequency offset and symbol timing) and
the channel gains. It will turn out to be convenient to decompose the time delay
τ as τ = kτT + ετ , with −T/2 ≤ ετ < T/2 and kτ integer; in these cases, the time
delay is represented by two parameters, that is, the continuous parameter ετ and
the discrete parameter kτ . Therefore, in the following, the parameter b is allowed
to contain both continuous and discrete parameters.

The maximum likelihood (ML) estimate of b̂ML of b maximizes the log-like-
lihood function (LLF):

b̂ML = arg max
b̃

{
ln p

(
r|b̃)}, (6.3)

where

p
(

r|b̃) =
∫

a
p
(

r|a, b̃
)
p(a)da (6.4)

denotes the likelihood function. Often p(r|b̃) is very difficult to calculate. The
EM algorithm is a method that iteratively solves (6.3). Defining the complete data
x = [r, a], the EM algorithm breaks up in two parts: the expectation part (6.5) and
the maximization part (6.6):

Q
(

b̃, b̂(i)
)
=

∫
x
p
(

x|r, b̂(i)
)

ln p
(

x|b̃)dx, (6.5)

b̂(i+1) = arg max
b̃

{
Q
(

b̃, b̂(i)
)}

. (6.6)
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Figure 6.2. MIMO receiver with EM estimation.

It has been shown that b̂(n) converges to a stationary point of the LLF under

fairly general conditions [8]. However, when the initial estimate (b̂(0)) is not suf-
ficiently close to the ML estimate or when b contains discrete components, the
EM algorithm may converge to a local maximum or a saddle point, instead of
the global maximum [20, 21]. To avoid the convergence problems associated with
(finite-valued) discrete parameters, we propose the following approach [22]: let
b = {bd, bc}, where bd and bc denote the discrete and continuous components of
b, respectively. We assume that bd can only take on values in a finite set Bd. We
keep bd fixed to some value b̃d ∈ Bd and iteratively update only bc:

b̂(i+1)
c = arg max

b̃c

{
Q
({

b̃d, b̃c
}

,
{

b̃d, b̂(i)
c

})}
. (6.7)

We denote by b̂c(b̃d) the estimate obtained after convergence of (6.7). The final
estimate of bd then becomes

b̂d = arg max
b̃d∈Bd

{
Q
({

b̃d, b̂c
(

b̃d
)}

,
{

b̃d, b̂c
(

b̃d
)})}

, (6.8)

while the final estimate of bc is given by b̂c(b̂d).
The EM algorithm can easily be extended to acquire the maximum a posteri-

ori (MAP) estimate of b, by taking the a priori distribution p(b) into account in
(6.5).

6.4. Code-aided estimation for MIMO systems

In this section, we apply the EM algorithm to the MIMO system from Section 6.2,
with b � {H,F, τ} the parameters to be estimated and a � {A} the nuisance
parameters. The resulting receiver structure is shown in Figure 6.2. It operates
by iterating between the detection stage and the estimation stage: an estimate of
b is provided to the detector, which computes marginal posterior probabilities

P(a
p
m|y, b̂(i)) of the coded symbols. These probabilities are then used by the esti-

mator to update (and improve) the estimate of b. The computation of P(a
p
m|y, b̂(i))

requires the presence of a MAP detector. Such a detector will be described in
Section 6.4.3.
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6.4.1. Expectation step

Denoting by y a vector representation of the received signals, obtained by expand-
ing y(t) onto a suitable basis, we now make use of the EM algorithm for estimating
b = {H,F, τ}. The conditional LLF (conditioning is on A) is given by

ln p
(

y|A, b
) ∝ −

∫ +∞

−∞

( NR∑
q=1

∣∣yq(t) − sq(t)
∣∣2

)
dt (6.9)

with sq(t) denoting the useful signal at the qth receive antenna (i.e., the qth com-
ponent of s(t) from (6.2)). It can easily be seen that

NR∑
q=1

∫ +∞

−∞

∣∣sq(t)
∣∣2
dt = tr

(
HAAHHH

)
, (6.10)

where tr(X) denotes the trace of the square matrix X. Similarly,

NR∑
q=1

∫ +∞

−∞

(
yq(t)s∗q (t)

)
dt = tr

(
Z(τ,F)AHHH

)
(6.11)

with Z(τ,F) denoting the NR ×M matrix of matched filter outputs:

[
Z(τ,F)

]
q,m =

∫ +∞

−∞
yq(t)p∗(t −mT − τ) exp(−2πFt)dt. (6.12)

Note that the received signal yq(t) is first frequency-corrected by multiplying yq(t)
with exp(− j2πFt), and the resulting signal is applied to the matched filter; in
Section 6.5 we will point out that the order of frequency correction and matched
filtering can be reversed when |F|T � 1, yielding a considerable implementation
advantage. Substituting (6.10) and (6.11) in (6.9) and dropping terms that do not
depend on A or b, the conditional LLF becomes

ln p
(

y|A, b
) ∝ − tr

(
HAAHHH

)
+ 2�(

tr
(

Z(τ,F)AHHH
))
. (6.13)

The E-step in the EM algorithm can be written as

Q
(

b|b̂(i)) = Ea
[

ln p
(

y|A, b
)|y, b̂(i)]

= − tr
(

HAAH
(i)

HH
)

+ 2�
(

tr
(

Z(τ,F)AH
(i)

HH
)) (6.14)

with

AAH
(i) = Ea

[
AAH |y, b̂(i)],

AH
(i) = Ea

[
AH |y, b̂(i)]. (6.15)
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Since (6.15) can be written as Ea[
∑

amaHm|y, b̂(i)], it suffices to provide the
estimator with the marginal posterior probabilities of the coded symbol vectors

P(am|y, b̂(i)). In Section 6.4.3, we explain how these probabilities can be computed
using a MAP detector.

6.4.2. Maximization step

Substitution of (6.14) in (6.6) yields

b̂(i+1) = arg max
b

{
− tr

(
H̃AAH

(i)
H̃H

)
+ 2�

(
tr
(

Z(τ̃, F̃)AH
(i)

H̃H
))}

. (6.16)

The maximization problem can be solved as follows. We first note that for fixed
(τ̃, F̃), (6.16) can be maximized analytically with respect to H̃, yielding

Ĥ(i+1) = Z(τ̃, F̃)AH
(i)(

AAH
(i))−1

. (6.17)

Substituting (6.17) into (6.16) results in

(
τ̂(i+1), F̂(i+1)) = arg max

τ̃,F̃
�
(

tr
(

Z(τ̃, F̃)AH
(i)(

AAH
(i))−1

AZH(τ̃, F̃)
))

(6.18)

while Ĥ(i+1) is finally obtained by evaluating (6.17) at (τ̂(i+1), F̂(i+1)).

6.4.3. Detector operation

We now determine the marginal posterior probabilities of the coded symbol vec-
tors, based on the received signal and the current estimates of H, τ, and F. As
the computation of the true posterior probabilities has a complexity that increases
exponentially with the frame length M, we will focus on a near-optimal iterative
detector, operating according to the turbo principle [6, 12]. This implies that all
posterior probabilities will be factored as the product of an a priori probability
(with subscript a) and an extrinsic probability (with subscript e). According to the
turbo principle, the a priori probability of a certain random variable should not
be used to compute its extrinsic probability.

The symbol posterior probabilities can be decomposed into

P
(
a
p
m|y, b

) = CPe
(
a
p
m
)
Pa(a

p
m), (6.19)

where C is a normalization constant and the extrinsic symbol probability is given
by, (for α ∈ Ω)

Pe
(
a
p
m = α

) = P
(

y|apm = α, b
)

=
∑

am:a
p
m=α

P
(

y|am, b
) ∏
p′ �=p

Pa
(
a
p′
m
) (6.20)
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Figure 6.3. Iterative detector.

with

P
(

y|am, b
) = 1

(2π)NRσ2NR
exp

(
− 1

2σ2

∣∣zm − Ham
∣∣2

)
, (6.21)

wherein zm is the mth column of Z(τ,F), σ2 = 2Es/N0.
Similarly, the bit posterior probabilities are given by

P
(
a
p
m[l]|y, b

) = C′Pe
(
a
p
m[l]

)
Pa

(
a
p
m[l]

)
(6.22)

with C′ a normalization constant and, for β ∈ {0, 1},

Pe
(
a
p
m[l] = β

) = P
(

y|apm[l] = β, b
)

=
∑

α∈Ω:α[l]=β
Pe

(
a
p
m = α

)∏
l′ �=l

Pa
(
a
p
m[l′]

)
, (6.23)

where a
p
m[l] denotes the lth bit of the bit sequence mapped to the symbol a

p
m.

Finally, bit a priori probabilities can be converted into symbol a priori probabilities
according to

Pa
(
a
p
m
) =

∏
l

Pa
(
a
p
m[l]

)
. (6.24)

Note that the purpose of the interleaver is two-fold: it makes the transmitted sym-
bols on each antenna as well as the bits within each constellation symbol essentially
independent. This allows us to write expressions (6.20) and (6.23), respectively.

In order to compute all the above-mentioned probabilities, we consider a de-
tector as shown in Figure 6.3. It consists of four main blocks.

(i) Block I is the equalizer: it converts the matched filter output samples Z into
extrinsic symbol probabilities (Pe(a

p
m)) according to (6.20) and (6.21). It uses the
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a priori symbol probabilities (Pa(a
p′
m )) computed by block IV and the estimates of

{H,F, τ}.
(ii) Block II is the demapper: it takes the extrinsic symbol probabilities

(Pe(a
p
m)) from block I and computes extrinsic bit probabilities Pe(a

p
m[l]) accord-

ing to (6.23). It uses the a priori bit probabilities (Pa(a
p
m[l′])) computed by decoder

(block III).
(iii) Block III is a MAP decoder. The decoder computes from the extrinsic bit

probabilities Pe(a
p
m[l]) the posterior bit probabilities (P(a

p
m[l]|y, b̂(i))) by using the

properties of the code. Taking for each bit the ratio of its posterior probability to
its extrinsic probability yields the a priori probabilities Pa(a

p
m[l]) that are used as a

priori information for block II.
(iv) Block IV converts a priori information on the bits (Pa(a

p
m[l])) to a pri-

ori information on the symbols (Pa(a
p
m)) according to (6.24). These are used by

block I.
To start this iterative detector, we initialize Pa(a

p′
m ) in (6.20) and Pa(a

p
m[l′])

in (6.23) with a uniform distribution. The combination of block II and III can be
seen as a standard BICM-ID (bit-interleaved coded modulation with iterative de-
coding) scheme [23]. When the detector has reached convergence after a number
of iterations, the computed posterior probabilities of the coded bits are assumed
to be good approximations of the true posterior bit probabilities. Final decisions
on the bits are made based on these probabilities.

The posterior probabilities of the coded symbol vectors are finally obtained as

P
(

am|y, b
) = C′′Pe

(
am

)
Pa

(
am

) = C′′′P
(

y|am, b
)∏

l,p

Pa
(
a
p
m[l]

)
. (6.25)

These symbol vector probabilities are required for the EM estimator in (6.14).
In principle, the proposed EM algorithm is limited to codes for which (approx-
imate) symbol vector MAP decoding, as outlined above, is computationally fea-
sible. Such codes include convolutional codes, turbo codes [24, 25], LDPC [26]
codes, RA (repeat-accumulate) codes [27], and so forth. In practice, the estima-
tion algorithm can also be used with decoders that only provide hard decisions
(such as convolutional Viterbi decoders), by simply replacing the posterior sym-
bol probabilities with the hard symbol decisions resulting from the decoder; in this
case the estimation becomes decision-directed.

6.5. Conventional estimation algorithms

Conventional feedforward estimation algorithms can be either data-aided (DA) or
non-data-aided (NDA). DA algorithms make only use of so-called pilot symbols
within the transmitted frames, while NDA estimation algorithms operate on all
symbols in the frame by only exploiting the fact that the transmitted data symbols
belong to a given constellation. These conventional estimation schemes do not
exploit the code properties and can be used to provide initial estimates in (6.14).
We will now describe how H, τ, and F can be estimated using such algorithms.
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The delay τ can be decomposed as τ = kτT + ετ , with −T/2 ≤ ετ < T/2.
Some form of energy detection is assumed to roughly determine the arrival of a
burst within Mτ symbol durations, hence kτ ∈ {0, . . . ,Mτ−1}. First, we determine
a NDA estimate of ετ , irrespective of the values of the frequency offset F and the
channel matrix H. Then, we determine a DA estimate of the remaining parameters
H, F, and kτ .

A simple NDA estimate of ετ can be obtained using the Oerder&Meyr (O&M)
algorithm [28]. This algorithm is unable to distinguish between delays that differ
by a multiple of the symbol interval. It therefore provides an estimate of ετ , but
not of kτ . The O&M estimator has originally been designed for NT = NR = 1, but
the extension to a MIMO setup is straightforward,

ε̂τ = − Ts

2π
�
{∑

k

NR∑
q=1

∣∣zq(kTs
)∣∣2

exp
(
− j2π

kTs

T

)}
, (6.26)

where �{·} denotes the angle of a complex number, 1/Ts is the sample rate (usu-
ally Ts = T/4), and zq(kTs) is the matched filter output at the qth receive antenna
at time kTs when assuming F = 0, that is, zq(kTs) = ∫

yq(t)p∗(t − kTs)dt. This
estimator does not require knowledge of H and F. Moreover, as we will show later,
the performance of this delay estimator gives rise to a very small BER degrada-
tion. It therefore makes sense to keep this estimate of ετ unchanged for all EM
iterations. It is important to note that when a reliable estimate of ετ is obtained, a
significant reduction in computational complexity can be achieved: all subsequent
processing may be performed at the symbol rate 1/T when we use the following
approximation (valid for small frequency offsets, i.e., |F|T � 1):

[
Z(kτT + ε̂τ ,F)

]
q,m ≈ exp(−2πFmT)

∫ +∞

−∞
yq(t)p∗(t −mT − kτT − ε̂τ

)
dt.

(6.27)

This leaves us with the following parameters to be estimated using a DA algo-
rithm: b ={H,F, kτ}. We can decompose the matrices A and Z as A = [PC] and
Z = [ZPZC], where the leftmost submatrices (of dimension NT ×MP) correspond
to the pilot symbols, and the rightmost submatrices (of dimension NT ×MC) cor-
respond to the coded symbols (MP +MC = M). DA-ML estimation of b is accom-
plished by maximizing the part of the log-likelihood function corresponding to
the pilot symbols only:

b̂DA = arg max
b

{
ψ(H, kτ ,F)

}
(6.28)

with

ψ
(

H, kτ ,F
) = − tr

(
HPPHHH

)
+ 2�(

tr
(

ZP
(
kτT + ε̂τ ,F

)
PHHH

))
. (6.29)
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Similar to Section 6.4.2, this maximization problem can be solved in the following
way:

(
k̂τ,DA, F̂DA

) = arg max
kτ ,F

∥∥∥ZP
(
k̂τ,DAT + ε̂τ ,F

)
PH

(
PPH)−1

P
∥∥∥2

, (6.30)

ĤDA = ZP(k̂τ,DAT + ε̂τ , F̂DA)PH(PPH)−1, (6.31)

where (6.31) results from the identity tr(XXH) = ‖X‖2, with ‖ · ‖2 denoting the
sum of the absolute squares of the matrix elements. As explained in Section 6.3, an
initial estimate of the discrete parameter kτ is not required for the EM algorithm.
However, it is necessary to evaluate (6.30) for all Mτ possible values of kτ to obtain
the DA-estimates F̂DA and ĤDA.

As will be shown in the sequel, DA frequency offset estimation requires a large
number of training symbols in order to provide an accurate estimate. To overcome
this problem, we also derived an NDA frequency offset algorithm for Mc-PSK con-
stellations. The estimate is found by averaging the low-SNR limit of p(y|H,F, A)
over the symbols A and channel matrix H and maximizing with respect to F:

F̂NDA = arg max
F

∣∣∣∣∣∑
k,l

(zHk zl)Mce− j2MπFT(k−l)
∣∣∣∣∣

2

, (6.32)

where [zm]q = ∫ +∞
−∞ yq(t)p∗(t −mT − τ)dt and Mc denotes the constellation size.

6.6. Computational complexity

In this section, we investigate the overall computation time of the receiver, and
show how it may be significantly reduced.

Denoting by TEM the time to perform an update of the estimates of H, F,
and ετ , by Mτ the number of values that kτ can assume, by Tdetect the time to
compute the marginal posterior symbol probabilities (given the received signal
and the estimates of H, F, ετ and kτ), and by IEM the number of EM iterations, the
total computation time Ttot is given by

Ttot = MτIEM(TEM + Tdetect), (6.33)

which reflects that the EM algorithm has to be run separately for each possible
value of kτ . According to Figure 6.3, the detector is iterative itself. It consists of
three types of “nested” iterations:

(1) IE iterations between the decoder and the equalizer, with each equaliza-
tion stage taking time TE,

(2) IM iterations between the decoder and the demapper, with each demap-
ping stage taking time TM ,

(3) ID iterations inside the decoder (e.g., turbo codes or LDPC codes), with
each iteration taking time TD.
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The resulting time for detection is given by Tdetect = IE(TE+IM(TM+IDTD)). When
performing (iterative) detection for a given EM iteration, the detector should be
reinitialized by the uniform probabilities as explained in Section 6.4.3, in order
to provide the posterior probabilities that correspond to the estimates related to
the considered EM iteration. The above procedure in general gives rise to a total
computing time Ttot that is excessively large. This is because for each EM iteration
a sufficient number of iterations inside the detector is required for the detector to
converge from reinitialization with uniform probabilities. An alternative approach
is to take ID = IM = IE = 1, and to initialize the detector with the probabil-
ities obtained at the end of the previous EM iteration. Although this approach
requires more EM iterations to approach convergence, the number of iterations
(per EM iteration) inside the detector are drastically reduced, yielding a substan-
tial reduction of the total computing time Ttot. In Section 6.7, we show that this
reduced-complexity approach yields excellent results.

6.7. Performance results

We have carried out computer simulations for a rate 1/3 turbo-coded system with
BPSK signaling for NT = 2 transmit, NR = 3 receive antennas setup. The con-
sidered turbo code is a parallel concatenation of two recursive systematic binary
convolutional codes with octal generators (27, 33) and a total frame length of 840
bits, corresponding to 420 BPSK symbols per transmit antenna. As explained in
the previous section, only one mapping iteration, one equalizing iteration, and
one internal decoding iteration is performed for each EM iteration (i.e., ID =
IM = IE = 1). Iterations between estimation and detection are carried out until
convergence of the EM algorithm. The pilot symbols P are chosen randomly for
each frame, with the restriction that PPH is nonsingular. In the remainder, we will
refer to the number of pilot symbols per transmit antenna rather than the overall
number of pilot symbols. The channel matrix H is generated randomly for each
frame and generated according to the statistics described in Section 6.2. The delay
shift kτ is chosen uniformly within {0, 1, 2} for each frame. The considered per-
formance measures are the bit error rate (BER) and the mean square error (MSE)
of the estimates. The BER will be compared to the BER under perfect synchro-
nization, while the MSE will be compared to the modified Cramér-Rao bound
(MCRB), which is a lower bound on the MSE of any unbiased estimator [29]. Per-
formance will be considered as a function of SNR = Eb/N0, with Eb denoting the
transmitted energy per information bit. For an Mc-point signalling constellation
and a rate R code, Es and Eb are related by Es = EbR log2 Mc. In the following, we
consider a number of scenarios, involving the estimation of a subset of parameters,
assuming the remaining parameters are known. But first, we illustrate the impact
of inaccurate estimation of these quantities on the BER.

6.7.1. Effect of synchronization errors

Figure 6.4 shows the effect of inaccurate estimation of the different parameters
on the BER performance. We observe that even a small delay estimation error (of
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Figure 6.4. Performance of Oerder&Meyr timing estimation algorithm and impact of synchronization
errors on the BER performance.
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Figure 6.5. BER performance of pilot-assisted frame synchronization versus EM frame synchroniza-
tion.

0.15T at roll-off factor 0.5) can cause a significant degradation. Also, a small error
on the channel taps (a complex-valued zero-mean Gaussian estimation error with
variance 0.1 on the real and imaginary components) will have a severe impact on
the BER, especially at high SNR. Finally, we see that even a very small frequency
estimation error (of 3 · 10−4/T) will cause very high BER degradations at all con-
sidered SNRs. This clearly illustrates the need to perform accurate estimation of
H, F, and τ.
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6.7.2. Symbol synchronization

The O&M algorithm (6.26) provides a timing estimate ετ , irrespective of the other
parameters. The resulting estimate causes virtually no BER degradation compared
to the case where ετ is known (Figure 6.4). Hence there is no need to further up-
date ετ during the EM iterations. This leaves us with the following parameters to
estimate: frame delay kτ , channel matrix H, and frequency offset F.

6.7.3. Frame synchronization

We consider frame synchronization assuming knowledge of the other parame-
ters H and F. Since frame synchronization involves the estimation of a discrete
parameter kτ , no initial estimate and thus no pilot symbols are necessary (see
Section 6.4). In Figure 6.5, we compare the BER in the cases of perfect frame
synchronization, DA frame synchronization, and EM frame synchronization. As
shown in Figure 6.5, the EM frame synchronization without pilot symbols yields
hardly any degradation compared to perfect synchronization, whereas DA frame
synchronization requires more than 8 pilot symbols to achieve a comparable per-
formance. Due to the inherent randomness of the turbo-code, time-shifted ver-
sions of a codeword are very unlikely to resemble another codeword. Hence, accu-
rate frame synchronization is possible, based on information from the coded data
symbols only.

6.7.4. Channel estimation

In contrast with frame synchronization, initial estimates are necessary for the EM
estimation of the continuous parameters, that is, channel matrix H and frequency
offset F. The DA and NDA algorithms described in Section 6.5 will be utilized to
provide these estimates. As will be shown in the sequel, the performance of the EM
algorithm depends on the accuracy of these initial estimates.

Figure 6.6 compares the BER performances corresponding to DA estimation
and EM estimation of the channel matrix, assuming the other parameters (kτ and
F) to be perfectly known. The DA estimate makes use of 16 pilot symbols, and the
EM algorithm is initialized with this DA estimate. As compared to perfect channel
estimation, DA channel estimation gives rise to a BER degradation of about 2 dB,
whereas the degradation is limited to about 0.5 dB for EM-based channel estima-
tion. Considering the hypothetical situation where the EM algorithm is initialized
with the correct value of the channel matrix, the corresponding BER degradation
amounts to about 0.1 dB only; this illustrates the importance of the accuracy of
the initial estimate. It is interesting to investigate the performance of the EM al-
gorithm in terms of the MSE of the channel gains. In Figure 6.6, we observe that
the MSE of the EM estimator (both with perfect and DA initialization) reaches the
MCRB for SNRs above 2 dB. Nevertheless, a BER degradation of around 0.5 dB
remains for the EM algorithm with DA initialization, while with perfect initializa-
tion this degradation is below 0.1 dB. The reason for this apparent discrepancy is
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Figure 6.6. BER and MSE performance for channel estimation through EM and DA algorithms.

that occasionally poor DA initial estimates cause outliers in the EM estimation er-
ror distribution. These outliers have little impact on the variance of the estimation
error distribution but may cause a noticeable BER degradation. When the initial
estimates are perfect, these outliers are no longer present, resulting in very low
BER degradation.

6.7.5. Frequency estimation

The frequency offset estimation performance is even more sensitive to the accuracy
of the initial estimate. We will consider three different carrier frequency estimation
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Figure 6.7. MSE of frequency offset estimate for NDA and EM estimation of F when all other param-
eters are known. Both EM and NDA algorithm use 420 symbols, and the EM algorithm is initialized
with the NDA algorithm.

algorithms, assuming the other parameters (kτ and H) to be known: the first is DA
frequency offset estimation, the second corresponds to NDA estimation, and the
third one is the EM algorithm. The first and second algorithms do not exploit any
knowledge about the channel matrix. The EM algorithm can be initialized with a
DA or NDA-algorithm or can even be applied without initialization (F̂(0) = 0).

Figure 6.7 shows the MSE for frequency estimation, resulting from the NDA
algorithm and from the EM algorithm with NDA initialization; we note that the
EM estimator reaches the MCRB for SNR above 4 dB.

Figure 6.8 considers the MSE and the BER performance resulting from DA es-
timation (128 pilot symbols), NDA estimation and EM estimation (with initializa-
tion F̂(0) = 0) of the carrier frequency offset. Results are shown for Eb/N0 = 3 dB,
as a function of the unknown frequency offset F. While the performance corre-
sponding to the DA and NDA algorithms does not depend on F, the EM algo-
rithm will only work well when (F − F̂(0)) × T ×M � 1, irrespective of how F̂(0)

is obtained. Hence EM estimation with initialization F̂(0) = 0 severely limits the
acquisition range. Within its acquisition range, the EM algorithm performs very
close to the MCRB, and yields a very small BER degradation. The DA estimator
requires many pilot symbols to achieve a similar performance. As compared to the
EM algorithm, the NDA estimator yields an MSE that is about twice as large, but
achieves nearly the same BER performance. Consequently, taking computational
complexity into account, the NDA algorithm appears to be the best solution for
frequency offset estimation. We should mention, however, that the performance
of the NDA frequency estimation algorithm degrades for higher constellations.
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Figure 6.8. MSE and BER performance for frequency offset estimation using EM algorithm initial-
ized with F̂(0) = 0 compared to NDA and DA estimation (without EM) for different values of the
normalized actual frequency offset for Eb/N0 = 3 dB (channel and frame synchronization are perfect).

6.7.6. Frame synchronization and channel estimation

Since a significant amount of pilot symbols is necessary to provide an accurate
initial channel estimate, one could perform frame synchronization exploiting only
the pilot symbols. In this case, the EM algorithm is used solely to provide an es-
timate of H and F (i.e., kτ is excluded from the EM algorithm). Assuming F to
be known, Figure 6.9 shows that the latter scheme results in only a small addi-
tional degradation (of about 0.2 dB), compared to joint EM frame synchroniza-
tion and channel estimation. This means that by using DA frame synchronization
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Figure 6.9. BER performance of joint EM frame synchronization and channel estimation versus data-
aided frame synchronization and EM channel estimation. 16 Pilot symbols are used in both scenarios.

and EM-based channel estimation, a significant reduction in computational com-
plexity can be achieved (namely, a factor Mτ in expression (6.33)) with only minor
BER degradation.

6.7.7. Frame synchronization, channel estimation,
and frequency estimation

Finally, we consider the joint frame synchronization, channel and frequency offset
estimation. In Figure 6.10, the BER performance of the EM algorithm is illustrated
for the joint frame synchronization and estimation of channel gains and frequency
offset. Note that 16 pilot symbols are used to provide the initial channel estimate,
while no pilot symbols are necessary for initial estimates of the frequency offset
(NDA) and frame synchronization (no initialization). Estimating the channel re-
sults in a significant degradation (about 0.5 dB) compared to perfect synchroniza-
tion, while frequency offset estimation and frame synchronization cause very little
additional degradation.

Taking into account that NDA frequency estimation and EM frequency esti-
mation give rise to nearly the same BER degradation (see Section 6.7.5), compu-
tational complexity can be reduced with virtually no performance loss by making
an NDA frequency estimate instead of an EM frequency estimate. In addition, a
further complexity reduction can be achieved by performing DA frame synchro-
nization instead of EM frame synchronization (see Section 6.7.6). In Figure 6.10,
we observe that the NDA frequency estimation with EM estimation of the other
parameters results in hardly any performance degradation compared to the EM



Frederik Simoens et al. 115

DA: frame + H NDA: F
DA: frame NDA: F EM: H
NDA: F EM: frame + H

EM: frame + F + H
EM: H(frame + F perf. synchr.)
Perfect synchronization

−2 −1 0 1 2 3 4 5

Eb/N0 (dB)

10−5

10−4

10−3

10−2

10−1

B
E

R

Figure 6.10. BER performance of conventional algorithm and EM algorithm for different scenarios:
DA frame and channel estimation with NDA frequency estimation (no EM); EM channel estimation
with perfect knowledge of other parameters; EM frame, frequency and channel estimation with initial
NDA frequency estimate; NDA frequency estimation with EM frame synchronization and channel es-
timation; DA frame synchronization with NDA frequency estimation and EM channel estimation. In
all scenarios, the initial channel estimate is obtained through 16 pilot symbols, which are also used for
DA frame synchronization.

estimation of all parameters. On the other hand, performing DA frame synchro-
nization instead of EM frame synchronization gives rise to an additional degrada-
tion of about 0.2 dB (which is consistent with the results from Section 6.7.6).

6.8. Conclusions and remarks

We have considered the problem of symbol synchronization, frame synchroniza-
tion, frequency estimation, and channel estimation in the context of coded trans-
mission over a flat-fading MIMO channel. We have derived iterative ML estima-
tion algorithms that are based upon the EM algorithm; these algorithms make use
of the posterior symbol probabilities that are provided by a symbol MAP detector.
We have pointed out how initial estimates can be obtained from conventional DA
or NDA estimation algorithms. We have shown that for the MIMO setup consid-
ered, EM estimation gives rise to a BER degradation of about 0.5 dB, as compared
to the case where all parameters are known; it turns out that this degradation is
caused mainly by the channel estimation errors, whereas estimation errors related
to the other parameters have a much smaller impact on the BER.

The numerical complexity of the estimator can be reduced by applying the
iterative EM algorithm to a subset of the parameters to be estimated, whereas the
estimates of the other parameters are obtained from conventional DA or NDA
algorithms. By means of computer simulations we have pointed out that involving
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only frame synchronization and channel estimation in the EM algorithm, while
performing NDA symbol synchronization and NDA frequency estimation, yields
no noticeable BER degradation as compared to the case where all parameters are
updated during the EM iterations. A further complexity reduction can be achieved
by performing DA (instead of EM) frame synchronization, in which case the EM
algorithm is used for channel estimation only; the DA frame synchronization gives
rise to an additional degradation of about 0.2 dB.
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Abbreviations

AWGN Additive white Gaussian noise

BER Bit error rate

BICM Bit-interleaved coded modulation

BPSK Binary phase-shift keying

CSI Channel state information

DA Data-aided

EM Expectation-maximization

LDPC Low-density parity check

LLF Log-likelihood function

MAP Maximum a posteriori

MCRB Modified Cramér-Rao bound

MIMO Multiple-input multiple-output

ML Maximum likelihood

MMSE Minimum mean square error

MSE Mean square error

NDA Non data-aided

OFDM Orthogonal frequency-division multiplexing

O&M Oerder&Meyr

RA Repeat-accumulate

ST Space-time
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7
Iterative (turbo) signal processing
techniques for MIMO signal
detection and equalization

Tad Matsumoto

7.1. Introduction

The discovery of the turbo codes has driven research on the creation of new sig-
nal detection concepts that are, in general, referred to as the turbo approach. Re-
cently, this approach has made a drastic change in creating signal detection tech-
niques and algorithms such as equalization of intersymbol interference (ISI) expe-
rienced by broadband single-carrier signaling over mobile radio channels. It has
long been believed that the computational complexity needed for the ISI equal-
ization in broadband mobile communication channels is prohibitive, the belief of
which is being overturned by the turbo approach.

The goal of this chapter is to provide readers with understanding of the tech-
nique based on the turbo approach. This chapter is started by an explanation that
coded transmission over memory channel can be seen as a serially concatenated
coded system, where the outer code is the channel code used, and the inner code
the channel itself. Therefore, the turbo equalization can be viewed as a decoding
technique for serially concatenated codes.

This chapter will then introduce an iterative signal detection technique, a soft
canceler followed by a minimum mean square error (SC/MMSE) filter, which can
be seen as a technique based on the turbo approach. The SC/MMSE concept is
then applied to the equalization of relatively severe ISI experienced in broadband
single-carrier signaling. It is shown that even though the SC/MMSE turbo equal-
izer’s complexity is proportional to the third power of the total path number in the
equalizer’s coverage, it can achieve almost equivalent performance to that of the
optimal detector based on the maximum likelihood sequence estimation (MLSE)
technique. The MLSE equalizer’s computational complexity increases exponen-
tially with the equalizer’s coverage, for which single-carrier signaling has long been
believed to be impractical for broadband mobile communications.

This chapter then applies the SC/MMSE technique to multiple-input multi-
ple-output (MIMO) signal detection as a reasonable expansion of the SC/MMSE
turbo equalizer. The resulting device is called SC/MMSE MIMO turbo equalizer.



120 Iterative MIMO turbo equalization

The SC/MMSE MIMO turbo equalizer’s performance is almost equivalent to that
of the MLSE single-user signal detector, even though it does not require prohibi-
tively large computational effort.

Although the SC/MMSE equalizer does not require exponentially increasing
computational complexity, its cubic order of complexity requirement may still
be too large when the equalizer has to detect many signals that were transmitted
from the multiple antennas in multiuser MIMO scenarios. Some approximation
techniques that can further reduce the complexity without causing any signifi-
cant performance loss are known. This chapter also provides the approximation
techniques. This chapter then extends the SC/MMSE algorithm to the case where
transmitted signals use quadrature amplitude modulation (QAM) format.

The low complexity of the SC/MMSE MIMO turbo equalizer has triggered
research on single-carrier broadband MIMO uplink systems, where all users use
the same time slots and the same frequency slots without relying on multicarrier
or spread spectrum techniques. Obviously, single-carrier signaling is beneficial for
handset terminals because when transmitting single-carrier signals highly linear
amplifier is not necessary, which results in battery long lifetime. The purpose of the
last section of this chapter is to estimate in-field performances of the single-carrier
SC/MMSE MIMO turbo equalizer. The methodology of the link-level simulation
using channel sounding field measurement data is presented. The results of the
simulations are also presented to demonstrate the effectiveness of the single-carrier
SC/MMSE MIMO turbo equalizer in fields.

7.2. SC/MMSE turbo equalizer

Severe signal distortion due to ISI is imposed upon received signals when broad-
band signal is transmitted over mobile radio channels. Furthermore, cochannel
interference (CCI) is another cause of signal distortion when multiple signals are
transmitted on the same frequency. The CCI scenario happens when multiple
users transmit their uplink signals using the same time slots and frequency slots.
Another scenario is the single-user signal transmission using multiple antennas
where different sequences, that are most possibly coded sequences, are transmit-
ted sharing the same time slots and frequency slots. Obviously, considering the
mixed mode of these scenarios is a meaningful roadmap, when creating broad-
band mobile communication system concepts. The radio networks featuring these
scenarios are categorized as MIMO systems in this chapter.

MIMO receivers have to effectively suppress ISI as well as unknown CCI that
are not to be detected, while adequately detecting the multiple desired signals.
Recently, the iterative technique for equalization of the signal distortion due to ISI,
which is considered as an application of the turbo decoding concept, has attracted
much attention [1, 2, 3]. However, when it is used in broadband MIMO channels,
the computational complexity required to derive the a posteriori log-likelihood
ratio (LLR) is still excessive. This is because the number of the states in the trellis
diagram for the frequency-selective MIMO channels increases exponentially with
the product of the number of users and their channel memory lengths.
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Figure 7.1. System block diagram for single-user single-carrier turbo equalization.

The SC/MMSE equalization algorithm was first developed by Reynolds and
Wang for severe ISI channels [4] in single-user single-carrier signaling scenar-
ios. However, it can be seen as an extension of the iterative multiuser detection
algorithm originally derived for code division multiple access (CDMA) systems
presented in [2]. The conceptual basis of SC/MMSE is to replicate the ISI com-
ponents by using the LLR of the adjacent bits causing ISI, fed back from their
channel decoder, and to subtract the soft replica from the received composite sig-
nal vector. Adaptive linear filtering is then performed to remove the interference
residuals; taps of the linear filter are determined adaptively so as to minimize the
mean square error (MSE) between the filter output and the signal point corre-
sponding to the symbol of interest. The LLR of the filter output is then calculated.
After deinterleaving, the LLR values of the filter output are brought to the channel
decoder as extrinsic information. Soft-input soft-output (SISO) decoding of the
channel code is performed by the channel decoder. The process discussed above is
repeated in an iterative manner. The key point of this scheme is that it offers much
lower computational complexity than turbo equalizers using trellis diagram of the
channel.

In Section 7.2, the system model used is first introduced, and Reynolds and
Wang’s proposed single-user single-carrier SC/MMSE equalization algorithm is
described in detail, assuming binary phase-shifted keying (BPSK) modulation.
Several derivative techniques related to the original SC/MMSE algorithm are also
introduced.

7.2.1. System model

A transmitter-receiver block diagram of the system considered in this section is
depicted in Figure 7.1 [3]. The information source delivers a binary sequence
c( j), with j being the information bit index, to the transmitter, which is fed to
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a convolutional channel encoder. It transforms the information sequence c( j) into
a length B block of BPSK symbols b(i), with i being the coded bit index. To re-
duce effects of burst errors, the encoded data is reordered by an interleaver that
performs a fixed random replacement in time of the coded bits in the block. After
the interleaving, the coded bits are indexed by k. The coded bit sequence b(k) is
transmitted using the BPSK modulation format (as noted above, this subsection
assumes BPSK modulation, and therefore BPSK symbols correspond to the bits
coded by the encoder). The BPSK symbols b(k) are transmitted over the multi-
path fading channel which is subjected to severe frequency selectivity. The channel
output is corrupted by additive white Gaussian noise (AWGN). Due to the mul-
tipath effect, the channel introduces distortion onto the transmitted signal. Thus,
the received signal, which is a sum of the multipath components, suffers from ISI.

The receiver employs M antennas that are indexed by m. A discrete-time rep-
resentation of the received signal at sampling timing k is given by

rm(k) =
L−1∑
l=0

hm,l(k)b(k − l) + vm(k), (7.1)

where L is the number of propagation paths, hm,l(k) is the channel coefficient
between transmitter and mth antenna for the lth path, b(k) is the BPSK symbol
transmitted at the kth symbol timing, and vm(k) is a complex AWGN process with
variance σ2.

Due to single-carrier transmission, it is reasonable to assume that the frame
length is short enough compared with the fading variation speed. Therefore, it is
assumed that the channel is constant over the frame, and thus symbol indexing in
the channel realization is not needed. Hence, the path index l is cited in parenthesis
as hm(l), 0 ≤ l ≤ L− 1, later on.

A vector presentation of the received signal rm(k) of (7.1), representing the
result of space-domain sampling, is given by

r(k) =
[
r1(k) r2(k) · · · rM(k)

]T
=

L−1∑
l=0

h(l)b(k − l) + v(k),
(7.2)

where

h(l) =
[
h1(l) · · · hM(l)

]T
(7.3)

and

v(k) =
[
v1(k) v2(k) · · · vM(k)

]T
(7.4)

is the noise sample vector.
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Figure 7.2. An example of space-time communication scenario.

After time-domain sampling on r(k) to capture the multipath components,
the received signal vector y(k) can be expressed in a space-time representation as

y(k) =
[

rT(k + L− 1) rT(k + L− 2) · · · rT(k)
]T

= Hb(k) + V(k),
(7.5)

where

H =


h(0) h(1) · · · h(L− 1) 0 · · · 0

0
. . .

...
. . .

. . .
...

...
. . .

. . .
...

. . .
. . . 0

0 · · · 0 h(0) h(1) · · · h(L− 1)

 (7.6)

and

b(k) =
[
b
(
k + (L− 1)

) · · · b(k) b(k − 1) b
(
k − (L + 1)

)]T
(7.7)

with

V(k) =
[

vT(k + L− 1) vT(k + L− 2) · · · vT(k)
]T

. (7.8)

The matrix H is called a “space-time channel matrix.”
An example of the multipath space-time communication with one transmit

and two receiver antennas is shown in Figure 7.2. In each of the transmit-to-receive
antenna radio links, there are 3 path components. The space-domain sampled re-
ceived signal for this example is expressed as

r(k) =
[
h1(0)
h2(0)

]
b(k) +

[
h1(1)
h2(1)

]
b(k − 1) +

[
h1(2)
h2(2)

]
b(k − 2) + v(k)

= h(0)b(k) + h(1)b(k − 1) + h(2)b(k − 2) + v(k).

(7.9)
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After time-domain sampling over the ISI length (= 3), we have

y(k) =


r(k + 2)

r(k + 1)

r(k)



=


h(0) h(1) h(2) 0 0

0 h(0) h(1) h(2) 0

0 0 h(0) h(1) h(2)




b(k + 2)

b(k + 1)

b(k)

b(k − 1)

b(k − 2)

 +


v(k + 2)

v(k + 1)

v(k)


= Hb(k) + V(k).

(7.10)

7.2.2. Turbo equalization principle

Turbo equalization can be viewed as an extension of turbo decoding. Turbo coded
signal contains multidimensional memory due to multiple recursive systematic
codes (RSCs) that are separated in time by interleavers. A turbo decoder consists
of multiple SISO decoders, corresponding to the RSCs encoders, and it produces
soft decisions of the received symbols in the form of LLR, which is propagated
between the decoders [5]. The RSCs may be convolutional codes or block codes,
and the connection of the RSCs encoders is either parallel or serial, or in their
hybrid mode.

In the case of turbo equalization, the two-dimensional memory is a result of
the encoder used and ISI caused by the multipath Rayleigh fading channel. Un-
like the turbo codes, the code should not necessarily be systematic. The multipath
channel does not produce any “redundant” symbols, but it imposes ISI on the
received signal due to the channel memory. Furthermore, the complex envelopes
associated with the multipath components vary according to the mobile station’s
move, causing the time-varying ISI. Therefore, the space-time channel matrix H
has to be estimated frame by frame.

Recognizing that the multipath propagation is the process taking a convo-
lution of the symbols transmitted over each multipath component, the channel
can be seen as a “convolution code,” the definition of which is in the complex
field. Therefore, the system is a “serially concatenated code” [6] comprised of two
codes, one is the channel code used, the other the multipath channel itself. They
are serially connected, and are separated by an interleaver. To “decode” the serially
concatenated code, decoding techniques for serially concatenated turbo codes can
be used. Such system is called “turbo equalizer.”

A block diagram of communication system using single-carrier signaling with
turbo equalizer is shown in Figure 7.1. The receiver presented in Figure 7.1 consists
of a SISO detector and a SISO decoder that are connected by a deinterleaver and an
interleaver. The inverse operation of interleaving is performed by the deinterleaver,
for which the coded bit is indexed by i after deinterleaving.
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For the BPSK’s case, the SISO detector delivers the a posteriori LLR of a trans-
mitted symbol “+1” and “−1,” defined as

Λ1
[
b(k)

] = ln
Pr

[
b(k) = +1|y(k)

]
Pr

[
b(k) = −1|y(k)

] . (7.11)

Using Bayes’ rule, Λ1[b(k)] given by (7.11) can be rewritten as

Λ1
[
b(k)

] = ln
Pr

[
y(k)|b(k) = +1

]
Pr

[
y(k)|b(k) = −1

]︸ ︷︷ ︸
λ1[b(k)]

+ ln
Pr

[
b(k) = +1

]
Pr

[
b(k) = −1

]︸ ︷︷ ︸
λ
p
2 [b(k)]

, (7.12)

where λ
p
2 [b(k)] is the a priori LLR of the code bit b(k) provided by the channel

decoder in the previous iteration with p indicating the quantity obtained from
the previous iteration. The first term λ1[b(k)] represents the extrinsic information
based on the received signal y(k) and a priori information λ

p
2 [b(k′)] of the code

bits except the kth bit, that is, k′ �= k. After deinterleaving, λ1[b(i)] is fed to the
SISO channel decoder, which calculates a posteriori LLR using the prior informa-
tion about all possible symbols and the knowledge about the trellis structure of the
code, as

Λ2
[
b(i)

] = ln
Pr

[
b(i) = +1|λp1b(i′)

]B−1
i′=0

Pr
[
b(i) = −1|λp1b(i′)

]B−1
i′=0

= λ2
[
b(i)

]
+ λ

p
1

[
b(i)

]
,

(7.13)

where B is the length of the frame. To obtain the LLR calculated by using the trel-
lis diagram, λ1[b(i)] is subtracted from λ2[b(i)] before feeding it back as a priori
information to the SISO detector through the interleaver.

The decoder also calculates the a posteriori LLR of every information bit c( j),
on which the final decision is made at the final iteration. At the first iteration
λ1[b(k)] and λ

p
2 [b(k)] are statistically independent, since the ISI and the chan-

nel code put independent forms of memory. But subsequently, since both use the
same information indirectly, there will be more correlation as more iterations are
performed, until finally the improvement through iterations diminishes.

If the trellis diagram of the multipath channel, which can be seen as an inner
code of the serially concatenated code, has to be used to calculate the a posteriori
LLR λ1[b(k)], its computational complexity becomes prohibitive for broadband
single-carrier signaling. This is because the number of the states needed to express
the channel’s trellis diagram increases exponentially with the number of the chan-
nel memory length L−1. The SC/MMSE iterative equalization technique can solve
this problem by replacing the trellis-based LLR computer with soft cancelation and
MMSE filtering.
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Figure 7.3. Block diagram of SC/MMSE signal processing.

7.2.3. SC/MMSE turbo equalization algorithm

A block diagram of the SC/MMSE iterative equalizer is shown in Figure 7.3. The
principle of the SC/MMSE equalizer is that it first performs the ISI cancelation by
subtracting the soft replica of ISI components from the received signal vector, and
further suppresses the residual interference components by an adaptive filter. The
tap coefficients of the filter are determined based on the minimum mean squared
error (MMSE) criterion [4].

The soft replica is constructed from the a priori LLR λ
p
2 [b(k)] of the symbols

delivered by the SISO decoder from the previous iteration. For notational simplic-
ity, the bit index k and its corresponding bit value b(k) are ignored in the following,
resulting in a simpler notation:

λ2 = ln
Pr(+1)
Pr(−1)

. (7.14)

After some mathematical manipulations we have

Pr(−1) = 1
1 + eλ2

. (7.15)

The soft estimate of symbol b̃ = 〈b〉 can be calculated from the probabilities
Pr(+1) and Pr(−1) as

b̃ = (−1) · Pr(−1) + 1 · Pr(+1)

= −Pr(−1) + Pr(+1)

= −Pr(−1) + Pr(−1)eλ2

= Pr(−1)
(
eλ2 − 1

)
.

(7.16)
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Using (7.15) and (7.16) we get

b̃ = eλ2 − 1
eλ2 + 1

. (7.17)

Given the definition of the hyperbolic tangent function

tanh(x) = e2x − 1
e2x + 1

(7.18)

it is found that the symbol estimate b̃ is given by

b̃ = tanh
λ2

2
. (7.19)

Now, we assume without loss of generality that b(k) is the bit to be detected. A vec-
tor representation b̃(k) of the soft estimates of the ISI-causing symbols is given as

b̃ =
[
b̃
(
k + (L− 1)

) · · · b̃(k + 1) 0 b̃(k − 1) · · · b̃
(
k − (L− 1)

)]T
. (7.20)

To calculate the soft replica of ISI components, b̃(k) is multiplied by the estimate
of the space-time channel matrix H provided by the channel estimator. The prod-
uct is then subtracted from the received signal y(k) to perform soft interference
cancelation for a symbol b(k) as

ỹ(k) = y(k) − Hb̃(k) = H
(

b(k) − b̃(k)
)

+ V(k). (7.21)

After the soft cancelation, the remaining ISI components are further suppressed
by applying a conditional linear MMSE filter as

z(k) = mH(k)ỹ(k), (7.22)

where the vector m(k) corresponds to the filter coefficients. The term “conditional
MMSE” indicates that the optimization due to the MMSE criterion is conditioned
upon the soft feedback vector b̃(k). The criterion for determining vector m(k) is
such that it minimizes the mean squared error (MSE) between symbol b(k) and
filter output z(k) as

m(k) = arg min
m

E
{∥∥b(k) − mH ỹ(k)

∥∥2
}

= arg min
m

mHE
{

ỹ(k)ỹ(k)H
}

m − 2mHE
{
b(k)ỹ(k)

}
.

(7.23)

In (7.23)

E
{

ỹ(k)ỹH(k)
} = H∆(k)HH + σ2I (7.24)
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and

E
{
b(k)ỹ(k)

} = HeL, (7.25)

where

∆(k) = cov
{

b(k) − b̃(k)
}

= diag
{

1 − b̃(k + L− 1)2, . . . , 1 − b̃(k + 1)2, 1,

1 − b̃(k − 1)2, . . . ,1 − b̃(k − L + 1)2} (7.26)

and eL is a length 2L − 1 vector, of which all elements are zero except the Lth ele-
ment being 1. Substituting (7.24) and (7.25) into (7.23), the MSE after the MMSE
filtering can be written as

MSE = mH(k)
⌊

H∆(k)HH + σ2I
⌋

m(k) − 2mH(k)HeL + 1 (7.27)

from which the gradient with respect to m(k) is taken and set at zero to obtain

⌊
H∆(k)HH + σ2I

⌋
m(k) − HeL = 0 (7.28)

m(k) can then be given as

m(k) = [
H∆(k)HH + σ2I

]−1
HeL. (7.29)

Hence, the MMSE filter output is given by

z(k) = eTL HH
[

H∆(k)HH + σ2I
]−1[

r(k) − Hb̃(k)
]
. (7.30)

The extrinsic information of the coded bit b(k) is derived from the MMSE fil-
ter output, assuming that the MMSE filter output z(k) can be approximated as a
Gaussian channel output having input b(k), as

z(k) = µ(k)b(k) + η(k), (7.31)

where η(k) is an equivalent noise sample, and

µ(k) = E
{
z(k)b(k)

} = eTL HHm(k) (7.32)

with

v2(k) = E
{∣∣z(k)

∣∣2
}
− µ2(k) = eTL HHm(k) − µ2(k) = µ(k) − µ2(k). (7.33)
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With this expression, the extrinsic information λ1[b(k)] at the MMSE filter output
is given by

λ1
[
b(k)

] = ln
p
⌊
z(k)|b(k) = +1

⌋
p
⌊
z(k)|b(k) = −1

⌋
= −

∣∣z(k) − µ(k)
∣∣2

v2(k)
+

∣∣z(k) + µ(k)
∣∣2

v2(k)

= 4 Re
{
z(k)

}
1 − µ(k)

.

(7.34)

7.2.4. Asymptotic performance

At early stages of the iterations the effect of the soft interference cancelation is not
significant due to the symbol estimates tanh{λp2 [b(k)/2]} being near zero. How-
ever, with sufficient iterations, the soft estimates become more accurate, and ∆(k)
approaches ∆̃ = diag[0, . . . , 0, 1, 0, . . . , 0]. With ∆(k) = ∆̃, the ISI components in
the equalizer coverage can be completely canceled by the soft canceller. If this hap-
pens, since H∆̃HH becomes a rank-one matrix, the MMSE filter taps become

m(k) �→ m = [
hhH + σ2I

]−1
h, ∆(k) �→ ∆̃, (7.35)

where h = HeL is the Lth column vector of the space-time channel matrix H. Using
the matrix inversion lemma,

A−1 = (
CD−1CH + B

)−1

= B−1 − B−1C
(

D + CHB−1C
)−1

CHB−1
(7.36)

the MMSE filter weight m of (7.35) becomes

m =
[

1
σ2

− 1
σ2

h

(
1

1 + hHh/σ2

)
hH 1

σ2

]
h

=
[

1
σ2

− 1
σ2

· hHh
σ2 + hHh

]
h

= αh,

(7.37)

where α = 1/(hHh + σ2). Now, it is found that MMSE is equivalent to a filter
matched to the channel [7], with which performance is equivalent to that of the
maximum ratio combining (MRC) path diversity. Therefore, the performance of
the SC/MMSE equalizer is asymptotically equivalent to the MRC bound that is also
the performance limit of the MLSE equalizer. However, there is a certain point of
convergence, over which the performance is not improved by further iterations. In
fact, the convergence property of SC/MMSE is affected by the channel realization,
and if the channel is in highly non-minimum phase mode, it cannot achieve the
asymptotic performance described above.
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Figure 7.4. Performances of original SC/MMSE and its matched filter approximation (MFA) algo-
rithms, 20-path Rayleigh fading ( fDTS = 1/12 000).

7.2.5. Performance results

Figure 7.4 shows results of simulations conducted to evaluate bit error rate (BER)
performance of the SC/MMSE equalizer in a severe frequency-selective multipath
fading environment. An exponentially decaying delay profile was assumed where
there are 20 path components in the range from the top to 10 dB down point in
the delay profile. Other simulation parameter values are summarized in the fig-
ure. The light solid lines are for the original SC/MMSE equalizer with the iteration
number as a parameter, and the dark solid lines for the matched filter approxima-
tion SC/MMSE equalizer which will be derived in Section 7.4.2. It is found that
SC/MMSE achieves significant iteration gain, and after 3 iterations, SC/MMSE’s
BER converges into its achievable asymptotic value.

7.3. SC/MMSE MIMO turbo equalization

7.3.1. Extension to MIMO

This subsection extends the single-user single-carrier SC/MMSE turbo equaliza-
tion algorithm to MIMO cases [8, 9]. MIMO refers here to a situation where
multiple signals are transmitted simultaneously using the same time slots and the
same frequency slots. Some groups of the signals may be transmitted by some
single users, each using multiple antennas, and some transmitted by multiple in-
dependent users, each using a single antenna. In the former case, each single user’s
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Figure 7.5. Single-carrier MIMO system model and block diagram of SC/MMSE MIMO turbo equal-
izer.

data is divided into different chains that perform encoding and interleaving sep-
arately. However, the symbol detection algorithm shown in this section can be
extended easily to the case where the transmit antennas are grouped into several
subgroups, in which coding and interleaving take place over the multiple antennas
[10, 11].

Despite the scope of the radio network configuration described above, it is
assumed later on that each antenna transmits signal of single “users” for simplicity.
Now, the system has N “users,” each having a single transmit antenna, and the
receiver is equipped with M antennas. The receiver is comprised of a multiple user
signal detector (MUSD) and SISO decoders for each user. The MUSD consists of
soft interference cancellers for the N users, each followed by the MMSE filter. Since
the channel model is basically the same as in the single-user case, the extended
notations are shown briefly.

Figure 7.5 presents the single-carrier MIMO communication system model
investigated in this section. All N users transmit their information symbols using
the same time slots and frequency slots without spreading signals in the frequency
domain. The information bits cn(i) with i and n denoting the bit and user in-
dices, respectively, are encoded by each user’s channel encoder. After interleaving
the symbols bn(k), where k denotes the symbol index after interleaving, are modu-
lated using the BPSK modulation format, and transmitted over frequency-selective
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channels. At the receiver, the discrete-time representation of the received signal at
the mth antenna can be expressed as

rm(k) =
L−1∑
l=0

N∑
n=1

hmn(l)bn(k − l) + vm(k) (7.38)

which is equivalent to (7.1), except that it sums up multiple users and that as noted
in Section 7.2.1, the path index l is cited in parentheses as hmn(l) 0 ≤ l ≤ L − 1,
and 1 ≤ n ≤ N . Equation (7.38) can be rewritten in a matrix form as

r(k) =
[
r1(k) r2(k) · · · rM(k)

]T
=

L−1∑
l=0

H(l)b(k − l) + v(k),
(7.39)

where

H(l) =


h11(l) · · · h1N (l)

...
. . .

...
hM1(l) · · · hMN (l)

 ,

b(k) =
[
b1(k) b2(k) · · · bN (k)

]T
(7.40)

and

v(k) =
[
v1(k) v2(k) · · · vM(k)

]T
. (7.41)

After space-domain and time-domain sampling, the space-time representation of
the received signal y(k) is given by

y(k) =
[

rT(k + L− 1) rT(k + L− 2) · · · rT(k)
]T

= Hu(k) + V(k),
(7.42)

where

H =


H(0) · · · H(L− 2) H(L− 1) 0 · · · 0

0 H(0)
. . . H(L− 2) H(L− 1)

. . .
...

...
. . .

. . .
...

. . .
. . . 0

0 · · · 0 H(0) · · · H(L− 2) H(L− 1)


(7.43)

represents the temporal and spatial characteristics of the frequency-selective
MIMO channel with u(k) and V(k) being

u(k) =
[

bT(k + L− 1) · · · bT(k) · · · bT(k − L + 1)
]T

(7.44)
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Filtering

m1
A posteriori

LLR
computer

Cancellation
of interference

residual by
MMSE filter

Interference
soft replica
generator

For user 1
For user 2

For user N. . .

˜ISI + ˜CCI

To SISO
decoders

Figure 7.6. Block diagram of MIMO SC/MMSE signal processing.

and

V(k) =
[

vT(k + L− 1) vT(k + L− 2) · · · vT(k)
]T

, (7.45)

respectively.
Since the details of the mathematical derivation of the SC/MMSE algorithm

is presented in Section 7.2.3, the extension to the MIMO case is described here
only briefly. The principle of MIMO SC/MMSE signal processing is illustrated in
Figure 7.6. For each of the N users the SC/MMSE signal processing is conducted
independently. Assume that the nth user’s kth bit bn(k) is to be detected. Define
ũn(k) as

ũn(k) =
[

b̃T(k + L− 1) · · · b̃T(k) · · · b̃T(k − L + 1)
]T

(7.46)

with

b̃(k′)=
[
b̃1(k′) b̃2(k′) · · · b̃N (k′)

]T
, k − L + 1 ≤ k′ ≤ k + L− 1, k′ �= k

(7.47)

and

b̃(k) =
[
b̃1(k) · · · b̃n−1(k) 0 b̃n+1(k) · · · b̃N (k)

]T
, (7.48)

where b̃n(k) is the soft estimate of bn(k).
The soft replicas of all ISI and CCI components Hũn(k) is subtracted from the

received signal vector as

ỹn(k) = y(k) − Hũn(k). (7.49)
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Figure 7.7. BER performance of SC/MMSE MIMO turbo equalizer. The scenario includes 2 antennas,
3 users each having 5 paths, MRC + Viterbi decoding, 900 symbol/frame, fdTs → 0, K = 3 conven-
tional code.

Remaining interference components are further suppressed by the MMSE filter,
which also combines the multipath components of bn(k) spread in time over the
ISI length L. The MMSE filter weight mn(k) for the nth user’s kth bit can be cal-
culated in the same way as m(k) was derived by (7.29) in the single user’s case.
However, it requires quite a heavy computational burden to invert the covariance
matrix of ỹn(k). Section 7.4 investigates computationally efficient approximation
methods that do not cause serious performance degradations.

After the LLR calculation by (7.34), the soft values are deinterleaved, and the
extrinsic information is fed as input to each user’s SISO decoder, which performs
the SISO decoding of the channel code user by user to provide updated LLRs.

7.3.2. Performance results

Figure 7.7 shows results of simulations for the SC/MMSE MIMO equalizer perfor-
mance evaluations in a 5-path frequency-selective multipath fading environment.
There are 3 simultaneous users, and the receiver uses 2 antennas; each transmit-
to-receive antenna radio link is comprised of 5 propagation paths having equal
average power. The curve indicated by “single user” describes the single-user BER
performance where the other two simultaneous users are not present, and the en-
ergy of the user’s corresponding 10 path components (2 × 5) are MRC combined,
and soft input Viterbi decoding follows for the channel code used.
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Table 7.1. Complexity comparison of SISO algorithms.

Operation Additions Multiplications Comparison

Log-MAP 2Lc−1(4Lc + 17) − 5 2Lc−1(4Lc + 2) 4 · 2Lc−1 − 2

Max-log-MAP 2Lc−1(4Lc + 8) 2Lc−1(4Lc + 2) 4 · 2Lc−1 − 2

SOVA 2Lc−1(4Lc + 2) 2Lc−1(4Lc + 2) 2 · 2Lc−1 + 5Lc

The curves indicated by MIMO show BER performance of the 3-user SC/
MMSE MIMO equalizer. After 4 iterations, the decay of the MIMO performance
curves is almost the same as the “single user” curve, and the difference between
the two curves is less than 1 dB.

7.4. Approximations

7.4.1. Complexity of the SC/MMSE turbo equalizer

7.4.1.1. Complexity due to SISO decoder

In general, trellis-based SISO decoders require complexity order O(MLc−1
c ), where

Mc is the level of modulation and Lc is the constraint length of the code. However,
there are some marginal differences in the complexities of SISO algorithms. The
result of the complexity evaluation for the several well-known SISO algorithms is
summarized in Table 7.1.

From Table 7.1, it can be seen that among the algorithms compared, SOVA
requires the lowest computational complexity due to the lowest comparison oper-
ations. The computational burden due to comparisons is only roughly half of that
required by the max-log-MAP and log-MAP algorithms.

7.4.1.2. Complexity due to SC/MMSE

The heaviest part of SC/MMSE equalizer’s signal processing is the calculation of
MMSE filter coefficients, since it requires inversion of the covariance matrix
(H∆(k)HH + σ2I) of the soft canceller output. Hence, the complexity of the
SC/MMSE algorithm is of a cubic order O(L3M3), which is presented in detail
in Section 7.4.4. Obviously, the larger the matrices, the heavier the computational
effort needed for the matrix inversion. Even though the SC/MMSE turbo equalizer
does not require exponentially increasing computational complexity, it is obvious
that the complexity still becomes prohibitive when the numbers of propagation
paths and receive antennas increase.

7.4.2. Matched filter approximation

As it has been shown in Section 7.2.4, the MMSE filter approaches a filter matched
to the channel after sufficient iterations. In the matched filter approximation tech-
nique the MMSE filter is replaced by a matched filter even from the second
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iteration onwards. Since the matrix inversion needed for the MMSE weight cal-
culation is eliminated, the complexity can be reduced significantly.

For the first iteration, it is apparent from (7.26) that ∆(k) = I due to the
unavailability of the symbol estimates from the SISO decoder. In this case the co-
efficients of the MMSE filter can be determined adaptively by using the training
sequence transmitted for the estimation of the channel matrix H. From the sec-
ond iteration onwards, ∆(k) �= I and, thus, this method cannot be used.

After sufficient iterations, when the soft canceller is supposed to eliminate ISI
components perfectly, equivalence between MMSE filtering mH ỹ(k) and matched
filtering, matched to the channel, is clearly seen from (7.37). Namely then, the
role of the MMSE filter is to maximize the desired signal energy which can be
performed by matched filtering. Hence, the matched filter m = αhH may be used
instead of (7.29) even from the second iteration onwards [7]. Since the matched
filter is unique only to the channel and independent of iterations, m has to be
determined only once.

Since the matrix inversion is no longer needed with the matched filter ap-
proximation, and since the vector-vector inner product that appears in the matrix
inversion lemma only requires a square-order of complexity, the matched filter
approximation can reduce the SC/MMSE complexity to O(L2M2). BER perfor-
mance of the matched filter approximation SC/MMSE equalizer in the 20-path
single-user environment is shown in Figure 7.4. It is found that after 3 iterations,
the matched filter approximation can achieve almost the same performance as the
original SC/MMSE equalizer. The matched filter approximation SC/MMSE algo-
rithm can easily be extended to MIMO cases [12].

7.4.3. Common covariance matrix inversion technique

Using the common covariance matrix inversion technique, the complexity can be
further reduced by replacing the symbol-by-symbol interference covariance ma-
trix by a frame-wise average. The equation for the soft cancelation, corresponding
to (7.49) in Section 7.3.1, can be rewritten as

ỹn(k) = y(k) − Hũ(k) + hnb̃n(k) = ỹ(k) + hnb̃n(k), (7.50)

where

ũ(k) =
[

b̃T(k + L− 1) · · · b̃T(k) · · · b̃T(k − L + 1)
]T

(7.51)

with

b̃(k′) =
[
b̃1(k′) b̃2(k′) · · · b̃N (k′)

]T
, k − L + 1 ≤ k′ ≤ k + L− 1,

ỹ(k) = y(k) − Hũ(k)
(7.52)
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and

hn = He(L−1)N−n. (7.53)

The covariance matrix Θ̃ of ỹn(k) is then given by

Θn(k) = Θ(k) + hnb̃
2
n(k)hH

n , (7.54)

where

Θ(k) = H∆c(k)HH + σ2I = E
{

ỹ(k)ỹH(k)
}

(7.55)

is a common covariance matrix with a diagonal matrix ∆c(k) defined as

∆c(k) = diag
{

1 − b̃1(k + L− 1)2, 1 − b̃2(k + L− 1)2, . . . ,

1 − b̃N (k + L− 1)2, . . . , 1 − b̃1(k)2, 1 − b̃2(k)2, . . . ,

1 − b̃N (k)2, . . . , 1 − b̃1(k − L + 1)2,

1 − b̃2(k − L + 1)2, . . . , 1 − b̃N (k − L + 1)2}
(7.56)

which corresponds to the matrix ∆(k) in the original SC/MMSE defined by (7.26)
with a difference of the {(L− 1)N + n, (L− 1)N + n}-element being 1 − b̃2

n(k).
Θ(k) may be approximated by a frame-wise average as

Θ(k) ∼= Θ = 1
K

K∑
k=1

ỹ(k)ỹH(k) (7.57)

for all k and n, where K is the total sample number in a frame. This can be calcu-
lated using the matrix inversion lemma in a similar fashion as the covariance ma-
trix is propagated in the recursive least square (RLS) algorithm. The staple equa-
tions of the RLS algorithm needed for the common covariance matrix inversion
estimation method are [12]

k(g) = λ−1Θ(g − 1)ỹ(g)
1 + λ−1ỹH(g)Θ(g − 1)ỹ(g)

(7.58)

and

Θ(g) = λ−1Θ(g − 1) − λ−1k(g)ỹH(g)Θ(g − 1), (7.59)

where λ (≤ 1.0) is the forgetting factor, whose value is chosen to be close to 1.0
[13], and g is the updating index of the RLS algorithm. In many cases, the updating
index g is equivalent to the symbol index k, with which K = B with B being the
frame length in bits. However, in the case that updating does not take place in the
symbol order in the frame, or fractional sampling per symbol is performed, g �= k.
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Applying (7.58) and (7.59) to (7.57), the inverse matrix can be calculated by
iterating

Θ−1(g) = λ−1Θ(g − 1) − λ−2Θ−1ẏẏHΘ−1(g − 1)
(1 − λ)−1 + λ−1ẏHΘ−1(g − 1)ẏ

(7.60)

over the frame, where the contribution from noise is included in the residual signal
as

ẏ = ỹ(g) + V(g) (7.61)

and hence the need of estimating the noise variance is avoided. The algorithm is
initialized by setting

Θ−1(0) = ε−1I, (7.62)

where ε is a small positive constant. Since the symbol likelihood calculation may
be biased due to inaccuracy in Θ(k), the matrix inversion lemma is normalized by
(1−λ)−1. Then, the calculatedΘ(k) is combined with the symbol-wise information
for each user n as given in (7.54). Since the Θ−1(k) is now known, Θ−1

n (k) can be
calculated again using the matrix inversion lemma as

Θ−1
n (k) = (

Θ(k) + b̃2
nhnhH

n

)−1

= Θ−1(k) −Θ−1(k)hn

(
1

b̃2
n

+ hH
n Θ

−1(k)hn

)−1

hH
n Θ

−1(k).
(7.63)

In MIMO systems, the calculated matrix inverse is common to all users.
Hence, each equalization stage is composed of a common matrix inverter, a chan-
nel estimator, and a likelihood generator that provides the LLR for each bit of each
user. This approximation requires the assumption that the channel is constant over
the frame, which is, however, qualified for broadband single-carrier systems due to
the short frame length. The advantage of using the time averaging technique is the
possibility to evade the bit-wise matrix inverse by performing one matrix inverse
lemma iteration for each received bit, the complexity of which is O(M2L2).

Figure 7.8 shows results of simulations for the evaluation of the SC/MMSE
MIMO equalizer performance based on the common covariance matrix inver-
sion technique in a 10-path frequency-selective multipath fading environment.
There are 3 simultaneous uses, and the receiver uses 3 antennas; each transmit-
to-receive antenna radio link is comprised of 10 propagation paths having equal
average power. Perfect knowledge about the channel is assumed. The dashed line
indicates the maximum ratio combining bound of single-user BER performance
where assuming that the other two simultaneous users are not present, the energy
of the user’s corresponding 30 path components (= 3×10) is MRC combined and
soft input Viterbi decoding follows for the channel code used.
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Figure 7.8. BER performance of common covariance estimation SC/MMSE MIMO turbo equalizer
(w/3 users, 10-path Rayleigh fading, 3 antennas).

Table 7.2. Complexity comparison of SC/MMSE algorithms.

Operation Additions Multiplications Comparison

SOVA 2L−1(4L + 2M) 2L−1(4L + 2)M 2 · 2L−1 + 5L− 1

SC/MMSE M3L3 + 4ML2 − 4ML M3L3 + ML2 −ML + 1 –

MFA (1st iteration) M(3M + 2)L2 M(4M + 1)L2 + 3L + 2 –

MFA (2nd iteration) 2M(M + 3)L2 − 4ML 2M(M + 3)L2 −ML + 1 –

COM (RLS part) M(3ML2 + 2L) + 2 2M(3ML2 + 4L) –

COM (each user’s part) M(4ML2 − 3L) + 1 2M(2ML2 + L) –

The solid lines indicate BER performance of the 3-user SC/MMSE MIMO
turbo equalizer with the common covariance estimation technique. It is found
that the MRC bound can be asymptotically achieved, and after 8 iterations, the
performance difference is very minor.

7.4.4. Complexity comparison

A computational complexity comparison between the original SC/MMSE algo-
rithm, its matched filter approximation (MFA) version, and the common covari-
ance inverse estimation (COM) version, as well as the SOVA algorithm for BPSK
is depicted in Table 7.2 for a single-user case.

Figure 7.9 compares the complexities of the algorithms in terms of the num-
ber of multiplications as a function of multipath components where the number
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Figure 7.9. Complexity comparison in terms of multiplications.

of antennas is fixed at four. It is found that in environments with less than 10 prop-
agation paths, the complexity of SOVA does not differ much from the complexi-
ties required by the other equalization algorithms. Actually SOVA is much simpler
than the original SC/MMSE algorithm when L < 10. However, as L increases, the
complexity of SOVA becomes prohibitive. The complexity reduction obtained by
using the approximation algorithms is significant.

Comparison in terms of the number of additions versus L is presented in
Figure 7.10 for the single-user case where the number of antennas is fixed at four.
In the presence of only a few multipath components, the required number of ad-
ditions is clearly the lowest with SOVA. In environments with more than 10 mul-
tipath components, the complexity reduction achieved by using approximation
algorithms is noteworthy. However, the difference in complexity between the ap-
proximation algorithms is very minor.

7.5. Extension to generic modulation formats

Up to this point it has been assumed that the modulation format used is BPSK,
but from a practical viewpoint, more spectrally efficient modulation format such
as multilevel QAM has to be used. The configuration to perform equalization and
SISO decoding for a standard bit-interleaved coded modulation (BICM) with ar-
bitrary mapped QAM is introduced in this section [14].

The scenario investigated in this subsection is the same as that shown in Figure
7.5 except for the coding and modulation schemes. There are N users that are in-
dexed by n; each transmit symbol sn(k) is generated by mapping each segment of
M interleaved code bits to a 2M-ary signal constelation S. All users are assumed to
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Figure 7.10. Complexity comparison in terms of additions.

use the same modulation format. The equalizer performs soft ISI and CCI inter-
ference cancelation, as in SC/MMSE for BPSK, for each transmitted symbol sn(k)
with n = 1 ∼ N and k = 0 ∼ B − 1 using a priori symbol probabilities.

The first-order and the second-order statistics of the symbols are obtained
from the symbol a priori probabilities as

s̃n(k) =̂ E
{
sn(k)

} =
∑
s j∈S

s j Pa
(
sn(k) = s j

)
,

var
{
sn(k)

} =̂ E
{∣∣sn(k)

∣∣2
}
− ∣∣s̃n(k)

∣∣2
,

E
{∣∣sn(k)

∣∣2
}
=

∑
s j∈S

|s j|2 Pa
(
sn(k) = s j

)
.

(7.64)

The symbol a priori probability Pa(sn(k) = s j) is obtained from the corresponding
bit-wise a priori LLRs, produced by the channel decoders, as

Pa
(
sn(k) = s j

) =
(

1
2

)M M∏
m=1

{
1 − b̄n,m(k) tanh

(
λ
j
n,m(k)

)
2

}
, (7.65)

where b̄n,m(k) = 1−2bn,m(k) and λ
j
n,m(k) is the extrinsic likelihood ratio, provided

by the decoder, of the bit bn,m(k) ∈ (0, 1) in the segment that constitutes the sym-
bol s j . The soft canceller output is obtained in the same way as (7.50), where the



142 Iterative MIMO turbo equalization

corresponding bit is replaced by symbol sn(k) as

ỹ(k) = y(k) − Hs̃(k), (7.66)

where the vector s̃(k) is comprised of expected symbol values of all users and all
symbols that fall within the window for the space-time sampling. To further re-
duce the effects of the residual interfering components, conditional MMSE filter-
ing mn(k) is used, for which the optimality criterion is

mn(k) = arg min
mn

E
{∣∣sn(k) − mH

n

(
ỹ(k) + hns̃n(k)

)∣∣2
}

, (7.67)

where s̃n(k) is the soft estimate of sn(k). The solution to this MMSE problem is
given by

mn(k) = [
Σ(k) +

(
1 − var

{
sn(k)

})
hnhH

n

]−1
hn, (7.68)

where Σ(k) is the covariance matrix of the residual signal in (7.66) and is given as

Σ(k) = HΛ(k)HH + σ2I, (7.69)

where Λ(k) is the covariance matrix of the symbol given by

Λ(k) = diag
[
var

(
sn(k)

)]
(7.70)

and I is the size-LM identity matrix. The MMSE filter output becomes

zn(k) = αn(k)m′H
n (k)

[
ỹ(k) + s̃n(k)hn

]
(7.71)

with

αn(k) = (
1 +

(
1 − var

{
sn(k)

})
m′H

n (k)hn
)−1

(7.72)

and

m′H
n (k) = hH

n Σ
−1(k), (7.73)

where the matrix inversion lemma was used.
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Approximating the MMSE filter output as a Gaussian channel output, as in
the SC/MMSE algorithm derivation for BPSK, symbol extrinsic probabilities
p(zn(k)|sn(k) = si) with si ∈ S using an equivalent Gaussian channel assumption
at the output of the MMSE filter can be calculated as

p
(
zn(k)|sn(k) = si

) = 1
v2
n(k)π

exp

(
−

∣∣zn(k) − µn(k)si
∣∣2

v2
n(k)

)
(7.74)

for each si ∈ S, where µn(k) and v2
n(k) are given by

µn(k) = αn(k)m′H
n (n)hn (7.75)

and

v2
n(k) = µn(k) − µ2

n(k), (7.76)

respectively. Now, given the symbol extrinsic probabilities by (7.74) and the a pri-
ori symbol probabilities, the bit extrinsic LLR for the nth user’s channel decoder
can be calculated as

λen,m(k) = ln

∑
s j∈S1

n,m
p
(
zn(k)|sn(k) = si

)
exp

(
La

(
si
))∑

s j∈S0
n,m

p
(
zn(k)|sn(k) = si

)
exp

(
La

(
si
)) , (7.77)

where S1
n,m and S0

n,m define the subsets of S where the bit bn,m(k) takes the values
1 and 0, respectively. The a priori symbol probability La(si) for symbol si ∈ S in
(7.77) is based on all bit a priori LLRs, except for that particular bit m. Note that
(7.34) is the result of defining (7.77) for BPSK modulation in logarithm domain.

7.6. Field measurement data-based simulations for SC/MMSE detectors

Current advances in multidimensional channel sounding techniques [15] make it
possible to evaluate performances of signal processing algorithms in realistic con-
ditions. Channel impulse response (CIR) sequences from a transmitter to each
of the multiple antenna elements can be recorded. Recorded real-time channel
sounding measurement data can be used for realistic offline simulations. Since the
data represents a real propagation scenario, in-field performances can be accu-
rately evaluated by running the measurement data through the signal processing
algorithms of interest. This technique provides us with significantly more realis-
tic performance estimates than model-based simulations. Figures 7.11a and 7.11b
show, for a 3-by-3 MIMO with the transmitter and receiver’s antenna spacings be-
ing 1.0λ and 1.2λ, respectively, the time series of the bit errors after 4 iterations,
indicated by bars [16]. The measurement took place in Ilmenau, a suburban area
in Germany. Through the measurement campaign, a series of the 3-by-3 MIMO
channel impulse response was recorded, and the set of data was used in offline
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Figure 7.11. The dotted lines in SC/MMSE BER performances versus delay and spatial spreads.

simulations to evaluate performance of the single-carrier SC/MMSE MIMO turbo
equalizer. The dotted lines in Figures 7.11a and 7.11b indicate the root mean
square (RMS) spatial and delay spreads, respectively. It is found that the larger
the spreads in the spatial and temporal domains, the better the BER performance.
This tendency agrees with the results of MIMO channel capacity analysis and mea-
surements [17, 18].
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Abbreviations

ISI Intersymbol interference

SC/MMSE Soft canceler followed by minimum mean square error

MLSE Maximum-likelihood sequence estimation

MIMO Multiple-input multiple-output

QAM Quadrature amplitude modulation

CCI Cochannel interference

LLR Log-likelihood ratio

CDMA Code division mutiple access

MSE Mean square error

SISO Soft-input soft-output

BPSK Binary phase-shifted keying

AWGN Additive white Gaussian noise

RSC Recursive systematic codes

MMSE Minimum mean squared error

MSE Mean squared error

MRC Maximum ratio combining

BER Bit error rate

MUSD Multiple user signal detector

RLS Recursive least square

BICM Bit-interleaved coded modulation

RMS Root mean square
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[15] R. S. Thomä, D. Hampicke, A. Richter, et al., “Identification of time-variant directional mobile
radio channels,” IEEE Trans. Instrumentation and Measurement, vol. 49, no. 2, pp. 357–364, 2000.

[16] T. Matsumoto, J. Ylitalo, and M. Juntti, “Overview and recent challenges towards multiple-input
multiple-output communications systems,” IEEE Vehicular Technology Society Newsletter, vol. 50,
no. 2, pp. 4–9, 2003.

[17] U. Trautwein, T. Matsumoto, C. Schneider, and R. Thoma, “Exploring the performance of turbo
MIMO equalization in real field scenarios,” in The 5th International Symposium on Wireless Per-
sonal Multimedia Communications, vol. 2, pp. 422–426, Honolulu, Hawaii, USA, October 2002.

[18] C. Schneider, R. Thoma, U. Trautwein, and T. Matsumoto, “The dependency of turbo MIMO
equalizer performance on the spatial and temporal multipath channel structure—a measurement
based evaluation,” in The IEEE 57th Semiannual Vehicular Technology Conference (VTC 2003-
Spring), vol. 2, pp. 808–812, Jeju, Korea, April 2003.

Tad Matsumoto: Center for Wireless Communications, University of Oulu, P.O. Box 4500, 90014, Oulu,
Finland

Email: tadashi.matsumoto@ees2.oulu.fiw

mailto:tadashi.matsumoto@ees2.oulu.fiw


8
Architectures for reference-based
and blind multilayer detection

Karl-Dirk Kammeyer, Jürgen Rinas, and Dirk Wübben

Multilayer systems are predestinated for high-rate wireless data transmission,
where the source simultaneously radiates several data streams via multiple trans-
mit antennas. The main computational effort of transmission schemes of this type
is required at the receiver for separating the superimposed information signals. We
distinguish between two types of detection schemes, where the first type requires
channel knowledge for the receiver and the second type performs a totally blind
data estimation.

Recently, several detection algorithms have been investigated under the as-
sumption of known channel state information at the receiver. This channel knowl-
edge may be obtained by pilot-aided transmission and channel estimation. For
these reference-aided transmission the well-known linear detection schemes are
generally outperformed by successive detection schemes, namely, the V-BLAST al-
gorithm. In order to decrease the required computational complexity of this non-
linear scheme, we will restate it by applying the QR decomposition of the channel
matrix. This yields the same successive interference cancelation (SIC) detection
algorithm with complexity comparable to linear detection.

A detection approach avoiding pilot symbols is given by the concept of blind
source separation (BSS). BBS approaches normally lead to linear spatial filters. In
order to achieve the performance of reference-based detection, an iterative com-
bination of BSS and nonlinear SIC is proposed. Furthermore, the application of
BSS is favorable in many practical cases, as the sophisticated MIMO estimation
problems can be transformed to well-known solutions for SISO communication.

The performances of the discussed schemes are demonstrated by simulations
as well as by measurement results.

8.1. System model

Within this chapter, we consider the single-user multiple-antenna system in Figure
8.1 with NT transmit and NR ≥ NT receive antennas in a non-frequency-selective
environment. At the transmitter, the binary information data is demultiplexed into
NT data substreams of equal length and mapped onto PSK or QAM symbols of
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Figure 8.1. Model of a MIMO system with NT transmit and NR receive antennas.

the alphabet A with cardinality |A|. These substreams are organized in frames of
length M and simultaneously transmitted over the NT antennas. Thus, the investi-
gated scheme corresponds to the V-BLAST (vertical Bell Labs layered space-time)
architecture introduced in [1, 2].

In order to describe the MIMO system, the discrete-time complex baseband
model is investigated. Let sp[m] denote the symbol transmitted at time instant
1 ≤ m ≤ M from antenna 1 ≤ p ≤ NT. By defining the NT × 1 transmit signal
vector s[m] = [s1[m] · · · sNT [m]]T the corresponding NR × 1 receive signal vector
r[m] = [r1[m] · · · rNR [m]]T is given by

r[m] = Hs[m] + v[m]. (8.1)

In (8.1), v[m] = [v1[m] · · · vNR [m]]T represents white Gaussian noise of vari-
ance σ2

v observed at the NR receive antennas while the average transmit power of
each antenna is normalized to one, that is,1 E{s[m]sH[m′]} = INTδ(m −m′) and
E{v[m]vH[m′]} = σ2

v INRδ(m−m′). TheNR×NT channel matrix H = [h1, . . . , hNT ]
with column vectors hp contains uncorrelated complex Gaussian fading gains hk,p

with unit variance. We assume that the channel matrix H is constant over a frame
of length M and changes independently from one frame to another (block fading
channel). As the time slots m in (8.1) are independent of each other, we will drop
the time index m in the sequel resulting in

r = Hs + v. (8.2)

In order to investigate the maximum performance achievable, we introduce the
singular value decomposition (SVD) H = UΣVH of the channel matrix H, where U
and V are unitary matrices and the diagonal matrix Σ = diag [σ1, . . . , σNT ] contains
the singular values σp ≥ 0 [3]. By calculating the filtered receive vector

r′ = UHr = ΣVHs︸ ︷︷ ︸
s′

+ UHv︸ ︷︷ ︸
v′

= Σs′ + v′ (8.3)

the MIMO system (8.2) is decomposed into NT parallel single-input single-output

1δ defines the Kronecker delta with δ(0) = 1 and δ(n) = 0 for n �= 0.
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(SISO) systems

r′p = σps
′
p + v′p, (8.4)

where s′p denotes a modified transmit signal. Obviously, information can only be
transmitted over those equivalent SISO channels with nonzero singular values σp.
If the number of transmission layers exceeds the number of strong singular values,
the performance degrades. This effect is demonstrated in Section 8.4 with respect
to measurements.

Several schemes have been investigated to estimate the transmitted informa-
tion at the receiver. One class of detection algorithms requires an estimate of the
channel state information (CSI), whereas a second class applies higher-order sta-
tistics to separate the distinct transmit signals. In the sequel both detection princi-
ples are investigated and a hybrid scheme exploiting the advantages of each prin-
ciple is proposed.

8.2. Reference-based detection algorithms

Within this section we discuss several detection schemes under the assumption of
perfect channel state information at the receiver. Therefore, the achieved perfor-
mances give the upper bound for the blind and non-blind schemes in the subse-
quent section.

8.2.1. Maximum-likelihood detection

In order to detect the transmitted information, it would be optimal to use a maxi-
mum-likelihood (ML) detector. For each time instant m this optimum ML detec-
tor searches over the whole set of transmit signals s ∈ ANT , and decides in favor of
the transmit signal ŝ that minimizes the Euclidean distance to the receive vector r,
that is,

ŝML = arg min
s∈ANT

‖r − Hs‖2. (8.5)

As the computational effort for each time instant is of order |A|NT , brute force ML
detection is not feasible for larger number of transmit antennas or higher modu-
lation schemes. As an example, for a system with NT = 4 transmit antennas and
16-QAM modulation, the ML detection requires the computation of 164 = 65536
Euclidean distances for each transmit vector.

A feasible alternative is the application of the sphere detector [4], which re-
stricts the search space to a sphere around r. However, the computational complex-
ity is still high in comparison to simple but suboptimal linear detection or succes-
sive interference cancelation. In the sequel, we investigate these suboptimum linear
and nonlinear schemes. The advantage of both strategies is that the computational
overhead is only required once for each transmitted frame, so for a large frame
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Figure 8.2. Block diagram of a MIMO scheme with linear detection.

length, the effort for each signal vector is very small. Furthermore, these subopti-
mum detection schemes may achieve near-ML performance in combination with
lattice reduction, for example, see [5, 6].

8.2.2. Linear detection

The linear detector (LD) is the simplest approach for estimating the transmitted
signals. The receive signal vector r is multiplied with a filter matrix G, followed by
a parallel decision on all layers, as shown in the block diagram in Figure 8.2.

In case of the zero-forcing (ZF) solution, the mutual interference between
the layers is completely suppressed. This is accomplished by the Moore-Penrose
pseudoinverse (denoted by (·)+) of the channel matrix

GZF = H+ = (
HHH

)−1
HH , (8.6)

where we assume that H has full column rank. The decision step consists of map-
ping each element of the filter output vector

s̃ = GZFr = H+r = s +
(

HHH
)−1

HHv (8.7)

onto an element of the symbol alphabet A by an elementwise minimum distance
quantization, that is, ŝp = QA{s̃p}. The estimation errors of the different layers
correspond to the main diagonal elements of the error covariance matrix

Φee,ZF = E
{

(s̃ − s)(s̃ − s)H
} = σ2

v

(
HHH

)−1
, (8.8)

which equals the covariance matrix of the noise after the receive filter. It is obvious
that small eigenvalues of HHH will lead to large errors due to noise amplification.

In order to improve the performance of the linear detector the noise term can
be included in the design of the filter matrix G. This is done by the minimum mean
square error (MMSE) detector, where the filter

GMMSE = (
HHH + σ2

v INT

)−1
HH (8.9)

represents a trade-off between noise amplification and interference suppression.
The resulting filter output signal is given by

s̃ = GMMSEr = (
HHH + σ2

v INT

)−1
HHr (8.10)
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and the error covariance matrix is found to be

Φee,MMSE = σ2
v

(
HHH + σ2

v INT

)−1
. (8.11)

For the derivation of the nonlinear MMSE detection algorithm considered
later it will be useful to point out the correspondence of the MMSE and the ZF
criterion. To this end, we define an (NT + NR) × NT extended channel matrix2 H
and an (NT + NR) × 1 extended receive vector r through [7, 8]

H =
[

H
σvINT

]
, r =

[
r

0NT,1

]
. (8.12)

With these definitions we can rewrite the output of the MMSE filter (8.10) as

s̃ =
([

HHσvINT

][ H
σvINT

])−1 [
HHσvINT

][ r
0NT,1

]
(8.13)

= (
HHH

)−1
HHr = H+r. (8.14)

Furthermore, the error covariance matrix (8.11) becomes

Φee,MMSE = σ2
v

(
HHH

)−1
. (8.15)

Comparing (8.14) and (8.15) to the corresponding expression for the linear zero-
forcing detector in (8.7) and (8.8), the only difference is that the channel matrix
H has been replaced by H. Thus, an MMSE detector can be interpreted as a ZF
detector with respect to the extended system model. This simple observation will
be important for incorporating the MMSE criterion into the nonlinear detection
algorithm in the sequel.

8.2.3. Successive interference cancelation detection

Instead of detecting the transmitted symbols in parallel, the nonlinear successive
interference cancelation (SIC) schemes detect the signals one after another. Simi-
lar to a decision-feedback equalizer, the estimated interference of already detected
signals is subtracted from the receive signal r before detecting the remaining sig-
nals. Due to the effect of error propagation, the sequence of detecting the layers
has a strong impact on the overall error performance [2].

V-BLAST algorithm. The original V-BLAST detection algorithm [2] is based on
the linear zero-forcing solution (8.6), but detects the signals one after another and
not in parallel. In order to achieve the best performance, it is optimal to choose al-
ways the layer with the largest postdetection signal-to-noise ratio (SNR), or equiv-
alently with the smallest estimation error [2]. By rewriting the error covariance
(8.8) as Φee,ZF = σ2

v GZFGH
ZF, the pth diagonal element corresponds to σ2

v g(p)gH
(p),

2Henceforth, underlined variables indicate the application of this extended MMSE system model.
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with g(p) denoting row p of GZF. Consequently, the smallest estimation error cor-
responds to the row of GZF with minimum Euclidean norm. Assuming that row
i has the smallest norm in the first detection step, the corresponding filter output
signal is given by

s̃i = g(i)r = si + g(i)v (8.16)

and the estimated signal ŝi = QA{s̃i} is found by quantization. The estimated
interference caused by this signal is then subtracted from the receive signal vector
r and the ith column is removed from the channel matrix, leading to a system with
only NT−1 transmit antennas. This procedure of nulling and canceling is repeated
for the reduced systems until all signals are detected.

The adaptation to the MMSE criterion was presented in several publications
(e.g., [9]), where the optimal detection sequence maximizes the signal-to-inter-
ference-and-noise ratio (SINR) in each decision step. Again, this corresponds to
choosing the layer with the smallest estimation error in (8.11) or (8.15). Using
similar arguments as before, the layer with highest SINR corresponds to the row
of H+ with minimum norm. It is worth to note that this best layer is not neces-
sarily associated with the row of GMMSE with minimum norm, as GMMSE is not
a square root of Φee,MMSE [10]. Consequently, a detector applying the ZF sorting
criterion based on the Euclidean row norm of GMMSE in the MMSE case will lead
to a significant performance loss.

The main drawback of the V-BLAST detection algorithm lies in the compu-
tational complexity, as it requires multiple calculations of the pseudoinverse of
the channel matrix in the ZF case [11] or of the extended channel matrix in the
MMSE case. Thus, several schemes with reduced complexity have been proposed,
for example, [8, 12, 13, 14].

Within this section, we consider the scheme presented in [14] and extended
in [8]. To this end, we restate the successive interference cancelation scheme us-
ing the QR decomposition of the channel matrix, for the ZF as well as the MMSE
case. In order to efficiently achieve an optimized detection order, we will then in-
troduce a suboptimum approach, the so-called sorted QR decomposition. Later
on, we extend this simple scheme by the postsorting algorithm, yielding the per-
fect detection sequence and thereby the performance of the V-BLAST scheme. The
main advantage of this combined scheme comes with the complexity reduction, as
it only requires a fraction of the computational effort of the original V-BLAST
algorithm [8, 11].

ZF-SIC with QR decomposition. It was shown in several publications, for example,
[11, 14, 15, 16, 17], that the zero-forcing solution of the V-BLAST algorithm can
be restated in terms of the QR decomposition of the channel matrix H = QR,
where the NR × NT matrix Q has unitary columns and the NT × NT matrix R =
(ri, j)1≤i, j≤NT is upper triangular [3]. Multiplying the receive signal r with QH yields
the sufficient statistic

s̃ = QHr = Rs + ṽ (8.17)
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Figure 8.3. Block diagram of the successive interference cancelation detector for a system with NT = 4
transmit antennas.

for the estimation of transmit vector s. As Q is a unitary matrix, the statistical
properties of the Gaussian noise term ṽ = QHv remain unchanged and in a com-
ponentwise notation (8.17) becomes


s̃1

s̃2

...
s̃NT

 =


r1,1 r1,2 · · · r1,NT

... r2,2

...
...

. . .
...

0 · · · rNT,NT




s1

s2

...
sNT

 +


ṽ1

ṽ2

...
ṽNT

 . (8.18)

Due to the upper triangular structure of R, the pth element of s̃ is given by

s̃p = rp,psp +
NT∑

i=p+1

rp,isi + ṽp (8.19)

and is free of interference from layers 1, . . . , p − 1. Thus, s̃NT is totally free of in-
terference and can be used to estimate sNT after appropriate scaling with 1/rNT,NT .
Proceeding with s̃NT−1, . . . , s̃1 and assuming correct previous decisions, the inter-
ference can be perfectly canceled in each step. Then it follows from (8.19) that the
SNR of layer p is determined by the diagonal element |rp,p|2. For a system with
NT = 4 transmit antennas the successive detection and cancelation procedure is
shown in Figure 8.3.

The signal spaces of the corresponding detection and interference cancela-
tion steps are shown in Figure 8.4 (achieved with the experimental equipment de-
scribed in Section 8.4). The first depicted column (step 1) corresponds to s̃ (scaled
by r4,4 for illustration purpose), the output of the filter matrix QH . Obviously layer
4 is free of interference and can be estimated, whereas the other layers are still af-
fected by interference. The second column shows the signal space after subtracting
the estimated interference, that is, step 2 in Figure 8.3. Thus, layer 3 may be de-
tected. The succeeding steps are straightforward.

MMSE-SIC with QR decomposition. In order to extend the QR-based detection
with respect to the MMSE criterion, we can exploit the similarity of linear ZF and
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Figure 8.4. Signal space of each layer at the distinct steps of the successive interference cancelation
for a system with NT = 4 transmit antennas, NR = 4 receive antennas and QPSK modulation with
estimated SNR.

MMSE detection. For this purpose, we introduce the QR decomposition of the
extended channel matrix (8.12)

H =
[

H
σvINT

]
= QR =

[
Q1

Q2

]
R =

[
Q1R
Q2R

]
, (8.20)

where the unitary (NT+NR)×NT matrix Q was partitioned into the NR×NT matrix
Q1 and the NT × NT matrix Q2 and R = (ri, j)1≤i, j≤NT denotes the corresponding
upper triangular matrix. Obviously,

QHH = QH
1 H + σvQH

2 = R (8.21)

holds and from the relation σvINT = Q2R in (8.20), it follows that

R−1 = 1
σv

Q2, (8.22)

that is, the inverse R−1 is a by-product of the QR decomposition and Q2 is an
upper triangular matrix. This relation will be useful for the postsorting algorithm
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proposed later on. Using (8.21), the filtered receive vector becomes

s̃ = QHr = QH
1 r = Rs − σvQH

2 s + QH
1 v. (8.23)

The second term on the right-hand side of (8.23) including the lower triangular
matrix QH

2 constitutes the remaining interference that cannot be removed by the
successive interference cancelation procedure. This points out the trade-off be-
tween noise amplification and interference suppression.

As mentioned in the discussion of the V-BLAST algorithm, the order of de-
tection is crucial due to error propagation. Within the QR-based SIC the detec-
tion order can be changed by permuting the columns of H and the correspond-
ing elements in s. The optimum detection sequence now maximizes the signal-
to-interference-and-noise ratio (SINR) for each layer, leading to a minimum es-
timation error for the corresponding detection step. The estimation errors of the
different layers in the first detection step correspond to the diagonal elements of
the error covariance matrix (8.15)

Φee,MMSE = σ2
v

(
HHH

)−1 = σ2
v R−1R−H. (8.24)

The estimation error for layer p after perfect interference cancelation is given by
σ2
v /|r p,p|2. Thus, it is optimal to choose the permutation of H that maximizes |r p,p|

in each detection step, that is, in the orderNT, . . . , 1. The algorithm proposed in the
next paragraph determines an improved detection sequence within a single sorted
QR decomposition and thereby significantly reduces the computational complex-
ity in comparison to the V-BLAST algorithm.

Sorted QR decomposition (SQRD). In order to obtain the optimal detection order,
first |rNT,NT

| has to be maximized over all possible permutations of the columns of
the extended channel matrix H, followed by |rNT−1,NT−1|, and so on. Unfortunately,
using standard algorithms for the QR decomposition, the diagonal elements of R
are calculated just in the opposite order, starting with r1,1. This makes finding the
optimal order of detection a difficult task.

A heuristic approach of arranging the order of detection within the QR de-
composition for the ZF detection was presented in [11, 14] and extended to the
MMSE criterion in [8, 16]. This sorted QR decomposition algorithm is basically
an extension to the modified Gram-Schmidt procedure by reordering the columns
of the channel matrix prior to each orthogonalization step. The fundamental idea
is based on the fact that the determinant of the Gram matrix HHH, that is, the
squared volume of the parallelepiped spanned by H, is invariant to column ex-
changes [3]. Since this determinant can be rewritten as

det
(

HHH
) = det

(
RHR

) =
NT∏
p=1

∣∣r p,p

∣∣2 = const, (8.25)

the product r1,1 · . . . · rNT,NT
is also independent of the chosen column order. Thus,

the basic idea is to exchange the columns to minimize the diagonal elements r p,p
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(1) R = 0, Q = H, p = [1 · · ·NT]
(2) for i = 1, . . . ,NT

(3) norm(i) = ‖Q(:, i)‖2

(4) end
(5) for i = 1, . . . ,NT

(6) ki = arg min norm(i, . . . ,NT)
(7) exchange columns i and ki in

R, p, norm and in the first
NR + i− 1 rows of Q

(8) R(i, i) = √
norm(i)

(9) Q(:, i) = Q(:, i)/R(i, i)
(10) for k = i + 1, . . . ,NT

(11) R(i, k) = Q(:, i)HQ(:, k)
(12) Q(:, k) := Q(:, k) − R(i, k)Q(:, i)
(13) norm(k) := norm(k) − R(i, k)2

(14) end
(15) end

Algorithm 8.1. Pseudocode of MMSE-SQRD-algorithm.

in the order of their calculation, that is, in the sequence r1,1, . . . , rNT,NT
. As the

product is constant, small r p,p in the upper left part should lead to large elements
in the lower right part of R.

Now, r1,1 is simply the norm of the column vector h1, so the first optimiza-
tion in the SQRD algorithm consists merely of permuting the column of H with
minimum norm to this position. During the following orthogonalization of the
vectors h2, . . . , hNT

with respect to the normalized vector h1, the first row of R is
obtained. Next, r2,2 is determined in a similar fashion from the remaining NT − 1
orthogonalized vectors, and so forth. Thus, the extended channel matrix H is suc-
cessively transformed into the matrix Q associated with the desired ordering, while
the corresponding R is calculated row by row. Note that the column norms have
to be calculated only once in the beginning and can be easily updated afterwards.
Hence, the computational overhead due to sorting is negligible. An in-place de-
scription of the whole MMSE-SQRD algorithm is given in3 Algorithm 8.1, with
vector p denoting the permutation of the columns of H.

The reordering steps (lines (6) and (7) within the algorithm) require only a
very small computational overhead compared to an unsorted QR decomposition
[8]. However, the SQRD ordering strategy does not always lead to the perfect de-
tection sequence, but in many cases of interest the performance degradation is
small compared to the reduced complexity. Furthermore, whenever SQRD fails to
find the optimal order, the postsorting algorithm described in the sequel assures
the optimal sorting and thereby achieves the same performance as V-BLAST.

3A(a : b, c : d) denotes the submatrix of A with elements from rows a, . . . , b and columns c, . . . ,d.
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Postsorting algorithm (PSA). In this section we briefly present the postsorting al-
gorithm (PSA) introduced in [8]. In order to motivate the PSA, the structure of
the error covariance matrix in case of optimal sorting is investigated in more detail.
Due to the relation Q2 = σvR−1 introduced in (8.22) the error covariance matrix
(8.24) is given by

Φee,MMSE = Q2QH
2 , (8.26)

that is, Q2 is a square root of Φee,MMSE [7]. Thus, the pth diagonal element of
Φee,MMSE is proportional to the norm of the pth row of Q2. Recalling the optimal
ordering criterion, the last row of Q2 must have minimum norm of all rows. As-
sume that this condition is fulfiled, then the last row of the upper leftNT−1×NT−1
submatrix of Q2 must have minimum norm of all rows of this submatrix. In case
of the correct sorting this condition is accomplished by all upper left submatrices.

Now assume that this condition is not fulfiled for the matrix Q2. Then the row
with minimum norm and the last row (as well as the corresponding elements of p)
need to be exchanged at the expense of destroying the upper triangular structure.
However, by right multiplying the permuted version of Q2 with a proper unitary
NT ×NT Householder reflection matrix4 Θ, a block triangular matrix is achieved.
Finally, Q1 has to be updated to Q1Θ. Instead of permuting columns of R and left
multiplying with ΘH in each step, we can alternatively invert Q2 at the end of the
PSA, due to the relation R = 1/σvQ−1

2 . These ordering and reflection steps are then
iterated for the upper left (NT − 1) × (NT − 1) submatrix of the such modified
matrix Q2 and the first NT − 1 columns of the new matrix Q1, resulting in the QR
decomposition of the optimally ordered channel matrix H. The whole postsorting
algorithm is given in Algorithm 8.2.

Thus, a two-step decomposition and reordering procedure is achieved. This
scheme finds the optimum detection sequence in the sense of V-BLAST and there-
fore leads to the same performance. However, the computational complexity of
the whole detection process reduces to a fraction of the V-BLAST complexity and
is comparable to the effort of linear detection [8].

Performance evaluation. In order to compare the different detection schemes we
investigate the achieved bit error rates (BER) for a system with NT = 4, NR = 4,
and QPSK modulation. Eb denotes the average energy per information bit arriving
at the receiver, thus Eb/N0 = NR/(log2(|A|)σ2

v ) holds. (Due to this normalization
the antenna gain is canceled out.)

Figure 8.5a shows the performance of various ZF detection algorithms and
the BER of ML detection. As expected, the successive detection algorithms outper-
form the linear ZF detector. The impact of an optimized detection order becomes

4The Householder matrix for a 1 × n row vector a with complex elements is given by Θ = In −
(1 + ξ)uHu with the definitions u = (a − ‖a‖en)/‖a − ‖a‖en‖, en = [01,n−11] and ξ = uaH/auH . The
multiplication of a with Θ results in a vector consisting of n− 1 zero elements and one element equal
to the norm of a, that is, aΘ = [01,n−1‖a‖] holds.
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(1) kmin = NT

(2) for i = NT, . . . , 2
(3) for � = 1, . . . , i
(4) error(�) = ‖Q2(�, 1 : i)‖2

(5) end
(6) ki = arg min error(1, . . . , i)
(7) kmin := min(kmin, ki)
(8) if ki < i
(9) exchange rows i and ki in Q2

and columns i and ki in p
(10) end
(11) if kmin < i
(12) calculate Θ such that elements

of Q2(i, kmin : i− 1) become zero
(13) Q2(1 : i, kmin : i) := Q2(1 : i, kmin : i)Θ
(14) Q1(:, kmin : i) := Q1(:, kmin : i)Θ
(15) end
(16) end
(17) R = 1/σvQ−1

2

Algorithm 8.2. Pseudocode of MMSE-PSA-algorithm.

obvious by comparing the unsorted SIC, SQRD-SIC, and SQRD-PSA-SIC (or
equivalently V-BLAST). As SQRD-SIC does not always find the optimum detec-
tion order it results in a performance gap of about 1 dB for a BER of 10−3 compared
to SQRD-PSA-SIC. However, this degradation reduces for an increasing number
of receive antennas, for example, for a system with NR = 6 the difference is only
0.5 dB for a BER of 10−5 [11].

For the same system, Figure 8.5b shows the performance of the MMSE detec-
tion schemes. Comparing these results with the ZF schemes, a remarkable perfor-
mance improvement can be observed. Furthermore, the SQRD-SIC achieves the
same performance as the optimally sorted SQRD-PSA-SIC up to Eb/N0 = 10 dB.
In many cases of interest, the SQRD approach would be the first choice for im-
plementation due to the reduced complexity. However, the combination of SQRD
and PSA yields optimum SIC performance with a minimum of computational
complexity [8].

8.3. Blind source separation

Blind source separation (BSS) is a general problem in multisensor multiantenna
systems and aims at separating data streams from a mixture of signals that stem
from statistical independent sources. There are many applications for this problem
ranging from audio processing to medical applications and communications. In
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Figure 8.5. Bit error rate of (a) ZF and (b) MMSE detection of a system with NT = 4 antennas and
NR = 4 antennas, uncoded QPSK symbols.

this section applications to current MIMO communication systems are presented.
The investigated algorithms are termed blind, because the channel matrix H is not
known and no additional pilot symbols are used to separate the data streams.

8.3.1. Linear separation

For the instantaneous (nonconvolutive) channel model

r = Hs + v (8.27)

of linear separation, the problem can be stated as follows. Blindly find a matrix G
to be multiplied from the left-hand side onto r so that the statistically independent
data streams s can be recovered. This leads to a linear detection of the data streams.

Possible approaches to this BSS problem. In general there are three types of infor-
mation that can be utilized to solve the blind source separation problem [18]:

(i) non-Gaussianity of the source signals. This property is explicitly uti-
lized in all higher-order statistics-(HOS-)based algorithms and will be
explained later on in this text;

(ii) the different coloring of the source signals. This property can normally
not be exploited in a communication context, because communication
signals are designed to utilize a given bandwidth as good as possible and
therefore the signals are mostly white. This type of information is used in
the second order blind identification (SOBI) type of algorithms [19, 20];
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(iii) instationarity of the source signals (or channel). This can be applied to au-
dio and communication signals but requires fading or frequency-select-
ive channels. This can also be utilized in SOBI-like approaches [19, 20].

The general idea of the HOS-based source separation algorithms will be described
in this section in an illustrative way. We search for an NT × NR equalization ma-
trix G that exploits the fact that the signal streams contained in the vector of the
extracted signals

e = Gr (8.28)

are statistically independent. The general definition of statistical independence is
that the joint probability density function (pdf) is the product of the marginal
densities5

p
(
e1, e2

) = p
(
e1
) · p(e2

)
. (8.29)

In order to obtain simple algorithms from this abstract formulation, we need to
apply some approximations. The simplest (first- and second-order) approach to
this problem is to apply this multiplication property not to pdfs but to expectation
values

E
{
e1 · e2

} = E
{
e1
} · E

{
e2
}
. (8.30)

Because in most practical cases communication signals have a mean value of zero,
we can simplify this expression to

E
{
e1 · e2

} = 0. (8.31)

This can be interpreted as follows. The separation problem is split into two steps
to determine the equalization matrix G = BHW. A first approximation towards a
blind source separation is the decorrelation of the output signals with matrix W.
This computation step is also known as sphering, whitening, standardization, or
principle component analysis. With the decorrelation the separation problem is
not yet solved! The second step is to determine the unitary matrix B. This can be
accomplished using different algorithms and will be explained below.

The whitening matrix

W = D−1/2UH (8.32)

is calculated by taking the eigenvalue decomposition (EVD) Φrr = E{rrH} =
UDUH of the covariance of the received signals r. Consequently, the decorrelated

5In this section we use a simplified notation, where we do not distinguish between random vari-
ables and their realizations.
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signals can be obtained by

z = Wr, Φzz = E
{

zzH
} = INT . (8.33)

This procedure can be used in a similar way to limit z to the dominant subspace di-
rections (corresponding to the greatest eigenvalues) in order to reduce the number
of dimensions and the noise influence [21].

Since the decorrelation will lead to orthogonality but not statistical indepen-
dence, we have to search for further degrees of freedom. One remaining degree of
freedom is an NT × NT unitary matrix B, if we do not want to destroy the spatial
orthogonality of z, that is,

I
!= E

{
BHzzHB

} = BHE
{

zzH
}

B = BHB. (8.34)

The basic criterion to determine B is the maximization of the kurtosis of a
separated signal stream. The kurtosis is a fourth-order (auto-)cumulant

kurt{e} = E
{|e|4}− E

{
ee∗

}
E
{
ee∗

}− E{ee}E
{
e∗e∗

}− E
{
ee∗

}
E
{
e∗e

}
(8.35)

that can be interpreted as a fourth-order moment minus the Gaussian parts of the
distribution, so that its value is zero for Gaussian distributed signals. A mixture of
many independent signals (as it is provided by the MIMO channel) will lead to a
Gaussian distribution due to the central limit theorem of statistics. Therefore the
non-Gaussianity in terms of the kurtosis is one possible criterion that is utilized in
the two algorithms that are briefly explained below.6

JADE. The joint approximate diagonalization of eigenmatrices (JADE) algorithm
[21] is one common batch procedure that solves the separation problem. The
first step of this algorithm is to decorrelate the input streams as shown in (8.33).
The final separation is done by additionally utilizing fourth-order information.
Therefore, the JADE algorithm maximizes some elements of the cumulant matrix
cum(e�i , ei, e�j , el)7 obtained from the extracted signals e defined in (8.28)

max
B

NT∑
i, j,l=1

∣∣ cum
(
e�i , ei, e�j , el

)∣∣2
. (8.36)

This optimization problem is solved by an eigenvalue decomposition of the cu-
mulant matrix and a joint diagonalization of the dominant cumulant eigenvectors
rearranged as matrices. This diagonalization is done by a Jacobi-like procedure

6Compared to this illustrative explanation of BSS algorithms more mathematical ones can be
found in specialized textbooks [20, 22, 23] or in [24].

7cum(e�i , ei, e�j , el) is a fourth-order cross-cumulant of the extracted signals ep . Cumulants can
be interpreted as higher-order moments minus their Gaussian parts of the distribution. For further
details see [25].
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using Givens rotations and leads to the unitary NT × NT matrix B and the inde-
pendent data streams

e = BHW︸ ︷︷ ︸
G

r = BHz. (8.37)

For details see [21]. A similar approach that needs less computational effort is the
SSARS algorithm presented in [26].

FastICA. The FastICA algorithm is organized in a different way [10, 27] compared
with the JADE algorithm. The basic idea of this algorithm is to apply a blind source
extraction (BSE) for each component separately and to prevent the same signal
from being extracted multiple times. It starts with the whitening of the received
data as presented in (8.33).

In order to extract signal number p out of the whitened mixture z, a randomly
initialized extraction vector bp—a column vector of the NT × NT matrix B—is
generated. In order to preserve the signals to remain uncorrelated, B has again to
be a unitary matrix. Therefore, bp is constrained to form an orthonormal basis
using the knowledge of the vectors b1 · · ·bp−1 obtained in previous iterations. To
reach this goal matrix,

Bp = [
b1, b2, . . . , bp

]
(8.38)

containing the extraction vectors of the former iterations is built. The randomly
initialized vector bp is orthogonalized with respect to the space spanned by Bp−1

b′
p = bp − Bp−1BH

p−1bp (8.39)

and normalized to a length of one

b′′
p = b′

p∥∥b′
p

∥∥ . (8.40)

In order to determine bp we choose the maximization of the kurtosis of a single
signal as the criterion

max
bp

JFastICA,p
(
ep
) = max

bp

kurt
{∣∣ep∣∣4

}
= max

bp

kurt
{∣∣bH

p z
∣∣4

}
. (8.41)

This can be solved using a fixed-point iteration including the additional con-
straints (8.39) and (8.40) [10]. The resulting signal streams e can be extracted by
multiplying the received signal with the matrix of all collected extraction vectors
B = BNT according to (8.37).
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Figure 8.6. Block diagram of hybrid BSS detection.

Symbol decision. The algorithms presented in the previous sections only provide
statistically independent data streams e. Therefore the signal streams can be ro-
tated by an arbitrary phase factor—modeled by the diagonal matrix Ψ = diag [ψ1,
. . . ,ψNT ]—and can be permuted by a matrix P. In general the permutation prob-
lem cannot be solved without additional addressing in the data streams or other
side information, but the phase problem can be tackled by utilizing knowledge of
the symbol alphabet. If QPSK is used as a modulation form, the phase can be esti-
mated up to a discrete phase or quadrant ambiguity Ψ̂ = diag [ψ̂1, . . . , ψ̂p, . . . , ψ̂NT ],
ψ̂p ∈ {0,π/2,π, (3/2)π}, which can be corrected by

ep,derot[m] = ep[m] · e− j(1/4) arg {−∑M
m′=1 e

4
p[m′]} ∀p ∈ 1, . . . ,NT. (8.42)

The remaining discrete ambiguity Ψ̂ can be removed by differential modulation
forms or rotational invariant coding. But a decision of the pure symbols s is only
possible with a remaining discrete ambiguity.

8.3.2. Hybrid BSS detector

The blind algorithms presented in the previous section approximate only linear
spatial filters in order to separate the data streams. This reaches only a fractional
amount of the performance reached by iterative detection algorithms as can be
seen in Figure 8.5 for the nonblind case.

In this section we improve the detection performance by applying a cancela-
tion scheme. This utilizes the finite symbol alphabet that was only used marginally
up to now and results in a hybrid scheme that is initialized using a linear detection
and iteratively improved using a symbol detection in order to obtain a totally blind
scheme up to the point of the final symbol decision.8

We propose a system as depicted in Figure 8.6. We start with coarsely decided
symbols ŝ that were obtained using a blind separation method (e.g., JADE) and

8This scheme can also be applied in semiblind setups using very few pilot symbols.
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phase correction (8.42) described above.9 Using this data we produce a first chan-
nel estimate H̃. This channel estimate is used to detect the symbols once more
using the MMSE-SIC as presented in Section 8.2.3. Using the output of the SIC
detector for an improved channel estimation in combination with a further detec-
tion of the data will iteratively lead to better results.

The whole detection scheme remains blind, since this detection loop is blindly
initialized and the SIC algorithm only decides symbol positions with quadrant
ambiguities ŝ1, . . . , ŝNT . It has to be proven that despite these ambiguities the iter-
ations work properly. Therefore we assume that the matrix of estimated symbols
Ŝ = [ŝ[1], ŝ[2], . . . , ŝ[M]] achieved by the blind source separation is given by

Ŝ = QA
{
Ψ̂PS

}
. (8.43)

In (8.43), S = [s[1], s[2] · · · s[M]] is the matrix of transmitted symbols, P is a per-
mutation matrix, and Ψ̂ defines the diagonal matrix modeling the discrete quad-
rant ambiguities.

In order to use these BSS decision results Ŝ for a first channel estimation we
calculate

H̃ = R · Ŝ+ (8.44)

using the matrix of the received symbols R = [r[1], r[2] · · · r[M]]. After insert-
ing (8.43) and assuming only a few decision errors, we can simplify the channel
estimation [28] to

H̃ = H · PHΨ̂H. (8.45)

This leads to an estimation H̃ of the channel matrix H in a permuted form, where
every column contains a quadrant ambiguity.

If we use the estimated channel matrix H̃ again for the detection, we should
find the data streams permuted and rotated in the same way as in (8.43). To show
that this channel estimation leads to the same permutation and rotation, a simple
linear detection is used:

Ŝ = QA
{(

H · PHΨ̂H
)+

R
} = QA

{
Ψ̂PH+ · (HS + V

)}
≈ QA

{
Ψ̂PH+ · HS

} = QA{Ψ̂PS}.
(8.46)

9We need to start with a coarse data decision and cannot rely on the separation matrices B and W
since these matrices do perform well for separation but do not include a correct amplitude estimation
of the signals and therefore every cancelation scheme will fail without a first data decision.
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Figure 8.7. BER of hybrid BSS detector, NT = NR = 4, QPSK.

Therefore iterating between detection and channel estimation in a blind way leads
to a stable solution of H̃ with permutation and quadrant ambiguity.

If we apply this channel estimation in the SIC algorithm we get symbols ŝ
(Figure 8.6) with the corresponding discrete quadrant ambiguities Ψ̂, but this does
not influence our further detection and cancelation process, as long as we only
want to decide symbols from the alphabet A.

To summarize, we found an iterative estimation and detection scheme that
utilizes the finite symbol alphabet and remains completely blind.

Performance of the proposed iterative scheme. In order to show the feasibility of our
detection approach we present some BER results of the blind source separation and
the hybrid approach (Figure 8.6). As an initialization we exemplary use the output
of the JADE algorithm.

Figure 8.7 depicts the results of our simulations. Beside the reference curves of
the MMSE and zero-forcing linear detection the MMSE-SIC detection with ideal
known channel matrix was introduced as a further reference. The performance of
the blind JADE algorithm is between the ZF- and the MMSE-linear detection.

Using the proposed iterative scheme we can observe a gain of about 10 dB at a
bit error rate of 10−3 (hybrid BSS, iterations = 5) compared to the classical source
separation using the JADE algorithm only. For this improvement we need only 5
iterations of detection and channel estimation. We nearly reach the curve of the
SIC algorithm with perfectly known channel matrix H.10 We have to emphasize
that the whole detection scheme remains blind since no reference data is used in
order to gain the symbol decisions.

10We can even decrease the gap to the detection with ideally known channel matrix if we increase
the length M of the data block.
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Figure 8.8. Receiver setup in case of hybrid blind source separation.

8.4. Experimental results—measurements

In this section some experiments of transmissions using reference-based and blind
schemes are presented. As a MIMO demonstrator we used our multiple-antenna
system for ISM-band transmission (MASI). This system can be applied to realize
MIMO systems of up to 8 transmit and 8 receive antennas [29]. The transmission
experiments are executed in real time while the processing is done offline using an
interface to Matlab.

Figure 8.8 depicts the receiver setup considering exemplarily a source-separa-
tion-based transmission system. To realize transmissions, some practical problems
have to be solved. First of all the DC offset caused by the direct conversion front
end of the receiver has to be removed. A coarse frame detection based on a power
estimation is carried out. Timing and frequency estimation have to be realized
before the symbol rate processing can be accomplished.

In order to show the feasibility of the proposed approaches, the MIMO system
with NT = 4 antennas, and NR = 4 antennas, and QPSK signals is considered.
The presented measurements are carried out with a sampling frequency of fs =
50 MHz. With an oversampling of w = 8 we can consider the transmission channel
as nearly flat. The distance between transmitter and receiver was spanning two
office rooms.

8.4.1. Reference-based SIC detection

For the proposed scheme we investigate two examples for reference-based trans-
missions. Figure 8.9 shows the eigenvalues λp of HHH (λp = σ2

p with σp denoting
the singular value of H) and the signal spaces at the slicer inputs, corresponding to
Figure 8.4. Since four eigenvalues contribute to the signal transmission, the slicer
input signals correspond to the modulation alphabet leading to a sufficient signal
detection.
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Figure 8.9. Eigenvalue profile and signal space diagrams for good channel condition.
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Figure 8.10. Eigenvalue profile and signal space diagrams for bad channel conditions.

Figure 8.10 shows a second measurement in the same office environment
with slightly changed positions. In contrast to the first example, only two strong
eigenvalues contribute to the transmission. The third and fourth eigenvalues are
almost zero and the detection process fails.

8.4.2. Hybrid BSS detection with iterative refinement

In this section, we show the performance of the hybrid blind source-separation-
based detector by some measurements. The setup used is depicted in Figure 8.8. To
separate the independent components, the BSS algorithm is directly applied to the
oversampled signal. For this step we choose the JADE [21] algorithm as a spatial
separation approach. The separation leads to data streams which are processed in
the classical way like in single-antenna systems. This is a considerable advantage,
since well-known algorithms (e.g., for timing and for frequency synchronization)
can be applied for the separated layers of MIMO systems. We synchronize to the
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Figure 8.11. Signal constellations before and after blind source separation and after 5 iterations, to-
gether with blindly estimated SNR.

symbol timing using the method presented in [30]. In order to determine the car-
rier frequency offset we apply a non-linearity and frequency estimation.

Figure 8.11 depicts the signal constellation at symbol rate before separation,
after separation, and after 5 iterations of the scheme presented in Figure 8.6. We
have included estimations of the SNR of the symbol constellation before the deci-
sion devices [31]. In Figure 8.11 one of the signal constellations after BSS consists
of noise only. Using the proposed iteration scheme with SIC detection and itera-
tive channel estimation, even this constellation can be resolved to QPSK. Denote
that the overall SNR has been improved.

8.5. Conclusions

Within this contribution, architectures for reference-based and blind detection of
multilayer systems have been investigated. In case of known channel state infor-
mation at the receiver a computational efficient detection algorithm has been pro-
posed. Without any channel state information, we proposed a hybrid combina-
tion of blind source separation with successive interference cancelation. To ensure
the feasibility of the distinct approaches, real-world transmissions have been car-
ried out. It has been shown that the measurements correspond to the predicted
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theoretical results. The feasibility of the proposed schemes have been shown in an
indoor office scenario.

Abbreviations

BER Bit error rate

BSE Blind source extraction

BSS Blind source separation

CSI Channel state information

EVD Eigenvalue decomposition

HOS Higher-order statistics

JADE Joint approximate diagonalization of eigenmatrices

LD Linear detector

MASI Multiple-antenna system for ISM-band transmission

MIMO Multi-input multi-output

ML Maximum likelihood

MSE Minimum mean square error

MMSE-SIC Minimum mean square error-successive interference cancelation

PSA Postsorting algorithm

SIC Successive interference cancelation

SINR Signal-interference-and-noise ratio

SISO Single-input single-output

SNR Signal-to-noise ratio

SOBI Second-order blind identification

SQRD Sorted QR decomposition

SVD Singular value decomposition

V-BLAST Vertical Bell Labs Layered Space-Time

ZF Zero forcing

ZF-SIC Zero-forcing successive interference cancelation
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9
Uplink robust adaptive beamforming

Alex B. Gershman

9.1. Introduction

One of recent promising approaches to increase the capacity and performance of
cellular mobile radio systems is to employ smart antennas (multisensor arrays) at
base stations (BSs) [1, 2, 3]. Based on this approach, the spatial division multiple
access (SDMA) technology recently became one of the key concepts of the third
and higher generations of mobile communication systems. In particular, uplink
(receive) adaptive beamforming techniques using multisensor BS arrays have been
shown to be able to efficiently mitigate the cochannel (multiaccess) interference
and greatly improve the system characteristics in terms of capacity, performance,
and coverage [2, 3, 4, 5, 6, 7].

Although smart antennas for mobile radio systems is a relatively new trend
in wireless communications, adaptive array beamforming is a universal approach
that has a long and rich history of interdisciplinary theoretical research and prac-
tical applications, mainly in radar and sonar communities [8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18].

Over the last three decades, the theory of adaptive receive beamforming has
been well developed and a variety of advanced algorithms has been proposed, see
[10, 13, 14, 15, 16, 18] and references therein. However, in application to cellular
mobile radio scenarios, most of these techniques are based on the assumption of
an accurate knowledge of the uplink propagation channel (spatial signature of the
user-of-interest). Moreover, these methods usually make use of several restrictive
assumptions on the environment and mobile user sources. As a result, these tech-
niques can become severely degraded in practical scenarios when the exploited as-
sumptions on the environment, antenna array and/or sources may be wrong or in-
accurate [19, 20, 21]. For example, in mobile communications such performance
degradation of BS uplink adaptive beamformers may be caused by mismatches
between the presumed and actual user spatial signatures (or, more generally, be-
tween the presumed and actual antenna array responses to mobile user signals)
which can take place because of the signal fading and scattering phenomena, user
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mobility and channel variability, finite duration of training intervals and outdated
training, multiuser interference, and other effects [22, 23, 24]. Therefore, robust
approaches to adaptive beamforming are of great interest and demand in such
cases [19, 20, 21].

In this section, we provide an overview of the field of robust receive adaptive
beamforming in the context of cellular mobile radio systems with flat fading. First
of all, the main types of robustness required in uplink BS adaptive beamform-
ing are considered. Then, we discuss the existing robust solutions to the uplink
adaptive beamforming problem with a special emphasis on a recently emerged
powerful class of robust adaptive beamformers based on worst-case performance
optimization.

9.2. Main types of robustness

The basic idea of uplink adaptive beamforming in cellular wireless communica-
tion systems with flat fading can be understood in the following simple way. Each
sensor of the BS antenna array has an adjustable weight coefficient. These coeffi-
cients are used by the BS beamformer to place the main beam of its beampattern
towards the user-of-interest1 while rejecting the cochannel interferers (which may
originate from the same cell or from other cells) by placing adaptively formed
beampattern nulls towards them. Note that in real-world scenarios, the desired
signal and interference wavefronts (spatial signatures) are not necessarily plane
waves, and, therefore, the terminology “placing the main beam and nulls” should
be understood as maximally matching the weight vector to the desired user wave-
front, while making this vector nearly orthogonal to the wavefronts of interfer-
ing users. To optimally match the main beam to the desired user, the BS adaptive
beamformer requires an accurate knowledge of its spatial signature (which in the
slow fading case characterizes the uplink channel between the desired user and
the BS).

The traditional approach to the design of receive adaptive beamformers as-
sumes that no components of the desired user signal are present in the data snap-
shots that are used to compute and/or update the beamformer weight vector [10,
13]. In such a case, adaptive beamforming is known to be quite robust against er-
rors in the spatial signature of the desired user and limited sample size, and mul-
tiple rapidly converging algorithms are available [10, 13, 14, 15, 16, 18]. Although
the assumption of signal-free snapshots may be relevant in certain specific ap-
plications (e.g., in radar), in wireless communications the interference and noise
observations are always “contaminated” by the desired signal component. Even in
the ideal case where the spatial signature of the desired user is accurately known
at the BS, the presence of the desired signal components in the array snapshots
dramatically reduces the convergence rates of uplink adaptive beamforming algo-
rithms relative to the signal-free array data case [19, 25].

1In what follows, we refer to this user-of-interest as the desired user.
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In practical scenarios, adaptive beamforming techniques may degrade in their
performance even more severely because of possible mismatches between the nom-
inal (presumed) and actual spatial signature of the desired user. Traditional adap-
tive array algorithms are known to be very sensitive even to small errors of such
type [19, 21]. An easy explanation of this fact is that in the presence of such er-
rors an adaptive beamformer tends to “interpret” the desired signal components
in array observations as interference and to suppress these components by means
of adaptive nulling instead of optimally combining them [19, 25]. This effect is
commonly referred to as signal self-nulling [21].

The above-mentioned spatial signature errors can frequently occur in practice
because of an imperfect knowledge of the uplink channel of the desired user. In-
deed, the spatial signature of this user can be estimated either by means of training
sequences [26] or blindly [27, 28]. When training-based spatial signature estima-
tion techniques are used, the quality of the resulting estimates can be seriously
affected by limited duration and number of training intervals as well as by mul-
tiuser interference, user mobility, and channel variability [29]. As a matter of fact,
the percentage of training symbols in the transmitted data stream is usually strictly
limited by system bandwidth efficiency requirements. Hence, in the case of limited
training and in the presence of fast channel variations and rapidly moving users,
the quality of training-based spatial signature estimates can either be insufficiently
good originally or can become outdated soon after the training interval. In the
blind case, no training sequences are used but the quality of spatial signature es-
timates is highly dependent on how fast the channel varies in time and how high
is the received power of the user-of-interest as compared to the powers of inter-
fering cochannel users [27, 28]. Therefore, in practice, the spatial signature of the
desired user may be known imprecisely and robust approaches to uplink adaptive
beamforming are required [21].

Another reason for performance degradation of receive adaptive beamform-
ing techniques in mobile communications scenarios is the potential nonstation-
arity of the array data that are used to compute the beamformer weights and
to null out the interference. Similarly to the above-mentioned desired user mis-
match effect, this phenomenon can be caused by a highly nonstationary behavior
of the propagation channel and by a fast motion of cochannel interfering users
[30, 31, 32]. Such a nonstationarity restricts the beamformer sample size and this
may lead to a severe performance degradation [19, 25].

One negative effect of such nonstationarity on the performance of adaptive
arrays is that in the presence of rapidly moving interfering users, the array weights
may not be able to adapt fast enough to compensate for the interferer motion. As a
result, interfering users may be located most of time outside the areas of the adap-
tive beampattern nulls and, therefore, leak to the output of adaptive beamformer
through the beampattern sidelobes [30, 31, 32, 33]. This phenomenon is usually
referred to as interference undernulling. In such cases, cancellation of multiaccess
interference may be insufficient and robust adaptive beamforming techniques are
required to improve the performance [19].
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Figure 9.1. Basic scheme of a narrowband adaptive beamformer.

9.3. Background on adaptive beamforming

The basic scheme of a narrowband adaptive beamformer is illustrated in Figure 9.1
using a specific example of six-element circular array.2 The beamformer output is
given by

y(k) = wHx(k), (9.1)

where k is the time index, x(k) = [x1(k), . . . , xM(k)]T is the M × 1 complex array
snapshot vector, w = [w1, . . . ,wM]T is the M × 1 complex vector of beamformer
weights, M is the number of array sensors, and (·)T and (·)H stand for the trans-
pose and Hermitian transpose, respectively. The snapshot vector is given by

x(k) = ss(k) + i(k) + n(k), (9.2)

where ss(k), i(k), and n(k) are the statistically independent components of the
desired user signal, multiaccess interference, and sensor noise, respectively. In the
case of slow fading, the vector ss(k) can be modeled as

ss(k) = s(k)as, (9.3)

where s(k) is the complex waveform of the desired user and as is its M × 1 spatial
signature which specifies the user wavefront. In this case, (9.2) can be rewritten as

x(k) = s(k)as + i(k) + n(k). (9.4)

The optimal weight vector can be found by means of maximizing the signal-
to-interference-plus-noise ratio (SINR) [13]

SINR = wHRsw
wHRi+nw

, (9.5)

2Note that circular arrays are considered among the best BS array configurations for next gener-
ations of cellular mobile radio systems [34].
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where

Rs = E
{

ss(k)sHs (k)
}

,

Ri+n = E
{(

i(k) + n(k)
)(

i(k) + n(k)
)H} (9.6)

are the so-called M × M signal and interference-plus-noise covariance matrices,
respectively, and E{·} denotes the statistical expectation. Generally, matrix Rs can
have an arbitrary rank depending on how fast the signal fading is, that is, 1 ≤
rank{Rs} ≤ M. A typical example when the rank of Rs is greater than one is the
case of rural and suburban environments with a high BS, where one of the major
problems is the fast fading due to local scattering in the vicinity of the mobile
[24, 35].

If the fading of the desired user signal is slow, then

Rs = σ2
s asaHs , (9.7)

where σ2
s = E{|s(k)|2}. In this case, rank{Rs} = 1 and (9.5) becomes

SINR = σ2
s

∣∣wHas
∣∣2

wHRi+nw
. (9.8)

To obtain the optimal weight vector, one should maximize the SINR in (9.5).
This optimization problem is equivalent to maintaining the distortionless array
response to the desired signal while minimizing the output interference-plus-noise
power [35]:

min
w

wHRi+nw subject to wHRsw = 1. (9.9)

In the rank-one signal case, this problem can be rewritten in a more familiar form
[13, 18]

min
w

wHRi+nw subject to wHas = 1. (9.10)

This approach is usually referred to as the minimum variance distortionless re-
sponse (MVDR) beamforming. The solution to (9.9) is given by the following
generalized eigenvalue problem (see [19, 21] and references therein):

Ri+nw = λRsw, (9.11)

where λ is a generalized eigenvalue. From the positive semidefinitness of Ri+n and
Rs, it can be shown that all generalized eigenvalues that may correspond to (9.11)
are nonnegative real numbers [21].

The solution to (9.9) is the generalized eigenvector corresponding to the small-
est generalized eigenvalue of the matrix pencil {Ri+n, Rs} and the optimal weight
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vector can be explicitly written as [21]

wopt = P
{

R−1
i+nRs

}
, (9.12)

where P {·} is the operator which gives the principal eigenvector of a matrix.
Clearly, the resulting weight vector should be normalized to satisfy the constraint
wH

optRswopt = 1 in (9.9). However, it is obvious that the multiplication of the
weight vector by any nonzero constant does not affect the output SINR (9.5).
Hence, such a normalization is immaterial.

In the rank-one signal source case, (9.12) can be simplified as

wopt = P
{

R−1
i+nasaHs

} = αR−1
i+nas, (9.13)

where the constant α can be obtained from the MVDR constraint wH
optas = 1 in

(9.10) and is equal to α = aHs R−1
i+na−1

s [10, 13]. However, as noted before, this
constant does not affect the array output SINR and, therefore, it is immaterial and
will be omitted.

In practical applications, the true matrix Ri+n is unavailable but can be esti-
mated. Therefore, its estimate should be used in optimization problems (9.9) and
(9.10) instead of the true value. For example, the sample covariance matrix [10, 13]

R̂ = 1
N

N∑
n=1

x(n)xH(n) (9.14)

can be used instead of Ri+n. Here, N is the number of snapshots available. Replac-
ing Ri+n by R̂ in (9.9) and (9.10) yields the following sample matrix inverse (SMI)
beamformers [10, 13, 21]:

wSMI = P
{

R̂−1Rs
}

,

wSMI = R̂−1as.
(9.15)

Beamformer (9.15) is the well-known technique proposed in [10], while (9.15)
represents its straightforward extension to the higher-rank case where rank{Rs}>1.
The use of the sample covariance matrix R̂ instead of the interference-plus-noise
covariance matrix Ri+n in (9.15) is known to affect the performance dramatically
if the desired signal component is present in the data snapshots that are used to
compute R̂.

9.4. Robust beamforming

The main objective of this section is to consider techniques that can improve the
robustness of uplink adaptive beamforming and are applicable to scenarios with
arbitrary spatial signature errors, small sample size, and nonstationary array data
(moving cochannel interferers). We do not consider here a broad class of methods
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using either point or derivative constraints to improve robustness against look
direction errors [13] because these methods are restricted by the idealistic plane
wavefront assumption and, therefore, they do not provide sufficient robustness
against other types of mismatches (which may be caused, e.g., by signal fading).

One of the most popular and most powerful approaches to robust adaptive
beamforming in the cases of arbitrary spatial signature errors and small sample
size is the diagonal loading method [20, 36]. Its key idea is to regularize the solution
for the weight vector [36] by adding the quadratic penalty term to the objective
function in (9.9):

min
w

wH R̂w + γwHw subject to wHRsw = 1, (9.16)

where γ is a fixed loading factor. This solution is usually called the loaded SMI
(LSMI) beamformer whose weight vector can be written as [35]

wLSMI = P
{

(R̂ + γI)−1Rs
}

, (9.17)

where I is the identity matrix. If rank{Rs} = 1, then (9.17) simplifies to [20, 36]

wLSMI = (R̂ + γI)−1as. (9.18)

From expressions (9.17) and (9.18), we see that adding the new term γwHw to
the objective function in (9.16) is equivalent to loading the diagonal of the sample
covariance matrix R̂ by the constant γ. Clearly, such an operation will guarantee
that the matrix R̂ + γI is invertible even in the case when R̂ is singular. However,
the diagonal loading operation provides other useful properties and, in particular,
improves the beamformer robustness against spatial signature errors.

It is well known that diagonal loading can improve the performance of the
SMI approach in scenarios with an arbitrary signal array response mismatch [19,
20]. However, the main drawback of this method is that there is no easy and reli-
able way of choosing the parameter γ. In [20], the so-called white noise gain con-
straint has been used to choose γ. Unfortunately, there is no simple relationship
between the white noise gain parameter κ and the diagonal loading parameter γ.

A much simpler (and more practical) way of choosing γ is to estimate the
noise power from the few smallest eigenvalues of the sample covariance matrix
and then to choose a fixed γ of the same or higher order of magnitude. However,
it is well known that the optimal choice of the diagonal loading factor depends
on the power of the desired signal and, hence, such a way of obtaining γ is not
always reliable and may cause a substantial performance degradation of the LSMI
algorithm [21].

Another popular approach to robust adaptive beamforming in the case of ar-
bitrary spatial signature errors and small sample size is the so-called eigenspace-
based beamformer [25, 37]. This approach is only applicable to the slow fading
class of scenarios with rank{Rs} = 1. The key idea of this method is to use, instead
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of the presumed spatial signature as, its projection onto the sample signal-plus-
interference subspace. The eigendecomposition of (9.14) can be written as

R̂ = ÊΛ̂ÊH + ĜΓ̂ĜH , (9.19)

where the M × (L + 1) matrix Ê contains the L + 1 signal-plus-interference sub-
space eigenvectors of R̂, and the (L + 1) × (L + 1) diagonal matrix Λ̂ contains
the corresponding eigenvalues of this matrix. Similarly, the M × (M − L − 1)
matrix Ĝ contains the M − L − 1 noise-subspace eigenvectors of R̂, while the
(M − L − 1) × (M − L − 1) diagonal matrix Γ̂ is built from the corresponding
eigenvalues. The number of interfering users L (which can be interpreted mathe-
matically as the rank of the interference subspace) has to be known. The weight
vector of the eigenspace-based beamformer can be computed as [37]

weig = R̂−1PÊas, (9.20)

where PÊ = Ê(ÊH Ê)−1ÊH = ÊÊH is the orthogonal projection matrix onto the esti-
mated (L+ 1)-dimensional signal-plus-interference subspace. According to (9.20),
the eigenspace-based beamformer “improves” the spatial signature as by project-
ing it onto this subspace. It can be shown that weight vector (9.20) can be rewritten
in another alternative form [37]

weig = ÊΛ̂−1ÊHas. (9.21)

When used in “adequate” scenarios with L � M, the eigenspace-based beam-
former is known to be one of the most robust techniques applicable to arbitrary
spatial signature mismatch case [21]. However, a very serious shortcoming of this
approach is that it is not applicable to situations where the number of rank-one in-
terfering sources remains uncertain or is comparable to the number of the BS array
sensors (as in the cases of rapidly moving and spatially spread cochannel interfer-
ers). This makes it very difficult to use the eigenspace-based beamformer in cellu-
lar communications scenarios where the dimension of the signal-plus-interference
subspace may be uncertain and high.

In situations with nonstationary training data, numerous advanced methods
have been developed to mitigate performance degradation of adaptive beamform-
ers. To preserve the adaptive array performance with a high mobility of interferers,
several authors used the idea of artificially broadening the adaptive beampattern
nulls in unknown interferer directions [30, 31, 32, 33].

The first way to broaden the adaptive beampattern nulls uses the so-called
covariance matrix tapering (MT) procedure [31, 32]. The essence of this technique
is to replace R̂ in the SMI or LSMI beamformer by the tapered covariance matrix

R̂T = R̂ 	 T, (9.22)
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where 	 is the Schur-Hadamard matrix product, and T is the M×M taper matrix.
Particular types of matrix tapers are discussed in [31, 32].

Another alternative approach to broaden the adaptive beampattern nulls uses
the so-called data-dependent constraints (DDCs) to broaden the adaptive beam-
pattern nulls [30, 33]. The essence of this approach is to replace the sample covari-
ance matrix in the SMI or LSMI beamformer by the following modified sample
covariance matrix:

R̂DDC = R̂ + ζBR̂B, (9.23)

where B is the known real-valued diagonal matrix of sensor coordinates and the
parameter ζ determines the tradeoff between the null depth and width. The opti-
mal value of ζ is independent of the environmental parameters, but can be easily
determined based on the array parameters only [30].

Although it has been shown in [30, 31, 32] that both the MT- and DDC-
based adaptive beamformers substantially improve the robustness against slow and
moderate interferer mobility, both these methods can fail when applied to scenario
with rapidly moving interferers.

All techniques discussed above use ad hoc approaches to incorporate robust-
ness into adaptive beamforming schemes. Recently, more theoretically rigorous
techniques have been proposed that obtain robust beamforming solutions by
means of the optimization of the worst-case performance of adaptive beamform-
ers [35, 38, 39].

First of all, we consider the most general situation of fast fading and discuss
the robust beamformer that has been recently derived in [35]. Following this work,
we take into account that in practical situations, both the signal and interference-
plus-noise covariance matrices are known with some errors. In particular, the er-
rors of the signal covariance matrix are caused by a limited duration and num-
ber of training intervals, channel variations, fast motion of the desired user, and
multiaccess interference during the training period. The errors in the interference-
plus-noise covariance matrix are caused by finite number of snapshots in (9.14),
by fast channel variations and interferer motion, and by the presence of the desired
signal component in the snapshots that are used in (9.14). Hence, there is always a
certain mismatch between the actual and presumed values of the matrices Rs and
Ri+n. This yields

R̃s = Rs + ∆1, R̃i+n = Ri+n + ∆2, (9.24)

where Rs and Ri+n are the presumed signal and interference-plus-noise covariance
matrices, respectively, whereas R̃s and R̃i+n are their actual values. Here, ∆1 and ∆2

are the unknown matrix mismatches.
In the presence of the mismatches ∆1 and ∆2, equation (9.5) for the output

SINR should be rewritten as

SINR = wH R̃sw
wH R̃i+nw

. (9.25)
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In [35], it was assumed that the norms of the mismatch matrices ∆1 and ∆2 can be
bounded by some known constants

∥∥∆1
∥∥ ≤ ε,

∥∥∆2
∥∥ ≤ γ. (9.26)

To provide robustness against possible norm-bounded mismatches (9.26), it has
been proposed in [35] to find the beamformer weight vector by means of maxi-
mizing the worst-case output SINR, that is, via solving the following optimization
problem [35]:

max
w

min
∆1,∆2

wH
(

Rs + ∆1
)

w
wH

(
Ri+n + ∆2

)
w

∀∥∥∆1
∥∥ ≤ ε,

∥∥∆2
∥∥ ≤ γ. (9.27)

It has been shown in [35] that the solution to robust MVDR problem (9.27) can
be written as

wrob = P
{(

Ri+n + γI
)−1(

Rs − εI
)}
. (9.28)

In practice, the matrix Ri+n is unavailable and the sample covariance matrix R̂ is
normally used instead of Ri+n. Hence, the sample version of robust beamformer
(9.28) is given by [35]

wrob = P
{

(R̂ + γI)−1(Rs − εI
)}
. (9.29)

In the rank-one (slow fading) case, absorbing σ2
s in ε (i.e., assuming without loss

of generality that σ2
s = 1), equation (9.29) can be simplified as

wrob = P
{

(R̂ + γI)−1(asaHs − εI
)}
. (9.30)

From (9.29) it is clear that the worst-case performance optimization approach
leads to a sort of generalized diagonal loading using both the negative and positive
loading factors, where the negative loading is applied to the presumed covariance
matrix of the desired signal, while the positive loading is applied to the sample
covariance matrix.

Assuming ε = 0, we have that (9.29) simplifies to (9.17), that is, we obtain the
conventional LSMI algorithm. Note that robust beamformer (9.29) offers a reli-
able yet essentially simpler way of choosing the parameters γ and ε as compared
to the way of choosing γ in the diagonal loading method based on the white noise
gain constraint. Indeed, the parameters γ and ε in (9.29) are optimally matched
to the assumed amount on uncertainties in the signal and interference-plus-noise
covariance matrices. Note that in practical communication scenarios, it is rela-
tively easy to obtain approximate values of the parameters γ and ε based on some
preliminary (coarse) knowledge of the type of propagation channel considered.
This knowledge can be obtained either through channel measurement campaigns



Alex B. Gershman 183

or through numerical channel modelling, and can then be exploited to obtain ap-
proximate values of the upper bounds of mismatches (9.26) that are typical for
this particular channel.

An interesting feature of robust beamformer (9.29) has been established in
[35], where it has been shown that (9.29) can also be interpreted as a new gen-
eralization of the LSMI beamformer with positive-only diagonal loading whose
amount is adaptive rather than fixed.

It is noteworthy that beamformer (9.29) does not take into account that the
actual signal covariance matrix R̃s must be nonnegative definite [21]. Although by
ignoring the aforementioned constraint we simply strengthen the worst case and
this does not affect the performance of (9.29) in most of typical scenarios [35], it
is interesting to develop a more adequate formulation of the robust beamforming
problem that can take into account this constraint. For the slow fading case, such
problem has been recently considered in [38]. In this case, the spatial signature
mismatch

e = ãs − as (9.31)

can be considered instead of the signal covariance matrix mismatch ∆1 of (9.24).
Here, ãs and as are the actual and presumed spatial signatures, respectively. It is
assumed in [38] that the norm of the mismatch vector is bounded as

‖e‖ ≤ ε, (9.32)

where the constant ε is known. The idea proposed in [38] is to add robustness to
the MVDR beamforming problem by means of imposing the worst-case distor-
tionless response constraint which should be satisfied for all mismatched spatial
signature vectors. With such a constraint, the robust MVDR beamformer can be
obtained by solving the following constrained minimization problem [38]:

min
w

wH R̂w subject to
∣∣wH

(
as + e

)∣∣ ≥ 1 ∀‖e‖ ≤ ε. (9.33)

It has been shown in [38] that problem (9.33) can be converted to

min
w

wH R̂w subject to wHas ≥ ε‖w‖ + 1, (9.34)

and that the constraint in (9.34) is satisfied with equality. Note that although prob-
lems (9.33) and (9.34) are mathematically equivalent, problem (9.33) is compu-
tationally intractable, whereas (9.34) belongs to the class of convex second-order
cone programming (SOCP) problems which can be easily solved using standard
and highly efficient interior point method software with the complexity O(M3)
[38]. Another way to solve this problem is to use Newton-type algorithms. Several
techniques of the latter type to solve problem (9.34) and some its extensions have
been recently proposed in [39, 40, 41] (all with complexities O(M3)).
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Several extensions of the techniques of [35, 38] have been recently devel-
oped. In [39], the beamformer of [38] has been extended to the case of ellipsoidal
(anisotropic) uncertainty. In [40], a new covariance fitting-based interpretation
of the robust MVDR beamformer of [38] and of its anisotropic extension of [39]
has been developed.3 The authors of [41, 42] have extended the approaches of [35]
and [38] to robust multiuser detection problems. The authors of [35, 43] presented
efficient online implementations of the worst-case robust adaptive algorithms of
[35, 38] with the complexity O(M2).

In [44], the approach of [38] is extended to the case where, apart from the
spatial signature mismatch, there is a nonstationarity of the array data (which, in
turn, may be caused by the nonstationarity of multiaccess interference and propa-
gation channel). The approach of [44] suggests, instead of modelling uncertainty
in the interference-plus-noise covariance matrix (as in (9.24)), to model such an
uncertainty by means of adding it directly to the data matrix X = [x(1), . . . ,x(N)].
Note that the sample covariance matrix can be expressed as

R̂ = 1
N

XXH. (9.35)

To take into account the nonstationarity of the array data, the mismatch matrix

∆ = X̃ − X (9.36)

can be introduced [44], where X̃ and X are, respectively, the actual and presumed
data matrices at the time when the beamformer is applied to detect the desired
user. Note that the presumed matrix X simply corresponds to the data acquired
by the beamformer prior to applying it to some particular snapshot. Because of
nonstationarity effects, the data samples in X can become irrelevant at the time
when the beamformer is applied (when the actual, yet unknown, data matrix is
X̃). In such cases, the actual sample covariance matrix can be written as

̂̃R = 1
N

X̃X̃H = 1
N

(X + ∆)(X + ∆)H. (9.37)

According to (9.37), the matrix ̂̃R is guaranteed to be Hermitian and nonnegative
definite.

To combine the robustness against interference nonstationarity and spatial
signature errors, the authors of [44] use ideas similar to that of [38], that is, they
assume that the norms of both the spatial signature mismatch e and the data ma-
trix mismatch ∆ are bounded by some known constants as

‖e‖ ≤ ε, ‖∆‖ ≤ η. (9.38)

3In [40], the robust MVDR beamformer of [38, 39] is referred to as the robust Capon beamformer.
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Then, the robust formulation of the MVDR beamforming problem can be written
in the following form [44]:

min
w

max
‖∆‖≤η

∥∥(X + ∆)Hw
∥∥ subject to

∣∣wH
(

as + e
)∣∣ ≥ 1 ∀‖e‖ ≤ ε. (9.39)

This problem represents a further extension of (9.33) with additional worst-case
robustness against nonstationary received data. The essence of (9.39) is to mini-
mize the beamformer output power in the scenario with the worst-case data non-
stationarity subject to the constraint which maintains distortionless response for
the worst-case spatial signature mismatch.

Problem (9.39) can be converted to [44]

min
w

∥∥XHw
∥∥ + η‖w‖ subject to wHas ≥ ε‖w‖ + 1, (9.40)

which represents an extended version of (9.34). Problem (9.40) also belongs to
the class of convex SOCP problems and can be efficiently solved using standard
interior point methods.

In [21, 35, 38, 44], the worst-case robust MVDR beamformers (9.29), (9.34),
and (9.40) have been compared with the earlier traditional ad hoc robust beam-
formers (such as the LSMI and eigenspace-based beamformers as well as different
modifications of MT-based beamformers) by means of numerous simulations in-
volving typical wireless communications scenarios with different types of fading
(coherent and incoherent local scattering, etc.) and with different types of data
nonstationarity/multiaccess interferer mobility. The results of these simulations
show that the worst-case beamformers consistently enjoy a substantially improved
robustness relative to the traditional ad hoc adaptive beamformers. Therefore, the
worst-case adaptive beamformers are excellent candidates for uplink BS beam-
forming algorithms for cellular mobile radio systems [45, 46].

9.5. Summary

In this chapter, an overview of the state-of-the-art robust adaptive beamforming
in the presence of array response mismatches and received data nonstationarity
has been provided in application to cellular mobile radio systems with flat fading.
A recently emerged approach to robust adaptive beamforming based on the worst-
case performance optimization has been addressed in detail. Its advantages relative
to the earlier ad hoc approaches to robust adaptive beamforming have been dis-
cussed.
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Abbreviations

BS Base station

DDC Data-dependent constraints

LSMI Loaded SMI

MT Matrix tapering

MVDR Minimum variance distortionless response

SDMA Spatial division multiple access

SINR Signal-to-interference-plus-noise ratio

SMI Sample matrix inverse

SOCP Second-order cone programming
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10.1. Introduction

The decision feedback equalizer (DFE) is known as a popular choice for chan-
nel equalization to obtain a good performance-complexity trade-off. Originally, it
was proposed to equalize single-input single-output (SISO) communication links,
where the DFE feedforward filter was IIR [1, 2]. Although an IIR filter was assumed
in the design, it has to be approximated by an FIR filter for implementation to ob-
tain a causal system, which is a suboptimum approach. Thus, we restrict the feed-
forward filter to be FIR for the optimization beforehand as in [3, 4]. We consider a
frequency selective MIMO channel, which models a single-user link with spatially
multiplexed data streams or, alternatively, multiuser single-input multiple-output
links (also known as multiuser detection). In contrast to a DFE for MIMO sys-
tems with an optimization of the detection order for the data streams, as in Bell
Laboratories Layered Space-Time (BLAST) equalizer [5] or parallel interference
cancellation [6], the space-time (ST) DFE applied here only feeds back preceding
symbols and minimizes interstream interference in the feedforward filter. The op-
timization is performed minimizing the mean square error (MSE) of the symbol
vector before the decision device assuming that the symbols feedback are perfectly
known.

The standard DFE optimization assumes error-free knowledge of the chan-
nel parameters. Relying on a finite number of training symbols to estimate the
channel, this assumption is not valid in practice. Moreover, the ST-DFE is more
sensitive to channel estimation errors than linear equalizers. Thus, methods from
robust optimization should be applied to reduce its sensitivity, which take into
account the size and structure of the parameter errors.

Worst-case optimization, that is, minimizing the maximum possible mean
square error for the given error model, is the standard approach (e.g., [7, 8]). In
this case, the error model is given by bounds on the channel parameters, for exam-
ple, assuming bounded errors in the Euclidean norm. The min-max approaches
have the disadvantage that the free parameters describing the set of errors, for
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example, the bounded norm, have to be chosen heuristically. For example, the
estimation error is often assumed Gaussian-distributed given first- and second-
order moments; as the error is not bounded in this case, it may be bounded heuris-
tically depending on the standard deviation of the error. Additionally, it is difficult
to define a worst case on the physical layer in a communication link, as the worst
case is commonly handled by higher layers.

An alternative paradigm, which we apply to the ST-DFE in Section 10.4, is
known from static stochastic programming [9]. Assuming a stochastic error model
with known first- and second-order statistics, the traditional MSE cost function
becomes a random variable. Taking the expectation of the cost function with re-
spect to the parameters, we minimize the expected MSE knowing the error statis-
tics. Thus, we measure the performance on average, which is a common approach
in wireless communications with a time-varying scenario, and achieve a robust-
ness on average.

Both approaches were compared for equalization of SISO channels in [10] for
a fixed channel and bounded error, showing that the stochastic approach is less
conservative. Stochastic programming was also applied to linear preequalization
in [11]. Finally, a robust ST-DFE based on the H∞ approach is introduced in [12].

Our robust ST-DFE is a generalization of the work in [10] with application
to mobile communication. The solution is obtained explicitly with the same order
of complexity as the standard solution. Note that the min-max solution is typ-
ically of higher complexity and often not obtained explicitly, but with iterative
methods [7]. The parameters of the error model depend on system parameters
and the channel statistics. Thus, no heuristic parameter choice is necessary and an
adaptation to error size and structure is possible. In the nominal case, that is, no
parameter errors, the latter aspect ensures the same performance as the standard
(nonrobust) design. Certainly, in practice the first- and second-order error statis-
tics need to be estimated, which should be possible with sufficient accuracy as they
change more slowly than the channel coefficients.

Feeding back only preceding detected symbols without the need of a spatial
ordering already reduces the design complexity considerably. Further reduction
in complexity can be achieved with a reduced-rank implementation [13, 14] of the
feedforward filter. An approximation in the Krylov subspace is known to provide
a performance advantage with similar complexity compared to other reduced-
rank approaches [15, 16, 17]. Previously, a Krylov-based implementation of the
DFE for SISO channels was given in [18]. We introduce the Krylov subspace-
based reduced-rank implementation of the standard ST-DFE and its robust ver-
sion (Section 10.5).

After introducing the MIMO system model for data and pilot channel in
Section 10.2 the standard optimization for the ST-DFE, which includes a latency
time optimization, and its solution is given in Section 10.3. The error model, ro-
bust optimization criterion and its solution, as well as a detailed interpretation
of the robust ST-DFE cost function, which is related to Tikhonov regularization,
and its solution is presented in Section 10.4. The Krylov subspace-based reduced-
rank implementation is motivated and described in Section 10.5, which includes a
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simple low-complexity choice of the latency time. Performance results in terms of
uncoded bit error rate (BER) show significant gains of the robust design for spa-
tially correlated channels (Section 10.6). Considerable rank reduction and, thus,
complexity reduction is possible with only a small loss in performance. It is also
shown, that latency time optimization should be a key component of every DFE.
Finally, the advantages of the robust ST-DFE in case of outdated channel knowl-
edge is discussed.

Notation. The operators E[·], Ea[·], (·)T, (·)H, and “⊗” stand for a general ex-
pectation, expectation with respect to a, transpose, Hermitian transpose, and Kro-
necker product, respectively. IN is the N ×N identity matrix and 0M×N the M×N
zero matrix.

10.2. System model

Data symbols b[n] ∈ BNT from a set of QAM symbols B with zero mean are
transmitted from NT antennas via a frequency selective MIMO channel H[n] =∑L−1

�=0 H�δ[n− �] ∈ CNR×NT of length L. The q, pth element of H[n] is hp,q[n]. The
received signal vector of NR antennas is (Figure 10.1)

r[n] = H[n] ∗ b[n] + v[n] ∈ C
NR , (10.1)

where v[n] ∼ NC(0, Cv) is additive temporally white complex Gaussian noise with
covariance matrix Cv = E[v[n]v[n]H] ∈ CNR×NR .

Pilot channel. Np pilot symbols bp[n] ∈ BNT with n ∈ {2 − L, . . . ,Np} are time-
multiplexed and include L− 1 guard symbols. The received pilot sequence

rp[n] = H[n] ∗ bp[n] + vp[n] ∈ C
NR (10.2)

can be rewritten as

Rp = [
H0, . . . ,HL−1

]
B′

p + Vp ∈ C
NR×Np (10.3)

with Np received samples Rp = [rp[1], . . . , rp[Np]] (Vp defined equivalently), and
block Toeplitz B′

p ∈ CNTL×Np with first block row [bp[1], . . . , bp[Np]] and first
column [bT

p [1], . . . , bT
p [2 − L]]T. Using vec(ABC) = (CT ⊗ A) vec(B), it reads as

rp = vec
(

Rp
) = Bph + vp ∈ C

NRNp (10.4)

with Bp = B′,T
p ⊗ INR . All channel coefficients are summarized in

h = vec
([

H0, . . . ,HL−1
]) ∈ C

NRNTL. (10.5)

The additive noise vp[n] is distributed as NC(0, Cv).
The channel is assumed to be i.i.d. block fading and complex Gaussian h ∼

NC(µh, Ch) with mean µh = E[h] and covariance Ch = E[(h − µh)(h − µh)H].
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b[n] H[n]

v[n]

r[n]
G[n]

b̃[n]
Q(·)

F[n]

b̂[n]

Figure 10.1. MIMO system with space-time decision feedback equalizer.

10.3. Standard space-time decision feedback equalization

After the received signal r[n] ∈ CNR has been passed through the FIR matrix feed-
forward filter of length G (Figure 10.1)

G[n] =
G−1∑
g=0

Ggδ[n− g] ∈ C
NT×NR , (10.6)

the interference of the already detected symbols is removed by adding the output
of the feedback filter of length F = L + G− ν − 2,

F[n] =
F∑
f=1

F f δ[n− f ] ∈ C
NT×NT , (10.7)

to form the input b̃[n] ∈ CNT of the element-wise nearest-neighbor quantizer
Q(·) (see Figure 10.1), whose desired value is b[n − ν] with the latency time ν,
that is, a symbol is detected ν symbol times after it has been transmitted. Note
that F f = 0NT×NT for f < 1, since only already detected symbols can be fed back.
Similarly, F f = 0NT×NT for f > F, as the symbols with delays greater than F do not
contribute interference to b̃[n].

In vector-matrix notation, the quantizer input reads as

b̃[n] = GHb̄[n] + FS(ν)b̄[n] + Gv̄[n], (10.8)

where we made the popular assumption for DFE that the decisions are correct,
that is, b̂[n] = b[n − ν]. We put the matrix coefficients of the feedforward filter
and the feedback filter into

G = [
G0, . . . , GG−1

] ∈ C
NT×NRG,

F = [
F1, . . . , FF

] ∈ C
NT×NTF ,

(10.9)

respectively. The block Toeplitz channel matrix is defined as

H =
L−1∑
�=0

[
0G×� , IG, 0G×L−�−1

]︸ ︷︷ ︸
Σ�

⊗H� ∈ C
NRG×NT(L+G−1). (10.10)
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The symbols and the noise are collected in

b̄[n] = [
bT[n], . . . , bT[n− L−G + 2]

]T ∈ C
NT(L+G−1),

v̄[n] = [
vT[n], . . . , vT[n−G + 1]

]T ∈ C
NRG,

(10.11)

respectively. For conciseness, we introduced the matrix

S(ν) =
[

0NTF×NT(ν+1), INTF

]
∈ {0, 1}NTF×NT(L+G−1), (10.12)

which selects the last NTF elements from a NT(L + G − 1)-dimensional column
vector. Note that the desired value for the estimate b̃[n] is

b[n− ν] = Eν+1b̄[n] with Eν+1 = eT
ν+1 ⊗ INT , (10.13)

where eν+1 ∈ {0, 1}L+G−1 denotes the (ν + 1)th column of the identity matrix
IL+G−1. Thus, the latency time ν is element of the set {0, . . . ,L + G− 2}.

The MMSE-ST-DFE filters can be found by minimizing the MSE

σ2
ε,S

({G, F, ν}, h, MS
) = E

[∥∥b[n− ν] − b̃[n]
∥∥2

2

]
, (10.14)

that is, {
GS, FS, νS

} = arg min
{G,F,ν}

σ2
ε,S

({G, F, ν}, h, MS
)
, (10.15)

with model parameters MS = {σ2
b , Cv̄} assumed known. For uncorrelated sym-

bols, that is, Cb̄ = E[b̄[n]b̄H[n]] = σ2
b INT(L+G−1), the solution depending on la-

tency time ν can be expressed as

GS = Eν+1HH(
HΠ(ν)HH + σ−2

b Cv̄
)−1 = BSA−1

S , (10.16)

FS = −GSHS(ν),T, (10.17)

with the projection matrix

Π(ν) = INT(L+G−1) − S(ν),TS(ν) (10.18)

setting the last NTF columns of a matrix to zero, when applied from the right.
Plugging this result into the cost function of (10.15), leads to the latency time
optimization:

νS = arg max
ν∈{0,...,L+G−2}

tr
(

Eν+1HH(
HΠ(ν)HH + σ−2

b Cv̄
)−1

HET
ν+1

)
. (10.19)

As the matrix HΠ(ν)HH + σ−2
b Cv̄ depends on the latency time ν, the inverse has to

be computed for every value of ν. Hence, the complexity to compute the MMSE-
ST-DFE filters with optimum latency time νS is O(N3

RG
3(L + G)).



194 Robust and reduced-rank space-time decision feedback equalization

10.4. Robust design

10.4.1. Model for parameter errors

Errors in the estimated channel parameters present the most significant source
for performance degradation. To enable the robust design of the DFE, a suitable
model for these errors is needed. We choose a stochastic model for the error Θ with
mean E[Θ] and covariance matrix CΘ = E[(Θ − E[Θ])(Θ − E[Θ])H], where no
assumptions about the distribution of Θ are made. The error is defined as

Θ = H − Ĥ. (10.20)

If H and Ĥ are zero mean, the error Θ is zero mean with E[Θ] = 0. See below for
conditions on Ĥ being zero mean.

Exploiting the block Toeplitz structure of Θ = ∑L−1
�=0 Σ�⊗Θ� (cf. (10.10)) with

Σ� = [0G×� , IG, 0G×L−�−1], the covariance matrix can be written as

CΘ =
L−1∑
�=0

L−1∑
�′=0

Σ�Σ
T
�′ ⊗ E

[
Θ�Θ

H
�′
]

=
L−1∑
�=0

L−1∑
�′=0

Σ�Σ
T
�′ ⊗

( NT∑
p=1

E
[
θp[�]θp[�′]H])

.

(10.21)

Here, θp[�] = [θp,1[�], . . . , θp,NR [�]]T is the pth column of the estimation error Θ�

in Ĥ� , that is, the �th channel tap of the pth transmitter.
If µh = 0, the parameters in H can be estimated in general with an estimator

W as ĥ = Wrp. The error in the channel estimate ĥ is defined equivalently to

(10.20) by h = ĥ + θ. From (10.21) we observe that CΘ depends on subblocks of
the error covariance matrix Cθ of the error θ.

As an example, we consider the linear minimum mean square error (LMMSE)
channel estimator, which is equal to the conditional mean estimator since h is
assumed to be Gaussian-distributed [19]:

W = arg min
W′

E
[∥∥h − W′rp

∥∥2
2

]
∈ C

NRNTL×NRNp . (10.22)

With Cvp = E[vpvH
p ], the LMMSE channel estimator reads as

W = ChBH
p

(
BpChBH

p + Cvp

)−1
. (10.23)

From µh = 0 as assumed above and µvp
= 0, that is, E[rp] = 0 (cf. (10.4)), it

follows that µθ = 0. Hence, the error covariance matrix for the LMMSE estimate

ĥ is

Cθ = E
[
θθH] = Ch − WBpCh. (10.24)
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It depends on the a priori information about the channel Ch, which describes all
slowly varying channel properties such as angles of arrival/departure, power de-
lay profile, and path loss. Note that the LMMSE estimator optimally exploits—
minimizing the MSE—the slowly varying channel properties, which significantly
improves MSE performance in scenarios with high mobility, for example, com-
pared to maximum likelihood estimators [20].

10.4.2. Robust optimization

The standard DFE optimization (10.15) assumes that the channel parameters are
perfectly known and the estimated channel parameters ĥ are applied to the solu-
tion (10.17) as if they were error-free. Optimizing the DFE parameters based on
an error model presents a problem formulation closer to reality.

A robust optimization based on the paradigm from static stochastic program-
ming [9] aims at minimizing the expected MSE of the data symbols given the error
model (10.20) and (10.21). Thus, it defines a robustness on average instead of a
robustness in the worst case as in the min-max approach (e.g., [7, 8, 21]).

For a given estimate Ĥ, the current realization of the channel H is a random
variable from the perspective of the equalizer. Thus, the standard cost function in
(10.14) now is a random variable, too. Robustness on average is obtained taking
the expected value of the cost function with respect to the parameter errors θ.
Therefore, assuming zero mean errors Θ the robust cost function is given by

σ2
ε,R

({G, F, ν}, ĥ, MR
) = Eθ

[
σ2
ε,S

({G, F, ν}, ĥ + θ, MS
)]

= σ2
ε,S

({G, F, ν}, ĥ, MS
)

+ σ2
b trace

(
GCΘGH)

,
(10.25)

which is the standard design criterion plus an additional penalty term on the norm
of the feedforward filter G. The robust optimization problem is

{
GR, FR, νR

} = arg min
{G,F,ν}

σ2
ε,R

({G, F, ν}, ĥ, MR
)

(10.26)

with model parameters MR = {MS, CΘ} including average size and structure of
the errors in Ĥ. The solution is given by

GR = EνR+1ĤH(
ĤΠ(νR)ĤH + σ−2

b Cv̄ + CΘ

)−1 = BRA−1
R , (10.27)

FR = −GRĤS(νR),T, (10.28)

where Ĥ depends on ĥ (10.10). Thus, the robust solution is obtained from the
solution of the standard design with the following substitutions:

Cv̄ ←� Cv̄ + σ2
bCΘ, H ←� Ĥ. (10.29)
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rP[n]
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Robust DFE optimization
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Figure 10.2. For a robust equalizer design the channel estimator communicates the expected size
and structure of estimation errors via the error covariance matrix Cθ . The model parameters MR =
{MS, CΘ} of the resulting robust equalizer optimization include the parameters of the error model.

The optimum latency time results from standard optimization (10.19) with the
same substitutions. This simple rule illustrates that the robust design treats chan-
nel estimation error as an additional noise source, that is, a structured loading of the
inverse in (10.27).

Obviously, the complexity of the robust solution is of the same order as stan-
dard solution (10.17) and (10.19). Additional computations, that is, matrix mul-
tiplications and additions, are needed for computing the error covariance matrix
CΘ (cf. (10.21) and (10.24)).

10.4.3. Interpretation

The robust optimization of the DFE creates an interface between channel estima-
tion and equalization: the channel estimator communicates the expected size and
structure of the error via the error covariance matrix Cθ and—in case of nonzero
mean errors—the mean E[θ] (Figure 10.2). To see how this knowledge influences
DFE optimization and to understand the performance improvements, we first in-
terpret robust optimization (10.26) in more detail and then investigate the new
structure of solution (10.28).

The robust behavior of the solution is controlled by the second term in the
robust cost function (10.25), which can be rewritten as

ρ(G) = σ2
b trace

(
GCΘGH) = σ2

b

NRG∑
i=1

λΘ,i
∥∥g′

i

∥∥2
2 (10.30)

using the eigenvalue decomposition of the error covariance matrix CΘ = UΘΛΘUH
Θ

with diagonal matrix of eigenvalues ΛΘ = diag(λΘ,1, . . . , λΘ,NRG). This term may be
interpreted as a Tikhonov regularization of the feedforward filter [22, 23], which
is a common method to solve ill-posed problems and decrease the sensitivity of
an optimization problem to parameter errors. We consider the simple case of
CΘ = σ2

θ IGNR , where we have ρ(G) = σ2
b σ

2
θ‖G‖2

F. Here, while minimizing the MSE,
G is also chosen with a smaller Frobenius norm. A smaller filter norm decreases the
sensitivity of the cost function to errors in Ĥ, since the errors Θ are amplified by G
in (10.14). (Note that the average MSE degradation for the standard ST-DFE based
on estimates Ĥ is also given by ρ(G).) This leads to a smaller performance degrada-
tion in case of errors. For a general CΘ with arbitrary structure, (10.30) is the sum
of the weighted Euclidean norms of the columns of G′ = GUΘ = [g′

1, . . . , g′
NRG].
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The subspace of the column space of G′ with high uncertainty in the channel pa-
rameters (large λΘ,i) is regularized more than subspaces with small errors. More-
over, the cost function may be seen as a scalarization with equal weight of a vector
optimization problem [22] with the MSE in (10.15) and ρ(G) (10.30) as two ob-
jectives to be minimized.

Traditional robust optimization, for example, min-max optimization [21],
shows a worse performance in the error-free case and a smaller sensitivity with
respect to parameter errors compared to the standard (nominal) design (e.g.,
(10.15)) resulting in a better performance in case of significant errors. The sto-
chastic approach presented here allows an optimum (nonheuristic) adaptation to
the average error structure, which is important in wireless communications with
a wide range of different scenarios.

Now we consider the signal b̃[n] before quantizer (10.8) with standard solu-
tion (10.17) of the feedback filter F[n], where Ĥ is substituted for H:

b̃[n] = GHb̄[n] − GĤS(ν),TS(ν)b̄[n] + Gv̄[n]

= G
{(

H − ĤS(ν),TS(ν))b̄[n] + v̄[n]
}

= G
{

HΘb̄[n] + v̄[n]
} = GrΘ[n],

(10.31)

which can be interpreted as equalization of the received signal rΘ from an equiv-
alent channel HΘ = HΠ(ν) + ΘS(ν),TS(ν) in case of channel estimation errors. The
first NT(ν + 1) columns of HΘ represent the interference to be suppressed by the
feedforward filter G in standard problem formulation (10.17). Interference created
from the remaining F columns of H should be canceled by the feedback filter F[n],
which cannot accomplish its task (even in presence of perfect decisions available
for feedback) due to the channel estimation errors Θ. The influence of the re-
maining interference due to imperfect cancellation via F[n] is described by the last
F columns in HΘ. To equalize the linear model with HΘ (10.31), we could design
G as a Wiener filter minimizing the MSE. If we had perfect knowledge about HΘ,
that is, about the channel and the channel estimation errors, the covariance matrix
of the receive signal rΘ[n] needed for the MMSE design of G would be

CrΘ = σ2
bHΘHH

Θ + Cv̄ = σ2
bHΠ(ν)HH + σ2

bΘS(ν),TS(ν)ΘH + Cv̄ (10.32)

with H = Ĥ +Θ (10.20). Since HΘ is not available, one may use an approximation
based on the knowledge of correlations in rΘ[n] on average:

Eθ
[

CrΘ

∣∣
H=Ĥ+Θ

]
= σ2

b ĤΠ(ν)ĤH + Cv̄ + σ2
b E

[
ΘΠ(ν)ΘH]

+ σ2
b E

[
ΘS(ν),TS(ν)ΘH]

= σ2
b ĤΠ(ν)ĤH + σ2

b E
[
ΘΘH]

+ Cv̄,

(10.33)

where the last expression is identical to AR in GR (10.28) up to factor σ2
b .
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Thus, the robust feedforward filter GR has two important properties: (1) it is of
smaller norm to decrease the sensitivity towards errors in Ĥ (10.30) and (2) it takes
into account remaining interference due to imperfect interference cancellation by
the feedback as a result of channel estimation errors. This interference is only con-
sidered on average and can be further suppressed by GR if CΘ exhibits sufficiently
rich structure.

10.5. Krylov subspace-based reduced-rank implementation

10.5.1. Reduced-rank feedforward and feedback filters

The main idea of reduced-rank processing (e.g., [13]) is to replace the original
feedforward filter G ∈ CNT×NRG in optimizations (10.15) and (10.25) by a prefilter
matrix T(D) ∈ CD×NRG, D < NRG, followed by a reduced-dimension filter GD ∈
CNT×D, that is, G = GDT(D). The resulting problem reads as

{
G(D)

S/R, F(D)
S/R

}
= arg min

{GD ,F}
σ2
ε,S/R

({
GDT(D), F, ν

}
, ĥ, MS/R

)
, (10.34)

and has the solution

G(D)
S/R = BS/RT(D),H(

T(D)AS/RT(D),H)−1
T(D),

F(D)
S = −G(D)

S HS(ν),T, F(D)
R = −G(D)

R ĤS(ν),T.
(10.35)

The reduction in computational complexity is mainly based on the selection
of the prefilter matrix T(D). It is chosen such that its computation is less intense
than the inversion of the original NRG × NRG matrix AS/R. Note that it will turn
out that the inversion of the resulting D × D matrix T(D)AS/RT(D),H is negligible
due to its structure.

The prefilter matrix of the principal component method [24], for instance, is
composed by the principal eigenvectors of the matrix AS/R, that is, the eigenvectors
corresponding to the largest eigenvalues. Thus, the matrix T(D)AS/RT(D),H is easy
to invert since it is diagonal and the resulting complexity is O(DN2

RG
2) since it is

only based on the computation of the D principal eigenvectors.
Nevertheless, it was shown (e.g., [25]) that eigenspace-based prefilter matrices

are generally suboptimum. Thus, in the following, we restrict ourselves to prefilters
where the conjugate transpose row vectors are basis vectors of the D-dimensional
Krylov subspace [26]

K (D)
S/R = span

[
BH

S/R, AS/RBH
S/R, . . . , Ad−1

S/R BH
S/R

]
, (10.36)

with D = dNT, d ∈ N, that is, the rank is restricted to be an integer multiple of the
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{[t1, t2, . . . , tM], R} ← QR(BH
S/R)

2: for i ∈ {M,M + 1, . . . ,D − 1} do
k ← i−M + 1

4: v ← AS/Rtk
for � ∈ {i− 2M + 1, i− 2M + 2, . . . , i} ∩ N do

6: h�,k ← tH
� v

v ← v − h�,kt�
8: end for

hi+1,k ← ‖v‖2

10: ti+1 ← v/hi+1,k

end for
12: T(D),H ← [t1, t2, . . . , tD] ∈ CN×D

Algorithm 10.1. Lanczos-Ruhe computation of the prefilter matrix.

number of transmit antennas NT. The block Lanczos algorithm [27, 28] is a method

to compute an orthonormal basis of K (D)
S/R , that is,

T(D) = [
T1, T2, . . . , Td

]H ∈ C
D×NRG, (10.37)

given AS/R to be Hermitian which is true in our applications. The fundamental part
of the block Lanczos algorithm is the classical Gram-Schmidt orthogonalization step

{
T� , R�

} = QR

(
AS/RT�−1 −

�−1∑
i=�−2

Ti
(

TH
i AS/RT�−1

))
(10.38)

which is used for the recursive calculation of T� ∈ CNRG×NT . The recursion for-
mula is initialized with T1 obtained from the initial QR factorization {T1, R1} =
QR(BH

S/R). The computation of T(D) by Gram-Schmidt orthogonalization guaran-
tees that the transformed D ×D matrix T(D)AS/RT(D),H has block tridiagonal struc-
ture, that is, a matrix with NT ×NT nonzero blocks in the main block diagonal and
the two adjacent block subdiagonals.

Note that the block Lanczos algorithm is strongly related to the multistage
matrix Wiener filter [15, 16] (MSMWF) which is a matrix-valued extension of the
multistage Wiener filter [17]. Nevertheless, the corresponding prefilter matrix of
the general MSMWF does not necessarily have orthonormal rows.

The main problem of the block Lanczos algorithm is the fact that the rank D
has to be an integer multiple of NT. This restriction prevents the rank to be opti-
mally selected in the case where it is not an integer multiple of NT. Ruhe [15, 29]
derived a version of the Lanczos algorithm which is summarized in Algorithm 10.1
where the rank D can be any integer between 0 and NRG.

In each iteration step, the matrix-vector multiplication AS/Rtk in Line 4 of
Algorithm 10.1 defines the computational complexity which is O(N2

RG
2) since the

remaining operations have only linear order. The iteration is performed D−NT
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times, thus, the computational complexity of the Lanczos-Ruhe algorithm is
O((D − NT)N2

RG
2) since the complexity of the QR factorization of BS/R in the

first line is negligible. Due to the block tridiagonal structure of T(D)AS/RT(D),H, the
computational complexity of its inversion is O(NTN

2
RG

2) and the resulting com-
plexity of the Krylov subspace-based reduced-rank implementation of the MMSE-
ST-DFE is O(DN2

RG
2), thus, equal to the complexity of the eigenspace-based prin-

cipal component method.

10.5.2. Quasioptimal latency time

The optimization problem for the latency time in the reduced-rank case is given
by the following equation:

ν(D)
S/R = arg max

ν∈{0,...,L+G−2}
tr
(

BH
S/RT(D),H(

T(D)AS/RT(D),H)−1
T(D)BS/R

)
. (10.39)

Since the prefilter matrix T(D) depends on the latency time ν, it has to be recom-
puted for every possible ν ∈ {0, . . . ,L + G − 2}. Hence, the computational com-
plexity of the reduced-rank implementation including latency time optimization
is O(DN2

RG
2(L + G)), that is, of cubic order concerning the filter length G.

To avoid the additional computational burden of the latency time optimiza-
tion, a quasioptimal choice of ν is taken. Remember that the matrix HΠ(ν)HH in
AS/R has a maximal possible rank of

rank
(

HΠ(ν)HH) = min
(
(ν + 1)NT,NRG

)
, (10.40)

that is, it is rank-deficient for special choices of ν. For a given D, the latency time
can be chosen such that D is equal to rank(HΠ(ν)HH) if D is an integer multiple of
NT. If this is not the case, it turns out that the heuristic choice

ν(D)
S/R,sub = min

(⌈
D

NT

⌉
,G

)
− 1, (10.41)

which is based on the results of Figure 10.5, yields a good performance of the pro-

posed reduced-rank methods. Note that ν(D)
S/R,sub is a fixed latency time that is inde-

pendent of the actual channel, and it is smaller than G to assure that the equalizer
filter includes the energy of all channel taps. This turns out to be a good choice for
medium and large ranks D.

10.6. Performance

Monte Carlo simulations for the mean uncoded bit error rate (BER) are shown
for the following parameters: 16-QAM modulation, NR = 8 receive antennas in a
uniform linear array with half-wavelength interelement spacing, NT = 6 trans-
mitters, channel length L = 4, filter length G = 9, and Np = 30 QPSK pilot
symbols. The BER is averaged over 1000 i.i.d. Rayleigh fading blocks each with
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Figure 10.3. BER versus SNR of the MMSE-ST-DFE for Scenario 1.

500 symbols for every transmitter. The channels between the NT transmitters are
uncorrelated and angles of arrival at the receiver are Laplace-distributed (angu-
lar spread of 10◦) [30]. The power delay profile is exponential with rate of decay
1 microsecond (symbol rate 1.28 MHz as in [31]). Latency time optimization is
performed as described in (10.19), (10.29), and Section 10.5. For channel esti-
mation the LMMSE estimator in (10.23) is used. Moreover, full knowledge of the
second-order channel and noise statistics is assumed. For the reduced-rank imple-
mentation we apply the Lanczos-Ruhe Algorithm 10.1.

Scenario 1. The channel remains constant during reception of the pilot sequence
and data. The SNR loss due to imperfect channel estimation of the standard de-
sign is 4.2 dB at a BER of 10−2 (Figure 10.3). The robust design gains 2.4 dB com-
pared to a standard design. The improvement is due to the robust DFE’s knowledge
about size and—most importantly—structure of the estimation error. In our sce-
nario the rich structure in CΘ is mainly due to the channel correlations. For a rank
of D = 45, which is 62.5% of the full-rank NRG = 72, the complexity reduction
is achieved with only a small loss in performance of 0.4 dB for the standard design
and for perfect channel state information (CSI) (Figure 10.3). At an BER of 10−2

the reduced-rank implementation of the robust DFE with D = 45 looses 1.6 dB
to its full-rank version, as important information about the error is included into
the additional loading in the inverse of GR (10.28), which is considered as noise
by the reduced-rank algorithm. Thus, there is a trade-off between complexity and
robustness, and a larger rank D should be chosen for similar performance.

Figure 10.4 shows the sensitivity of the reduced-rank DFE implementation
with respect to selection of the rank D with a fixed suboptimum choice for the
latency time as described in Section 10.5. To achieve the same BER as the standard
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Figure 10.4. BER versus rank D for Scenario 1 at an SNR of 24 dB.

design, the rank of the robust DFE may be reduced further to save complexity.
Generally, it can be stated that among the reduced-rank approaches, the choice of
the Krylov subspace results in the smallest choice of D for a given performance
level [15].

The strong dependency of the DFE performance on the latency time ν is il-
lustrated in Figure 10.5 for the case of perfect CSI and for all possible choices of a
fixed ν at an SNR of 24 dB. Latency time optimization is crucial for achieving the
performance gains expected from a DFE compared to a linear equalizer due to the
high sensitivity of the BER with respect to latency time. Similar conclusions hold
for imperfect CSI and a standard/robust design. Furthermore, Figure 10.5 em-
pirically justifies the rule for choosing the latency time in case of a reduced-rank
implementation as introduced in Section 10.5. A latency time larger than G−1 = 8
cannot occur due to the structure of H, that is, a small received signal power from
symbols corresponding to delays ν larger than G − 1. The suboptimum choice of
latency time (10.41) can be verified with this example.

Scenario 2. A delay of 300 symbols between pilot sequence and application of the
ST-DFE to equalize the channel is assumed, which is a rough model for equalizing
the channel at the end of the data block. Here, the temporally correlated channel
has a maximum Doppler frequency of 5 · 10−5 (Jakes Doppler spectrum) nor-
malized to the symbol period. Note that the error covariance matrix CΘ now also
depends on the temporal correlation coefficient of the channel.

Due to the delayed channel estimate, the standard DFE design suffers a tre-
mendous performance degradation and the BER saturates at a high level (Figure
10.6). The error floor is significantly reduced by the robust design. Again for a
reduced-rank implementation with D = 45, there is only a small performance
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Figure 10.5. BER versus fixed latency time ν in case of perfect channel state information (CSI) for
Scenario 1 at an SNR of 24 dB.
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Figure 10.6. BER versus SNR for delayed channel estimates for Scenario 2.

degradation in case of full CSI and the standard design. But for the robust de-
sign, the performance loss due to rank reduction is more pronounced, as useful
information contained in the error covariance matrix CΘ is neglected to reduce
the complexity. For a rank D = 36, that is, 50% of the full rank, the additional
performance loss is smaller for the robust design than the standard solutions.
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Abbreviations

BER Bit error rate

BLAST Bell Laboratories Layered Space-Time

CSI Channel state information

DFE Decision feedback equalizer

FIR Finite impulse response

IIR Infinite impulse response

LMMSE Linear minimum mean square error

MIMO Multi-input multi-output

MMSE-ST-DFE Minimum mean square error space-time decision feedback equalizer

MSE Minimum square error

MSMWF Multistage matrix Wiener filter

QAM Quadrature amplitude modulation

QPSK Quadrature phase-shift keying

SISO Single-input single-output

SNR Signal-to-noise ratio

ST-DFE Space-time decision feedback equalizer
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11
Introduction

J. Bach Andersen

The radio channel in a multiuser, multiple-antenna wireless network in a compli-
cated dynamic environment is possibly one of the most challenging channels to
be dealt with by modern communication technologies. The environment defies in
most cases a deterministic solution of Maxwell’s equations, so a statistical descrip-
tion is necessary. Consider the following multitude of parameters of interest.

(i) The number of rays or paths at each end of the link.
(ii) The magnitude of each path.

(iii) The delay of each path.
(iv) The polarization of each path.
(v) The angles of arrival and departure.

(vi) The transformation from the in-the-air paths to the circuit ports, con-
sidering the mutual coupling between antenna elements.

(vii) The time variation due to the user movements and movements in the
environment.

(viii) The statistical description of all the above, including mean values, vari-
ances, correlations, and so forth.

(ix) Turning the above into accurate yet simple channel models to be used
for link and network simulations.

It is no wonder that it requires a multitude of experts to cover all aspects of
the channel, and it is fortunate that in this chapter we find an updated description
of most of these aspects.

Measurement of the channel is a very important aspect giving the reality check
and the basis for the physical understanding of the propagation phenomena.
Thomä et al. (Chapter 1) give first a theoretical model of the double-directional
channel of interest for MIMO systems and discuss the various sounding principles
used in practice today, including the important calibration techniques. Various an-
tenna structures are discussed highlighting the need for full polarimetric measure-
ment of the channel. By using a novel general array model, it is possible to separate
the antenna from the environment, indicating that the propagation results may be
used for different antenna structures than originally used in the measurements,
that is, antenna-independent channel models.
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Propagation measurements are applied in Chapter 2 by Vainikainen et al. to
give an updated description of propagation phenomena in both indoor and out-
door environments. An important new insight is obtained by the cluster analysis
for the outdoor environment, where array measurements indicate a rather small
number of clusters dictated by the geometry and building layout. Most propaga-
tion studies are related to the lower microwave frequencies, but in the section also
some indoor results for 60 GHz are shown.

Most engineering developments of wireless systems are prepared by simula-
tion of the complete link, where the channel model is an important part. The de-
velopment of MIMO systems has meant that a new area of channel models has
been introduced. We are now interested in modeling matrices connecting the an-
tennas on the transmit side with those on the receive side. Channel models of
MIMO systems are the subject of Chapter 3 by Yu et al., highly influenced by the
results of measurements. In some situations, the matrix channel may with a good
approximation be determined by the correlations between the antenna elements
at each end, not knowing the correlations of all the internal paths, the so-called
Kronecker model. Channel modeling is also treated by standardization bodies, in
order to compare systems on a fair basis. Thus channel modeling is a lively area,
expected to continue when new frequencies and bandwidths are introduced.

In a practical communication system at any given time, the channel is un-
known and must be estimated in order for the receiver to work properly. In some
cases it could also be relevant to send back information to the transmitter, en-
abling complete channel knowledge to be obtained, at least until the channel has
changed again. Channel estimation is the subject of Chapter 4 by Leus and van der
Veen, where a number of algorithms are discussed together with some simulation
results. Both training-based and semiblind results are treated, including some new
trends in this important area.

This part concludes with Chapter 5 by Viberg on direction-of-arrival (DOA)
estimation, an area also touched upon in some of the previous sections. DOA will
include in principle both azimuth and elevation angles, as well as the correspond-
ing angles of departure from the transmitter. DOA is important for the under-
standing of the propagation phenomena, and also for finding the clustering in an-
gle, and the statistical angular spread, relevant for the functioning of antenna ar-
rays in arbitrary environments. The question is often how accurate the estimation
should be, and the section discusses various schemes from conventional beam-
forming to least-square methods and subspace methods of varying complexity.

J. Bach Andersen: Department of Communication Technology, Institute of Electronic Systems, Aalborg
University, 9220 Aalborg, Denmark

Email: jba@kom.auc.dk
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12.1. Introduction

Significant development of propagation measurement systems has taken place
since the mid 90s. Earlier it was typically possible to measure only the power as a
function of location (or time) and possibly the power delay profile of the channel
in the case of wideband channel sounders. The power division between orthog-
onal polarizations had to be determined with two separate measurements. The
development of channel sounders employing antenna arrays made it possible to
determine also the directional information first at one end [1, 2] and, a few years
ago, also at both [3, 4] ends of the link with MIMO configurations having more
than 20 × 20 antennas. The use of several receive and transmit antennas enabled
also the determination of the instantaneous complex polarization matrix. In the
best systems these properties could be obtained with quite fast sampling rate en-
abling measurements over long continuous routes with less than half a wavelength
sampling distance. These experiments have given significant new information for
the development of multidimensional propagation channel models. They can also
be used to obtain realistic estimates on the available capacity of the new radio sys-
tem configurations like MIMO.

Furthermore, the directional measurements provide new information on the
phenomena governing the propagation. In the earlier measurements covering only
a few domains the result often consisted of joint responses of several phenomena
without the opportunity to separate them. The interesting new results of these
multidimensional measurements has been, for example, the short-term stability of
the distinguished significant propagation paths or clusters as a function of location
and also the small number of such clusters in an urban environment [5].

Another approach to studying MIMO propagation channels is electromag-
netic (EM) simulations. Here the investigation of physical propagation mecha-
nisms and their accurate and effective modeling gives new opportunities for ex-
tensive MIMO system studies [6, 7, 8].
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12.2. Basic propagation mechanisms for mobile communications

12.2.1. Propagation in free space

The free space path loss with wavelength λ at distance d0 in the far field of the
antennas with gains G1 and G2 is given by

PL0(d0) = −G1 −G2 + 20 log
(

4πd0

λ

)
. (12.1)

Equation (12.1) can be used for separate rays, when the first Fresnel zone is free
from obstructions.

12.2.2. Ray theory

In the ray theory, it is approximated that the energy propagates between antennas
inside ellipsoid-shaped tubes, defined by the first Fresnel zone. The phase differ-
ence between the straight line and the line via the equivalent source on the surface
of the tube is 180◦. According to the theory, only obstacles inside the tube may
affect the energy.

12.2.3. Refraction, reflection, and transmission in the boundary
of dielectric media

In the following equations, we assume that the wave can be regarded as a plane
wave, which holds for materials with relatively low loss. So the field in point r is
given by

E(r) = E0 · e− jk·r, (12.2)

where k is the wave vector. The boundaries are assumed smooth compared to
wavelength, and uniform inside the first Fresnel zone.

12.2.3.1. Refraction

The energy can propagate behind wedge-like obstacles, through both refraction
and diffraction. It can be easily calculated from Snell’s law that refraction be-
hind 90◦ corners requires εr < 2. Therefore, refraction is an untypical propagation
mechanism in man-made environments, but significant in nature (e.g., refraction
in atmosphere).

12.2.3.2. Reflection

For a dielectric medium with relative dielectric permittivity εr = ε′r − jε′′r , the
Fresnel reflection coefficients r⊥ and r‖ for perpendicular and parallel polariza-
tions, respectively, for a plane wave in the boundary of dielectric media are well
known from textbooks.
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Figure 12.1. Transmission and reflection coefficients of a dielectric layer, thickness 13 cm, εr = 4.1 −
j0.15, f = 5.3 GHz.

12.2.3.3. Transmission

Transmission through homogeneous layers-signal flow diagram analysis. For a layer
with thickness d of homogeneous dielectric medium the field transmission coeffi-
cient is, for example,

T =
(
1 − r2

) · e− jδ

1 − r2e− j2δ , (12.3)

where r can be either a parallel or perpendicular field reflection coefficient, and

δ = 2πd
(√

εr
)

λ · cosφ2
, (12.4)

where φ2 is the direction of propagation inside the dielectric layer with respect to
the normal of the boundary. The real part of δ is the electrical length of the path of
the wave inside of the dielectric medium. The field reflection coefficient including
the multiple reflections inside the layer is

R = r
(
1 − e j2δ

)
1 − r2e− j2δ . (12.5)

Equations as (12.3) and (12.5) for an arbitrary number of dielectric layers can
be derived using signal flow diagram analysis. In Figure 12.1, transmission (12.3)
and reflection (12.5) of a brick wall with thickness 13 cm and εr = 4.1 − j0.15
are shown at 5.3 GHz. A transmission coefficient changes only slightly when φ =
0 − 50◦. The reflection coefficients are different for the two polarizations: in the
vicinity of Brewster’s angle, R‖ ≈ 0.
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Table 12.1. Wall losses in different references (d = thickness, L = attenuation, εr = relative dielectric
permittivity).

f (GHz) Material εr d (cm) L Method Reference

5.3 Brick 4.1− j0.15 13 5 dB
Meas + sim

[10]
(homogeneous layer)

0.9
Concrete+

7− j0.3 20
3.5 dB FEM simulation

[11]
metal grid (mean) (mean)

1.8
Concrete+

7− j0.3 20
6 dB FEM simulation

[11]
metal grid (mean) (mean)

1.8
Concrete+

7− j0.3 20
6.5 dB MTL simulation

[12]
metal grid (mean) (mean)

57.5 Concrete 6.5 − j0.43 5 46 dB
Meas + sim

[13]
(homogeneous layer)

The difference between R‖ and R⊥ leads to uncorrelated fading of vertical and
horizontal polarizations. Therefore, the polarization diversity is an effective diver-
sity technique, not requiring spacing between antennas as the spatial diversity, and
orthogonal polarizations will potentially be used in MIMO systems. If dominant
propagation mechanism to an NLOS corridor is reflection from vertical walls, VP
propagates better (e.g., [9], VP signal was several dBs higher) due to the higher
reflection coefficient.

In the most common building materials, such as concrete, the dielectric per-
mittivity εr changes smoothly as a function of frequency in the frequency range
2–60 GHz (e.g., Table 12.1). Therefore, the frequency dependency of wall trans-
mission can be approximated straightforward: the average field transmission loss
is proportional to e1/λ.

Transmission through inhomogeneous layers. The building walls are generally inho-
mogeneous. Walls often consist of periodic layers. It is calculated, applying modal
transmission-line method in [12], that, in such case, separate waves with different
propagation directions are found. In [11] finite-element techniques are used in
calculating the wave propagation through reinforced-concrete walls. In such ap-
proach, the plane wave approximation is not required, and calculations are not
restricted to low-loss materials.

12.2.4. Diffraction

Diffraction occurs when the radio path between the transmitter and the receiver
is obstructed by a surface that has sharp irregularities (e.g., edges). In mobile
communication environments, the primary diffracting obstacles, which perturb
the propagating fields are buildings. The majority of contemporary structures are
comprised of a number of faces intersecting at straight edges of finite lengths.
Thus, corners can be considered as wedges and diffraction theory can be applied.
Diffraction formulas are well established for perfectly conducting (PC) infinite
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wedges [14, 15], for absorbing wedges (AW), and for impedance-surface wedges
[16]. The PC diffraction coefficients are accurate when dealing with diffraction
phenomena arising from metallic objects. However, many important applications,
such as in mobile communications, involve large dielectric structures with losses.
In this case, the assumption of PC boundary conditions results in a lack of accuracy
in predicting the actual electromagnetic field. On the other hand, the impedance-
surface diffraction formulas are rather cumbersome to use for propagation pre-
diction in mobile communications. Thus, the difficulty of using the rigorous so-
lutions for propagation prediction forces simplifications to be made. Some exist-
ing diffraction coefficients modify the PC-UTD diffraction coefficient in order to
make it applicable to dielectric wedges with losses. For a normal-incident plane
wave, there is a general form of the PC-UTD-based diffraction coefficient that
includes the existing solutions as special cases of it. The general form can be ex-
pressed as

D = Γ1D
(1) + Γ2D

(2) + Γ3D
(3) + Γ4D

(4). (12.6)

Detailed descriptions of the variables that appear in (12.6) are given in [14, 15].
Different definitions of multiplication factors Γi (i = 1, . . . , 4) of each term in
(12.6) result in different diffraction coefficients that appear in literature. For
Γ1,2,3,4 = 1, and Γ1,2 = 1, Γ3,4 = −1, we obtain the PC-UTD diffraction coeffi-
cient for perpendicular and parallel polarizations [14, 15], respectively. Luebbers
in [17], based on work of Burnside [18], introduced a heuristic modification to
the PC-UTD diffraction coefficient to be applicable to dielectric wedges with fi-
nite conductivity. In [17], Luebbers kept Γ1,2 = 1 and heuristically set Γ3,4 = R‖,⊥

0,n ,

where R‖,⊥
0,n is the plane-wave Fresnel reflection coefficient for o-face (i.e., φ = 0)

and n-face (i.e., φ = nπ) of the wedge with parallel (‖) and perpendicular (⊥)
polarizations. He conjectured that this approach would yield a reliable estimate
for the diffraction coefficient, particularly, around the incidence and reflection
shadow boundaries. Some improvements in Luebbers’ solution have been pro-
posed in [19] based on redefining the reflection angles at which R0,n are calcu-
lated. Furthermore, Holm in [20] heuristically modified the PC-UTD diffraction
coefficient by changing the factors Γ1,2 and keeping the modification introduced
by Luebbers for Γ3,4. In particular, when the source illuminates the o-face, Holm
set Γ1 = R‖,⊥

0 · R‖,⊥
n and kept Γ2 = 1 and when the source illuminates the n-face,

he modified Γ2 = R‖,⊥
0 · R‖,⊥

n and kept Γ1 = 1 with some changes in the definition
of the reflection angle. An improvement to Holm’s solution is given in [21] for the
case when the source illuminates one side of the diffracting surface. Recently, a new
heuristic diffraction coefficient for lossy dielectric wedges at normal incidence is
proposed in [21]. In [21], Γ1,2 = 1 and Γ3,4 are given by new definitions of the mul-
tiplication factors. The Γ3,4 are given by a modified reflection coefficient that was
inferred from suitable formulation of Maliuzhinets’ solution. The proposed mod-
ified reflection coefficient establishes a relationship between the incidence electric
field and that at the observation point when both are parallel or perpendicular to
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the plane of incidence and observation point. It is given by

�‖,⊥ = (1, ε)τ −√
ε − 1 + τ2

(1, ε)τ +
√
ε − 1 + τ2

, (12.7)

where

τ = 2 sin
(
φ

2

)
sin

(
φ′

2

)
, (12.8)

where ε is the surface permittivity, φ′ and φ are the incident and diffracted angles.
In [22], a diffraction coefficient that combines both the improved version of Holm
similar to that given in [23] and the new heuristic coefficient given in [22] is pro-
posed. It results in an accurate diffraction coefficient for different values of wedge
angles and different incident angles whether the source can illuminate one face or
both sides of diffracting surface, and different diffraction regions. The accuracy
is valid for both parallel and perpendicular polarizations. It is as computationally
efficient as other heuristic solutions.

Examples of the calculated diffraction coefficients are shown in Figure 12.2.
One sees clearly how diffraction loss increases as a function of frequency.

12.2.5. Scattering

Rough surface causes scattering into the nonspecular directions and reduction of
energy in the specular direction. The influence of rough surface depends on the
degree of roughness. The longer the wavelength and the smaller the grazing angle,
the weaker the effect of surface irregularities. The importance of roughness has
been determined by measurements [24]. In some scenarios, the roughness is so
significant that no coherent part is retransmitted toward the receiver. If the diffuse
reflection is isotropic, then the intensity in any direction varies as the cosine to the
angle between that direction and the normal to the surface. The influence of the
surface can be described by a simple cosine relation called Lambert’s cosine law. In
urban propagation, diffuse scattering can be considered as originating from build-
ing wall surfaces. In order to model diffuse scattering in an urban environment, a
sort of effectiveness is associated with each building wall. This takes into account
the real surface roughness, wall discontinuities, small object effects, and so forth
[25]. The scattering contribution of each wall is computed from the distance of
each wall and its orientation with respect to the transmitter and the receiver us-
ing a formula which depends on a few scattering parameters. Diffuse scattering
has been modeled according to the effective roughness approach expressed with an
integral approach for close-by objects described in [25], or with a simplified ap-
proach for far-away objects, which is important for wideband prediction [26]. The
latter is expressed as

E2
S = K2

0 S
2 Area · cos θi cos θs

π
· 1
r2
i r2

s

. (12.9)
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Figure 12.2. Frequency response of diffraction (perpendicular polarization). S1 = 40 m, S2 = 10 m,
φ′ = 10◦. (a) εr = 6.14 − j0.30, (b) εr = 4.0 − j0.10.

The parameters in (12.9) are defined in [26]. In order to investigate what role
the diffuse scattering mechanism plays over other mechanisms, the work in [27]
makes comparison between measurement results and ray tracing with and with-
out diffuse scattering. The measurement campaign was carried out in downtown
of Helsinki, Finland, as shown in Figure 12.3. Figure 12.4 shows a comparison of
conventional ray tracing (i.e., reflection and diffraction mechanisms are included
without diffuse scattering) and a version where scattering is included. The com-
parison shows acceptable agreement between ray tracing including diffuse scatter-
ing and over-rooftop propagation and measurements. It can be seen clearly that
the inclusion of diffuse scattering has improved the prediction of rms delay spread
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Figure 12.3. Sample of different rays with inclusion of diffuse scattering.

when compared to conventional full 3D ray tracing. From this comparison, we are
able to understand the importance of the role of the diffuse scattering.

12.3. Characteristics of the propagation channel for different scenarios

12.3.1. Indoor propagation

12.3.1.1. Propagation mechanisms

It is seen that when frequency gets higher, the transmission loss dependency on the
wavelength e1/λ causes that transmission becomes a less important mechanism and
reflection, diffraction, and scattering start to dominate the propagation to NLOS
(see, e.g., [10, 28]). The transmission through walls and windows varies in differ-
ent buildings, new buildings often have thin walls but windows may not be trans-
parent. Another important mechanism is waveguiding—the wave propagates by
reflection from wall to wall, thus the path loss exponent is usually less than 2. The
waveguiding can be observed especially in corridors. Multiple reflections happen
in rooms and corridors, which causes that azimuth spread of the signal is wide in
NLOS situations in hard wall environments. Elevation spread is generally mod-
eled using Laplacian distribution [29]. The elevation spread can also be high in
NLOS, if distance of Rx and Tx is not much larger than the room height, and if the
transmitter antenna has wide radiation pattern in elevation plane [30, 31]. This
is seen in SISO measurements so that the average Doppler spectrum is flat [30].
High angular spread causes that the correlation distance is short, only fraction of
the wavelength [30, 32]. At 5 GHz, signal components with 3 to 5 bounces can be
observed with significant amplitude in hard wall office environments. Thus, there
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Figure 12.4. Comparison of measured delay spread with that from ray tracing with and without dif-
fuse scattering.

are many paths and the indoor environments provide potentially high MIMO ca-
pacity with a relatively small antenna distance, which is comparable to Rayleigh
curves (e.g., see [33, 34, 35]). However, a keyhole effect is found in long corridors
and tunnels [36], where the higher-order modes of guided waves are attenuated,
thus limiting the rank of the channel matrix.

12.3.1.2. Statistical parameters

The propagation characteristics of different environments are often given by the
log-distance model

PL(d) = PL0
(
d0

)
+ 10n log

(
d

d0

)
+ Xσ , (12.10)

where n is the path loss exponent, Xσ is a zero-mean lognormally distributed ran-
dom variable, and d0 is the free space path loss PL0 distance (often d0 equals 1
meter for comparability). The physical interpretation of n = 1 is a guided wave in
one plane, n = 2 corresponds to a free space path loss, and n = 4 corresponds to a
situation, where low antenna heights cause the first Fresnel zone to be obstructed.
The values of n and σ can be extracted straightforward from the measurements
(Table 12.2).

Parameters like path loss exponent and delay spread (Table 12.3) give insight
into the behavior of the radio channel. For an adaptive antenna or MIMO link-
level design, the spatial properties of the signal are important. The angles of de-
parture Ωt and arrival Ωr have to be defined [3]. Statistics of angular spreads in an
indoor environment are given in Table 12.4. The cluster angles refer to the model
presented in [37].
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Table 12.2. Values for parameters of log-distance model.

Class f (GHz) d0 Distance n σ (dB) Environment Method Reference

LOS 5.3 1 3–100 1.3–1.5 2–4.7
Corridors

and walls
WCS [30]

1.5 1 4–70 < 2 — Hallway Pulse [37]

2.25 — 1–15 1.5 — — VNA [38]

5.25 — 1–15 1.7 — — VNA [38]

17.25 — 1–15 1.6 — — VNA [38]

NLOS 5.3 1 5–200 1.9–4.8 2.7–5.6 — WCS [30]

0.9 — — 4.84 — Det RT [39]

1.8 — — 6.08 — Det RT [39]

2.5 — — 6.62 — Det RT [39]

5.2 — — 6.99 — Det RT [39]

1.5 1 4–70 3 — — Pulse [37]

Different

floors
5.3 1 5–30 5.7–6.5 — — WCS [30]

Table 12.3. Values for delay spreads.

Class f (GHz) Distance στ (ns) Value given Method Reference

LOS 5.3 3–100 20–120 CDF 90% WCS [30]

0.492–0.862 4–13 6–20 Min-max VNA [40]

0.9 — 16 CDF 90% Pulse [41]

2.25 1–15 34.5–49.0 Mean VNA [38]

5.25 1–15 14.4–15.7 Mean VNA [38]

17.25 1–15 11.0–26.9 Mean VNA [38]

NLOS 5.3 5–200 30–180 CDF 90% WCS [30]

1.5 4–70 43 CDF 90% — [37]

0.9 — 28 CDF 90% school Pulse [41]

0.9 — 120 CDF 90% factory Pulse [41]

2.25 1–15 34.5–49 Mean VNA [38]

5.25 1–15 14–15.7 Mean VNA [38]

17.25 1–15 11–27 Mean VNA [38]

12.3.2. Microcellular propagation

The coverage area of a microcell is generally less than 1 km and the height of base
station antenna is usually lower than the heights of surroundings. Therefore, mi-
crocells can enhance the efficiency of frequency reuse and also increase the user
density. For the designing of future radio communication systems, microcellular
radio wave propagation characteristics are quite important to be investigated.

12.3.2.1. Path loss

In this section, the semiempirical path loss models are introduced using simple
linear regression on measured data. The frequencies of concern here are around
1.8 and 5.3 GHz. The results are summarized in Table 12.5.
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Table 12.4. Angular statistics for indoor environment.

Mean cluster angle Ray angle within cluster

f (GHz) φ θ φ θ Method Comment Reference

7 Uniform —
Lapacian

σ = 22◦ − 26◦ —
Rotating

antenna

Two

buildings
[42]

2.154 Uniform

Double-sided
exponential
σ+ = 9.4◦

σ− = 6.9◦
— —

Spherical

array
— [31]

Table 12.5. Parameters for path loss models.

Class
Urban Suburban

BS (cm)
n PL0 Std BS n PL0 Std Frequency Reference

(dB) (dB) (m) (dB) (dB) (GHz)

4 1.4 58.6 3.7 5 2.5 38.0 4.9 5.3 [43]

5.5 1.9 43.0 3.7

7.5 1.71 49.1 3.6
1.8 [44]

L 8.5 1.34 53.83 3.3 5.3 [43]

O 9.5 1.36 54.8 3.6 1.8 [44]

S 10.5 1.43 52.8 4.2 5.3 [43]

11.5 1.84 46.4 5.2

12.0 2.50 35.8 2.9

12.5 1.70 49.0 5.6

45 3.50 16.7 4.6

zz/tr 3.7 4.5 4.0 4.8 [45]

3.2 zz/lat 4.3 5.5 3.2 2.7 7.4 1.9 Oakland,

Stair 5.2 2.5 5.3 6.1 Sunset

4 2.80 50.6 4.4 5.3 [43]

5.5 3.21 [44]

N 7.5 3.10

L 8.5 2.41

O zz/tr 3.0 4.5 3.7 6.4 [45]

S 8.7 zz/lat 3.7 6.6 8.7 2.3 7.0 1.9 Oakland,

Stair 4.9 3.9 4.3 5.1 Sunset

9.5 3.27

10.5 3.36 1.8 [43]

11.5 3.44

12.0 4.50 20.0 1.7 12 3.4 25.6 2.8 5.3 [43]

12.5 3.58 1.8 [44]

zz/tr 3.3 5.4 3.9 8.5 [45]

13.4 zz/lat 3.8 6.8 13.4 3.5 7.9 1.9 Oakland,

Stair 4.3 3.3 4.1 5.5 Sunset

45 5.8 –16.9 2.8 5.3 [43]

The measured routes in [44] include the LOS streets, parallel and perpen-
dicular streets. The BS station height varied from 5.5 to 12.5 meters shown in
Table 12.5. In LOS measurements, the path loss exponents were in the range
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1.3–2.0. The minimum exponent was found in the narrow street canyon due to
guided wave effects. In the NLOS measurements, the exponents were in the range
2.4–3.3. The maximum path loss exponent was 3.3 in the NLOS measurements
with the highest BS. The path loss exponents were more than 5.1 in the narrow
street after the break point. However, in the wider street it was 2.6. The conclu-
sion is that the changes in antenna heights did not have significant effect on the
path loss provided that the BS antenna is mounted below the average rooftop of
surrounding buildings.

In wide streets the power decay factors were found to be close to free space. In
[46], path loss models were developed using measured data for urban block streets
with low-rise, high-rise, and low-plus-high-rise buildings. The models were many
related geometrical parameters such as heights of BS and MS, distance of break
point, and so on. In [43], path loss models were developed using wideband mea-
sured data at 5.3 GHz for urban, suburban, and rural environments with measured
distance from 30–300 m. The BS antennas in urban environments were placed at
three different heights of 4, 12, and 45 m above ground level letting the BS in street
canyon lower than the average height of surrounding rooftops, and over rooftops,
respectively. The BS heights were 5 and 12 m for suburban measurements in street
canyon and lower than rooftops, respectively. The path loss exponents (1.4–3.5 for
LOS, and 2.8–5.8 for NLOS) were higher with increasing BS antenna heights in
urban environments. When mobile terminal was turning a building corner, more
than 25 dB attenuation was found from LOS to NLOS situations. Compared to the
urban path loss models in [44], the BS antenna heights were changed much, so
the antenna heights have important effects on path loss models. In [45], path loss
models are available for three types of NLOS routes, namely, zigzag (zz) transverse
(tr), zigzag lateral (la), and also stair routes. It is seen that stair streets have largest
exponents, and zigzag transverse streets lowest exponents.

12.3.2.2. Delay spread and coherence bandwidth

Multipath propagation causes delay dispersion for wideband radio channels. The
mean excess delay is the first central moment of the power delay profile (PDP)
while the rms delay spread (the second moment of the PDP) is the standard devi-
ation of the excess delays. The rms delay spread is the most important modeling
parameter which is connected to the capacity and the bit error rate (BER) of a spe-
cific communication system and the complexity of a receiver. Results in [45] (see
Table 12.6) show that the error floor is approximately proportional to the square
of the normalized rms delay spread, namely, the BER is equal to K · (S/T)2, where
the proportionality constant K depends on the modulation format, the filtering
at the transmitter and receiver, and the sampling time, S is the rms delay spread
and T is the symbol duration. The measured values for mean excess delay and rms
delay spread at 5.3 GHz are available in Table 12.6. In [47], peer-to-peer channel
measurement campaigns at 1.92 GHz were performed in a campus, the rms delay
spreads were 17–219 nanoseconds, 26–45 nanoseconds, and 27–43 nanoseconds
for outdoor-outdoor, indoor-indoor, and outdoor-indoor, respectively.
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Table 12.6. Measured mean excess delay and rms delay spread at 5.3 GHz.

Tx height (m) Urban Suburban Rural

Mean excess delay (ns) LOS

38 (4)

36 (5) 29 (55)42 (12)

102 (45)

NLOS 70 (4) 68 (12)

RMS delay spread (ns)

44 (4)

Mean LOS 41 (12) 25 (5) 22 (55)

88 (45)

NLOS 44 (4) 66 (12)

Media n

25 (4)

LOS 31 (12) 13 (5) 15 (55)

86 (45)

NLOS 37 (4) 63 (12)

CDF

< 99%

93 (4)

57 (5) 44 (55)LOS 64 (12)

120 (45)

NLOS 63 (4) 105 (12)

Frequency-selective fading can be characterized by coherence bandwidth
which is the frequency separation for which the channel autocorrelation coeffi-
cient reduces to 0.7 (or 0.9 or 0.5) by definition. The coherence bandwidth is in-
versely proportional to the rms delay spread and is a measure of the channel fre-
quency selectivity. When the coherence bandwidth is comparable to or less than
the signal bandwidth, the channel is said to be frequency selective. Therefore, the
coherence bandwidth is not only related to the radio channel itself, but also to
the signal bandwidth. For reference [43], the measurement campaigns have been
simply described in Section 1. It was found that in urban environments the co-
herence bandwidth went down with increased BS antenna heights. The coherence
bandwidth at 0.7 was within 1.2–11.5 MHz for LOS outdoor environments. The
signal bandwidth and carrier frequency were 30 MHz and 5.3 GHz, respectively.
The coherence bandwidth can be derived by using the Fourier transformation to
the normalized PDP.

12.3.2.3. Number of significant paths

The number of multipaths can be got by counting the peaks of the PDPs after
cutting noise. The number of multipaths was proven to have the best fit into Pois-
son’s and Gao’s distributions [2]. Poisson’s and Gao’s distributions are P(N) =
(ηNT−N/(NT − N)!) · e−η and P(N) = CN

NT
(ηNT−N/(1 + η)NT ), respectively. In the

expressions, N is variable and C means combination. NT is the maximum num-
ber of paths that the mobile can receive. The parameters η and NT can be fitted
by the measured data. The mean numbers of paths [N] are η and NT/(1 + η) for
Poisson’s and Gao’s distributions, respectively. The fitted parameters are available
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Table 12.7. Distributions of number of paths for outdoor environments.

Distribution

characteristics

Urban Suburban Rural

Tx 4 m Tx 12 m Tx 45 m Tx 12 m Tx 55 m

LOS NLOS LOS LOS LOS NLOS LOS

η
Poisson 2.8 4.2 3.3 6.0 1.2 4.5 1.8

Gao 4.7 4.5 3.5 2.7 9.0 3.3 4.0

NT 16 21 14 22 13 20 9

[N]
Poisson 2.8 4.2 3.3 6.0 1.2 4.5 1.8

Gao 2.8 3.8 3.2 6.0 1.3 4.7 1.8

Experimental 3.4 4.2 3.5 6.2 2.4 5.0 1.7

in Table 12.7. It is shown that both Poisson’s and Gao’s PDFs have good agreement
with experimental values. However, Gao’s PDF has been noticed to give better fit
than Poisson’s distribution especially at high probability values. The maximum
path number that the mobile can receive is around 20, but the probability is very
small for the path number greater than 15 when 20 dB dynamic range was chosen
for noise cutting.

The number of paths can be expected to be larger if the high resolution meth-
ods such as ESPRIT (estimation of signal parameters via rotational invariance
techniques) [48] and the SAGE (space-alternating generalized expectation max-
imization) [49] are applied.

12.3.3. Urban macrocellular propagation

12.3.3.1. Introduction

One of the most important propagation environments for modern mobile com-
munications systems is the urban area. It is also interesting in the radio wave prop-
agation research point of view due to its complexity. The main features governing
propagation in the urban areas are

(i) propagation over and around buildings and shadowing due to this;
(ii) reflections and scattering of buildings;

(iii) street canyon propagation;
(iv) other typical characteristics of cities: squares, parks, trees, water.

Traditionally, urban propagation has been characterized with Okumura-Hata or
Walfisch-Ikegami models for path loss and different delay domain models like
those used in the standard testing of GSM or UMTS cellular systems. The chal-
lenge has lately been to get the necessary information to estimate the opportunities
to utilize modern intelligent antenna techniques in urban areas to provide high-
capacity wireless communications services for this important user environment.
For this, directional measurements are needed and those have been conducted by
several groups [50, 51]. These have given significant new insight in the urban ra-
dio wave propagation and supported the development of propagation models and
further communications systems.
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12.3.3.2. Path loss

The average path loss in urban areas has been studied extensively during the years.
Recent work has provided additional information on the propagation at the new
mobile system frequencies like 2 and 5 GHz ranges. The results show that the path
loss follows generally the well-known models created earlier.

12.3.3.3. Delay domain

High-capacity mobile systems have significant bandwidth compared with the cor-
relation bandwidth in urban environments. Thus it is important to study the delay
domain properties in the campaigns mentioned above. The bandwidths of several
tens of MHz have been used. The rms delay spread may vary significantly in urban
environments depending on the topology of the city. High-rise downtown areas
or water may cause far-away clusters in the delay domain.

12.3.3.4. Angular domain

From the point of view of adaptive antennas the most interesting research area is
the angular characteristics of the urban propagation. The buildings are practically
nontransparent at the frequencies of new mobile systems (except for propagation
into buildings) and thus the propagation is governed by the reflections, diffrac-
tions, and scattering of the buildings. In the urban outdoor environments, this
seems to lead to the situation where clear clustering of propagation paths in the
angular domain takes place at both the BS and MS [50, 52] due mainly to the
street canyons. The existence of the clusters and their temporal behavior has been
studied, for example, in [52, 53]. This clear clustering changes the traditional view
of propagation modeling based on fairly uniform azimuth distribution like scat-
terer rings. The number of significant clusters in small macrocells seems to be less
than 10 and the Ricean K factor typically 1–10 dB, with an average around 5–6 dB.
Also the angular dispersion of the clusters is fairly small [52], see Figure 12.5. The
results indicate that the clusters can be modeled, for example, with only a few sub-
rays, which provides the opportunity to create fairly simple propagation models
also for the complicated antenna structures that seem to increase significantly the
complexity of traditional link-level channel models.

12.3.4. Large- and small-scale fading

In Section 12.3.2.1, the linear least square error method was used in path loss fit-
ting. Path loss is actually the mean propagation loss. In addition to path loss, the
received signal exhibits fluctuations which are called fading. Fading can be divided
into large- and small-scale categories. Large-scale fading represents the long-term
variation of the received power level, while small-scale fading represents short-
term variation. Large-scale fading is caused by shadowing effects and is determined
by the local mean of received power. The window length of the local mean depends



226 Propagation

−150 −100 −50 0 50 100 150

Azimuth angle (◦)

500

1000

1500

2000

2500

3000

3500

4000

Sn
ap

sh
ot

#

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(a)

−150 −100 −50 0 50 100 150

Azimuth angle (◦)

500

1000

1500

2000

2500

3000

3500

4000

Sn
ap

sh
ot

#

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(b)

Figure 12.5. Azimuth plot of (a) the original DoA data, (b) residual DoA data after removal of the
clusters from the measurement on the street.

on frequency, for example 20λ is used at 5 GHz and 5λ at 900 MHz. The probability
density function (PDF) of large-scale received power follows lognormal distribu-
tion. The small-scale fluctuation is caused by the superposition of a large number
of independent scattered components in which the in-phase and quadrature com-
ponents can be assumed to be independent zero-mean Gaussian processes. Then
the PDF of small-scale received power follows Rayleigh distribution. Therefore,
the joint distribution for large- and small-scale received power can be assumed to
be Suzuki distribution [54], which is the combination of Rayleigh and lognormal
distributions. However, Suzuki distribution has not been widely applied because
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of its complicated mathematical form. Some new research results were shown in
[55, 56]. The received power obeys double-Rayleigh distribution, and the PDF can
be expressed as

pz(z) = 2K0

(
2
√
z
)

, (12.11)

where z = xy and x,y follow the Rayleigh distribution. More generally the
multiple-Rayleigh distribution was discussed in [56]. The complex amplitude of
the received signal propagated through a universal scattering environment can be
expressed as

H = K + H1 + αH2H3 + βH4H5H6 + · · · , (12.12)

where K corresponds to a possible Ricean factor, Hi follow complex Gaussian
distributions (Rayleigh in amplitude), and α and β are constants which can be
obtained by fitting to the measured amplitude. Very good agreement is shown
in Figure 12.6b for measured power and multiple-Rayleigh distributions. Also in
[56], it was shown that multiple-Rayleigh and Suzuki distributions have excellent
agreement when they are fitted into measured data.

12.3.5. Multipath dispersion in different domains

A channel may vary as a function of time, frequency, and space h(t, f , r). There
are three Fourier transform pairs that assist in the propagation channel analysis.
They are frequency ( f ) ↔ delay (τ); time (t) ↔ Doppler frequency (ω), and po-
sition (r) ↔ wave number (k) pairs which gave three possible spectral domains:
delay, Doppler, and wave number domains [57]. To accommodate all the ran-
dom dependences of a channel, it is possible to define a joint power spectrum
density (PSD) as a function of Doppler, delay, and wave number H(ω, τ, k), and
h(t, f , r) ↔ H(ω, τ, r) again is a Fourier pair. The Wiener-Khintchine theorem for
WSSUS processes then leads to the Fourier transform relationship between auto-
correlation function and PSD: R(∆t,∆ f ,∆r) ↔ S(ω, τ, k). For the Fourier pair,
it is seen that time-selective fading due to scatterer or mobile terminal moving
results in a Doppler spread. Time-selective fading can be characterized by co-
herence time, which is approximately inversely proportional to Doppler spread.
The coherence time is a measure of how fast the channel changes in time. The
wave number spread (further is angular spread) can cause spatial-selective fad-
ing which is characterized by the coherence distance. The coherence distance is
inversely proportional to the angular spread [58]. As is described in Section 12.2
delay spread causes frequency-selective fading as the channel acts as a tapped delay
line filter. Relationships between numerous dependences are given on a nice trans-
form map in [57]. The WSSUS condition is quite important in channel modeling.
If we assume channel IR is expressed as h(τ, t) in which the spatial dependence is
dropped for clarity, then WSS means the autocorrelation function in time
R(τ,∆t) = 〈h(τ, t)h∗(τ, t + ∆t)〉 depends only on the lag ∆t, where 〈〉 means en-
semble average. The US means that the scatterers contributing to the delay spread
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Figure 12.6. (a) Simulation results for multiple-Rayleigh power distributions. (b) Theoretical
multiple-Rayleigh power distributions and measured results in a forest.

in the channel have independent fading, for example, 〈h(τ1, t)h∗(τ2, t)〉 = 0 if
τ1 �= τ2. It is seen that if we assume ergodicity of a channel, the WSS assumption
can be automatically fulfilled. The US assumption is well fulfilled only in macro-
cells. In indoor environments or certain special other environments (streets, tun-
nels), it is obvious that the scatterers are correlated. Still, WSSUS is assumed for
most system computations because non-WSSUS models are too complicated. In
a measurement over real routes, one should first divide the measured snapshots
into subsets, where each subset contains, for example, 100 IRs depending on the
wavelength and environment. The basic criterion is to estimate the size of the sta-
tionarity area. Then, the mean PDP, Doppler, and correlation functions [59, 30]
are defined inside each of these subsets and finally the average properties of the
route are obtained by using the results obtained from all the subsets.



P. Vainikainen et al. 229

Stockholm

Aarhus,
high antenna

position

−30 −20 −10 0 10 20 10

Azimuth (◦)

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Po
w

er
(d

B
)

Figure 12.7. Example of estimated PAS obtained in Aarhus and Stockholm.

12.3.6. Power angular spectrum (macro-, micro-, and indoor)

The power angular spectra (PAS) in both the azimuth and elevation plane are
quite important for the optimization of antenna array topology and combining
algorithms for adaptive MIMO systems. The PAS measurements at BS by using
a planar array for urban macrocells were performed in [60]. Figure 12.7 shows
two examples of estimated PAS in azimuth plane from measurements in Aarhus,
Denmark, and Stockholm, Sweden. The azimuth 0◦ corresponds to the azimuth
towards the MS. In both cases the incident power is highly concentrated around
0◦ even through the measurements that are obtained in NLOS situation. Further-
more, it can be observed that the Laplacian function matches the PAS quite well.
The PAS in Figure 12.8 from different clusters was also observed in [60] which
again follows Laplacian distribution for a specific cluster.

More recent outdoor to indoor PAS measurement results are available in [61].
Several statistical models were used to fit into the incoming power at the mobile
terminal in both the azimuth and elevation planes. It is seen that the statistical
model in [62] matches the measured data best. The indoor measurement results
[63] again show Laplacian PAS in the azimuth plane.

The measurements using a spherical array [64] for indoor and urban micro-
cells show that the PAS in the azimuth plane is not uniform, several important
clusters were observed. The elevation PAS was confined in the interval �−20◦, 20◦ .
The mean power distribution in the elevation plane follows double-sided expo-
nential distribution Figure 12.9 shows the measured power-azimuth and power-
elevation spectra from an urban microcell and an indoor route.

12.3.7. Propagation studies at 60 GHz

The 60 GHz frequency range has been proposed for future broadband wireless sys-
tems in indoor and short-range outdoor environments. Based on measurements
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Figure 12.8. Example of a PAS obtained in Stockholm for different clusters.

carried out in indoor environments, the propagation mechanisms were studied in
[28, 65]. For LOS applications [28, 65], free-space propagation and reflections are
the dominant propagation mechanisms. LOS component and first-order reflected
waves contribute a majority of received signal power. Strong multipath compo-
nents can result from strong reflectors, such as glass windows, metallic furniture
or blackboard. When they are present, the reflected wave can be comparable to
the LOS component. When there are no strong reflectors in the propagation en-
vironment, the reflected multipath components are at least 10 dB below the LOS
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Figure 12.9. Measured PAS at mobile station. (a) Azimuth plane in an urban route. (b) Elevation
plane in an indoor route.

component. For NLOS applications [28, 65], transmission loss through walls is
quite high, depending on wall structure and thickness. This can be seen from the
DoA measurements performed from a hallway into a room in [28], the measure-
ment layout is shown in Figure 12.10a.

From the measured power angular profiles shown in Figure 12.10b, it is seen
that in NLOS cases diffraction is still the dominant propagation mechanism. This
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Figure 12.10. (a) Locations for 60 GHz DoA measurements, (b)–(g) PAPs at locations (6)–(11).
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can also be demonstrated by theoretical calculations using Maliuzhinets’ diffrac-
tion coefficient [6] (see Section 12.2.4). For indoor environments, the typical ma-
terials are brick, concrete, glass, and wood, which are dry and medium dry ma-
terials, so their permittivity does not change much with frequency. For the dry
materials provided in [66], the permittivities have fairly flat frequency responses,
especially for the real part. Also the imaginary parts change only moderately for
dry building materials and for dry ground between 100 MHz and 200 GHz. The
material “conductivities” increase significantly with increasing frequencies for 0.1–
200 GHz, but this is of course only due to the erroneous use of conductivity to de-
scribe the actually dielectric losses of these materials. In Figures 12.2a and 12.2b,
right angle lossy wedges were considered with complex permittivities εr = 6.14 −
j0.30 and εr = 4.0− j0.10, respectively. They are the measured values for concrete
and brick at 60 GHz [67, 68]. It is seen that, compared with 5 GHz, the diffraction
loss is 10 dB higher at 60 GHz (when the same permittivity is used at both fre-
quencies). So diffraction is still dominant at 60 GHz for NLOS cases as predicted
by measurements [28]. As a rough estimation, the diffraction loss for visible light
would be very large.

Measurement results in [69] show that the use of directive antennas at the
terminal can reduce delay spread and mitigate the effect of multipath propagation.
The use of circular polarization instead of linear polarization can further reduce
delay spread by about 50%. Therefore, the combined use of directive antenna and
circular polarization is a good way to reduce delay spread and enhance the data
transmission rate.

12.3.8. Tapped delay line channel models for wideband
MIMO and SISO radio channels

Tapped delay line (TDL) channel models are of importance for simulations of mo-
bile radio channels, and also for the design of RAKE receivers and equalizers of
future radio communication systems. A typical TDL should include the tap am-
plitudes and excess delays, tap amplitude distributions, and tap Doppler spectra
[30, 70, 71]. For MIMO radio channels, a spatial tap correlation matrix is also
necessary to evaluate and simulate the correlation properties of the multiple chan-
nels between the two arrays [71]. A TDL model is based on the corresponding
power delay profile (PDP). For example, in [30, 70], excess delays of the taps can
be derived using the powers as weighting factors. However, for a dense-sparse tap
model in [67], the time resolution (Tc) of a measurement system was chosen as the
spacing for the dense taps which have 80% power contribution, while 2Tc spacing
was chosen for the sparse taps. Many tapped delay line models [30, 59, 71] show
that tap amplitudes follow Rayleigh and Ricean distributions in most cases. Tap
Doppler spectra are found to be “horned,” “narrow,” “flat” and so forth based on
the measurement environments. Tap correlation is higher for the first taps than
for the later taps.
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12.3.9. Capacity of MIMO channels

Normally it is assumed that the propagation channel is at least known to receiver.
If the channel is also known to transmitter, capacity can be higher by using water-
filling method to assign different powers to the subchannels. Of course unequal
powers is a problem in diversity systems [58]. For a channel unknown to trans-
mitter, the same power is sent over the M antennas, and the array transmit gain
is not realized, only diversity gain is [62]. The eigenvalues of the transfer matrix
H are the (relative) received power of the subchannels. For frequency-flat (nar-
rowband) fading channel, we can calculate the capacity by using the well-known
Shannon formula. For the case of frequency-selective (wideband) fading, we have
to evaluate the capacity by integrating over all the frequencies [72].

Generally, the SIMO capacity is higher than MISO capacity when the channel
is unknown to the transmitter. Otherwise, they are the same. The largest MIMO
capacity can be obtained for rich multipath Rayleigh channel (i.i.d.) when the
channel is known to both transmitter and receiver. Channel capacity when the
channel is unknown to both transmitter and receiver is an area of ongoing research
[58].

In analyzing the capacity of fading channels two commonly used statistics are
the ergodic capacity and outage capacity. The ergodic capacity is the ensemble av-
erage of the information rate over the distribution of the elements of the channel
matrix. Outage analysis quantifies the level of performance that is guaranteed with
a certain level of reliability, for example, we define the q% outage capacity Cout,q

as the information rate that is guaranteed for (100 − q)% of the channel realiza-
tions. Ricean fading, fading correlation, XPD degeneracy, and element polariza-
tion influence on MIMO capacity. Higher fading correlations of the channels can
cause lower capacity; capacity is lower with increasing Ricean factor. High XPD
enhances MIMO channel capacity at high SNR. Keyhole channel degeneracy sig-
nificantly degrades MIMO capacity [57, 58]. The keyhole channel was found in the
measurements in [62], however, real keyhole channel has not been found in prac-
tical measurements [35, 73]. It was anticipated in [73] that the keyhole effect due
to real-world waveguides like tunnels and corridors will usually be very weak and
difficult to be measured. In typical cellular frequencies, such waveguides are heav-
ily overmoded and thus will not lead to severe rank reductions. Effect of element
polarization on the capacity of a MIMO channel was discussed in [74] based on
indoor measurements. The conclusion is that both vertical and horizontal polar-
izations have similar behaviors. There is an advantage in using both polarizations
because their capacity stays approximately constant with distance while the capac-
ity of a single polarization system decreases.

12.4. Conclusions

As mentioned in the introduction, there has been significant increase in especially
experimental but in many cases also theoretical or computational information on
the complex multipath propagation experienced in mobile communications. This
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forms a very important or actually necessary basis for the development of radio
systems trying to utilize optimally this complex medium for information transfer.

Abbreviations

3D Three-dimensional

AW Absorbing wedges

BER Bit error rate

BS Base station

CDF Cumulative distribution function

DoA Direction of arrival

EM Electromagnetic

ESPRIT Estimation of signal parameters via rotational invariance techniques

FEM Finate element method

freq. Frequency

GSM Global system for mobile communication

i.i.d. Independent and identically distributed

IR Impulse response

IRs Impulse responses

LOS Line of sight

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

MS Mobile station

MTL Modal transmission line

NLOS Non-line-of-sight

PAS Power angular spectra

PC Personal computer

PC-UTD Perfectly conducting uniform geometrical theory of diffraction

PDF Probability density function

PDP Power delay profile

PSD Power spectral density

ref. Reference

RMS Root mean square

RT Ray tracing

Rx Receiver

SAGE Space alternating generalized expectation maximization

SIMO Single-input multiple-output

SISO Single-input single-output

SNR Signal-to-noise ratio

std Standard deviation

TDL Tapped delay line

tr Transverse

Tx Transmitter

UMTS Universal Mobile Telecommunication System

US Uncorrelated scattering

VNA Vector network analyzer

VP Vertical polarization

WCS Wideband channel sounder

WSS Wide-sense stationary

WSSUS Wide sense stationary uncorrelated scattering
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XPD Cross-polarization discrimination

zz Zigzag

zz/la Zigzag lateral

zz/tr Zigzag transverse
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Multidimensional
high-resolution channel
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13.1. Introduction

The design of future mobile radio networks (beyond 3G) requires research to-
wards new air interfaces which are characterized by the highest bandwidth effi-
ciency and unprecedented flexibility. It is commonly understood that radio sys-
tems equipped with multiple antennas at both the mobile station (MS) and the
base station (BS) have a huge potential to increase the available capacity for high
bit rate wireless links, which results from a simultaneous transmission of multiple
data streams from different antenna elements [1]. This multiantenna technique
is called multiple-input multiple-output (MIMO) and can optimally exploit the
spatial diversity of the multiple propagation paths existing in a rich scattering en-
vironment. Conceptually, the multipath propagation of the radio channel gives
rise to different spatio-temporal signatures for the different transmit data streams,
which permits a receiver equipped with multiple antennas to separate those data
streams from the received signal mixture, that are otherwise not orthogonal in any
of the conventional communication signal dimensions, that is, by time, frequency,
or code. Keeping this in mind, it is not really surprising that the performance of a
MIMO system will strongly depend on the radio channel conditions. A key ques-
tion for a system design and implementation is therefore do we find practically
feasible schemes that are sufficiently robust for this task? Or somewhat related,
which specific features are required for a practical MIMO system to work reliably
under a wealth of various propagation conditions?

Hence, a thorough investigation of the multidimensional wave propagation
mechanisms is a prerequisite for understanding the spatial and temporal struc-
ture of the channel transfer matrix, and, thus, for optimum design and realistic
performance evaluation of multiple-antenna systems. There are many attempts
to simulate the input-output behavior of the channel. The physically motivated
approach is based on electromagnetic wave propagation analysis and uses a ray-
optical model. In case of ray tracing or ray launching, a detailed database describ-
ing the propagation environment is required. Other models, although ray-based
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as well, use statistical assumptions on the geometrical distribution of scatterers
(e.g., COST 259). There are also completely statistical models trying to reproduce
the input/output behavior in a statistical sense by formal assumptions of corre-
lation coefficients and distributions resulting at the transmit antenna and receive
antenna ports disregarding the geometrical distribution of the scatterers. A lack
of nongeometric models is that they are inherently specific for a certain antenna
characteristic. For antenna-independent modeling (which allows antenna deem-
bedding and embedding) it seems that geometry-based models are a must [2, 3].

Since the complexity of wave reflection, scattering, diffraction, and so forth
in real propagation environments can never be completely reproduced by elec-
tromagnetic simulation and because of the strong simplifications of the statisti-
cal approaches, all models have to be verified and parameterized by propagation
measurements. Moreover, channel models can be deduced directly from measure-
ments in real propagation environments by estimating the geometric path param-
eters from the recorded data [4]. Given a ray-optical path model, the parameters
of a suitably defined propagation path model are direction of arrival (DoA) at the
receiver array, direction of departure (DoD) at the transmitter array, time delay of
arrival (TDoA), Doppler shift, and the complex, polarimetric path weight matrix.

A multidimensional channel sounder is a measuring device that allows the
observation of the time-varying multipath channel impulse response (CIR) in its
relevant multiple dimensions. These dimensions may be temporal and spatial in
nature and must contain enough information on all model parameters described
above. To this end, we need a broadband excitation signal to “sound” the chan-
nel in the frequency range of interest and antenna arrays, which excite or sense
the wave field in a properly defined spatial aperture. A sounder system typically
consists of a mobile transmitter (Tx) which plays the role of the mobile station
(MS) and a fixed receiver (Rx) in place of the base station (BS). Since the channel
is reciprocal, it makes no difference if the results are interpreted as uplink or as
downlink, respectively. The receiver may also be moving if we consider a peer-to-
peer communication between two mobile platforms. Both excitation and record-
ing must be repetitive with a period short enough in order to make the temporal
variation statistics according to Doppler shift and small-scale fading visible. More-
over, the data recording must be continuous along a precisely defined trajectory
to reproduce large-scale channel parameter variation. This all is called real-time
MIMO channel sounding and it makes the measured data usable for simulating
the MIMO transceiver performance including link- and system-level aspects.

Figure 13.1 highlights the double-directional structure of the multipath chan-
nel. Specifically, double-directional measurements that include joint DoA/DoD
estimation allow the separation of the directional dependent influence of the mea-
surement antennas from the channel measurements which is a prerequisite of
antenna-independent channel characterization.

The antenna array arrangement is of crucial importance to represent a certain
system scenario. This applies to the typical BS or access point (AP) location in a
cellular- or WLAN-specific deployment scenario. The MS antenna array location
should resemble the characteristic user roaming behavior. This may include almost
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MS BS

Figure 13.1. Double-directional DoD/DoA structure of a multipath channel.

stationary user terminals but also high-mobility user platforms such as cars, air-
crafts, or trains. For ad hoc and multihop networking, the situation changes com-
pletely since there is no dedicated BS. Instead, both sides of the link have to rep-
resent the terminal morphology and mobility. This influences the antenna array
architecture, which consists of the array size and shape and of the number, orien-
tation as well as of the characteristics of the individual antenna elements. Both BS
and AP, for example, may have a limited angular viewing sector. The MS, acting
as the user, should have a full angular coverage in order to represent arbitrary user
antenna orientation. Moreover, advanced network-specific scenarios such as mul-
tiple users including known and unknown interference, cooperative downlinks
from multiple BS or AP, multihop networking and relaying, and so forth have to
be emulated by the measurement setup. Only if the measurement scenario is prop-
erly defined, the recorded CIR data can be used for realistic link- and system-level
simulation. The advantages of this measurement-based offline approach in com-
parison with the prototype hardware demonstration are higher flexibility, lower
costs, and an improved perception of the transceiver’s operation. The latter is pri-
marily due to more effective analysis techniques that allow the observed transceiver
performance to be traced back to the actual time-variant space-time structure and
physical propagation phenomena.

Even more specific design roles for antenna arrays apply if we have high-
resolution estimation of the ray-optical multipath model in mind. The channel
response can, in general, be observed only within a limited aperture volume that
is somewhat related to the array size, frequency bandwidth, and temporal obser-
vation window. This strictly limits the achievable parameter resolution and ac-
curacy in terms of DoA/DoD, TDoA, and Doppler, respectively, when classical
nonparametric estimation algorithms are applied. Therefore, high-resolution pa-
rameter estimation algorithms have to be envisaged to enhance the resolution by
fitting an appropriate data model to the measured data. In this case, the resolu-
tion is only limited by the signal to noise ratio (SNR), antenna and device im-
perfections, calibration quality, and the limited validity of the data model. The
resolution performance mainly depends on the antenna array architecture and its
manufacturing quality, which includes low electromagnetic coupling, high elec-
trical and mechanical stability and precise calibration. In the context of high-
resolution channel parameter estimation, also the definition of the data model
is crucial for parameter estimation. It has to be accurate enough to represent the
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reality of wave propagation and the influence of the measurement device. On the
other hand, it must not be finicky detailed since the amount of information gath-
ered by the sounder is always limited and may not be sufficient to estimate all
model parameters. A proper choice of the model structure and dimension can
dramatically reduce the algorithmic complexity and enhance the accuracy and res-
olution as well as the reliability of the results. There are always compromises and
simplifications, such as the narrowband assumption which presumes frequency-
independent propagation mechanisms and antenna arrays, which are smaller than
the spatial resolution of the sounding signal.

The rest of this chapter is organized as follows. Section 13.2 introduces the ad-
vanced data model for high-resolution parameter estimation which includes spec-
ular and diffuse scattered components. Section 13.3 describes the main design fea-
tures of a typical real-time MIMO channel sounder architecture. Sections 13.4 and
13.5 describe the aspects of high-resolution antenna array design and calibration,
and also the Cramér-Rao lower bound (CRLB) of the angular parameter estima-
tion variance is derived and calculated directly from the antenna array calibration
data. Section 13.6 summarizes the maximum likelihood (ML) framework as it is
used for high-resolution channel parameter estimation. In Section 13.7, some as-
pects of sounding data usage for realistic link-level performance evaluation are
outlined. Conclusions are given in Section 13.8.

13.2. The data model

The most widely accepted data model for high-resolution channel parameter es-
timation is based on a ray-optical understanding of the propagation phenomena.
Propagation paths are modeled by planar, narrowband wavefronts. This is moti-
vated by the idea of specular reflections at smooth surfaces. To model the influ-
ence of receiver noise, a white noise component is usually added. However, it is
well known that wave propagation phenomena may also comprise diffusely scat-
tered components [5]. Its contribution varies depending on the complexity of the
propagation environment. It can be almost negligible in macrocell LOS scenarios
and can even dominate in complicated propagation environments such as fac-
tory halls. Whereas the electromagnetic background of diffuse scattering is already
well understood and there are also various attempts to include diffuse scattered
components into geometric channel models [6], its influence is widely neglected
in high-resolution parameter estimation from sounding measurements. However,
this may have a very detrimental effect on the performance of the parameter esti-
mation procedure.

Therefore, we introduce a data model comprising two components that can
be handled separately throughout the estimation procedure [7, 8]. The first part
is considered as deterministic and results from a limited number of specular-like
reflections. We also call it the structural part of the model since is has clear geo-
metric interpretation. The second part is observed as a dense diffuse part that
is stochastic in nature and cannot be resolved by the measurement device. It re-
sults from distributed diffuse scattering as it occurs in a complicated, multipath
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rich environment. For example, a sounder having a measurement bandwidth of
120 MHz [9, 10] gives us excellent possibilities to resolve a number of specular
components, even though the spatial resolution is only about 2.5 m, which cor-
responds to 43 wavelengths at 5.2 GHz. Hence, in a “microscopic” sense we can
expect quite a big number of superimposed diffused components in an observed
delay bin. We call this “dense multipath model.” The resulting CIR part is therefore
adequately modeled by a complex circular normal distribution. It might be argued
that diffuse components can be neglected in the presence of specular paths. This
is however not consistent with our experience [11]. An explanation could be that
specular paths can contribute to the received power only for very distinct angular
constellations. On the other hand, diffused power has the chance to reach the re-
ceiver within a large (almost continuous) variety of propagation angles supposing
that there is a big number of widely distributed scatterers. Note that modeling of
diffuse scattering for the purposes of parameter estimation does not need to model
the individual scatterers. Rather we need a model that describes the superimposed
contributions to the observed data at the receiver.

In the discrete angular delay-Doppler domain the specular part is described
by a superposition of K R-dimensional Dirac deltas weighted by a 2 × 2 com-
plex polarimetric path weight matrix with its components γxy,k, where the indices
x, y indicate polarization in azimuthal and elevation direction at Tx and Rx, re-
spectively. The R structural parameters are DoD ϕT , ϑT (azimuth and elevation),
TDoA τ, Doppler shift α, and DoA ϕR, ϑR:
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)
=
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(13.1)

with its Fourier transformed counterpart

He
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) =
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{[
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}
.

(13.2)

The last equation shows that the estimation of the structural parameters is essen-
tially a multidimensional harmonic retrieval problem. Whereas the Doppler shift
α and TDoA τ are clearly related to the observed aperture variables t and f in time
and frequency, the Fourier transform of the DoA/DoD parameters is not directly
related to the physical antenna array aperture. For this, we would need a further
geometrical transformation which will depend on the specific array architecture.
We omit this transformation step here since it can be completely avoided if we
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Figure 13.2. Multidimensional specular path data model.

rely on a proper antenna calibration procedure. We call the Fourier transform of
the angular antenna domain the effective aperture distribution function (EADF).
Hence, its dimensions sT/R, lT/R are not uniquely defined in a physical sense but are
somewhat related to the geometrical dimensions of the respective antenna array.

A geometrical definition of the specular path data model (13.1) is explained in
Figure 13.2. For the sake of simplicity, the DoA/DoD definitions are independent
and related to the local coordinate systems of the respective Tx/Rx arrays. Note
that this model has to be considered as instantaneous which means it is specific
for a single time instant and may be slowly changing with time when the objects
of the scenario are moving. This variation of the structural parameters and their
geometric coupling is currently not explicitly included in this model. The Doppler
shift parameter may need some specific explanation since a Doppler shift implies
that the path length changes. Phase changes on the individual propagation paths
can be resolved for varying antenna distances of at least a small number of wave-
lengths. However, the respective change in delay can normally not be resolved in
TDoA or DoA/DoD. Consequently, also the Doppler shift parameter can be con-
sidered as local and is also subjected to change slowly with time.

Unfortunately, the data model of (13.1) and (13.2) is not directly applicable
for parameter estimation. For this we need a more concise vector/matrix notation.
The condensed parameter vector Θk contains 14 real-valued unknowns describing
the six structural parameters and four complex path weight parameters of any
propagation path. The observable channel response s(Θk) in the multidimensional
aperture domain is defined by the limited observation time, finite bandwidth, and
finite (effective) antenna apertures:

s
(
Θk

) = γϑϑ,k · Gϑϑa(µk) + γϑϕ,k · Gϑϕa
(
µk

)
+ γϕϑ,k · Gϕϑa

(
µk

)
+ γϕϕ,k · Gϕϕa

(
µk

)
.

(13.3)

We arrange the sampled channel response in vectors as a(µk) = a(µ(R)
k ) ⊗

a(µ(R−1)
k ) ⊗ · · · ⊗ a(µ(1)

k ), whereby the a(µ(i)
k ) are complex exponentials resulting

from Fourier transform of (13.1) and the µ(i)
k are the normalized structural path

parameters which are related to their physical counterparts by a unique projection
µ(1) = f (α), µ(2) = f (τ), µ(3) = f (ϕT), µ(4) = f (ϑT), µ(5) = f (ϕR), µ(6) = f (ϑR)
and a proper normalization to the respective aperture size, for example, frequency
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bandwidth in case of µ(2). The linear projector matrices Gxy describe the mea-
surement systems response, which is composed of the Kronecker products of the
frequency, Doppler, and spatial responses, respectively. Whereas the frequency re-
sponse is represented by a diagonal matrix and the Doppler response is simply an
identity matrix, the spatial response is described by the effective aperture distri-
bution function (EADF) of the antenna arrays. The EADF has been found to be
a very powerful method to describe the antenna array behavior for parameter es-
timation and calibration purposes. The calculation of the EADF from calibration
measurements is explained in more detail in Section 13.5.

Resulting from many observations of measured channel responses, an expo-
nential decaying data model is defined to represent the dense multipath compo-
nents in the delay (correlation) domain ψ(τ) with its corresponding frequency
response Ψ( f ) [8]. The parameter vector Θdds is composed of the parameters βd,
τd, αd, which are the normalized coherence bandwidth, LOS delay, and maximum
power, respectively:

ψx(τ) = E
{|x(τ)|2} =


0, τ < τd,

α1 · 1
2

, τ = τd,

α1 · e−βd(τ−τd), τ > τd,
�

�
F

Ψx( f ) = α1

βd + j2π f
· e− j2π f τd .

(13.4)

At the first glance, this model implies infinite bandwidth. However, the data are
observed only within the finite sounder bandwidth. This is actually a very impor-
tant issue since it warrants the dense multipath model as discussed above. This
modeling approach requires that the contribution to any delay bin consist of a
superposition of a reasonable number of diffuse components. That can be justi-
fied only by a limited bandwidth. The finite bandwidth influence and additional
stationary noise component α0 are also shown in Figure 13.3.

13.3. MIMO channel sounding techniques

From a historical perspective, the first sounding experiments have been carried
out by using single-tone CW signals. This was sufficient as long as only the nar-
rowband channel behavior was of interest. Single-tone CW sounding, however,
gives us no information to resolve path time delays. For that, we need a frequency-
domain bandwidth, which is roughly the inverse of the desired delay resolution.
Sequential sounding at a number of different frequencies is the easiest approach
to achieve a very high delay resolution as standard vector network analyzer tech-
niques can be applied. The drawback is the resulting huge measurement time,
which precludes mobile measurement. The only way out is to keep the environ-
ment fixed during one series of frequency sampling measurements. This actu-
ally has its equivalent in sequential sampling of the antenna array geometry and
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Figure 13.3. Dense multipath distribution model in the time delay domain.

may be considered as an equivalent to the synthetic antenna aperture approach
in the frequency domain. Sustained measurement along some longer trajectory is
clearly prohibitive. Network analyzer application also requires a cable connection
between Tx and Rx sites.

Short duration repetitive pulses together with envelope detectors have been
used in early broadband real-time sounding experiments. The main drawback of
this method is the high peak-to-mean power ratio at the transmitter needed for
sufficiently high SNR. Furthermore, only power delay profiles can be measured.
To achieve the maximum signal to noise ratio at the receiver, excitation signals are
required that have a low crest factor. The crest factor is given by the ratio of the
peak value of the signal to its root mean square (rms) amplitude. Minimum crest
factor signals are distinguished by a flat magnitude envelope in the time domain.
At the same time, they must have a constant spectrum, which leads to a short auto-
correlation function. This pulse compression approach is well known from spread
spectrum technology and makes these signals very useful for real-time identifica-
tion of time-delay systems since all frequencies are instantaneously excited and a
considerable SNR processing gain is achieved in the time domain by correlation
processing.

Pulse compression requires noise-like structured signals. Periodic pseudoran-
dom excitation signals are of special importance since they are deterministic and
can be processed in integer periods. The time period must be at least as long as
the maximum path excess time delay τmax to avoid TDoA ambiguities. With a
maximum delay-Doppler spreading factor S = τmaxBmax of a typical mobile radio
channel well below 0.01, the period of the received time-variant channel response
signal is still almost the same as of the excitation signal. This presumes that the
minimum signal period time is chosen. Then the channel output can be trans-
formed to the frequency domain by DFT/FFT processing without any significant
leakage variance.

Probably, the most well-known examples of those excitation signals are peri-
odic pseudo-random binary signals (PRBS). PRBS can be very easily generated by
a shift register since only digital circuits are required. This allows to generate very
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broadband excitation signals, even suitable for ultra-wideband sounding [12]. An-
other advantage of PRBS is that they can be repeated in the receiver with a slightly
slower clock rate. This is applied in the classical swept time-delay cross-correlation
sounder implementation [13]. This “sliding correlation” sounder requires only
slow AD converters. The disadvantage of this principle, working sequentially in
delay, is again the long measurement time which prohibits real-time operations.

The power spectrum of PRBS has the typical sinc “2-shape.” For system iden-
tification purposes it can only be used up to a frequency of about 0.4 fc, whereby
fc is the clock rate [14]. Since the spectrum decays only slowly, a very high sam-
pling rate or a suitable antialiasing filter at the receiver is required to avoid alias-
ing. Moreover, the system under test is excited in a frequency band which is not
used. This effectively throws away transmit power. Moreover, most experimental
transmit spectrum permissions given by regulation authorities will require strictly
band-limited spectra. Then the signal must be filtered at the transmitter to a finite
bandwidth. Any filtering and phase slope modification, however, will increase the
crest factor of the PRBS, which is supposed to be unity in the ideal case. This again
increases the susceptibility to nonlinear distortions.

A much more flexible excitation signal concept is known as the “periodic mul-
tisine signal.” This approach is well known from frequency-domain system iden-
tification in measurement engineering [14]. In communication engineering terms
this signal may be called a multicarrier spread spectrum signal (MCSSS). The MC-
SSS is defined by its complex Fourier coefficients X(µ f0):

x
(
nt0

) =
N−1∑
µ=0

X
(
µ f0

)
e j2πµ/N , (13.5)

with tp = Nt0 = 1/ f0. Once designed in the frequency domain, the corresponding
time-domain waveform x(nt0) is stored in an arbitrary waveform generator mem-
ory and periodically repeated at the Tx. So it possesses all the advantages which
are discussed above for periodic signals. The difference in comparison to PRBS is
that phases and magnitudes of X(µ f0) can be arbitrarily chosen in order to opti-
mize the system performance. As an example, in Figure 13.4 an MCSSS excitation
signal with uniform power spectrum is shown. The phases of the Fourier coeffi-
cients are chosen to minimize the crest factor of the signal waveform. Although
a quadratic phase slope typically results in a crest factor below 2, numerical opti-
mization can even further reduce the crest factor to about 1.4. Another advantage
of this signal design flexibility is that also analog hardware phase distortion (e.g.,
from the filters) and even nonlinear distortion (from the power amplifier) can
eventually be mitigated. This means that a predefined ideal transmit signal is it-
eratively predistorted throughout a calibration procedure whereby the real output
signal is measured and optimized.

Regarding the overall spectral shape, the main advantage of MCSSS is its
“brickwall-type” shape, which allows concentrating the signal energy exactly to
the band of interest. This can even be multiple bands when spectral magnitudes
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Figure 13.4. Broadband multicarrier spread spectrum signal (MCSSS) in the time and frequency do-
main: (a) Tx waveform, (b) Tx spectrum, (c) estimated CIR, and (d) received signal spectrum.

are set to zero. One example application is FDD sounding which means that the
sounder simultaneously excites both the uplink and the downlink band. To meet
the UTRA FDD specifications, for example, we need a total bandwidth of more
than 200 MHz. Note that the desired full flexibility of the excitation signal requires
quadrature up conversion at the transmitter.

At the receiver side the signal is filtered, down converted, and demodulated
by a quadrature demodulator. An efficient architecture is based on low-IF ana-
log down conversion, IF sampling, and final digital down conversion. In case of
240 MHz bandwidth, 160 MHz IF frequency and 640 MHz ADC sampling rate are
adequate. For real-time processing Nyquist sampling at the receiver in most cases is
a must. One integer period of the received time-variant channel response y(t,nt0)
signal is sampled and transformed to the frequency domain by FFT processing.
The final quadrature down conversion is accomplished by cyclic FFT shifting of
the result which finally gives the baseband representation Y(t,µ f0) of the received
signal. In case of multipath transmission, frequency-selective fading as shown, for
example, in Figure 13.4d shapes the power spectrum of the received signal. An
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estimate of the time-variant channel frequency response is calculated from input-
output cross-correlation as

H
(
t,µ f0

) = Y
(
t,µ f0

)
X∗(µ f0)∣∣X(

µ f0
)∣∣2 = Y

(
t,µ f0

)
X
(
µ f0

) . (13.6)

The uniform shape of the excitation signal spectrum and its low crest factor
at the transmitter maximizes the SNR. With integer period data acquisition there
is no additional estimation variance resulting from leakage noise [14]. Therefore,
the required data acquisition time is minimal and the estimation variance is as
small as possible. With Nyquist sampling at the receiver, the highest possible mea-
surement repetition rate for a channel with a maximum excess time delay τmax

can be achieved, which is 1/τmax. The lower limit is given by the Doppler band-
width Bmax. It results from the Nyquist sampling criterion of the fast fading chan-
nel response. However, since the delay-Doppler spreading factor S = τmax · Bmax

of a typical mobile radio channel is well below 0.01, there are large gaps allowed
between successive measured channel response functions without sacrificing the
Nyquist criterion. Normally, there is no need to measure faster since intermediate
CIRs (which may be required for link-level simulation) can always be calculated by
band-limited interpolation. Nevertheless, faster measurement speed may be desir-
able if further noise reduction by synchronous averaging of a temporal sequence
y(t,nt0) is aimed. Only if the averaging window approaches or exceeds 1/Bmax this
would act as a Doppler lowpass filter and potentially would suppress fast fading.

Figure 13.4 shows also the impulse response which would result from inverse
Fourier transform of H(t,µ f0). Calculating the impulse response in this way re-
quires a tapering window function in the frequency domain, which effectively
throws away measured data and, hence, reduces SNR and limits the resolution.
A better choice is to use H(t,µ f0) as an observation vector in the frequency do-
main for high-resolution TDoA parameter estimation described in Section 13.6.
H(t,µ f0) represents the sum-of-exponentials model describing the delay spec-
trum. A second frequency-domain dimension can be constructed from time-
limited sections of the observed sequence H(t,µ f0) with the sum of exponentials
in t describing the Doppler spectrum. The two-dimensional Fourier transform
approximates the joint delay-Doppler frequency response. A single-input single-
output (SISO) sounder just relies on this principle.

A MIMO channel sounder measures the channel response matrix between
all MTx antennas at the transmit side and all MRx antennas at the receiver side.
This could be carried out by applying a parallel multiple-channel transmitter and
receiver. However, truely parallel systems are not only extremely expensive, they
are also inflexible (when considering changing the number of antenna channels)
and susceptible to phase drift errors. Also a parallel operation of the transmitter
channels would cause specific problems since the MTx transmitted signals have
to be separated at the receiver. An alternative sounder architecture is based on
switched antenna access. A switched antenna sounder contains only one physical
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Figure 13.5. MIMO sounder switching time frame.

transmitter and receiver channel. Only the antennas and the switching channels
are parallel. This reduces the sensitivity to channel imbalance.

Figure 13.5 shows the switching time frame of a sequential MIMO sounder
using antenna arrays at both sides of the link [13]. Any rectangular block in the
figure represents one period of the transmit/receive signal. Synchronous switching
at the Rx and Tx is required in order to clearly assign the received signal peri-
ods to any input-output combination of the channel matrix. Timing and switch-
ing frame synchronization is established during an initial synchronization process
prior to measurement data recording and must be maintained over the complete
measurement time even in the case of a remote operation of Tx and Rx. This is
accomplished by rubidium reference oscillators at both Rx and Tx. The total snap-
shot time length is now given by ts = 2τmaxMTxMRx, where MTx and MRx are the
number of antennas at the Tx and the Rx sites, respectively. The factor of two
comes from the one blank period, which is inserted at the receiver after every pe-
riod acting as a guard interval to avoid switching transients. Similar to OFDM, this
CIR estimation principle relies on a periodic signal model for excitation and re-
ception. Therefore, the guard interval has to cope with the channel and the device
response. For some signal processing operations based upon the recorded data, it
may be a disadvantage that the antenna channels are not sampled at strictly the
same time instant. If the maximum Doppler bandwidth for real-time sounding is
less than 1/ts, the antenna channels can be individually interpolated resulting in
MIMO channel responses with aligned sampling time for all channels.

Further considerations concerning the hardware operation of the sounder sys-
tem refer to the Tx/Rx synchronization in the remote operation mode and to cali-
bration, transmit power, and link budget issues. Only a short overview of the most
important topics will be given here.

The remote operation means that there is no synchronization link applied
between Tx and Rx. Initial synchronization is accomplished by a back-to-back cal-
ibration procedure. Hereby the overall device frequency response is measured and
stored for equalization purposes. Also the frequency references are synchronized.
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The synchronization has to be maintained throughout the whole measurement cy-
cle. Separate rubidium reference sources at both Tx and Rx are required and the lo-
cal oscillator (LO) signals have to be generated at both sides. This makes a sounder
fundamentally different from a standard network analyzer and asks for specific
considerations. For DoA/DoD estimation a full coherent operation is necessary
during the snapshot period ts. If Doppler estimation is aimed at or if a sequence
of snapshots is to be averaged for SNR enhancement, the coherent operation pe-
riod must extend to multiples of ts. This sets the limits for phase noise parts hav-
ing a coherence time below this time interval. However, the time period between
two calibration measurements may easily take some hours if field measurements
are considered. In this case some drift of the references cannot be avoided even
if rubidium sources are used. This can normally be accepted as long as the ref-
erence offset is markedly smaller than the specified Doppler bandwidth. A small
reference-frequency offset would be measured as a respective Doppler shift. Note
that in case of synthetic antenna aperture measurements and for antenna array
calibration a much longer coherent operation period will be necessary, which may
require a direct Tx/Rx synchronization by cable.

Calibration has to include the absolute device power gain as well. This is also
achieved throughout the back-to-back calibration when operating the transmitter
with its nominal output power to a reference attenuator. Nevertheless, antenna-
independent path loss estimation is however only possible if the antennas are
calibrated with respect to absolute gain and if the DoA/DoDs of the polarimetric
wave components at the antennas are known. This means that both the DoA and
DoD have to be estimated. Otherwise, the antenna influence cannot be separated
from the measurements and the path attenuation can only be given including the
influence of the specific antennas used throughout the measurement.

Further issues are related to automatic gain control (AGC). AGC at the re-
ceiver has to ensure maximum signal level throughout the receiver chain from the
antenna to the ADC input. At the same time it has to avoid overloading. The re-
ceiver should have a switched AGC in well-defined calibrated steps which should
cover at least a range of 50–60 dB. The AGC setting has to be implemented on ba-
sis of instantaneous peak value estimation. To avoid uncontrolled transients, the
AGC timing control must be synchronized to the MIMO switching time frame de-
scribed in Figure 13.5. For very accurate angle-of-arrival estimation, the same AGC
setting should be used for all antennas of the arrays. The best results are achieved
if the complex frequency responses of all AGC steps are individually calibrated
(including the complex frequency response which may vary because of changing
electrical length).

Regarding the arrangement of antenna switches and amplifiers there is al-
ways a tradeoff in sensitivity and phase stability. Individual low-noise amplifiers
(LNA) at Rx antennas and/or individual power amplifiers (PA) at the Tx are mostly
inadequate because of the increase in phase drift between antenna channels. How-
ever, if there is only a single PA at the Tx, the corresponding antenna switch has to
handle the full output power which may exceed 2–10 W for broadband bad urban
measurements. At the Rx, the switch attenuation adds to the receiver noise figure.
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Future steps in real-time MIMO sounding will include usage of multiple
sounding transmitters and/or receivers to emulate system-specific scenarios and
interference situations. Two transmitters and one receiver, for example, can be
operated in a coordinated way whereby the transmitters are switched on/off in a
staggered temporal sequence. This allows quasi-simultaneous measurement of two
spatially distributed links. These links can represent a multiuser scenario as seen
from a base station. Also two base stations can be emulated to represent soft han-
dover scenarios and a cooperative downlink operation from spatially distributed
access points. Moreover, a dual-hop link as a part of a multihop or ad hoc network
or just a relay extension can be investigated. Future sounder RF interfaces will be
able to handle dual-band up and down converters to emulate tandem air interfaces
which will operate in completely different frequency bands. For an ultra-wideband
(UWB) operation, sounders will be developed, having a real-time bandwidth of
some GHz, for example, from 3 to 11 GHz. The hardware of these sounders will
be extremely demanding and requires integrated SiGe technology [12]. This re-
lates also to very broadband sounding at mm-wave frequencies, for example, at
60 GHz. To achieve enough spatial resolution for indoor scenarios, the bandwidth
has to be enhanced up to some GHz. The very high frequency will put extreme de-
mands on phase noise if DoA/DoD has to be estimated. A UWB operation, how-
ever, will shift the angle resolution paradigm from phase difference estimation to
time-delay estimation which allows wider antenna distances and, thus, compen-
sates loss in accuracy because of phasa noise..

13.4. Antenna array architecture

The spatial dimension of the channel response is accessed by antenna arrays. This
mainly relates to “true” arrays but can also include synthetic aperture arrays. Those
arrays consist of a sequentially sampled spatial aperture where only one antenna
(or a subset) of the respective array is physically deployed. The angular resolution
capability of any array depends on the effective aperture size as seen from the re-
spective wave direction. So the spatial arrangement of the antenna elements has a
major influence.

A sophisticated antenna architecture design is required to achieve high
DoD/DoA resolution. This has to go along with mechanically and electrically sta-
ble construction and precise calibration. Since there is always a tradeoff between
various specifications including resolution, measurement time, availability, and
costs, there is a wide variety of useful antenna array architectures. In the sequel,
we summarize some design considerations.

(i) Planar antenna arrays such as uniform linear arrays (ULA) or uniform
rectangular arrays (URA) always have a limited viewing angle and inherent for-
ward/backward ambiguity. They are useful to represent a base station’s (BS) view
to the channel. Moreover, there is a nonlinear transformation from the geometrical

DoA/DoD to the respective normalized structural parameters µ(i)
k . Consequently,

the effective array aperture depends on the DoA/DoD and the resolution capability
is not uniform. Circular antenna arrays, on the other hand, have a full field of view.
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They can be used to represent the mobile station (MS). Their angular resolution
capability is uniform.

(ii) Double-directional estimation requires arrays at both sides of the link and
MIMO operation of the sounder. For cellular system consideration, a combination
of planar and circular arrays is adequate, whereas for ad hoc peer-to-peer networks
identical circular arrays are most preferable.

(iii) Mainly for microcell and picocell scenarios, estimation of the elevation is
aspired in addition to the azimuth. This requires application of uniform rectan-
gular, cylindrical, or spherical arrays. However, three-dimensional wave analysis
(which includes azimuth and elevation) is not only necessary to deduce three-
dimensional propagation models. It is also required for the removal of the influ-
ence of the complex beam pattern of the measurement antennas from the data by a
suitable calibration procedure if there are incoming waves with nonzero elevation.
Moreover, this must also include polarization resolution.

(iv) Spherical antenna arrays may be applied for full azimuth and elevation
coverage. However, there exists no geometric solution to arrange more than 20
patch antenna elements on a spherical surface with identical interelement distan-
ces. Therefore, nonuniform interelement distances and various relative polariza-
tion orientations of adjacent elements will complicate the design of spherical ar-
rays. Moreover, optimization of the interelement distance for circular and spheri-
cal arrays (or of the array diameter in case of a fixed number of antenna elements,
resp.) is required to minimize the sidelobes of the angular correlation function to
reduce the probability of outliers in the iterative parameters search. This typically
leads to interelement distances, something smaller than half of the wavelength.

(v) Full polarimetric analysis of the radio channel requires not only polari-
metric reception but also polarimetric excitation of the channel. This is even true
for omnidirectional excitation where we need a two-port antenna which launches
both orthogonal polarized waves with omnidirectional characteristics and, thus,
doubles the required sounder output ports.

(vi) High and reliable resolution in terms of separation capability of closely
spaced paths and low probability of outliers requires an antenna architecture which
offers a minimum of antenna array aperture size in the respective spatial dimen-
sion, including a minimum number of antenna elements, low antenna element
coupling, and precise calibration. This has also to include the antenna switches
and feeder cables.

(vii) The characteristics of the antenna elements depend on the basic element
design (dipoles, patches, slots, etc.). It has a strong influence on high-resolution
performance, estimation ambiguities, probability of outliers and polarization res-
olution capability, gain, bandwidth, and so forth. For example, the directivity of
the antenna elements is a means to mitigate the inherent forward/backward ambi-
guity of ULA and URA.

(viii) For the later relation of recorded data to the respective propagation
scenario, video cameras should be included into the antenna module. The opti-
cal viewing field of the cameras should correspond to the electromagnetic view-
ing field of the antennas. Also GPS position recording, electronic compass, and
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Figure 13.6. Uniform rectangular patch array (URA 8 × 8) [9, 15].

(a) (b)

Figure 13.7. (a) Circular dipole array (UCA32) and (b) stacked polarimetric uniform circular patch
array (SPUCPA 4 × 24) [9, 15].

inclination sensors help to precisely document the measurement setup. Further-
more, a laser pointer should be mounted at the array to support angular adjust-
ment.

The following figures show examples of high-resolution antennas. The URA
in Figure 13.6 comprises 8 × 8 vertical polarized patch elements. Three peripheral
dummy rows and columns are included to mitigate the fringing field effect, which
distorts the beam patterns. The module also includes a 64 × 1 switch, LNA, and
filter. It can be used for joint azimuth and elevation estimation within bore side
viewing sector of 120◦ and 60◦, respectively. The uniform circular array (UCA) in
Figure 13.7a consists of 32 sleeve antennas, which do not require a ground plane.
Here, a 2 W power switch is included to support the application as a transmit an-
tenna. The usage is essentially restricted to azimuth estimation only since there is
no vertical aperture available for low-elevation paths (which are most important
for mobile radio application). The stacked polarimetric uniform circular path ar-
ray (SPUCPA) in Figure 13.7b is a very sophisticated array. It comprises 4 stacked
rings of 24 polarimetric patches. So it has 192 output ports in total. The switch
is arranged inside of the cylindrical body of the array. This architecture gives a
maximum resolution in azimuth for low-elevation paths and good resolution in
elevation within ±30◦.
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13.5. Resolution limits and antenna array calibration

In (13.3), we have introduced the measurement system response. In this section
we will concentrate on the part which results from the antenna arrays. The an-
tenna response is described by the complex polarimetric beam patterns b(Ωk)
of all elements, which result from vertical and horizontal polarized excitation. In
an early design step, these beam patterns can be calculated from electromagnetic
field simulation. Once the array is realized, the response has to be measured in
a well defined propagation environment which should be an anechoic chamber.
Recording the complete spherical beam pattern requires precise rotation of the ar-
ray around a suitable defined pivot point located in the phase reference center of
the array and excellent phase stability of the setup throughout the measurement
cycle, which can take some hours. The measured beam patterns are discrete in
azimuth ϕ = (−π · · ·∆ϕ · · ·π − ∆ϕ) and elevation ϑ = (0 · · ·∆ϑ · · ·π). Due
to the periodicity of the beam patterns in 2π the DFT transforms b(ϕ, ϑ) to the
EADF domain g( f1, f2) without any leakage error. This is at least true for the az-
imuth. For the elevation special considerations are necessary since the elevation
can hardly be measured over the full angular period of 2π due to practical me-
chanical reasons. Moreover, the spherical Fourier transform has some numerical
problems near the poles of the sphere. The beam pattern b(ϕ, ϑ,m) of the antenna

m is stored in the matrix B[N1×N2]
pm (the superscript denotes the dimension of the

matrix). The EADF matrix is calculated by a two-dimensional Fourier transform
by applying the Fourier matrices F1/2:

G[Na1×Na2]
m = 1√

N1 ·N2
FNa1×N1

1 · Bpm · FN2×Na2
2 . (13.7)

The advantage of the EADF concept is threefold. (i) It allows a considerable
data compression since it is distinguished by a limited support area as shown in
Figure 13.8b. This is a direct consequence of the physical meaning of the antenna
aperture. (ii) It provides a means to calculate the complex array response for arbi-
trary angles. (iii) It allows a simple analytic calculation of the beam pattern deriva-
tives with respect to the angular parameters. This is used for the ML parameter
estimation as described in Section 13.6. In this section it is used to define the fun-
damental limit of the achievable variance of the estimated DoA/DoD parameters
in terms of the Cramér-Rao lower bound (CRLB). The matrix of the first-order
derivatives of the K path parameters is given by the Jacobian matrix

D(Θ) = ∂s(Θ)

∂ΘT

[
∂s(Θ)
∂Θ1

· · · ∂s(Θ)
∂ΘK

]
. (13.8)

With this result the Fisher information matrix (FIM) can be expressed in the form

J(Θ) = 2 · Re
{

D(Θ)H · R−1
nn · D(Θ)

}
, (13.9)
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Figure 13.8. (a) Polarimetric beam pattern (ϕ) for azimuthal (ϕ) and elevation (ϑ) excitation and (b)
corresponding EADF ϕϕ for one element of the SPUCPA in Figure 13.7.

whereby Rnn = E{n · nH} = σ2 · I is the noise covariance matrix. The diagonal
elements of the inverse FIM represent the CRLB of the K parameters estimates,
that is,

CRLB(Θ) = J−1(Θ). (13.10)

The nondiagonal elements of the inverse FIM denote the mutual information
between two parameters. If nondiagonal elements are zero, the respective param-
eter estimates are uncoupled or independent. In general, the data model is opti-
mally parameterized if the FIM is diagonal. The investigation and exploitation of
the FIM structure is essential to design a robust and efficient parameter estimator.

The FIM is also diagonal in case of the single impinging path scenario, which
is analyzed in the following example. It is again related to the SPUCPA in Figure
13.7b. In Figure 13.9 the CRLB of the azimuth angle is compared to the vari-
ance which is achieved by an experiment. For any true azimuth/elevation pair ϕ,
ϑ within the coverage sector of the SPUCPA the azimuth was estimated by an ML
procedure. This experiment was repeated 64 times. The noise level for CRLB cal-
culation was adjusted to match the observed device noise level, which was held
constant according to an SNR in the main beam direction (ϑ = 90◦) of 17–18 dB.

The result drastically changes in case of a coherent two-path scenario. Two
paths are said to be coherent if their weights have an almost constant phase differ-
ence during the available observation window. Then the FIM predicts a strong de-
pendency between the resulting estimates especially when the two paths are closely
separated in the angular domain (closer than the Rayleigh resolution of the array).
This can easily be explained by the field pattern, which results from the super-
position of the two waves. There occur stationary spatial regions of constructive
and destructive interference, which eventually causes a more or less ill-posed pa-
rameter estimation problem. It can be observed that the resulting degradation de-
pends on the phase difference between the two path weights. In the test scenario
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Figure 13.9. (a) CRLB and (b) estimated variance of estimated azimuth DoA versus the true azimuth
and elevation direction range.
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Figure 13.10. CRLB of the of estimated azimuth DoA in a coherent two-path scenario versus relative
Tx positions.

two paths where emulated by two Tx antennas located in the horizontal plane
(ϑ = 90◦) and at the same distance to the SPUCPA. The angular separation in az-
imuth and elevation was 5◦, which results in a spatial field pattern period that is by
far larger than the active SPUCPA aperture size. One transmit antenna was moved
step by step forward and backward along the line-of-sight direction in the range of
two wavelengths (−λ · · · λ), thus introducing a specific phase difference between
both paths.

Figure 13.10 shows the resulting CRLB in the horizontal plane. The different
curves correspond to certain true Tx bearing angles in azimuth. There are clearly
indicated distinct maxima for certain relative Tx positions which differ by half
a wavelength. This goes along with a change in the resulting field pattern from
minimum to maximum. It becomes also obvious that the array does not behave
uniformly in azimuth. The reason may be the influence of the tree-like structure
of the antenna switches that may result in a slight variation of the SNR over the
whole azimuth range.
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13.6. Maximum likelihood parameter estimation

Various algorithms have been proposed for high-resolution multidimensional pa-
rameter estimation in channel sounding including the multidimensional unitary
estimation of signal parameters via rotational invariance techniques (ESPRIT) al-
gorithm [16], and an application of the space-alternating generalized-expectation
maximization (SAGE) method [17], which is essentially an expectation-maximiza-
tion-(EM-) based simplified maximum likelihood (ML) parameter estimation
procedure [18]. The algorithm proposed in [17] can also be understood as an ap-
plication of the alternating projection algorithm [19], since the multidimensional
search is broken down into sequential one-dimensional coordinate-wise searches.
Both classes of the algorithm are subjected to different model assumptions and
underlying conceptual restrictions including applicability to certain antenna array
architectures, calculation time in terms of convergence speed and statistical effi-
ciency. It is well known that ESPRIT is an unbiased DoA/DoD estimator only if the
antenna arrays used for the measurements show the so-called shift-invariant struc-
ture. This is the case for uniform linear and planar arrays (ULA, URA) and circular
uniform beam arrays (CUBA) [16]. For other usual antenna array architectures in-
cluding uniform circular arrays (UCA), and uniform circular patch arrays (UCPA)
or the respective spherical arrays, ESPRIT application to DoA/DoD estimation is
not possible or will at least result in biased estimates. Other drawbacks may arise
if we ask for a statistically efficient estimator and/or for the parameter estima-
tion in a more complicated context such as colored measurement noise, nonideal
antenna array characteristics, and so forth. Maximum likelihood parameter esti-
mation procedures are in general more flexible to cope with these requirements.
For example, the SAGE approach has been applied for a large variety of antenna
array architectures. The drawback is its inefficiency and slow convergence rate if
closely spaced coherent propagation paths exist in the multipath propagation sce-
nario. Clearly, since we have only one transmitting source, all received paths have
to be considered as coherent. This may result in a strong coupling of estimation
results (as indicated in the FIM structure). In this case, a gradient-based multi-
dimensional ML channel parameter estimation framework outperforms indepen-
dent parameter search strategies such as SAGE [7].

With the stationary measurement noise n and the dense multipath and specu-
lar components d and s, respectively, the total observed signal vector x is modeled
as follows:

x = n + d
(
Θdds

)
+

K∑
k=1

s
(
Θk

) = nd
(
Θdds

)
+ s

(
Θsp

)
(13.11)

having a conditional probability density of

pdf
(

x|Θsp,Θdds
) = 1

πM det
(

R
(
Θdds

))e−(x−s(Θdds))HR(Θdds)−1·(x−s(Θsp)). (13.12)
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The related log-likelihood function is

L
(

x;Θsp,Θdds
) = −M · ln(π) − ln

(
det

(
R
(
Θdds

)))
− (

x − s
(
Θdds

))H · R
(
Θdds

)−1 · (x − s
(
Θsp

))
.

(13.13)

Because of the Gaussian nature of the probability density, the maximization
of (13.13) with respect to Θsp is essentially a nonlinear weighted least squares
problem. Since an exhaustive search in the multidimensional parameter space is
not feasible, we are proposing an iterative search framework which is based on
both gradient methods and sequential parameter update. This procedure proceeds
snapshot by snapshot and takes advantage as much as possible of typical channel
behavior that is known a priori from propagation physics and from experimental
experience. So the estimated parameter set of every snapshot is taken as the ini-
tial estimate for the next one. This is of specific importance for the Θdds vector
since the statistic parameters of the dense multipath change only slowly as long as
the “average environment” does not change completely. The K parameter vectors
Θk, on the other hand, change much faster since they directly comprise geometric
parameters. Moreover, existing paths can temporarily be shadowed or definitely
disappear and new paths can suddenly show up. Therefore, we can take advan-
tage of tracking existing paths. However, at the same time we have to search for
new paths. This way the model order K is adaptively controlled throughout the
sequence of snapshots. A considerable simplification of the search procedure may
be possible according to the expectation-maximization (EM) principle if the pa-
rameters are independent in their influence. Since the parameter sets Θsp and Θdds

are obviously independent, we can use alternating search procedures to maximize
(13.13) with respect to Θsp and Θdds. This way we successively remove the esti-
mated deterministic specular paths from the observed data. For estimation of the
parameters Θdds, a Gauss-Newton algorithm is applied. This gives us also a para-
metric representation of the covariance matrix R(Θdds). The knowledge of R(Θdds)
is essential also for the estimation of specular parameters Θsp since it provides ap-
propriate weighting of the observed data according to the nonlinear weighted least
squares problem:

Θ̂sp = arg min
Θsp

(
x − s

(
Θ̂sp

))H · R
(
Θ̂dds

)−1 · (x − s
(
Θsp

))
. (13.14)

The global search for new paths (which has to be carried not only at the be-
ginning of the sequence but continuously step by step) is carried out by a modified
SAGE procedure. Rather than a random assumption for unknown parameters, we
use some kind of noncoherent combining of independent observations to reduce
the parameter dimension. To explain the strategy, we discuss an example. Suppose
the channel impulse response has been measured using a 10-element ULA at one
link end. At first, we treat the 10 individual channel impulse responses as inde-
pendent realizations of the same process and maximize the log-likelihood func-
tion with respect to the time delay. A noncoherent combining procedure avoids
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any assumption on unknown DoA in this step. In the next step, we keep the esti-
mated time delay fixed and maximize (13.14) with respect to DoA. This reduces
the maximization problem to two concatenated one-dimensional problems. Any
arbitrary assumption of the DoA in the example would implicitly realize coher-
ent combining which potentially disregards paths impinging from other angles by
beamforming. This kind of noncoherent handling of data dimensions related to
unknown parameters (e.g., DoA) gives us a higher probability to detect the rele-
vant parameters which is the time delay in the example.

The problem of local search is completely different. We found that for closely
spaced coherent paths the coordinate-wise search strategy has serious disadvan-
tages because of its slow convergence rate which is not only time consuming but
may also end in erroneous estimates when using a quantized parameter database
[7]. This problem is related to the strong coupling of the respective parameter esti-
mates as indicated in the FIM. Since it is well known that the ML function is, under
mild restrictions, quadratic at its maximum (in the local “attractor area”), a con-
jugate gradient search promises much better convergence performance when the
parameters are coupled in their influence to the minimization of (13.13). From
the variety of available procedures for nonlinear optimization, we are using the
Levenberg-Marquardt algorithm because of its robustness. To calculate the opti-
mum step size and direction for parameter change these algorithms require the
gradient, the Jacobian matrix, and the Hessian matrix of the log-likelihood func-
tion at the actual point in the parameter space. Fortunately enough, with the al-
gebraic data model based on (13.3) the derivatives are easily available. This is es-
pecially true for the EADF model of the antenna arrays. The approximation of
the Hessian as it is used in the Gauss-Newton/Levenberg-Marquardt algorithm is
essentially an estimate of the Fisher information matrix (FIM). This provides us
with the required information on both the variance and on the mutual dependency
of the parameter estimates.

The following examples demonstrate the performance of the RIMAX algo-
rithm which is an efficient implementation of the proposed ML parameter estima-
tion framework [7, 8, 20]. The simulation results in Figures 13.11 and 13.12 com-
pare the convergence behavior of the gradient-based ML search to the parameter-
wise search of the SAGE in a noise-free, closely spaced coherent path scenario. In
this case, the paths differ only in DoA and are separated by 5◦ in angle of arrival
which is closer than the Rayleigh resolution of the array. The path magnitudes
are equal and the phase difference is zero in Figure 13.11 and 180◦ in Figure 13.12.
Although these constellations may be considered as worst-case situations, they fre-
quently occur in a practical propagation scenario since path length difference has
to change only by 2.5 cm to move from one worst-case situation to the other. The
antenna array was a 24-element circular patch array. Only matched vertical polar-
ization was considered. The two figures depict the iteration steps which are plotted
on the cost function surface. Note that both constellations cause completely differ-
ent cost function surfaces which are characterized by shaped, narrow valleys. The
parameter-wise search of the SAGE forces very small zigzag steps in the direction of
the individual parameters which can be seen most clearly in Figure 13.12. In both
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Figure 13.11. Convergence behavior of (a) the SAGE algorithm as compared to (b) the gradient-based
RIMAX algorithm in case of two coherent paths (angular separation 5◦; 0◦ phase difference).
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Figure 13.12. Convergence behavior of (a) the SAGE algorithm as compared to (b) the gradient-based
RIMAX algorithm in case of two coherent paths (angular separation 5◦; 180◦ phase difference).

cases, final convergence is not even achieved within 2000 iterations of the SAGE
procedure whereas the gradient search needs only 26 and 13 steps, respectively, to
reach the solution. Figure 13.12b also indicates the initial SAGE steps before start-
ing the final gradient steps. The example shows that quantization of the data model
would be detrimental since very small steps are required by the SAGE in order to
achieve some progress. Moreover, data model quantization is not directly related to
the desired parameter quantization. Actually, much finer steps are often required.
Figure 13.13 further compares coordinate-wise (alternating) and gradient-based
optimization in terms of the number of iterations versus the angular separation of
two coherent paths. It becomes clear that especially for paths which are closer than
Rayleigh resolution (which means that we have to apply high resolution instead of
Fourier methods) the number of the required iterations becomes prohibitive.
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Figure 13.13. Convergence rate of the SAGE algorithm in comparison to a gradient-based ML algo-
rithm (GRAD) (number of iterations versus angular separation of two coherent paths).

The example in Figure 13.14 shows the estimation results in the delay domain
(power delay profile (PDP)). It was calculated from measured data in a street mi-
crocell scenario. The specular path weight magnitudes are indicated by blue dots.
The reconstruction of the power delay profile within the measurement bandwidth
is given by the blue curve. The green curve is the difference between the recon-
structed and the measured power delay profile, thus it is an instantaneous real-
ization of the dense multipath scattering components (dds). The expectation of
the same part (which is estimated from the data) is given by the red triangular
curve. The vertical red lines indicate the relative variances of the specular path
weight estimates as they are calculated from the FIM. Most reliable paths are in-
dicated by a variance contribution that directly follows the dense multipath slope.
Noise enhancement is indicated by red points above this slope (see, e.g., at 2800
nanoseconds). The outliers around 3050 and 3350 nanoseconds are caused by line
splitting, which is characterized by two very closely spaced, excessively strong paths
with opposite signs. Although those paths may very well approximate a small bin
of a band-limited CIR, there is clear evidence of a wrong estimate since the relative
variance is greater than 1. As a consequence, one of those paths has to be omit-
ted. A repeated estimation step will then lead to a more accurate estimate of the
remaining path. Line splitting is a typical situation which occurs when the model
is underdetermined. Since the proposed procedure clearly indicates and corrects
this error it can be applied as a part of robust iterative model order controlling.

The described parameter estimation framework is very flexible and can be ex-
tended step by step. Further steps include enhanced estimation procedures, a more
accurate data model and reduced numerical complexity. There are various possi-
bilities. For example, the information delivered by the Fisher information matrix
can be used to identify coupled parameter clusters. Then a grouping of param-
eters can be applied to restrict the gradient search to the coupled sets of path
parameters. Independent parameters can be more easily estimated by the SAGE



Reiner S. Thomä et al. 265
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Figure 13.14. CIR measurement example and parameter estimates.

procedure. A further extension of the procedure should include enhanced param-
eter tracking. From a visual inspection of a temporal sequence of CIRs it becomes
clear that some paths stay stable over a longer time. They can be more accurately
estimated if more sophisticated path tracking is applied.

13.7. Measurement-based MIMO system performance evaluation

Initially, channel sounders were only applied to investigate wave propagation phe-
nomena. From those results a lot of ideas have evolved for the design of channel
models and even for the definition of reference models that became part of the ex-
isting cellular or WLAN standards. Moreover, quantitative results were achieved to
parameterize these models for certain well-defined canonical radio environments.
Mostly, standard scenarios were investigated that are related to existing wireless
system generations. The large variety of system solutions and deployment scenar-
ios of the next generation asks for novel measurement setups. One example is in-
dicated in Figure 13.15. It is related to a public access situation in a high-speed
user scenario. The figure describes an access point which serves public road trans-
portation. Also car-to-car propagation is indicated. Models and measurement re-
sults for these scenarios are still rarely available. Other examples are public access
areas in airport and train stations, factory hall environments, vehicle access in tun-
nels, access inside of cars or trains, and so forth. This list could be extended almost
arbitrarily since very specific propagation conditions may apply for which stan-
dard models and assumptions are not applicable.



266 Multidimensional high-resolution channel sounding measurement

Figure 13.15. High-speed public access scenario.

A further trend is that novel system and network aspects have to be consid-
ered. This may include a coordinated downlink operation from multiple base sta-
tions, widely distributed multiple antennas, ad hoc, multihop systems and relay ex-
tensions, tandem air interfaces, and so forth. For system-specific evaluations most
of all interference scenarios seem to be of interest.

A real-time channel sounder with its huge memory capacity and flexibility in
using various antenna arrays can be considered as a valuable component of a rapid
prototyping system when developing these new physical layer and network princi-
ples. The recorded channel data can be directly used to simulate the link behavior
under very realistic propagation situations. Figure 13.16 gives a short glance to the
data handling. The recoded channel matrix with its elements hνµ(l) is adopted in
its main dimensions to the required system specification. This perhaps includes
bandwidth, delay window, and also the transmitter and receiver filters gT(t) and
gR(t). Then the data stream is processed on the waveform or symbol level by fast
convolution. It may be argued that this would result in overoptimized systems
for the stored scenarios that will fail in many others. However, we believe that
MIMO system performance evaluation requires a balanced mix of a deterministic
modeling approach for a number of representative scenarios and the frequently
favored stochastic modeling approaches. Only this allows identifying the relevant
factors influencing the transceiver performance. The recorded data can be used
for comparing even completely different transceiver architectures with exact re-
producibility. The causality of certain performance effects can be traced back to
the instantaneous channel conditions. It has been shown that the amount of the
recorded data is enough even to simulate bit loading procedures, adaptive mod-
ulation, and incremental coding strategies at the transmitter, which are implicitly
controlled by specific ARQ schemes [21].

It has already been stressed that the antenna configuration is of exceptional
relevance for MIMO systems. The described method of direct use of recorded
data for transceiver simulations lacks the flexibility to incorporate arbitrary an-
tenna properties after the measurements have been completed. When arrays with
a large number of antenna elements are used (which may be the case when high-
resolution DoA/DoD estimation is considered), then there is still a great deal of



Reiner S. Thomä et al. 267
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Figure 13.16. System model for MIMO transmission.

flexibility for simulations when we use different subsets of the antennas. This gives
us also the chance to interpret and compare the MIMO link simulation results
(e.g., in terms of bit error rates) to the DoA/DoD propagation structure of the
channel. In any case, the individual antenna element characteristics of the mea-
surement array are considered to be part of the channel.

An extended approach has been described in [4]. It is called measurement-
based parametric channel modeling (MBPCM). It relies on the parameter estima-
tion procedure described in the previous section. This method also belongs to the
category of deterministic channel models since it takes the geometrical informa-
tion on the propagation scenario from the measurement. It is essentially a two-
step procedure with a parameter estimation step and a follow-up synthesis step.
The parameter estimation, if properly carried out, gives an antenna-independent
channel model (within well-defined limits which are determined by the measure-
ment antennas used). The synthesis step gives us the flexibility to include a variety
of antenna array architectures into the simulation and allows statistical simulation
in terms of fast fading.

13.8. Conclusion

Multidimensional channel sounding for MIMO propagation analysis requires
highly sophistic antenna design, calibration, and high-resolution parameter es-
timation. We proposed an ML channel parameter estimation framework which
comprises estimation of the multidimensional specular paths parameters and of
the delay distribution of dense multipath contributions which clearly outperforms
existing procedures in terms of applicability, flexibility, robustness, and conver-
gence. The estimator provides additional reliability information of the estimated
parameters and uses a novel general antenna array model, the so-called EADF. Fur-
ther enhancements may include enhanced path tracking and directional, respec-
tively, spatial modeling of dense multipath components. High-resolution multi-
dimensional channel parameter estimation is prerequisite to create antenna-inde-
pendent channel models. Real-time MIMO channel sounding results can be used
to obtain realistic link-level performances of transceiver algorithms. However, a
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high amount of measurements will still be required to cover the variety of relevant
deployment and system scenarios of future mobile radio networks.

Abbreviations

AGC Automatic gain control

AP Access point

BS Base station

CIR Channel impulse response

CRLB Cramér-Rao lower bound

CUBA Circular uniform beam arrays

DFT Discrete Fourier transform

DoA Direction of arrival

DoD Direction of departure

EADF Effective antenna aperture distribution function

ESPRIT Estimation of signal parameters via rotational invariance techniques

FDD Frequency division duplex

FIM Fisher information matrix

FFT Fast Fourier transform

GPS Global positioning satellite

LNA Low-noise amplifiers

LO Local oscillator

LOS Line of sight

MBPCM Measurement-based parametric channel modeling

MC-SSS Multicarrier spread spectrum signal

MIMO Multiple-input multiple-output

PDP Power delay profile

ML Maximum likelihood

MS Mobile station

OFDM Orthogonal frequency division modulation

PA Power amplifier

PRBS Periodic pseudorandom binary signals

RMS Root mean square

Rx Receiver

SAGE Space-alternating generalized expectation-maximization

SISO Single-input single-output

SNR Signal to noise ratio

TDoA Time delay of arrival

Tx Transmitter

UCA Utility communications architecture

UCPA Uniform circular patch arrays

ULA Uniform linear arrays

URA Uniform rectangular arrays

UTRA FDD UMTS terrestrial radio access frequency division duplex

UWB Ultra-wideband

WLAN Wireless local area network
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throughput performance evaluation of antenna variable modulation for broadband turbo MIMO
transmission,” in Proc. 7th International Symposium on Wireless Personal Multimedia Communi-
cation (WPMC ’04), pp. V2–85–89, Abano Terme, Italy, September 2004.

[22] U. Trautwein, T. Matsumoto, C. Schneider, and R. Thomä, “Exploring the performance of turbo
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14
MIMO channel models

Kai Yu, Mats Bengtsson, and Björn Ottersten

14.1. Introduction

In recent years, the use of multiple transmitters and receivers in a wireless com-
munication link has attracted much attention. If deployed in an environment pro-
viding sufficiently rich scattering, the link can support extremely high data rates.
As reported in [1, 2], the capacity of multiple-input multiple-output (MIMO) sys-
tems has the potential to increase linearly with the number of spatial subchannels.
This has been demonstrated in [3] on the Bell Labs Layered Space-Time (BLAST)
architecture.

Since then, different techniques have been proposed to exploit the potential
of MIMO systems, including spatial multiplexing and space-time coding. We dis-
tinguish between spatial multiplexing schemes which transmit over spatial sub-
channels, often in conjunction with an outer channel code, and space-time coding
techniques which attempt to provide joint coding and diversity gain through ap-
propriate code design. By transmitting through parallel spatial subchannels and
exploiting the channel state information (CSI) at the receiver, spatial multiplexing
systems can provide high data rates. With CSI available at the transmitter as well,
channel capacity can be achieved using a linear transformation at the transmitter
and a linear receiver that converts the channel into a set of parallel independent
scalar channels, combined with so-called water filling to allocate the power to each
spatial subchannel [2, 4]. When CSI is not available at the transmitter, spatial mul-
tiplexing schemes can still be formulated to achieve high throughput [3], often at
the expense of a more complex receiver structure. On the other hand, space-time
coding introduces redundancy in time and space to achieve coding and diversity
gain at the receiver without any CSI at the transmitter. Two main kinds of space-
time code structures have been developed, namely space-time block codes [5, 6]
and space-time trellis codes [7]. Using CSI (even approximative) at the transmit-
ter, the performance of space-time coding schemes can be further improved [8, 9].

To design high-performance MIMO wireless systems, it is necessary to com-
pare the performance of different MIMO techniques, modulation schemes, tune
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design parameters, and so forth, and predict system performance. This should be
done in a fair and realistic way. Hence, MIMO channel models that can accurately
describe the propagation channels are of great importance. Channel models aim-
ing for high accuracy tend to be complex but are of critical use for simulation
purposes. In addition, we would like to stress the importance of low-complexity
channel models that attempt to capture certain channel characteristics in a simple
manner at the expense of accuracy. These models may be used to gain insight and
allow analysis, and are useful in the communication system design process. Due to
the limited space in this chapter, it is not possible to give a complete description
of all reported MIMO channel modeling work. Instead, we give two examples of
MIMO models, one well suited for simulation purposes and one well suited for
MIMO system analysis and design. In addition, we briefly describe recent MIMO
channel modeling within some industrial standardization bodies.

This chapter is organized as follows. We start with a general overview of differ-
ent channel modeling techniques and then briefly review different MIMO channel
models. After that, we discuss two typical MIMO channel models in more de-
tail, namely the Kronecker-structure-based MIMO channel model and a generic
geometry-based MIMO channel model with physical parameters. MIMO channel
modeling works within the IEEE 802.11n and 3GPP/3GPP2 are briefly described.
The chapter ends with some conclusions.

14.2. Channel modeling techniques

14.2.1. SISO channel modeling techniques

To model traditional wireless single-input single-output (SISO) channels accu-
rately, three main propagation effects must be considered, namely, the large-scale
path loss, the shadow fading, and the small-scale fading [10, 11]. The large-scale
path loss predicts the average received power for a given transmit-receive distance.
It is well known that the average received power decreases exponentially with the
distance [11]. However, for a fixed transmit-receive distance, the path loss can vary
significantly from location to location, due to shadowing. This so-called shadow
fading (large-scale fading) is mostly modeled statistically by a lognormal distri-
bution [10, 11]. When multiple reflected waves reach the receiver, they can add
constructively or destructively. The amplitude variations due to small-scale move-
ments (order of a wavelength) of the transmitter/receiver or of the surrounding
environment are called small-scale fading.

Different distributions have been reported from theoretical analysis and from
measurements to describe the statistics of the real-valued amplitude. Among them,
three different distributions are most commonly used, the Rayleigh distribution
for the non-line-of-sight (NLOS) scenarios, the Ricean distribution for the line-
of-sight (LOS) scenarios, and the Nakagami distribution, which provides more
degrees of flexibility to fit the model to the measured data. Another important
aspect is to use the Doppler spectrum to measure the movement of the transmitter
and receiver, and the variation of the local environment.
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Wideband channel modeling can be done either in the time domain or in the
frequency domain. In the time domain, one of the most commonly used channel
models is the tapped-delay-line model

h(τ) =
L∑
l=1

alδ
[
τ − (l − 1)∆τ

]
, (14.1)

where al is the complex tap amplitude, δ(·) is the Dirac delta function, L is the
number of taps, ∆τ is the time spacing between neighboring taps, and τ is the
time delay. The average power for each tap, E[ala∗l ], can be determined from the
power delay spectrum, where (·)∗ denotes complex conjugate. The absolute value
of the tap amplitude, |al|, is modeled by the Rayleigh or lognormal distribution
[10] and the RMS delay spread is widely used to characterize the dispersion of
the channel. In the frequency domain, the SISO channel can be modeled as an
autoregressive (AR) process where the poles of this AR process are calculated from
the measured channel realizations [10, 12]. The frequency response of the channel
can be obtained as the output from the filter driven by white noise.

All the above models describe the statistical properties of SISO wireless chan-
nels, hence they are called statistical channel models. Another group of models are
called deterministic channel models [10]. These models try to calculate the radio
propagation conditions according to the physical layout of the environment. This,
however, is not possible for most applications since it requires too much compu-
tational power and too many details about the environment. To lower the compu-
tational complexity, the ray-tracing algorithm has been proposed as a simplified
solution, see [10] for more details about ray tracing.

14.2.2. MIMO channel modeling techniques

Using antenna arrays at both the transmitter and the receiver makes the problem
more complicated. Simply modeling each link (i.e., from one transmit antenna el-
ement to one receive antenna element) as a SISO channel and assuming they are
independent and identically distributed (IID) is fairly common as a simplifying as-
sumption in many theoretical papers. However, as seen in practical measurements
[13, 14, 15, 16], this assumption is rarely true. Hence, we need to take into account
the spatial correlation between different links at both ends when modeling MIMO
wireless channels.

As will be shown below, it is easy to generate a MIMO channel with a specified
correlation structure between the single links [17, 18]. Since a complex Gaussian
random vector is completely specified by its first- and second-order moments [19],
this approach is relevant in scenarios with Rayleigh fading. The MIMO channel
correlation matrix is usually obtained from measurements, which means the in-
fluence from the measurement setup (e.g., antenna heights, antenna element pat-
terns, etc.) cannot be separated from the channel itself using this MIMO channel
modeling technique. These kinds of models are called nonphysical MIMO channel
models.
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Another popular approach is to construct a realistic geometric scattering en-
vironment and calculate the MIMO channel matrix as a sum of the contributions
from different rays. The distribution of the scatterers depends on some important
physical parameters, such as angle of arrival (AOA), angle of departure (AOD), and
time of arrival (TOA). Therefore models using this approach are called physical
MIMO channel models. The statistics of these parameters can either be obtained
from the field measurements [20, 21] or be postulated as some well-known distri-
butions with simple geometry [22, 23, 24]. Using the physical parameters makes
it possible to separate the MIMO channel and the measurement setup. However,
finding the correct statistics of the parameters is a difficult, if not impossible [25],
task.

Finally, deterministic channel modeling may be used also to obtain MIMO
channel realizations. In [26], for example, a ray-tracing simulator has been used
to simulate MIMO channels.

14.3. Review of MIMO channel models

Many statistical MIMO channel models have been reported in the past few years.
As mentioned previously, they can be categorized into nonphysical MIMO channel
models and physical MIMO channel models. Below, we briefly review these two
classes of models. A more detailed review of some MIMO channel models can be
found in [27].

From now on, unless otherwise stated, we assume that the system has M trans-
mit antennas and N receive antennas. In general, the baseband input-output rela-
tionship can be written as

y(τ) = H(τ) ∗ s(τ) + n(τ), (14.2)

where H(τ) is the wideband MIMO channel impulse response matrix, s(τ) is the
transmitted signal, y(τ) is the received signal, n(τ) is additive white Gaussian noise
(AWGN), and “∗” denotes convolution. When the system bandwidth is so small
that the channel becomes narrowband, (14.2) is simplified to y = Hs + n, where
H is the N ×M narrowband MIMO channel matrix.

14.3.1. Nonphysical MIMO channel models

The simplest (nontrivial) nonphysical MIMO channel model is the IID MIMO
channel model, which assumes that the elements of the MIMO channel matrix
are IID zero mean complex Gaussian. It has been widely used in many published
papers due to its simplicity and tractability for analysis and design. For instance,
this model has been used to analyze the capacity of MIMO channels in [1].

The IID MIMO channel model does not take into account the spatial correla-
tion between MIMO channel links, which has been demonstrated in many MIMO
channel measurements [13, 14, 15, 16]. One way to solve this problem is to intro-
duce the MIMO channel correlation matrix RH , defined as RH=E[vec(H)vecH(H)],
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where vec(·) is the vec operator and (·)H denotes complex conjugate transpose.
When the channel is zero mean, complex Gaussian, the MIMO channel matrix H
can be modeled as

vec(H) = R1/2
H vec(G), (14.3)

where G is a stochastic N×M matrix with IID CN (0, 1) elements and (·)1/2 is any
matrix square root such that R1/2(R1/2)H = R.

The above model requires full knowledge of the spatial correlation between
every pair of channel links. Recently, it has been reported in [17, 18] that for in-
door NLOS environments, the MIMO channel correlation matrix RH can be ap-
proximated as a Kronecker product of the correlation matrix at the transmitter RTx

and the correlation matrix at the receiver RRx. Furthermore, for wideband MIMO
channels, this Kronecker structure can be extended to each channel tap [18]. More
details concerning the Kronecker-structure-based MIMO channel models will be
discussed later.

14.3.2. Physical MIMO channel models

In [22], a narrowband one-ring model has been presented in order to study the
correlation and the capacity of MIMO systems. The model assumes that the base
station (BS) is elevated and therefore has no scatterers around it, while the mo-
bile station (MS) is surrounded by scatterers. This assumption is true in many
outdoor scenarios, at least in macrocells where the base station is mounted on a
mast or elevated above the roof tops. In [22], the effective scatterers are assumed
uniformly positioned on a ring, hence the name one-ring model. Each effective
scatterer is associated with a random phase shift, which is uniformly distributed
over [−π,π). Each ray is reflected once by a scatterer and reaches the receiver with
equal power. The MIMO channel coefficients are then calculated through geomet-
ric considerations of the path lengths. When the angular spread of the scatterers is
small, some approximations can be used to study the correlation between different
MIMO channel elements.

For an environment when both the BS and the MS are surrounded by scatter-
ers, the use of the so-called two-ring model, that is, assuming there exist rings of
scatterers around both the BS and the MS, has been suggested in [28]. The MIMO
channel coefficients can be obtained using the same approach as used in the one-
ring model. The channel, however, will not be complex Gaussian in general due to
the double reflections of each ray.

A model related to the one-ring model is introduced in [24]. Closed-form
expressions for the spatial correlation of MIMO channel coefficients are derived
assuming different powers for different scatterers and using the von Mises proba-
bility density function (PDF) to describe the angular PDF of the scatterers at the
MS. The model also includes Doppler spread and a LOS component. Assuming
that the gain and the phase shift for a given scatterer are the same for rays coming
from different antenna elements, and using the von Mises PDF for the scatterers
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at both the transmitter and the receiver, the two-ring model has been extended in
[29] to obtain closed-form expressions of the spatial correlation.

Under certain scenarios, even though the correlation matrix at both the trans-
mitter and receiver are of high rank, the MIMO channel may still be of low rank.
Such channels are called “pinhole” or “keyhole” channels [23, 30] and have been
observed from channel measurements conducted in a controlled (and constructed)
environment [31]. The “pinhole” phenomenon can be explained by the distributed
scattering model [23], where scatterers exist at both the transmit side and the re-
ceive side. Considering the scatterers at the receive side as a virtual array, it is ar-
gued in [23] that the channel matrix can be written as

H = 1√
S

R1/2
Rx GrR1/2

S GtR
T/2
Tx , (14.4)

where 1/
√
S is a normalization factor, (·)T denotes transpose, and Gt and Gr are

two random matrices with IID zero-mean complex Gaussian elements. Therefore,
the rank of the channel is controlled by the three correlation matrices RTx, RRx, and
RS seen from the transmitter, the receiver, and the virtual array, respectively. If RS

is of low rank, the MIMO channel will always be of low rank no matter what RTx

and RRx are. It is also worth mentioning that the amplitudes of “pinhole” channels
are not Rayleigh distributed [23, 32].

A wideband geometry-based channel model for outdoor macrocells has been
reported in [33]. The model assumes that for a fixed tap, the scatterers are located
on an ellipsoid, where the BS and the MS are the foci of the ellipsoid. A LOS com-
ponent can be added to the first tap. To model the local scattering effect, a ring
of scatterers has been generated around the MS. A disc around the BS is defined
as the scatterer-free area (similar to one-ring model). Based on the power delay
profile and a predetermined scatterer density, the number of scatterers can be de-
termined. Using a ray-tracing-based technique, MIMO channel realizations can
be obtained. This model takes into account the range dependency and is especially
useful to simulate the effect of range as well as other parameters [33].

All the above physical MIMO channel models are based on some postulated
distribution of the scatterers and a simple geometry. Other similar models include
[34], where a 3D MIMO channel model is derived, and [35], where a physical
model is proposed using electromagnetic (EM) theory.

Another group of physical channel models is based on physical parameters
extracted from measurements. In [20], an indoor MIMO channel model has been
reported using the fact that the scattered signals arrive in clusters [36]. The MIMO
channel matrix is calculated using the directional impulse response, which is a sum
of the contributions from different rays. The amplitude of the cluster is Rayleigh
distributed and the expected cluster power decreases exponentially with the TOA.
Within each cluster, each individual ray is complex Gaussian distributed and the
average ray power is given by the associated cluster power. In the model, the ray
AOA and AOD are Laplacian distributed, based on observations in [37].
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Within the European research initiative COST 259, a directional channel
model [38] has been developed. First, the double-directional channel impulse re-
sponse is obtained as a sum of the contributions from different scatterers. The
nondirectional channel impulse response can then be obtained by incorporat-
ing the specific antenna patterns at the transmitter and the receiver. To simulate
MIMO channels for different environments, a three-level approach has been pro-
posed [38]. The top level is the cell type that includes macrocells, microcells, and
picocells. The second level includes a number of radio environments. Within each
radio environment, the propagation scenarios (third level) have been identified.
The global parameters (GPs) defined in the second level consist of a set of PDFs
and/or statistical moments that characterize a specific radio environment. These
statistics are obtained from various field measurements [38]. In the third level, the
local parameters (LPs) are used to describe the impinging waves and the LPs are
determined by the GPs defined in the second level.

The above physical MIMO channel models, however, are not general enough
to include a wide variety of propagation effects, such as double scattering, waveg-
uiding, and so forth. In [21, 39], a generic MIMO channel model has been pro-
posed for outdoor macrocells and microcells, which includes a LOS component,
single scattering, double scattering, far clusters, waveguiding, roof-edge diffrac-
tion, and large-scale variations. We will discuss this model in more detail later.

14.4. Two typical MIMO channel models

Below, a more detailed description of two typical MIMO channel models is pro-
vided. The first model is based on the Kronecker structure of the channel corre-
lation matrix RH . It can be further divided into a narrowband MIMO channel
model [17, 18] and a wideband MIMO channel model [18], depending on the
system bandwidth. The second model being discussed is a generic MIMO channel
model [21], which is based on geometry and some physical parameters.

14.4.1. The Kronecker-structure-based MIMO channel model

It is well accepted that in most NLOS environments, the wireless channel between
the transmitter and the receiver is well modeled as zero mean complex Gaussian,
that is, the real-valued amplitude is Rayleigh distributed and the phase is uni-
formly distributed over [−π,π]. For a complex Gaussian channel, it is enough to
use its first- and second-order moments to fully describe the channel [19]. There-
fore, the correlation between the elements of the MIMO channel matrix has been
widely investigated [22, 24, 29]. By using the MIMO channel correlation matrix
RH , the MIMO channel can be modeled as (14.3).

Kronecker structure. In scenarios with sufficiently rich multipath scattering, it is
reasonable to assume spatial stationarity, that is, that the correlation between the
fading signals received at two antenna elements only depends on the element dis-
tance but not on the exact location, at least for small dislocations. Then, the
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correlation matrix of the signals as seen from the receive side will be the same,
no matter which of the transmit elements is used, so we can define a receive side
correlation matrix as

RRx = 1
M

E
[

HHH
]
. (14.5)

Similarly, the transmit-side correlation matrix is defined as

RTx = 1
N

E
[(

HHH
)T]

. (14.6)

In [22], it is conjectured that the MIMO channel correlation matrix RH is
equal to the Kronecker product of the correlation matrices RTx and RRx at the
transmitter and the receiver, that is,

RH = RTx ⊗ RRx, (14.7)

where ⊗ denotes the Kronecker product. In other words, the correlation between
any two pairs of transmit-receive elements is the product of the correlations as seen
from the transmit and receive sides, respectively. To avoid an additional multiplica-
tive constant in (14.7), the MIMO channel matrix H used in the above equations
is normalized such that

E
(‖H‖2

F

) = NM, (14.8)

where ‖ · ‖F is the Frobenius norm and E(·) denotes the expected value.
To verify the above conjecture, indoor MIMO channel measurements were

carried out by the University of Bristol, within the European Union’s IST (Infor-
mation Society Technology) Program, SATURN (Smart Antenna Technology in
Universal bRoadband wireless Networks) Project [18, 40, 41]. The measurements
were conducted at 5.2 GHz, with 120 MHz bandwidth. Both the LOS scenarios and
the NLOS scenarios were measured. At the transmit side, an 8-element omnidirec-
tional uniform linear array (ULA) was used, while the receiver used an 8-element
ULA with 120◦ beamwidth. The interelement distance was half wavelength at both
the transmitter and the receiver. The channel impulse responses were estimated
and saved in the frequency domain. More details about the measurements can be
found in [18, 42].

Using the data measured in the NLOS scenarios, the correlation matrices R̂H ,

R̂Tx, and R̂Rx were estimated, where (̂·) denotes the sample estimates. To measure
the error of the Kronecker structure (14.7), the narrowband relative model error
Ψ was defined as [18]

Ψ(A, B) = ‖A − B‖F
‖A‖F . (14.9)
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Table 14.1. Narrowband model errors Ψ(R̂H , R̂Tx ⊗ R̂Rx).

Data set 2 × 2 setup 3 × 3 setup

Tx11 3.87% 7.57%

Tx12 3.18% 7.33%

Tx13 0.86% 4.79%

Tx14 2.95% 7.68%

Tx15 2.13% 4.94%
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Figure 14.1. Narrowband model errors with 2 transmit antenna elements and 1–8 receive antenna
elements (Tx13-Rx3) [18]@2004 IEEE.

Table 14.1 lists the narrowband model errors Ψ(R̂H , R̂Tx ⊗ R̂Rx) for 2 × 2 and
3 × 3 systems. It was shown that for 5 measured data sets, the narrowband model
error is well below 10% for the measured NLOS scenarios. Furthermore, the nar-
rowband model error increases when the number of transmit/receive antenna el-
ements goes up. This is further illustrated in Figure 14.1, where the number of
transmit antenna elements is fixed as 2 and the number of receive antenna ele-
ments increases from 1 to 8.

From the above results, it is concluded that for moderate array sizes and in-
door NLOS scenarios, the MIMO channel correlation matrix can be well approxi-
mated by the Kronecker product of the correlation matrices seen from both ends.

For wideband MIMO channels, it has been found in [18, 41] that the Kro-
necker structure can be extended to each channel tap, that is,

Rl
H = Rl

Tx ⊗ Rl
Rx, (14.10)

where for the lth tap, the MIMO channel correlation matrix Rl
H , the transmit cor-

relation matrix Rl
Tx, and the receive correlation matrix Rl

Tx are defined similarly as
in the narrowband case.
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Table 14.2. Narrowband model errors of the optimal factorization Ψ(R̂H , X ⊗ Y).

Data set 2 × 2 setup 3 × 3 setup

Tx11 3.76% 7.26%

Tx12 3.05% 6.64%

Tx13 0.76% 4.52%

Tx14 2.61% 7.00%

Tx15 2.10% 4.65%

Kronecker mode decomposition. To be able to judge if the model errors estimated
from the measurement data actually can be considered small, it is interesting to
compare them to the errors of the best possible match between the estimated R̂H

and any Kronecker product. In [18, 40], a least-squares Kronecker factorization
method has been proposed to factorize R̂H optimally into two positive semidefinite
Hermitian matrices X and Y, that is,

arg min
X,Y

∥∥RH − X ⊗ Y
∥∥
F . (14.11)

This problem can be solved by rearranging the elements of RH and X ⊗ Y
simultaneously, so that the original problem reduces to a least-squares rank-one
approximation problem [40, 43]. Using the singular value decomposition, the op-
timal solution for X and Y can be obtained [18, 40].

Using the least-squares Kronecker factorization, the corresponding narrow-
band model errors Ψ(R̂H , X ⊗ Y) are listed in Table 14.2. Comparing the narrow-
band model errors listed in Tables 14.1 and 14.2, it is obvious that the difference
between the model errors obtained using the sample estimates and the model er-
rors obtained using the least-squares Kronecker factorization method indeed can
be considered small. Therefore, the sample estimates R̂Tx and R̂Rx factorize the
MIMO channel correlation matrix R̂H almost optimally.

Generalizing the idea of the Kronecker model, [44] shows that the correlation
matrix of any MIMO channel can be expressed as a sum of Kronecker products of
Hermitian matrices, that is,

RH =
K2∑
k=1

σkWk ⊗ Vk, (14.12)

where K = min(M,N), σk are the Kronecker mode values which are real and pos-
itive. In this so-called Kronecker mode decomposition [44], the Kronecker modes
Wk and Vk are Hermitian matrices of size M ×M and N × N , respectively. Note
that in general, Wk and Vk can have negative eigenvalues and therefore are indefi-
nite [44]. The principal Kronecker modes W1 and V1, however, are always positive
semidefinite.

By comparing (14.11) and (14.12), the least-squares Kronecker factorization
can be seen as an optimal approximation of the MIMO channel correlation matrix
RH using the principal Kronecker modes W1 and V1 [44].
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Figure 14.2. CDF of narrowband channel capacity from the measured data, narrowband channel
model, and IID MIMO channel. Power is equally allocated to the transmit elements and the SNR at the
receiver is 20 dB (Tx13-Rx3) [18]@2004 IEEE.

Narrowband and wideband channel models. Given that the MIMO channel is zero
mean complex Gaussian and that the Kronecker structure of the MIMO channel
correlation matrix (14.7) holds, it is easy to show that the narrowband MIMO
channel model (14.3) can be rewritten as [22, 40, 45]

H = (
RRx

)1/2
G
(

RTx
)T/2

, (14.13)

where G is an N ×M matrix with IID CN (0, 1) elements.
To validate this narrowband MIMO channel model, 1000 MIMO channel re-

alizations were generated according to (14.13). Figure 14.2 shows the MIMO chan-
nel capacity obtained from the measured channel data and the simulated channel
realizations for the 2×2 and 3×3 setups, respectively. The MIMO channel capac-
ity for the IID MIMO channel is also plotted. It is concluded from Figure 14.2 that
the capacity from the simulated MIMO channel realizations matches the measured
MIMO channel capacity very well.

Modeling the wideband MIMO channel can be done by combining the Kro-
necker structure of the MIMO channel correlation matrix (14.10) with a SISO
channel model, as long as the SISO channel model assumes the channel is zero
mean complex Gaussian [36, 46]. Below, a simple COST 259 SISO channel model
[46] is combined with (14.10) as an example. The channel impulse response ma-
trix H(τ) in this case can be modeled as [18]

H(τ) =
L∑
l=1

√
p̄l
(

Rl
Rx

)1/2
Gl

(
Rl

Tx

)T/2
δ
[
τ − (l − 1)∆τ

]
, (14.14)
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Figure 14.3. CDF of 120 MHz MIMO channel capacity. Power is equally allocated and the SNR at the
receiver is 20 dB (Tx13-Rx3) [18]@2004 IEEE.

where Gl are random matrices with IID CN (0, 1) elements, p̄l is the average power
of each element and is modeled as

p̄l = Ae−(l−1)∆τ/2Γ, (14.15)

where A is a normalization factor and Γ is the mean RMS delay spread which can
be obtained from channel measurements.

Using (14.14), 1000 MIMO channel impulse response matrices were simu-
lated with 120 MHz bandwidth. The wideband MIMO channel capacity was calcu-
lated and plotted in Figure 14.3, along with the MIMO channel capacity obtained
from the measured MIMO channel realizations. It can be seen from Figure 14.3
that the wideband MIMO channel capacity can be well simulated by the proposed
wideband MIMO channel model (14.14).

Note that the above two Kronecker-structure-based MIMO channel models
have already been used in many published papers [22, 45, 47]. The model is not
only useful in numerical performance evaluations, the simple structure also lends
itself useful in theoretical analysis and design. For example, some closed-form an-
alytical results on the MIMO channel capacity have been obtained in [48], exploit-
ing this Kronecker structure of the MIMO channel covariance matrix. In [49], a
spatial multiplexing design procedure is proposed based on partial CSI. By exploit-
ing the Kronecker structure of the model above, a power and bit loading scheme
is proposed balancing the bit error rates of the subchannels through efficient error
calculations.
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LOS scenarios. In contrast to the NLOS scenarios where no dominant component
exists, the LOS scenarios usually have one dominant component (LOS compo-
nent). It has been proposed in [50, 51, 52] to model the LOS MIMO channel as

H =
√

K

1 + K
HLOS +

√
1

1 + K
HNLOS, (14.16)

where HLOS is a rank-one matrix which corresponds to the LOS component, HNLOS

is associated with the NLOS components and is modeled by (14.13). The K-factor
is defined as K(dB) = 10log10(PLOS/PNLOS) [11], where PLOS and PNLOS are the
power from the LOS component and the power from the NLOS components, re-
spectively.

14.4.2. A generic MIMO channel model

As described previously, most of the physical MIMO channel models are proposed
to match certain scenarios or phenomena. However, as it has been pointed out
in [21, 39], they are not general enough to include all different propagation ef-
fects. In [21, 39], a generic MIMO channel model has been proposed for outdoor
macrocells and microcells, which takes into account a wide variety of propagation
effects.

Assuming there exist L(t) multipaths between the transmitter and the receiver,
the double-directional channel impulse response (DDCIR) h(t, τ, θT , θR) can be
written as [21, 38]

h
(
t, τ, θT , θR

) =
L(t)∑
l=1

hl
(
t, τl, θT ,l, θR,l

)
, (14.17)

where hl is the contribution associated with the lth multipath component (MPC),
τ is the time delay, θT and θR are the corresponding AOD and AOA at the transmit-
ter and the receiver, respectively. In (14.17), both the number of multipaths L(t)
and the contribution of each individual MPC are functions of time t. Therefore,
the DDCIR is time varying. This is mainly due to the movements of the scatter-
ers, the transmitter, and the receiver. Note that when the antenna polarization is
considered, the DDCIR h and the contribution of the individual MPC hl become
2× 2 matrices in order to describe the horizontal and vertical polarizations as well
as the cross polarization [21].

The DDCIR describes the physical channel between the transmitter and the
receiver and it does not depend on the system setups (e.g., the antenna patterns
used at the transmitter and receiver). Assume that the antenna arrays at both the
transmitter and receiver are small enough so that physical parameters of the MPCs
do not change with the array sizes. Given the specific antenna patterns being used
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and the positions of the transmit and receive arrays measured from a fixed refer-
ence point, the nonangle resolved deterministic channel impulse response between
the ith transmit element and the jth receive element can be expressed as [21, 38]

Hi j(τ) =
L∑
l=1

gR
(
θR

) · hl(τl, θT ,l, θR,l
) · gT(θT) · e j〈�k(ϕR,l)�xR, j〉e j〈�k(ϕT ,l)�xT ,i〉, (14.18)

where gT(θT) and gR(θR) are the antenna patterns at the transmitter and receiver,

respectively. �k is the wave vector, �xT ,i and �xR, j are the position vectors for the ith
transmit element and the jth receive element, respectively. Hence

〈�k(θ) ·�x 〉 = 2π
λ

(x cos υ cosϕ + y cos υ sinϕ + z sin υ), (14.19)

where λ is the wavelength, ϕ is the azimuth, and υ is the elevation.
The most important part of the above double-directional modeling approach

is to find an accurate description of the properties of the MPCs hl(t, τl, θT ,l, θR,l).
In contrast to the COST 259 directional channel model [38] which only takes into
account a limited number of propagation effects, a wide variety of propagation
effects have been considered in [21, 39] to model hl(t, τl, θT ,l, θR,l), namely, LOS
propagation, single scattering, double scattering, scattering via far clusters, diffrac-
tion, waveguiding, large-scale variations, and moving scatterers. Below, these prop-
agation effects will be briefly discussed.

A geometry-based approach has been used to simulate the propagation pro-
cess between the BS and the MS, that is, randomly placing the scatterers accord-
ing to certain statistical distributions. By using the geometry-based approach, it is
straightforward to model the LOS propagation according to the geometry using
the equations of free space propagation [11].

To model the single scattering effect, two groups of local scatterers are gen-
erated [21, 39] (i.e., the scatterers close to the BS and the scatterers close to the
MS) according to some given PDFs. The scattering only happens through either
the scatterers at the BS or the scatterers at the MS. The parameters of the MPCs,
τl, θT ,l, and θR,l, can be determined from the geometrical relationship. Moreover,
two Ricean K-factors are introduced in order to characterize the power from the
local scattering at the BS/MS comparing to the power from the LOS propagation.
Unlike most conventional simulators, which tend to generate a large number of
scatterers so that the Raleigh fading can be simulated, the number of scatterers in
the generic MIMO channel model is decided by the physical scenario. Using too
many scatterers may overestimate the MIMO channel capacity.

Similar to [23], double scattering is used in the model to simulate the pinhole
phenomenon. Here, the scatterers generated in the single scattering are still valid.
However in double scattering, the signal is scattered both by the scatterers at the
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BS and by the scatterers at the MS. Furthermore, for each scatterer at the BS (or
MS), an “illumination function” is defined, in order to determine which scatterers
at the MS (or BS) are being illuminated [21].

In many outdoor scenarios, there are clusters located far away, corresponding
to the mountains or high buildings. This can lead to an increase of the delay spread
[21, 39]. Usually, there is a direct path from the BS to the far clusters and from the
far cluster to the MS, similar to the single scattering process. It is also possible that
the signal is double scattered by the far scatterers and the scatterers close to the
MS. These propagation effects can be described similarly to the single scattering
and double scattering as discussed before.

Waveguiding and roof-edge diffraction are two propagation processes which
can lead to rank-deficient channel matrices. The waveguiding often happens when
the waves are coupled into a street canyon and bounced between the walls. This
causes the channel to lose rank and gives an increased delay dispersion [21]. The
roof-edge diffraction, on the other hand, only leads to a rank-deficient channel
matrix. When the location of the roof-edge is specified, the roof-edge diffraction
can be modeled geometrically [21].

Modeling the waveguiding effect is a difficult task. In [21], it is suggested to
model the waveguiding effect by mixing the geometry-based approach and a sto-
chastic process. The scatterers are generated geometrically at the input and the
output of the street canyon. The waves propagated from the transmitter to the
input scatterers and from the output scatterers to the receiver are modeled based
on simple geometry, similar to the single and double scattering. The waveguid-
ing effect between the input scatterers and the output scatterers is then modeled
stochastically as follows.

First, an IID complex Gaussian channel matrix is generated, followed by a
singular value decomposition, that is, HIID = UΛVH . Then a rank-reducing di-
agonal matrix is introduced to describe the relative attenuation of different eigen-
modes [21]:

Λrr =


exp(−λ1/λrr) 0 0 · · ·

0 exp(−2λ2/λrr) 0 · · ·
0 0 exp(−3λ3/λrr) · · ·
...

...
...

. . .

 , (14.20)

where λrr is the attenuation parameter.
Finally, the waveguiding transfer function matrix between the input scatterers

and the output scatterers can be expressed as [21]

Hwg = UΛrrVH. (14.21)

The above discussions all focus on modeling the small-scale fading. In reality,
there are also large-scale variations due to the movement of the MS. For instance,
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the parameters of the MPCs will change when the MS moves for some distance. It
is suggested in [21] to use the same idea and parameters reported in [38] to simu-
late the large-scale variations. Another important fact that leads to time variations
is the movement of the scatterers. To model this effect, the statistics of the move-
ment and the size of the moving scatterers need to be known [21]. This, however,
is still an open problem and needs to be investigated further.

The generic MIMO channel model described above gives a general frame-
work of modeling macrocellular and microcellular MIMO wireless channels. The
statistics of many parameters described above are crude and need to be further
investigated from field measurements. For more details on parameterization of
different propagation processes and a list of parameters with typical values, the
readers are referred to [21].

Although the model described above is very general and can be made to fit
a large range of measurement conditions with appropriate choices of parameters,
this is also the main limitation of the model. Determining the actual distributions
of the model parameters may be a formidable task and establishing model accuracy
and reliability can be exceedingly difficult when a very large number of parameters
are involved. Often, the estimation of parameter distributions is not a well-posed
problem and the results may be unreliable. Although the statistics of a subset of
the model may be established under controlled conditions, constructing models
from subsets validated on different data sets may be questioned. Extrapolation
and interpolation, as is often done in simulations, must be done with care from
this model.

14.5. Industrial standardization work

MIMO channel modeling has been conducted within different industrial stan-
dardization bodies. Recently, MIMO channel models have been proposed by the
IEEE 802.11n Working Group [53] and the 3GPP/3GPP2 Technical Specification
Group [54], respectively. Below, we briefly describe these two MIMO channel
models, more details can be found in [53, 54].

14.5.1. TGn channel models

The TGn channel models [53] developed by the High Throughput Task Group
within the IEEE 802.11n Working Group have been designed for indoor MIMO
wireless local area networks (WLANs). The models have 100 MHz bandwidth and
can be used for both the 2 GHz and 5 GHz bands. Six different models (Model A–
Model F) are proposed to cover different indoor scenarios, including flat fading,
residential, small office, typical office, large office, and large space. The RMS delay
spreads vary from 0 nanosecond (flat fading) to 150 nanoseconds (large space).
Both LOS and NLOS scenarios are considered.

The TGn channel models are based on a combination of the Kronecker struc-
ture of the MIMO channel correlation matrix and the cluster channel modeling
approach [36, 37]. First, the MIMO channel correlation matrix Rl

H is approximated
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according to (14.10), where the correlation matrices Rl
Tx and Rl

Rx are obtained by
the power angular spectrums (PASs) and the corresponding angular spreads (ASs)
at the transmitter and the receiver, respectively [53, 55].

To find the PASs and the corresponding ASs, the cluster channel modeling
approach has been used. It is based on the observation that the MPCs come in
groups [36, 37]. In the TGn channel models, the number of clusters varies from 2
to 6 for different indoor scenarios, and the mean AOA and AOD for each cluster
are assumed to be uniformly distributed over [0, 2π).

In [37, 56, 57], the PAS of each cluster has been found to be matched by the
Laplacian distribution, that is,

p(θ) = 1√
2σ

exp

(
−

∣∣∣∣√2
θ

σ

∣∣∣∣
)

, (14.22)

where σ is the AS of the PAS. The mean value of the cluster AS is selected in the
range of 20◦–40◦ for different indoor scenarios. For a specific scenario, the AS of
each individual cluster is calculated using the correlation between the delay spread
and the AS, see [53] for details. As mentioned earlier, finding the true distribu-
tion of the PAS of each cluster is difficult. In [25], examples are shown where the
estimated distributions have infinite support even when in fact the true distri-
bution has finite support. This holds true for a large class of parameter estimators
used to draw conclusions about distributions. In general, it is easier to estimate the
moments of the distributions and often this is sufficient for modeling/simulation
purposes.

In order to obtain the correlation matrices Rl
Tx and Rl

Rx for each tap, the PAS
and the AS of the lth tap should be known. It is assumed in [53] that the PAS of
each individual tap within a cluster is also Laplacian distributed and its AS equals
the AS of that cluster [53, 58].

The temporal variations of MIMO channels have been characterized by the
Doppler spectrum. Three different Doppler components are considered in [53]. To
describe the main temporal Doppler component, two Doppler power spectrums
are introduced. For environments with fixed transmitters and receivers, the tem-
poral variation is mostly caused by moving people and therefore a “bell”-shaped
Doppler spectrum [53] has been used to fit the measurement data, while for mo-
bile channels, the so-called “horn” spectrum has been suggested in [11, 59]. The
second Doppler component is caused by vehicle movements. This mostly happens
in large-space environments and therefore this Doppler component has only been
used in Model F (large space). The last Doppler component is due to the fluo-
rescent lights and has been used in Model D (typical office) and Model E (large
office).

Other issues such as path loss modeling and antenna polarizations have also
been treated in [53]. Tables of parameter settings for Model A–Model F are pro-
vided in [53, Appendix].
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14.5.2. 3GPP/3GPP2 spatial channel models

The spatial channel models [54] proposed by 3GPP/3GPP2 include two differ-
ent models for the link-level simulations and the system-level simulations, respec-
tively. The link-level spatial channel model is developed for the purpose of cal-
ibration while the system-level spatial channel model is designed for algorithm
comparison.

Four different cases have been included in the link-level spatial channel model,
corresponding to different power delay profiles. For each case, a different number
of paths (same as clusters) are predefined. Each path is independent of the others
and is fully characterized by its spatial parameters, such as AS, PAS, AOA/AOD
and so forth. The spatial parameters at the BS and the MS are discussed separately,
see [54] for details. The channel model can then be obtained through correlation
or ray-tracing-based techniques [54].

The system-level spatial channel model is modeled differently from the link-
level spatial channel model. Three different environments are treated by the
system-level spatial channel model; suburban macrocell, urban macrocell, and ur-
ban microcell. The model assumes that there exist N time-delayed paths received
at the MS with different powers, and each path consists of M subpaths (same as
MPCs). Both the paths and subpaths are characterized by their own spatial pa-
rameters. In [54], a parameter table has been given which lists all the important
parameters, including powers, number of paths and subpaths, spatial parameters,
and so forth. Note that the correlations between some of the parameters (i.e., the
delay spread, AS, and shadow fading) are also incorporated in the model [54]. A
detailed process on how to generate the user parameters can be found in [54]. Af-
ter generating the user parameters, the MIMO channel coefficient for a specific
path can be calculated as a sum of the contributions from its subpaths [54].

Other features, such as polarization, far scatterer clusters, LOS, and urban
canyon are made optional in the system-level model. To handle the intercell inter-
ference, it is suggested in [54] to model the strong interferers as spatially correlated
while weak interferers are modeled as spatially white.

14.6. Conclusions

In this chapter, we have focused on modeling MIMO radio propagation channels.
After a brief overview of different modeling techniques and MIMO channel mod-
els, two typical MIMO channel models have been discussed in more detail. First,
we have discussed the Kronecker-structure-based MIMO channel models, which
decouple the MIMO channel correlation matrix as a Kronecker product of the
correlation matrices at the transmitter and the receiver. Some examples were given
where this simple model is well suited for analysis and design purposes. The second
model we have discussed is a generic MIMO channel model based on geometry
and physical parameters, which takes into account a wide variety of propagation
effects. This MIMO model is well suited for simulation purposes where accuracy is



Kai Yu et al. 289

of primary importance. Finally, we have briefly described the recent developments
in the IEEE 802.11n and 3GPP/3GPP2 standardization work.

Abbreviations

AOA Angle of arrival

AOD Angle of departure

AR Autoregressive

ASs Angular spreads

AWGN Additive white Gaussian noise

BLAST Bell Labs Layered Space-Time

BS Base station

CSI Channel state information

DDCIR Double-directional channel impulse response

EM Electromagnetic

GPs Global parameters

IID Independent and identically distributed

LOS Line-of-sight

LPs Local parameters

MIMO Multiple-input multiple-output

MPC Multipath component

MS Mobile station

NLOS Non-line-of-sight

PASs Power angular spectrums

PDF Probability density function

SISO Single-input single-output

TOA Time of arrival

ULA Uniform linear array

WLANs Wireless local area networks
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15
Channel estimation

Geert Leus and Alle-Jan van der Veen

15.1. Introduction

As demonstrated in other chapters in this book, the deployment of multiple anten-
nas at the transmit and receive sides (multiple-input multiple-output (MIMO))
can result in a significant capacity increase. This is due to two effects: (i) diversity,
that is, robustness against fading of the channel between a transmit and a receive
antenna, and (ii) space-time coding, that is, the parallel transmission of informa-
tion via multiple transmit antennas. However, this capacity increase was based on
an important assumption: all channels between the transmit antennas and the re-
ceive antennas are accurately known. In practice, these channels will have to be
estimated, which is the focus of this chapter.

The wireless channel is highly complex. In general it is both frequency and
time selective, and with multiple antennas, also the space selectivity plays a role.
Physical models such as Jakes’ model [1] usually simplify this to a multipath prop-
agation model where each path is parametrized by an angle at the receiver array,
perhaps an angle at the transmitter array, and further a propagation delay and a
complex amplitude. This can be refined by making statistical assumptions on the
distribution of these parameters. For channel modeling, one tries to use a general
model that allows to describe a large class of observed channels. For channel esti-
mation, however, there is a trade-off: a sophisticated model with more parameters
may turn out to be less accurate when the parameters have to be estimated with a
finite set of observations.

It is clear that channel estimation is an extensive topic. To limit ourselves, we
will cover only a small subset of channel models and possible estimation tech-
niques.

Channel model: FIR-MIMO. For broadband communications, the time disper-
sion or frequency selectivity due to multipath propagation is important. For the
sake of conciseness, we will restrict ourselves to single-carrier MIMO systems in
a frequency-selective fading channel. The channels are modeled by simple finite
impulse response (FIR) filters with a common order L, assumed to be known.
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Estimation techniques: training-based and semiblind. In practical systems, chan-
nels are invariably estimated using periodic bursts of known training symbols,
therefore we focus mostly on these techniques. Conventional training-based meth-
ods only exploit the presence of the known training symbols. The results can be en-
hanced by also incorporating the convolutional properties of the surrounding un-
known data symbols, which lead to the so-called enhanced training-based meth-
ods. Also discussed are semiblind methods that combine a training-based crite-
rion with a purely blind criterion. Blind techniques do not exploit the knowledge
of training symbols, and focus on deterministic or stochastic properties of the sys-
tem. Note that all channel estimation methods considered in this chapter are trans-
parent to space-time coding, that is, any structure introduced by these codes is not
exploited.

Suggestions for further reading are found at the end of the chapter.

Notation. Matrices and column vectors are written in boldface uppercase and
lowercase letters, respectively. For a matrix or column vector, superscript T is the
transpose, H the complex conjugate transpose, and † the pseudoinverse (Moore-
Penrose inverse). IN is the N×N identity matrix. 0M×N (0N ) is the M×N (N×N)
matrix for which all entries are equal to zero. vec(A) is a stacking of the columns
of a matrix A into a column vector. ‖ · ‖ represents the Frobenius norm. ⊗ is
the Kronecker product. A notable property is (for matrices of compatible sizes)
vec(ABC) = (CT ⊗ A) vec(B). Finally, E(·) denotes the stochastic expectation op-
erator.

15.2. Data model

We consider a convolutive MIMO system with At transmit antennas and Ar receive
antennas. Suppose x(n) represents the At × 1 symbol vector sequence transmitted
at the At transmit antennas. Assuming symbol rate sampling at each receive an-
tenna, the Ar × 1 sample vector sequence received at the Ar receive antennas is
then given by

y(n) =
L∑
l=0

H(l)x(n− l) + e(n), (15.1)

where e(n) is the Ar ×1 additive noise vector sequence on the Ar receive antennas,
which we assume to be zero-mean white (spatially and temporally) Gaussian with
variance σ2

e , and H(l) is the Ar×At MIMO channel of order L (or length L+1). We
will often make use of the vectorized form of H(l), which is obtained by stacking
its columns: h(l) = vec[H(l)].

In this chapter, we focus on estimating H(l) (or h(l)) without assuming any
structure on it. Hence, no calibration of the different transmit/receive antennas is
required. We assume a burst of N symbol vectors is transmitted, in the form of
K symbol blocks, where each symbol block consists of Nt training symbol vec-
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kth block:

Nd/2 Nt Nd/2

Data Data Training DataData · · ·· · ·

PP

xk

ykL

Figure 15.1. Partitioning of the transmitted symbol vectors into blocks, each consisting of Nt training
and Nd data symbol vectors.

tors, surrounded at each side by Nd/2 unknown data symbol vectors, that is, N =
K(Nt + Nd) (see Figure 15.1). We will focus on training-based as well as semib-
lind channel estimation algorithms, where the latter rely on the combination of a
training-based with a purely blind criterion.

To describe the different training-based methods that will be discussed in this
chapter, consider the following subvector of the kth symbol block, as illustrated in
Figure 15.1:

xk = [
xT(nk − P), . . . , xT

(
nk + Nt + P − 1

)]T
, (15.2)

where nk = k(Nt +Nd) +Nd/2 indicates the start of the training symbol vectors in
the kth symbol block, and 0 ≤ P ≤ Nd/2. This vector contains all the Nt training
symbol vectors transmitted during the kth symbol block, plus P unknown data
symbol vectors at each side of it. Due to the convolutive channel, the first L − 1
received sample vectors corresponding to xk are contaminated by preceding data
symbol vectors. Therefore, the received samples that depend only on xk are given
by (see Figure 15.1)

yk = [
yT

(
nk − P + L

)
, . . . , yT

(
nk + Nt + P − 1

)]T
. (15.3)

This vector can be expressed as

yk = Hxk + ek, (15.4)

where ek is similarly defined as yk and H is the Ar(Nt + 2P − L) × At(Nt + 2P)
block Toeplitz channel matrix defined in Figure 15.2:

Define the training part of xk as

x(t)
k = [

xT(nk), . . . , xT(nk + Nt − 1)
]T

, (15.5)
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H(L) · · · H(0)

H(L) · · · H(0)

PAt NtAt PAt

H =

Figure 15.2. Definition of the block Toeplitz channel matrix.

and the unknown data part as

x(d)
k = [

xT(nk − P), . . . , xT(nk − 1), xT(nk + Nt), . . . , xT(nk + Nt + P − 1)
]T
.

(15.6)

Then we can split (15.4) into

yk = H (t)x(t)
k + H (d)x(d)

k + ek, (15.7)

where H (t) is the Ar(Nt + 2P − L) × AtNt matrix obtained by collecting the Nt

middle block columns of H (the dark shaded area in Figure 15.2), and H (d) is the
Ar(Nt + 2P − L) × 2AtP matrix obtained by collecting the P left and P right block
columns (the light shaded area in Figure 15.2).

The preceding equations have expressed yk as a linear combination of the
transmitted symbols xk. Alternatively, we can write the convolution operation
(15.4) as a linear operation on the channel coefficient vector h = [hT(0), . . . ,
hT(L)]T , which gives

yk = (
Xk ⊗ IAr

)
h + ek, (15.8)

where Xk is the (Nt + 2P − L) × At(L + 1) block Toeplitz symbol matrix defined
in Figure 15.3. Similarly as in (15.7), we can split (15.8) into a training and an
unknown data part as

yk = (
X (t)

k ⊗ IAr

)
h +

(
X (d)

k ⊗ IAr

)
h + ek, (15.9)

where X (t)
k is obtained by setting the unknown data symbol vectors of x(d)

k (the

light shaded area in Figure 15.3) to zero in Xk, whereas X (d)
k is obtained by setting

the training symbol vectors of x(t)
k (the dark shaded area in Figure 15.3) to zero.
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xT (nk + Nt − 1)

xT (nk)

...

At(L + 1)

xT (nk − P + L) · · ·
...

xT (nk − 1)
P

N
t
−
L

Xk =

P

xT (nk)

...

xT (nk + Nt − 1)

xT (nk + Nt)
...

xT (nk − P)

...

xT (nk − 1)

xT (nk + Nt)

...

xT (nk + Nt + P − 1) · · · xT (nk + Nt + P − L− 1)

Figure 15.3. Definition of the block Toeplitz symbol matrix.

Although we will generally express the obtained results as a function of k, it

will sometimes be convenient to stack all vectors yk and all matrices X (t)
k and X (d)

k

for k = 0, . . . ,K − 1, leading to

y = [
yT

0 , . . . , yT
K−1

]T
, (15.10)

X (t) = [
X (t)T

0 , . . . , X (t)T
K−1

]T
, X (d) = [

X (d)T
0 , . . . , X (d)T

K−1

]T
. (15.11)

We will now discuss training-based channel estimation using (15.7) and (15.9).
We will make a distinction between conventional training-based channel estima-
tion, which only takes into account received samples that solely depend on training
symbols (P = 0), and enhanced training-based channel estimation, which next to
these received samples also takes into account some surrounding received sam-
ples, which might depend on both training symbols and unknown data symbols
or solely on unknown data symbols (0 < P ≤ Nd/2). Although the latter tech-
niques can be classified as semiblind methods, we will in a subsequent section
focus on semiblind channel estimation methods that combine one of the previous
training-based methods (conventional or enhanced) with a purely blind method.
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15.3. Conventional training-based methods

15.3.1. Channel estimation

Conventional training solutions use only those received samples that solely depend
on the training symbols. In other words, we consider P = 0, which allows us to
simplify (15.9) as

yk = (
X (t)

k ⊗ I
)

h + ek, (15.12)

where I = IAr . Although many different channel estimation procedures can be ap-
plied to (15.12), we restrict ourselves to maximum likelihood (ML) channel esti-
mation, which requires neither knowledge of the noise variance nor any statistical
information about the channel [2].

The ML channel estimate related to (15.12) is obtained by solving the follow-
ing optimization problem:

hML = arg min
h

K−1∑
k=0

∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥2

= arg min
h

∥∥y − (
X (t) ⊗ I

)
h
∥∥,

(15.13)

where the received sample vector y and training matrix X (t) are defined in (15.10)
and (15.11). This is a standard least-squares (LS) problem, whose solution is given
in terms of a pseudo-inverse, (X(t) ⊗ I)†, which is equal to X (t)† ⊗ I. Assuming
X (t) has full-column rank, which requires K ≥ At(L + 1)/(Nt − L), we obtain

hML = (
X (t)† ⊗ I

)
y

= [(
X (t)HX (t))−1 ⊗ I

](
X (t)H ⊗ I

)
y

=

K−1∑

k=0

X (t)H
k X (t)

k

−1

⊗ I

 K−1∑
k=0

(
X (t)H

k ⊗ I
)

yk.

(15.14)

If we insert the data model (15.12), it follows that

hML = h +


K−1∑

k=0

X (t)H
k X (t)

k

−1

⊗ I

 K−1∑
k=0

(
X (t)H

k ⊗ I
)

ek, (15.15)

which shows that the ML estimate is unbiased. Furthermore, since the noise term
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ek has covariance E(ekeHk ) = σ2
e I, the covariance of the channel estimation error is

given by

E
[(

hML − h
)(

hML − h
)H] = σ2

e


K−1∑

k=0

X (t)H
k X (t)

k

−1

⊗ I

 , (15.16)

which is equal to the Cramér-Rao bound (CRB), and the mean square error (MSE)
of the channel estimate can be expressed as

JML = E
{∥∥hML − h

∥∥2
}
= σ2

e Ar tr


K−1∑

k=0

X (t)H
k X (t)

k

−1


= σ2
e Ar tr

[(
X (t)HX (t))−1

]
.

(15.17)

Note that this channel estimation problem can actually be decoupled into the dif-
ferent receive antennas, and is often presented as such. However, for the enhanced
training-based methods discussed in the next section, the correlation between
the different receive antennas will come into the picture, and the problem can-
not be decoupled anymore. This does not mean that we cannot use the enhanced
training-based methods on smaller subgroups of receive antennas, it simply means
that the performance of such an approach will be different (see also Section 15.6).

15.3.2. Optimal training design

It is possible to design the training symbol vectors such that JML is minimized
under a total training power constraint. In other words, we solve

min
{x(t)

k }
tr
[(

X (t)HX (t))−1
]

s.t.
K−1∑
k=0

∥∥x(t)
k

∥∥2 = E, (15.18)

where E is a specified constant. To solve this problem, observe that

tr
[(

X (t)HX (t))−1
]
≥

At(L+1)∑
i=1

1∥∥X (t)(:, i)
∥∥2 , (15.19)

where equality is obtained if X (t)HX (t) is diagonal (the notation A(:, i) represents
the ith column of the matrix A). From Figure 15.3 (with P = 0), it is clear that

each block column of X (t)
k only contains Nt−L training symbol vectors of the total

amount of Nt training symbol vectors collected in x(t)
k . Hence, there is no imme-

diate connection between
∑K−1

k=0 ‖x(t)
k ‖2 and ‖X (t)‖2, which complicates matters.

We proceed in the following way. We first find the minimum of the right-hand
side of (15.19) under the constraint, which is obtained when all terms are equal
and as small as possible under this constraint, and we subsequently try to realize
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0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0· · · · · ·· · ·

L 1 L

Nt = M(L + 1) + L

Data Training Data
tkM tkM+1 t(k+1)M−1

Figure 15.4. Structure of the solution for optimal training.

this minimum by a training design for which X (t)HX (t) is diagonal, in order to
obtain equality in (15.19).

We will consider the following two cases: the number of training symbolsNt ≥
2L + 1, and Nt = L + 1. For the remaining case where L + 1 < Nt < 2L + 1, the
optimization problem is hard to solve in analytical form.

15.3.2.1. Case Nt ≥ 2L + 1.

In this case, the terms on the right-hand side of (15.19) are equal and as small as

possible under the constraint
∑K−1

k=0 ‖x(t)
k ‖2 = E, if

x
(
nk + l

) = 0At×1, x
(
nk + Nt − 1 − l

) = 0At×1,

for l = 0, 1, . . . ,L− 1, k = 0, 1, . . . ,K − 1,
(15.20)

∥∥X (t)(:, i)
∥∥2 = E

At
, for i = 1, . . . ,At(L + 1). (15.21)

If we also choose X (t)HX (t) diagonal, in order to obtain equality in (15.19), then
the latter condition can be written as

X (t)HX (t) = E

At
IAt(L+1), (15.22)

which requires K ≥ At(L + 1)/(Nt − L).
As an example, consider an integer M ≥ 1 and set Nt = M(L + 1) + L. An op-

timal solution is then given by using dispersed training symbol vectors separated
by L zero vectors:

x(t)
k = [

0T
AtL×1, tTkM , 0T

AtL×1, tTkM+1, . . . , 0T
AtL×1, tT(k+1)M−1, 0T

AtL×1

]T
, (15.23)

where T = [t0, . . . , tKM−1] is an At × KM matrix that satisfies TTH = E/At IAt ,
which requires K ≥ At/M. The structure of the solution is shown in Figure 15.4.

Often, only M = At (hence, Nt = At(L + 1) + L) and a single message block
(K = 1) is considered, since this option minimizes the total training overhead for
a fixed total burst length N . For instance, the optimal training approach of [3],
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which maximizes a lower bound on the ergodic capacity assuming linear mini-
mum mean square error (LMMSE) channel estimation, falls within this special
class. However, Nt and K cannot always be chosen freely. As a result, the other
options might also be useful in practice, as well as the case that is considered next.

15.3.2.2. Case Nt = L + 1.

First of all, note from Figure 15.3 (with P = 0) that in this case X (t)
k = x(t)T

k , and

consequently X (t) = [x(t)
0 , . . . , x(t)

K−1]T . Therefore, the terms on the right-hand side

of (15.19) are equal and as small as possible under the constraint
∑K−1

k=0 ‖x(t)
k ‖2 =

E, if

∥∥X (t)(:, i)
∥∥2 = E

(At(L + 1))
, for i = 1, . . . ,At(L + 1). (15.24)

Again, if we also choose X (t)HX (t) diagonal, this condition becomes

X (t)HX (t) = E(
At(L + 1)

) IAt(L+1), (15.25)

which requires K ≥ At(L + 1). Since X (t) has no specific block Toeplitz structure,
condition (15.25) is easy to satisfy.

15.4. Enhanced training-based methods

In the previous section, we only considered those received samples that solely were
depending on training symbols. However, an enhanced channel estimate can be
obtained if we also take some surrounding received samples into account. Refer-
ring to Figure 15.1, we will consider 0 < P ≤ Nd/2, which, this time, does not allow
us to simplify (15.9).

We will again apply ML channel estimation. However, since also unknown
data symbols are involved, we can adopt different options now. We will here fo-
cus on deterministic ML (DML) and Gaussian ML (GML). In DML, we assume
the data symbols are unknown deterministic parameters, whereas in GML we as-
sume that they are unknown random variables with a Gaussian distribution. Both
methods do not take the finite-alphabet property of the data symbols into account,
because this often leads to more complex algorithms. For this extension, we refer
the interested reader to [4], where the data symbols are viewed as discrete deter-
ministic parameters, and to [5], where they are regarded as random variables with
a discrete distribution (only flat-fading MIMO channels are considered in [4, 5]).

Since we restrict P to 0 < P ≤ Nd/2, two successive vectors x(d)
k and x(d)

k+1 never
overlap, which allows us to process them independently. See [6] for an overview
of similar enhanced training-based ML methods for the single-input multiple-
output (SIMO) case with K = 1.
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15.4.1. Deterministic ML

Viewing the data symbols as unknown deterministic parameters, the ML channel
estimate related to (15.9) is obtained by solving the following optimization prob-
lem:

(
hML,

{
x(t)
k,ML

})
= arg min

(h,{x(t)
k })

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h −
(
X (d)

k ⊗ I
)

h
∥∥∥2

(15.26)

= arg min
(h,{x(t)

k })

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h − H (d)x(d)
k

∥∥∥2
. (15.27)

This can for instance be solved by alternating minimizations between h and {x(d)
k }

(initialized by x(d)
k = 02AtP×1). In this context, note that the solution for h of

(15.26) for a given estimate x̂(d)
k is, as in (15.14),

hML

({
x̂(d)
k

})
= arg min

h

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h −
(
X̂ (d)

k ⊗ I
)

h
∥∥∥2

=

K−1∑

k=0

(
X (t)

k + X̂ (d)
k

)H(
X (t)

k + X̂ (d)
k

)−1

⊗ I


·
K−1∑
k=0

[(
X (t)

k + X̂ (d)
k

)H ⊗ I
]

yk,

(15.28)

whereas the solution for x(d)
k,ML of (15.27) for a given estimate ĥ is

x(d)
k,ML(ĥ) = arg min

x(d)
k

∥∥∥yk −
(
X (t)

k ⊗ I
)

ĥ − Ĥ (d)x(d)
k

∥∥∥2

= Ĥ (d)†
[

yk −
(
X (t)

k ⊗ I
)

ĥ
]
.

(15.29)

Note that we assume here that X (t) + X̂ (d) always has full-column rank At(L+ 1),
which requires K ≥ At(L + 1)/(Nt + 2P − L).

We can also plug (15.29) in (15.27) to obtain

hML = arg min
h

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥∥2

P⊥
col(H (d))

, (15.30)

where P⊥
col(H

(d)) = IAr (Nt+2P−L) −H (d)H (d)† is the projection matrix onto the or-
thogonal complement of the column space of H (d). This problem can be solved
using gradient techniques which, unfortunately, are rather complex and proba-
bly not worth the additional effort. Note that the simplified quadratic DML tech-
niques proposed for SIMO systems [6] cannot be applied for MIMO systems, be-
cause it is impossible to find a linear parametrization of the null space of H (d) as
a function of h.
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The CRB for the DML channel estimate can be derived as in [7] and is given
by

CRBDML = σ2
e

{ K−1∑
k=0

[(
X (t)

k + X (d)
k

)H ⊗ I
]

P⊥
col

(
H (d))[(X (t)

k + X (d)
k

)
⊗ I

]}−1

.

(15.31)

Remark 15.1. If Nt > L, Ar ≤ At, and H (d) has a nonempty left null space of
dimension Ar(Nt − L) (true with probability one if Nt > L and Ar ≤ At), then
the matrix P⊥

col(H
(d)) = S, where S is the Ar(Nt + 2P − L) × Ar(Nt + 2P − L)

selection matrix that selects the Ar(Nt − L) middle rows and removes the ArP top
and bottom rows. As a result, the iterative approach is not required, since we can
solve (15.30) in closed form. Its solution is then given by

hML =
[ K−1∑

k=0

(
X (t)H

k ⊗ I
)

S
(
X (t)

k ⊗ I
)]−1 K−1∑

k=0

(
X (t)H

k ⊗ I
)

Syk. (15.32)

The CRB (15.31) can then be expressed as

CRBDML = σ2
e

{ K−1∑
k=0

[(
X (t)

k + X (d)
k

)H ⊗ I
]

S
[(

X (t)
k + X (d)

k

)
⊗ I

]}−1

= σ2
e

[ K−1∑
k=0

(
X (t)H

k ⊗ I
)

S
(
X (t)

k ⊗ I
)]−1

,

(15.33)

where we have used that the Ar(Nt − L) middle rows of X (d)
k contain zero entries.

It is clear that these results are exactly the same as the ones for the conventional
training-based method (applying S is the same as taking P = 0).

Remark 15.2. Another special case arises when Nt ≤ L, Ar ≤ At , and the matrix
H (d) has an empty left null space (true with probability one if Nt ≤ L and Ar ≤
At). In that case, P⊥

col(H
(d)) = 0Ar (Nt+2P−L), which actually means that the DML

problem is underdetermined ((15.30) is underdetermined and the CRB (15.31) is
infinity). However, the iterative approach can still be applied in order to find a
reasonable channel estimate. Actually, the iterative approach will converge in one
step to the solution that is obtained after the first step of the GML method (see
Section 15.4.2). Hence, it can never outperform the GML method under these
circumstances.

15.4.2. Gaussian ML

Recall (15.9), namely,

yk =
(
X (t)

k ⊗ I
)

h +
[(

X (d)
k ⊗ I

)
h + ek

]
. (15.34)
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Viewing the data symbols as unknown random variables with a Gaussian distri-
bution, the term in brackets is a Gaussian noise term with covariance

Q = H (d)Rx(d)H (d)H + σ2
e IAr (Nt+2P−L), (15.35)

where Rx(d) = E{x(d)
k x(d)H

k } is the covariance of x(d)
k , which we assume to be known.

Following standard techniques, the ML channel estimate related to (15.34) is then
obtained by solving the optimization problem

(
hML, σ2

e,ML

) = arg min
(h,σ2

e )
K ln |Q| +

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥∥2

Q−1
. (15.36)

This problem can be solved using gradient techniques. However, since these are
rather complex, we will simplify (approximate) the problem by assuming that Q
is an arbitrary matrix that is independent from h and σ2

e . This approach has been
proposed in [8] for the single-input single-output (SISO) case, and it has been
shown there that the effect on the CRB is negligible. We then obtain

(
hML, QML

) = arg min
(h,Q)

K ln |Q| +
K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥∥2

Q−1
, (15.37)

which can be solved using alternating minimizations between h and Q (initialized
by Q = IAr (Nt+2P−L)). Indeed, using similar derivations as in [8], we can show that
for a given estimate Q̂, the optimal estimate for h is

hML(Q̂) = arg min
h

K ln |Q̂| +
K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥∥2

Q̂−1

=
[ K−1∑

k=0

(
X (t)H

k ⊗ I
)

Q̂−1
(
X (t)

k ⊗ I
)]−1 K−1∑

k=0

(
X (t)H

k ⊗ I
)

Q̂−1yk,

(15.38)

whereas for a given estimate ĥ, the optimal estimate for Q is

QML(ĥ) = arg min
Q

K ln |Q| +
K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

ĥ
∥∥∥2

Q−1

= K−1
K−1∑
k=0

[
yk −

(
X (t)

k ⊗ I
)

ĥ
][

yk −
(
X (t)

k ⊗ I
)

ĥ
]H

.

(15.39)

Note that we assume here that X (t) has full-column rank At(L+1), which requires
K ≥ At(L + 1)/(Nt + 2P − L), and that Q̂ is always invertible, which requires K ≥
Ar(Nt + 2P − L).

As already mentioned, the CRB does not change much by simplifying (ap-
proximating) the GML problem formulation. Hence, we will only show the CRB
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of the simplified (approximated) GML channel estimate. This can be derived as in
[8] and is given by

CRBGML =
[ K−1∑

k=0

(
X (t)H

k ⊗ I
)

Q−1
(
X (t)

k ⊗ I
)]−1

. (15.40)

Remark 15.3. If we set the first and last L training symbol vectors to zero in each
symbol block, as we did for the optimal training strategy of Section 15.3.2.1 (see
(15.20)), then it is easy to show that

Q−1
(
X (t)

k ⊗ I
)
= σ−2

e

(
X (t)

k ⊗ I
)
. (15.41)

As a result, the CRB (15.40) can be expressed as

CRBGML = σ2
e

( K−1∑
k=0

X (t)H
k X (t)

k

)−1

⊗ I

 . (15.42)

Because of (15.20), this CRB does not change with P, and is hence equivalent to the
CRB for the conventional training-based method (which takes P = 0). Therefore,
the GML method has no advantage over the conventional training-based method
in this case.

Remark 15.4. A closed-form GML channel estimate can be obtained when Nt = 1
and P = L. First, observe that when Nt = 1 and P = L, X (t)

k can be written as

X (t)
k = IL+1 ⊗ x(t)T

k = IL+1 ⊗ xT(nk). (15.43)

Due to this special structure, it can be shown that (15.38) becomes independent
of Q̂ as long as it is invertible. As a result, the iterative approach converges in one
step and the closed-form GML channel estimate is given by

hML =
IL+1 ⊗

( K−1∑
k=0

x∗(nk)xT(nk)

)−1

⊗ I

 K−1∑
k=0

(
IL+1 ⊗ x∗(nk) ⊗ I

)
yk. (15.44)

The CRB (15.40) becomes

CRBGML =
[ K−1∑

k=0

(
IL+1 ⊗ x∗(nk) ⊗ I

)
Q−1(IL+1 ⊗ xT(nk) ⊗ I

)]−1

. (15.45)

Note that in this case, we can again decouple the problem into the different receive
antennas.
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15.5. Semiblind channel estimation

15.5.1. A combined cost function

The enhanced training-based methods discussed in the previous section can be
viewed as semiblind channel estimation methods, albeit in a limited form. We dis-
cuss in this section the combination of training-based methods (conventional or
enhanced) with purely blind methods. We can arrive at such methods by combin-
ing the cost functions in Sections 15.3 or 15.4 with a blind criterion. We will limit
ourselves to quadratic blind criteria which usually result from deterministic blind
methods or stochastic blind methods based on second-order statistics (SOS). It
would also be possible to exploit higher-order statistics (HOS) [9, 10] or constant
modulus and finite-alphabet properties.

For the sake of simplicity, we restrict our attention to the conventional train-
ing-based criterion (15.13). Combining this criterion with a quadratic blind crite-
rion, we obtain a semiblind problem that often can be formulated as

ho = arg min
h

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥∥2

+ α‖VH‖2, (15.46)

where H = [HT(0), . . . , HT(L)]T , and V = [V(0), . . . , V(L)] is a matrix which
depends on the received data and can be constructed in many different ways de-
pending on the blind criterion that will be adopted, as discussed later on.

To rewrite this as a single condition on h, let W = [W(0), . . . , W(L)] be a
matrix such that vec(VH) = Wh. In particular, since

vec
(

V(l)H(l)
) = (

IAt ⊗ V(l)
)

vec
(

H(l)
) = W(l)h(l), (15.47)

W(l) is given by W(l) = IAt ⊗ V(l). In terms of W, the problem (15.46) can be
rewritten as

ho = arg min
h

K−1∑
k=0

∥∥∥yk −
(
X (t)

k ⊗ I
)

h
∥∥∥2

+ α‖Wh‖2, (15.48)

the solution of which is given by

ho =
[( K−1∑

k=0

X (t)H
k X (t)

k

)
⊗ I + αWHW

]−1 K−1∑
k=0

(
X (t)H

k ⊗ I
)

yk. (15.49)

Note that the choice of a good weighting factor α will be crucial. We will come
back to this in Section 15.5.4.

The matrix V in (15.46) can be obtained from many recently proposed blind
MIMO channel estimation algorithms that determine the channel H up to an in-
vertible (sometimes unitary) matrix. Usually, HOS are used to resolve this ambigu-
ity. Here, the training-based part will take care of that (we assume that the channel
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is identifiable using only the training part). Generally, only the received sample
vectors that depend completely on unknown data symbol vectors are taken into
account in the blind criterion. However, in the considered setup, this would mean
that a lot of blind structural information is lost, because the training symbol vec-
tors break up the total burst in many different pieces. In this work, we therefore
construct the blind criterion based on all received sample vectors in order not to
lose any blind information.

As examples on the construction of V, we will present in Sections 15.5.2 and
15.5.3 two deterministic blind algorithms, capable of perfectly estimating H (up
to an invertible matrix) using a finite number of samples in the absence of noise.
The first is the subspace (SS) approach [11, 12, 13] whereas the second is the least-
squares smoothing (LSS) approach [14, 15].

15.5.2. Subspace approach

The first example of a blind MIMO channel estimation algorithm is the so-called
subspace approach, defined in [12, 13] (introduced in [11] for the SIMO case). Let
Y be an extended data matrix constructed from the received sample vectors as

Y =


y(L) y(L + 1) · · · y(N −Q − 1)

...
...

...
y(L + Q) y(L + Q + 1) · · · y(N − 1)

 . (15.50)

Y is an Ar(Q+1)×(N−L−Q) block Hankel matrix, where Q is a design parameter
that can be interpreted as the filter order of an equalizer acting on the sequence
y(n), and is usually called the smoothing factor. This matrix can be written as

Y = HQX + E , (15.51)

where the additive noise matrix E is similarly defined as Y, HQ is the Ar(Q +
1) × At(L + Q + 1) block Toeplitz channel matrix that is similarly defined as H in
Figure 15.2 but with different dimensions, and X is the At(L+Q+1)×(N−L−Q)
block Hankel data symbol matrix given by

X =


x(0) · · · x(N − L−Q − 1)

...
...

x(L + Q) · · · x(N − 1)

 . (15.52)

We assume that there is no noise. If HQ is tall and of full-column rank, and X
is wide and of full-row rank, then Y = HQX is a low-rank factorization, and
therefore Y has a nonempty left null space of dimension dSS = Ar(Q+ 1)−At(L+
Q + 1). Denoting the Ar(Q + 1) × dSS matrix USS as the left singular vectors of Y
corresponding to this null space, we have

HH
Q USS = 0At(L+Q+1)×dSS . (15.53)
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Each block row of (15.53) gives a linear relation on the block entries H(l) inside the
structured matrix HQ. Subsequently, we use this structure to rewrite the equation:

HH
Q USS =



HH(L)
...

. . .

HH(0) HH(L)
. . .

...
HH(0)




USS(0)

...
USS(Q)

 = 0At(L+Q+1)×dSS

HIIJ
[

HH(0) · · ·HH(L)
]

USS(Q) · · · USS(0)
. . .

. . .

USS(Q) · · · USS(0)

 = HHUSS = 0At×dSS .

(15.54)

As a result, we can choose V = VSS = UH
SS in (15.46). In the noiseless case, the

solution is unique (up to an invertible matrix) if HQ has full-column rank and X
has full-row rank.

15.5.3. Least-squares smoothing approach

A second blind MIMO channel estimation technique is the so-called least-squares
smoothing approach [15] (introduced in [14] for the SIMO case). Define the fol-
lowing block Hankel received sample matrices (viz., Figure 15.5):

Yp =


y(L) · · · y(N − 2Q − L− 3)

...
...

y(Q + L) · · · y(N −Q − L− 3)

 : Ar(Q + 1) × [
N − 2(Q + L + 1)

]
,

Yc=


y(Q + L + 1) · · · y(N −Q − L− 2)

...
...

y(Q + 2L + 1) · · · y(N −Q − 2)

 : Ar(L + 1) × [
N−2(Q+L+1)

]
,

Y f =


y(Q + 2L + 2) · · · y(N −Q − 1)

...
...

y(2Q + 2L + 2) · · · y(N − 1)

 : Ar(Q+1) × [N−2(Q+L+1)],

(15.55)
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X p Xc X fQ + 1 L 1 L Q + 1

x(0) x(Q + 1) x(2L + Q + 1) x(2L + 2Q + 2)

x(L + Q + 1)

L Q + 1 L + 1 Q + 1 L

Yp Yc Y f

y(L)

y(L + Q + 1) y(2L + Q + 1)

y(2L + 2Q + 2)

Figure 15.5. Least-squares smoothing data model.

corresponding to the “past,” “current,” and “future.” L is the smoothing factor for
Yc, and Q is the smoothing factor for Yp and Y f . These matrices have the follow-
ing models:

Yp = HQXp + Ep,

Yc = HLXc + Ec,

Y f = HQX f + E f ,

(15.56)

where HQ and HL are Ar(Q+ 1)×At(Q+L+ 1) and Ar(L+ 1)×At(2L+ 1) block
Toeplitz channel matrices, and Xp, Xc, and X f are the past, current, and future
block Hankel data symbol matrices given by

Xp=


x(0) · · · x(N−2Q−2L−3)

...
...

x(Q+L) · · · x(N−Q−L−3)

 : At(Q + L + 1)×[
N−2(Q+L+1)

]
,

Xc=


x(Q+1) · · · x(N−Q−2L−2)

...
...

x(Q+2L+1) · · · x(N−Q−2)

 : At(2L+1)×[
N−2(Q+L+1)

]
,

X f =


x(Q+L+2) · · · x(N−Q−L−1)

...
...

x(2Q+2L+2) · · · x(N−1)

 : At(Q+L+1) × [N−2(Q+L+1)].

(15.57)
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Note that all the block rows of Xc, except for the block row

X = [
x(Q + L + 1), . . . , x(N −Q − L− 2)

]
, (15.58)

are contained in Xp and X f . Hence, all different block rows can be collected in

Xtot =
[
XT

p , XT , XT
f

]T
. (15.59)

We assume that there is no noise. If HQ is tall and of full-column rank and Xtot

is wide and of full-row rank, then the orthogonal projection of Yc onto the or-
thogonal complement of the row space of Xp, f = [XT

p , XT
f ]T is equal to the

orthogonal projection of Yc onto the orthogonal complement of the row space of
Yp, f = [YT

p , YT
f ]T , and it is given by

YcP⊥
row

(
Yp, f

) = YcP⊥
row

(
Xp, f

) = HXP⊥
row

(
Xp, f

)
, (15.60)

where P⊥
row(A) = I−A†A is the projection matrix onto the orthogonal complement

of the row space of A. In addition, H has full-column rank and XP⊥
row(Xp, f ) has

full-row rank, which means that the column span of YcP⊥
row(Yp, f ) coincides with

the column span of H. Let ULSS be a matrix containing the left null space vectors
of YcP⊥

row(Yp, f ). ULSS has size Ar(L + 1) × dLSS, where dLSS = Ar(L + 1) − At, and

HHULSS = 0At×dLSS . (15.61)

In terms of the semiblind criterion, we can take V = VLSS = UH
LSS in (15.46).

In the noiseless case, the blind solution is unique (up to an invertible matrix) if
HQ has full-column rank and Xtot has full-row rank.

15.5.4. Weighting factor

In (15.46), a weighting factor α scales the blind equation error relative to the train-
ing error. The choice of α is important: with an incorrect setting, the channel esti-
mate can be worse than a training-only estimate! Ideally, one would want to choose
α to minimize the channel MSE.

This is a well-known but essentially unsolved problem in semiblind channel
estimation; an extensive discussion can be found in [6]. One heuristic way of han-
dling the problem is trying to avoid it by adapting the blind cost function in such
a way that the MSE becomes less sensitive to α, for example, by “denoising” [6]:
a technique where the smallest eigenvalue of WHW is forced to zero by replacing
WHW by WHW−λminI, where λmin is the minimal eigenvalue of WHW. One could
also try to find the optimal α in terms of the channel MSE, but this is usually very
hard and represents a large computational cost.
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15.5.5. Other blind channel estimation algorithms

The SS and LSS approaches basically require that all sources have the same channel
order and that this channel order is known. Related to this latter requirement, it
must be said that, in contrast to the SS approach, the LSS approach allows for a
simple joint order-channel estimation technique (illustrated in [14] for the SIMO
case).

To avoid the sensitive requirement on knowledge of the channel length as
present in the SS and LSS techniques, some interesting stochastic blind techniques
based on SOS have been developed, such as the outer-product decomposition
(OPD) approach [15, 16, 17], and the multistep linear prediction (MSLP) ap-
proach [15, 18, 19], which is a generalization of the earlier (one-step) linear pre-
diction (LP) approach [15, 20, 21, 22, 23]. Note that for the latter, a corresponding
semiblind MIMO channel estimation procedure has been developed in [24]. The
OPD and MLSP are closely related to each other and can be viewed as a stochastic
version of the LSS approach. They do not require that all sources have the same
channel order and that this channel order is known. However, they require the
different sources to be zero-mean white (spatially and temporally), which is not
always the case, for example, when space-time coding is used. Moreover, since the
training-based part that we include in the cost function can remove any ambigu-
ity problems due to the above identifiability requirements, we have observed that
the deterministic techniques are to be preferred in a semiblind context if the total
burst length N is short.

15.6. Simulation results

To finish the chapter, the proposed techniques are illustrated by means of simula-
tion. We assume that the At×Ar MIMO channel H(l) of order L is Rayleigh fading,
that is, has zero-mean Gaussian distributed channel taps. We further assume that
these channel taps are i.i.d. with variance σ2

h . Although the proposed methods are
able to handle sources with correlations that are spatially or temporally colored,
for example, due to space-time coding, we assume here a simple spatial multiplex-
ing approach where the unknown data symbols are zero-mean i.i.d. (spatially and
temporally) QPSK modulated with symbol energy 1. If possible, the training sym-
bols are designed according to one of the optimal training strategies discussed in
Section 15.3.2 in such a way that the average symbol energy is 1. If not possible,
for example, when Nt = 1 as illustrated below, they are designed in a similar way
as the unknown data symbols, with unit energy. The noise variance is σ2

e , and the
received signal-to-noise ratio (SNR) per transmit antenna is defined as

SNR = (L + 1)σ2
h

σ2
e

. (15.62)

To compare the different channel estimation methods, we will use the normalized
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MSE (NMSE) as performance measure, which can be defined as

NMSE = 1
R

R−1∑
r=0

∥∥ĥ(r) − h(r)
∥∥2

(L + 1)AtArσ
2
h

, (15.63)

where the superscript r indicates the simulation run, and R is the total number
of runs. Note that in each run, we will consider a new channel, data, and noise
realization. First, we will compare the different training-based methods. Next, we
study the performance of the presented semiblind channel estimation procedures.

15.6.1. Training-based results

We consider a MIMO system with At = 2 transmit antennas and Ar = 1, 2, 4 re-
ceive antennas. The channel order we simulate is L = 3. For the enhanced training-
based methods, we take P = L = 3 and we carry out three iterations (unless of
course the method converges in one step). The total number of symbol blocks that
will be taken into account is given by K = 100. To make a fair comparison between
the different numbers, of receive antennas, we consider R = 400, 200, 100 simula-
tion runs for Ar = 1, 2, 4 receive antennas, respectively. Note that decreasing Ar

can be viewed either as reducing the number of receive antennas, or as treating the
different receive antennas in smaller subgroups.

First, we take Nt = 2L+ 1 = 7, such that we can implement the optimal train-
ing strategy of Section 15.3.2.1. From Remark 15.1, we know that the conventional
ML method with Ar = 1, 2, 4 and the DML method with Ar = 1, 2 will produce
the same result in this case. The DML method with Ar = 4 and the GML method
with Ar = 1, 2, 4, on the other hand, will result in a different performance. How-
ever, since the GML method will not be able to outperform the conventional ML
method in this case (see Remark 15.3), we will not consider it here. The simulation
results and CRBs are shown in Figure 15.6. We observe that the simulation results
match the CRBs well. We also notice that the DML method with Ar = 4 does a
little bit better than the other methods.

Next, we take Nt = L + 1 = 4, such that we can implement the optimal
training strategy of Section 15.3.2.2; the results are shown in Figure 15.6. From
Remark 15.1, we can again deduce that the conventional ML method with Ar =
1, 2, 4 and the DML method with Ar = 1, 2 are the same. As before, the DML
method with Ar = 4 and the GML method with Ar = 1, 2, 4 will be different, but
this time there is no indication that the GML method cannot beat the conventional
ML method. Hence, all methods will be considered. From Figure 15.6, we observe
that the conventional ML method with Ar = 1, 2, 4 and the DML method with
Ar = 1, 2 closely approach their CRB, which is by the way the worst among all
CRBs. The DML method with Ar = 4 has the best CRB, but the simulated perfor-
mance is saturated at high SNR. The saturation level can be lowered by increasing
the number of iterations, but it goes slowly. The CRB of the GML method is some-
where in between and improves with Ar . As for the DML method with Ar = 4, its
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Figure 15.6. Training-based algorithms: comparison of the different methods: (a) for Nt = 2L+1 = 7,
(b) for Nt = L + 1 = 4, (c) for Nt = 1.
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simulated performance moves away from the CRB, but not as much. In addition,
only a few more iterations will shift the simulated performance close to its CRB.

We finally consider a situation where the conventional ML method cannot
be used due to the fact that Nt < L + 1. This happens for instance for the pilot
symbol assisted modulation (PSAM) scheme [25], where training symbols (pilots)
are periodically inserted in the total burst. In the considered MIMO setup, the
PSAM approach corresponds to taking Nt = 1. From Remark 15.2, we know that
the DML method with Ar = 1, 2 corresponds to the first step of the GML method
with Ar = 1, 2, and thus should not be considered. Remark 15.4, on the other
hand, tells us that the GML method converges in one step and performs the same
for Ar = 1, 2, 4. Only the DML method with Ar = 4 does better, as can be observed
from Figure 15.6. Notice that whereas the GML method performs close to its CRB,
the performance of the DML method with Ar = 4 is generally far from its CRB (in
a positive sense at low SNR, but in a negative sense at high SNR). This gap reduces
by increasing the number of iterations, but this goes very slowly.

15.6.2. Semiblind results

In this section, we illustrate the performance of the semiblind methods. We con-
sider a MIMO system with At = 2 transmit antennas and Ar = 4 receive antennas.
Note that Ar > At is required for the semiblind criterion to be useful (this is in
contrast with the enhanced training-based methods). The channel order is again
assumed to be L = 3. We consider K = 10 symbols blocks, Nt = 7 training symbol
vectors per block, and Nd = 80 unknown data symbol vectors per block (as a re-
sult, we have a total of N = K(Nt + Nd) = 870 symbol vectors in one burst). Since
Nt = 2L+ 1 = 7, we again use the optimal training strategy of Section 15.3.2.1. We
consider R = 100 simulation runs and the received SNR per transmit antenna is
set to 15 dB. Figure 15.7 compares the performance of the semiblind method us-
ing the subspace and the least-squares smoothing criterion with the conventional
training-based method as a function of α. Clearly, at the optimal α (different for
the two aproaches), the semiblind method outperforms the conventional training-
based method. We also observe that the subspace approach does better than the
least-squares smoothing approach. A similar behavior was observed for different
settings.

15.7. Conclusions and additional pointers

This chapter has covered only a very small part of the available literature. As a
general reference to wireless channel estimation algorithms, we suggest the edited
book [26] and the overview article [27].

Optimal training symbol placement and design has recently become a popular
topic, for example, in context of capacity maximization; some contributions are
[28, 29, 30, 31, 32]. In particular relevant to the discussion in this chapter is [30],
which gives optimal placement of training symbols in the semiblind context based
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Figure 15.7. Semiblind algorithms: comparison of the different methods: (a) subspace method, (b)
least-squares smoothing method.

on Cramér-Rao bound (CRB) considerations (i.e., minimizing the MSE of the
channel estimate and unknown data symbols).

In this chapter, we did not cover multicarrier MIMO systems (e.g., based
on orthogonal frequency division multiplexing (OFDM)). For these systems, the
frequency-selective channel can be transformed into a set of parallel frequency-flat
(or instantaneous) channels. Although each subband is a special case of a single-
carrier MIMO system, more optimal methods can be adopted by exploiting the
OFDM structure (the dependencies between subbands). For more details in this
direction, we refer to [31, 32, 33, 34, 35] and references therein.

A new trend in the field of channel estimation considers linear time-varying
(LTV) channels. Here, the channel is assumed to vary over a data block. There are
two approaches: (i) channel tracking, where an initial estimate is updated as time
progresses, and (ii) model-based block solutions, where the number of unknown
channel coefficients is limited via a parametric model for the channel time vari-
ation, such as an exponential or polynomial basis expansion model. These para-
metric models are studied in, for example, [36, 37, 38, 39].

Another recent trend is to consider superimposed training. The schemes in
this chapter were based on time-division multiplexing. Superimposed training is
to add to the data stream x(d)(t) a known training signal x(t)(t), so that x(t) =
x(d)(t)+x(t)(t). Channel estimation is possible, for example, if the data symbols are
i.i.d. and zero-mean, whereas the pilot has certain periodicities (cyclostationary
properties) [40].

For the FIR-SIMO case, semiblind methods of the type we discussed have
been presented in [6, 41]. Some of the earlier (FIR-SISO) semiblind papers are
[42, 43, 44, 45]. In Section 15.5, we presented two deterministic techniques for
blind channel estimation. In general, such techniques may exploit (i) the convo-
lutive structure (Hankel/Toeplitz), via oversampling or multiple channels, (ii) in-
stantaneous properties of the sources, such as their finite alphabet and constant
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modulus, or (iii) stochastic properties such as statistical independence and cyclo-
stationarity. This area has seen tremendous activity in the 1990s. Overviews can
be found in [26, 46, 47, 48]. There are also several examples of algorithms which
combine training with blind source properties, but the topic has not systematically
been researched. As mentioned in Section 15.5.4, the problem of “α”-scaling of the
training versus blind parts of the cost function remains essentially open, although
several heuristics are known [6].
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Abbreviations

CRB Cramér-Rao bound

DML Deterministic ML

FIR Finite impulse response

GML Gaussian ML

HOS Higher-order statistics

LMMSE Linear minimum mean square error

LP Linear prediction

LS Least-squares

LSS Least-squares smoothing

LTV Linear time-varying

MIMO Multi-input multi-output

ML Maximum likelihood

MSE Mean square error

MSLP Multistep linear prediction

NMSE Normalized MSE

OFDM Orthogonal frequency division multiplexing

OPD Outer-product decomposition

PSAM Pilot symbol assisted modulation

QPSK Quadrature phase-shift keying

SIMO Single-input multiple-output

SISO Single-input single-output

SNR Signal-to-noise ratio

SOS Second-order statistics
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16
Direction-of-arrival estimation

Mats Viberg

16.1. Signal models and problem formulation

The purpose of this chapter of the book is to review the area of direction-of-arrival
(DOA) estimation, with special focus on wireless communication systems. Such
information is useful for understanding the propagation environment, and gives
empirical evidence for theoretical propagation models. Both detailed modeling in-
cluding resolution of all propagation paths, and statistical models of scatter clus-
ters can be of interest. Both these cases will be considered herein. The chapter is
organized as follows: first the basic signal models are motivated and the estima-
tion problems are introduced in Section 16.1. Then, in Section 16.2 a brief intro-
duction to the standard DOA estimation problem is given. Section 16.3 considers
estimation in case of spatially spread sources (i.e., unresolved scatterers). Finally,
Section 16.4 applies the DOA estimation methods to parametric modeling of the
wireless channel.

16.1.1. Spatial signal modeling

A traditional wireless communication system has one transmit and one receive
antenna. To enable estimation of the direction to the transmitter, the received sig-
nal must be sampled at several spatial locations. The different elements of such
an antenna array will all measure the same signal, but with different time delays
depending on the DOA. In a realistic scenario, these time delays are much smaller
than the reciprocal of the signal bandwidth, and can therefore be considered as
phase shifts (see [1] for more details regarding this narrowband assumption). Let
s(t) be the complex baseband equivalent of the electromagnetic field at a refer-
ence position, due to a far-field transmitter in the direction θ. The vector-valued
received signal at the positions of m antenna elements can then be expressed as

x(t) =


x1(t)
x2(t)

...
xm(t)

 =


e− jωcτ1(θ)

e− jωcτ2(θ)
...

e− jωcτm(θ)

 s(t) = a(θ)s(t), (16.1)
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where ωc is the carrier frequency and τk(θ) denotes the propagation delay from
the reference to the kth element. The vector a(θ) is termed the steering vector of
the array. Assuming linear receivers with flat frequency responses over the signal
bandwidth, the down-converted antenna outputs are proportional to x(t). Due
to mutual coupling and other effects, the individual antenna elements may have
θ-dependent gain and phase characteristics, that add to the phase-shifts due to
geometry present in (16.1). As long as the receiver dynamics can be ignored, the
antenna outputs can still be expressed as x(t) = a(θ)s(t), but the functional form
of the steering vector would have to be adjusted accordingly. A structure of special
interest arises if the antenna elements are nondirectional and uniformly spaced
along a straight line. The steering vector for such a uniform linear array (ULA)
has the form

aULA(θ) = [
1, e jφ, . . . , e j(m−1)φ]T , (16.2)

where φ = kl sin θ is called the electrical angle, k = ωc/c is the wave number, ωc

is the carrier frequency, c denotes the speed of propagation, and l is the element
separation. The DOA θ is measured relative to the array normal. To uniquely de-
termine θ, it is clear that |φ| ≤ π must hold for all θ. In case the whole field of
view is of interest, this leads to l ≤ π/k = λ/2, where λ is the wavelength. A ULA
with maximum element separation l = λ/2 is often termed a standard ULA, and is
often used for comparison.

Due to linearity, the extension of (16.1) to the case of multiple signals is
straightforward. Thus, assume there are d far-field emitters, transmitting the base-
band signal waveforms sk(t), k = 1, 2, . . . ,d. The array output is then modeled by
the familiar equation

x(t) =
d∑

k=1

a
(
θk

)
sk(t) + n(t), (16.3)

where we have also included an additive noise term n(t). In matrix form, the above
reads

x(t) = A(θ)s(t) + n(t), (16.4)

where A(θ) = [a(θ1), . . . , a(θd)] is the steering matrix, θ = [θ1, . . . , θd]T contains
the signal parameters, and s(t) = [s1(t), . . . , sd(t)]T is composed of the signal wave-
forms. In the “standard” DOA estimation literature, no information regarding s(t)
is assumed to be available. The two prevalent models for the signal waveforms are
that they are either regarded as deterministic parameters to be estimated, or they
are drawn from a d-variate complex Gaussian distribution with zero mean and
covariance matrix P = E[s(t)s∗(t)]. To enable reliable estimation of the DOA pa-
rameters, information about the spatial covariance matrix of the noise is neces-
sary. For simplicity, it is assumed that a prewhitening has been performed, so that
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E[n(t)n∗(t)] = σ2I holds. Assuming stochastic signals, the spatial covariance of
the array output reads

R = E
[

x(t)x∗(t)
] = A(θ)PA∗(θ) + σ2I. (16.5)

The array output is assumed to be sampled at N discrete time instants, say
t1, t2, . . . , tN . The standard DOA estimation problem is then to determine the DOA
parameters θk, k = 1, 2, . . . ,d based on the measurements x(tn), n = 1, 2, . . . ,N .
Included in this problem is to estimate the number of (significant) signal compo-
nents, d. Most DOA estimation methods use the measurements only to form the
sample covariance matrix

R̂ = 1
N

N∑
n=1

x(tn)x∗(tn). (16.6)

Under fairly mild conditions on the signals and noise, it holds that R̂ → R with
probability 1 as N → ∞. Thus, provided the DOA estimation method gives correct
estimates when R is used, we can expect good performance as long as N is “large
enough.”

The above model can be extended in various ways, for example, by taking both
azimuth and elevation into account, considering near-field sources, or including
effects of polarization. Of most importance in a mobile communication system,
however, is the concept of multipath propagation.

16.1.2. Multipath propagation

In microwave communication, it is well known that a significant proportion of the
signal energy is scattered via several propagation paths. Indeed, in many cases there
is no line-of-sight (LOS) between the mobile and base station, implying that all of
the energy is due to scattering. In the Jakes model [2], the scatterers are spread
out evenly on a circle surrounding the mobile, but also other models have been
proposed. For closely spaced scatterers, the propagation delays are similar, and the
received signal components differ only in a possibly time-varying, complex scaling.
The wideband case, where time delays need to be accounted for, is considered in
Section 16.4. Adopting the spatial signal model (16.3), we have sk(t) = gk(t)s(t),
k = 1, . . . ,d, where gk(t) are termed the reflection (or scattering) coefficients. The
array output is thus modeled as

x(t) =
 d∑
k=1

gk(t)a
(
θk(t)

) s(t) + n(t) = v(t)s(t) + n(t). (16.7)

The complex m-vector v(t) is usually referred to as the spatial signature of the
transmitter. Since the scatterers are close, it is not practical to resolve all individual
propagation paths. We therefore refer to this as a spatially spread source, as op-
posed to the standard case of point sources. In a time-varying scenario, the scatter
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coefficients gk(t) are usually time-varying at a significantly higher rate than the
DOAs θk(t) [3], and the latter may therefore be considered stationary over a short
data collection interval. Both the scatterers and DOAs are modeled as random
variables, with E[gk(t)] = 0, E[gk(t)g∗l (t)] = σ2

g δk,l, E[gk(t)gl(t)] = 0, E[θk] = θ0,

and E[(θk − θ0)2] = σ2
θ . The source is thus characterized by the mean (or nominal

DOA) θ0 and the standard deviation (or spreading factor) σθ . The scatter coeffi-
cients are usually normalized so that σ2

g = 1/d, by absorbing the power into s(t).
Under the stated assumptions, the spatial array covariance matrix takes the form

Rs = E
[

x(t)x∗(t)
] = P

∫
θ

a(θ)a∗(θ)pθ(θ)dθ + σ2I, (16.8)

where pθ(θ) is the probability density function (PDF) of the DOAs. The number
of incoming rays, d, is usually assumed large, implying that x(t) is well modeled
as a zero-mean Gaussian random vector. Thus, ignoring the temporal correlation
structure, Rs captures all information regarding the incoming energy. To get a re-
liable estimate of Rs, one needs to see several realizations of the random propa-
gation paths, all taken from the same underlying distribution. Thus, in this case
the data x(t) should be observed slowly enough to enable each gk(t) and θk(t) to
vary significantly between samples. In the literature, the scatter coefficients are of-
ten modeled as temporally white. Given data x(tn), n = 1, . . . ,N , the usual sample
covariance matrix

R̂ = 1
N

N∑
n=1

x
(
tn
)

x∗(tn) (16.9)

is taken as the estimate of Rs. The task is now to infer the characteristics of the
scattering environment based on R̂. Usually, it is sufficient to determine θ0 and σθ .

16.2. DOA estimation for point sources

This section presents methods for the case where the transmitters are resolvable,
that is, they are modeled as point sources. This is the “standard” DOA estimation
problem, which by now can be considered a mature research area. The following
outlines some of the more influential methods. More details are available in, for
example, [4, 5].

16.2.1. Beamforming techniques

The duality between uniform sampling in space (ULA) and time have lead re-
searchers to apply methods from one domain to the other. The spatial Fourier
transform of a single data snapshot x(tn) is given by

x̃
(
tn,φ

) =
m−1∑
k=0

xk
(
tn
)
e− jkφ. (16.10)
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With aULA(θ) given by (16.2) we can express this as the inner product

x̃
(
tn, θ

) = a∗
ULA(θ)x

(
tn
)
. (16.11)

The spatial periodogram of x(tn) is then simply |x̃(tn, θ)|2. If no temporal corre-
lation is assumed, it is natural to average the instantaneous spatial spectra to form
the final estimate. When applying this to a general array, for which ‖a(θ)‖ may
depend on θ, it is useful to introduce a normalization of (16.11). The resulting
spectral estimate, termed conventional beamforming, takes the form

PBF(θ) = 1
N

N∑
n=1

∣∣a∗(θ)x
(
tn
)∣∣2

a∗(θ)a(θ)
. (16.12)

Expanding the square |a∗(θ)x(tn)|2 = a∗(θ)x(tn)x∗(tn)a(θ) and inserting (16.6)
leads to

PBF(θ) = a∗(θ)R̂a(θ)
a∗(θ)a(θ)

. (16.13)

The locations θ̂k of the d highest peaks of PBF(θ) are taken as the beamforming
DOA estimates. The averaging implies that PBF(θ) has a much reduced variance as
compared to the classical periodogram for large N , but similar to the latter it has a
limited resolution. In case of a ULA, the Rayleigh resolution expressed in electrical
angle is ∆φ = 2π/m, which for large m translates to ∆θ ≈ 2π/(klm).

To improve the resolution of the conventional beamformer, Capon [6] advo-
cated the use of adaptive beamforming. Although the original derivation is differ-
ent, the following interpretation has become popular:

min
w

w∗R̂w subject to w∗a(θ) = 1. (16.14)

The energy w∗R̂w of the beamformer output w∗x(tn) is to be minimized, while
keeping a unit gain in the “look direction” θ. The optimizing beamforming weights
are easily shown to be

wCAP = R̂−1a(θ)

a∗(θ)R̂−1a(θ)
, (16.15)

which when inserted into w∗R̂w, leads to the Capon spectral estimate

PCAP(θ) = 1

a∗(θ)R̂−1a(θ)
. (16.16)

In contrast to the conventional beamformer, the resolution of (16.16) improves
with the SNR (signal-to-noise ratio) [7]. It is therefore preferable, at least in high-
SNR scenarios. However, the resolution does not improve for increasing N . The
Capon DOA estimates, which are the peak locations of PCAP(θ), therefore still fail
to take full advantage of data model (16.4).
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16.2.2. Subspace methods

In the late seventies, a new class of spectral-based estimators were introduced.
These have their roots in principal component analysis, and are based on geo-
metrical properties of the array covariance matrix. It is clear from (16.5) that any
vector that is orthogonal to A(θ) is an eigenvector of R with corresponding eigen-
value σ2. The remaining eigenvectors are all in the range space of A(θ) (provided
m > d and P is full rank), and are therefore termed signal eigenvectors. The eigen-
decomposition of R (16.5) is partitioned into a signal and a noise subspace as

R =
m∑
k=1

λkeke∗
k = EsΛsE

∗
s + EnΛnE∗

n , (16.17)

where λ1 ≥ · · · ≥ λd > λd+1 = · · · = λm = σ2, Es = [e1, . . . , ed], En =
[ed+1, . . . , em], and Λn = σ2I. The signal eigenvectors in Es span the range space
of A(θ), which is termed the signal subspace. For the noise eigenvectors we have
instead En ⊥ A(θ). These relations constitute the fundament for subspace meth-
ods for DOA estimation. In passing, we note that the number of signals d can easily
be determined from (estimates of) the eigenvalues, either as the number of “signif-
icant” eigenvalues or by determining the multiplicity of the minimum eigenvalue
[8, 9]. The MUSIC (multiple signal classification) algorithm [10, 11] exploits the
orthogonality relation a∗(θk)En = 0, for k = 1, . . . ,d. Provided the array is free of
ambiguities, there are no false solutions to this equation [12, 13]. The noise sub-
space matrix is estimated from the eigendecomposition of the sample covariance

R̂ = ÊsΛ̂sÊ
∗
s + ÊnΛ̂nÊ∗

n . (16.18)

Using the estimated noise subspace, the so-called MUSIC pseudospectrum is then
defined as

PMU(θ) = a∗(θ)a(θ)

a∗(θ)ÊnÊ∗
n a(θ)

. (16.19)

This is not a spectrum in the usual sense, since it is in fact dimensionless. Yet,
for large enough N and/or SNR, PMU(θ) exhibits high peaks near the true DOAs
θ1, . . . , θd. The MUSIC algorithm calculates the DOA estimates by computing
PMU(θ) at a fine grid (using FFT with zero-padding in the case of a ULA), and
then locating the d largest local maxima. If desired, the estimates can be refined by
using a local search.

To illustrate the performance of the different spectral-based estimators, N =
500 snapshots of x(tn) are generated according to the model (16.4). The array
is a standard ULA of m = 6 sensors, and d = 3 emitters are located at θ =
[0◦, 5◦, 20◦]T . The waveforms are assumed uncorrelated and of equal power and
the SNR is 10 dB. Both the signal waveforms and the noise are realizations of
white Gaussian random processes. The conventional and Capon spatial spectra are
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Figure 16.1. Spatial spectrum estimates using conventional beamforming, Capon’s beamformer, and
MUSIC. Standard ULA of m = 6 elements. True DOAs {0◦, 5◦, 20◦}, SNR = 10 dB, N = 500.

displayed in Figure 16.1, along with the MUSIC pseudospectrum, all normalized
to have maximum value one. The conventional beamformer shows just one peak
around 3.4◦, whereas the Capon spectrum exhibits two peaks at 2.4◦ and 19.2◦.
In contrast, the MUSIC pseudospectrum resolves all three signals with peaks at
−0.5◦, 5.9◦ and 19.5◦. This is of course just one realization using random signals,
but the general behavior in Figure 16.1 is representative.

Although the MUSIC algorithm can improve the resolution significantly over
conventional spectral-based estimators, it requires a high SNR and/or N for this to
happen. Several approaches have been proposed to increase resolution, including
beamspace processing and the min-norm algorithm. For a useful comparison of
these and other versions, see [14]. In case of a ULA, the threshold performance
can be significantly enhanced by using a root-finding procedure instead of search-
ing the pseudospectrum for peaks [15]. The idea is to express the spectrum as a
polynomial in the complex variable z = e jφ. ULA steering vector (16.2) is written
as

a(z) = [
1, z, . . . , zm−1]T , (16.20)

and the inverse of the MUSIC pseudospectrum (sometimes termed the “null spec-
trum”) then becomes

P(z) = aT
(
z−1)ÊnÊ∗

n a(z). (16.21)

Regarding P(z) (or rather zm−1P(z)) as a polynomial in z, a standard numeri-
cal routine can be used to compute the 2m − 1 roots. Out of these, the so-called
root-MUSIC algorithm uses the d roots, say {zk}dk=1, that are closest to the unit
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circle. Since z = e jφ where φ = kl sin θ, the root-MUSIC DOA estimates are then

computed as θ̂k = arcsin[angle(zk)/kl], k = 1, . . . ,d. It is known that the root-
MUSIC DOA estimates have the same asymptotic properties as the standard spec-
tral MUSIC. However, the threshold behavior is significantly improved, which ac-
cording to [16] is explained by the fact that the errors in root locations have a large
radial component. A further improvement is obtained by using forward-backward
averaging [16].

The ESPRIT algorithm [17] is related to root-MUSIC, but requires computing
only d roots. It is based on the assumption that the array is composed of two
identical, spatially separated, subarrays that have the same orientation. For a ULA,
there are several ways to construct subarrays. A popular choice is to let elements
1 : m− 1 constitute the first array and 2 : m the second. Let A1 denote the steering
matrix for the first subarray, that is, rows 1 through m − 1 of A(θ). Similarly, A2

contains the m− 1 last rows. Using (16.20), these matrices are related by

A2 = A1 diag
[
z1, . . . , zd

]
, (16.22)

where zk = e jφk is the root corresponding to the kth source. This relation could be
used to determine the roots if A(θ) was known. In general, all that is available is an
estimate of the spatial array covariance matrix R. From the eigendecomposition
(16.17), we collect the signal eigenvectors into Es, which is not identical to A but
it spans the same range space. Therefore, Es = AT for some full-rank d × d matrix
T, and it follows that

E2 = E1T diag
[
z1, . . . , zd

]
T−1, (16.23)

where Es has been partitioned conformably with A. Using the estimated Ês in
(16.23), the submatrices Ê1 and Ê2 will, in general, not span the same range space,
and (16.23) has no exact solution. Instead, a least-squares or total-least-squares
solution Ψ̂ to the relation

Ê2 ≈ Ê1Ψ̂ (16.24)

is computed. The poles {zk}dk=1 are then given as the eigenvalues of Ψ̂, utilizing
that Ψ and diag[z1, . . . , zd] are related by a similarity transformation and therefore
share the same eigenvalues. Finally, the ESPRIT DOA estimates are computed as

θ̂k = arcsin[angle(zk)/kl], k = 1, . . . ,d. The method is computationally very effi-
cient, but exhibits slightly worse performance than root-MUSIC. Similar to the lat-
ter, ESPRIT benefits from forward-backward averaging. A clever implementation
using only real-valued operations (and therefore reduced computational burden)
was proposed in [18].
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16.2.3. Nonlinear least-squares estimation

The subspace-based techniques mentioned above generally provide accurate DOA
estimates at an affordable computational cost. However, the performance degrades
when the signal waveforms are correlated (P nondiagonal), and fail to operate
in the presence of coherent sources. Although forward-backward averaging and
spatial smoothing techniques can mitigate the drawbacks somewhat (e.g., [19]),
these techniques remain suboptimal. Given the model (16.4), a straightforward
approach is to use a nonlinear least-squares (NLLS) [20] fit:

{
θ̂, ŝ

(
tn
)} = arg min

θ,s(tn)

N∑
n=1

∥∥x
(
tn
)− A(θ)s

(
tn
)∥∥2

. (16.25)

This is a separable least-squares problem, and for fixed (but unknown) θ, the so-
lution with respect to the linear parameter s(tn) is

ŝ
(
tn
) = (

A∗A
)−1

A∗x
(
tn
)
. (16.26)

Substituting (16.26) into (16.25) leads to the concentrated NLLS formulation

θ̂ = arg min
θ

Tr
{
Π⊥

A R̂
}

, (16.27)

where Π⊥
A = I − ΠA = I − A(A∗A)−1A∗ is the orthogonal projection onto the

nullspace of A∗. The concentrated form (16.27) has a nice interpretation; Tr{Π⊥
A R̂}

is a measure of the remaining output power after removing all the energy stem-
ming from the hypothetical DOA parameters θ. Clearly, this should reach its min-
imum when θ is close to θ0, because this removes all signal components from R̂. It
is easy to see that the NLLS approach coincides with maximum likelihood (ML) if
the signal waveforms s(tn) are modeled as deterministic parameters and the noise
is assumed to be Gaussian. In many applications, also s(tn) can be regarded as
Gaussian, which leads to a different ML estimator [21], often termed stochastic
ML (SML). Regardless of the actual distribution of the signal waveforms, both the
NLLS and the SML methods provide highly accurate DOA estimates [22]. How-
ever, they both require solution of a d-dimensional nonlinear optimization prob-
lem like (16.27), which is far from trivial. A practical approach at a reasonable
cost is to employ a relaxed optimization procedure, where DOA parameters are
adjusted one at a time. Such a method is usually able to rapidly yield preliminary
estimates in the neighborhood of the true minimizers of the criterion function,
but the local convergence rate is often unacceptably slow. Therefore, once suffi-
ciently good initial estimates are available, it is preferable to switch to a Newton-
type local optimization (see, e.g., [22]). In [23, 24], a modified NLLS criterion is
derived, based on subspace decomposition (16.17). In its concentrated form, the
signal subspace fitting (SSF) criterion takes the form

θ̂ = arg min
θ

Tr
{
Π⊥

A ÊsŴÊ∗
s

}
, (16.28)
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where Ŵ is a positive definite weighting matrix, which should reflect the reliability
of the different eigenvectors appearing in Ês. The optimal choice of weighting, in
terms of minimizing the variance of the DOA estimates, is the diagonal matrix

Ŵ = (
Λ̂s − σ̂2I

)2
Λ̂

−1
s , (16.29)

where the noise variance estimate σ̂2 can be taken as the average of the m − d
smallest eigenvalues of R̂. The SSF formulation has certain advantages over the
data-domain NLLS, in particular when d � m. It is then significantly cheaper to
compute (16.28) than (16.27).

A few techniques have been proposed in the literature [25, 26, 27, 28] for im-
plementing a relaxed optimization of NLLS-type criteria. We will describe the so-
called RELAX procedure due to [26], which simultaneously updates θk and sk(tn),
n = 1, . . . ,N while keeping the other parameters fixed. The method is closely
related to the SAGE (space-alternating generalized expected maximization) algo-
rithm of [25], although the motivation and interpretation is simpler for RELAX.
We present the technique for the data-domain NLLS, noting that the SSF-RELAX
algorithm is obtained by replacing the data matrix X with ÊsŴ1/2. We express
NLLS criterion (16.25) in matrix form as

V(θ, S) = ∥∥X − A(θ)S
∥∥2 =

∥∥∥∥∥∥X −
d∑

k=1

a
(
θk

)
sk

∥∥∥∥∥∥
2

, (16.30)

where ‖ · ‖ denotes the Frobenius matrix norm, X = [x(t1), . . . , x(tN )], S =
[s(t1), . . . , s(tN )], and sk is the kth row of S. When searching for the parameters of
the kth emitter, preliminary estimates of the other signal parameters are assumed
available. Using these, the “cleaned” observation matrix

Xl = X −
∑
k �=l

a
(
θ̂k

)
ŝk (16.31)

is formed. The relaxed criterion

Vl
(
θl, sl

) = ∥∥Xl − a
(
θl
)

sl
∥∥2

(16.32)

is again a separable NLLS criterion, which is minimized by

θ̂l = arg max
θ

∣∣a∗(θ)Xl

∣∣2∥∥a(θ)
∥∥2 , (16.33)

sl = a∗(θ̂l)Xl∥∥a
(
θ̂l
)∥∥2 . (16.34)

Maximizing (16.33) requires a nonlinear optimization over one parameter only.
This is easily accomplished by a course grid search (using FFT in the case of a
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ULA), followed by a local Newton-type optimization. An iteration of the RELAX
algorithm is now to sequentially update θl and sl for l = 1, . . . ,d. At the first
iteration, no initial estimates of θk and sk are available for k > l, so these are
usually ignored by letting sk = 0, k > l. The iterations continue until no signif-
icant change of the DOA parameters is observed, or until one chooses to switch
to a Newton-type iterative search. In case the number of signals is unknown, a
parametric enumeration technique (e.g., [29, 30]) is well suited to work with the
iterative RELAX procedure.

16.3. Spread sources modeling

The DOA estimation problem for spread sources is quite different from the more
commonly considered point source case. Since the individual rays are not resolv-
able, the task is to find a statistical characterization of the incoming energy. Para-
metric estimation methods are based on the availability of a parameterized PDF of
θ. Popular choices are a Gaussian or a uniform PDF. For physics-based statistical
models, consult, for example, [31, 32]. Nonparametric techniques make no such
assumptions, but can on the other hand only deliver a limited description of the
ray statistics, such as the nominal DOA θ0 and the spread σθ .

16.3.1. Nonparametric beamforming techniques

Assume that the signal reaches the receiving antenna array via a single scatter clus-
ter. Provided the distribution of scatterers (DOAs) has a symmetric PDF, a natu-
ral estimate of the nominal DOA θ0 is the location of the peak of beamforming
spectrum (16.13). However, for large spreading factors σθ , the variance of this es-
timate is unacceptably high [33]. The situation is even worse when using a high-
resolution method [34]. A useful remedy is to use the center of gravity rather than
the peak location of the spatial spectrum [35]. Provided the resolution of the lat-
ter is sufficient, it can be shown that pθ(θ) is approximately proportional to the
spatial spectrum. For high SNR, the Capon spectrum has superior resolution, and
may therefore be the preferred choice in this application. Using the definitions of
the mean and variance of a distribution, the estimates are computed according to
[35]

θ̂0 =
∫
θ∈Ω θP(θ)dθ∫
θ∈Ω P(θ)dθ

,

σ̂2
θ =

∫
θ∈Ω

(
θ − θ̂0

)2
P(θ)dθ∫

θ∈Ω P(θ)dθ
,

(16.35)

where P(θ) is either PBF(θ) (16.13) or PCAP(θ) (16.16) and Ω refers to the support
of the distribution, that is, the extent of the DOA cluster. The parameterization
of P(θ) in terms of the physical DOA deserves some comments. For a linear ar-
ray it is perhaps more natural to use the electrical angle φ, which is proportional
to sin θ. However, for reasonably small DOA clusters the difference between the
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parameterizations is negligible. The estimate θ̂0 has in general very good perfor-
mance, while σ̂θ is more sensitive to the choice of Ω and the resolution of P(θ).
These parameters are particularly critical in the presence of several DOA clusters
that are (nearly) overlapping.

16.3.2. Parametric estimation

A parametric estimator exploits the structure (16.8) of Rs in more detail. In gen-
eral, this requires that a parameterized form of the DOA PDF is known, say
pθ(θ;φ). Here, φ is a vector of unknown parameters, for example φ = [θ0, σθ]T

in the Gaussian case. Basically, these parameters are determined by matching the
model (16.8) to the sample covariance R̂. An interesting “semiparametric” method
was recently proposed in [36]. It is based on a generalization of the Capon for-
mulation (16.14). Instead of requiring a unit gain in the look direction a(θ), the
authors of [36] proposed to keep a unit average signal power for a given set of
parameters φ. The optimization problem is thus

min
w

w∗R̂w subject to w∗R̄s(φ)w = 1, (16.36)

where

R̄s(φ) =
∫
θ

a(θ)a∗(θ)pθ(θ;φ)dθ. (16.37)

The resulting generalized Capon (GC) spectrum is obtained as

PGC(φ) = 1

λmax
{

R̂−1R̄s(φ)
} , (16.38)

where λmax{·} refers to the maximum eigenvalue of a matrix. The GC estimates
are now taken as the locations of the highest peaks of PGC(φ). In this way, the pa-
rameters of several clusters can be determined using a search over only one set of
parameters φ. The resolution in [36] is found to be superior to that of previously
proposed computationally efficient estimators [37, 38, 39], although theoretical
support for this claim is yet to be seen. The computational cost for the GC esti-
mator is quite substantial, as it requires computing the maximum eigenvalue of an
m×m matrix for each criterion function evaluation, besides solving the integral in
(16.37). Approximate formulae for the latter is available in special cases [37, 40].
For a ULA and Gaussian-distributed DOAs, the approximate covariance matrix is
given as

R̄s
(
θ0, σθ

) ≈ [
a
(
θ0

)
a∗(θ0

)]	 B, (16.39)

where 	 means elementwise multiplication, and the i jth element of the matrix B
is given as

Bij = e−2[πl( j−i)]2σ2
θ sin2 θ0 . (16.40)



Mats Viberg 333

A general approach to parametric estimation is the principle of maximum
likelihood (ML). If x(t) is modeled as zero-mean temporally white Gaussian, the
ML estimate is found by solving{

φ̂, P̂, σ̂2} = arg min
φ,P,σ2

log
∣∣Rs

∣∣ + Tr
{

R−1
s R̂

}
. (16.41)

Unfortunately, this is a multidimensional (4 in the Gaussian case) nonlinear op-
timization problem, even in the case of a single DOA cluster. In case of several
clusters, the contributions from each will have to be added to Rs, implying an even
increased number of unknown parameters. The method is therefore often deemed
impractical for the current application. A possible way to decrease the complex-
ity is to use a covariance matching estimator (COMET), exploiting the fact that
Rs is linear in the signal and noise powers as is clear from (16.8). The optimally
weighted COMET estimator of [40] is formulated as the following optimization
problem: {

φ̂, P̂, σ̂2} = arg min
φ,P,σ2

∥∥(Rs − R̂
)

R̂−1
∥∥2
. (16.42)

Since Rs is linear in P and σ2, the above is in the form of a separable LS prob-
lem, and the minimum with respect to these parameters can easily be found for a
fixed φ. The result is that only a search over φ is necessary, similar to GC method
(16.38). However, in the presence of several clusters, (16.42) requires a simultane-
ous search over all parameters. This is obviously more costly, but the benefit is an
increased accuracy in large samples, since (16.42) can be shown to yield asymp-
totically the same performance as ML. For the special case of Gaussian-distributed
DOA and a ULA, [41] presents a further simplification of (16.42). An approxi-
mate, but still asymptotically equivalent, technique is derived, where the search
over φ = [θ0, σθ]T is decoupled, so that only a 1D search is necessary. See [41] for
details. A drawback of the covariance-matching-based methods is that they inher-
ently assume a large sample size, and are thus less suited to scenarios where only a
small number of observations are available.

16.4. Parametric channel modeling

Parametric channel modeling refers to the problem of finding a parsimonious rep-
resentation of the wireless channel. The techniques described here use parameteri-
zations in terms of physically meaningful quantities, but it is also possible to apply
pure “black-box” methods. The data is assumed to be sensor outputs collected us-
ing a known transmitted waveform (probing signal). The task is to resolve all sig-
nificant propagation paths and determine their DOAs, time delays, and strengths.

16.4.1. SIMO channels

The simplest case has a single transmitter and multiple receivers. This is referred
to as a SIMO (single-input multiple-output) system. For narrowband signals, in
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the sense that waveforms received via different propagation paths are all coherent,
this is similar to the standard DOA estimation problem. However, since equipment
for channel measurements is typically wideband, we consider the case where time
delays are significant with respect to the inverse bandwidth. Referring to (16.7),
the received signal is then modeled by

x(t) =
d∑

k=1

gka
(
θk

)
s
(
t − τk

)
+ n(t). (16.43)

Here, s(t) represents the transmitted continuous-time waveform, which for a dig-
ital communication system may be given in the form

s(t) =
∞∑

l=−∞
bl p(t − lT), (16.44)

where bl are the (known) information symbols and p(t) the pulse shaping wave-
form with support on 0 ≤ t < T . The noise-free part of (16.43) can be thought of
as the convolution of the transmitted signal s(t) and the SIMO channel

h(t) =
d∑

k=1

gka
(
θk

)
δ
(
t − τk

)
, (16.45)

where δ(·) is the Dirac delta function. The high bandwidth and multiantenna re-
ceiver allows paths to be resolved in both space and time. We therefore assume that
one wishes to obtain signal parameter estimates for the individual components in
(16.43), in contrast to the modeling of spatially extended sources considered in
Section 16.3. Given samples x(tn), n = 1, . . . ,N from (16.43), where the shape of
s(t) is assumed known, the task is to jointly determine θk, τk, and gk. Often, the
channel-sounder equipment does not give access to the raw data, but only non-
parametric channel estimates. This case will be considered later. In essence, we are
facing a 2D estimation problem. To reduce the computational complexity, such
problems are often solved by treating one dimension at a time in some fashion. If
the noise is Gaussian and spatially white, the optimal ML estimator employs the
2D NLLS criterion

V(θ, τ, g) =
N∑
k=1

∥∥∥∥∥∥x
(
tk
)− d∑

l=1

gla
(
θl
)
s
(
tk − τl

)∥∥∥∥∥∥
2

=
∥∥∥∥∥∥X −

d∑
l=1

gla
(
θl
)

s
(
τl
)∥∥∥∥∥∥

2

F

,

(16.46)

where X = [x(t1), . . . , x(tN )] as before, and

s
(
τk
) = [

s
(
t1 − τk

)
, . . . , s

(
tN − τk

)]
(16.47)
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denotes the time-delayed signal vector. For fixed θ=[θ1, . . . , θd] and τ=[τ1, . . . , τd],
it is easy to minimize (16.46) explicitly with respect to g = [g1, . . . , gd]. Substitut-
ing the so-obtained g(θ, τ) back into (16.46) results in a nonlinear function of 2d
parameters. To find the global minimum of this concentrated NLLS criterion is by
no means a simple task. A natural approach is to apply the RELAX idea presented
in Section 16.2.3, see also [42] for an application to time-delay estimation. This
is an iterative procedure, where the joint estimation problem is in each iteration
broken down into computationally simple beamforming-like (i.e., matched filter)
operations. The technique has strong similarities with the SAGE algorithm, which
was successfully applied in [43] to a scenario where also the Doppler-shifts due
to the platform motion were taken into account. Similar to (16.31), (16.32), and
(16.33), the RELAX algorithm for joint DOA and delay estimation consists of the
following steps. First the data is “cleaned” from contributions from all signal paths
except one:

Xl = X −
∑
k �=l

ĝka
(
θ̂k

)
s
(
τ̂k
)
, (16.48)

where ˆ(·) denotes the most recent estimates of the signal parameters correspond-
ing to the other paths. The relaxed criterion is now

Vl
(
θl, τl, gl

) = ∥∥Xl − gla
(
θl
)

s
(
τl
)∥∥2

. (16.49)

Minimizing explicitly with respect to gl results after some simple algebra in the
concentrated criterion

Vl
(
θl, τl

) =
∣∣a∗(θl)Xls∗

(
τl
)∣∣2∥∥a

(
θl
)∥∥2∥∥s

(
τl
)∥∥2 , (16.50)

which is to be maximized with respect to θl and τl. The above allows a nice in-
terpretation. The premultiplication by a∗(θl) is a spatially matched filter, and the
postmultiplication by s∗(τl) acts as a temporally matched filter. The maximum of
this normalized space-time correlation yields the estimates for the lth propagation
path. Once updated estimates of θl and τl are found, the new gl will be

ĝl = a∗(θ̂l)Xls∗
(
τ̂l
)∥∥a

(
θ̂l
)∥∥2∥∥s

(
τ̂l
)∥∥2 . (16.51)

One iteration of the RELAX algorithm is now to sequentially update the triple
{θl, τl, gl} for l = 1, . . . ,d as outlined above. At the first iteration one simply takes
gk = 0, k > l, unless some initial estimates of the parameters of these propagation
paths are available.

The iterative procedure described above is simple in each step. But in high-
resolution scenarios, several iterations may be necessary, implying a high total
computational burden. Simpler subspace-based alternatives have been proposed
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in, for example, [44]. The computationally most efficient techniques employ a
Fourier transform of a nonparametric channel estimate along the delay dimen-
sion. Such a vector-valued impulse response estimate is obtained using a matched
filter, which in matrix form is expressed as

ĥ(t) = Xs∗(t)∥∥s(t)
∥∥2 . (16.52)

In fact, the available channel-sounder data is often given in the form of estimated
impulse responses like the above. A natural approach is now to apply spatial beam-

forming to each available sample of the impulse response, say ĥ(tk), k = 1, . . . ,M,
where tk = (k − 1)T for uniform sampling. In case of a uniform linear array, each

ĥ(tk) can be split into several subvectors, thus effectively creating several snap-
shots. Using this spatial smoothing technique, it is also possible to apply a high-
resolution DOA estimation method, thus enabling closely spaced scatterers with
(nearly) the same propagation delay to be resolved. Taking the discrete Fourier

transform of ĥ(tk) and using (16.45), the nonparametric SIMO transfer function
estimate is modeled by

ĥ
(
ωk

) ≈
d∑
l=1

gla
(
θl
)
e− jωkτl , (16.53)

where ωk = 2π(k − 1)/M, k = 1, . . . ,M are the length-M DFT frequencies. The
approximation above acknowledges the errors in (16.52), which are due to both
noise and to finite temporal resolution. In effect, the Fourier transform has turned
the delay estimation into one of frequency estimation, where τk plays the role of
frequencies. If the array is a ULA, a computationally efficient technique for 2D
frequency estimation (e.g., [45]) can now be employed to determine the signal
parameters, as in [44].

16.4.2. MIMO channels

During the past several years there has been a growing interest in systems that
employ multiple antennas both at the transmitter and the receiver, that is, MIMO
systems. The main reason for this is a potential for dramatically increased capacity.
From a propagation modeling point of view, MIMO transmission opens up an
interesting new possibility. Besides finding the direction of the incoming rays, it is
also possible to determine the directions-of-departure (DOD) of these rays [46],
thus providing a more complete description of the wireless channel. Assuming a
point source model, the received signal is now modeled as

x(t) =
d∑

k=1

gkarx
(
θk

)
aTtx

(
ηk

)
s
(
t − τk

)
+ n(t). (16.54)
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Here, atx(η) denotes the mtx × 1 steering vector for the transmitter array, where
η is the DOD, whereas arx(θ) is the mrx × 1 steering vector for the receiving ar-
ray with θ the DOA. Further, s(t) = [s1(t), . . . , smtx (t)]T contains the transmitted
signal waveforms from each of the transmitting antennas (which are potentially
different). As before, gk is the complex gain of the kth path and τk is the time de-
lay. Given x(tn), n = 1, . . . ,N from (16.54), where s(t) needs to be known to allow
time-delay estimation, one desires to estimate all unknown parameters θk, ηk, τk,
and gk.

In matrix form, the NLLS criterion now takes the form

V(θ,η, τ, g) =
∥∥∥∥∥∥X −

d∑
l=1

glarx
(
θl
)

aTtx
(
ηl
)

S
(
τl
)∥∥∥∥∥∥

2

, (16.55)

where

S
(
τl
) = [

s
(
t1 − τl

)
, . . . , s

(
tn − τl

)]
(16.56)

is the matrix of delayed transmit signals. The above is a 3D estimation problem.
There is no conceptual difference to the 1D case, but the computational complexity
associated with finding the signal parameters increases of course dramatically as
new dimensions are opened up. The RELAX approach applied to (16.55) results in
the following steps. First, a data cleaning is performed by

Xl = X −
∑
k �=l

gkarx
(
θk

)
aTtx

(
ηk

)
s
(
t − τk

)
. (16.57)

The concentrated criterion for the lth signal path is then

Vl
(
θl,ηl, τl

) =
∣∣a∗

rx

(
θl
)

XlS∗(τl)ātx
(
ηl
)∣∣2∥∥arx

(
θl
)∥∥2∥∥S∗(τl)ātx

(
ηl
)∥∥2 . (16.58)

Again, we have the interpretation of space-time beamforming, but now in two
spatial dimensions. The a∗

rx(θl) does spatial beamforming along the rows of Xl (the
receivers), whereas S∗(τl) is a bank of temporal match filters, where each column
(row of S(τl)) corresponds to one transmitter. The outputs of these filters are then
weighted together by the transmit beamformer ātx(ηl), where (·̄) denotes complex
conjugate. The description of the 3D RELAX algorithm is completed by the update
of the amplitude parameter:

ĝl = a∗
rx

(
θ̂l
)

XlS∗(τ̂l)ātx
(
η̂l
)∥∥arx

(
θ̂l
)∥∥2∥∥S∗(τ̂l)ātx

(
η̂l
)∥∥2 . (16.59)

Running the above steps for l = 1, . . . ,d and iterating until convergence, results
ultimately in an approximate solution to the original NLLS problem (16.55).
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The above assumes that the time-domain array data are available. Alterna-
tively, the matrix-valued impulse response can be estimated by

Ĥ(t) = XS∗(t)
(

S(t)S∗(t)
)−1

, (16.60)

or it may be given directly from the measurement equipment. Here, the i jth el-
ement of Ĥ(t) contains the estimated impulse response from transmitter i to re-
ceiver j. Similar to (16.53), the Fourier transform of Ĥ(t) is modeled by

Ĥ
(
ωk

) ≈
d∑
l=1

glarx
(
θl
)

aTtx
(
ηl
)
e− jωkτl , k = 1, . . . ,M. (16.61)

Either Ĥ(t) or Ĥ(ωk) can now be considered as measurement data, the task again
being to determine the signal parameters gl, θl, ηl, and τl for l = 1, . . . ,d. Several
suboptimal techniques have been proposed to attack this problem. For example,
in [47], the 2D ESPRIT method with spatial smoothing is applied to each sam-
ple Ĥ(tk) (the application in [47] is azimuth-elevation estimation, but the same
approach can be applied to the DOD-DOA model). In [46], the delays are first
determined using the 1D ESPRIT technique. A 2D RELAX-like approach is then
applied to the so-obtained channel samples Ĥ(τ̂l). In [48], a 3D subspace method
is proposed, assuming several observations of the matrix-valued transfer function
Ĥ(ωk) to be available. Finally, special methods for the case were only beamformed
transmit and receive data are available are presented in [49, 50].

16.5. Summary

Direction-of-arrival (DOA) estimation is to a great extent a mature research area.
We have in this chapter made an attempt to summarize the most influential meth-
ods to determine the signal parameters. For the standard DOA estimation prob-
lem, the nonlinear least-squares (NLLS) approach provides the most accurate es-
timates of the methods presented herein. An iterative method for computing the
estimates was outlined, based on the RELAX idea presented in [26]. Subspace-
based methods are computationally more attractive, especially the ESPRIT-type
techniques, whenever applicable. These methods can give high resolution at mod-
erate cost, provided the SNR and/or the number of available samples is sufficiently
high. The conventional beamforming approach is applicable only when the array
size is sufficiently large, whereas adaptive beamforming (Capon’s method) can give
increased resolution at high enough SNR.

Besides the standard DOA estimation problem, we have also considered the
case where sources have a significant spatial extent, as compared to the array res-
olution. In this case, the incoming radiation is characterized in statistical terms,
rather than as a point source only. Most commonly, the mean and the standard
deviation of the DOA parameter are sought. In this case, beamforming-type meth-
ods are more likely to be useful than in the point-source case. However, the cen-
ter of gravity of the beamforming spectrum should be used for estimation of the
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mean DOA, rather than its peak location. Among high-resolution methods, a re-
cent generalization of Capon’s method due to [36] is found to be very promising.
Finally, the case of parametric modeling of the communication channel, including
propagation delay was also addressed. This leads to difficult multidimensional es-
timation problems, where easy solutions are likely to fail and optimal techniques
are difficult to implement in practice. Iterative RELAX-type methods were pre-
sented for the various cases. Also subspace methods are available in the literature.
These, and hybrids between subspace and NLLS have been found to give satisfac-
tory results with real data, see, for example, [46, 47, 48].

Abbreviations

COMET Covariance matching estimator

DFT Discrete Fourier transform

DOA Direction-of-arrival

DOD Direction-of-departure

ESPRIT Estimation of signal parameters via rotational invariance techniques

FFT Fast Fourier transform

GC Generalized Capon

LOS Line-of-sight

LS Least-squares

MIMO Multiple-input multiple-output

ML Maximum likelihood

MUSIC Multiple signal classification

NLLS Nonlinear least-squares

PDF Probability density function

SAGE Space-alternating generalized expected maximization

SIMO Single-input multiple-output

SML Stochastic maximum likelihood

SNR Signal-to-noise ratio

SSF Signal subspace fitting

ULA Uniform linear array
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17
Introduction

Javier Rodŕıguez Fonollosa

The Transmitter part starts providing a unified perspective to the design of linear
transceivers for MIMO systems in the case of availability of channel state infor-
mation (CSI) at both sides of the link. Chapter 2, authored by Daniel P. Palomar,
elaborates on the design of linear precoders at the transmit side under different
optimisation criteria. On the other hand, the optimal linear receiver can be shown
to be independent of the optimisation criterion used and follows the minimum
mean-squared error design (also termed the Wiener filter) possibly incorporating
the additional zero-forcing constraint.

Traditionally, MIMO transmitters were designed based on very simple cost
functions as, for example, the mean-squared error, and more sophisticated qual-
ity of service (QoS) requirements demanded specific designs. These schemes were
particularly difficult to obtain when nonconvex or matrix-valued variables were
involved. Recently, Palomar showed how to solve these problems in an optimal
way for the family of Schur-concave and Schur-convex cost functions. Although
this is a quite general result, one can think of some interesting QoS requirements
that fall out of these categories, such as the minimisation of the average BER when
different constellations are used. Chapter 2 generalises the previous results to em-
brace any arbitrary cost function as quality criterion. When the function is convex,
the originally complicated nonconvex problem with matrix-valued variables can
be reformulated as a simple convex problem with scalar variables. This simplified
problem can then be addressed under the framework of convex optimisation the-
ory, accommodating and easily solving a great variety of design criteria.

Chapter 3 considers the situation in which the transmitter has access to some
limited or imperfect channel state information. Conventional space-time codes do
not need any channel knowledge at the transmit side, and this is a clear advantage
given the difficulties of acquiring such knowledge, but it may also be a substantial
drawback since CSI, when available at the transmit side, can be used to improve
performance. This chapter, authored by Jöngren, Skoglund, and Ottersten, devel-
ops the concept of channel side information dependent codes.

The conventional way of exploiting the CSI at the transmit side is by the use
of beamforming. However, the resulting rank-one type of transmission inherent
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to beamforming (which can be interpreted as assigning only a single preferable
direction) is too restrictive when there are imperfections in the channel knowl-
edge. The emitted energy instead should be spread out over several directions,
much like in conventional space-time coding. This naturally leads to the concept
of channel side information dependent space-time codes, where the codeword ma-
trices depend on the channel side information and the possibly imperfect channel
knowledge is taken into account already at the design stage. The idea is to make
use of the complementary strengths of both transmission methodologies. Conven-
tional space-time codes are designed to operate without any channel knowledge
and hence provide the system with a basic level of performance in the absence of
reliable channel state information at the transmitter. Beamforming, on the other
hand, is advantageous when the channel knowledge is reliable.

Chapter 4, authored by Michael Joham and Wolfgang Utschick, enters into
the area of nonlinear transmit processing, and specifically considers Tomlinson
Harashima precoding. This technique can be understood as a generalisation in
the transmit side of decision feedback equalisation in the receiver. Whereas deci-
sion feedback equalisers apply a modulo operation and feed back already quan-
tized symbols, Tomlinson Harashima precoders apply the modulo operation into
already transmitted symbols before feeding them back into the transmitter. The
analysis is restricted to nondispersive channels and noncooperative receivers
meaning that the signals of the different receivers cannot be jointly transformed.
In fact, receivers are restricted to apply scalar weightings. Algorithms for the op-
timum formulation and ordering of the zero-forcing and Wiener Tomlinson Ha-
rashima precoders are obtained together with suboptimal, but less complex, or-
dering schemes.

Chapter 5 considers the optimisation of the different transmission strategies
in a multiuser environment. It is well known that MIMO channels can be used to
increase spectral efficiency and performance of point-to-point links. Nevertheless,
the extension of these benefits to the multiuser case requires the development of
new transmission schemes. Specifically, the cellular uplink situation is considered
in this chapter, formally known as the MIMO multiple access channel (MAC), in
which the optimum transmission depends on the objective function, the power
constraints, the channel statistics, or the channel realisation.

When considering optimisation of multiuser systems, objective functions can
be defined based on either global or individual performance criteria. Examples of
objective functions belonging to the first class are the maximisation of the sum
capacity or the minimisation of the mean-squared error. The drawback of this
type of optimisation problems is that they can be unfair for some users. If users
experience poor channel conditions for long periods of time, they are not given
the possibility to transmit. These problems are circumvented defining individual
objective functions based on the fulfilment of rate, SINR, or MSE requirements
with minimal power. This chapter, authored by Eduard A. Jorswieck, motivates
and analyses important representative problems of both classes. The development
from the single-antenna MAC to the MIMO MAC is shown and the differences
and commonalities between the single-antenna and the multiple-antenna cases
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are stressed. Furthermore, the chapter emphasises the connections between the
different objective functions and their corresponding programming problems.

Chapter 6 concludes the Transmitter part and concentrates on the design
of the appropriate multiplexing schemes in the presence of MIMO channel ma-
trix ill-conditioning. Fading correlation or presence of a Rice component in the
MIMO channel can cause this situation. Conventional multiplexing schemes based
on the separation of the different streams using their spatial signatures (com-
monly referred to as spatial multiplexing, SM) rely on the linear independence
between the channel responses corresponding to each transmit antenna. Conse-
quently such schemes suffer considerably from effects of bringing ill-conditioning
into the MIMO channel matrix. This chapter, authored by David Gesbert inves-
tigates the use of constellation multiplexing (CM) in an attempt to robustify SM
schemes. Distinct M-QAM streams are superposed to form a higher-order QAM
constellation, which has a rate equal to the sum of rates of all original streams. CM
schemes do not rely on the full-rank property of the MIMO channel to function
properly. This chapter investigates how to combine SM and CM schemes in the
form of a linear diagonal precoder. This yields an adaptive rate-preserving MIMO
multiplexing algorithm that can operate smoothly for any degree of correlation or
Ricean factor. Conventional SM and CM schemes are shown to be particular cases
of the presented family of schemes.

Javier Rodrı́guez Fonollosa: Technical University of Catalonia (UPC), Mdul D5, Campus Nord, Jordi
Girona 1-3, E-08034 Barcelona, Spain
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18
Unified design of linear
transceivers for MIMO channels

Daniel Pérez Palomar

MIMO communication systems with CSI at both sides of the link can adapt to
each channel realization to optimize the spectral efficiency and/or the reliability of
the communication. A low-complexity approach with high potential is the use of
linear MIMO transceivers (composed of a linear precoder at the transmitter and a
linear equalizer at the receiver). The design of linear transceivers has been studied
for many years (the first papers dating back to the 1970s) based on very simple
cost functions as a measure of the system quality such as the trace of the MSE ma-
trix. If more reasonable measures of quality are considered, the problem becomes
much more complicated due to its nonconvexity and to the matrix-valued vari-
ables. Recent results showed how to solve the problem in an optimal way for the
family of Schur-concave and Schur-convex cost functions. Although this is a quite
general result, there are some interesting functions that fall outside of this cate-
gory such as the minimization of the average BER when different constellations
are used. In this chapter, these results are further generalized to include any cost
function as a measure of the quality of the system. When the function is convex, the
original complicated nonconvex problem with matrix-valued variables can always
be reformulated a simple convex problem with scalar-valued variables. The sim-
plified problem can then be addressed under the powerful framework of convex
optimization theory, in which a great number of interesting design criteria can be
easily accommodated and efficiently solved even though closed-form expressions
may not exist.

18.1. Introduction

Multiple-input multiple-output (MIMO) channels are an abstract and general way
to model many different communication systems of diverse physical nature; rang-
ing from wireless multiantenna channels [1, 2, 3, 4] (see Figure 18.1) to wire-
line digital subscriber line (DSL) systems [5], and to single-antenna frequency-
selective channels [6]. In particular, wireless multiantenna MIMO channels have
been recently attracting a significant interest because they provide an important
increase of spectral efficiency with respect to single-input single-output (SISO)
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Figure 18.1. Example of a MIMO channel arising in wireless communications with multiple antennas
at both the transmitter and the receiver.

channels [3, 4]. This abstract MIMO modeling allows for a unified treatment us-
ing a very elegant and convenient vector-matrix notation.

This chapter considers point-to-point MIMO communication systems with
channel state information (CSI) at both sides of the link (cf. Section 18.2). For
the case of no CSI at the transmitter, a great number of techniques have also been
proposed in the literature which can globally referred to as space-time coding [1, 7,
8].

MIMO systems are not just mathematically more involved than SISO systems
but also conceptually different and more complicated. Several substreams are typi-
cally established in MIMO channels (so-called multiplexing property [9]), whereas
SISO channels can only support a single substream of information. It is this in-
crease of dimensionality that makes the mathematical notation more involved,
in the sense that the manipulation of scalar quantities becomes a vector-matrix
manipulation. In addition, the existence of several substreams, each with its own
quality, makes the definition of a global measure of the system quality very diffi-
cult; as a consequence, different design criteria have been pursued in the literature
(cf. Section 18.2). In fact, such a problem is a multiobjective optimization problem
characterized by not having just optimal solutions (as happens in single-objective
optimization problems) but a set of Pareto-optimal solutions1 [10]. Although to
fully characterize such a problem, the Pareto-optimal set should be obtained, it is
generally more convenient to use a single measure of the system quality to simplify
the characterization.

Theoretically, the design of MIMO systems with CSI at both sides of the link
has been known since 1948, when Shannon, in his ground-breaking paper [11],
defined the concept of channel capacity—the maximum reliably achievable rate—
and obtained the capacity-achieving signaling strategy. In particular, for a given
realization of a MIMO channel, the optimal transmission is given by a Gaussian

1A Pareto-optimal solution is defined as any solution that cannot be improved with respect to
any component without worsening the others [10].
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signaling with a water-filling power profile over the channel eigenmodes [12, 3, 2].
From a more practical standpoint, however, the ideal Gaussian codes are sub-
stituted with practical constellations (such as QAM constellations) and coding
schemes. To simplify the study of such a system, it is customary to divide it into
an uncoded part, which transmits symbols drawn from some constellations, and
a coded part that builds upon the uncoded system. Although the ultimate system
performance depends on the combination of both parts (in fact, for some systems,
such a division does not apply), it is convenient to consider the uncoded and coded
parts independently to simplify the analysis and design. The focus of this chapter
is on the uncoded part of the system and, specifically, on the employment of linear
transceivers (composed of a linear precoder at the transmitter and a linear equal-
izer at the receiver) for complexity reasons.2

Hence, the problem faced when designing a MIMO system not only lies on
the design itself but also on the choice of the appropriate measure of the system
quality (which may depend on the application at hand and/or on the type of cod-
ing used on top of the uncoded system). The traditional results existing in the
literature have dealt with the problem from a narrow perspective (due to the com-
plexity of the problem); the basic approach has been to choose a measure of quality
of the system sufficiently simple such that the problem can be analytically solved.
Recent results have considered more elaborated and meaningful measures of qual-
ity. In the sequel, a unified framework for the systematic design of linear MIMO
transceivers is developed.

This chapter is structured as follows. Section 18.2 gives an overview of the
classical and recent results existing in the literature. After describing the signal
model in Section 18.3, the general problem to be addressed is formulated in Section
18.4. Then, Section 18.5 gives the optimal receiver and Section 18.6 obtains the
main result of this chapter: the unified framework for the optimization of the
transmitter under different criteria. Section 18.7 addresses the issue of the diag-
onal/nondiagonal structure of the optimal transmission. Several illustrative exam-
ples are considered in detail in Section 18.8. The extension of the results to multi-
ple MIMO channels is described in Section 18.9. Some numerical results are given
in Section 18.10 to exemplify the application of the developed framework. Finally,
Section 18.11 summarizes the main results of the chapter.

The following notation is used. Boldface uppercase letters denote matrices,
boldface lowercase letters denote column vectors, and italics denote scalars. Rm×n

and Cm×n represent the set of m × n matrices with real- and complex-valued en-
tries, respectively. The superscripts (·)T , (·)∗, and (·)H denote transpose, complex
conjugate, and Hermitian operations, respectively. [X]i, j (also [X]i j) denotes the
(ith, jth) element of matrix X. Tr(·) and det(·) denote the trace and determinant
of a matrix, respectively. A block-diagonal matrix with diagonal blocks given by
the set {Xk} is denoted by diag({Xk}). The operator (x)+ � max(0, x) is the pro-
jection onto the nonnegative orthant.

2The choice of linear transceivers is also supported by their optimality from an information-
theoretic viewpoint.
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18.2. Historical overview of MIMO transceivers

The design of linear MIMO transceivers has been studied since the 1970s where
cable systems were the main application [13, 14]. Initially, since the problem is
very complicated, it was tackled by optimizing easily tractable cost function as a
measure of the system quality such as the sum of the mean square error (MSE) of
all channel substreams or, equivalently, the trace of the MSE matrix [13, 14, 15,
6]. Others examples include the minimization of the weighted trace of the MSE
matrix [16], the minimization of the determinant of the MSE matrix [17], and the
maximization of the signal-to-interference-plus-noise ratio (SINR) criterion with
a zero-forcing (ZF) constraint [6]. Some criteria were considered under a peak
power constraint in [18].

For these criteria, the original complicated design problem is greatly simpli-
fied because the channel turns out to be diagonalized by the optimal transmit-
receive processing and the transmission is effectively performed on a diagonal
or parallel fashion. The diagonal transmission allows a scalarization of the prob-
lem (meaning that all matrix equations are substituted with scalar ones) with
the consequent simplification. In light of the optimality of the diagonal struc-
ture for transmission in all the aforementioned examples (including the capacity-
achieving solution [12, 3, 19]), one may expect that the same holds for other cri-
teria as well.

In [20], a general unifying framework was developed that embraces a wide
range of different design criteria; in particular, the optimal design was obtained
for the family of Schur-concave and Schur-convex cost functions which arise in
majorization theory [21]. Interestingly, this framework gives a clear answer to the
question of when the diagonal transmission is optimal.

However, rather than the MSE or the SINR, the ultimate performance of a
system is given by the bit error rate (BER), which is more difficult to handle. In
[22], the minimization of the BER (and also of the Chernoff upper bound) aver-
aged over the channel substreams was treated in detail when a diagonal structure
is imposed. Recently, the minimum BER design without the diagonal structure
constraint has been independently obtained in [20, 23], resulting in an optimal
nondiagonal structure. This result, however, only applies when the constellations
used in all channel substreams are equal (in which case the cost function hap-
pens to be Schur-convex [20]). The general case of different constellations is much
more involved (in such a case, the cost function is neither Schur-convex nor Schur-
concave) and was solved in [24] via a primal decomposition approach.

There are two natural extensions of the existing results on point-to-point
MIMO transceivers: to the case of imperfect CSI and to the multiuser scenario.
With imperfect CSI (due, e.g., to estimation errors), robust transceivers are nec-
essary to cope with the uncertainty. The existing results along this line are very
few and further work is still needed; some results were obtained in [25, 26] with a
worst-case robust approach and in [27, 28] with a stochastic robust approach (see
also [29] for a combination of space-time coding with linear precoding). Regard-
ing the extension to the multiuser scenario, the existing results are very scarce: in
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Figure 18.2. Scheme of a general MIMO communication system with a linear transceiver.

[30], a suboptimal joint design of the transmit-receive beamforming and power
allocation in a wireless network was proposed; and, in [31], the optimal MIMO
transceiver design in a multiple-access channel was obtained in terms of minimiz-
ing the sum of the MSEs of all the substreams and of all users (a similar approach
was employed in [32] for a broadcast channel). Iterative single-user methods have
also been applied to the multiuser case with excellent performance [33, 34].

In the sequel, the problem of linear MIMO transceiver design is formulated
and solved in a very general way for an arbitrary cost function as a measure of
the system quality. The design can then be approached from a unified perspective
that provides great insight into the problem and simplifies it. The key step is in re-
formulating the originally nonconvex problem in convex form after some manip-
ulations based on majorization theory [21]. The simplified problem can then be
addressed under the powerful framework of convex optimization theory [35, 36],
in which a great number of interesting design criteria can be easily accommodated
and efficiently solved even though closed-form expressions may not exist.

18.3. System model

The signal model corresponding to a transmission through a general MIMO com-
munication channel with nT transmit and nR receive dimensions is

y = Hs + n, (18.1)

where s ∈ CnT×1 is the transmitted vector, H ∈ CnR×nT is the channel matrix, y ∈
CnR×1 is the received vector, and n ∈ CnR×1 is a zero-mean circularly symmetric
complex Gaussian interference-plus-noise vector with arbitrary covariance matrix
Rn.

The transmitted vector can be written as (see Figure 18.2)

s = Bx, (18.2)

where B ∈ CnT×L is the transmit matrix (precoder) and x ∈ CL×1 is the data
vector that contains the L symbols to be transmitted (zero mean,3 normalized and
uncorrelated, that is, E[xxH] = I) drawn from a set of constellations. For the sake

3If a constellation does not have zero mean, the receiver can always remove the mean and then
proceed as if the mean was zero, resulting in a loss of transmitted power. Indeed, the mean of the signal
does not carry any information and can always be set to zero saving power at the transmitter.
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of notation, it is assumed that L ≤ min(nR,nT). The total average transmitted
power (in units of energy per transmission) is

PT = E
[‖s‖2] = Tr

(
BBH). (18.3)

Similarly, the estimated data vector at the receiver is (see Figure 18.2)

x̂ = AHy, (18.4)

where AH ∈ CL×nR is the receive matrix (equalizer).
It is interesting to observe that the ith column of B and A, bi and ai, respec-

tively, can be interpreted as the transmit and receive beamvectors, respectively,
associated to the ith transmitted symbol xi:

x̂i = aHi
(

Hbixi + ni
)
, (18.5)

where ni =
∑

j �=i Hb jx j + n is the equivalent noise seen by the ith substream, with
covariance matrix Rni =

∑
j �=i Hb jbH

j HH + Rn.
It is worth noting that in some particular scenarios such as in multicarrier

systems, although the previous signal model can be directly applied by properly
defining the channel matrix H as a block-diagonal matrix containing the channel
at each carrier, it may also be useful to model the system as a set of parallel and
noninterfering MIMO channels (cf. Section 18.9).

18.3.1. Measures of quality

The quality of the ith established substream or link in (18.5) can be conveniently
measured, among others, in terms of MSE, SINR, or BER, defined, respectively, as

MSEi � E
[∣∣x̂i − xi

∣∣2] = ∣∣aHi Hbi − 1
∣∣2

+ aHi Rniai, (18.6)

SINRi �
desired component

undesired component
=

∣∣aHi Hbi

∣∣2

aHi Rniai
, (18.7)

BERi �
# bits in error

# transmitted bits
≈ g̃i

(
SINRi

)
, (18.8)

where g̃i is a function that relates the BER to the SINR at the ith substream. For
most types of modulations, the BER can indeed be analytically expressed as a func-
tion of the SINR when the interference-plus-noise term follows a Gaussian distri-
bution [37, 38, 39]; otherwise, it is an approximation (see [24] for a more de-
tailed discussion). For example, for square M-ary QAM constellations, the BER is
[37, 39]

BER(SINR) ≈ 4
log2 M

(
1 − 1√

M

)
Q

(√
3

M − 1
SINR

)
, (18.9)
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Figure 18.3. Independent detection of the substreams after the joint linear processing with matrix A.

where Q is the Q-function defined as Q(x) � (1/
√

2π)
∫∞
x e−λ2/2dλ [38].4 It is

sometimes convenient to use the Chernoff upper bound of the tail of the Gauss-
ian distribution function Q(x) ≤ (1/2)e−x2/2 [38] to approximate the symbol er-
ror probability (which becomes a reasonable approximation for high values of the
SINR).

It is worth pointing out that expressing the BER as in (18.8) implicitly assumes
that the different links are independently detected after the joint linear processing
with the receive matrix A (see Figure 18.3). This reduces the complexity drastically
compared to a joint maximum-likelihood (ML) detection and is indeed the main
advantage of using the receive matrix A.

Any properly designed system should attempt to somehow minimize the
MSEs, maximize the SINRs, or minimize the BERs, as is mathematically formu-
lated in the next section.

18.4. General problem formulation

The problem addressed in this chapter is the optimal design of a linear MIMO
transceiver (matrices A and B) as a tradeoff between the power transmitted and
the quality achieved. To be more specific, the problem can be formulated as the
minimization of some cost function f0 of the MSEs in (18.6), which measures the
system quality (a smaller value of f0 means a better quality), subject to a transmit
power constraint [20, 40]:

min
A,B

f0
({

MSEi
})

s.t. Tr
(

BBH) ≤ P0

(18.10)

or, conversely, as the minimization of the transmit power subject to a constraint
on the quality of the system:

min
A,B

Tr
(

BBH)
s.t. f0

({
MSEi

}) ≤ α0,
(18.11)

where P0 and α0 denote the maximum values for the power and for the cost func-
tion, respectively.

4The complementary error function is related to the Q-function as erfc(x) = 2 Q(
√

2x) [38].
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The cost function f0 is an indicator of how well the system performs and
should be properly selected for the problem at hand. In principle, any function
can be used to measure the system quality as long as it is strictly increasing in each
argument. Note that the increasingness of f0 is a mild and completely reasonable
assumption: if the quality of one of the substream improves while the rest remain
unchanged, any reasonable function should properly reflect this difference.

The problem formulations in (18.10) and (18.11) are in terms of a cost func-
tion of the MSEs; however, similar design problems can be straightforwardly for-
mulated with cost functions of the SINRs and of the BERs (when using cost func-
tions of the BERs, it is implicitly assumed that the constellations have already been
chosen such that (18.8) can be employed).

Alternatively, it is also possible to consider independent constraints on each
of the links rather than a global measure of the quality [26, 40]:

min
A,B

Tr
(

BBH)
s.t. MSEi ≤ ρi 1 ≤ i ≤ L,

(18.12)

where ρi denotes the maximum MSE value for the ith substream. Constraints in
terms of SINR and BER can be similarly considered. Note that the solution to
problem (18.12) allows a more detailed characterization of the fundamental mul-
tiobjective nature of the problem [10]; it allows, for example, to compute the exact
region of achievable MSEs for a given power budget.

For the sake of space, this chapter focuses on the power-constrained problem
in (18.10). The quality-constrained problem in (18.11), however, is so closely re-
lated that the results obtained also hold for this problem (in particular, Theorem
18.1 holds for problem (18.11)). Problem (18.12) is mathematically more involved
and the interested reader is referred to [26, 40, 24].

If fact, since problems (18.10) and (18.11) characterize the same strictly
monotonic tradeoff curve of power versus quality, each of them can be easily solved
by iteratively solving the other one using, for example, the bisection method [35,
Algorithm 4.1].

18.5. Receiver design

The receive matrix A can be easily optimized for a given fixed transmit matrix B.
In principle, the optimal receive matrix may depend on the specific choice of the
cost function f0. However, it turns out that the optimal solution is independent of
f0 as is now briefly described (for more details, the reader is referred to [20, 40]).

It will be notationally convenient to define the MSE matrix as

E � E
[
(x̂ − x)(x̂ − x)H

] = (
AHHB − I

)(
BHHHA − I

)
+ AHRnA (18.13)

from which the MSE of the ith link is obtained as the ith diagonal element of E,
that is, MSEi = [E]ii.
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The minimization of the MSE of a substream with respect to the receive ma-
trix A (for a fixed transmit matrix B) does not incur any penalty on the other
substreams (see, e.g., (18.5) where ai only affects x̂i); in other words, there is no
tradeoff among the MSEs and the problem decouples. Therefore, it is possible to
minimize simultaneously all MSEs and this is precisely how the well-known lin-
ear minimum MSE (MMSE) receiver, also termed Wiener filter, is obtained [41]
(see also [20, 26]). If the additional ZF constraint AHHB = I is imposed to avoid
crosstalk among the substreams (which may happen with the MMSE receiver),
then the well-known ZF receiver is obtained [40]. Interestingly, the MMSE and
ZF receivers are also optimum in the sense that they maximize simultaneously all
SINRs and, consequently, minimize simultaneously all BERs (cf. [20, 40]).

The MMSE and ZF receivers can be compactly written as

A = R−1
n HB

(
νI + BHHHR−1

n HB
)−1

, (18.14)

where ν is a parameter defined as

ν �
1 for the MMSE receiver,

0 for the ZF receiver.
(18.15)

The MSE matrix reduces then to the following concentrated MSE matrix:

E = (
νI + BHRHB

)−1
, (18.16)

where RH � HHR−1
n H is the squared whitened channel matrix.

18.5.1. Relation among different measures of quality

It is convenient now to relate the different measures of quality, namely, MSE, SINR,
and BER, to the concentrated MSE matrix in (18.16).

From the definition of MSE matrix, the individual MSEs are given by the di-
agonal elements:

MSEi =
[(
νI + BHRHB

)−1]
ii. (18.17)

It turns out that the SINRs and the MSEs are trivially related when using the
MMSE or ZF receivers as [20, 26, 40]

SINRi = 1
MSEi

− ν. (18.18)

Finally, the BERs can also be written as a function of the MSEs:

BERi = gi
(

MSEi
)

� g̃i
(

SINRi = MSE−1
i −ν), (18.19)

where g̃i was defined in (18.8).
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Figure 18.4. BER as a function of the MSE for different QAM constellations.

It is important to remark that the BER functions g̃i are convex decreasing in
the SINR and the BER functions gi are convex increasing in the MSE for sufficiently
small values of the argument (see Figure 18.4) [20, 40] (this last property will be
key when proving later in Section 18.8.2 that the average BER function is Schur-
convex). As a rule of thumb, the BER as a function of the MSE is convex for a
BER less than 2 × 10−2 (this is a mild assumption, since practical systems have in
general a smaller uncoded BER5); interestingly, for BPSK and QPSK constellations,
the BER function is always convex [20, 40].

Summarizing, the MMSE and ZF receivers have been obtained as the opti-
mum solution in the sense of minimizing the MSEs, maximizing the SINRs, and
minimizing the BERs. In addition, since the SINR and the BER can be expressed
as a function of the MSE, (18.18) and (18.19), it suffices to focus on cost functions
of the MSEs without loss of generality.

18.6. Transmitter design

Now that the MMSE and ZF receivers have been obtained as optimal solutions, the
main problem addressed in this chapter can be finally formulated: the optimiza-
tion of the transmit matrix B for an arbitrary cost function of the MSEs (recall that
cost functions of the SINRs and BERs can always be reformulated as functions of
the MSEs).

Theorem 18.1. The following complicated nonconvex constrained optimization
problem:

min
B

f0
({[(

νI + BHRHB
)−1]

ii

})
s.t. Tr

(
BBH) ≤ P0,

(18.20)

5Given an uncoded bit error probability of at most 10−2 and using a proper coding scheme, coded
bit error probabilities with acceptable low values such as 10−6 can be obtained.
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where f0 : RL → R is an arbitrary cost function (increasing in each argument and
minimized when the arguments are sorted in decreasing order6), is equivalent to the
simple problem

min
p,ρ

f0
(
ρ1, . . . , ρL

)
s.t.

L∑
j=i

1
ν + pjλH , j

≤
L∑
j=i

ρ j , 1 ≤ i ≤ L,

ρi ≥ ρi+1,

L∑
j=1

pj ≤ P0,

pi ≥ 0,

(18.21)

where the λH ,i’s are L largest eigenvalues of RH sorted in increasing order λH ,i ≤ λH ,i+1

and ρL+1 � 0. Furthermore, if f0 is a convex function, problem (18.21) is convex and
the ordering constraint ρi ≥ ρi+1 can be removed.

More specifically, the optimal solution to problem (18.20) is given by

B = UH ,1ΣBQ, (18.22)

where UH ,1 ∈ CnT×L is a (semi-)unitary matrix that has as columns the eigen-
vectors of RH corresponding to the L largest eigenvalues in increasing order, ΣB =
diag({√pi}) ∈ RL×L is a diagonal matrix with the optimal power allocation {pi}
obtained as the solution to problem (18.21), and Q is a unitary matrix such that
[(νI + BHRHB)−1]ii = ρi for 1 ≤ i ≤ L (see [42, Section IV-A] for a practical algo-
rithm to obtain Q).

In addition, the optimal solution can be further characterized for two particular
cases of cost functions.

(i) If f0 is Schur-concave, then an optimal solution is

B = UH ,1ΣB. (18.23)

(ii) If f0 is Schur-convex, then an optimal solution is

B = UH ,1ΣBQ, (18.24)

where Q is a unitary matrix such that (I + BHRHB)−1 has identical diagonal ele-
ments. This rotation matrix Q can be computed with the algorithm in [42, Section
IV-A], as well as with any unitary matrix that satisfies |[Q]ik| = |[Q]il|, for all
i, k, l such as the unitary discrete Fourier transform (DFT) matrix or the unitary

6In practice, most cost functions are minimized when the arguments are in a specific ordering
(if not, one can always use instead the function f̃0(x) = minP∈P f0(Px), where P is the set of all
permutation matrices) and, hence, the decreasing ordering can be taken without loss of generality.
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All functions
f : � ⊆ Rn → R

Schur-convex
functions

Schur-concave
functions

Figure 18.5. Illustration of the sets of Schur-convex and Schur-concave functions within the set of all
functions f : A ⊆ Rn → R.

Hadamard matrix (when the dimensions are appropriate such as a power of two [38,
page 66]).

Proof . The key simplification from (18.20) to (18.21) is based on an appro-
priate change of variable based on majorization theory [21]. A sketch of the proof
is given in the appendix (see [20, 40] for details). �

Note that Theorem 18.1 is a generalization of previous results [20, 40] which
only considered Schur-concave and Schur-convex functions.

Some comments on Theorem 18.1 are in order.
(i) The main result is in the simplification of the original complicated problem

(18.20) with a matrix-valued variable to the simple problem (18.21) with a set of
scalar variables that represent a power allocation over the channel eigenvalues. In
other words, the problem has been scalarized in the sense that no matrix appears.

(ii) As stated in the theorem, when f0 is a convex function, then the simplified
problem (18.21) is convex. This has tremendous consequences, since the problem
can always be optimally solved using the existing tools in convex optimization the-
ory, either in closed-form (using the Karush-Kuhn-Tucker optimality conditions)
or at least numerically (using very efficient algorithms recently developed such as
interior-point methods) [35, 36]. Furthermore, additional constraints on the de-
sign can be easily incorporated without affecting the solvability of the problem as
long as they are convex (cf. [20, 40]).

(iii) For Schur-concave/convex cost functions, the problem (18.21) is extreme-
ly simplified (cf. Sections 18.6.1 and 18.6.2) and in most cases closed-form solu-
tions can be obtained (see Section 18.8 for a list of Schur-concave/convex cost
functions and for a detailed treatment of two interesting cases such as the mini-
mization of the average BER and the optimization of the worst substream).

(iv) The sets of Schur-concave and Schur-convex functions do no form a
partition of the set of all functions as illustrated in Figure 18.5. This means that
there may be cost functions that are neither Schur-concave nor Schur-convex (cf.
Section 18.8.2). On the other hand, there are cost functions that are both Schur-
concave and Schur-convex, such as Tr(E), and admit any rotation matrix Q [40].
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(v) Surprisingly, for Schur-convex cost functions f0, the optimal solution to
the original problem (18.20) is independent of the specific choice of f0 (cf. Section
18.6.2), as opposed to Schur-concave cost functions, whose solution depends on
the particular choice of f0.

(vi) As is explained in detail in Section 18.7, for Schur-concave functions, the
optimal transmission is fully diagonal, whereas for Schur-convex functions, it is
not due to the additional rotation matrix Q (see Figure 18.6)

(vii) For the simple case in which a single substream is established, that is,
L = 1, the result in Theorem 18.1 simply means that the eigenmode with highest
gain should be used.

18.6.1. Schur-concave cost functions

For Schur-concave cost functions, since the optimal rotation is Q = I (from
Theorem 18.1), the MSEs are given by

MSEi = 1
ν + piλH ,i

, 1 ≤ i ≤ L (18.25)

and the original optimization problem (18.20) can be finally written as

min
p

f0

({
1

ν + piλH ,i

}
i

)

s.t.
L∑
j=1

pj ≤ P0,

pi ≥ 0, 1 ≤ i ≤ L.

(18.26)

The solution to problem (18.26) clearly depends on the particular choice of f0.

18.6.2. Schur-convex cost functions

For Schur-convex cost functions, since the diagonal elements of E are equal at the
optimal solution (from Theorem 18.1), the MSEs are given by

MSEi = 1
L

Tr(E) = 1
L

L∑
j=1

1
ν + pjλH , j

, 1 ≤ i ≤ L (18.27)

and the original optimization problem (18.20) can be finally written as

min
p

1
L

L∑
j=1

1
ν + pjλH , j

s.t.
L∑
j=1

pj ≤ P0,

pi ≥ 0, 1 ≤ i ≤ L.

(18.28)
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Figure 18.6. Scheme of diagonal and nondiagonal (due to the rotation) transmissions: (a) diagonal
transmission and (b) nondiagonal (diagonal + rotation) transmission.

Surprisingly, this simplified problem for Schur-convex functions does not depend
on the cost function f0. The reason is that all the MSEs are equal and f0 is increas-
ing in each argument; consequently, minimizing the cost function is equivalent to
minimizing the equal arguments given by (18.27). In addition, problem (18.28) is
solved by the following water-filling solution:

pi =
(
µλ−1/2

H ,i − νλ−1
H ,i

)+
, 1 ≤ i ≤ L, (18.29)

where µ is the water-level chosen such that
∑

i pi = P0 (see [43] for practical im-
plementation of water-filling expressions). Note that for the ZF receiver (ν = 0),
the water-filling solution (18.29) simplifies to pi = P0 λ

−1/2
H ,i /

∑
j λ

−1/2
H , j .

It is interesting to remark that problem (18.28) is equivalent to the minimiza-
tion of the trace of the MSE matrix. Hence, among the infinite solutions that min-
imize Tr(E), only that which yields equal diagonal elements in E is the optimal
solution for a Schur-convex objective function (which is obtained in fact with the
water-filling solution in (18.29) and the rotation Q as described in Theorem 18.1).

18.7. Diagonal versus nondiagonal transmission

To better understand the underlying structure of the communication when using
an MMSE/ZF receiver and a transmitter of the form B = UH ,1ΣBQ, write the global
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transmit-receive process x̂ = AH(HBx + n) as

x̂ = QH
(
νI + ΣH

B DH ,1ΣB
)−1

ΣH
B D1/2

H ,1

(
D1/2

H ,1ΣBQx + w
)
, (18.30)

where w is an equivalent white noise and DH ,1 = UH
H ,1RHUH ,1 is the diagonal-

ized squared whitened channel matrix. For the ZF receiver (ν = 0), the previous
expression simplifies to

x̂ = x + QH
(
ΣH
B DH ,1ΣB

)−1/2
w (18.31)

which clearly satisfies the condition AHHB = I (by definition) but has, in general,
a correlated noise among the substreams. In other words, when using the ZF re-
ceiver, the global transmission is not really diagonal or parallel since the noise is
colored.

Interestingly, having a fully diagonal or parallel transmission does not depend
on whether the ZF or the MMSE receivers are used, but on the choice of the ro-
tation Q (see Figure 18.6). Indeed, by setting Q = I, the global transmit-receive
process is fully diagonalized:

x̂ = (
νI + ΣH

B DH ,1ΣB
)−1

ΣH
B D1/2

H ,1

(
D1/2

H ,1ΣBx + w
)

(18.32)

which can be rewritten as

x̂i = αi
(√

piλH ,ixi + wi

)
, 1 ≤ i ≤ L, (18.33)

where αi =
√
pi λH ,i/(ν + piλH ,i) (see Figure 18.6 with λi � λH ,i). Note that when

Q = I, the MMSE receiver also results in a diagonal transmission (which is never
the case in the traditional approach where only the receiver is optimized).

18.8. Examples

The following list of Schur-concave and Schur-convex functions, along with the
corresponding closed-form solutions, illustrates how powerful is the unifying
framework developed in Theorem 18.1 (see [20, 40] for a detailed treatment of
each case).

The following are examples of Schur-concave functions (when expressed as
functions of the MSEs) for which the diagonal transmission is optimal:

(i) minimization of the sum of the MSEs or, equivalently, of Tr(E) [15, 6]
with solution pi = (µλ−1/2

H ,i − νλ−1
H ,i

)+
;
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(ii) minimization of the weighted sum of the MSEs or, equivalently, of
Tr(WE) [16], where W = diag({wi}) is a diagonal weighting matrix,
with solution pi = (µw1/2

i λ−1/2
H ,i − νλ−1

H ,i)
+;

(iii) minimization of the (exponentially weighted) product of the MSEs with
solution pi = (µwi − νλ−1

H ,i)
+;

(iv) minimization of det(E) [17] with solution pi = (µ− νλ−1
H ,i)

+;
(v) maximization of the mutual information, for example, [12], with solu-

tion pi = (µ− λ−1
H ,i)

+;
(vi) maximization of the (weighted) sum of the SINRs with solution given by

allocating all the power on the channel eigenmode with highest weighted
gain wi λH ,i;

(vii) maximization of the (exponentially weighted) product of the SINRs with
solution pi = P0 wi/

∑
j wj (for the unweighted case, it results in a uni-

form power allocation).
The following are examples of Schur-convex functions for which the optimal

transmission is nondiagonal with solution given by pi = (µλ−1/2
H ,i − νλ−1

H ,i)
+ plus the

rotation Q:
(i) minimization of the maximum of the MSEs;

(ii) maximization of the minimum of the SINRs;
(iii) maximization of the harmonic mean of the SINRs;7

(iv) minimization of the average BER (with equal constellations);
(v) minimization of the maximum of the BERs.

In the following, two relevant examples (with an excellent performance in
practice) are considered to illustrate how easily linear MIMO transceivers can be
designed with the aid of Theorem 18.1.

18.8.1. Optimization of the worst substream

The optimization of the worst substream can be formulated, for example, as the
minimization of the maximum MSE:

min
A,B

max
i

{
MSEi

}
(18.34)

which coincides with the minimization of the maximum BER if equal constella-
tions are used. The optimal receive matrix is given by (18.14) and the problem
reduces then to

min
B

max
i

{[(
νI + BHRHB

)−1]
ii

}
s.t. Tr

(
BBH) ≤ P0.

(18.35)

7For the ZF receiver, the maximization of the harmonic mean of the SINRs is equivalent to the
minimization of the unweighted sum of the MSEs, which can be classified as both Schur-concave and
Schur-convex (since it is invariant to rotations).
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Theorem 18.1 can now be invoked noting that f0(x) = maxi{xi} is a Schur-convex
function [20, 40] (if y majorizes x, it must be that xmax ≤ ymax from the definition
of majorization [21, 1.A.1] and, therefore, f0(x) ≤ f0(y) which is precisely the
definition of Schur-convexity [21, 3.A.1]). Hence, the final problem to be solved is
(18.28) with solution given by (18.29) (recall that the rotation matrix Q is needed
in this case as indicated in Theorem 18.1).

In light of Theorem 18.1 and the Schur-convexity of the cost function, it is
now clear that the optimal transmission is nondiagonal (cf. Sections 18.6.2 and
18.7). However, one can still impose such a structure and solve the original prob-
lem in a suboptimal way. The transmit matrix would then be B = UH ,1ΣB and the
problem to be solved in convex form:

min
p

t

s.t. t ≥ 1
ν + piλH ,i

1 ≤ i ≤ L

L∑
j=1

pj ≤ P0

pi ≥ 0

(18.36)

with solution given by pi = P0 λ
−1
H ,i/

∑
j λ

−1
H , j .

18.8.2. Minimization of the average BER

The average (uncoded) BER is a good measure of the uncoded part of a system.
Hence, its minimization may be regarded as an excellent (if not the best) criterion:

min
A,B

1
L

L∑
i=1

gi
(

MSEi
)
, (18.37)

where the functions gi were defined in (18.19) and characterized as convex func-
tions (see Figure 18.4). The optimal receive matrix is given by (18.14) and the
problem reduces then to

min
B

1
L

L∑
i=1

gi
([(

νI + BHRHB
)−1]

ii

)
s.t. Tr

(
BBH) ≤ P0.

(18.38)

Theorem 18.1 can now be invoked and the problem simplifies to the following
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convex problem (provided that the constellations are chosen with increasing car-
dinality):

min
p,ρ

1
L

L∑
i=1

gi
(
ρi
)

s.t.
L∑
j=i

1
ν + pjλH , j

≤
L∑
j=i

ρ j , 1 ≤ i ≤ L,

L∑
j=1

pj ≤ P0,

pi ≥ 0.

(18.39)

This particular problem was extensively treated in [24] via a primal decomposition
approach which allowed the resolution of the problem with extremely simple al-
gorithms (rather than using general purpose iterative algorithms such as interior-
point methods).

In the particular case in which the constellations used in the L substreams
are equal, the average BER cost function turns out to be Schur-convex since it
is the sum of identical convex functions [21, 3.H.2]. Hence, the final problem to
be solved is again (18.28) with solution given by (18.29) (recall that the rotation
matrix Q is needed in this case as indicated in Theorem 18.1). As before, the min-
imization of the average BER can be suboptimally solved by imposing a diagonal
structure.

18.9. Extension to parallel MIMO channels

As mentioned in Section 18.3, some particular scenarios, such as multicarrier sys-
tems, may be more conveniently modeled as a communication through a set of
parallel MIMO channels

yk = Hksk + nk, 1 ≤ k ≤ N , (18.40)

where N is the number of parallel channels and k is the channel index.
It is important to remark that a multicarrier system can be modeled, not

only as a set of parallel MIMO channels as in (18.40), but also as a single MIMO
channel as in (18.1) with H = diag({Hk}). The difference lies on whether the
transceiver operates independently at each MIMO channel as implied by (18.40)
(block-diagonal matrices B = diag({Bk}) and A = diag({Ak})) or a global tran-
sceiver processes jointly all MIMO channels as a whole as implied by (18.1) (full
matrices B and A).

In the case of a set of N parallel MIMO channels with a single power con-
straint per channel, all the results obtained so far for a single MIMO channel
clearly hold, since the optimization of a global cost function decouples into a set of
N parallel optimization subproblems (under the mild assumption that the global
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cost function f0 depends on each MIMO channel through a subfunction fk, that
is, when it is of the form f0({ fk(xk)})).

When the power constraint is global for the whole set of parallel MIMO chan-
nels, as is usually the case in multicarrier systems, the problem formulation in
(18.10) becomes

min
{Ak ,Bk ,Pk}

f0
({

MSEk,i
})

s.t. Tr
(

BkBH
k

) ≤ Pk, 1 ≤ k ≤ N ,

N∑
k=1

Pk ≤ P0.

(18.41)

For this problem, the results previously obtained for a single MIMO channel still
hold, but some comments are in order.

(i) The optimal receiver and MSE matrix for each of the MIMO channels have
the same form as (18.14) and (18.16), respectively.

(ii) Theorem 18.1 still holds for each of the MIMO channels, with the addi-
tional complexity that the power Pk used in each of them is also an optimization
variable, which has to comply with the global power constraint

∑N
k=1 Pk ≤ P0. In

particular, the resulting simplified problem is similar to (18.21) (which is convex
provided that the cost function f0 is) and the optimal transmitters have the same
form as (18.22). When f0 is Schur-concave/convex on a MIMO channel basis (i.e.,
when fixing the variables of all MIMO channels except the kth one, for all k), the
simplifications (18.23) and (18.24) of the optimal transmitters are still valid.

(iii) The simplification of the problem for Schur-concave cost functions as
described in Section 18.6.1 is still valid. For Schur-convex functions, however, the
amazing simplification obtained in Section 18.6.2 is not valid anymore. That is, for
multiple MIMO channels with a Schur-convex cost function f0, the solution is not
independent of the particular choice of f0 as happened in the single MIMO case
(see problem (18.28) and the solution (18.29)); to be more specific, the difference
of the solutions is on how the total power is allocated among the MIMO channels.

(iv) The optimal solutions obtained for multiple MIMO channels [20, 40] are,
in general, more complicated than the simple water-filling expressions for a single
MIMO channel given in Section 18.8. In many cases, the solutions still present a
water-filling structure, but with several water-levels coupled together [20, 40]. In
any case, the numerical evaluation of such water-filling solutions can be imple-
mented very efficiently in practice [43].

18.10. Numerical results

The aim of this section is not just to compare the different methods for designing
MIMO transceivers, but to show that the design according to most criteria can
now be actually solved using the unified framework.

In order to describe the simulation setup easily and since the observations
and conclusions remain the same, a very simple model has been used to randomly
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generate different realizations of the MIMO channel (for simulations with more
realistic wireless multiantenna channel models including spatial and frequency
correlation, the reader is referred to [20, 40]). In particular, the channel matrix H
has been drawn from a Gaussian distribution with i.i.d. elements of zero mean and
unit variance, and the noise has been modeled as white Rn = σ2

nI, where σ2
n is the

noise power. The SNR is defined as SNR = PT/σ2
n , which is essentially a measure of

the transmitted power normalized with respect to the noise. The performance of
the systems is measured in terms of BER averaged over the substreams; to be more
precise, the outage BER8 (over different realizations of H) is considered since it
is a more realistic measure than the average BER (which only makes sense when
the system does not have delay constraints and the duration of the transmission is
sufficiently long such that the fading statistics of the channel can be averaged out).

For illustration purposes, four different methods have been simulated: the
classical minimization of the sum of the MSEs (SUM-MSE), the minimization of
the product of the MSEs (PROD-MSE), the optimization of the worst substream
(see Section 18.8.1) or minimization of the maximum of the MSEs (MAX-MSE),
and the minimization of the average BER (see Section 18.8.2) or, equivalently, of
the sum of the BERs (SUM-BER). Note that the methods SUM-MSE and PROD-
MSE correspond to Schur-concave cost functions, whereas the methods MAX-
MSE and SUM-BER correspond to Schur-convex ones.

In Figure 18.7, the BER (for a QPSK constellation) is plotted as a function of
the SNR for a 4 × 4 MIMO channel with L = 3 for the cases of ZF and MMSE
receivers. The first observation is that the performance of the ZF receiver is basi-
cally the same as that of the MMSE receiver thanks to the joint optimization of
the transmitter and receiver (as opposed to the typically worse performance of
the ZF receiver in the classical equalization setup where only the receiver is opti-
mized). Another observation is that the performance of the methods MAX-MSE
and SUM-BER is, as expected, exactly the same because they both correspond to
Schur-convex cost functions (cf. Section 18.6.2).

In Figure 18.8, the same scenario is considered but with multiple parallel
MIMO channels (N = 16) and only for the MMSE receiver. Two different ap-
proaches have been taken to deal with the multiple MIMO channels: a joint pro-
cessing among all channels by modeling them as a whole as in (18.1) and a parallel
processing of the channels by modeling them explicitly as parallel MIMO chan-
nels as in (18.40) (cf. Section 18.9). The joint processing clearly outperforms the
parallel processing; the difference, however, may be as small as 0.5 dB or as large as
2 dB at a BER of 10−4, for example, depending on the method. Hence, it is not clear
whether the increase of complexity of the joint processing is worth (note, however,
that the difference of performance increases with the loading factor of the system
defined as L/ min(nT ,nR)). With a parallel processing, the methods MAX-MSE
and SUM-BER are not equivalent albeit being both Schur-convex, as opposed to a
joint processing (cf. Section 18.9).

8The outage BER is the BER that is attained with some given probability (when it is not satisfied,
an outage event is declared).
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Figure 18.7. BER (at an outage probability of 5%) versus SNR when using QPSK in a 4 × 4 MIMO
channel with L = 3 (with MMSE and ZF receivers) for the methods: PROD-MSE, SUM-MSE, MAX-
MSE, and SUM-BER.

It is important to remark that Schur-convex methods are superior to Schur-
concave ones (as observed from Figures 18.7 and 18.8). The reason is that Schur-
concave methods transmit the symbols on a parallel fashion through the channel
eigenmodes (diagonal structure), with the consequent lack of robustness to fading
of some of the channel eigenmodes; whereas Schur-convex methods always trans-
mit the symbols in a distributed way through the channels eigenmodes (nondiag-
onal structure), similar in essence to what CDMA systems do over the frequency
domain. Among the Schur-convex methods, the SUM-BER is obviously the best
(by definition) in terms of BER averaged over the substreams.

18.11. Summary

This chapter has dealt with the design of linear MIMO transceivers according to an
arbitrary measure of the system quality. First, it has been observed that the results
existing in the literature are isolated attempts under very specific design criteria
such as the minimization of the trace of the MSE matrix. As a consequence, a uni-
fied framework has been proposed, which builds upon very recent results, to pro-
vide a systematic approach in the design of MIMO transceivers. Such a framework
simplifies the original complicated problem to a simple convex problem which can
then be tackled with the many existing tools in convex optimization theory (both
numerical and analytical). In addition, for the family of Schur-concave/convex
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Figure 18.8. BER (at an outage probability of 5%) versus SNR (per MIMO channel) when using QPSK
in 16 multiple 4 × 4 MIMO channels with L = 3 (with parallel and joint processing) for the methods:
PROD-MSE, SUM-MSE, MAX-MSE, and SUM-BER.

functions, the problem simplifies further and practical solutions are obtained gen-
erally with a simple water-filling form.

Appendix

Sketch of the proof of Theorem 18.1

The proof hinges on majorization theory; the interested reader is referred to [21]
for definitions and basic results on majorization theory (see also [40] for a brief
overview) and to [20, 26, 40] for details overlooked in this sketch of the proof.

To start with, the problem (18.20) can be written as

min
B,ρ

f0
(
ρ1, . . . , ρL

)
s.t.

[(
νI + BHRHB

)−1]
ii ≤ ρi, 1 ≤ i ≤ L,

Tr
(

BBH) ≤ P0

(A.1)

which can always be done since f0 is increasing in each argument. Also, since f0
is minimized when ρi ≥ ρi+1 and B can always include any desired permutation
such that the diagonal elements of (νI + BHRHB)−1 are in decreasing order, the
constraint ρi ≥ ρi+1 can be explicitly included without affecting the problem.
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The first main simplification comes by rewriting the problem as [26, Theo-
rem 2]

min
B̃,ρ

f0
(
ρ1, . . . , ρL

)
s.t. B̃HRH B̃ diagonal (increasing diag. elements),

d
((
νI+B̃HRH B̃

)−1) "w ρ,

ρi ≥ ρi+1,

Tr
(

B̃B̃H
) ≤ P0,

(A.2)

where "w denotes the weakly majorization relation9 [21] and d(X) denotes the
diagonal elements of matrix X (similarly, λ(X) is used for the eigenvalues). The
second constraint guarantees the existence of a unitary matrix Q such that
d(QH(νI+B̃HRH B̃)−1Q) ≤ ρ [21, 9.B.2 and 5.A.9.a] or, in other words, such that
[(νI + BHRHB)−1]ii ≤ ρi with B = B̃Q.

The second main simplification comes from the fact that B̃ can be assumed
without loss of optimality of the form B̃ = UH ,1ΣB, as described in the theorem,
since B̃HRH B̃ is diagonal with diagonal elements in increasing order (cf. [20,
Lemma 12], [26, Lemma 7], and [40, Lemma 5.11]).

Problem (18.21) follows then by plugging the expression of B̃ into (A.2),
denoting pi = |[ΣB]ii|2 (which implies the need for the additional constraints
pi ≥ 0), and by rewriting the weakly majorization constraint explicitly [21]. If f0
is convex, the constraints ρi ≥ ρi+1 are not necessary since an optimal solution
cannot have ρi < ρi+1 (because the problem would have a lower objective value by
using instead ρ̃i = ρ̃i+1 = (ρi + ρi+1)/2 [24]).

To obtain the additional simplification for Schur-concave/convex cost func-
tions, rewrite the MSE constraints of (A.1) (since they are satisfied with equality
at an optimal point) as

ρ = d
(

QH
(
νI+B̃HRH B̃

)−1
Q
)
. (A.3)

Now it suffices to use the definition of Schur-concavity/convexity to obtain the
desired result. In particular, if f0 is Schur-concave, it follows from the definition of
Schur-concavity [21] (the diagonal elements and eigenvalues are assumed here in
decreasing order) that

f0
(

d(X)
) ≥ f0

(
λ(X)

)
(A.4)

which means that f0(ρ) is minimum when Q = I in (A.3) (since (νI+B̃HRH B̃)−1

is already diagonal and with diagonal elements in decreasing order by definition).

9The weakly majorization relation y "w x is defined as
∑n

j=i y j ≤ ∑n
j=i xi for 1 ≤ i ≤ n, where

the elements of y and x are assumed in decreasing order [21].
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If f0 is Schur-convex, the opposite happens:

f0
(

d(X)
) ≥ f0

(
1 × Tr(X)

L

)
, (A.5)

where 1 denotes the all-one vector. This means that f0(ρ) is minimum when Q
is such that ρ has equal elements in (A.3), that is, when QH(νI+B̃HRH B̃)−1Q has
equal diagonal elements.
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Abbreviations

BER Bit error rate

BPSK Binary phase-shift keying

CSI Channel state information

DSL Digital subscriber line

QAM Quadrature amplitude modulation

QPSK Quaternary phase-shift keying

MIMO Multiple-input multiple-output

ML Maximum likelihood

MMSE Minimum MSE

MSE Mean square error

SINR Signal-to-interference-plus-noise ratio

SISO Single-input single-output

ZF Zero forcing
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Space-time block coding using
channel side information

George Jöngren, Mikael Skoglund,
and Björn Ottersten

19.1. Introduction

Multiple transmit and receive antennas can be used in wireless systems to achieve
high data rate communication. An array of multiple antennas may be placed at
the receiver, the transmitter, or at both sides of the communication link. Tech-
niques for exploiting antenna arrays at the receive side represent the classical way
of utilizing the spatial dimension for increasing the performance [1]. In contrast,
methods for using antenna arrays for transmitting purposes have traditionally not
received the same amount of interest. This since it has until recently been believed
that accurate channel state information at the transmitter is needed for antenna
array transmission techniques to be successful.

At first, the need for channel knowledge seems unavoidable as the transmis-
sion can otherwise not be adjusted so that the signals after passing through the
channel are guaranteed to add constructively at the receiver, thereby increasing
the signal-to-noise-ratio (SNR). Recent results show however that channel knowl-
edge at the transmitter is not a prerequisite for gaining from an antenna array
placed at the transmitter. Information theoretic investigations in fact demonstrate
that multiple antennas at the transmitter may, through proper spatio-temporal
processing, boost the performance tremendously compared with a single-antenna
system, even in the complete absence of channel knowledge [2]. This is especially
true if both the transmitter and the receiver are equipped with antenna arrays since
the resulting multi-input multi-output (MIMO) channel offers more degrees of
spatial freedom for the system to exploit.

The development of space-time codes [3, 4] provides new and important tools
for realizing the high data rates promised by information theory. In space-time
coding, the codewords are represented by matrices that by means of their two-
dimensional structure allow coding in both the spatial as well as in the tempo-
ral domain. Properly designed such codes may as a result offer significant diver-
sity and coding gains over traditional single-antenna transmission. Conventional
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methods’ need for channel knowledge is circumvented by striving for code designs
that spread the emitted energy and information evenly in space.

A systematic approach to finding appropriate codes was pioneered in [3]. A
major contribution in that paper was the development of a design criterion involv-
ing the rank and eigenvalues/determinant of a certain matrix. The design criterion
was later generalized to multiple receive antennas and to other channel models
in [4], where the now popular notion of space-time coding was coined. The lat-
ter work also included examples of trellis codes constructed based on the design
criterion.

Ever since these two seminal papers, interest in space-time coding has liter-
ally exploded and many different types of codes have been designed. Code designs
closely related to the development herein include the class of linear dispersive (LD)
space-time block codes [5, 6]. The codeword matrices in such codes are formed as
linear combinations of some information carrying scalar symbols, each weighted
by a corresponding matrix that spreads the information both in time and space.
By an appropriate choice of the weighting matrices, codes with appealing proper-
ties may be obtained. A particularly important type of LD codes is the well-known
class of orthogonal space-time block (OSTB) codes where the weighting matri-
ces are taken to satisfy certain conditions [7] that ensure optimal low-complexity
decoding while providing full spatial diversity.

The fact that conventional space-time codes do not need any channel knowl-
edge may, due to the difficulties of acquiring such knowledge, be a clear advantage
but it may also be a substantial drawback. The latter is true since information
about the channel, if available, can be used to improve the performance beyond
what is possible to achieve with standard space-time codes that do not take chan-
nel knowledge into account. Information theoretic capacity results indeed show
that the potential data rate increases substantially even if the channel knowledge
is far from perfect [8]. Thus, the degree of channel knowledge at the transmitter
determines whether space-time codes are suitable or not.

In some communication systems it is reasonable to assume that the trans-
mitter has access to useful channel side information. This holds for many time-
division-duplex (TDD) systems as well as for some frequency-division-duplex
(FDD) systems. In the case of TDD the channel may be estimated in the receive
mode and then often assumed to be the same for the transmit mode. Such a strat-
egy typically does not work for FDD systems which instead need to be equipped
with a dedicated feedback link that conveys channel estimates obtained at the re-
ceiver to the transmitter.

Unfortunately, the channel information is in practice far from perfect. Noise
is not the only error source. In TDD systems, time-varying channel fading in con-
junction with duplex delay may also impair the channel knowledge by making the
channel information more or less outdated by the time it reaches the transmit-
ter. Systems using FDD where channel information is obtained via a feedback link
may similarly suffer from feedback delay [9]. The channel feedback is moreover
often heavily quantized, further degrading the quality of the channel knowledge at
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the transmitter. Bit errors introduced by the channel over which the feedback link
operates may be another error source.

A common way of utilizing channel side information is to make use of beam-
forming techniques for maximizing the received energy, essentially steering the
emitted energy in the direction of the receiver by means of rank-one signaling.
Classical beamforming does not however take into account that the channel
knowledge in practice is imperfect. Only in more recent works does this issue start
to be addressed [10, 11, 12, 13].

A fundamental and serious problem with beamforming is that the resulting
rank-one type of transmission is too restrictive when there are imperfections in the
channel knowledge. The emitted energy instead needs to be spread out over several
directions, much like in conventional space-time coding. This naturally leads to
the concept of channel side information dependent space-time codes, where the
codeword matrices are allowed to depend on the channel side information and the
presence of possibly imperfect channel knowledge is taken into account already at
the design stage. The concept is general in that it implicitly views any transmission
scheme that utilizes channel knowledge as implementing some kind of code.

Channel side information dependent codes combine the best of space-time
coding and beamforming. The idea is to make use of the complementary strengths
of both transmission methodologies. Conventional space-time codes are designed
to operate without any channel knowledge and hence provide the system with
a basic level of performance in the absence of reliable channel state information
at the transmitter. Beamforming, on the other hand, is advantageous when the
channel knowledge is reliable.

These two transmission strategies may be seamlessly combined by considering
a code/transmission structure where the output of a fixed OSTB encoder is adapted
to the available channel information by means of a transmit weighting matrix. The
structure is called weighted orthogonal space-time block coding (OSTBC) and can
be shown to be capacity achieving in the case of two transmit antennas and one
receive antenna [14]. Weighted OSTBC is in fact a simple example of separate
space-time coding and transmit weighting. The latter is in certain situations an
optimal structure in the sense that there exist space-time codes, that if weighted
properly, achieve the channel capacity regardless of the number of transmit and
receive antennas [8].

Other code structures also fit nicely into the above framework. Unstructured
space-time block codes have codeword matrices where the elements are, except
for a necessary constraint on the output power, freely chosen from the complex-
field. This provides maximum performance but at the expense of high decoding
complexity. Linear dispersive space-time block codes strike a balance between the
highly structured case of weighted OSTBC and completely unstructured codes.
Applying the linear dispersive structure to the present problem means that the
transmission is adapted to the channel by letting the weighting matrices depend
on the channel side information. A major benefit of the linear structure compared
with the unstructured case is that for example sphere decoding [15] may be used
to perform the decoding in a reasonably efficient manner.
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Figure 19.1. A model of the system under study.

Performance criteria for the design of channel side information dependent
space-time codes have been developed in [16, 17]. These works effectively gen-
eralize the criterion used in conventional space-time coding to take possibly im-
perfect channel knowledge into account. In [16], a performance criterion appli-
cable to codes of arbitrary structure was derived and thereafter used for design-
ing the transmit weighting matrix in weighted OSTBC. The resulting transmis-
sion scheme has later also been investigated in [18]. A related performance mea-
sure tailored for quantized channel feedback was developed in [17] and utilized
for designing unstructured codes. The same criterion may also be used to design
weighted OSTBC and LD codes [14]. Ideas for exploiting related performance cri-
teria to jointly design the code and feedback link are outlined in [19].

Space-time codes using channel information is a general concept and different
types of codes can be designed for a wide range of scenarios. Space considerations
however make it impractical to cover all possibilities herein. We will therefore fo-
cus on block codes used in systems equipped with a feedback link. Attention is fur-
ther restricted to the performance criteria in [16, 17], which will be used to design
efficient codes that exhibit robustness against impairments in the side informa-
tion. Design procedures for unstructured codes, LD codes, and weighted OSTBC
are explicitly presented and it will be shown how they all fit together under a com-
mon framework.

19.2. System model

Consider an MIMO wireless communication system in a flat block fading scenario
in which the transmitter has access to channel side information. A complex base-
band equivalent model of the symbol-sampled system is depicted in Figure 19.1.
There are M transmit antennas, N receive antennas, and n denotes the integer-
valued sample index.

At the transmitter, the information to be communicated is coded using a
space-time encoder into a sequence of M × 1 output vectors c(n). The result is
M parallel and generally different channel symbol streams. Each symbol stream
corresponds to the signal for a particular transmit antenna. The transmitter ob-
tains information ζ about the current channel state from the receiver, which con-
veys channel knowledge γ via a dedicated feedback link. The feedback link may
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introduce distortion, resulting in channel side information ζ that possibly differs
from γ.

Based on the channel side information, the transmission is adapted to the
channel characteristics. The space-time encoder has access to a set {C(ζ)} of codes.
Out of this set, the side information is utilized for determining the channel code
C currently in use as C = C(ζ). After passing through the wireless transmission
medium, the information carrying signals are picked up by the N antennas at the
receiver producing the complex baseband equivalent N × 1 received signal vector
x(n).

The signal at each receive antenna is a superposition of the information car-
rying signals, disturbed by additive noise. The received signal vector can therefore
be written as

x(n) = H∗c(n) + e(n), (19.1)

where (·)∗ denotes complex conjugate transpose and where H , with complex-
valued elements {Hkl}, is an N×M matrix that models the attenuations and phase
shifts introduced by the transmission medium as well as front-end processing at
the transmitter and receiver. Note that H∗

kl represents the scalar channel coefficient
between the kth transmit and lth receive antenna. Furthermore, the noise term
e(n) is assumed to be generated from a zero-mean, spatially and temporally white,
complex Gaussian random process {e(n)}. The variance of each element in e(n) is
constant and denoted σ2.

A block fading scenario is considered. Consequently, the channel H is as-
sumed to be constant for a frame of L samples and may then fade from one frame
to another. Let h � vec(H) denote the MN × 1 vector obtained by stacking the
columns of H on top of each other using the vectorization operator vec(·). The
fading is such that the channel vector h obeys a complex Gaussian distribution
with mean mh � E[h] and covariance Rhh � E[(h − mh)(h − mh)∗]. This is a
quite general fading model which includes scenarios such as spatially uncorrelated
Rayleigh fading, which is popular in the space-time coding literature.

The channel coding is assumed to be performed independently for each frame
and the codewords are of length L, meaning that a codeword covers an entire
frame. Consequently, the particular frame number is irrelevant and we may with-
out loss of generality consider a single frame spanning the time interval n =
0, 1, . . . ,L−1. Grouping the L consecutive vectors x(n) of this frame into an N ×L
matrix X gives

X = H∗C + E, (19.2)

where E contains the noise vectors and

C �
[
c(0) c(1) · · · c(L− 1)

]
(19.3)

corresponds to the codeword output by the space-time encoder. The transmitted

codeword C belongs to the currently used code C = C(ζ) � {C(ζ)
k }Kk=1, where K
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is the number of codewords and C(ζ)
k represents the kth codeword in C(ζ). Note

that each codeword is a function of the side information. Hence, the set {C(ζ)} is
possibly uncountable when ζ is nondiscrete.

The data to be transmitted corresponds to a sequence of information bits.
Since the length of the codewords is L, the coding results in a code rate of log2(K)/L
information bits per channel use. The choice of L and K allows an appropriate
tradeoff between data rate and time redundancy.

Conditioned on the use of a certain code C(ζ), it is assumed that the trans-
mission is such that all the codewords are equally probable and that the average
energy per channel use is P. In other words, the output power is limited by

E
[‖C‖2

F|ζ
]

L
= P, (19.4)

where ‖·‖F denotes the Frobenius norm and where the conditioning on ζ prevents
the transmitter from adjusting the output power based on the side information (no
power control).

The receiver recovers the transmitted codewords by means of maximum like-
lihood (ML) decoding. Since the receiver is assumed to know both the channel and
the side information perfectly, ML decoding amounts to detecting the codewords
according to

Ĉ = arg min
C∈C(ζ)

‖X −H∗C‖2
F, (19.5)

where Ĉ denotes the codeword chosen by the receiver.

19.2.1. The feedback link

In practice, the channel side information is often far from perfect. Estimation noise
and quantization errors may, for example, degrade the quality of the channel infor-
mation. Feedback delay in conjunction with time-varying channel fading may also
lower the quality. This happens since the channel information might be outdated
by the time it reaches the transmitter. The latter phenomenon is here modeled by
thinking of γ as an old channel realization. Accordingly, γ is referred to as initial
channel information and is assumed to be an MN × 1 vector that is correlated, to
an arbitrary degree, with h. More precisely, h and γ are jointly complex Gaussian
and related through the cross-covariance matrix Rhγ � E[(h − mh)(γ − mγ)∗].
The degree of correlation determines the quality of the initial channel informa-
tion. Loosely speaking, the quality of the initial channel information improves as
the correlation between h and γ grows larger, and conversely, deteriorates as the
correlation becomes smaller.

It is important to strictly limit the data rate of the feedback link in order to
make the whole system spectrally efficient. This contrasts sharply to the need of
updating the side information at a high rate. To meet these conflicting goals, quan-
tization may be used in the feedback link.
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ζ = i γENC: ε(γ)

Figure 19.2. A generic model of a feedback link employing quantization.

ζ γ

Figure 19.3. An idealized feedback link. Such a link arises in the limit of infinitely dense quantization.

A generic model of a feedback link employing quantization is depicted in
Figure 19.2. The initial channel information γ is now quantized at the receiver
into a b bit integer i = ε(γ), which is transported over some kind of feedback
channel to the transmitter. Since the feedback channel is here assumed to be ideal,
i is conveyed undistorted to the transmitter where it constitutes the channel side
information, that is, ζ = i.

The encoder function ε(γ) is such that it partitions the set of all possible γ into
2b different encoder regions {Si}2b−1

i=0 based on the mapping γ ∈ Si ⇒ ε(γ) = i.
In addition to feedback delay, quantization errors now also degrade the quality of
the side information. Only a few bits are typically used and the quantization is
therefore coarse.

The encoder regions can be made smaller as the number of bits b increases.
In the limit of infinitely dense quantization, the side information can, through
a judicious choice of quantizer, be made to essentially equal the initial channel
information γ. Quantization errors are then no longer present. An illustration of
such an idealized feedback link where ζ = γ is given in Figure 19.3.

The idealized feedback link is obviously a reasonable model if the system may
afford spending many bits on the quantization. But the model is more general
than it first may seem. This is because the model also makes sense whenever the
errors in the side information lead to a statistical relation with the channel that
is well approximated by the joint Gaussian distribution already used to describe
the relation between γ and h. Examples of such scenarios include TDD systems
where side information is obtained by estimating the channel in the reverse link,
resulting in errors primarily due to noise and duplex delay.

19.3. A performance measure

The codeword error probability Pr[Ĉ �= C] will here form the basis for developing
a performance measure that can be used to design efficient channel information
dependent codes. Working with closed-form expressions is obviously highly de-
sirable for keeping the code design complexity within reasonable limits. Toward
this end, the codeword error probability will be approximated through the use of
various bounds.
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We start, similarly to [17], by exploiting the well-known union bound tech-
nique and the upper bound 0.5 exp(−x2/2) on the Gaussian tail function to upper
bound the codeword error probability as

Pr[Ĉ �= C] ≤ Eζ
[∑

k<l Eγ
[
e�(C(ζ)

k ,C(ζ)
l ;γ)|ζ]]

K det
(
Rhh|γ

) � PUB
({

C(ζ)
})

, (19.6)

where

�
(
C

(ζ)
k ,C(ζ)

l ; γ
)

� m∗
h|γR

−1
hh|γΨ

(
C

(ζ)
k − C

(ζ)
l

)−1
R−1
hh|γmh|γ

−m∗
h|γR

−1
hh|γmh|γ − log det

(
Ψ
(
C

(ζ)
k − C

(ζ)
l

))
,

(19.7)

with mh|γ � E[h|γ] = mh + RhγR
−1
γγ (γ − mγ) and Rhh|γ � E[(h − mh|γ)(h −

mh|γ)∗|γ] = Rhh−RhγR−1
γγ R

∗
hγ denoting the conditional mean and covariance ma-

trix, respectively, and

Ψ(C) � IN ⊗ CC∗η + R−1
hh|γ, η � 1(

4σ2
) . (19.8)

Here, mγ represents the mean vector, Rγγ is the covariance matrix of γ, and ⊗
denotes the operator for the Kronecker product.

Unfortunately, the conditional expectation Eγ[·|ζ] depends on the code to
be designed but cannot in general be evaluated in closed form. To still obtain
an expression suitable for code design, an approximate version of PUB({C(ζ)}) is
therefore derived by utilizing that E[ f (x)] ≈ f (E[x]) if the variance of x is small.
This relation is applied to (19.6) by taking f (x) = ex. Since ex is a convex func-
tion, Jensen’s inequality implies that the approximation is actually a lower bound.
Hence, PUB({C(ζ)}) is lower bounded (or approximated) as

PUB
({

C(ζ)
}) ≥ Eζ

[∑
k<l e

Eγ[�(C(ζ)
k ,C(ζ)

l ;γ)|ζ]
]

K det
(
Rhh|γ

) � PLBUB
({

C(ζ)
})
. (19.9)

Utilizing the relation tr(AB) = tr(BA), where tr(·) denotes the trace operator, and
exploiting the fact that Rhh|γ is constant with respect to γ shows that the exponent
in (19.9) can, with a slight abuse of notation, be rewritten as

Eγ
[
�
(
C

(ζ)
k ,C(ζ)

l ; γ
)|ζ] = tr

(
Ψ−1R−1

hh|γ Eγ
[
mh|γm∗

h|γ|ζ
]
R−1
hh|γ

)
− tr

(
R−1
hh|γ Eγ

[
mh|γm∗

h|γ|ζ
])− log det(Ψ).

(19.10)

Inserting (19.10) into (19.9) gives the intended performance measure. All en-
tities except the conditional expectation Eγ[mh|γm∗

h|γ|ζ] can now be evaluated in
closed form. The remaining conditional expectation does not pose a problem since
it is independent of the codewords to be optimized. Hence, it can be evaluated once
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using, for example, Monte-Carlo integration and stored for easy access during the
code design process.

Note that the lower bound in (19.9) holds with equality if �(C(ζ)
k ,C(ζ)

l ; γ) con-
ditioned on ζ is a constant. This is the case when the idealized feedback link is used
since ζ = γ and hence Eγ[mh|γm∗

h|γ|ζ] = mh|γm∗
h|γ. From (19.6) and (19.9) it then

follows that PLBUB({C(ζ)}) is an upper bound on the codeword error probability.
In case of quantized feedback, it is realized that the lower bound PLBUB({C(i)})

approximates PUB({C(i)}) well when the variance of �(C(ζ)
k ,C(ζ)

l ; γ) conditioned
on ζ is small. From (19.7) it follows that this occurs if the quantization is dense
(so that mh|γ is concentrated around Eγ[mh|γ|ζ]), σ2 is low, and/or the correlation
between γ and h is small.

It is interesting to note that the well-known determinant and rank criterion
[4] used in the design of conventional space-time codes follows directly from the
determinant part of (19.10). Hence, the design criterion developed in the present
work can be seen as a generalization of the performance measures used in classic
space-time code design.

19.4. Code design procedures

The approximative performance measure PLBUB({C(ζ)}) developed in the previ-
ous section will now be used to design space-time block codes of different types.
Such an approach automatically ensures that the available channel knowledge at
the transmitter is taken into account, in contrast to conventional space-time code
design.

Efficient codes are obtained by minimizing PLBUB({C(ζ)}) with respect to the
codewords in {C(ζ)}, while making sure that the power constraint is satisfied. This
is accomplished by minimizing the quantity within the outer expectation in (19.9),

∑
k<l

eEγ[�(C(ζ)
k ,C(ζ)

l ;γ)|ζ], (19.11)

for each possible ζ to produce the code C(ζ). For convenience, parameter inde-
pendent factors in (19.11) are now omitted leading to the design criterion

W(C) �
∑
k<l

V
(
Ck − Cl

)
, (19.12)

where C � [C1 C2 · · · CK ] is an M × KL matrix that contains K arbitrary code-
words and

V(C) � etr(Ψ(C)−1R−1
hh|γRR

−1
hh|γ)

det
(
Ψ(C)

) (19.13)

is used to describe how each codeword pair influences the design criterion. The
matrix R here depends on the type of feedback link that is considered. From the
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discussion in the previous section it follows that R = E[mh|γm∗
h|γ|ζ], which for

idealized feedback further specializes into R = mh|γm∗
h|γ.

The design criterion can now be utilized for minimizing PLBUB({C(ζ)}) by
designing each code C(ζ) as

C(ζ) = arg min
C∈Cs

W(C) (19.14)

subject to the power constraint E[‖C‖2
F|ζ] = PL introduced in (19.4). The code

search is here restricted to a certain set Cs that is used to describe the structure of
the code. This means that Cs varies from one code type to another. Consequently,
(19.14) can be thought of as forming a framework for the design of arbitrary types
of channel information dependent codes.

Another alternative design approach is to approximate the criterion function
by only including terms in (19.12) that correspond to the worst codeword pairs, as
measured by V(Ck − Cl). This means that the code C(ζ) is designed through

C(ζ) = arg min
C∈Cs

max
k<l

V
(
Ck − Cl

)
. (19.15)

Which of the design procedures in (19.14) and (19.15) to use strongly depends
on the type of code that is to be constructed. This will become more clear in a
moment when the above generic formulation is specialized for some different code
structures.

Introducing structure in the code makes it possible to trade performance for
decoding/encoding complexity. A completely unstructured code provides maxi-
mum performance but must normally be decoded by means of a computationally
expensive exhaustive search over all the codewords like indicated in (19.5). In con-
trast, decoding complexity can be decreased by limiting the choice of codewords
so that they satisfy some structural constraints. Of course, this typically comes at
the expense of poorer performance.

To investigate how structure affects the performance we will consider three
different space-time block code structures—unstructured codes, LD codes, and
weighted OSTBC. The codes here have been mentioned in order of increasingly
restrictive structure and the particular details for each type are given below.

19.4.1. Unstructured codes

For unstructured space-time block codes, all the elements in all the codeword ma-
trices can be chosen arbitrarily from the complex number field C, subject only
to the power constraint. This corresponds to Cs = CM×KL. There is hence no
structure and the design algorithm has therefore maximum freedom to choose
the codewords. As already pointed out, unstructured codes have potentially the
best performance but result in high decoding complexity since they require an
exhaustive search as in (19.5).
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For unstructured codes, the power constraint can be formulated explicitly in
terms of the codewords as

E
[‖C‖2

F|ζ
] = 1

K

K∑
k=1

∥∥C(ζ)
k

∥∥2
F = 1

K
‖C‖2

F = LP, (19.16)

which relies on the assumption that the codewords are equally probable condi-
tioned on ζ . The design problem in (19.14) can then be more precisely stated as

C(ζ) = arg min
C

‖C‖2
F=KLP

W(C). (19.17)

Numerical methods need to be employed in order to obtain a solution. One strat-
egy successfully used in [17] is to use a simple gradient search technique where the
limit on the output power is maintained by projecting in each iteration the 2KLM
real-valued parameters in C onto the surface of a 2KLM-dimensional sphere with
radius

√
KLP. The approach is facilitated by the fact that a closed-form expression

for the gradient is easily derived. Unfortunately, the design complexity is so high
that solving (19.17) in real time is probably infeasible in practice. For the case of
quantized feedback, this is less of an issue since the codes can be designed offline
and then stored in a lookup table for quick online access. Even with such an offline
strategy, the design problem is for high-rate codes computationally challenging as
the complexity quickly grows with the number of codewords K .

Numerical techniques are also required to solve the alternative min-max ap-
proach in (19.15). This is however made difficult by the fact that maxk<l V(Ck−Cl)
is not differentiable at all points. We will therefore not use the min-max approach
for designing unstructured codes.

19.4.2. Linear dispersive codes

When linear dispersive space-time block codes are used, the data to be transmitted
corresponding to one codeword is first mapped into symbols sm, m = 1, 2, . . . ,Ld,
each taken from some signal constellation alphabet A. The transmitted codeword
is thereafter formed as a linear combination of the information bearing symbols
according to

C =
Ld∑

m=1

Bmsm, (19.18)

where Bm � B(ζ)
m represents a complex-valued M×L matrix used to weigh the mth

symbol. Assume without loss of generality1 that the signal constellation alphabet

1Complex-valued symbols may be handled within the present framework by dividing the symbols
into their real and imaginary parts. The codewords can then be written in the same form as in (19.18)
but with twice as many terms.
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A, and hence also the symbols sm, are real-valued. Also assume that the symbols
are independent and identically distributed (i.i.d.) with E[sm] = 0 and E[s2

m] =
1. The symbols depend only on the data to be transmitted while the weighting
matrices may vary with the channel side information ζ .

By choosing the weights appropriately, the information may be spread both
spatially and temporally to obtain diversity benefits and coding gain while taking
the channel knowledge available at the transmitter into account. For the case of no
channel side information, such linear dispersive structures have previously been
described in, for example, [5, 6].

A major advantage of the above linear structure is that the decoding complex-
ity may in some cases be drastically reduced compared with the complexity of an
exhaustive search. Sphere decoding [15] may, for example, be used under certain
conditions to substantially lower the complexity while maintaining ML perfor-
mance.

For LD codes, the power constraint in (19.4) can be formulated in terms of
the weighting matrices as

E
[‖C‖2

F|ζ
] = E

[
tr
(
CC∗)|ζ] =

Ld∑
m=1

Ld∑
m′=1

tr
(
B(ζ)
m

(
B

(ζ)
m′

)∗)
E
[
smsm′

]

=
Ld∑

m=1

tr
(
B(ζ)
m

(
B(ζ)
m

)∗) =
Ld∑

m=1

∥∥B(ζ)
m

∥∥2
F = LP.

(19.19)

The min-max design approach is again not convenient to use for the same reasons
as previously mentioned. Consequently, the other design alternative in (19.14) is
preferable. In case of LD codes, the design problem thus specializes into designing
the weighting matrices according to

{
B(ζ)
m

}Ld

m=1 = arg min
{Bm}Ld

m=1∑Ld
m=1 ‖Bm‖2

F=LP

W
(
C
(
B1, . . . ,BLd

))
, (19.20)

where C(B1, . . . ,BLd ) � [
∑Ld

m=1 Bms
(1)
m · · · ∑Ld

m=1 Bms
(K)
m ] with s(k)

1 , . . . , s(k)
Ld

rep-
resenting the symbol sequence corresponding to the kth codeword. This design
problem must in general be solved using numerical methods. A gradient search
technique similar to the one described in connection with the design of unstruc-
tured codes may be applied. Designing LD codes in this way is computationally
demanding and can in practice only be carried out for situations with quantized
feedback where offline design is possible.

19.4.3. Weighted OSTBC

The weighted OSTBC transmission structure is a simple yet effective way of ex-
ploiting channel side information in conjunction with space-time coding. The
idea is to use the side information for improving a predetermined and fixed OSTB
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{sm}Lo
m=1

OSTB
encoder W

...
c(n)

M′

c(n)

M

W =W (ζ)

{W (ζ)} ζ

Figure 19.4. Transmitter structure in weighted OSTBC. Only the transmit weighting W is now af-
fected by the channel side information.

code by means of a linear transformation that depends on the channel knowledge.
This is in line with information theoretic results [8] concerning the optimality of
separate space-time coding and transmit weighting. Indeed, the structure can be
shown to be optimal in a capacity sense if there are two transmit antennas and one
receive antenna [14].

The transmitted codeword in weighted OSTBC can be written in the form

C =WC̄, (19.21)

where W � W (ζ) is an M × M′ transmit weighting matrix which depends on
the side information ζ and where C̄ ∈ {C̄k}Kk=1 is an M′ × L matrix representing
the output of a fixed OSTB encoder. We will henceforth for simplicity assume
that L ≥ M′, meaning that C̄ has more columns than rows. The class of OSTB
codes is a special case of the class of LD codes where the weighting matrices have
been chosen in a certain way [7]. Consequently, the OSTB encoder takes the data
to be transmitted corresponding to one codeword and first maps it into symbols
s1, . . . , sLo , each taken from some real-valued signal constellation alphabet A. The
symbols are again assumed to be i.i.d. and normalized so that E[s2

m] = 1.
In contrast to the previous case of LD codes, the weighting matrices used by

the OSTB encoder are fixed and hence independent of the side information. Thus,
only the transmit weighting W is affected by the side information. This is illus-
trated in Figure 19.4, where c̄(n) denotes the output of the OSTB encoder.

Like all conventional space-time codes, OSTB codes are intended for a sce-
nario where there is no channel knowledge at the transmitter. Emitting energy
isotropically in space is thus appropriate. When OSTB codes are used, this is en-
sured by an output matrix C̄ that always has orthogonal rows of equal norm. More
precisely, the weighting matrices in the OSTB code are such that, for arbitrary real-
valued constellation alphabets A, the codewords satisfy

C̄kC̄
∗
k =

Lo∑
m=1

(
s(k)
m

)2
IM′ , k = 1, 2, . . . ,K , (19.22)

where s(k)
1 , . . . , s(k)

Lo
represents the symbol sequence corresponding to the kth code-

word C̄k. The very notion of an OSTB code is in fact defined by the orthogonality
property in (19.22), together with the linear dispersive structure of the code.
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An important advantage of weighted OSTBC is that the underlying OSTB
code results in very low decoding complexity. In fact, from the code’s orthogonal
property it follows that ML decoding as in (19.5) decouples into low-complexity
individual symbol detection.

By appropriately choosing the weighting matrix W , the properties of the
transmitted signals can be modified so as to suit the current channel conditions.
The orthogonal property in (19.22) again plays a fundamental role by considerably
simplifying the design of the transmit weighting matrix. To see why, note that the
terms in the design criterion (19.12) only depend on the codeword pairs through
(Ck−Cl)(Ck−Cl)∗. Inserting Ck =WC̄k and Cl =WC̄l and thereafter exploiting
(19.22) and the linearity of the code gives

(
Ck − Cl

)(
Ck − Cl

)∗ =WW∗µkl, (19.23)

where µkl � ∑Lo
m=1

(
s(k)
m − s(l)

m
)2

is the only entity that depends on the codewords
pair. This means that also V(W(C̄k − C̄l)) depends on the codeword pair exclu-
sively via the scaling factor µkl. Let �(WW∗,µkl) � log(V(W(C̄k − C̄l))) repre-
sent the logarithm of the resulting function. Since it can be easily verified that
�(WW∗,µkl) is a decreasing function with respect to µkl, finding the worst code-
word pairs as in the min-max approach corresponds to finding the smallest µkl,
that is,

max
k<l

V
(
W

(
C̄k − C̄l

)) = �
(
WW∗,µmin

)
. (19.24)

The above relation radically simplifies the design problem because the design
complexity no longer depends on the number of codewords and the weighting
matrix can be designed as

W (ζ) = arg min
W

‖W‖2
F=LP/Lo

�
(
WW∗,µmin

)
, (19.25)

where the power constraint is expressed solely in terms of the W since
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∥∥W (ζ)∥∥2
F = LP.

(19.26)
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In contrast to the two previous code structures, the min-max approach is now
clearly preferable over the other design strategy. This is not only because of its
substantially lower design complexity. An additional benefit is that (19.25) can
be shown to actually minimize an approximation of the symbol error probabil-
ity instead of minimizing, as in (19.14), an approximation on the probability of
codeword error (cf. [14]).

Solving the design problem in (19.25) typically requires the use of numerical
optimization techniques. A simple reparametrization considerably simplifies this
task by making the problem convex in cases when the weighting is square, that is,
M = M′. Efficient techniques from convex optimization can then be used to solve
the design problem.

As previously mentioned, quantized feedback means that the design can be
carried out offline and the results stored in a lookup table. Complexity issues are
hence not as critical as in the case of the idealized feedback link where the trans-
mit weighting must be computed in real time. Unlike unstructured and LD codes,
the convexity of the problem now makes even real time design feasible in prac-
tice. The computational requirements can sometimes be lowered even further. In
the extreme case of two transmit antennas, one receive antenna and a certain spa-
tially uncorrelated Rayleigh fading scenario, solving the design problem essentially
reduces to solving a second-degree polynomial equation.

19.5. Properties of designed codes

Although finding analytical solutions to the code design problems described herein
is usually not possible, the criterion function reveals important properties of the
designed codes. Some of these properties will be briefly discussed in this section.
Rigorous derivations will however be omitted in order not to obscure the intuition
behind the results. Proofs justifying the discussion follows easily from an appro-
priate combination of the results in [14, 16, 17].

Consider first the criterion function as defined by (19.12) and (19.13). In
(19.13), the exponent and the determinant can be seen to have different roles.
Note that R = E[mh|γm∗

h|γ|ζ] is a function of the actual realization of the side in-
formation and is therefore potentially time-varying while Rhh|γ is fixed. Since R is
not present in the determinant, it is realized that only the exponent deals with the
time-varying part of the channel knowledge. When the quality of the initial chan-
nel information is high, it follows that the conditional covariance matrix Rhh|γ is
small (in some matrix norm) and hence det(IN ⊗CC∗η+R−1

hh|γ) ≈ det(R−1
hh|γ). The

exponent is then solely responsible for the code design. If in addition quantization
effects can be neglected, the channel knowledge is essentially perfect at the trans-
mitter and it can be shown that the design algorithms tend to distribute output
power in space based on the singular values and left singular eigenvectors of the
channel matrix H . More precisely, directions corresponding to eigenvectors with
strong singular values tend to be allocated more power than eigen-directions with
weak eigenvalues. This is similar to the well-known water-filling type of transmis-
sion. Such a power distribution makes sense since there is no point in wasting
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power in directions which contribute little or not at all to the received signal. It is
also interesting to note that a similar nonuniform output power distribution arises
when the SNR becomes low even if the channel knowledge is not perfect.

Unlike the exponent, the determinant only uses static channel knowledge in
the form of the spatial correlations contained in Rhh|γ. For sufficiently small R, the
exponent essentially vanishes and only the determinant affects the code design.
This is, for example, the case when the quality of the initial channel information
is low and the channel is zero-mean (mh = 0). Assuming further that the chan-
nel covariance is given by Rhh = σ2

h IMN , corresponding to spatially uncorrelated
Rayleigh fading, no transmission direction is more favorable than another. The
transmitter is then completely without channel knowledge and it makes sense to
distribute power isotropically in space. Experiments show that the design algo-
rithms strive toward such transmission by attempting to make the rows in each
codeword orthogonal to each other and of equal norm.

A scenario with high SNR turns out to lead to codewords with properties
similar to those exhibited when there is no channel knowledge. Combined with
the behavior for the low SNR case, it may be concluded that the usefulness of
channel side information is very important at low SNR values but diminishes as
the SNR increases. This is in line with the behavior of classic water-filling power
distribution, which becomes more uniform with increasing SNR.

19.5.1. Weighted OSTBC with idealized feedback

To further illustrate how the presence of side information affects the transmis-
sion, it is instructive to study weighted OSTBC in conjunction with an idealized
feedback link. Toward this end, assume for simplicity N = 1 receive antenna, a
square weighting matrix (M = M′), and mh = 0, Rhh = σ2

h IMN so that the distri-
bution describing the channel fading does not constitute any channel knowledge
on its own. Further assume that γ and h are identically distributed and that each
element γk in γ is correlated with the corresponding coefficient hk in h and un-
correlated with all others. A scenario where h and γ are distributed in this manner
will be referred to as a simplified fading scenario. It is reasonable in this scenario to
let the absolute value of the normalized correlation coefficient, ρ � |E[hkγ∗

k ]/σ2
h |,

define a measure for the quality of the initial channel information. Thus, ρ = 0
corresponds to no initial channel knowledge while ρ → 1 represents a situation in
which the initial channel information is perfect.

The development in [16] shows that the transmission scheme behaves as a
seamless blend between OSTBC and beamforming. To be specific, consider the
three cases listed below.

(1) Perfect channel knowledge (ρ → 1): the weighting matrix is now of rank-
one and can be taken as W = √

LP/Lo[ζ/‖ζ‖ 0M×(M−1)]. This is equivalent to clas-
sical beamforming. All power is therefore emitted in the direction of the side in-
formation ζ . Such a strategy is reasonable since ζ = h, and the transmitter may
therefore completely trust the side information.
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(2) Imperfect channel knowledge (0 < ρ < 1): the designed weighting ma-
trix is now of the form W = √

LP/Lo[α1ζ/‖ζ‖ α2v2 · · · αMvM], where αk > 0
determines the amount of power along the kth direction and {vk} is a set of or-
thonormal vectors that are all orthogonal to ζ . In other words, power is emitted
in all directions but not uniformly. The direction given by the side information
ζ is still utilized but power is now also spent on directions orthogonal to ζ . Each
of these orthogonal directions is allocated the same power while a higher power
level is used along ζ . Exploiting also the orthogonal directions clearly makes sense
since the information in ζ about the true channel h is imperfect and thus cannot
be completely trusted.

(3) No channel knowledge (ρ = 0): the weighting matrix is now unitary, for
example, equal to the identity matrix. This corresponds to using the OSTB code
without any transmit weighting. Power is hence distributed isotropically in space,
just as conventional space-time coding strives for. Such a strategy clearly agrees
well with intuition since the transmitter does not know anything about the true
channel and should therefore not favor any direction over another.

19.6. Simulation results

To illustrate the performance of some constructed codes, simulations of the com-
munication system in Section 19.2 have been conducted. A situation with spatially
uncorrelated Rayleigh fading was considered in the form of the simplified fading
scenario previously described in Section 19.5.1. In order to focus on a common
situation in practice, N = 1 receive antenna was assumed throughout the sim-
ulations. How the quality of the side information impacts the performance was
studied by using idealized as well as quantized feedback for various quality levels
ρ of the initial channel information. Included in the study were the two extreme
cases of no (ρ = 0 and/or b = 0) and perfect channel knowledge (ρ → 1 with
idealized feedback).

The no channel knowledge case corresponds to an open-loop system for which
conventional space-time codes are appropriate. A system using unmodified OSTB
codes taken from [7] was therefore utilized as a benchmark. A comparison with
beamforming was also performed.

Beamforming is here taken to mean a scheme in which the transmitted signal
can be written in the form c(n) = vs(n), where s(n) represents the nth information
bearing data symbol and v is a transmit weighting vector. For ideal beamforming,
the weighting vector is based on the true channel h, while the imperfect channel
information vector γ is used for conventional beamforming with idealized feed-
back.

The remaining assumptions in the simulations were as follows. For all the ex-
amined cases, information carrying bits were mapped into codewords/blocks of
length L samples and conveyed over the spatially uncorrelated flat Rayleigh fading
channel. An output power of P = 1 was used. The variance of the channel co-
efficients was set to σ2

h = 1. Systems using OSTBC or beamforming employed a
binary phase-shift keying (BPSK) signal constellation. To make fair comparisons,
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the effective data rates of all investigated schemes were fixed at 1 information bit
per channel use. The SNR was measured for the conventional OSTBC system and
defined as

SNR � E
[∥∥H∗C

∥∥2
F

]
E
[‖E‖2

F

] = LNPσ2
h

LNσ2
= Pσ2

h

σ2
, (19.27)

where C = √
LP/(LoM)C̄ with C̄ denoting the codeword output from the OSTB

encoder. The expression for the SNR is equal to the total received average signal
energy, divided by the total average noise energy.

19.6.1. Weighted OSTBC versus conventional schemes

We start by investigating the performance of weighted OSTBC when the trans-
mit weighting matrix is designed as in (19.25) and used together with idealized
feedback. Only square transmit weighting will be considered, that is, M = M′.
The bit error rate (BER) as a function of the SNR is depicted in Figure 19.5a. It is
seen that the performance of the proposed weighted OSTBC transmission scheme
with ρ = 0.9 is for all SNR values better than conventional OSTBC but, as ex-
pected, worse than ideal beamforming. Note that the two curves for conventional
OSTBC and ideal beamforming also show the performance of weighted OSTBC in
the case of ρ = 0 and ρ → 1, respectively. Conventional beamforming is seen to
give good performance at low SNR values, but as the SNR increases, the lack of cor-
rect channel knowledge leads to a serious performance degradation. In contrast,
the curve for weighted OSTBC approaches the one for ideal beamforming as the
SNR decreases, whereas for increasing SNR it approaches the performance of con-
ventional OSTBC. Thus, the proposed scheme efficiently combines beamforming
with OSTBC. This is also in good agreement with the observations in Section 19.5
regarding the allocation of power among the transmit directions.

The gains due to channel knowledge usually increase with the number of
transmit antennas. To illustrate this effect, Figure 19.5b displays the performance
when eight transmit antennas are used. As seen, channel knowledge now offers
much larger gains than in the previous case.

19.6.2. Quantized feedback

A variant of a simple scheme called partial phase combining [12] will be used to
study the effects of coarse quantization in the feedback link. Partial phase com-
bining involves quantizing the differences in phase between the first coefficient
γ1 and the other coefficients {γk}MN

k=2 in the initial channel information vector γ.
This is similar to the feedback scheme in the closed-loop mode of the WCDMA
system [20].
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Figure 19.5. The performance of weighted OSTBC compared with conventional OSTBC and beam-
forming. (a) M = 2 transmit antennas. (b) M = 8 transmit antennas.

In the present work, a particularly simple form of partial phase combining
is considered where each phase difference is uniformly quantized, independently
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of all the others. Scalar quantization is thus employed, which reduces the com-
putational complexity of the feedback encoder. The quantization scheme can be
described in terms of the previously introduced framework as implementing the
encoder function

ζ = i = ε(γ) = arg min
k∈{0,1,...,2b−1}

∥∥∥∥ γγ1
− ̂́γ(k)

∥∥∥∥2

, (19.28)

where {̂́γ(k)}2b−1
k=0 contains codebook vectors given by

̂́γ(k) �
[

1 e jφi2(k) · · · e jφiMN (k)

]T
. (19.29)

Here, j �
√−1 and φil(k) � 2πil(k)/2b̄ with b̄ � b/(MN − 1) representing the

number of feedback bits per phase difference. The phase of γl/γ1 is thus uniformly
quantized into a b̄ bit number il(k) ∈ {0, 1, . . . , 2b̄ − 1} which may be defined
implicitly through the relation k = ∑MN

l=2 il(k)2b̄(l−2).
Figure 19.6a depicts the performance for weighted OSTBC when M = 2 an-

tennas are used at the transmitter and the channel information is coarsely quan-
tized using b̄ = b = 2 bits per phase difference. Beamforming and OSTBC again
serve as benchmarks. Conventional beamforming now uses ̂́γ(i) as transmit
weighting vector. For high SNR values, weighted OSTBC is seen to be robust
against the impairments in the side information. Just as for conventional beam-
forming, an array gain is obtained when the SNR is low by successfully exploiting
the side information. As expected, the gains due to channel knowledge increase as
more transmit antennas are used. This is illustrated in Figure 19.6b which shows
the performance when M = 4 transmit antennas are used and each phase differ-
ence is quantized using b̄ = b/3 = 2 bits.

Unstructured and LD codes have been designed using (19.17) and (19.20),
respectively. To give an idea of how the choice of code structure influences the per-
formance, the three code types are compared in Figure 19.7. Results for M = 2
transmit antennas are shown in Figure 19.7a while Figure 19.7b represents the
M = 4 case. Performance is now measured in terms of codeword/block error rate
(BLER) in order to avoid dealing with the problem of assigning bits to codewords.
All codeword matrices are square, that is, M = L, and b̄ = 2 bits are used for
quantizing each phase difference. It turns out that the differences in performance
between the three code types are roughly preserved regardless of the degree of
channel knowledge at the transmitter. Thus, the quality of the initial channel in-
formation is here arbitrarily set to ρ = 0.9999, meaning that essentially perfect
channel knowledge is input to the feedback encoder.

As expected, the unstructured code is better than the two other code types.
What may be more surprising is that the LD code and weighted OSTBC basically
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Figure 19.6. The performance of weighted OSTBC compared with conventional OSTBC and beam-
forming when side information is quantized using b bits. (a) M = 2 transmit antennas. (b) M = 4
transmit antennas.



396 Space-time block coding using channel side information
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Unstructured code: ρ = 0.9999, b = 2
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Figure 19.7. Illustrating how the choice of code structure affects the performance when the side in-
formation is quantized using b bits. (a) M = 2 transmit antennas. (b) M = 4 transmit antennas.
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have the same performance, explaining why we let them share the same curve. Ex-
perimental investigations not presented here indicate that LD codes and weighted
OSTBC exhibit similar performance in many different scenarios. Thus, it may
seem like LD codes offer little, if any, performance advantage over weighted OS-
TBC. It is however important to keep in mind that the former code type exists for
all possible combinations of antenna array sizes and data rates whereas weighted
OSTBC is to a large degree limited by the fact that OSTB codes exist only for low
symbol rates. A thin transmit weighting matrix, that is, M′ < M, may to some
extent offset this limitation. Nevertheless, it is reasonable to expect that LD codes
have clear performance advantages over weighted OSTBC for systems requiring
high data rates.

19.7. Summary and future research

The design of channel side information dependent space-time block codes was
considered. A performance measure was developed that directly takes the imper-
fect nature of the channel knowledge into account. Based on the performance
measure, design procedures for three different code structures were presented. The
resulting codes showed robustness against quantization errors as well as feedback
delay.

The field of channel side information dependent space-time is receiving grow-
ing interest but is yet in its infancy. Many open problems remain to be explored.
How to apply the concept on type of codes other than block codes pose inter-
esting problems. Designing schemes that maximize data rate instead of, as here,
minimizing error probability is also an important topic for future research. Appli-
cations involving frequency-selective channels also deserve to be studied. Finally,
it remains to be seen if the link level strategies investigated herein may be extended
to handle multiuser situations in a tractable manner.

Abbreviations

BER Bit error rate

BLER Block error rate

BPSK Binary phase-shift keying

ENC Encoder

FDD Frequency-division duplex

i.i.d. Independent and identically distributed

LD Linear dispersion

ML Maximum likelihood

OSTB Orthogonal space-time block

OSTBC Orthogonal space-time block coding

SNR Signal-to-noise ratio

TDD Time-division duplex

WCDMA Wideband code division multiple access
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20
Ordered spatial
Tomlinson-Harashima
precoding

Michael Joham and Wolfgang Utschick

20.1. Introduction

Similar to receive processing (e.g., [1]), linear transmit processing (see, e.g., [2])
can be outperformed by nonlinear transmit processing. Peel et al. [3, 4] recently
proposed the minimization of the necessary transmit energy for every vector sym-
bol of a flat fading MIMO system, when assuming that the receiver applies a mod-
ulo operation. The necessary search for the minimum length vector of a lattice has
exponential complexity (see [5] for a near-optimum variant with O(B4), where B
denotes the number of scalar data streams). Additionally, the transmit signal has to
be weighted with a data-dependent scalar to meet the transmit energy constraint
[3, 4], if the computation of the average transmit energy (a search of exponential
complexity) has to be avoided. Consequently, we do not consider this approach.
Another type of nonlinear transmit processing is the minimization of the bit er-
ror probability by choosing the appropriate transmit signal [6, 7]. As the resulting
nonconvex optimization can only be solved analytically for special channel matri-
ces [7], we will not investigate this approach due to its prohibitive complexity. In
[8], Fischer et al. decomposed the real-valued representation of the channel matrix
into the product of a real-valued matrix and an integer-valued matrix motivated
by the promising result of Yao et al. [9] who included lattice reduction techniques
in the receive filter design and achieved the same diversity order as the maximum
likelihood detector. The precoder of [8] which nearly reaches the diversity order of
the maximum likelihood detector only equalizes the real-valued matrix of the de-
composition, since the modulo operation at the receiver removes the interference
caused by the integer-valued matrix. However, the channel matrix decomposition
was found by Monte-Carlo search in [8], because an algorithm to obtain the de-
composition is an open problem.

An alternative type of nonlinear transmit processing is Tomlinson-Harashima
precoding (THP) which is closely related to the decision feedback equalizer pro-
posed by Austin [10] (see also [11, 12, 13, 14]). Whereas DFE feeds back already
quantized symbols, the already transmitted symbols are fed back in a THP system
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and modulo operations are applied in the transmitter and the receiver(s). The prin-
ciple of THP was introduced by Tomlinson [15] and Harashima et al. [16] nearly
at the same time. They applied THP to a SISO system without adaptive receive
filter in order to suppress the ISI caused by the frequency selectivity of the chan-
nel, since the recursive filter necessary to equalize the channel can be unstable (see
also [17]). Gibbard et al. [18] proposed an asymmetric transmission, where for
the first link, the receiver performs DFE and in the second link, the transmitter
applies THP. This approach leads to a simplification and a lower power consump-
tion of the device(s) at one side of the link (e.g., the mobile terminal(s)). Spatial
THP without ordering for flat fading MIMO channels was proposed by Ginis et
al. in [19] and Fischer et al. in [20]. Whereas Ginis et al. included a feedforward
filter at the transmitter and assumed a receive filter which is a diagonal matrix,
Fischer et al. investigated a system with the feedforward filter at the receiver. THP
was used for a DS-CDMA system by Fischer et al. in [21] and also by Liu et al. in
[22]. THP with partial channel state information at the transmitter has only been
investigated by Fischer et al. [23] and Simeone et al. [24], all other publications as-
sumed full knowledge of the channel at the transmitter. Joham et al. presented the
necessary optimizations for THP with FIR feedforward and feedback filters for fre-
quency selective MIMO channels in [25, 26]. In [27], Fischer et al. designed THP
for frequency selective MIMO channels with IIR feedforward filter by applying a
spectral factorization of the channel transfer function.

We restrict ourselves to systems with nondispersive channels and noncooper-
ative receivers (e.g., mobiles in the downlink), that is, the signals of the different
receivers cannot be jointly transformed. Therefore, the feedforward filter has to be
located at the transmitter and the receivers only apply scalar weightings. For sim-
plicity, we make the additional assumption that all receivers use the same scalar
weight. The examined THP approaches are based on full channel state informa-
tion without estimation errors (for a robust design taking into account the esti-
mation errors, see [28]). Note that the channel can only be fully equalized by the
transmitter in a system with noncooperative receivers. Thus, receive processing is
only a suboptimum approach for such systems.

Contrary to most other contributions on THP, we base the THP filter de-
sign on an optimization. Since the THP optimizations are an extension of the
well-known optimizations for linear transmit filters, we first review the linear
transmit zero-forcing filter (TxZF) and the linear transmit Wiener filter (TxWF)
in Section 20.2. With the linear representation of THP introduced in Section 20.3,
we are able to formulate the optimizations for zero-forcing THP (ZF-THP) and
Wiener THP (WF-THP) including not only the THP filters but also the ordering
in Section 20.4. Thus, we obtain the algorithms for the optimum orderings for
the two THP types and since these algorithms are too complex, we also present
suboptimum ordering algorithms closely related to the vertical Bell Laboratories
Layered Space Time (V-BLAST) algorithm well known for spatial DFE [29]. The
simulation results in Section 20.5 reveal that the Wiener THP clearly outperforms
the state-of-the-art zero-forcing THP approaches.
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Figure 20.1. System with linear transmit filter.

Notation. Vectors and matrices are denoted by lower-case bold and capital bold
letters, respectively. We use E[•], “∗,” (•)∗, (•)T, and (•)H for expectation, convo-
lution, complex conjugation, transposition, and conjugate transposition, respec-
tively. The pseudoinverse is denoted by (•)+. All random variables are assumed to
be zero mean and stationary. The variance of the scalar random variable y is de-
noted by σ2

y = E[|y|2] and the covariance matrix of the vector random variable x
by Rx = E[xxH]. The N ×M zero matrix is 0N×M , the M-dimensional zero vector
is 0M , and the N ×N identity matrix is 1N , whose nth column is en ∈ {0, 1}N .

20.2. Linear transmit filters

In a system with linear transmit filter, the data signal s = [s1, . . . , sB] ∈ CB com-
prising the symbols for the B noncooperative receivers is passed through the lin-
ear precoder P ∈ CN×B to form the transmit signal of the N transmit antenna
elements

y = Ps ∈ C
N . (20.1)

The transmit filter has to be designed to satisfy the transmit energy constraint,
that is,

E
[‖Ps‖2

2

] = tr
(

PRsPH) = Etr. (20.2)

After propagation over the channel H ∈ CB×N and perturbation by the noise η ∈
CB, the received signal x ∈ CB is weighted with the scalar β−1 to form the estimate
(see Figure 20.1)

s̃ = β−1HPs + β−1η ∈ C
B. (20.3)

Note that the scalar β−1 ∈ R+ at the receiver is necessary to correct the amplitude
of the desired signal part in the estimate s̃, since the transmitter only has a limited
transmit power Etr. The estimate s̃ is the input of the nearest-neighbor quantizer
Q(•), whose output is denoted by ŝ ∈ CB.

The TxZF minimizes the mean square error (MSE) under the transmit energy
constraint (20.2) together with the constraint of full interference suppression and
unbiasedness (see, e.g., [2]):

{
PZF,βZF

} = argmin
{P,β}

E
[‖s − s̃‖2

2

]
s.t. E

[‖Ps‖2
2

] = Etr, s̃|η=0 = s. (20.4)
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The solution of the above optimization can be obtained with the method of La-
grangian multipliers (e.g., [30]) and reads as

PZF = βZFHH(
HHH)−1 ∈ C

N×B,

βZF =
√√√√ Etr

tr
((

HHH
)−1

Rs

) ∈ R+.
(20.5)

Note that the MSE of the TxZF is simply the noise portion at the quantizer
input due to the second constraint of (20.4), that is, E[‖s − s̃‖2

2] = β−2
ZF tr(Rη).

Hence, we can expect that the performance of the TxZF is poor, when the channel
matrix H is ill conditioned (see, e.g., [31]), since the weight βZF is small in this
case.

To reduce this noise enhancement of the TxZF for ill-conditioned H, we have
to drop the second constraint in (20.4) and end up with the TxWF optimization
[32, 33, 2]:

{
PWF,βWF

} = argmin
{P,β}

E
[‖s − s̃‖2

2

]
s.t. E

[‖Ps‖2
2

] = Etr. (20.6)

As shown in [2], we get with Lagrangian multipliers:

PWF = βWF

(
HHH +

tr
(

Rη
)

Etr
1N

)−1

HH ∈ C
N×B,

βWF =
√√√√ Etr

tr
((

HHH +
(

tr
(

Rη
)
/Etr

)
1N

)−1
HHRsH

) ∈ R+.

(20.7)

Obviously, the TxWF leads to a smaller MSE than the TxZF, since the TxZF mini-
mizes the MSE under an additional constraint. Moreover, the TxZF is indepen-
dent of the properties of the noise, whereas the TxWF takes into account the
mean noise power tr(Rη), because it depends on the signal-to-noise ratio (SNR)
ES/N0 = Etr/ tr(Rη), that is, the ratio of the average energy per transmitted scalar
symbol over the average noise power per receive antenna. Thus, we can expect that
the TxZF is outperformed by the TxWF.

20.3. System model for Tomlinson-Harashima precoding

Instead of directly applying the feedforward filter P ∈ CN×B as in the case of linear
transmit processing (see previous subsection), the data signal s = [s1, . . . , sB]T ∈
MB is first transformed by the permutation matrix (see Figure 20.2):

Π(O) =
B∑
i=1

eieT
bi
∈ {0, 1}B×B with Π(O),−1 = Π(O),T, (20.8)
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Figure 20.2. THP transmission over a nondispersive channel.

that is, the bith scalar symbol sbi is put at the ith position for i = 1, . . . ,B. Thus,
the b1th data symbol sb1 is precoded first and the bBth data symbol sbB last. For
compactness, we collect the indices b1, . . . , bB in the B-tupel

O = (
b1, . . . , bB

)
with bi ∈

{
1, . . . ,B

} \ {
b1, . . . , bi−1

}
. (20.9)

We will also use the term ordering for the B-tupel O. The transmitter can choose
the ordering O freely, since the reordering by the permutation matrix Π(O) cannot
be recognized by the receiver. Hence, the ordering O represents additional degrees
of freedom.

After the reordering by Π(O), the signal is passed through the nonlinear feed-
back loop to get the signal v ∈ MB. The modulo operator in Figure 20.2 is defined
element-wise:

M(x) = [
M

(
x1
)
, . . . , M

(
xB

)]T ∈ M
B with x ∈ C

B,

M
(
xi
) = xi −

⌊
Re

(
xi
)

τ
+

1
2

⌋
τ − j

⌊
Im

(
xi
)

τ
+

1
2

⌋
τ,

(20.10)

where xi ∈ C, i = 1, . . . ,B, denotes the ith entry of x and �• denotes the floor
operator which gives the largest integer smaller than or equal to the argument.
Note that the amplitude of the modulo operator is upper bounded, since M(xi) ∈
M, where

M =
{
z ∈ C | −τ

2
≤ Re(z) <

τ

2
and − τ

2
≤ Im(z) <

τ

2

}
. (20.11)

The modulo constant τ ∈ R+ is chosen depending on the modulation alphabet (all
symbols of the modulation alphabet have to be elements of M, see, for example,
[34]). For example, we set τ = 2

√
2 for QPSK modulation (see Figure 20.3) whose

symbols are elements of the set {exp(jµπ/4) | µ ∈ {−3,−1, +1, +3}}.
We assume that the scalar entries v1, . . . , vB ∈ M of the modulo operator

output v ∈ MB are uncorrelated due to the modulo operation M(•), that is,
Rv = diag(σ2

v1
, . . . , σ2

vB ) ∈ RB×B
+ . Additionally, we make the popular assumption

that the ith output vi, i = 2, . . . ,B, of the modulo operator M(•) at the transmitter



406 Ordered spatial Tomlinson-Harashima precoding

Im(•)

Re(•)

M

(a)

Im(•)

Re(•)

M

(b)
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Figure 20.4. Linear representation of the modulo operator at the transmitter.

is uniformly distributed over M, which results in the variance

σ2
vi = σ2

v = E
[∣∣vi∣∣2

]
= τ2

6
, i = 2, . . . ,B. (20.12)

Since the first modulo operator output v1 is simply sb1 as we will see in the follow-
ing, its variance is σ2

v1
= σ2

s , where σ2
s = E[|sb1|2].

Since M(•) is defined element-wise and we assume an ordering such that the
first entry of the permuted data vector Π(O)s is precoded first and the last entry
last, the feedback filter F ∈ CB×B has to be lower triangular with zero main diagonal
to ensure the realizability of the feedback loop.1 This property of F is often called
spatial causality, as only data symbols which have already been precoded are fed
back.

Due to the definition of M(•) in (20.10), we can follow that the output of the
modulo operator M(•) is simply the sum of the input and a term which ensures
that all scalar entries of the output are elements of M. When taking this observa-
tion into account, we end up with the linear representation of the feedback loop at
the transmitter depicted in Figure 20.4. Note that the auxiliary signal Π(O)a ∈ CB,

1The scalar signal v1 is constructed without feedback (the first row of F is zero) and is equal to
sb1 , whereas the scalar signal vB depends on sbB and v1, . . . , vB−1 but not on itself (the last element of
the last row of F is zero). We could also assume alternative orderings, for example, the reverse ordering,
that is, sbB is precoded first and sb1 last. The resulting F would be upper triangular with zero main
diagonal instead.
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Figure 20.5. Linear representation of THP transmission.

whose scalar entries have real and imaginary parts which are integer multiples of
the modulo constant τ, can be moved from the inside to the front of the feedback
loop.2 When replacing the modulo operators in Figure 20.2 by the summation
with the appropriate auxiliary signals and moving the auxiliary signal Π(O)a at the
transmitter to the front of the feedback loop, we obtain the linear representation
in Figure 20.5. As the auxiliary signals a and −ã which are added at the transmitter
and the receiver, respectively, are included automatically by the modulo operators,
we use d as the desired signal and d̃ as the estimate in the following optimiza-

tions. We see in Figure 20.5 that the system whose input and output is d and d̃,
respectively, is linear. Consequently, we can apply the optimizations for the lin-
ear transmit filters reviewed in the previous subsection also for the design of the
THP filters, but we have to take into account the special structure of the feedback
filter F and the statistical properties of the modulo operator output v. We can con-
clude that the advantage of THP compared to the linear transmit filters is due to
the advantageous statistical properties of the signal v, whose amplitude is upper
bounded, since v ∈ MB.

The desired signal d as a function of the modulo operator output v ∈ MB can
be expressed as (see Figure 20.5)

d = Π(O),T(1B − F
)

v ∈ C
B. (20.13)

The output v of the modulo operator is passed through the feedforward filter P ∈
CNa×B, propagates over the channel H ∈ CB×Na , is perturbed by the noise η ∈ CB,
and is weighted with β−1 at the receiver to form the estimate

d̃ = β−1HPv + β−1η ∈ C
B. (20.14)

Note that the scalar weight β−1 at the receiver is always necessary in a THP system,
since the choice of the modulo constant τ is based on the assumption that the

2From Figure 20.4, we see that v = Π(O)s + Π(O)a + Fv or equivalently, we obtain for the output
signal of the modulo operator at the transmitter v = (1B − F)−1Π(O)(s + a). Consequently, a can be
directly added to s in front of the feedback loop.
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amplitude at the modulo operator input is correct. The transmit signal is simply
y = Pv ∈ CNa and hence, the expression for the transmit energy reads as

E
[∥∥y

∥∥2
2

]
= tr

(
PRvPH)

. (20.15)

20.4. Spatial Tomlinson-Harashima precoding

20.4.1. Zero-forcing spatial Tomlinson-Harashima precoding

The zero-forcing variant of spatial THP (S-THP) for nondispersive channels can
be found by applying an optimization which is based on the optimization for linear
zero-forcing transmit processing (cf. (20.4)). First, we have to replace the desired
signal s by d and the estimate ŝ by d̃. Second, we have to include the ordering O
and a constraint that the feedback filter F ∈ CB×B is spatially causal:

{
PTHP

ZF , FTHP
ZF ,βTHP

ZF , OTHP
ZF

}
= argmin

{P,F,β,O}
E
[∥∥d − d̃

∥∥2
2

]
s.t. : d̃|η=0B = d, E

[∥∥y
∥∥2

2

]
= Etr,

F : lower triangular, zero main diagonal.

(20.16)

When plugging (20.13), (20.14), and (20.15) into the above optimization, we get

{
PTHP

ZF , FTHP
ZF ,βTHP

ZF , OTHP
ZF

}
= argmin

{P,F,β,O}
β−2 tr

(
Rη

)
s.t. β−1HP = Π(O),T(1B − F

)
, tr

(
PRvPH) = Etr,

SiFei = 0i, i = 1, . . . ,B,

(20.17)

where we split up the constraint on the spatial causality of F into B constraints for
the columns of F. Here, ei ∈ {0, 1}B and we introduced the selection matrix

Si = S(0,i,B−i) =
[

1i, 0i×B−i
] ∈ {0, 1}i×B (20.18)

which cuts out the first i elements of a B-dimensional vector.
Obviously, the optimization in (20.17) is not convex due to the first con-

straint. However, we obtain necessary conditions for the optimum zero-forcing
S-THP (ZF-S-THP) filters, when setting the derivatives of the Lagrangian func-
tion

L
(

P, F,β, O,Λ, ρ,µ1,µ2, . . . ,µB
)

= β−2 tr
(

Rη
)− ρ

(
tr
(

PRvPH)− Etr
)

− 2 Re
(

tr
(
Λ
(
β−1HP −Π(O),T(1B − F

))))− B∑
i=1

2 Re
(
µT
i SiFei

)
,

(20.19)
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with the Lagrangian multipliers Λ ∈ CB×B, ρ ∈ R, and µi ∈ Ci, i = 1, . . . ,B, to
zero:

∂L
(

P, F,β,Λ, ρ,µ1,µ2, . . . ,µB
)

∂P
= −β−1HTΛT − ρP∗RT

v = 0Na×B,

∂L
(

P, F,β,Λ, ρ,µ1,µ2, . . . ,µB
)

∂F
= −Π(O)ΛT −

B∑
i=1

ST
i µie

T
i = 0B×B,

∂L
(

P, F,β,Λ, ρ,µ1,µ2, . . . ,µB
)

∂β
= −2β−3 tr

(
Rη

)
+ β−2 Re

(
tr(ΛHP)

)
.

(20.20)

From the derivative with respect to the feedback filter F, it follows that

ΛH = −Π(O),T
B∑
i=1

ST
i µ

∗
i eT

i . (20.21)

Plugging this result into the derivative of the Lagrangian function with respect to
the feedforward filter P yields

ρσ2
viPei = β−1HHΠ(O),TST

i µ
∗
i , (20.22)

where we multiplied by ei ∈ {0, 1}B and used the assumption that the output v of
the modulo operation at the transmitter is uncorrelated. Due to the first constraint
of (20.17), the ith column of the feedback filter can be written as

Fei = ei − ρ−1σ−2
vi β

−2Π(O)HHHΠ(O),TST
i µ

∗
i . (20.23)

Consequently, by employing the last constraint of (20.17), we obtain for the La-
grangian multiplier

µ∗
i = ρσ2

viβ
2(SiΠ

(O)HHHΠ(O),TST
i

)−1
Siei, (20.24)

which leads to following expression for the ith column of the feedforward filter P:

Pei = βHHΠ(O),TST
i

(
SiΠ

(O)HHHΠ(O),TST
i

)−1
Siei. (20.25)

Note that the columns of P are orthogonal, that is,

eT
j PHPei = 0, (20.26)

for j �= i, since the selection matrix Si = [1i, 0i×B−i] ∈ {0, 1}i×B has the following
properties:

S j = S jST
i Si, S jei = 0 j , for j < i. (20.27)
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Since the modulo output v is uncorrelated, we can rewrite the transmit energy
constraint:

tr
(

PRvPH) = β2
B∑
i=1

σ2
vie

T
i ST

i

(
SiΠ

(O)HHHΠ(O),TST
i

)−1
Siei = Etr, (20.28)

which leads to the ZF-S-THP solution depending on the ordering O:

PTHP
ZF = βTHP

ZF

B∑
i=1

HHΠ(O),TST
i

(
SiΠ

(O)HHHΠ(O),TST
i

)−1
SieieT

i ,

FTHP
ZF = 1B − βTHP,−1

ZF Π(O)HPTHP
ZF ∈ C

B×B,

βTHP
ZF =

√√√√ Etr∑B
i=1 σ2

vie
T
i ST

i

(
SiΠ(O)HHHΠ(O),TST

i

)−1
Siei

∈ R+.

(20.29)

We observe that the ith column of the ZF-S-THP feedforward filter PTHP
ZF only

depends on the first i rows of the sorted channel matrix Π(O)H. Thus, the first
column of PTHP

ZF is simply the weighted transmit matched filter (TxMF, see, e.g.,
[2]) for the first scalar data stream sb1 and the last column is the weighted bBth
column of the linear TxZF PZF. We can conclude that the first scalar data stream
sb1 is transmitted without taking into account the interference which is introduced
in the other scalar estimates, since this interference is removed by the feedback fil-
ter FTHP

ZF and the modulo operations. The second column of the feedforward filter
PTHP

ZF is orthogonal to the b1th row of the channel H, that is, the second precoded
signal v2 is not interfering with the estimate s̃b1 of the first scalar data stream, but as
the second column of PTHP

ZF only depends on the first two rows of the sorted chan-
nel matrix Π(O)H, the signal v2 contributes interference to the other estimates,
namely, the estimates for sb3 , . . . , sbB . This interference has to be removed by the
feedback filter FTHP

ZF and the modulo operations. The signals v1, . . . , vB−1 cause in-
terference in the estimate for the last data stream sbB . Thus, the feedback filter FTHP

ZF

has to suppress this interference and the resulting output of the modulo operation
vB does not interfere with the estimates of the other data streams, since the last
column of PTHP

ZF is orthogonal to the first B − 1 rows of the sorted channel matrix
Π(O)H.

Note that we can employ the Cholesky factorization (e.g., [31, 35]) of the chan-
nel Gram with symmetric permutation,3

Π(O)HHHΠ(O),T = LLH, (20.30)

3Alternatively, we can use the QR factorization (e.g., [31, 35]) of the Hermitian HHΠ(O),T = QR
of the sorted channel matrix. Then, L = RH.
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with the lower triangular matrix L ∈ CB×B, to find following alternative expres-
sions for the ZF-S-THP filters:

PTHP
ZF = βTHP

ZF HHΠ(O),TLH,−1 diag
(
l−1
1,1, . . . , l−1

B,B

)
,

FTHP
ZF = 1B − L diag

(
l−1
1,1, . . . , l−1

B,B

)
,

(20.31)

and

βTHP
ZF =

√
Etr

tr
(

diag
(
l−2
1,1, . . . , l−2

B,B

)
Rv

) , (20.32)

where li,i ∈ R+ denotes the ith diagonal element of L. Remember that we have
obtained this result by solving the optimization in (20.17) and afterwards rewrit-
ing the solution with the Cholesky decomposition of the symmetrically permuted
channel Gram or the QR factorization of the Hermitian of the sorted channel
matrix. Contrarily, no optimization was performed and the expressions for the
S-THP filters were found intuitively by using the unsorted QR factorization in
[19, 21], where the weighting at the receiver was assumed to be the diagonal matrix
diag(l−1

1,1, . . . , l−1
B,B) instead of β−11B, although this choice for the diagonal weighting

is suboptimum (see [25]).
When using the projector

Π
(O)
i = Π(O),TST

i SiΠ
(O) = 1B −

B∑
j=i+1

ebj e
T
bj

∈ {0, 1}B×B, (20.33)

we can rewrite the ZF-S-THP solution in (20.29):

PTHP
ZF = βTHP

ZF

B∑
i=1

HHΠ
(O)
i

(
Π

(O)
i HHHΠ

(O)
i

)+
ebie

T
i ∈ C

Na×B,

FTHP
ZF = 1B − βTHP,−1

ZF Π(O)HPTHP
ZF ,

βTHP
ZF =

√√√√√ Etr∑B
i=1 σ2

vie
T
bi

(
Π

(O)
i HHHΠ

(O)
i

)+
ebi

∈ R+.

(20.34)

The result for the scalar weight βTHP
ZF depending on the ordering O enables us to

further minimize the MSE by the appropriate ordering:

O′
ZF = argmin

O

tr
(

Rη
)

Etr

B∑
i=1

σ2
vie

T
bi

(
Π

(O)
i HHHΠ

(O)
i

)+
ebi . (20.35)

Thus, the optimal ordering O′
ZF can only be found by computing the MSEs for all

B! possible orderings and choosing the ordering with the minimum MSE. Since the
above optimization is very complex, we suggest to use the following suboptimum
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approach. Instead of minimizing the sum of MSEs for the B scalar data streams,
the ordering is found by successively minimizing each MSE summand under the
assumption that the ordering of the succeeding MSE summands is fixed:

OZF = (
bZF,1, . . . , bZF,B

)
(20.36)

with

bZF,i = argmin
b∈{1,...,B}\{bZF,i+1,...,bZF,B}

eT
b

(
Π

(OZF)
i HHHΠ

(OZF)
i

)+
eb, (20.37)

where i = B, . . . , 1. Note that Π(OZF)
i only depends on the already computed bZF,i+1,

. . . , bZF,B and hence, the pseudoinverse of Π(OZF)
i HHHΠ

(OZF)
i is independent of b.

Therefore, the complexity is O(B4), whereas the optimum ordering of (20.35) has
O(B!B3). The above suboptimum procedure for ZF-S-THP is similar to the order-
ing optimization known as V-BLAST for spatial DFE, but the sorting is computed
starting with the index for the data stream precoded last, whereas V-BLAST starts
with the index of the data stream detected first.

20.4.2. Wiener spatial Tomlinson-Harashima precoding

The Wiener S-THP (WF-S-THP) filters for nondispersive channels results from
the minimization of the mean square error together with the transmit energy con-
straint and the restriction of a spatially causal feedback filter:

{
PTHP

WF , FTHP
WF ,βTHP

WF , OTHP
WF

}
= argmin

{P,F,β,O}
E
[∥∥d − d̃

∥∥2
2

]
s.t. E

[∥∥y
∥∥2

2

]
= Etr, F : lower triangular, zero main diagonal.

(20.38)

With (20.13), (20.14), and (20.15), the above optimization can be written as

{
PTHP

WF , FTHP
WF ,βTHP

WF , OTHP
WF

}
= argmin

{P,F,β,O}
σ2
ε (P, F,β, O)

s.t. tr
(

PRvPH) = Etr, SiFei = 0i, i = 1, . . . ,B,
(20.39)

where the MSE σ2
ε (P, F,β, O) = E[‖d − d̃‖2

2] is defined as

σ2
ε (P, F,β, O)

= −2β−1 tr
(

Re
(
Π(O),T(1B − F

)
RvPHHH))

+ tr
((

1B − F
)

Rv
(

1B − FH))
+ β−2 tr

(
HPRvPHHH + Rη

)
.

(20.40)

The selection matrix Si = [1i, 0i×B−i] ∈ {0, 1}i×B cuts out the first i elements
of a B-dimensional column vector and ei ∈ {0, 1}B. Employing the Lagrangian



M. Joham and W. Utschick 413

multipliers ρ ∈ R and µi ∈ Ci with i = 1, . . . ,B, we form the Lagrangian function

L
(

P, F,β, O, ρ,µ1,µ2, . . . ,µB
)

= σ2
ε (P, F,β, O) − ρ

(
tr
(

PRvPH)− Etr
)− B∑

i=1

2 Re
(
µT
i SiFei

)
,

(20.41)

whose derivatives with respect to the feedforward filter P, the feedback filter F, and
the scalar weight β must vanish:

∂L(· · · )
∂P

= β−2HTH∗P∗RT
v − β−1HTΠ(O),T(1B − F∗)RT

v

− ρP∗RT
v = 0N×B,

∂L(· · · )
∂F

= −(
1B − F∗)RT

v + β−1Π(O)H∗P∗RT
v −

B∑
i=1

ST
i µie

T
i = 0B×B,

∂L(· · · )
∂β

= 2β−2 tr
(

Re
(
Π(O),T(1B − F

)
RvPHHH))

− 2β−3 tr
(

HPRvPHHH + Rη
) = 0.

(20.42)

When taking the complex conjugate of the derivative with respect to P, multiplying
with PH from the right, and applying the trace operator, we find following equality:

− β−1 tr
(

HHΠ(O),T(1B − F
)

RvPH)
+ β−2 tr

(
HHHPRvPH)− ρ tr

(
PRvPH) = 0.

(20.43)

We can conclude that tr(HHΠ(O),T(1B − F)RvPH) ∈ R, since all other terms are
real valued. Therefore, we can plug the above result into the derivative of the La-
grangian function with respect to the scalar weight β to obtain

ρ = −β−2 tr
(

Rη
)

Etr
, (20.44)

where we used the transmit energy constraint, that is, tr(PRvPH) = Etr. In the
following, we use the abbreviation

ξWF = tr
(

Rη
)

Etr
. (20.45)

Due to the derivative with respect to P and the above expression for the Lagrangian
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multiplier ρ, the feedforward filter can be written as

P = βHH(
HHH + ξWF1B

)−1
Π(O),T(1B − F

)
, (20.46)

where we also applied the matrix inversion lemma. Plugging this result into the
derivative of the Lagrangian function with respect to the feedback filter F yields

F = 1B + ξ−1
WF

(
Π(O)HHHΠ(O),T + ξWF1B

) B∑
i=1

σ−2
vi ST

i µ
∗
i eT

i , (20.47)

which can be used to find the Lagrangian multipliers µi, i = 1, . . . ,B, with the
second constraint of (20.39):

µ∗
i = −ξWFσ

2
vi

(
SiΠ

(O)HHHΠ(O),TST
i + ξWFSiST

i

)−1
Siei, (20.48)

with i = 1, . . . ,B. For the last two expressions, we employed the assumption that
the modulo operator outputs at the transmitter are uncorrelated, that is, Rv =
diag(σ2

v1
, . . . , σ2

vB ). When we replace the identity matrix 1B in the expression for the
feedback filter F by

1B =
B∑
i=1

eieT
i =

B∑
i=1

ST
i SieieT

i

=
B∑
i=1

−ξ−1
WFσ

−2
vi ST

i Si
(
Π(O)HHHΠ(O),T + ξWF1B

)
ST
i µ

∗
i eT

i ,

(20.49)

we obtain for the feedback filter

F =
B∑
i=1

ξ−1
WFσ

−2
vi

(
1B − ST

i Si
)
Π(O)HHHΠ(O),TST

i µ
∗
i eT

i , (20.50)

because ST
i SiST

i − ST
i = 0B×i. With the alternative expression for the Lagrangian

multipliers

µ∗
i = −ξWFσ

2
viSiΠ

(O)
(
Π

(O)
i HHHΠ

(O)
i + ξWF1B

)−1
ebi , i = 1, . . . ,B, (20.51)

where we again introduced the projector

Π
(O)
i = Π(O),TST

i SiΠ
(O) = 1B −

B∑
j=i+1

ebj e
T
bj

∈ {0, 1}B×B, (20.52)
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we finally get the WF-S-THP solution for flat fading channels depending on the
ordering O:

PTHP
WF = βTHP

WF

B∑
i=1

HHΠ
(O)
i A−1

WF,iebie
T
i ∈ C

N×B, (20.53)

FTHP
WF =

B∑
i=1

(
ST
i Si − 1B

)
Π(O)HHHΠ

(O)
i A−1

WF,iebie
T
i , (20.54)

and

βTHP
WF =

√√√√ Etr∑B
i=1 σ2

vie
T
bi

A−2
WF,iΠ

(O)
i HHHΠ

(O)
i ebi

∈ R+, (20.55)

where AWF,i = Π
(O)
i HHHΠ

(O)
i + ξWF1B. The expression for the scalar βTHP

WF was
found with the transmit energy constraint. Interestingly, we get the same scalar
weight ξWF = tr(Rη)/Etr for the identity matrix inside the inverse as for the linear
TxWF (cf. (20.7)). Note that we can alternatively write for the feedback filter:

FTHP
WF = βTHP,−1

WF

B∑
i=1

(
ST
i Si − 1B

)
Π(O)HPTHP

WF eieT
i , (20.56)

that is, the ith column of the feedback filter is constructed by using the ith column
of the filter chain βTHP,−1

WF HPTHP
WF and setting the first i elements to zero. The MSE

for the WF-S-THP approach in terms of the feedback filter FTHP
WF can be expressed

as

σ2
ε

(
PTHP

WF , FTHP
WF ,βTHP

WF , O
)
= ξWF tr

((
1B − FTHP

WF

)
Rv

(
1B − FTHP,H

WF

)
A−1

WF,i

)
. (20.57)

The MSE is further minimized by the choice of the ordering O. With (20.54), we
find the WF-S-THP ordering optimization:

O′
WF = argmin

O
ξWF

B∑
i=1

σ2
vie

T
bi

(
Π

(O)
i HHHΠ

(O)
i + ξWF1B

)−1
ebi . (20.58)

To avoid the high complexity O(B!B3) of this optimization, we suggest to employ
the following suboptimum approach instead:

OTHP
WF =

(
bTHP

WF,1, . . . , bTHP
WF,B

)
(20.59)

with

bTHP
WF,i = argmin

b∈Oi

eT
b

(
Π

(OTHP
WF )

i HHHΠ
(OTHP

WF )
i + ξWF1B

)−1
eb, (20.60)
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1: O ← {1, . . . ,B}
G ← H
for i = B, . . . , 1:

4: P ← (GGH + ξWF1B)−1

5: bi ← argmin
b∈O

eT
bPeb

6: pi ← GHPebi
O ← O\{bi}
G ← (1B − ebie

T
bi

)G
for i = 1, . . . ,B:

10: fi ← (ST
i Si − 1B)Π(O)Hpi

11: χ ← σ2
s ‖p1‖2

2 + σ2
v

∑B
i=2 ‖pi‖2

2

β ←
√
Etr/χ

P ← β[p1, . . . , pB]

Algorithm 20.1. Filter and ordering computation for spatial WF-THP over nondispersive channels.

1: for i = 1, . . . ,B:
2: vi ← M

(
sbi +

∑i−1
j=1 eT

i f jv j
)

v = [v1, . . . , vK ]T

y = Pv

Algorithm 20.2. Ordered spatial THP over nondispersive channels.

where Oi = {1, . . . ,B}\{bTHP
WF,i+1, . . . , bTHP

WF,B} and i = B, . . . , 1. Thus, each summand
of (20.58) is minimized for fixed succeeding indices bTHP

WF,i+1, . . . , bTHP
WF,B starting from

the index of the data stream precoded last and ending with the index of the data

stream precoded first. Note that Π
(OTHP

WF )
i only depends on the succeeding indices

bTHP
WF,i+1, . . . , bTHP

WF,B. Thus, the inverse of Π
(OTHP

WF )
i HHHΠ

(OTHP
WF )

i + ξWF1B only has to
be computed once for each step and the complexity of the above optimization is
O(B4).

In Algorithm 20.1, we present the resulting algorithm to compute the WF-
S-THP filters as pseudocode. S-THP for nondispersive channels is illustrated by
Algorithm 20.2. Note that we included the assumption in line 11 that all modulo
outputs have variance σ2

v = τ2/6 except the first modulo output v1 which is equal
to sb1 (see line 2 of Algorithm 20.2).

The ZF-S-THP variant can be found with a similar algorithm as the one in
Algorithm 20.1, we only have to replace the lines 4–6 and 10 by the respective lines
in Algorithm 20.3. Note that this step is equivalent to the limit ξWF → 0. However,
the replacement is necessary, since we would end up with an inversion of a rank
deficient matrix (see line 4 in Algorithm 20.1).
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4: P ← G+

5: bi ← argminb∈O
‖Peb‖2

2

6: pi ← Pebi
10: fi ← ei −Π(O)Hpi

Algorithm 20.3. Filter and ordering computation for spatial ZF-THP over nondispersive channels.
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Figure 20.6. QPSK transmission over nondispersive MIMO channel with four transmitting and four
receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.

20.5. Simulation results

We apply the spatial THP approaches discussed in this section to a nondispersive
multiple-input multiple-output (MIMO) system, where we assume that the entries
of the channel matrix are i.i.d. complex Gaussian distributed. The uncoded BER
results are the mean of 240 000 channel realizations, where 100 vector symbols are
transmitted per realization. The linear transmit filters TxZF and TxWF discussed
in Section 20.2 are used for comparison to highlight the capabilities of THP. Ad-
ditionally, we include the uncoded BER results for unitary ZF-S-THP [21] which
is a variant of ZF-S-THP with unitary feedforward filter and a weighting with a
diagonal matrix at the receiver instead of the scalar weighting employed in this
section.

In Figure 20.6, we present the results for a system with four antenna elements
deployed at the transmitter and four antenna elements at the receiver. Four QPSK
symbols are transmitted per channel use. We observe that the S-THP approaches
clearly outperform the respective linear filters, where WF-S-THP needs about 4 dB
less SNR than ZF-S-THP for a BER of 10%. The unitary ZF-S-THP is slightly
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Figure 20.7. 16QAM transmission over nondispersive MIMO channel with four transmitting and four
receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.

better than ZF-S-THP with scalar weighting, since the diagonal weighting of uni-
tary ZF-S-THP offers more degrees of freedom. Note that the BERs of the two
zero-forcing THP variants have the same slope as the two linear filters for high
SNR. This behavior can be explained by the fact that the last column of the feedfor-
ward filter PTHP

ZF is the weighted bBth column of the TxZF PZF. Thus, the diversity
order of the THP data stream precoded last is the same as the diversity order of the
TxZF data streams (in our case, diversity order 1, slop is one magnitude of BER per
10 dB SNR). As the smallest diversity order is dominant, the ZF-THP approaches
have the same diversity order as the linear transmit filters for high SNR.

The results for 16QAM transmission in Figure 20.7 are similar to the QPSK
results in Figure 20.6. WF-S-THP is superior compared to all other depicted ap-
proaches and outperforms the linear TxWF even for low SNR. This result illus-
trates the dependence of THP on the modulation alphabet, since the modulo op-
eration at the receiver introduces additional allowed constellation points. As the
number of constellation points for 16QAM is larger than for QPSK, the impact of
the modulo operation at the receiver is less pronounced for 16QAM.

When reducing the number of antenna elements at the receiver to three and
transmitting three QPSK symbols per channel use, we end up with the results in
Figure 20.8. Due to the increased number of freedoms compared to the case with
four data streams of Figure 20.6, the linear transmit filters lead to better results
than the THP approaches for low and medium SNRs, for example, the TxWF has
a lower uncoded BER than WF-S-THP for an SNR below 1 dB. We can also observe
that unitary ZF-S-THP is outperformed by ZF-S-THP with scalar weighting at the
receiver. Consequently, the intuitively chosen diagonal weighting of unitary ZF-S-
THP is suboptimum.
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Figure 20.8. QPSK transmission over nondispersive MIMO channel with four transmitting and three
receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.
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Figure 20.9. 16QAM transmission over nondispersive MIMO channel with four transmitting and
three receiving antenna elements: BER versus SNR for linear and nonlinear transmit processing.

In Figure 20.9, three 16QAM symbols are transmitted per channel use. As
the modulo operation at the receiver is less harmful for 16QAM, WF-S-THP ex-
hibits the best uncoded BER results in the whole depicted SNR region contrary
to Figure 20.8. Note how close the BER curves of the zero-forcing and Wiener
precoder types lie in Figure 20.9 due to the available degrees of freedom, because
the number of receive antenna elements is smaller than the number of transmit
antenna elements.
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Abbreviations

BER Bit error rate

DFE Decision feedback equalizer

DS-CDMA Direct-sequence code-division multiple access

FIR Finite impulse response

IIR Infinite impulse response

MIMO Multiple-input multiple-output

MSE Mean square error

QAM Quadrature amplitude modulation

QPSK Quaternary phase-shift keying

SISO Single-input single-output

SNR Signal-to-noise ratio

S-THP Spatial Tomlinson-Harashima precoding

THP Tomlinson-Harashima precoding

TxMF Transmit matched filter

TxWF Transmit Wiener filter

TxZF Transmit zero-forcing filter

V-BLAST Vertical Bell Laboratories Space Time

WF-S-THP Wiener spatial Tomlinson-Harashima precoding

WF-THP Wiener Tomlinson-Harashima precoding

ZF-S-THP Zero-forcing spatial Tomlinson-Harashima precoding

ZF-THP Zero-forcing Tomlinson-Harashima precoding
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21
Transmission strategies
for the MIMO MAC

Eduard A. Jorswieck

21.1. Introduction

In wireless point-to-point links, one applies multiple antennas to increase the
spectral efficiency and the performance of wireless systems [1, 2]. On the other
hand, in multiuser scenarios, multiple antennas at the base or even at the mobiles
require the development of new transmission strategies in order to achieve the
benefits of using the spatial domain. In multiple-input multiple-output (MIMO)
multiple access channels (MAC), the optimum transmission strategy depends on
the objective function, the power constraints, the channel statistics or the channel
realization, the type of channel state information (CSI), and the SNR range.

The analysis of multiuser MIMO systems is very important since usually more
than one user are involved in cellular as well as ad hoc systems. Up to now, only
little has been found out about MIMO multiuser systems. The achievable rates and
the transmission strategy depend at least on the following.

(i) Structure of the wireless MIMO system. In the common cellular approach,
many mobiles share one base station which controls the scheduling and trans-
mission strategies, for example, power control in a centralized manner. In cellular
systems the inter- and intracell interference can be controlled by spectrum and
time allocation. In MIMO systems an additional dimension, namely the space, is
available for allocation purposes.

(ii) Transmit strategies. Obviously, the transmit strategies of the participating
mobiles influence the achievable rate and the properties of the complete system.
In turn, the transmit strategies depend on the type of CSI at the transmitter, that
is, the more CSI is known about the own channel as well as about the other users
and the interference, the more adaptive and smart transmission strategies can be
applied. If no CSI is available at the transmitter, it is the best to use multiuser
space-time (-spreading) codes.

(iii) Receiver strategies. Different decoding and detection strategies can be used
at the receiver. The range leads from single-user detection algorithms which treat
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the other users as a noise up to linear and even nonlinear multiuser detection
algorithms. Of course, the receiver architecture depends on the type of CSI, too.

(iv) System parameters. In general, an important factor is the scenario in which
the wireless system works. In home or office scenarios, the system parameter heav-
ily differs from parameters in public access, hot spots, or high velocity scenarios.
User parameters, resource parameters, and especially channel parameters have to
be taken into account. The achievable performance and throughput depend on
those system parameters.

The optimization problems which arise in multiuser MIMO wireless systems
are divided into two classes. In the first one, the objective function measures a
global performance criteria of the system. In order to increase the throughput
of the MIMO MAC, the sum capacity can be maximized [3, 4, 5, 6] or the nor-
malized mean-square error can be minimized [7]. The solution of this class opti-
mization problems leads to transmission strategies which can be unfair for some
users. If users experience poor channel conditions for long periods of time, they
are not allowed to transmit. Therefore, the other class of optimisation problems
deals with the fulfilment of rate [8], SINR [9], or MSE [10] requirements with
minimal power. We study performance criteria for one user subject to fulfilment
constraints. In order to solve this class of problems, it is necessary to understand
the geometry of the achievable rate, SINR, or MSE region. In both classes of op-
timization problems, the constraints can be either individual power constraints of
each user or a sum power constraint. The second class of programming problems
are nonconvex nonlinear programming problems which are notoriously compli-
cate to analyze. The large number of degrees of freedom in the temporal as well as
the spatial domain increases the number of parameters which can be controlled.
In order to simplify the analysis, it is of advantage to divide the programming
problem into parts which can be solved in an iterative fashion.

In this chapter, we motivate and analyze important representative problems of
both classes. The development from the single-antenna MAC to the MIMO MAC
is shown and the differences and common ground between the single-antenna and
the multiple-antenna cases are stressed. Furthermore, we focus on the connections
between the different objective functions and their corresponding programming
problems. We show which results of recent literature can be reused and which re-
sults must not be reused. Finally, we illustrate the optimum transmission strategies
by examples.

21.2. Preliminaries

21.2.1. System model

Consider the multiple access channel in Figure 21.1. The communication channel
between each user and the base station is modelled by a quasistatic block flat fading
MIMO channel.

We have K mobiles with nT antennas. We can easily extend the results to the
case in which every mobile has a different number of transmit antennas. The base
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Figure 21.1. MIMO MAC system.

station owns nR receive antennas. In the discrete time model, the received vector y
at one time slot at the base station can be described by

y =
K∑
k=1

Hkxk + n (21.1)

with the receiver noise n ∈ CnR×1 which is additive white Gaussian noise (AWGN),
flat fading channel matrices Hk ∈ CnR×nT , and transmit signals xk ∈ CnT×1. We
assume uncorrelated noise with covariance σ2

nInR . The inverse noise power is de-
noted by ρ = 1/σ2

n .
Equation (21.1) can be rewritten in compact form as

y = Ĥx̂ + n (21.2)

with Ĥ = [H1, H2, . . . , HK ] and x̂ = [xT
1 , . . . , xT

K ]T . We collect the transmit covari-
ance matrices in

Q̂ =


Q1 0 0 · · · 0
0 Q2 0 · · · 0

0 0
. . . 0

0 0 0 0 QK

 . (21.3)
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21.2.2. Performance metrics

Under the assumption that the receiver knows the channel realization Hk, the mu-
tual information for user k is given by

I
(

y; xk|Hk
) = log det

I + ρ
K∑
l=1

HlQlHH
l


− log det

I + ρ
K∑

l=1, l �=k
HlQlHH

l

 (21.4)

with SNR ρ and transmit covariance matrices Qk. The transmit signals of the users
are assumed to be zero-mean independent complex Gaussian distributed with co-
variance matrix Qk. This probability density function (pdf) maximizes the indi-
vidual mutual information of each user. Obviously, the individual mutual infor-
mation of user k depends on the multiuser interference and noise, that is, it is a
function of all transmission matrices Hk between the users and the base, the SNR
ρ and the transmit strategies Qk of all users,

Rk(Q, H , ρ) = log det

(
I + ρ

∑K
l=1 HlQlHH

l

I + ρ
∑K

l=1, l �=k HlQlHH
l

)
(21.5)

with the set of covariance matrices Q and the set of channel realizations H

Q = {
Q1, Q2, . . . , QK

}
, H = {

H1, H2, . . . , HK
}
. (21.6)

The achievable rate of user k is denoted by Rk. It is possible that the receiver first
detects the signals of a set of users and subtracts them from the received signal
before detecting the user k. As long as the users transmit at a rate smaller than
or equal to their achievable rate, their signals are detected with arbitrary small
probability of error and are therefore correctly subtracted. We assume that the
signals of users 1 to k − 1 are correctly subtracted. In this case, the individual
mutual information of user k is given by

RSIC
k (Q, H , ρ) = log det

(
I + ρ

∑K
l=1 HlQlHH

l

I + ρ
∑K

l=k+1 HlQlHH
l

)
. (21.7)

The receiver starts with user one, detects its data, and subtracts it from the received
signal. The received signal for user one is interfered by all other users. Then the
second user is detected and subtracted. The second user gets interference from all
but the first user. This procedure continues until the last user is detected without
any interference. This approach is called successive interference cancellation (SIC).
Usually, one assumes that the data of all users are detected without any errors
because the users transmit with rate below their capacity.



Eduard A. Jorswieck 427

If we assume that the receiver detects the user signals in a linear fashion, the
optimal choice is the linear multiuser MMSE receiver. If we apply the linear MMSE
receiver, the performance metric is the normalized MSE [11]. The linear MMSE
receiver weights the received signal vector y by the Wiener filter

x̂k = QkHH
k

 K∑
l=1

HlQlHH
l + σ2

nI

−1

y. (21.8)

The covariance matrix of the estimation error Kε is given by

Kε = EH

[(
x̂ − x

)(
x̂ − x

)H]
. (21.9)

The normalized MSE is defined as the trace of the normalized covariance matrix
of the estimation error in (21.9). The corresponding performance metric is the
individual normalised MSE of user k which is given by

MSEk = tr
(

Q−1/2KεQ−1/2)
= nT − tr

ρHkQkHH
k

ρ K∑
l=1

HlQlHH
l + I

−1
 .

(21.10)

In contrast to the capacity, it is not possible to perform SIC without error propa-
gation, since the argument of error free reception is missing. Therefore, each user
k experiences interference from all other users. The achievable MSE region is given
by all MSE tuples (m1, . . . ,mK ) for which (m1 ≥ MSE1, . . . ,mK ≥ MSEK ) holds.

Using the individual rate or the individual MSE, each user can require its
quality-of-service (QoS) by giving a minimum rate rk or a maximum MSE mk

which has to be achieved. The problem of the fulfilment of service requirements
consists of computing a transmit strategy which fulfills for all 1 ≤ k ≤ K that
Rk ≥ rk or MSEk ≤ mk by minimizing the individual pk ≤ Pk or sum transmit
power

∑K
k=1 pk ≤ P. The transmit power pk of user k corresponds to the trace of

its transmit covariance matrix pk = trace(Qk).
Another performance metric is the sum of the individual performance met-

rics. The sum capacity is simply defined as the sum of the individual capacities∑K
k=1 R

SIC
k (Q, H , ρ), that is, with SIC, we obtain

C(Q, H , ρ) = log det

I + ρ
K∑
k=1

HkQkHH
k

 . (21.11)

The normalized sum MSE is defined in the same manner, that is, MSE=∑K
k=1 MSEk

and it is given by

MSE(Q, H , ρ) = KnT − nR + tr


ρ nT∑

k=1

HkQkHH
k + I

−1
 . (21.12)
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The sum capacity and the sum MSE describe the performance of the complete
MAC. The system throughput can be measured by the sum capacity in (21.11) or
by the sum MSE (21.12).

21.2.3. Assumptions and constraints

We assume that the transmitter as well as the receiver know the channel perfectly.
This ideal leads to an upper bound on the achievable performance. The channel
between each mobile and the base station is frequency flat. The coherence time of
the channel is large enough

(i) to encode over a sufficiently large number of blocks for achieving ap-
proximately the capacity conditioned on one channel realization if the
capacity is considered as the performance metric, or

(ii) to transmit one symbol which could be even a space-time symbol if the
MSE is considered as the performance metric.

SIC without error propagation at the base station is assumed for capacity opti-
mization. For MSE minimization, no SIC is performed.

The transmit power of the mobiles can be constrained in various ways de-
pending on the scenario considered. The most constrained scenario corresponds
to a power constraint on each single antenna of each mobile. This constraint is
relevant from a transmit antenna amplifier point of view.

Less restricted constraints are individual power constraints of the users, that is,

pk = tr(Qk) ≤ pmax
k . (21.13)

Individual power constraints are important in regard to public health conditions.
A less restricted constraint is a sum power constraint for all mobiles in one

cell, that is,

K∑
k=1

pk =
K∑
k=1

tr(Qk) ≤ P. (21.14)

The sum power constraint is important if the power can be distributed across the
users in one cell, but the cell sum power is limited in order to keep the intercell
interference under control. In addition to this, the sum power constraint can be
motivated by the downlink transmission in which the base station has a power
constraint.

Usually, two different temporal power allocation constraints are applied on
top of the sum, individual, and antenna constraint, namely, the short-term and
long-term power constraint. The short-term power constraint operates on the
power allocated to the transmitted signal vector over one constant channel real-
ization, that is, the individual short-term power constraint is the one given above
in (21.13). If it is allowed to distribute the power amount over ergodic many chan-
nel fading blocks, the transmit policy is a function of the channel realization Hk.
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The long-term individual power constraint for user k is given by

EHk

[
tr Qk

(
Hk

)] ≤ Pk (21.15)

and the corresponding long-term sum power constraint is given by

K∑
k=1

EHk

[
tr Qk

(
Hk

)] ≤ P. (21.16)

The optimum transmit policy under short-term and long-term power constraints
differs in the additional degree of freedom for the long-term power constraint
which leads to some kind of temporal water-filling with perfect CSI at transmitter
and receiver. Since we are interested in the impact of the spatial dimension (and
not in the temporal), we assume only short-term power constraints in this section.

21.3. Sum performance optimization

The first problem is as follows. Assume that the channel realizations Hk are known
and fixed. Solve the sum capacity optimization under the sum power constraint,
that is,

max log det

I + ρ
K∑
k=1

HkQkHH
k


subject to

K∑
k=1

tr Qk ≤ P, Qk % 0, 1 ≤ k ≤ K.

(21.17)

The second problem is given as follows. Assume that the channel realizations
Hk are known and fixed. Solve the normalized sum MSE1 minimization under the
sum power constraint, that is,

min tr


I + ρ

K∑
k=1

HkQkHH
k

−1


subject to

K∑
k=1

tr Qk ≤ P, Qk % 0, 1 ≤ k ≤ K.

(21.18)

The optimal transmit strategies in sum capacity maximization as well as sum
MSE minimization have a very interesting intrinsic structure. This leads to one
algorithmic structure which solves both programming problems. We start with

1For convenience, we omitted the constant terms KnT − nR in the normalized sum MSE.
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Figure 21.2. Sum performance optimization algorithm.

a top-down approach and present the signal processing structure which achieves
the sum capacity or minimizes the normalized sum MSE, at first. The original
problem of transmit strategy optimization is decomposed into two subproblems,
namely the power allocation and the covariance matrix optimization under indi-
vidual power constraints. This scheme is illustrated in Figure 21.2.

The transmit strategies of the K users are divided into two parts, namely,
the power allocation and the transmit covariance matrix optimization for fixed
power allocation. The outer loop is between power allocation p1, . . . , pK and co-
variance matrix Q1, . . . , QK optimization under individual power constraints. The
covariance matrix optimization can be decomposed into an inner loop in which
single-user covariance matrix optimization with respect to the effective channel is
performed. In the case in which the sum performance is measured by the sum ca-
pacity, the inner single-user waterfilling algorithm can be derived in closed form
[4]. Then, the covariance matrix optimisation corresponds to iterative waterfill-
ing. In the following, the two parts of the iterative algorithm are described in more
detail.

21.3.1. Power optimization with fixed transmit covariance matrices

The programming problem for fixed transmit covariance matrices Q1, . . . , QK re-
duces to a convex vector-valued optimization problem [12], that is, for the sum
capacity optimization. The channel realizations Hk of all users k are assumed to
be known. Keep the transmit covariance matrices fixed Q′

1, Q′
2, . . . , Q′

K . Distribute a
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fixed amount of transmit power P across the mobiles, that is, solve

max log det

I + ρ
K∑
k=1

pkHkQ′
kHH

k


subject to

K∑
k=1

pk ≤ P, pk > 0, 1 ≤ k ≤ K

(21.19)

or for sum MSE minimization, solve

min tr


I + ρ

K∑
k=1

pkHkQ′
kHH

k

−1


subject to

K∑
k=1

pk ≤ P, pk > 0, 1 ≤ k ≤ K.

(21.20)

Since, the programming problems in (21.19) and (21.20) are convex prob-
lems, they can be effectively solved by convex optimization techniques like interior
point methods [12]. Especially for the sum capacity optimization, a tool called
MAXDET [13] can be used. By analyzing the necessary and sufficient Karush-
Kuhn-Tucker (KKT) optimality conditions, the optimal power allocation p1,
. . . , pK can be characterized in the following way: for small SNR values, that is,
for small P, only one user is supported, that is, pk = P and pl �=k = 0. If we increase
the available transmit power (and the SNR), more and more users obtain partial
transmit power. The first user which is supported has the maximum channel ma-
trix eigenvalue, that is, λmax(HkHH

k ) ≥ λmax(Hl �=kHl �=k). This has been shown in
[7] for the sum MSE minimization and in [14] for the optimal transmit covari-
ance matrices.

21.3.2. Transmit covariance matrix optimization
under individual power constraints

We have the following two problems. For sum capacity optimization: in order
to maximize the sum capacity for fixed and known channel realizations Hk, and
for fixed power allocation p1, . . . , pK , find the optimal transmit covariance matrices
Q∗

1 , . . . , Q∗
K , that is, solve

max log det

I + ρ
K∑
k=1

HkQkHH
k


subject to

tr Qk ≤ pk, Qk % 0, 1 ≤ k ≤ K

(21.21)
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or for sum MSE minimization:

max tr


I + ρ

K∑
k=1

HkQkHH
k

−1


subject to

tr Qk ≤ pk, Qk % 0, 1 ≤ k ≤ K.

(21.22)

The optimization problems in (21.21) and (21.22) are convex with respect to the
transmit covariance matrices Q1, . . . , QK . However, since the objective function
is matrix valued, the optimization is not as easy as in the power allocation case.
Therefore, the optimization is further split into a series of single-user optimiza-
tion problems which are to be solved one after the other. In each single-user op-
timization step, the other users and their received signals HlQlHH

l are treated as
additional colored noise. This reduces the complexity of the algorithm from si-
multaneously optimizing K transmit covariance matrices to K succeeding single
transmit covariance matrix optimizations. Especially for a large number of users
K in the cell, the complexity is reduced. Hence, we arrive at the following two
single-user optimization problems with colored noise. We treat the two cases sum
capacity optimization and sum MSE minimization separately. For the kth user, we
write the noise plus interference as

Zk = I + ρ
K∑
l=1
l �=k

HlQlHH
l . (21.23)

21.3.2.1. Sum capacity

In the case in which the performance metric is the sum capacity, the single-user
problem which is iteratively solved is the waterfilling with respect to the effective
channel Z−1/2

k Hk. For each user k ∈ [1 · · ·K], we solve the optimization problem

max log det

(
I + ρ

H̃k︷ ︸︸ ︷
Z−1/2
k Hk QkHH

k Z−1/2
k

)
subject to

tr
(

Qk
) ≤ pk, Qk % 0.

(21.24)

The next result shows that the single-user covariance optimizations for all users
1 ≤ k ≤ K in (21.24) mutually solve the optimization problem (21.21). This result
corresponds to [4, Theorem 3].

If all covariance matrices Q∗
k mutually solve the optimization problem in (21.24)

for Zk in (21.23), then they solve optimization problem in (21.21) for the sum capac-
ity, too.
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The result follows from the fact that the optimization problem in (21.24) has
the same optimality conditions as the original problem in (21.21).

In order to prove convergence of the iterative single-user water filling, note
that the objective in (21.24) differs from the objective in (21.21) only by a con-
stant which is independent of Qk. Therefore, in each single-user water filling step
the sum capacity is increased. The channel matrix H̃k = Z−1/2

k Hk in (21.24) is the
effective channel which is weighted by the inverse noise plus interference. The iter-
ative single-user performance algorithm in (21.24) solves the original optimization
problem in (21.21).

21.3.2.2. Sum MSE

In the case in which the performance metric is the sum MSE, the single-user prob-
lem which is iteratively solved is the original sum MSE problem for fixed transmit
strategies of the other users. For each user k ∈ [1 · · ·K], we solve the optimization
problem

min tr
([

I + Zk + ρHkQkHH
k

]−1
)

subject to

tr
(

Qk
) ≤ pk, Qk % 0.

(21.25)

The next result shows that the single-user covariance optimizations for all users
1 ≤ k ≤ K in (21.25) solve the optimization problem (21.22).

If all covariance matrices Q∗
k mutually solve the optimization problem in (21.25)

for

Zk = σ2
nI +

K∑
l=1, l �=k

HlQlHH
l , (21.26)

then they solve optimization problem in (21.22), too.
Note that the single-user optimization problem in (21.24) has an interesting

interpretation: assume the single-user MSE optimization with colored noise Zk =
UZΛZUH

Z . We can write

tr
([

Zk + ρHkQkHH
k

]−1
)
= tr

(
ΛZ

[
I + ρH̃kQkH̃H

k

]−1
)

=
nR∑
l=1

λ−1
Z (l)

([
I + ρH̃kQkH̃H

k

]−1
)
l,l
.

(21.27)

The channel matrix H̃k = Z−1/2
k Hk in (21.27) is the weighted effective channel.

The iterative single-user MSE algorithm solves the original optimization problem
in (21.22). However, in contrast to the iterative water filling algorithm, we cannot
derive a simple algorithm which solves the single-user MSE problem because of
the dependence on the noise eigenvalues in (21.27).
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Figure 21.3. Example MIMO MAC, power allocation over SNR for sum capacity maximization, for
MIMO K = 3,nt = 2,nr = 2.

21.3.3. Illustration of iterative algorithm

In Figure 21.3, the optimal power allocation for the three users of a MIMO sys-
tem with three users with two transmit antenna each and a base with two receive
antennas, is shown.

In Figure 21.3, it can be observed that SNR values up to 0 dB, only one user
is active (user one). Then for SNR values up to 7 dB two users are active. For SNR
values above 7 dB all three users are active. In contrast to the SIMO scenario, for
SNR values approaching infinity, equal power allocation is not optimal. It is worth
mentioning that the second user who is active for SNR values greater than zero,
gets less transmit power than the third active user for SNR values above 15 dB. The
roles of the users change in MIMO MAC due to the additional degree of freedom
in choosing the transmit covariance matrices. Furthermore, the optimal power al-
location does not converge to equal power allocation for SNR approaching infinity.

21.4. Performance region analysis

In contrast to the sum performance of multiuser MIMO systems, very little is
known up to now about the complete performance region and how to achieve re-
quired points in the interior of the region. The difference between the sum perfor-
mance and the complete region will be illustrated by an example for the capacity
region and the sum capacity. We focus in this section on the mutual information as
the performance metric. However, the results can be applied to other performance
metrics as the individual MSEs or SINRs as well.
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Figure 21.4. Example of a MAC capacity region.

In Figure 21.4, an example capacity region of a MAC is shown. It can be ob-
served that the “atom” element which constitutes the whole region is one penta-
gon. For each power allocation p1, p2 and fixed pair of transmit covariance ma-
trices Q1, Q2, the rate tupels inside one pentagon can be achieved. Since the base
station performs SIC, there are two permutation orders in which the users signals
can be decoded. The edge points in the interior of the capacity region correspond
exactly with the two different decoding orders. For fixed transmit covariance ma-
trices of user one Q1 and of user two Q2, respectively, the two rate tupels with the
sum rate Rs = log det(I + ρH1Q1HH

1 + ρH2Q2HH
2 ) are given by

(
R1

1,R1
2

) = (
log det

(
I + ρH1Q1HH

1

)
,Rs − R1

1

)
,

(
R2

1,R2
2

) = (
Rs − R2

2, log det
(

I + ρH1Q1HH
1

))
.

(21.28)

In (R1
1,R1

2), the second user is decoded first without errors and subtracted since he
is communicating with rate less than or equal to his capacity. For K users the re-
sulting region is no longer a two-dimensional pentagon but a polymatroid. Poly-
matroids were introduced by Edmonds in [15]. This important structure of the
achievable region has been used in [16, 17] for analyzing the ergodic and delay-
limited capacity region for SISO multiuser channels under long-term power con-
straints.

In order to illustrate the recent results on the capacity region of multiple-
antenna multiple-user channels and their achievability, we will assume in the fol-
lowing that the K users have rate requirements2 γ1, . . . , γK which has to be fulfilled.

2In general, the users have some QoS requirements depending on their service. The QoS require-
ment can be expressed in terms of rate requirements, SINR requirements, MSE requirements, or even
in bit error rate (BER) requirements. We will focus on rate requirements.
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Figure 21.5. Example of a MIMO MAC capacity region.

The rate requirements should be fulfilled with minimum total transmit power,
that is,

minP subject to Rk ≥ γk ∀1 ≤ k ≤ K. (21.29)

It is well known for the SISO MAC that the region created by all achievable
polymatroids is itself convex. In multiple antenna systems this in general is not the
case. We show a typical MIMO MAC capacity region in Figure 21.5.

In Figure 21.5, it can be observed that the union of the achievable rate re-
gions with decoding orders π = {1, 2} and π = {2, 1} is not convex. The line on
which the sum capacity is achieved is missing (point-dashed line). Using the stan-
dard time sharing argument, the convex hull of the both so-called spatial (S) rate
regions is the complete capacity region [18]. It turns out that all points on these
S-rate regions can be achieved by convex optimization. However the points under
the sum capacity area are only achievable by a linear combination of K ! corners of
the sum capacity area. An efficient algorithm which computes the set of optimal
transmit covariance matrices that achieve given performance requirements with
minimal sum transmit power is still missing.

21.4.1. SISO MAC

First, we consider the SISO MAC channel with perfect CSI at the receiver and at the
transmitter. The scalar channels of the users are given by h1, . . . ,hK . The following
approach solves the programming problem in (21.29).

(1) First, order the users according to their channel realizations in descending
order, with permutation π, that is, hπ1 ≤ hπ2 ≤ · · · ≤ hπK .
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(2) Start with the first user and allocate power pπ1 , such that his rate require-
ment γπ1 is fulfilled with identity

pπ1 = 2γπ1 − 1
ρhπ1

. (21.30)

(3) Treat the interference which is created by undetected users as noise and go
on for the next user in a similar manner.

In the SISO MAC the performance metrics of user k rate Rk, SINRk, MSEk are
closely related by

Rk = log
(
1 + SINRk

) = log
(

1
MSEk

)
. (21.31)

The described procedure solves the general problem of QoS requirement fulfill-
ment. This result is included in [16, 17] for the multiple access channel and in
[19, 20] for the broadcast channel with long-term power constraint and the opti-
mization with respect to ergodic and delay-limited and outage capacity. If a long-
term power constraint is applied, the power is distributed across the users as well
as across time.

21.4.2. SIMO MAC

In the SIMO case, we concentrate on the performance metric SINR which is closely
related to the rate and MSE (compare to (21.31)). Therefore, the time sharing
argument cannot be applied, since we have stringent delay constraint. The results
from this section can be found in [21, 22]. The SINR for the SIMO MAC with
beamforming vectors u1, . . . , uK and power allocation p1, . . . , pK is given by

SINRk = pkuH
k hkhH

k uk

uH
k Zkuk

(21.32)

with Zk = ∑k−1
l=1 plhlhH

l + σ2
nI as interference plus noise for the kth user. It is as-

sumed that the base station performs SIC beginning with user K , then K − 1 and
so on. For fixed transmit powers p1, . . . , pK the optimal beamformers are scaled
MMSE receivers, that is,

u∗
k = Z−1

k hk

‖Z−1
k hk‖2

. (21.33)

It remains to find the optimal power allocation that achieves the targets γ1, . . . , γK .
The cascaded interference structure facilitates efficient computation of the optimal
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power allocation. Start with k = 1 and solve

p∗
k hH

k Z−1
k hk = γk (21.34)

for all k = 1, 2, . . . ,K . The optimal decoding order is not known in general. It
depends on the channel realizations as well as on the correlation between them.
The interested reader is referred to [22, Section III].

21.4.3. MIMO MAC

In the MIMO case the problem in (21.29) has to be solved for rates RSIC
k (Q, H , ρ)

defined in (21.7). The approach in [18, Section IV B] provides the complete achiev-
able S-rate region for the MIMO MAC. By solving the following optimization
problem:

max
Q

K∑
k=1

qkR
SIC
k (Q, H , ρ) (21.35)

under the constraint that the sum transmit power is constraint and all transmit
covariance matrices are positive definite for a decoding order which corresponds
to q1 ≥ q2 ≥ · · · ≥ K . The optimization problem in (21.35) is convex and can be
efficiently solved by convex optimization methods [12].

In [7] it has been shown that the two-user region of unachievable individual
MSEs is convex. It follows that the two-user region over 1−MSE1 and 1−MSE2 is
convex, too. Because no SIC can be applied for MSE optimization, the optimiza-
tion in (21.35) can be performed in order to achieve all points on the boundary
of the achievable MSE region. The question remains, whether the K user region
of unachievable individual MSEs is convex, or not. In general, it is a philosophical
question what kind of performance measure to use and how to scale it properly.

Multiuser MIMO performance analysis and fulfillment of QoS requirement is
a very active research area with many interesting puzzles and problems.

21.5. Open problems and further research topics

This section provided an overview of recent results in the area of information the-
oretic and performance analysis of multiple-user multiple-antenna systems. Re-
cently, one of the big open problems in information theory was solved, namely,
the capacity region of the nondegraded MIMO broadcast channel [23, 24, 25].
Nevertheless, there are many open problems in this area and we list a few of them.

(i) How to find all points on the boundary of the capacity region? This has
been discussed in Section 21.4.

(ii) What happens if the perfect CSI assumption is relaxed? The case in which
the mobiles have partial CSI, for example, covariance knowledge is discussed in
[26, 27].
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(iii) Duality theory: the capacity region of the MIMO MAC and the MIMO
BC are equal under perfect CSI at transmitters and receivers [28]. Therefore, the
results for the MIMO MAC can be transferred to the MIMO BC. What happens
without the perfect CSI assumption?

(iv) Incorporating cross layer design issues, the queues, their arrival rates,
and length at the mobiles, have to be taken into account. One established per-
formance metric is the stability of the overall wireless communication system. Re-
cently, many results were presented regarding this interesting topic [29, 18, 30].

Abbreviations

MIMO Multiple-input multiple-output

MAC Multiple access channels

CSI Channel state information

SNR Signal-to-noise ratio

SINR Signal-to-interference and noise ratio

MSE Mean Squared error

AWGN Additive white gaussian noise

pdf Probability density function

SIC Successive interference cancellation

MMSE Minimum mean square error

QoS Quality-of-Service

BER Bit error rate

SISO Single-input single-output

SIMO Single-input multiple-output

BC Broadcast channel
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22
Transmitting over
ill-conditioned MIMO channels:
from spatial to constellation
multiplexing

David Gesbert and Jabran Akhtar

This chapter addresses the problem of multiplexing multiple data streams in a
multiple-input multiple-output (MIMO) system in the presence of channel matrix
ill-conditioning brought by fading correlation and/or a Rice component. Conven-
tional multiplexing schemes based on the separation of the stream’s spatial signa-
tures (commonly referred to as spatial multiplexing—SM, V-BLAST architecture)
rely on the linear independence between the channel responses corresponding to
each transmit antenna. Consequently, such schemes suffer considerably from ef-
fects bringing ill conditioning in the MIMO channel matrix, such as fading corre-
lation and Rice components. In an attempt to robustify SM schemes for deploy-
ment in a wide range or propagation terrains, we investigate the use of so-called
constellation multiplexing (CM) whereby distinct M-QAM streams are superposed
to form a higher-order QAM constellation with rate equivalent to the sum of rates
of all original streams. CM schemes do not rely on MIMO channel full rankness
to function properly. We thus seek an approach that allows bridging SM and CM
schemes. We show that this can be realized in the form of a linear diagonal pre-
coder. This in turn yields an adaptive rate-preserving MIMO multiplexing algo-
rithm that can operate smoothly at any degree of correlation or Ricean factor.
Conventional SM and CM schemes are shown to be particular cases of the pre-
sented family of schemes.

22.1. Introduction

Multiple-input multiple-output (MIMO) systems, are capable of providing a large
increase in capacity compared to traditional single antenna systems [1, 2] (see also
[3] for an overview of the area). This increase in capacity is however dependent
upon the fact that the channels from a certain transmitter to the array of re-
ceivers, seen as vectors, are linearly separable. In other words, the conditioning
of the equivalent MIMO channel matrix should be as good as possible. The ca-
pacity of MIMO systems can be shown to degrade if there are, for example, severe
correlations present at the transmitter and/or receiver side [4, 5]. Similarly, [6]
demonstrated that line of sight (LOS) components, while having a positive effect
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on the outage behavior of the channel, are also capable of reducing the ergodic
(i.e., average) capacity of MIMO systems. That is because the matrix representing
the LOS component of wireless MIMO channels is typically extremely ill condi-
tioned [5], at least if the base station antennas are located on a single array, and
thus does not lend itself to matrix inversion. In fact with either strong transmit
correlations or a high Ricean factor, the capacity behavior of the MIMO channel
will ultimately become similar to that of a SIMO/MISO, with a possible additional
array gain depending on the partial channel knowledge at the transmitter. If the
LOS channel is very dominating, then the capacity falls back to that of an AWGN
SISO system with additional array gain at the receiver.

Although the negative impact of correlation and the Rice component on aver-
age capacity behavior of MIMO systems is significant, the effect it has on the BER
behavior of actual spatial multiplexing schemes [1, 7] is much more dramatic.
That is, because conventional SM schemes (such as in linear MIMO detectors)
rely explicitly or implicitly (such as in maximum likelihood MIMO detectors) on
linear separability of the input spatial signatures to detect the data, unless a form
of joint encoding is applied across the streams to differentiate them. In fact, any
ill-conditioned components present in the channel effectively increase the linear
dependence of the input streams and makes stream separation and decoding a dif-
ficult task. For example, current schemes like SM (V-BLAST) literally break down
in the presence of correlation levels close to one or high Ricean factors. As a re-
sult, algorithms such as V-BLAST simply fail to adapt themselves and extract the
nonzero capacity that is present in highly correlated or strongly Ricean channels.

Designing appropriate transmission techniques that can adjust to various
kinds of channel and terrain scenarios is therefore an important and practical is-
sue for the successful deployment of MIMO systems. To tackle this problem, the
correlation and LOS component structure can be assumed to remain static over a
“long-enough” period of time so that the corresponding channel parameters, un-
like the fast fading coefficients, can be sent to the transmitter at regular intervals
using a low rate feedback logical channel. This is consistent with upcoming third
generation wireless standards and beyond.

To robustify the transmission of independent streams we build on the con-
cept of constellation multiplexing (CM) whereby distinct streams (e.g., M-QAM)
are superposed to form a higher-order constellation (say N-QAM N > M) with
rate equivalent to the sum of rates of all original streams. For instance, a 16-QAM
signal is the superposition of two 4-QAM signals. By construction CM schemes do
not rely on MIMO channel full rankness to function properly. In contrast to SM
schemes, the substreams in CM schemes are differentiated through power scaling
rather than through spatial signatures. Indeed, two 4-QAM signals with appro-
priate scaling, forming a single 16-QAM, require only one transmit and receive
antenna to be sent and detected. Hence, such schemes are clearly robust with re-
spect to fading correlation and the Ricean factor. In this paper, we build upon the
following two simple observations.

(i) CM schemes can be cast as spatial multiplexing schemes over a low-rank
MIMO channel cascaded with a linear diagonal precoder.
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(ii) In the case of constellations with regular lattice, the precoder is such that
the probability of error for each stream is identical.

This suggests that simple linear precoding can be used for spatial multiplexing
schemes as an attempt to circumvent effect of channel ill conditioning. This also
suggests an optimization metric based on equating probabilities of error among
the substreams. Precoding for correlated/Ricean MIMO channels has been consid-
ered among others in the case of (low-rate) space-time (ST) block coding schemes
(including but not limited to [8]). In the case of spatial mutiplexing schemes
(which can be seen as high-rate ST codes) however, the effect of propagation-
related ill conditioning is much more dramatic because the transmitter design
cannot guarantee channel orthogonality.

Although precoding for such correlated scenarios have previously been con-
sidered [9, 10, 11], the focus has mainly been on transmit correlation and quite
often on capacity issues rather than on designing robust practical algorithms. To
minimize the BER in the presence of transmit correlation and LOS channel, a
transmit precoding scheme based on per-antenna phase shifting was proposed in
[12] to improve the system performance. The main downside of this approach is
that a numerical search is required to find the optimal phases.

Here, instead, the focus is on low-complexity, closed-form solutions for SM
precoders that tackle both transmit correlation and Ricean channels. The precoder
is found as the solution to a linear equation parametrized as a function of the
transmit correlation coefficient and the line-of-sight MIMO channel matrix.

The precoder is derived under the BER balancing criterion (BBC) which aims
at giving the same error performance over all spatially multiplexed streams, a crite-
rion that is proved to determine our precoder fully. Clearly, the BBC criterion can
be further weighted in order to accommodate unequal quality of service (QoS)
targets.1 The precoder is obtained under the hypothesis of a hybrid linear receiver
(mixing concepts of maximum ratio and minimum mean square error receivers),
but the resulting precoding coefficients are applicable over a wider range of re-
ceivers as shown in our simulations. In fact, the precoder can be interpretated as a
linear data transform, bridging between SM and CM schemes. Under the case of
zero correlation, Rayleigh channels, it matches the conventional SM approach. To
the other extreme, it simply falls back to a CM scheme in the case of rank deficiency
of the channel matrix. In that case, the scheme behaves equivalent to sending a sin-
gle higher-order modulation whose independent components are mapped to the
different antennas. In between these cases, the proposed algorithm will operate
smoothly at all levels of correlation and Ricean factors.

The paper is organized as follows. First we present the mathematical mod-
els for signals and channels under the MIMO spatial multiplexing framework
(Section 22.2). Then we introduce constellation multiplexing and its interpreta-
tion as a precoded form of spatial multiplexing for single transmit antenna sys-
tems (Section 22.3). In Section 22.4 we derive the precoder for the general case of
MIMO with correlation and Rice component, first for two transmitters and then

1This issue is not addressed here however.
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for any number of transmitters. We give numerical results in Section 22.6. Con-
clusions are given in Section 22.7.

Notations. The following notations are adopted throughout this paper. Vectors
and matrices are denoted using bold-face lower-case letters and capitals, respec-
tively. The symbol (·)† is used to refer to the Moore-Penrose pseudoinverse, while
H:,i points to the i’th column of the matrix H in a Matlab fashion. Similarly, Hi,: de-
notes the i’th row. E{} is the expectation operator. The symbol ∗ refers to complex
transpose of a vector/matrix.

22.2. Signal and channel models

22.2.1. Signal model

We consider the multiplexed transmission of N simultaneous data symbols s1,
s2, . . . , sN over a memoryless channel. The symbols are treated as independent, but
an outer-code may be applied across the streams prior to multiplexing.

The symbols are selected from a normalized constellation such that E{|si|2}=1.
The minimum distance between two symbols for the given modulation is denoted
by dmin, while dmax (≥ dmin) is the minimum distance between two constellation
points with highest amplitude. In the 4-QAM case, dmin = dmax as all symbols are
transmitted with equal power. For 16-QAM, we have dmin = 3dmax, and so forth.

22.2.2. Channel model

We consider a Ricean MIMO flat fading channel consisting of N transmit antennas
and M (≥ N) receive antennas. For the sake of tractability, we will deal with corre-
lation present at the transmitter only. A generalization of the precoding problem
to deal in an elegant way with the receive correlation remains an open problem,
although another version of this problem for precoding of space-time block codes
was addressed in several papers, including, for example, [8, 13].

With transmit correlation and LOS component the channel matrix can be
described by

H =
√

1
K + 1

H0R1/2
t +

√
K

K + 1
Hlos. (22.1)

The M × N channel matrix H0 consists of complex Gaussian zero mean unit-
variance independent and identically distributed (i.i.d) elements, while Rt is the
N × N transmit correlation matrix. Hlos, also of dimensions M × N , is the LOS
channel matrix, possibly being ill conditioned, and K defines the Ricean factor.
The choice of K = 0 leads to a standard Rayleigh fading channel.

The baseband equivalent of the N-dimensional signal vector observed at the
receiver can be expressed as

y = Hs + n, (22.2)
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Figure 22.1. Spatial multiplexing with precoding.

where n is the M-dimensional noise vector whose entries are i.i.d complex Gauss-
ian with zero mean and a variance of σ2

n .

22.2.3. Linear precoding

We consider a memory less linear precoding of the N symbols according to the il-
lustration in Figure 22.1. Although the most general precoder would take the form
of an N by N matrix, we limit ourselves to a diagonal precoding of the symbols for
the sake of closed-form derivability of the precoding coefficients. Furthermore,
we argue (and confirm later) that robustness with respect to ill conditioning is
brought about by the diagonal elements of the precoder first and foremost, as is
also hinted at in Section 22.3.

The diagonally precoded transmitted vector, denoted by s, is given by

s =
[√

P1s1

√
P2e

jφ2s2 · · ·
√
PNe

jφN sN
]T

. (22.3)

P1, . . .,PN represent power levels allocated, respectively, to input symbols s1, . . . , sN ,
and are selected to satisfy

∑N
i=1 Pi = 1. φ2, . . . ,φN correspond to phase shifts on

each transmit antenna. Notice that the first symbol does not undergo a phase
change and can be regarded as a reference point for all other phase components.
We therefore define φ1 = 0. Standard SM (e.g., V-BLAST) assigns equal weights
Pi = 1/N and φi = 0 for 1 ≤ i ≤ N .

22.3. Constellation multiplexing

The concept of constellation multiplexing lies in the remark that higher (say QAM)
constellations can be designed from the superposition of lower-order constella-
tions. For instance, a single 16-QAM constellation achieving a rate of 4 bits per
symbol can be realized by superposing two 4-QAM constellations, each achieving
a rate of 2 bits per symbol, with scaling of 1/4 between the two 4-QAM signals, as
shown in Figure 22.2 [14]. In the same manner, two superposed 16-QAM signals
can be used from a 256-QAM signal if the second one is scaled in power by a fac-
tor 1/16. Or, again, three superposed 4-QAM signals will form a single 64-QAM
signals if a power scaling of, respectively, 1/4 and 1/16 is used for the second and
third 4-QAM signals. In general, the superposition of N 2m-QAM constellations,
achieving each m bits per symbol for a total rate of mN bits per symbol, can be
represented by a single 2mN -QAM constellation with the same total rate. To obtain
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(a)

s2

s1

(b)

Figure 22.2. (a) Resulting equivalent 16-QAM constellation. (b) Illustration of two superimposed 4-
QAM signals s1 and s2. The latter is scaled down in power by 1/4.

a regular grid for the 2mN -QAM constellation, it suffices to apply a geometric scal-
ing with factor rm for every additional 2m-QAM constellation. The factor rm is a
function of the ratio dmax/dmin corresponding to the constellation used.

In other words, let s belong to a regular 2mN -QAM constellation. Then there
exist rm ∈ [0, 1] and s1, s2, . . . ,sN symbols, each belonging to a 2m-QAM constella-
tion, such that s can be written in the form of

s =
N∑
k=1

rkmsk, (22.4)

where rm is such that
∑N

k=1 r
2k
m = 1 so as to preserve the unit power of the signal.

22.3.1. Precoding for rank-one channels

Clearly, the signal shown in (22.4) can be reinterpretated as the signal being trans-
mitted in a MIMO channel with rank-one with a simple precoder. Taking (22.2)
with a rank-one MIMO channel in the generic form of H = [h, h, . . . , h], where h
is an M × 1 complex vector, and using (22.3) we find

y = Hs + n = h
N∑
k=1

√
Pke

jφk sk + n = hs + n, (22.5)

where the precoding coefficients are selected as

Pk = r2k
m , k = 1 · · ·N ,

φk = 0, k = 1 · · ·N. (22.6)
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Therefore, transmitting over a rank-one MIMO channel with an appropriate
diagonal precoder is equivalent to transmitting over a higher-order constellation
signal over a SIMO channel. This suggests that linear precoding can be used to
deal effectively with rank deficient MIMO channels. In what follows, we explore
this idea further and obtain closed-form precoding coefficients to handle all in-
between scenarios with intermediate correlation and Ricean factors. We assume
that the transmitter, in order to derive the precoder, has only knowledge of the
slow-varying parameters of the channel (TDD system or FDD system with a low-
rate feedback) such as the correlation structure, the line-of-sight MIMO compo-
nent, and the Ricean factor.

For the sake of exposition, in the next section we start by describing the opti-
mization procedure for the 2 × 2 case. The derivation is later extended to the case
of arbitrary number of transmitter and receiver antennas.

22.4. Precoder optimization for 2 × 2 MIMO system

22.4.1. Receiver structure

As an aid toward finding a simple closed-form expression for the precoding
weights, our calculation assumes a particular receiver combining structure based
on maximum ratio combining (MRC). The principle behind the decoding struc-
ture is to successively estimate the substreams symbols in an iterative fashion, sim-
ilar to V-BLAST [1], where the zero-forcing procedure is replaced with an MRC.

Although no optimality of this decoding method is claimed here, we draw the
reader’s attention on the fact that this approach allows us to derive the precoder
expression in a compact fashion. It also yields results which make good intuitive
sense and can easily be interpretated. Note that the use of MRC is consistent with
bringing robustness against an ill conditioned channel, since a matrix inversion-
based detector will generate a large noise enhancement in that case. Nevertheless,
we show through simulations that the precoder behaves well when matched at the
receiver with other more practical decoding methods such as maximum likelihood
(ML) decoding. Simulation results are also presented with under MMSE decoding.

22.4.2. Detected signals

Writing out in full, the Ricean, transmit correlated, channel matrix in (22.1) in the
2 × 2 situation:

H =
√

1
K + 1

H0

[
α βe jψ

βe− jψ α

]
+

√
K

K + 1

[
h1,1 h1,2

h2,1 h2,2

]
, (22.7)

where by construction α2 + β2 = 1, and ρ = 2αβ is the modulus of the antenna
correlation coefficient, and channel coefficients hi, j describe the components of
the LOS matrix.
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Without loss of generality in the decoding procedure we assume P1 ≥ P2 and
as the first part of the decoding, the receiver implements an MRC with the first
row of H∗. We find the following from (22.2), (22.3), and (22.7):

z1 = (
H∗)

1,:y = τ1

√
P1s1 + τ2

√
P2e

jφ2s2 +
(

H∗)
1,:n, (22.8)

τ1 denotes the total gain (normalized by
√
P1) for s1 as a result of the MRC, while

τ2 represents the effects of the interference. Further normalizing z1 in (22.8), or
alternatively from

1
τ1
z1 = √

P1s1 +
τ2

τ1

√
P2e

jφ2s2 +
1
τ1

(
H∗)

1,:n, (22.9)

where

τ1 = (
H∗)

1,:H:,1, τ2 = (
H∗)

1,:H:,2, (22.10)

is the channel-related interference factor.
Equations (22.8) and (22.9) show that symbol s2 will be superimposed upon

s1 as a function of the channel matrix, whose long-term behavior depends on the
transmit correlation, the K factor, and the LOS channel matrix. Notice that this
superimposition effectively reduces the minimum distance for detection of sym-
bol s1.

At this point we make the assumption that the interference’s magnitude is
small enough not to “move” the symbol s1 out of its decision boundary, that is,

∣∣∣∣τ2

τ1

∣∣∣∣√P2dmax ≤ 1
2

√
P1dmin, (22.11)

a symbol decision can be made on z1 to obtain an estimate for s1. For the sake of
deriving the precoder, we assume that the correct decision is made on s1, hence the
symbol is subtracted from y:

ŷ = y − H:,1

√
P1s1. (22.12)

The robustness of the precoder with respect to the assumption made in (22.11)
is demonstrated implicitly in the simulations. An estimate for the second symbol
can now be obtained through a second MRC,

z2 = (
H∗)

2,:ŷ = τ3

√
P2e

jφ2s2 +
(

H∗)
2,:n, (22.13)

where τ3 = (H∗)2,:H:,2.
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22.4.3. Average channel behavior

We wish to design the precoder exclusively based upon knowledge of long-term
parameters hi, j , K , α, β, ψ, with no dependence on short-term varying parame-
ter H0.

The performance of detection of s1 depends on the instantaneous minimum
distance in ẑ1, however for the optimization of the weights P1, P2, and phases to be
independent of H0, we base ourselves upon an “average” channel behavior. To this
end, we introduce the following quantity modified from (22.8) by averaging over
the instantaneous channel realizations:

ẑ1 = E
{
τ1
}√

P1s1 + E
{
τ2
}√

P2e
jφ2s2. (22.14)

A rather straightforward calculation can then be used to show that (see Section
22.5)

E
{
τ1
} = 1

K + 1

(
2 + K

(
h∗

1,1h1,1 + h∗
2,1h2,1

))
,

E
{
τ2
} = 1

K + 1

(
2ρe jψ + K

(
h∗

1,1h1,2 + h∗
2,1h2,2

))
.

(22.15)

Clearly, with ρ = 0 and K = 0 we find E{τ1} = 2 and E{τ2} = 0. This shows the
MRC returning an average array gain factor of 2 (3 dB).

22.4.4. Evaluation of minimum distances under average channel behavior

Next we evaluate the minimum distances, which dictate the error performance of
the symbols, under average channel behavior, by considering the absolute average
value of each individual gain factor in E{τ1} and E{τ2}. For s1, the minimum
distance is found from (22.14) for, for example, s2 = −s1,

δ1 = E{τ1}
√
P1dmin − E{τ2}

√
P2dmax, (22.16)

where

E
{
τ2
} = 1

K + 1

(
2ρ + K

∣∣h∗
1,1h1,2 + h∗

2,1h2,2
∣∣), (22.17)

E{τ2} represents the average absolute gain coming from the correlation and the
LOS channel components.

Similarly, the gain for s2 under average channel behavior in (22.13) can be
described by

ẑ2 = E
{
τ3
}√

P2e
jφ2s2, (22.18)

where one can show that (see Section 22.5)

E
{
τ3
} = 1

K + 1

(
2 + K

(
h∗

1,2h1,2 + h∗
2,2h2,2

))
. (22.19)
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This leads to the following minimum distance for s2:

δ2 = E
{
τ3
}√

P2dmin. (22.20)

22.4.5. Precoding coefficients with the BER balancing criterion (BBC)

22.4.5.1. Phase optimization

If the average gain coming from E{τ2} is nonzero, then by selecting the phase φ2

accordingly, the distance from the decision boundary can be maximized for s1. For
an arbitrary QAM modulation, this is done by selecting φ2 at the emitter such that

φ2 = −∠E
{
τ2
}

, (22.21)

which aligns up the symbols in a coherent fashion.

22.4.5.2. Power optimization

The noise entries of H∗
1,:n and H∗

2,:n all follow the same distribution, similarly all
components in H∗ also have an identical statistical structure. Thus, the noise fac-
tors have identical variance when averaged over H0. We can therefore equate the
average probability of error for s1 and s2 simply by equating the minimum dis-
tances found in (22.16) and (22.20),

E
{
τ1
}√

P1dmin − E
{
τ2
}√

P2dmax = E
{
τ3
}√

P2dmin, (22.22)

under constraint

P1 + P2 = 1. (22.23)

For clarity we rewrite (22.22) as

µ1

√
P1 − µ2

√
P2 = µ3

√
P2, (22.24)

where we have defined µ1 = E{τ1}dmin, µ2 = E{τ2}dmax, and µ3 = E{τ3}dmin. The
weights for this 2 × 2 system can easily be computed as functions of µ to be

P1 =
(
µ2 + µ3

)2

µ2
1 +

(
µ2 + µ3

)2 , P2 = µ2
1

µ2
1 +

(
µ2 + µ3

)2 , (22.25)
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or written out in full:

P1 = [
dmax

(
2ρ + K|α|) + dmin

(
2 + K

(∣∣h1,2
∣∣2

+
∣∣h2,2

∣∣2
))]2

d2
min

(
2+K

(∣∣h1,1
∣∣2

+
∣∣h2,1

∣∣2
))2

+
[
dmax

(
2ρ+K|α|)+dmin

(
2+K

(∣∣h1,1
∣∣2

+
∣∣h2,1

∣∣2
))]2 ,

P2 =
d2

min

(
2+K

(∣∣h1,1
∣∣2

+
∣∣h2,1

∣∣2
))2

d2
min

(
2+K

(∣∣h1,1
∣∣2

+
∣∣h2,1

∣∣2
))2

+
[
dmax

(
2ρ+K|α|)+dmin

(
2+K

(∣∣h1,1
∣∣2

+
∣∣h2,1

∣∣2
))]2 ,

(22.26)

where α = h∗
1,1h1,2 + h∗

2,1h2,2 .

22.4.6. Interpretations

Observe that α = h∗
1,1h1,2 + h∗

2,1h2,2 in the expression for E{τ2} directly measures
the ill conditioning of Hlos. For instance, in the (unrealistic) case that the LOS
component is orthogonal, then α = 0. This is intuitively appealing because one
expects the precoder to depend on whether the LOS component is easily invertible
or not.

Special cases.
(i) No LOS: with a small K , the expressions give more attention to the ef-

fects of transmit correlation. For instance, K = 0 gives φ2 = −ψ, while
µ1 = 2, µ2 = 2ρ, and µ3 = 2, which results in the following solution:

P1 =
(
1 +

(
dmax/dmin

)
ρ
)2

1 + (1 +
(
dmax/dmin

)
ρ
)2 ,

P2 = 1

1 +
(
1 +

(
dmax/dmin

)
ρ
)2 .

(22.27)

Notice that dmax/dmin = 1 for 4-QAM and dmax/dmin = 3 for 16-QAM,
for example. In the 4-QAM case, the precoder is thus

P1 = (1 + ρ)2

1 + (1 + ρ)2
,

P2 = 1
1 + (1 + ρ)2

.
(22.28)

(a) Uncorrelated: with no correlation ρ = 0 which yields equal power
transmission, justifying the standard V-BLAST design correspond-
ing to spatial multiplexing.
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(b) Fully correlated: with full correlation ρ = 1 we find P1 = 0.8 and
P2 = 0.2. Interestingly, this corresponds to the power allocation
for a regular 2D constellation. For instance, a unit power 16-QAM
constellation can be seen as the superposition of two 4-QAM con-
stellations with respective powers 0.8 and 0.2 (see Figure 22.2).
Hence, the spatial multiplexing is here replaced by constellation
multiplexing.

(ii) Strong LOS: with K → ∞ and a strongly ill conditioned Hlos, we find
µ1 ≈ µ2 ≈ µ3, giving P1 = 0.8 and P2 = 0.2 (4-QAM). If the LOS
component is better conditioned, the scheme performs a mix of spatial
and constellation multiplexing.

22.5. Optimization for an arbitrary MIMO system

For a general MIMO setup, the MRC precoder may easily be extended as follows.
We first assume that the power weights satisfy

P1 ≥ P2 ≥ · · · ≥ PN . (22.29)

Thus, in an iterative detection procedure, s1 becomes the first symbol to be de-
coded, followed by s2, and so forth, in a chronological order.

To derive the appropriate values of P1, . . . ,PN and phases, the average gain
and interference factors need to be calculated. The average gain coming from cross
interference of the LOS channel and the remaining channel H0R1/2

t is clearly zero,
that is, E{(H0R1/2

t )∗Hlos} = E{H∗
los(H0R1/2

t )} = 0.
We therefore obtain

E
{

H∗H
} = 1

K + 1
E
{(

H0R1/2
t

)∗(
H0R1/2

t

)}
+

K

K + 1
H∗

losHlos

= M

K + 1
Rt +

K

K + 1
H∗

losHlos.
(22.30)

Element k, l (1 ≤ k, l ≤ N) can then be written out explicitly as

E
{

H∗H
}
k,l =

1
K + 1

(
Mρk,l + K

M∑
i=1

h∗
i,lhi,k

)
. (22.31)

Taking into account the absolute gain coming from both factors, we define

γk,l = 1
K + 1

(
Mρk,l + K

∣∣∣∣∣
M∑
i=1

h∗
i,lhi,k

∣∣∣∣∣
)
. (22.32)

As previously, channel coefficients hi, j represent elements of the LOS matrix,
while ρk,l describes the nonnegative coefficients of the correlation matrix Rt, where
ρk,k = 1.
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Assuming an iterative MRC receiver, the average minimum distance for s1

becomes

δ1 = γ1,1

√
P1dmin − γ1,2

√
P2dmax − · · · − γ1,N

√
PNdmax. (22.33)

After a symbol estimation/subtraction, the minimum distance for s2 can be found:

δ2 = γ2,2

√
P2dmin − γ2,3

√
P3dmax − · · · − γ2,N

√
PNdmax. (22.34)

By repeating this N times, we obtain expressions for N minimum distances,

δN = γN ,N

√
PNdmin. (22.35)

22.5.1. Phase optimization

To cancel out the phase shifts introduced for s1, the most significant symbol, we
set

φi = −∠E
{

H∗H
}

1,i = −∠
(
Mρ1,i + K

M∑
k=1

h∗
k,ihk,1

)
, (22.36)

for i = 2, . . . ,N .
If the transmitter and receivers are positioned far from each other, and the

arrays are placed broadside to each other, which is a practical situation in many
applications, then the channel model can be approximated as [6]

H =
√

1
K + 1

H0R1/2
t +

√
K

K + 1
e jθ1. (22.37)

If, in addition, a constant phase shift, or an exponential correlation model, is ap-
plied for the transmit correlation matrix, then the solution provided by (22.36)
will hold for all symbols [15] as long as K is small. For larger values of K , Hlos

will dominate and the single phase shift it introduces can be canceled out for all
symbols by selecting φi = −θ, i = 2, . . . ,N .

Nevertheless, for this particular MRC receiver, the exact phase rotation is also
dependent upon H0, which the transmitter is unaware of, and the selection of
(22.36) will in practice therefore only have minor effect. In contrast, the decoder
of [16] eliminates H0 before further processing and the phase change thus plays a
more important role. The essential information destined to differentiate the sig-
nals is though determined by the choice of power weights.
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22.5.2. Weight optimization

To guarantee all symbols an equal error rate, it is sufficient that values for
√
P1,√

P2, . . . ,
√
PN be selected so that on average the minimum symbol distance ob-

served for each symbol is identical,

δ1 = δN , δ2 = δN , . . . , δN−1 = δN . (22.38)

Based on (22.38), the following linear system can then be set up as part of the
problem to find the appropriate power levels:

∆p = 0, (22.39)

where

∆ =


γ1,1d̆ −γ1,2d̂ −γ1,3d̂ · · · −γN ,N d̆ − γ1,N d̂

0 γ2,2d̆ −γ2,3d̂ · · · −γN ,N d̆ − γ2,N d̂
· · ·

0 0 0 γN−1,N−1d̆ −γN ,N d̆ − γN−1,N d̂

 , (22.40)

p = [√
P1

√
P2 · · ·

√
PN

]T
(22.41)

and 0 is a vector with N zero elements. To obtain a compact notation we have used

d̆ = dmin and d̂ = dmax.
The upper triangular system (22.40) only contains N − 1 equations for N

unknowns, however, any solution must also satisfy
∑N

i=1 Pi = 1. Therefore, p can be
found as the only unit-norm all-positive vector in the null space of ∆. For a proof
we refer to the appendix. Therefore, the BBC criterion determines the precoder in
a unique way (up to trivial ambiguities like a rotation, etc.).

Extreme LOS cases. (i) Ideal Rayleigh case: if K = 0 and ρ = 0, we find γk,l = 0,
(1 ≤ k, l ≤ N , k �= l) and from (22.40) one can easily see that this gives Pi = 1/N ,
that is, equal power distribution across all streams.

(ii) On the other hand, with a strong K factor and high level of ill conditional-
ity (e.g., (22.37)), we can assume all γk,l to be of roughly equal value. For instance,
in the 4-QAM case (i.e., with dmin = dmax), this gives rise to the following (scale
corrected) matrix:

∆ =


1 −1 −1 · · · −2
0 1 −1 · · · −2

· · ·
0 0 1 −2

 . (22.42)
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Figure 22.3. K = 1, K = 10, MRC with/without precoding.

This linear system can easily be solved through back substitution and under the
energy constrain one arrives to

Pi = 3 · 4N

4i
(
4N − 1

) , i = 1, . . . ,N. (22.43)

The energy for this setup decreases by one quarter from symbol si to si+1. The final
form of the received signal ẑ1 will conclusively simply correspond to a standard
4N -QAM modulation.

22.6. Simulations

This section demonstrates the effectiveness of the precoder through Monte Carlo
simulations. We use the following receiver structures and compare the results with
and without precoding

(i) MRC SIC (successive interference cancelling) decoder, used to derive the
precoding weights.

(ii) MMSE SIC decoder. The receiver is similar to the one above, but rather
implements an MMSE matrix inversion to estimate the symbols in each
iteration.

(iii) ML, an exhaustive maximum likelihood search is carried out.
Illustrating the first simulation, Figure 22.3 shows the simulation results for

the MRC decoder assuming K = 1, K = 10 under the channel model of (22.37)
and no transmit correlation. The use of MRC introduces residual symbol interfer-
ence showing up as a flooring effect, however, the precoder nevertheless manages
to bring in a noticeable improvement.
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Figure 22.4. K = 1 and K = 10, MMSE SIC with/without precoding.

2 tx, 2 rx, ρ = 0.8
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Figure 22.5. K = 1 and K = 10, ρ = 0.8, MMSE SIC with/without precoding.

Illustrating the second simulation plot, Figure 22.4 displays the use of MMSE
SIC receiver structure with/without precoding under the same channel conditions
as previously. In Figure 22.5, the same simulations have been extended with trans-
mit correlation being set at ρ = 0.8. Even at low K-factors, having a precoder
clearly becomes beneficial.
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Figure 22.6. K = 10 and K = 15, ML with/without precoding.
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Figure 22.7. 2 × 2 case. Improvement due to the proposed precoder with the ML receiver as function
of correlation.

Figure 22.6 uses ML as the decoder, the K-factors being 10 and 15 and with no
transmit correlation assumption. A high K-factor with precoding makes the slope
of the curve steeper as the fading is virtually nonexisting.

Finally, in Figure 22.7 we demonstrate the use of ML decoding at SNR of
15 dB, K = 0, for a 2 × 2 setup with transmitter correlation ranging from ρ = 0 to
ρ = 1. The difference between ML with or without precoding is relatively small at
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low correlation levels but becomes very substantial with higher degrees of transmit
correlation.

22.7. Conclusions

In this chapter, we proposed a simple closed-form power weighting approach mak-
ing use of the average channel knowledge to adapt the transmitted constellation.
The derivation assumes an MRC-based decoder however the weights may be ap-
plied on a wider range of receiver structures. This offers a way to preserve a con-
stant data rate for any correlation level and for well- or ill-behaved LOS compo-
nents.

Appendix

Due to the specific structure of (22.40) there exists a solution to (22.39), where
all entries of p are nonnegative. Observe that the left N − 1 × N − 1 submatrix
of ∆ is upper triangular and contains unit entries on the diagonal, while all other
elements are nonpositive. The last column of ∆ however consists of all strictly
negative entries.

From the format of (22.40), it is clear that
√
PN �= 0 otherwise all elements

in p would become zero. Without loss of generality, we can therefore set
√
PN =

1. Moving the last column to the right-hand side gives a strictly positive vector
and the upper unit triangular system can be solved by back substitution to find√
PN−1, . . . ,

√
P1. A suitable scaling can then assure proper normalization and the

result follows.
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Abbreviations

AWGN Additive white Gaussian noise

BER Bit error rate

BBC BER balancing criterion

CM Constellation multiplexing

LOS Line of sight

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

M-QAM M-quadrature amplitude modulation

QoS Quality of service

SIMO Single-input multiple-output

SM Spatial multiplexing

V-BLAST Vertical Bell-Labs Layered Space-Time
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Introduction

Holger Boche

The objective of classical mobile communication research was in the past to opti-
mize the point-to-point communication. Due to the economical success of mobile
systems we are now facing totally new challenges: from link optimization we have
to proceed to network optimization and then further to channel-adjusted opti-
mization, keeping in focus the channel quality and, of course, the QoS demands
of the user, and finally crossing over from centrally organized to self-organizing
systems. Of course, for all applications in multiantenna systems, which are pre-
sented in this book, self-organizing systems will play a subordinated role, but it is
also clear that self-organization is a welcome enhancement for systems with infras-
tructure, for example, multihop to range extension. The first steps to optimize and
build these kinds of systems are already made and are incorporated in high-speed
uplink package access/high-speed downlink package access (HSUPA/HSDPA)
standardization for 3GPP. For future systems a high granularity of resources as,
for example, time, frequency, space, power is required, and the allocation of these
resources under real-time conditions presents a tremendous challenge regarding
the complexity. In this part, new results for multiantenna systems in consideration
of network aspects are presented. One important step for resource allocation is to
understand the QoS tradeoff in multiuser systems and the influence of different
QoS performance measures on feasible QoS regions. With the knowledge of these
factors we have the perfect tool for cross-layer optimization, taking into account
channel quality.

In wireless communications it is important to understand and to control the
channel. For the case of multiantenna systems this is investigated in connection
with the capacity by Andreas Molisch and Fredrik Tufvesson in Chapter 2 of this
part. It is well known that the capacity depends on the numbers of antennas and
on the correlation of the antennas. To evaluate the gain of performance due to
high-speed uplink package access/high-speed downlink package access (HSUPA/
HSDPA) under network aspects, the mobility behavior of the users and the fading
pattern for the users play a crucial part, since they have a great impact on the
optimal scheduling strategy.
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Sergio Barbarossa, Gesualdo Scutari, and Loreto Pescosolido analyze distrib-
uted space-time coding in Chapter 3. In this connection, a further shift of para-
digm in wireless communication is taking place, because here a cooperation be-
tween the users is not only accepted but even favored. This makes distributed
space-time coding an active research area with a number of very interesting open
problems. In Chapter 4 of this part authored by Slawomir Stanczak and Holger
Boche, the geometry of feasible QoS regions is characterized. In particular it is
investigated if the feasible QoS region is a convex set, which is highly beneficial
for resource allocation optimization. In this chapter, a simple scheme for resource
allocation is established, which gives the operator the possibility to control the
working point of its system and to conduct a weighting of the requested services.
Fairness conditions of resource allocation are also analyzed.

The problem of feasible QoS regions in the downlink and uplink of multi
antenna systems with a given SINR is surveyed in Chapter 5, authored by Hol-
ger Boche and Martin Schubert. The duality between uplink and downlink, which
allows to find the downlink optimum by solving an equivalent uplink problem
instead is stated and an optimization strategy for the problem of jointly optimiz-
ing beamformers and transmit power can be deviced. Based on network stability as
one interesting criterion for optimization, in Chapter 6, authored by Holger Boche
and Marcin Wiczanowski, a scheduler is developed, which achieves the maximal
stability region for HSUPA. To reach maximal stability a simple weighted sum of
rates has to be optimized which validates the results from Chapter 4. As a result
it is shown that the problem can be reduced to a convex problem, when the op-
timal successive interference cancelation (SIC) order is classified. In the appendix
of Chapter 6, authored by Thomas Haustein, the results of the preceding chapters
are implemented and experimental results are presented.
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24
MIMO channel capacity
and measurements

Andreas F. Molisch and Fredrik Tufvesson

Multiple-input multiple-output (MIMO) systems, which use multiple antennas
at both transmitter (TX) and receiver (RX), are an extremely promising way to
enhance data rates of wireless communications systems without requiring addi-
tional spectrum.1 Within a short time, this concept has emerged as one of the
major research topics in telecommunications, with literally thousands of papers
being devoted to the different aspects. These systems are also poised to be stan-
dardized for high-data-rate modes of both cellular (3GPP) and local area network
(IEEE 802.11) communications standards.

The design of good MIMO systems is a difficult task and involves aspects from
many different areas of communications engineering. However, the performance
is ultimately limited by the wireless channel and the (information-theoretic) ca-
pacity that this channel allows. This chapter will concentrate on this capacity—
both on its theoretical derivation, and on the measurement in real environments.
Further details can be found in the textbook [1] and the review papers [2, 3], and
references therein.

24.1. Beamforming, diversity, and spatial multiplexing

The multiple antennas in MIMO systems can be used to achieve different goals.
(i) Diversity. This generalizes the concepts of diversity at the transmitter and

receiver.
(ii) Beamforming. The array pattern at the transmitter and the receiver can be

formed in such a way that the average SNR is increased. Again, this is a straight-
forward generalization of the principles of smart antennas, see Chapter 9.

(iii) Spatial multiplexing. Antenna arrays at the transmitter and the receiver al-
low the transmission (and reception) of multiple data streams. An intuitive picture

1Alternatively, multiple-antenna systems have been named MEA (multielement arrays) and
MIMO (multiple-input multiple-output) systems. In the following, we will use the latter name, as
it is more popular.
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TX
RX

Scatterer

Beam

Figure 24.1. Principle of spatial multiplexing.

of this fact can be gathered from Figure 24.1.2 If we have Nt transmit antennas, the
TX can form Nt independent beams towards scatterers and transmit different data
streams on each of them. Similarly, the receiver can form Nr beams that point at
those scatterers. Thus, each beam can receive one data stream without interference
from the other beams.3 It is clear that in order to transmit Ns streams, we need at
least Ns beams to be able to point at the different streams. Finally, we also see that
a sufficient number of scatterers is required. Thus, the existence of many scatter-
ers, and its associated multipath propagation, which is normally considered to be
a major drawback, becomes a benefit in the context of MIMO systems.

The principle of spatial multiplexing can also be explained as a generalization
of conventional smart antennas. Consider the uplink of a cellular system with a
smart-antenna base station (with Nr receive antennas), and multiple mobile sta-
tions that have a single antenna each. Then we have seen in Chapter 2 that in each
time slot in a TDMA system (for each spreading code in a CDMA system), the
base station can serve Nr mobile stations—for each user, it can employ Nr − 1
antenna elements to suppress the signals from all other users [4]. Now imagine
that the different “users” are really just antenna elements of a single transmitter.
Obviously, in that case this transmitter can handle data at a much higher data
rate than a “normal” (single-antenna) transmitter. This picture also establishes a
useful link between the research areas of MIMO and multiuser detection. If the
different transmit antenna elements are viewed as different users, then a receiver
for the different data streams is essentially a multiuser receiver. The many mul-
tiuser detection schemes that have been established in the literature [5] can thus
be immediately applied to MIMO receivers.

The three goals of MIMO cannot be achieved simultaneously to their full ex-
tent. In channels with dense scattering (which allows full diversity), the beamform-
ing gain is upper limited by (

√
Nt+

√
Nr)2. More importantly, there is a fundamental

trade-off between spatial multiplexing and diversity [6]: define the diversity order
as d = − limSNR→∞ log[Pe(SNR)]/ log(SNR) where Pe is the error probability, and

2This picture gives us thus some basic insights; however, we have to keep in mind that some of the
assumptions are overly simplified. More exact descriptions will be developed in the following sections.

3Note that this is different from conventional beamforming, where we form only one beam (at
TX and RX each), and do so with the purpose of increasing the SNR.



A. F. Molisch and F. Tufvesson 469

the spatial multiplexing gain as r = limSNR→∞ R(SNR)/ log(SNR), where R is the
rate. The optimum trade-off curve is piecewise linear, connecting the points:

d(r) = (
Nt − r

)(
Nr − r

)
, r = 0, . . . , min

(
Nt,Nr

)
. (24.1)

This implies that maximum diversity order NtNr and maximum rate min(Nt,Nr)
cannot be achieved simultaneously.

Different environments, signal-to-noise ratios, and channel state information
might require different trade-offs between the three goals in order to maximize
capacity.

24.2. System model and general considerations

Before going into further details, we first establish the notation and the generic
system that will be considered in the following. Figure 24.2 exhibits a block di-
agram. At the transmitter, the data stream enters an encoder, whose outputs are
forwarded to the Nt transmit antennas. The signals are subsequently up converted
to passband, amplified by a power amplifier, and filtered. For our model, we omit
these stages, as well as their equivalents at the receiver, which allows us to treat
the whole problem in equivalent baseband. From the antennas, the signal is sent
through the mobile radio channel, which is assumed to be quasi-static and fre-
quency flat if not stated otherwise. By quasi-static we mean that the coherence
time of the channel is so long that “a large number” of bits can be transmitted
within this time.

We denote the Nr ×Nt matrix of the channel as

H =


h11 h12 · · · h1Nt

h21 h22 · · · h2Nt

· · · · · ·
hNr1 hNr2 hNrNt

 (24.2)

whose entries hi j are the channel gains (transfer functions) from the jth transmit
to the ith receive antenna.

If the channel is Rayleigh fading, the hi j are i.i.d. zero mean, circularly sym-
metric complex Gaussian random variables with unit variance, that is, the real and
imaginary parts each has variance 1/2 [7]. This is the case we will consider hence-
forth, unless stated otherwise. Consequently, the power carried by each transmis-
sion channel hi j is chi-squared distributed with 2 degrees of freedom. This is the
simplest possible channel model; it assumes “heavy multipath.” It becomes clear
from both the mathematical formulation and the intuitive picture in the previous
section that the existence of many multipath components (MPCs), which is usually
considered a drawback, becomes a major advantage in MIMO systems. The chan-
nel also adds white Gaussian noise, which is assumed to be independent among
the Nr receiver antenna elements. More involved channel models are discussed in
Section 24.11.



470 MIMO channel capacity and measurements

Transmitter
power P

h1,1

h2,1
hNT ,1

h1,NR

h2,NR

hNTNR

Antenna 1

Antenna 2

Antenna NT

Antenna 1

Antenna 2

Antenna NR

...
...

...
...

Channel Receiver

γ . . . SNR at each receiver branch

Figure 24.2. Block diagram of a MIMO system.

The received signal vector

y = Hs + n = x + n (24.3)

is received by Nr antenna elements, where s is the transmit signal vector, and n is
the noise vector.

The capacity equations, as well as many space-time structures, can be best
understood when considering the singular value decomposition of the channel
H = UΣW†, where Σ is a diagonal matrix containing the singular values, and
U and W† are unitary matrices composed of the left and right singular vectors,
respectively. Then, multiplication of the transmit data vector with a matrix W at
the TX and U† at the receiver diagonalizes the channel, resulting in R independent
channels with SNR σ2

k , where σk is the kth singular value of H, and R is the rank of
H (number of nonzero singular values).

The capacity of the channel H is thus given by the sum of the capacities of the
subchannels (modes of the channel):

C =
R∑

k=1

log2

[
1 +

Pk
σ2
n
σ2
k

]
, (24.4)

where σ2
n is the noise variance, and Pk is the power allocated to the kth mode; we

assume that ΣPk = P is independent of the number of antennas. This capacity
expression can be shown to be equivalent to

C = log2

[
det

(
INr +

Γ

Nt
HRxxH†

)]
, (24.5)

where INr is the Nr ×Nr identity matrix, Γ is the mean signal-to-noise ratio (SNR)
per receiver branch, and Rxx is the correlation matrix of the transmit data (for
data at the different antenna elements that are uncorrelated, it is a diagonal matrix
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with entries that describe the power distribution among the antennas). The dis-
tribution of the power among the different eigenmodes (or antennas) depends on
the amount of channel state information (CSI) at the transmitter; this will be dis-
cussed in more detail below. The equations above confirm our intuitive picture
that the capacity increases linearly with min(Nt,Nr), as the number of nonzero
singular values R is upper limited by min(Nt,Nr).

The capacity given in (24.4) and (24.5) is for a deterministic, time-invariant
channel matrix H. In case the channel changes, we can compute two different types
of capacity.

(i) The ergodic (Shannon) capacity. This is the expected value of the capacity,
taken over all realizations of the channel. This quantity assumes an infinitely long
code that extends over all the different channel realizations.

(ii) The outage capacity. This is the minimum capacity that is achieved at a cer-
tain fraction of the time, for example, 90% or 95%. We assume that the data are
encoded with a near Shannon limit achieving code that extends over a period that
is much shorter than the channel coherence time. It has been shown that LDPC
codes with a block length of 10 000 bits are less than 1 dB away from the Shan-
non limit [8]. For a data rate of 10 Mbps, such a block can be transmitted within
1 milliseconds. This is much shorter than 10 milliseconds, which is a typical coher-
ence time of wireless channels. Thus, each channel realization can be associated
with a (Shannon) capacity value. The capacity thus becomes a random variable
(rv), with an associated cumulative distribution function (cdf). It is then of great
interest to investigate this distribution function or equivalently the capacity that
can be guaranteed for x% of all channel realizations.

24.3. Capacity without CSI at the TX, full CSI at the RX

In this section, we analyze the capacity that can be obtained when the receiver
knows the channel perfectly, but no CSI is available at the TX. In that case, it is
optimum to assign equal transmit power to all the TX antennas, Pk = P/Nt. The
capacity thus takes on the now-famous form

C = log2

[
det

(
INr +

Γ

Nt
HH†

)]
. (24.6)

It is quite noteworthy that the capacity of a MIMO system increases linearly with
min(Nt,Nr), irrespective of whether the channel is known at the transmitter or
not.

Figure 24.3 shows the exact capacity distribution for various systems [7], as
obtained from Monte Carlo simulations. We see that using multiple antennas at
only one link end leads to a rather small increase of the average capacity, but dras-
tically increases the outage capacity if low outage is required. The use of multiple
antennas on both link ends, on the other hand, increases both the ergodic and the
outage capacity.
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The exact expression for the ergodic capacity was derived by Telatar [9] as

E{C} =
∫∞

0
log2

[
1 +

Γ

Nt

]m−1∑
k=0

k!
(k + n−m)!

[
Ln−mk (λ)

]2
λn−m exp(−λ)dλ, (24.7)

where m = min(Nt,Nr) and n = max(Nt,Nr) and Ln−mk (λ) are associated Laguerre
polynomials [10]. For the case of a large number of antenna elements, the ergodic
capacity can be computed easily using random matrix theory [11, 12].

Exact analytical expressions for the cdfs of the capacity are rather complicated,
but are described in [13]. Two approximations are in widespread use.

(i) The capacity can be well approximated by a Gaussian distribution [14], so
that only the mean (i.e., the ergodic capacity given above) and the variance need
to be computed.

(ii) From physical considerations, the following upper and lower bounds for
the capacity distribution have been derived in [7] for the case Nt ≥ Nr:

Nt∑
k=Nt−Nr+1

log2

[
1 +

Γ

Nt
χ2

2k

]
< C <

Nt∑
k=1

log2

[
1 +

Γ

Nt
χ2

2Nt

]
, (24.8)

where χ2
2k is a chi-square distributed random variable with 2k degrees of freedom.

The above equations are valid for frequency-flat channels. If the channel varies
over frequency, the capacity per unit frequency is

C = 1
B

∫
B

log2

[
det

(
INr +

Γ

Nt
H( f )H( f )†

)]
df , (24.9)

where B is the bandwidth of the considered system. This equation implies that fre-
quency selectivity offers additional diversity that increases the slope of the capacity
cdf.
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24.4. Capacity with full CSI at the TX and RX

If the TX has full channel state information, then it can distribute the transmission
energy in a way that makes maximum use of the available resources. The problem
of assigning the right amount of energy to available parallel channels has already
been solved—in a different context—by Shannon, and is known as water filling
[15]. The power allocation, Pk of the kth eigenmode is

Pk = max

(
0, ε − σ2

n

σ2
k

)
, (24.10)

where the threshold ε is determined by the constraint of the total transmitted
power P as

P =
R∑

k=1

Pk. (24.11)

The capacity gain by water filling (compared to the equal-power distribution)
is rather small when the number of transmit and receive antennas is identical. This
is especially true in the limit of large SNRs. When Nt is larger than Nr, the benefits
of water filling become more pronounced, see Figure 24.5. Essentially, water filling
makes sure that energy is not wasted on eigenmodes that do not carry any signifi-
cant energy. This can be viewed as another trade-off between spatial multiplexing
and beamforming gain: water filling reduces the number of channel eigenmodes
that are used for communications, in order to improve the SNR on the actually
employed eigenmodes.

With water filling, the power is allocated preferably to modes that have a good
SNR (“give to the rich” principle). This is optimum from the point of view of the
theoretical capacity; however, it requires that the transmitter can use a Gaussian
alphabet. This implies that the constellation size, and thus the peak-to-average
ratio, has to be unlimited. For the case of a finite-modulation alphabet, it might be
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Figure 24.5. Capacity with and without CSI at the TX with Nr = 8 antennas and SNR = 5 dB.

preferable to use a different power allocation strategy. The capacity per stream is
limited by log2(Na), where Na is the size of the symbol alphabet. It is thus wasteful
to assign more energy to one stream than can be actually exploited by the alphabet.
In that case, a “giving to the poor” principle is preferable [16].

24.5. Capacity with average CSI at the TX and full CSI at the RX

For many systems, instantaneous CSI at the transmitter is not feasible. For fre-
quency-division duplex (FDD) systems, in which the forward and the reverse links
operate at different frequencies, instantaneous CSI at the TX requires a fast feed-
back, which decreases the spectral efficiency of the system. For time-division du-
plex (TDD) systems, in which the forward and reverse links operate at the same
frequency, reusing the CSI requires that the delays between the forward and reverse
links be much shorter than the coherence time of the channel, which is impractical
for many situations as well. These problems can be circumvented by the use of co-
variance knowledge (average CSI) RHH = E{HH†} at the transmitter. For the case
of i.i.d. fading channels, this is equivalent to the no-CSI case, as RHH is an identity
matrix. For the case of channel correlation, it turns out that the eigenspace of the
transmit signal should match the eigenspace of RHH [17].

24.6. Capacity with erroneous CSI

All of the above considerations assumed that the available CSI is correct. However,
in practice, it is impossible to obtain perfect CSI; rather, it is afflicted by systematic
as well as random errors.

(i) Outdated CSI. This case is especially critical for CSI at the TX. It can occur
when the CSI is based on feedback from the receiver and is not instantaneous. In
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time-domain duplexing systems, the TX can obtain CSI during the timeslots when
it acts as a receiver. In that case, the changes of the channels during the time the
transceiver changes from RX to TX mode render the CSI partially outdated. It must
be noted that while the deviation between true and used CSI is often modeled as
Gaussian distributed, this need not be a physically viable model for all channels.

(ii) Noisy CSI. Gaussian (observation) noise can affect the CSI at both the
TX and the RX. In addition, the CSI at the TX can suffer also from quantization
noise when it is based on feedback. Two different approaches have been devised
to analyze this problem. Mutual information bounds for vector channels with im-
perfect CSIR can be established [18]. Several other papers assumed a “mismatched
receiver”, where the TX and RX process the signal based on the observed channel
Hobs, while in reality, the signals pass through a channel Htrue

Htrue = Hobs + ∆. (24.12)

Some papers have taken this into account by an ad hoc modification of the noise
variance (replacing σ2

n by σ2
n + σ2

e , where σ2
e is the variance of the entries of ∆),

however, recent investigations [19] show that this is not justified in all cases.
A general framework for the effect of possibly erroneous CSI on the capacity

is given in [20]. They also show that an optimum transmitter can be split into an
encoder, followed by a linear weighting according to the channel state information
(beamforming).

24.7. Capacity with partial or no CSI at TX and RX

It is remarkable that communication with high spectral efficiency is also possible
when neither the TX nor the RX has CSI. The possibility for a signaling scheme
that allows such communication was first pointed out in [21]. The modulation
method can be understood as a generalization of differential modulation [22]. For
high SNR, the capacity no longer increases linearly with m = min(Nt,Nr), but
rather increases as m̃(1 − m̃/T), where m̃ = min(Nt,Nr, �T/2 ), and T is the co-
herence time of the channel in units of symbol duration [23].

24.8. Correlation and other channel nonidealities

24.8.1. Channel correlation

As seen in previous sections, the capacity is determined by the distribution of the
singular values and the SNR. For a given SNR, the maximum capacity is achieved
when the channel transfer matrix has full rank and the singular values of H are
equally strong. A prerequisite for approximating this situation is to have low cor-
relation between the signals at the different antenna elements and a radio channel
where no single multipath component dominates the channel impulse response.
If there is strong correlation between the fading at the different antenna elements,
then the spread of the eigenvalues is much larger. This leads to a reduction in ca-
pacity at high SNRs.
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Figure 24.6. Average capacity of a 4×4 MIMO system with 10 degree rms angular spread as seen from
the BS as a function of the antenna spacing at the BS.

Fading correlation is influenced by the angular spectrum of the channel, as
well as the arrangement and spacing of the antenna elements. For antennas that
are spaced half a wavelength apart, a uniform angular power spectrum leads ap-
proximately to a decorrelation of the incident signals. For a smaller angular spread,
the correlation increases; Figure 24.6 shows the capacity of a 4 × 4 MIMO system
with uniform linear arrays at TX and RX as a function of the angular spread at one
link end. Note that this figure is based on the idealized assumption that there is no
mutual coupling between the antenna elements; recent investigations have shown
that mutual coupling influences the capacity by introducing pattern diversity as
well as changing the average power received in the different antenna elements [24].

Analytical computation of the capacity is much more complicated in the case
of correlated channels. For the case that correlation occurs only at one link end,
the exact capacity distribution is computed in [25]. For the more general case of
correlation at the transmitter and receiver, mostly asymptotic results (for large an-
tenna arrays) exist [12, 26, 27]; the ergodic capacity for channels with correlation
at both link ends can be found in [28].

24.8.2. LOS versus NLOS

Often one distinguishes between line-of-sight (LOS) and non line-of-sight (NLOS)
channels. When there is a LOS component, it is generally the strongest MPC, dom-
inating the channel impulse response and thereby the behavior of the channel
transfer matrix. As all antenna elements have the same dominant component, the
channel transfer function does not change significantly from one antenna element
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to another, which results in a large spread of the singular values. This results in a
decrease of the capacity (compared to an i.i.d. channel with the same SNR); one
should however note that the SNR is often better in the LOS case compared to
the NLOS case. For a power-limited scenario with realistic channels, the LOS case
often gives the highest capacity, despite the imbalance between the singular values.

A strong LOS component leads to a larger spread of the eigenvalues if the LOS
component is a plane wave. Even a single spherical wave leads to a transfer function
matrix that can have full rank if the antenna elements are spaced appropriately
[29]. For indoor scenarios, where the curvature of the waves is noticeable at typical
TX-RX distances, this can have an important impact on the capacity [30].

24.8.3. Keyhole channels

There are some special cases where the capacity is low though the signals at the
antenna elements are uncorrelated or have only low correlations. These cases are
often referred to as keyholes or pinholes. An example of a keyhole scenario is a rich
scattering environment at both the transmitter and receiver sides, and between
there is only one narrow path of propagation and this path allows only one degree
of freedom. A keyhole channel can be generated as a dyad [31]:

H =


b1

b2

...
bNr

(
a1, a2, . . . , aNt

)
, (24.13)

where ai and bi are complex Gaussian variables.
In [32], the authors pointed out a scenario where the distance between the two

scattering environments were large, thereby causing the keyhole effect. In [31] a
keyhole scenario was described where the two environments were connected with
a tunnel or hallway. It should, however, be noted that keyhole channels occur very
seldom in practice. A keyhole was measured in a controlled environment in [33],
but not in real environments.

24.8.4. Limited number of scatterers

As we have stated in the introduction, we need a sufficient amount of scatterers
to “carry” the data streams. While the number of scatterers is always large, the
number of significant scatterers may not. This is of crucial importance in practice.
Scatterers that are too weak to provide appreciable SNR (and thus capacity) are
not useful in carrying data streams. A theoretical treatment of this fact is discussed
in [12], where random matrix theory is used to compute the impact of a limited
number of scatterers. Reference [34] provides experimental investigations into the
impact of the number of scatterers (see also Figure 24.7).

A related question is the number of antenna elements that can gainfully be
used within a given volume. Even in rich scattering, the capacity per unit volume
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that contains the antenna elements is limited [35]. Thus, increasing the number of
antenna elements beyond a certain point does not increase the channel capacity;
this can be viewed as a spatial sampling theorem.

24.9. Capacity in interference

The considerations above have dealt with the capacity of a single MIMO link with-
out interference. In a cellular context, the existence of multiple users influences the
capacity and decreases the data rate that is possible for a single user. The first inves-
tigation of this topic was in [36], which assumed MMSE suppression of multiple-
access interference in a cellular TDMA system. Under these assumptions, it was
shown that the cellular capacity of a MIMO system is hardly larger than that of a
system with multiple antennas at the base station only. The reason for this some-
what astonishing result is that in a cellular system with multiple antennas at the
BS only, those antennas can be used to suppress neighboring-cell interference and
thus decrease the reuse distance. For a cellular MIMO system with Nr = Nt, the
degrees of freedom created by the multiple BS antennas are all used for the separa-
tion of the multiple data streams from a single user, and none for the suppression
of interfering users. Depending on the SINR, it is sometimes the best to put all
available power into a single antenna [37].

However, MIMO can be combined with other techniques for multiple-
access interference. The combination of interference-cancellation techniques with
MIMO systems decreases the impact of this interference [38]. On a more general
note, multiuser interference can be eliminated by base station cooperation [39].
For the uplink, cooperating base stations can be viewed as a giant MIMO system
with NrNBS antenna elements, where NBS is the number of cooperating base sta-
tions. The capacity for such a system can be approximated by inserting the gener-
alized channel matrix into (24.5).4 For the downlink, the effect of interfering base
stations can be minimized by appropriate preprocessing if the BSs cooperate and

4This capacity cannot be completely achieved, as the MSs cannot cooperate in the encoding of
the information. A lower limit is thus given by the capacity of an HBLAST system. However, also such
a system has a capacity that linearly increases with the number of antennas.
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each BS has the CSI for all MSs. It has been shown that appropriate nonlinear pre-
coding, known as “writing on dirty paper” coding [40], can completely eliminate
the effect of interference; linear preprocessing can only approximate these gains.
Further information-theoretic results are reviewed in [41].

24.10. Capacity for specific transceiver architectures

The information-theoretic capacity does not make specific assumptions about the
structure of the transceivers and the signaling schemes. Practically viable schemes
that approximate the capacity are layered space-time schemes, also known as
BLAST. It has been shown that diagonal BLAST with rate feedback achieves capac-
ity, while horizontal BLAST5 (which separately encodes the data streams for the
different antenna elements) leads to a capacity loss (Figure 24.8). MMSE-BLAST
receivers (based on MMSE interference-cancellation schemes) lead to a further
reduction in capacity, but are very popular because of their low complexity and
analytical tractability.

Another group of transceiver structures that has received great attention is
space-time coded systems. Space-time block-coded systems, including the Alam-
outi code, are being used in several standardized multiantenna systems. For more
details, see Chapter 19.

24.11. Channel models for MIMO

Investigations of the MIMO capacity make use of simplified channel models that
have—more or less—a basis in real wireless propagation channels. For under-
standing MIMO capacity, it is thus important to understand the different chan-
nel models and the restrictions they have in practice. Due to space restrictions, we

5In many papers, this scheme is referred to as VBLAST.
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mention only the most important properties. More information can be found, for
example, in [42, 43].

24.11.1. Analytical channel models

A stochastic analytical (also known as nonphysical) model characterizes the cor-
relation functions of the entries in the channel matrix. A complete description of
second-order statistics is provided by the correlation matrix. It describes the corre-
lation between any two pairs of antenna elements:

Rfull = E
{

vec(H) · vec(H)H}
, (24.14)

where the vec(•) operator stacks the columns of H into a single large column vec-
tor. Again, we stress that second-order statistics are a sufficient description only
for zero-mean (complex) Gaussian fading. Note that the correlation matrix in the
above equation can depend on delay (frequency), as the angular spectrum (which
determines R) can vary with delay.

The Kronecker model. The Kronecker model [44] approximates the correlation
matrix R as a Kronecker product of the (marginal) correlation matrices at the
transmitter, RTX, and the receiver, RRX. A realization of the channel matrix can
then be obtained as

Hkron = 1√
tr
(

RRX
)R1/2

RX G
(

R1/2
TX

)T
, (24.15)

where G is a matrix with i.i.d. complex Gaussian entries, and R1/2 is defined by
R1/2R1/2 = R.

This implies that the correlation at the receiver is assumed to be independent
of the transmit direction (and vice versa). While this simplifies the description, it
also leads to less generality, results in an underestimation of the channel capacity,
especially for indoor environments and for large antenna arrays [45]. A general-
ization of the Kronecker model was recently suggested by Weichselberger et al. in
[46]. Their model preserves the dependencies between directions of arrival and
directions of departure, by modeling the spatial eigenbasis of the receiver (and
transmitter) correlation matrix, denoted by URX and UTX, and a power-coupling
matrix Ω between these two. Each pair of receive and transmit eigenmodes spans
a SISO channel that is uncorrelated from all other pairs; its average energy forms
one element of the power-coupling matrix.

Beam space models. The beam space of “virtual channel” representation [47] rep-
resents the rays in the “beam” domain. The virtual channel is represented as

H =
∑
m

∑
k

HV (k,m)�aR
(
Ψ̃k

)
�aHT

(
Ω̃m

) = ÃRHV ÃH
T , (24.16)
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where �aR(Ψ̃k) and �aT(Ω̃m) are the steering vectors with the virtual angles defined
as ψ̃k = k/NR and Ω̃m = m/NT , with −NR � k � NR and −NT � m � NT .

Different fading statistics. The models described above implicitly assume Rayleigh
fading at the antenna elements. However, in a “keyhole channel” the fading statis-
tics follow a “double-Rayleigh” distribution. This distribution can be emulated by
replacing G in (24.15) by a rank-deficient matrix [48]

G = GRXR1/2
IO GTX. (24.17)

24.11.2. Physical channel models

Physical channel models describe the statistics of the multipath components
(MPCs) that transmit information from the TX to the RX. The MPCs are mod-
eled as plane waves and thus characterized by their (complex) amplitude, delay τ,
direction of departure (DOD) Ω, direction of arrival (DOA) Ψ, and polarization
(to simplify notation, we henceforth neglect the polarization). The contribution
of the lth MPC can be written as

hl
(
�rR,�rT , τ,Ψ,Ω

) = ale
jϕl δ

(
τ − τl

)
δ
(
Ψ−Ψl

)
δ
(
Ω−Ωl

)
, (24.18)

where the complex amplitude ale jϕl , the DOA, and the DOD vary slowly with
the position of transmitter �rR and receiver �rR, while the phase ϕ of the complex
amplitude varies quickly. The total double-directional impulse response [49] is
the sum of contributions from the different MPCs:

h
(
�rR,�rT , τ,Ψ,Ω

) =
L(�r )∑
l=1

hl
(
�rR,�rT , τ,Ψ,Ω

)
, (24.19)

where L(�r ) is the number of MPCs. From the double-directional impulse re-
sponse, the channel matrix can be easily obtained by adding the contributions
from all the MPCs at the different antenna element locations; the components have
to be phase shifted (to account for the runtime to the different antenna elements),
and weighted with the antenna element patterns in the directions of their DOAs
and DODs. Thus, a physical model describes only the actual propagation channel
and can easily include different kinds of antenna arrangements and patterns.

Generalized tapped-delay line approach. A stochastic double-directional model
characterizes the autocorrelation functions (ACFs) of the double-directional im-
pulse response. A generalized WSSUS description describes the fading of MPCs
with (i) different delays and/or (ii) different Doppler shifts and/or (iii) different
DOAs and/or (iv) different DODs as independent. Note that this model implies the
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stationarity of all channel statistics and thus does not cover large-scale movements
of TX or RX that could change delays, DODs, DOAs, or absolute amplitudes. The
generalized WSSUS model allows an easy discretization, resulting in a generalized
tapped-delay line model, where each tap is now characterized by DOAs and DODs
as well as delays [50]. Such a model is especially suitable for hardware and software
simulators.

Geometry-based stochastic channel models. A geometry-based stochastic channel
model (GSCM) is a compromise between a deterministic and a stochastic ap-
proach. The location of interacting objects (IOs, often also called scatterers) is
prescribed at random, following a given probability density function. The simula-
tion procedure then performs a ray tracing that is limited to some simple interac-
tion processes (e.g., only single or double scattering processes). This “ray tracing”
inherently produces all required information about DOAs and DODs as well as
other parameters of the MPCs. A general GSCM-based model structure is given
in [51].

Measurement-based stochastic models. A further step towards deterministic mod-
eling is obtained by the “random-phase model” of [34]. The DOAs, DODs, and
delays of the MPCs are extracted from measurement data by, for example, high-
resolution parameter estimation methods. Subsequently, random phases are as-
cribed to the MPCs, resulting in different realizations of the MIMO channel with-
out the necessity to actually measure at many closely spaced locations. A modifica-
tion of that method uses phase shifts for the MPCs that are derived from synthetic
displacements of the antenna arrays.

24.11.3. Standardized channel models

In the past years, a number of standardized channel models have emerged that re-
flect at least some properties of MIMO channels: the COST 259 model, the 3GPP
model, and the IEEE 802.11n model. These models, all of which are physical mod-
els, are distinguished by the different radio environments for which they are in-
tended, as well as by the simplifications that they make.

The COST 259 directional channel model (DCM) [52] was originally estab-
lished for the simulation of systems with multiple-antenna elements at either the
base station or the mobile station, describing the marginal angular power spectra.
However, it can be used for MIMO simulations as well, by implicitly assuming that
the joint DOA/DOD spectrum is the product of the marginal power spectra. The
model is specified for macrocells, microcells, and picocells and describes the joint
effects of small-scale as well as large-scale effects.

The 3GPP model [53] is designed for the simulation of third-generation sys-
tems in suburban and urban macrocells, and urban microcells. It has 6 taps in
the delay domain, and for each of those delays, 20 taps in the angular domain
at each of the link ends. Delay spread, angular spread, and shadowing are mod-
eled as correlated random variables. The basic version of the model assumes only
a single cluster of taps, with a Laplacian angular spectrum and an exponential
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power delay profile (PDP). Far scatterer clusters (for urban macrocells), line of
sight (for microcells), modified angular spectra corresponding to waveguiding in
street canyons (for urban cells), and polarization have been defined as options.

The IEEE 802.11n model [54] is intended for the use of indoor wireless LANs.
Six different models, corresponding to different environments, are specified. The
model contains multiple clusters, each of which has a different mean DOA and
DOD, which are chosen at random. The angular spectra for each cluster are Lapla-
cian, and the PDP is exponential.

Another, very detailed, model is currently under development by the COST
273 standardization organization, and will be finished by mid 2005.

24.12. Measurements of capacity

24.12.1. Measurement of the transfer function matrix

Ultimately, we are interested in the capacity that occurs in “real” operating envi-
ronments. Thus, it is important to measure the channel transfer matrix H; these
results can be either used directly or as a basis for establishing channel models.
In the following, we discuss principles of MIMO channel measurement devices
(“channel sounders”) as well as measurement and evaluation techniques.

The starting point is a channel sounder for nondirectional wideband chan-
nels, based on different available principles (network analyzer, correlator, sliding
correlator). This is now combined with antenna arrays at both the transmitter and
the receiver. We first consider the receiver, see Figure 24.9. In a “physical array” ar-
rangement, we have one “normal” channel sounder connected to each antenna ele-
ment, so that the impulse responses at the different elements hj,1 can be measured
simultaneously. In a “multiplexed array” arrangement, there are several antenna
elements connected to a single sounder via a fast RF switch. We thus first measure
the impulse response at the first antenna element h1,1, then connect the switch to
the second element, measure h2,1, and so on. Finally, in a “virtual array” arrange-
ment, there is only a single antenna element, which is moved mechanically from
one position to the next, measuring the hj,1. A basic assumption for the evaluation
is that the environment does not change during the measurement procedure. “Vir-
tual arrays” (which require a few seconds or even minutes for one measurement
run) can thus only be used in static environments—this precludes scenarios where
cars or moving persons are significant scatterers. On the other hand, they avoid all
problems with mutual coupling between antenna elements. In nonstatic environ-
ments, multiplexed arrays are usually the best compromise between measurement
speed and hardware effort.

At the transmitter, we need to send signals from the different antennas that
are orthogonal in either time (i.e., sending only from one antenna at any given
time), frequency (transmission of offset carriers from the different antennas), or
code (e.g., transmission of different Walsh-Hadamard sequences from the differ-
ent antennas), see Figure 24.10. In any case, each receiver antenna has to sort out
which contribution stems from which transmit antenna element.
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Figure 24.9. (a) Real, (b) multiplexed, and (c) virtual receive array.

24.12.2. Measurement of the double-directional impulse response

One possible way of obtaining directional impulse responses is to combine a non-
directional channel sounder with directional (e.g., horn) antennas. A step motor
is used to point the antenna into different directions, and for each direction, the
impulse response is recorded. The drawbacks of this method are the long mea-
surement time and the fact that the resolution is limited by the beam width of the
directional antenna.

Alternatively, the directional information can be obtained by first measuring
the transfer function matrix (as described above) by extracting discrete multipath
components.6 The simplest approach is a spatial Fourier analysis; however, the res-
olution is usually very poor. High-resolution parametric approaches include MU-
SIC, ESPRIT, SAGE [55], and the minimum variance method; these algorithms
have an estimation accuracy on the order of one degree. We stress, however, that
they might sometimes lead to numerical problems, and some of them are limited
in the number L of MPCs hl that can be estimated. We also note that the joint

6Plus a possible “diffuse” background.
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Figure 24.10. Sounding signals that are orthogonal in (a) time, (b) frequency, or (c) code.

determination of DOAs and DODs shows significant differences from the deter-
mination of the marginal angular spectra. Finally, we note that double-directional
impulse responses or transfer function matrices can also be obtained from deter-
ministic channel models (solution of Maxwell’s equations, ray tracing).

24.12.3. Impact of noise

As for all kinds of measurements, it is of vital importance to be able to distinguish
between the quantity of interest and contributions from the measurement system.
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If we assume that the contribution from the measurement system itself can be
modeled as additive white Gaussian noise, the measured capacity, directly calcu-
lated from the transfer function matrix, overestimates the true capacity because of
the additional (noise) terms in the channel transfer function. This is especially true
when the capacity is evaluated for high SNR values. As a rule of thumb, the capac-
ity calculated from measurements should not be evaluated for a higher SNR than
the measurement system can provide, which is in line with [56]. When measuring
low-rank channels a measurement SNR of 10 dB better than the SNR used for the
capacity evaluation is recommended [57]. In Figure 24.11 we show the measured
capacity (50% outage capacity) of a keyhole scenario for different measurement
SNRs when the capacity is evaluated for different SNR levels. Ideally the measured
capacity should follow the dotted line, but with noise contributions from the mea-
surement system the capacity seems to be larger than it actually is.

24.12.4. Measurement of capacity in different environments

Many measurements of the MIMO capacity have been performed in different en-
vironments. For indoor environments, it was found in [58] that the capacity is
similar to an i.i.d. channel for a 2 × 2 array but shows a relatively smaller value for
larger arrays. In corridors and tunnels, the orientation of the antenna array has a
considerable influence [59, 60]. In outdoor metropolitan environments, the mea-
sured mean capacity was measured to be approximately 20% smaller than for the
i.i.d. case; the cdf shows a flatter slope especially for larger numbers of antennas
[61]. The capacity of fixed-wireless MIMO links was investigated in [62].
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Abbreviations

3GPP Third-Generation Partnership Project

AFC Autocorrelation function

BLAST Bell Laboratories Layered Space Time

BS Base station

CDMA Code-division multiple access

CSI Channel state information

CSIT Channel state information at the transmitter

CSIR Channel state information at the receiver

DCM Directional channel model

DOA Direction of arrival

DOD Direction of departure

FDD Frequency-division duplex

GSCM Geometry-based stochastic channel model

IO Interacting objects

LAN Local area network

LOS Line of sight

MIMO Multiple-input multiple-output

MMSE Minimum mean square error

MPC Multipath component

MS Mobile station

NLOS Non line of sight

PDP Power delay profile

RF Radio frequency

RX Receiver

SISO Single-input single-output

SNR Signal-to-noise ratio

TDD Time-division duplex

TX Transmitter

WSSUS Wide-sense stationary uncorrelated scatterers
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25.1. Introduction

The primary goal in the design of a telecommunication network is to devise strate-
gies that make possible the flow of information through the network with a desired
quality of service, typically expressed in terms of delay and/or bit error rate. Look-
ing at the problem from a historical perspective, the first networks were wired
and this has somehow driven the initial research towards a certain direction. In
the wired context, in fact, the links are always point-to-point and the information
is conveyed through paths composed of the links between the nodes where the
information packets are actually routed. Conversely, wireless channels are funda-
mentally different from wired channels, for two main reasons: (i) they are much
more random and unpredictable than wired channels; (ii) they are intrinsically
broadcast channels. The goal of this chapter is to show that if these differences are
explicitly taken into account in the design of a wireless network, there is the possi-
bility to convert them into a potential benefit, rather than considering them only
as an annoying feature.

The most interesting aspect in the design of wireless networks is that most
of the previous shortcomings can be actually converted into potential sources of
performance improvement, provided that the design strategy is appropriate. The
goal of this chapter is to show some possible methods to exploit the broadcasting
nature of the radio links together with the channel randomness to devise schemes
capable of a considerable gain.

The channel random fading is a characteristic of wireless channels and it can
induce considerable performance losses. Since fading is a multiplicative phenom-
enon, it cannot be counteracted by simply increasing the transmission power, but
it needs specific countermeasures. The other major shortcoming of radio links is
their broadcasting nature. The information emitted by a given radio node travels
in fact through all directions, so that part of the energy is inevitably wasted as it
goes towards directions where there are no intended users. To limit such a waste,
one should use directive antennas, but this would be highly impractical, especially
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on portable handsets, as it would require the use of large arrays (with respect to
the transmit wavelength).

The most effective strategy to combat fading is diversity. Diversity relies on the
existence of more than one path between transmitter and receiver through which
the information bits may be conveyed. If the paths are random, but (almost) in-
dependent of each other, one can find optimal strategies to combine the multi-
ple replicas of the received signal in order to minimize the bit error rate (BER).
The most known form of diversity is spatial receive diversity, obtainable when
the receiver has multiple receive antennas. However, receive diversity is difficult
to achieve on portable handsets whose limited size prevents the possibility of hav-
ing independently fading channels. To overcome this limitation, the last years have
witnessed a huge amount of research on methods capable of achieving a spatial
diversity, even in the case where the receiver has only one antenna but the trans-
mitter has multiple antennas. In such a case, it is necessary to transmit the data
using a particular form of coding that spreads the information bits across the two-
dimensional (2D) space-time domain, using the so-called space-time coding [1, 2].
If properly designed, space-time coding guarantees full diversity gain, even in cases
where the transmitter does not have any information about the channels.

However, if both transmitters and receivers have only one antenna, it looks
like there should be no way to achieve any spatial diversity. Indeed, this is not true
if more radio nodes (relays) contribute to the transmission from one source to the
intended destination. In fact, the broadcasting of the information makes possible
the presence of the same information over potentially more than one radio node.
If the radio nodes that have received the same message correctly cooperate to re-
transmit the information to the final destination, the overall system may benefit
from spatial diversity even when each radio node has only one antenna. This chap-
ter focuses on this idea and on the ways to achieve diversity through cooperation.

Multihop radio networking is indeed a field whose study started a long time
ago (see, e.g., [3] and the references therein). Some basic theorems on the capacity
of relaying networks were established in, for example, [4, 5, 6, 7]. Conventional
relaying can indeed be seen as a particular form of distributed space-time coding,
where the same information is transmitted by different points (relays), at differ-
ent times. From this perspective, relaying can thus be interpreted as a repetition
code in the space-time domain. As is well known, repetition coding is not the best
coding strategy, and thus one should achieve a considerable gain by using more
sophisticated space-time coding techniques. This form of space-time coding that
coordinates the transmission of source and relays is called distributed space-time
coding. Quite recently, the interest in relaying networks, especially in the form
of cooperation among nodes, has increased considerably. One result that sparked
great interest was that cooperation among users can increase the capacity in an
uplink multiuser channel [8]. A thorough analysis of the diversity gain achievable
with cooperation was given in [9, 10, 11], where different distributed cooperation
protocols were compared. Cooperation was proved to be very useful to combat
shadowing effects, as shown in [12], and it can occur in different forms, as sug-
gested in many recent works, like, for example, [10, 13, 14, 15, 16, 17, 18, 19, 20,
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21, 22]. Among all these possibilities, there is the basic idea of using the relays
as if they were the antennas of a multiantenna transmitter. With this perspective,
cooperation induces a virtual array between transmitter and receiver. This opens
the field to a huge amount of possibilities provided by all coding methods devised
for multi-input multi-output (MIMO) transceivers. In this more general frame-
work, the relaying problem becomes the problem of mapping the algorithms valid
for real MIMO systems into cooperation strategies of a virtual MIMO system.

The chapter is organized as follows. In Section 25.2, we show how a single-user
system can achieve a considerable gain thanks to the cooperation with relay nodes
scattered randomly in a given territory. In Section 25.3, we introduce the so-called
distributed space-time coding (DSTC) strategy, where source and relays transmit
in a coordinate manner according to a space-time code distributed among the co-
operating nodes. In Section 25.4, we consider in detail a specific single-user system
where source and relay adopt a block-distributed Alamouti strategy for transmis-
sion over frequency-selective channels. We show the performance achieved over
simulated as well as real data. Although DSTC follows the main ideas of con-
ventional space-time coding (STC) techniques, there are aspects that clearly dif-
ferentiate DSTC from STC. The main differences are related to the fact that in
DSTC the cooperating antennas are not colocated. This implies that the signals
received by the destination from source and relays might arrive out of synchro-
nization, and without the right power balance between them. We analyze these
aspects in Section 25.4.3, where we consider possible ways to distribute the power
between source and relays optimally, in order to minimize the average BER, and in
Section 25.4.6, where we consider the synchronization problem.

The performance of a cooperative network improves as the density of the re-
lay nodes increases. However, taking into account both technical as well as eco-
nomic factors, this implies that a cooperative strategy is appealing only if the cost
of the relay nodes is extremely small. One possibility is to use as relays, in cel-
lular networks, portable phones that are in standby, whose owners have previ-
ously agreed on their availability to act as relays, maybe against appropriate incen-
tives. The other possibility consists in deploying extremely simple relays, such as,
for example, nonregenerative, or amplify-and-forward (A&F) relays that amplify
and forward the received messages. Such relays need only the radio-frequency sec-
tion (antenna and amplifier) and are then much more economical than any other
transceiver. To assess the performance of such relays, in Section 25.5 we com-
pare the performance of regenerative, that is, decode-and-forward (D&F) relays
and nonregenerative relays. Finally, in Section 25.6 we compare alternative DSTC
strategies for a multiuser system.

25.2. Cooperation gain

We consider a region with a certain number n of radio nodes scattered randomly.
Among these nodes, there is one source node S and the corresponding destination
node D. All other nodes are potential relays R. The radio nodes are uniformly
distributed over a circle of radius r, with density ρ = n/(πr2). In the limit of n
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and r large, but constant density ρ, the spatial distribution of the points can be
well described by a 2D homogeneous Poisson process [23]. The probability that k
nodes fall within any given circle of radius r0 is then

pR(k) = (ρπr2
0 )k

k!
e−ρπr

2
0 . (25.1)

We say that a node may act as a relay for the source node only if its BER does not
exceed a given maximum BER, Pemax, with a given outage probability. Using QAM
constellations of order M, the BER is

Pe = cQ

(√
g
Eb

σ2
n
|h|2

)
≤ ce−gEb|h|2/σ2

n , (25.2)

where Eb is the energy per bit, σ2
n is the noise variance, h is the channel flat fading

coefficient, and c and g are two coefficients that depend on the order M of the
QAM constellation as follows [24]:

c = 4

√
M − 1√

M · log2 M
, g = 3

M − 1
log2 M. (25.3)

We assume here the Rayleigh channel model, so that h is a complex Gaussian ran-
dom variable with zero mean and variance σ2

h . We assume that σ2
h = 1/dα, where

the exponent α depends on the propagation environment. Typically, α is between
2 and 5. In (25.2) we have also introduced an upper bound useful for deriving
closed-form expressions. The out-of-service probability is defined as

Pos = P
{
Pe > Pemax

} ≤ P
{
ce−gEb|h|2/σ2

n > Pemax
}
. (25.4)

Since the channel is Rayleigh, |h|2 is an exponential random variable. Hence Pos

can be upper bounded as

Pos ≤ 1 − e−σ
2
n log(c/Pemax)/(gEbσ

2
h ). (25.5)

Within this set-up, a link is reliable and it is established only if the out-of-service
event occurs with a probability smaller than a given value Pos. Setting σ2

h = 1/rα in
(25.5) and inverting (25.5), we find that the source covers a circle of radius

r0 =
[
− gEb log

(
1 − Pos

)
σ2
n log

(
c/Pemax

) ]1/α

. (25.6)

This coverage radius depends on the energy Eb, as well as on the transmission
rate (throughout the two coefficients c and g). Clearly, increasing Eb increases the
coverage, but more energy is wasted only to send information towards the relays
instead of the final intended destination. There is in general an optimal energy
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distribution between the two phases where the source sends data to the relay and
when source and relays transmit together towards the destination. We denote by
ET the total energy per bit for all cooperating nodes. Introducing the real coef-
ficient β, with 0 ≤ β ≤ 1, we indicate with βET the portion of the total energy
dedicated to send information from the set of cooperating nodes to the destina-
tion, and with (1 − β)ET the energy spent by the source to send data to the relays.

If k is the number of relays that receive the data from the source with the pre-
scribed reliability, the k relays plus the source can then transmit together towards
the destination as if they were the transmit antennas of a single-user.1 Denoting
with hi the channel coefficients from source and relays towards the destination,
using a full diversity space-time coding scheme, such as, for example, orthogonal
coding, the error probability at the receiver is2

Pe(k + 1; h) = cQ


√√√√√g

βET

σ2
n(k + 1)

k+1∑
i=1

∣∣hi∣∣2

 . (25.7)

Assuming that the channels are statistically independent, the expected value of
Pe(k + 1) := Eh{Pe(k + 1; h)} is [25]

Pe(k + 1) = 4
√
M − 1√

M log2(M)

(
1 − µ

2

)(k+1)nR

·
k∑

m=0

(
k + m
m

)(
1 + µ

2

)m

, (25.8)

where

µ :=
√√√√ 3βET log2(M)σ2

h

3βET log2(M)σ2
h + 2(M − 1)(k + 1)σ2

n

. (25.9)

The final average error probability at the destination, in case of cooperation, is
then

Pe =
∞∑
k=0

pr0 (k)Pe(k + 1), (25.10)

where pr0 (k) is given by (25.1), with r0 given by (25.6) setting Eb = (1 − β)ET ,
whereas Pe(k + 1) is given by (25.8).

An example of average BER is reported in Figure 25.1 for a network of nodes
with different node densities. We can clearly see the advantage of using cooper-
ation with respect to the noncooperative case and how the gain increases as the

1Since a node is chosen as a relay only if its BER is below a given threshold, with a given outage
probability, we assume here that the errors at the relay nodes are negligible.

2In case of coordinated transmission from k + 1 nodes, we normalize the transmit power of each
node by k + 1, so that the overall radiated power is independent of k.
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Figure 25.1. Average BER at the final destination in a cooperating network for different values of node
density.

node density increases. At high SNR, the dominant term in (25.10) is the term
with k = 0, as it corresponds to the slowest decay rate of the average BER. The
term Pe(1) goes like 1/ SNR, at high SNR. Hence, in a random network there is no
real diversity gain. Nevertheless, since Pe(1) is multiplied by pR(0), there still is a
coding gain equal to 1/pR(0), that is,

Gc = eπρr
2
0 . (25.11)

Hence, cooperation introduces diversity in the sense of the existence of multiple
paths for the transmitted data, but unlike conventional systems, this results in a
coding gain, not in a diversity gain. The coding gain is always greater than one
and it grows exponentially with the increase of the relay nodes density. To obtain
a higher Gc, for a given ρ, it is necessary to increase the coverage radius r0. This
requires that more energy is used in the first phase, when S sends data to the relays.
If there is a constraint on the total energy ET , it is interesting to see the optimal
power distribution between the two transmission phases acting on β.

As an example, in Figure 25.2 we show the average BER, for a given SNR at
the destination, as a function of β. We can see that, depending on the final SNR,
there is an optimal β.

25.3. Distributed space-time coding

The choice of the right space-time coding technique depends on several factors.
As with conventional space-time coding, the choice depends on the desired trade-
off between rate, diversity, and receiver complexity. The number nR of real receive
antennas plays a fundamental role. If nR = 1, the cooperation induces a virtual
multi-input single-output (MISO) communication, introducing diversity into the
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Figure 25.2. Average BER as a function of β for different SNR values.

system, but not a rate gain. Conversely, if nR > 1, we can think of schemes capa-
ble of both diversity and rate gains, exploiting the resulting virtual MIMO struc-
ture. Basically, one could choose among the following classes of STC techniques:
(i) orthogonal STC (OSTC) [2], as a strategy that maximizes the diversity gain
and minimizes the receiver complexity; (ii) full-rate/full diversity3 codes (FRFD)
[26, 27], as codes that yield maximum diversity gain and transmission rate, but
with high receiver complexity; (iii) V-BLAST codes [29], as a technique that max-
imizes the rate, sacrificing the diversity gain, but with limited receiver complexity.
Alternatively, one could use the trace-orthogonal design [30] as a flexible way to
trade complexity, bit rate, and BER. It is worth noticing that the optimal trade-
off among these alternative strategies, in the distributed case does not coincide,
necessarily, with the trade-off achievable with conventional space-time coding.

The first evident difference between conventional STC and DSTC is the pres-
ence of the time-slot necessary for the exchange of data between source and relays.
This induces an inevitable rate loss. To reduce this loss, it is necessary to allow
for the reuse of the same time-slot by more than one set of source-relay pairs. In
Figure 25.3, we show, as an example, three sources (circles) and some potential
relays (dots). If the relays are associated to the nearest sources4 and the sources are
sufficiently far apart, we can assign the same time-slot for the exchange of infor-
mation between each source and its own relays. Clearly, this does not prevent the
interference between different source-relay pairs. In general, the relay discovery
phase should follow a strategy that gives rise to many spatially separated micro-
cells, as in Figure 25.3, where each source acts as a local base station broadcasting

3The term full rate here is used in the same sense as [26, 27] and it means that a transmitter with
nT antennas transmits n2

T symbols in nT time-slots. This does not imply anything about the final BER
and then it has to be distinguished by the information rate concept used in [28].

4We will comment later on the meaning of distance between source and relay, as it has to take
into account also the channel fading.
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Figure 25.3. Geometry of cooperative network with three source nodes (circles), potential relays
(dots), and one destination (D).

to its relays, who may get interference from other microcells (sources). The need to
limit the coverage of each source, in its relay discovery phase, is also useful because
(i) less power is wasted in the source-relay link; (ii) there are less synchronization
problems in the final link towards the destination; (iii) there is less interference
between different source-relay sets.

We compute now the rate loss for different cooperation structures assuming
that there are N simultaneous source-relays pairs sharing the same time-slot. We
denote with TS2R and TSR2D the duration of the S2R and SR2D time-slots. Ts is
the symbol duration in all slots. For a given bit rate, the durations depend on the
constellation order used in the different slots. We denote with Q and M the con-
stellation orders used in the S2R and in the SR2D slots, respectively. We consider
a frame containing both S2R and the N SR2D links which then has a duration
TF = TS2R +NTSR2D. The rate reduction factor, with respect to the noncooperative
case, in a TDMA context, is then

η = NTSR2D

TS2R + NTSR2D
. (25.12)

Clearly, the rate loss can be reduced by decreasing TS2R, that is, by increasing Q,
or by increasing N . In the first case, the relay needs a higher signal-to-noise-plus-
interference ratio (SNIR). In the second case, SNIR decreases at the relay as there
is more interference. In both cases, it is less likely to discover a relay with sufficient
SNIR. Hence, the right choice has to result from a trade-off between rate and per-
formance. We discuss now in detail the alternative DSTC strategies corresponding
to OSTC, FRFD, and V-BLAST codes. In all cases, we denote with s(n) the sequence
of symbols sent by S during the SR2D slot, whereas ŝ(n) indicates the estimate of
s(n) performed at the relay. For simplicity, we refer to a context where each source
cooperates with only one relay.
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25.3.1. Distributed orthogonal STC

Distributed orthogonal STC (D-OSTC) guarantees maximum receiver simplicity
and full diversity, and it can be implemented also when the final destination has a
single antenna. D-OSTC was proposed in [11, 14, 17], where the relays are essen-
tially error-free, and in [21], where the decoding errors at the relay are explicitly
taken into account. D-OSTC transmits 2 symbols over two successive time periods,
so that TSR2D = 2Ts and TS2R = 2 log2(M)Ts/ log2(Q). The sequence transmitted
by the source-relay pair is

[
s(n) −s∗(n + 1)

ŝ(n + 1) ŝ∗(n)

]
. (25.13)

The first row of this matrix contains the symbols transmitted by the source,
whereas the second row refers to the symbols transmitted by the relay (different
columns refer to successive time instants). The overall bit rate, incorporating also
the rate loss, is

R = 2N log2 M

2N + 2 log2 M/ log2 Q
b/s/Hz. (25.14)

25.3.2. Distributed full-rate/full diversity

If the final destination has two antennas, there is a virtual 2 × 2 MIMO, with
the possibility of increasing the rate. This can be achieved, for example, using
distributed full-rate/full diversity (D-FRFD) or distributed (D-BLAST). With D-
FRFD, the pair S/R transmits 4 symbols over two consecutive time periods. The
transmitted matrix is (see [26] or [27])

[
s(n) + ϕs(n + 1) θ

(
s(n + 2) + ϕs(n + 3)

)
θ
(
ŝ(n + 2) − ϕŝ(n + 3)

)
ŝ(n) − ϕŝ(n + 1)

]
, (25.15)

where ϕ = e j/2, θ = e j/4 are two rotation parameters (see, e.g., [26] or [27], for the
choice of ϕ and θ). The bit rate is

R = 4N log2 M

2N + 4 log2 M/ log2 Q
b/s/Hz. (25.16)

25.3.3. Distributed BLAST

We consider here the version of BLAST where two independent streams of data
are transmitted from the two antennas. In its distributed version, D-BLAST re-
quires that the relay receives only half of the bits to be transmitted. This implies
an advantage with respect to D-FRFD, as it allows us to reduce the duration of the
S2R time-slot. The price paid with respect to D-FRFD is that D-BLAST is not full
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diversity. The transmitted matrix in the D-BLAST case is[
s(n) s(n + 2)

ŝ(n + 1) ŝ(n + 3)

]
, (25.17)

and the bit rate is

R = 4N log2 M

2N + 2 log2 M/ log2 Q
b/s/Hz. (25.18)

Comparing the transmission rates of all the distributed schemes, for a given choice
of the constellation orders Q and M, we see that D-BLAST has the highest trans-
mission rate.

25.3.4. Relay discovery phase

This section describes a possible resource discovery phase. A source looking for
potential relays starts sending a sounding signal to verify whether there are avail-
able neighbors. The sounding signal is a pseudo noise code identifying the source.
A potential relay may receive the sounding signals from more than one source. The
radio nodes available to act as relays compute the SNIR for each source.5 This step
requires the node to be able to separate the signals coming from different sources.
This is made possible by the use of orthogonal codes. The potential relays retrans-
mit an acknowledgment signal back only to those sources whose SNIR exceeds a
certain threshold. The source then receives the acknowledgments and the relative
SNIR from all potential relays and it decides which relays to use. This phase in-
sures that the relay, once chosen, is sufficiently reliable. Given the variability of
the wireless channel, this operation has to be repeated at least once every chan-
nel coherence time. To avoid excessive complications, a node may act as a relay
for no more than one source. The basic philosophy we follow to discover relays is
that source and relays should be as close as possible. This is justified by the fol-
lowing concurring reasons: (i) less power is wasted in the S2R slot; (ii) there are
less synchronization problems in the final SR2D slot; (iii) there is less interfer-
ence between different source-relay sets. In summary, this relay discovery phase
creates many spatially separated microcells where each source acts as a local base
station broadcasting to its relays, who may get interference from other microcells
(sources).

25.4. Regenerative relaying with block-distributed orthogonal
space-time coding

In this section, we analyze in detail an example of distributed space-time coding,
using D-OSTC and regenerative relay [21]. We assume that the source has found

5The SNIR may be evaluated for each channel realization or in average sense, considering the
channel statistics such as mean and covariance. The first option provides better performance, but it
requires more frequent channel estimation updates than the second option.
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its own relay6 and that the interference due to the other active source-relay links is
negligible. We consider, thus, a two-hop relay channel, composed of a source (S),
a relay (R) and a destination (D).

Differently from common STC, with DSTC, (i) regenerative relays might make
decision errors, so that the symbols transmitted from R could be affected by errors;
(ii) the links between S and D and between R and D do not have the same statisti-
cal properties, in general; (iii) even if S and R are synchronous, their packets might
arrive at D at different times, as S and R are not colocated. In the following, we will
address all these problems specifically.

We illustrate the proposed transmission protocol by referring to a TDD
scheme, but the same considerations could apply to an FDD mode. In a TDD sys-
tem, each frame is subdivided in consecutive time-slots: in the first slot S transmits
and R receives; in the second slot, S and R transmit simultaneously. We describe
the distributed space-time protocol within the following setup: (a1) all channels
are FIR of (maximum) order Lh and time-invariant over at least a pair of con-
secutive blocks; (a2) the channel coefficients are i.i.d. complex Gaussian random
variables with zero mean and variance 1/d2, where d is the link length; (a3) the
information symbols are i.i.d. BPSK symbols that may assume the values A or
−A with equal probability;7 (a4) the received data are degraded by additive white
Gaussian noise (AWGN); (a5) the channels are perfectly known at the receive side
and are unknown at the transmit side; (a6) the transmission scheme for all ter-
minals is blockwise, where each block is composed of M symbols, incorporating a
cyclic prefix of length L equal to the sum of the relative delay with which packets
from S and R arrive at D plus the maximum channel order Lh.

We will use the following notation. We denote with hsd, hsr , and hrd, the im-
pulse responses between S and D, S and R, and R and D, respectively. Each block of
symbols s(i) has size M and it is linearly encoded so as to generate the N-size vector
xs(n) := Fs(n), where F is the N ×M precoding matrix. A CP of length L ≥ Lh is
inserted at the beginning of each block to facilitate elimination of interblock inter-
ference, synchronization, and channel equalization at the receiver. A† denotes the
pseudo-inverse of A; �{x} indicates the real part of x; when applied to a vector,
�{x} is the vector whose entries are the real part of the entries of x.

D-OSTC, for frequency-selective channels, works as follows. During the first
time-slot, S sends consecutively, the two N-size information symbols blocks s(i)
and s(i+ 1). The blocks are linearly encoded using the precoding matrix F, so that
the corresponding transmitted blocks are xs(n) := Fss(n), with n = i, i + 1. Under
(a6), after removing the guard interval at the receiver, the N-size vectors yr(n)
received from R are

yr(n) = HsrFss(n) + wr(n), n = i, i + 1, (25.19)

6Thanks to the assumption that the relay nodes are not error-free, the probability of finding a
relay in the discovery phase increases with respect to the schemes that use a relay, only if it is error-free.

7Assumption (a3) is made only for simplifying our derivations, but there is no restriction to use
higher-order constellations.
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where wr(n) is the additive noise at the relay. Thanks to the insertion of the CP,
the channel matrix Hsr is N ×N circulant Toeplitz and it is diagonalized as Hsr =
WΛsrWH , where W is the N ×N IFFT matrix with {W}kl = e j2πkl/N /

√
N , whereas

Λsr is the N×N diagonal matrix, whose entries areΛsr(k, k)=∑Lh−1
l=0 hsr(l)e− j2πlk/N .

The relay node decodes the received vectors and provides the estimated vec-
tors ŝ(i) and ŝ(i + 1).

During the successive time-slot, S andR transmit simultaneously, using a block
Alamouti’s strategy [31]. More specifically, in the first half of the second time-slot,
S transmits xs(i+2) = α1Fs(i) and R transmits xr(i+2) = α2Fŝ(i+1). In the second
half, S transmits xs(i+ 3) = α1Gs∗(i+ 1) while R transmits xr(i+ 3) = −α2Gŝ∗(i).
To guarantee maximum spatial diversity, the two matrices G and F are related to
each other by G = JF∗, as in [31], where J is a time reversal (plus a one-chip cyclic
shift) matrix. If N is even, J has all null entries except the elements of position
(1, 1) and (k,N − k + 2), with k = 2, . . . ,N , which are equal to one. If N is odd, J
is the antidiagonal matrix. The two real coefficients α1 and α2 are related to each
other by α2

1 + α2
2 = 1. They are introduced in order to have a degree of freedom in

the power distribution between S and R, under a constraint on the total transmit
power. In Section 25.4.3, we will show how to choose α1 (and then α2) in order to
minimize the final average BER.

After discarding the CP and using (a1), the blocks received by D in the two
consecutive time-slots i + 2, and i + 3 are given by

yd(i + 2) = α1HsdFs(i) + α2HrdFŝ(i + 1) + wd(i + 2),

yd(i + 3) = α1HsdGs∗(i + 1) − α2HrdGŝ∗(i) + wd(i + 3),
(25.20)

where Hsd and Hrd refer to the channels between S and D and between R and D,
respectively. Exploiting, again, the diagonalizations Hsd = WΛsdWH and Hrd =
WΛrdWH , if we premultiply in (25.20) yd(i + 2) by WH and y∗

d (i + 3) by WT , we
get

WHyd(i + 2) = α1ΛsdF̃s(i) + α2ΛrdF̃ŝ(i + 1) + WHwd(i + 2),

WTy∗
d (i + 3) = α1Λ

∗
sdG̃∗s(i + 1) − α2Λ

∗
rdG̃∗ŝ(i) + WTw∗

d (i + 3),
(25.21)

where F̃ := WHF and G̃ := WHG. For the sake of simplicity, we assume that
OFDM is performed at both S and R nodes, so that N = M, F = W and thus
F̃ = IN and G = W. We also introduce the orthogonal matrix

Λ :=
(

α1Λsd α2Λrd

−α2Λ
∗
rd α1Λ

∗
sd

)
(25.22)

such that ΛHΛ := I2⊗Λ̄
2
, where Λ̄

2
:= α2

1|Λsd|2 +α2
2|Λrd|2 and ⊗ denotes the Kro-

necker product. We introduce also the unitary matrix8 Q := Λ(I2⊗Λ̄
−1

), satisfying

8We suppose that the channels do not share common zeros on the grid zq = e j2πq/N , with q

denoting an integer, so that Λ̄ is invertible.
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the relationships QHQ = I2N and QHΛ = I2 ⊗ Λ̄. Exploiting the above equalities
and multiplying the vector u := [(WHyd(i+ 2))T , (WTy∗

d (i+ 3))T]T by the matrix
QH , without compromising the decision optimality (because of the unitarity of
Q), we get

[
r(i)

r(i + 1)

]
:= QHu =

∣∣Λ̃sd

∣∣2 −Λ̃∗
sdΛ̃rd

Λ̃sdΛ̃
∗
rd

∣∣Λ̃sd

∣∣2

 s +

 ∣∣Λ̃rd

∣∣2
Λ̃

∗
sdΛ̃rd

−Λ̃sdΛ̃
∗
rd

∣∣Λ̃rd

∣∣2

 ŝ + w̄,

(25.23)

where s := [s(i)T , s(i + 1)T]T , ŝ := [ŝ(i)T , ŝ(i + 1)T]T , Λ̃sd := α1ΛsdΛ̄
−1/2

, Λ̃rd :=
α2ΛrdΛ̄

−1/2
, w̄ := [w̄T(i), w̄T(i + 1)]T = QH[wT(i + 2), wH(i + 3)]T . As expected,

the previous equations reduce to the classical block Alamouti equations, see for
example, [31], if the two transmit antennas use the same power, that is, α1 = α2,
and there are no decision errors at the relay node, that is, ŝ(n) ≡ s(n), n = i, i + 1.

Since QH is unitary, if w is white, w̄ is also white, with covariance matrix
Cw = σ2

nI2N . Furthermore, since all matrices Λ appearing in (25.23) are diagonal,
the system (25.23) of 2N equations can be decoupled into N independent systems
of two equations in two unknowns, each equation referring to a single subcarrier.
More specifically, introducing the vectors rk := [rk(i), rk(i+1)]T , sk := [sk(i), sk(i+
1)]T , ŝk := [ŝk(i), ŝk(i + 1)]T , and w̄k := [w̄k(i), w̄k(i + 1)]T , referring to the kth
subcarrier, with k = 0, . . . ,N − 1 (for simplicity of notation, we drop the block
index and we set Λ̃sd = Λ̃sd(k, k) and Λ̃rd = Λ̃rd(k, k)), (25.23) is equivalent to the
following system of equations:

rk =
∣∣Λ̃sd

∣∣2 −Λ̃∗
sdΛ̃rd

Λ̃sdΛ̃
∗
rd |Λ̃sd|2

 sk +

 ∣∣Λ̃rd

∣∣2
Λ̃∗
sdΛ̃rd

−Λ̃sdΛ̃
∗
rd

∣∣Λ̃rd

∣∣2

 ŝk + w̄k. (25.24)

Since the noise vector w̄k is also white with covariance matrix Cw = σ2
nI2N , and

there is no intersymbol interference (ISI) between vectors sk and rk corresponding
to different subcarriers, rk represents a sufficient statistic for the decision on the
transmitted symbols vector sk.

25.4.1. ML detector

We derive now the structure of the maximum likelihood (ML) detector at the final
destination. Besides the previous assumptions, we assume also that D has perfect
knowledge of the vector of error probabilities pe1 (k) and pe2 (k), k = 0, . . . ,N − 1,
occurring at the relay. This requires an exchange of information between R and D.
This information has to be updated with a rate depending on the channel coher-
ence time. Later on, we will show an alternative (suboptimum) detection scheme
that does not require such a knowledge.

We denote with S the set of all possible transmitted vectors sk and with pe1(k)
and pe2(k) the conditional (to a given channel realization) error probabilities, at
the relay node, on sk(1) and sk(2), respectively. After detection, at the node R, we
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have ŝk(l) = sk(l), with probability (1 − pel(k)), or ŝk(l) = −sk(l), with proba-
bility pel(k), l = 1, 2. Since the symbols are independent, the probability density
function of the received vector z, conditioned to having transmitted sk, is [32]

fz|sk
(

z|sk
) = 1

π2σ2
n

[(
1 − pe1(k)

)(
1 − pe2(k)

)
exp

{
−

∣∣z − Ak(1, 1)sk
∣∣2

σ2
n

}

+ pe1(k)pe2(k) exp

{
−

∣∣z − Ak(−1,−1)sk
∣∣2

σ2
n

}

+
(
1 − pe1(k)

)
pe2(k) exp

{
−

∣∣z − Ak(1,−1)sk
∣∣2

σ2
n

}

+ pe1(k)
(
1 − pe2(k)

)
exp

{
−

∣∣z − Ak(−1, 1)sk
∣∣2

σ2
n

}]
,

(25.25)

where Ak(θ1, θ2) is defined as follows:

Ak
(
θ1, θ2

) =
∣∣Λ̃sd

∣∣2
+
∣∣Λ̃rd|2θ1, Λ̃∗

sdΛ̃rdθ2 − Λ̃∗
sdΛ̃rd

Λ̃sdΛ̃
∗
rd − Λ̃sdΛ̃

∗
rdθ1,

∣∣Λ̃sd

∣∣2
+
∣∣Λ̃rd

∣∣2
θ2

 . (25.26)

Based on (25.25), the ML detector is

ŝk = arg max
sk∈S

{
frk|sk

(
rk|sk

)}
. (25.27)

Note that, thanks to the orthogonal space-time block coding strategy, the optimal
detector preserves the receiver’s simplicity, because under (a1)–(a6), the ML solu-
tion performs an exhaustive search only among four possible transmitted vectors
sk’s.

25.4.2. Suboptimum detector

The ML detector described above requires the knowledge, at the destination node,
of the set of error probabilities pe1(k) and pe2(k), with k = 0, . . . ,N − 1. If this
knowledge is not available, a suboptimum scalar detector can be implemented in-
stead of the ML detector. More specifically, the decision on the transmitted symbol
sk(n) can be simply obtained as

ŝ(n) = sign
{�[

r(n)
]}

, n = i, i + 1, (25.28)

where r(n) is given by (25.23). Note that for high SNR at the relay (i.e., when R
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makes no decision errors), the symbol-by-symbol decision in D becomes optimal
and thus, the decoding rule (25.28) provides the same performance as the optimal
receiver (25.27). When the decision errors at the relay side cannot be neglected,
the suboptimal receiver introduces a floor in the bit-error-rate (BER) curve, be-
cause the symbol-by-symbol decision (25.28) treats the wrong received symbols
as interference. The choice between the decoding rules (25.27) and (25.28) should
then result as a trade-off between performance and computational complexity,
taking into account the need for the ML detector to make available at the desti-
nation node the error probabilities of the relay node. We will show a comparison
between ML and suboptimum strategies in Section 25.4.4.

25.4.3. Power allocation between source and relays

While in conventional STC the transmit antennas typically use the same power
over all the transmit antennas, with DSTC it is useful to distribute the available
power between source and relay as a function of their relative position with respect
to the final destination, since they are not colocated. In this section, we show how
to distribute a given total power optimally between source and relay. We provide
first a closed-form analysis in the ideal case where there are no decision errors at
the relay, and then we will show some performance results concerning the real case
where the errors are taken into account.

25.4.3.1. Error-free S2R link

Under the assumption that there are no errors at the relay side, using the same
derivations introduced in Section 25.4, the optimal detector is a symbol-by-symbol
detector and the signal-to-noise ratio on the kth symbol in the nth block is

SNRk(n) = A2

σ2
n

(
α
∣∣Λsd(k, k)

∣∣2
+ (1 − α)

∣∣Λrd(k, k)
∣∣2

)
, (25.29)

for k = 1, . . . ,N and n = i, i + 1. The error probability for binary antipodal con-
stellation conditioned to a given channel realization is given by

Pe|h(k) = 1
2

erfc
(√

0.5 SNRk

)
, (25.30)

where SNRk is given by (25.29). For each subcarrier k, the signal-to-noise ratio
SNRk is given by the sum of two statistically independent random variables, each
one distributed according to a χ2 pdf with two degrees of freedom. Thus, using
(25.29) and (25.30), the BER Pb averaged over the channel realizations is given
by [25]

Pb = 1
2

γ2

γ2 − γ1

(
1 −

√
γ1

1 + γ1

)
+

1
2

γ1

γ1 − γ2

(
1 −

√
γ2

1 + γ2

)
, (25.31)
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where

γ1 := A2
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dαsd
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(1 − α)σ̃2
h

dαrd
, σ̃2

h = σ2
h

(
Lh + 1

)
. (25.32)

From (25.31), we infer that if the errors in the relay’s detection are negligible, D-
OSTC scheme achieves, as expected, the maximum available diversity gain, equal
to two. The optimum value of α can be found by minimizing (25.31). Since the
average BER (25.31) is a convex function with respect to α [32], the optimal value
of the minimization admits a unique solution.

It is straightforward to show that if D is equipped with nR antennas, the
achieved diversity gain is 2nR.

25.4.3.2. S2R link with errors

When the errors at the relay side are explicitly taken into account, it is not easy
to derive the performance of the optimal detector (25.27) in closed form. In this
case, it is interesting to check the performance of the suboptimal detector (25.28),
to quantify the loss with respect to the more complex but optimal detector (25.27).
In [32] a closed-form expression for the BER of the suboptimum scheme, in the
presence of relay decision errors, was derived. For a given total transmitted power
from S and R, we can optimize the power allocation between S and R, depending
on the relative distances between S, R, andD, in order to minimize the final average
BER. We address this issue in the following example.

Example 25.1 (optimal power allocation). We show the behavior of the final aver-
age BER as a function of the power allocation between S and R, depending on the
relative distances between S, R, and D. As an example, in Figure 25.4 we report the
average BER versus α, as defined in Section 25.4.3.2, for different values of the dis-
tance drd (and thus of SNRR) between R and D (all distances are normalized with
respect to the distance dsd between S and D). In Figure 25.4a, we consider the ideal
case where there are no errors at the relay node. The SNRD at the final destination
is fixed equal to 10 dB. We can observe that when dsd = drd = 1, the value of α that
minimizes the average BER is α = 0.5, that is, the two transmitters use the same
power. However, as R gets closer to D, the optimal α tends to increase, that is, the
system allocates more power to S, with respect to R. The reverse happens when drd
is greater than 1. Thus, as expected, the system tends to somehow put S and R in
the same conditions with respect to D, in order to get the maximum diversity gain.

The real case, where there are decision errors at the relay node, is reported as
an example in Figure 25.4b, where the average BER is again plotted as a function
of α, but for different values of the SNRR at the relay node. Interestingly, we can
observe that as SNRR decreases, the system tends to allocate less power to the relay
node (the optimal value of α is greater than 0.5) as the relay node becomes less and
less reliable.
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Figure 25.4. Average BER versus α: (a) no errors at R; (b) including errors at R.

25.4.4. Performance

In this section, we compare alternative cooperative strategies. We assume a block
length N = 32 and channel order L = 6. To make a fair comparison of the al-
ternative transmission schemes, we enforce all systems to transmit with the same
overall power. More specifically, if P is the total power radiated by the noncoop-
erative scheme, we denote by PI the power radiated by S during the first time-slot
and by αPII and (1 − α)PII the power spent respectively by S and R in the second
time-slot. Since the overall radiated power is always P , it must be P = PI + PII .
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The coefficient α is chosen in order to minimize the final average bit-error proba-
bility (25.31) (see also Example 25.1).9 The power PI is chosen in order to achieve
a required average SNRR at the relay, defined as SNRR := PI /σ2

nd
2
sr . All distances

in the network are normalized with respect to the distance dsd between S and D.

Example 25.2 (ML versus suboptimum detector). In Figure 25.5, we compare the
average BER obtained using alternative cooperative and noncooperative
schemes. The BER is averaged over 2000 independent channel realizations. All
curves are plotted versus the SNR in D, defined as SNRD := P /σ2

nd
2
sd. This is

also the SNR of the single-hop (noncooperative) case. The variance of the noise
at both R and D is unitary. In this example, we set dsr = 0.1 and drd = 0.9. The
results shown in Figure 25.5 are achieved via transmitting with a power PI , yield-
ing an average SNRR at the relay equal to 15 dB for all values of SNRD reported
in the abscissas. Since the noise power and SNRR are both fixed, increasing SNRD

means that PII increases. In Figure 25.5 we report, for the sake of comparison,
the average BER obtained with the following schemes: (i) the single-hop method
(dotted line); (ii) the ideal ML detector for O-DSTC scheme with no errors at the
relay (dashed and dotted line); (iii) the real ML detector incorporating the de-
cision errors at the relay (dashed line); (iv) the suboptimum scalar decoder for
O-DSTC scheme, showing both the theoretical average BER (solid line) and the
corresponding simulation results (circles), obtained using a zero-forcing detector
at the relay node. In Figure 25.5b we report the performance of the optimal versus
suboptimal detector, on real wideband channel measurements, kindly provided by
Professors A. Nix and M. Beach, University of Bristol. The data are collected in an
urban environment (the city of Bristol) in the band between 1920 and 1930 MHz.
We can observe a very good agreement between our theoretical derivations for the
suboptimum detector and the corresponding simulation results. The floor on the
BER of the suboptimum receiver is due to the decision errors at the relay node.
It is also interesting to notice, from Figure 25.5, that the suboptimum O-DSTC
scheme exhibits performance very close to the optimal O-DSTC ML detector at
low SNRD, that is, before the BER floor when the relay is relatively close to the
source. This indicates that the suboptimum detector is indeed a very good choice
under such a scenario, because it is certainly less complicated to implement than
the ML detector. Most important, differently from ML, the suboptimum scheme
does not require any exchange of information between R and D about the BER in
R. The price paid for this simplicity is that the R node must have a sufficiently high
SNR to guarantee that the BER of interest be above the floor. In Figure 25.5a we
have also reported the average BER (solid line with stars) obtained using a trans-
mission strategy for O-DSTC scheme, where instead of OFDM, in the S/R slot we
used a linear precoding method that insures minimum BER at the relay under the
assumption of adopting an (suboptimal) MMSE linear decoder (solid line with
stars). In such a case, we observe that with minimum additional complexity at the

9We use theoretical derivations, valid in the absence of errors at the relay, to simplify the strategy.
One could improve upon this choice by using the BER resulting in the presence of errors at the relay.
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Figure 25.5. Comparison between average BER versus SNRD (dB) achieved with different decision
schemes: single S-D link (dotted line); ideal ML (dashed-dotted line); real ML detector (dashed line);
suboptimum receiver: theoretical results (solid line) and simulation (circles); SNRR = 15 dB; (a)
Rayleigh channels; (b) real channel measurements.

relay, the performance of the suboptimal O-DSTC scheme becomes closer to the
ML decoder because of the lower BER at the relay.

Finally, looking at the slopes of the average BER curves of the ML O-DSTC
detector shown in Figure 25.5, it is worth noticing that in the absence of errors
at the relay, the cooperative scheme achieves full spatial diversity gain, provided
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that the relay can be used, as we have assumed in this section. In practice, there
are two reasons for the lack of full diversity gain. The first one is that in a network
where the relays are randomly spatially distributed, the probability of finding no
relay is not zero (see Section 25.2). The second one is that given a set of terminals
available as relays, because of the presence of decoding errors at the relay side, all
cooperative schemes exhibit an asymptotic average BER behavior proportional to
1/ SNRD. Nevertheless, there is a considerable coding gain which justifies the use
of cooperation. Indeed, a more attentive look at the results shows that the average
BER starts approaching the slope with maximum diversity, as far as the errors at
the relay are negligible with respect to the errors at the destination. Then, when
the errors at the relay become dominant, the final BER curve follows the 1/ SNR
behavior.

25.4.5. Choice of the constellation order in the source-relay slot

The other major critical aspect of cooperative schemes is their rate loss due to the
insertion of the S/R time-slot. As an example, if all the links would use a BPSK con-
stellation, the rate loss factor would be 1/2. To reduce this loss factor, we can use
higher-order constellations in the S/R link, with respect to the constellations used
in the other links, so that the duration of the S/R slot can be made smaller than the
duration of the other slots. In this section, we assume BPSK transmissions over all
links except the S/R link, where the constellation order is allowed to increase. More
specifically, using a constellation A of cardinality M = 2nb in the S/R link, the rate
loss factor is nb/(nb + 1). On the other hand, cooperation reduces the final BER
and then it induces a capacity increase. To quantify the overall balance in terms
of rate, we compared the maximum rate achievable by O-DSTC system with the
maximum rate achievable with a noncooperative scheme. We define as achievable
rate the maximum number of bits per symbol (bps) that can be decoded with an
arbitrarily low error probability, provided that sufficient error correction coding is
incorporated in the system, and conditioned to the assumptions (a1)–(a6).10 We
have shown in Section 25.4 that the combination of O-DSTC and OFDM makes
the overall time-dispersive channel equivalent to a set of parallel nondispersive
subchannels. The final S2D link over each subchannel, in the presence as well as in
the absence of the relay link, can always be made equivalent to a binary symmetric
channel (BSC) with crossover probability depending on the specific cooperative
(or noncooperative) scheme adopted. Thus, the maximum rate R(k|h) that can
be reliably transmitted over the kth subcarrier for a given channel realization h,
incorporating the rate loss due to the insertion of the S2R slot, is

R
(
k|h) = 1

1 + 1/nb
CBSC

(
Pe|h(k)

)
bps, (25.33)

10It is important to remark that the rate defined above is smaller than the capacity of the system,
because the proposed scheme is designed to maximize the spatial diversity gain and not to maximize
information rate.
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where Pe|h(k) denotes the binary error probability on the kth subcarrier, condi-
tioned to the channel realizations, CBSC(p) := 1+ p log2(p)+(1− p) log2(1− p) :=
1−H(p) is the capacity of a binary symmetric channel11 with crossover probability
p. From (25.33) we infer that, because of the S2R link, cooperative transmission
induces a systematic rate loss of nb/(nb + 1) with respect to the case of no cooper-
ation. But, at the same time, cooperation yields a smaller error probability Pe|h(k)
and thus a higher CBSC(Pe|h(k)). Then, we may expect a trade-off in the choice of
nb. This trade-off can be better understood through the following example.

Example 25.3 (rate and diversity gain). We report in Figures 25.6a and 25.6b the
achievable rate versus the SNRD in D for an SNRR in R equal to 15 and 3 dB, re-
spectively, for different choices of the constellation used in the S2R link, achieved
with or without cooperation. To preserve the receiver simplicity, zero-forcing
equalization and symbol-by-symbol detection are performed at the relay. We can
see that at high SNRD, the noncooperative case approaches the maximum value,
equal to 1 bps, whereas the cooperative cases tend to an asymptote less than 1 de-
pending on the constellation used in S2R slot. We observe from Figure 25.6a that
for SNRR = 15 dB, increasing the constellation order from BPSK to 16-QAM in
the S2R link improves the achievable rate; however passing from 16-QAM to 64-
QAM does not induce any further gain because of the higher BER at the relay. For
lower values of SNRR, that is SNRR = 3 dB for example, there is no appreciable
rate gain in increasing the constellation order because of the excessive BER at the
relay. Nevertheless, it is interesting to notice that at low/medium SNRD at the final
destination (within a range depending on SNRR), the cooperative case can out-
perform the noncooperative case also in terms of achievable rate, because the BER
decrease can more than compensate the rate insertion loss due to the S2R slot.

25.4.6. Synchronization

Besides errors at the relay node, one more distinguishing feature of DSTC is that
the cooperating transmit antennas are not colocated. This means that the packets
arriving at the final destination from source and relays might be asynchronous.
Interestingly, if the difference in arrival times τd is incorporated in the CP used
from both S and R, D is still able to get N samples from each received block with-
out interblock interference (IBI). In such a case, the different arrival time does not
cause any trouble to the final receiver. In fact, we take as a reference time the in-
stant when the ith block coming from R arrives at D. If the block coming from S
arrives with a delay of Ld samples, the only difference with respect to the case of
perfect synchronization is that the transfer function Λ̃sd(k) in (25.24) will be sub-
stituted by Λ̃sd(k)e− j2πLdk/N . From (25.24), it is clear that such a substitution does
not affect the useful term, as it only affects the interfering term. However, in the
hypothesis of Rayleigh fading channel, Λ̃sd(k) is statistically indistinguishable from

11We can use this formula because the S-D is always BPSK, regardless of the constellation used in
the S2R link.
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Figure 25.6. Achievable rate (bps) versus SNR (dB)—noncooperative case (solid line), cooperative
case using BPSK (circle marker), QPSK (star marker), 16-QAM (square marker), 64-QAM (“+”) in the
S2R link—(a) SNRR = 15 dB; (b) SNRR = 3 dB.

Λ̃sd(k)e− j2πLdk/N . Hence, the combination of Alamouti (more generally, orthogo-
nal STC) and OFDM is robust with respect to lack of synchronization between the
time of arrival of packets from S and from R (as long as (a6) holds true). The price
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paid for this robustness is the increase of the CP length L, which in turn, reflects
into a rate loss. However, this loss can be made small by choosing a blocklength
N much greater than L or by selecting only relays that are relatively close to the
source, so as to make the relative delay small.

25.5. Regenerative versus nonregenerative relays

In nonregenerative schemes, the relay node simply amplifies and retransmits the
received signal without performing any A/D conversion on the signal. Thus, A&F
can be useful to simplify the implementation of the relay because the relay of an
A&F system only needs to have an antenna and an RF amplifier.

Since no detection can be performed at the relay side in the A&F scheme,
the relay can only retransmit the received signal. Thus, in order to implement the
distributed version of Alamouti scheme, in the first time-slot S has to transmit
consecutively, the blocks −AsFs(i + 1) and AsGs∗(i).12 In the second time-slot S
transmits consecutively, AsFs(i) and then AsGs∗(i+ 1) and R sends Ar(−HsrFs(i+
1) + vR(i)) first and then Ar(HsrGs∗(i) + vR(i + 1)). The amplitude coefficients As

and Ar are used to impose the power available at the S and R nodes, respectively. In
the A&F case, differently from the D&F case, the coefficient Ar depends also on the
S2R channel as well as on the noise at the R node. Clearly, Ar changes depending
on which strategy is implemented in R.

Thanks to the combination of Alamouti’s coding and OFDM, the overall sys-
tems is equivalent to a series of N parallel channels. Proceeding as in Section 25.4
to obtain (25.24), the received symbol rk pertaining to the kth subcarrier in the ith
and (i + 1)th time-slots is given by13

rk =
[
gk 0
0 gk

]
sk + νk, (25.34)

where sk = [sk(i), sk(i + 1)]T , gk := A2
s |Λsd(k)|2 + A2

r |Λrd(k)|2|Λsr(k)|2, and νk is
a Gaussian vector with zero mean and diagonal covariance matrix Cν = σ2

ν I with
σ2
ν = (A2

r |Λrd(k)|2σ2
r + σ2

d )(A2
s |Λsd(k)|2 + A2

r |Λrd(k)|2|Λsr(k)|2).

Example 25.4 (comparison between A&F and D&F). In Figure 25.7, we compare
the average BER versus the SNRD at the destination node obtained using the fol-
lowing strategies: (a) decode-and-forward using ML detector (dashed line) or sub-
optimal detector: theoretical value (solid line) and simulation results (circles); (b)
amplify-and-forward (dashed-dotted line); (c) single-hop (noncooperative) case

12Differently from A&F scheme, in the D&F system there is no constraint on the sequence of
information blocks transmitted from the source node.

13We drop the block index i for simplicity of notation, because the same relationships hold true
for all blocks.
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Figure 25.7. Average BER versus SNRD (dB) achieved with different strategies: (a) decode-and-
forward using ML detector (dashed line) or suboptimal detector: theoretical value (solid line) and
simulation results (circles); (b) amplify-and-forward (dashed-dotted line); (c) single-hop (noncooper-
ative) case (dotted line); SNRR = 20 dB.

(dotted line). The block length is N = 16; the channels are simulated as FIR filters
of order Lh = 6, whose taps are i.i.d. complex Gaussian random variables with zero
mean and variance 1/d2. The SNRR at the relay is equal to 20 dB. Comparing the
D&F and A&F schemes, we observe that the D&F method performs better than
the A&F at low and intermediate SNRD values, but for high values of SNRD, the
A&F performs better. This shows that A&F is indeed a valuable choice.

25.6. Comparison among alternative STC techniques
in a multiuser context

In this section, we compare alternative DSTC strategies. We consider a cell of ra-
dius 300 m with Ntot = 200 total radio terminals located randomly. We consider
only the uplink channel and we assume that the base station (destination) has
two real antennas. Within the set of all radio terminals, N = 10 is the number of
sources, whereas the remaining nodes are potential relays. All channels are slowly-
varying, Rayleigh flat fading. The alternative strategies are compared enforcing the
same overall radiated energy and the same bit rate in the SR2D phase. In case of
cooperation, the energy includes the energy used to send data from the source to
the relays and the sum of the energy used by source and relay to transmit their data
to the destination. For each channel realization and radio nodes distribution, we
associate a relay to a source according to the protocol described in Section 25.3.4.
We have used a 16-QAM constellation for the conventional SISO system that acts
as a benchmark term, while for the DSTC schemes the following choices have been
made, in order to enforce the same bit rate in the SR2D phase.
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Figure 25.8. BER comparison of different DSTC schemes. Averages are presented over 5 realizations
of the terminals’ deployment, 10(×5) realizations of the active sources locations, 20(×10 × 5) channel
realizations (for each source). Block length Nb = 10; number of terminals = 200; number of active
sources = 10; α = 0.1.

(a) D-OSTC. As the symbol rate of the OSTC scheme is the same as an SISO
system, the constellation used is the same, both if the source finds a relay
and if it transmits alone. We have chosen 16-QAM so that each source
transmits 8 bits every 22 symbol intervals. Two symbol intervals are re-
served for the common S2R phase (TS2R = 2), hence also in this phase
16-QAM is adopted.

(b) D-BLAST. A 4-QAM constellation is used in case of cooperation and a
16-QAM constellation is used in case of no cooperation.

The cooperative case can use a lower-order constellation because a 2×2 D-BLAST
provides a higher transmission rate.

(c) D-FDFR. A 4-QAM constellation is used in case of cooperation and a
16-QAM constellation is used in case of no cooperation.

Also in this case, as with D-BLAST, the cooperative case can use a lower-order
constellation with respect to the noncooperative case.

The simulation results are reported in Figure 25.8. Throughout the simula-
tions, the power used in the S2R slot is one tenth of the power used in the non-
cooperative case. As explained in Section 25.2, this portion could be optimized. A
node is chosen as a relay if its SNIR, conditioned to the channel, exceeds a thresh-
old of 12.5 or 15 dB. Requiring an SNIR of 12.5 dB, a relay has been found with
probability pR(1) = 0.72, whereas for SNIR = 15 dB, we obtained pR(1) = 0.65.
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Clearly, increasing the target SNIR decreases the probability of finding a relay, but
at the same time, there are less decision errors at the relay. The overall perfor-
mance is then a combination of these two aspects. The average BER reported in
Figure 25.8 takes into account both situations where the relay has been found or
not. We can check from Figure 25.8 that indeed, by increasing the SNIR from 12.5
to 15, even though pr0 (1) decreases, the floor on the BER decreases by more than
a decade. Of course, this result is also a consequence of the relay density. Finally,
in the case of an SNIR of 15 dB, we can observe a gain of approximately 3 dB at
BER = 1.e − 4.

25.7. Conclusion

In conclusion, distributed space-time coding can be an important tool to reduce
the overall radiated power in wireless networks. We have considered here only the
case with two hops, but further improvements are expected in the multihop case.
The price paid for these advantages is the additional signaling required to coor-
dinate the transmission of source and relay nodes, an important issue which is
currently under investigation.
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Abbreviations

A&F Amplify-and-forward

AWGN Additive white Gaussian noise

BER Bit error rate

bps Bits per symbol

BPSK Binary phase-shift keying

CP Cyclic prefix

D Destination

D-BLAST Distributed BLAST

DCTS Distributed space-time coding

D&F Decode-and-forward

D-FRFD Distributed full-rate/full diversity

D-OSTC Distributed orthogonal STC

FIR Finite impulse response

FRFD Full-rate/full diversity

IBI Interblock interference

IFFT Inverse fast Fourier transform

i.i.d. Independent indentically distributed

ISI Intersymbol interference

MIMO Multi-input multi-output

MISO Multi-input single-output

ML Maximum likelihood
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OFDM Orthogonal frequency division multiplexing

OSTC Orthogonal STC

QAM Quadrature amplitude modulation

pdf Probability density function

R Relay

S Source

SISO Single-input single-output

SR2D Soure-relay to destination

S2R Source to relay

V-BLAST Vertical-BLAST

ZF Zero forcing
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26
Towards a better
understanding of the QoS
tradeoff in multiuser
multiple-antenna systems

Slawomir Stanczak and Holger Boche

26.1. Introduction

Future generations of wireless networks will have to support a wide range of ser-
vices having fundamentally different quality of service (QoS) requirements and
traffic characteristics. Moreover, the number of transmission links with high QoS
requirements is expected to surpass that of the traditional voice connections. As a
consequence, the problem of providing acceptable QoS to users will become one
of the central problems in wireless network design. This problem will be intensi-
fied by the physical limitation of the mobile radio propagation channel as well as
limitation of the bandwidth and the power.

Multiuser beamforming techniques have been seen as a remedy for this prob-
lem [1]. Power control and link scheduling are two other important mechanisms
to provide QoS to the users [2, 3, 4, 5]. For instance, scheduling strategies that
exploit the relative delay tolerance of data applications can be used to achieve per-
formance gains. Furthermore, channel-aware scheduling algorithms such as the
proportional fair algorithm for CDMA 1xEV-DO exploit channel fluctuations to
improve the throughput performance.

A key ingredient in the design of power control and link scheduling strate-
gies is the convexity of the feasible QoS region, which is defined as a set of all
QoS requirements that can be supported by a network with all users transmitting
concurrently (see [6, 7] and references therein). The convexity property opens the
door to a widely developed theory for characterizing optimal power control strate-
gies (see Figure 26.1). Moreover, the geometry of the feasible QoS region strongly
influences optimal scheduling strategies. This is particularly true for the feasible
rate region. It is easy to see that if the feasible rate region is a convex set, the ef-
fect on scheduling is to prefer simultaneous transmission of users (Figure 26.1). In
contrast, when the feasible rate region is not a convex set, a scheduling policy in-
volving a time-sharing protocol over subsets of simultaneously transmitting users
may improve the network performance [3, 8]. Note that in order to satisfy strict
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The feasible QoS region
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Figure 26.1. The convexity of the feasible QoS region opens the door to a widely developed theory for
identifying the optimal power control strategies.

QoS requirements, such protocols may require unacceptably high peak transmis-
sion powers.

In this chapter, we present sufficient conditions for the convexity of the fea-
sible QoS region in systems with and without power constraints. It is shown that
this set is convex if the signal to interference-plus-noise (SINR) at the output of
a linear receiver is a strictly monotone log-convex function of a QoS parameter
value. Recall that any positive function f is log-convex if log f is convex. Thus,
any positive log-convex function is always a convex one but not vice versa [9]. Two
important examples of log-convex functions are x → ex, x ∈ R, and x → 1/x, x > 0
(see Section 26.4.4 for applications). The log-convexity requirement is sometimes
too restrictive. Some important functions are convex but not log-convex. For in-
stance, the inverse function of x → log(1 + x), x ≥ 0, is x → ex − 1, x ≥ 0, which is
convex but not log-convex. This immediately raises the following question. Is the
log-convexity property necessary for the feasible QoS region to be a convex set? In
this chapter, we study this problem under the assumption that there are no power
constraints. In this case, the geometry of the feasible QoS region is determined by
the spectral radius of a certain nonnegative irreducible matrix whose entries de-
pend on QoS requirements. Consequently, if the spectral radius is a jointly convex
function of the QoS requirements, the feasible QoS region is a convex set. Now it
turns out that the log-convexity property mentioned above is necessary if the spec-
tral radius is required to be convex for any interference scenario. In contrast, when
confined to special interference scenarios, the log-convexity requirement can be
weakened to a less restrictive requirement.

26.2. System model

We consider a single-cell multiple-antenna system with a linear receiver struc-
ture. It is assumed that the base station alone uses a multielement antenna (with
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M antenna elements) to receive and transmit signals from and to the mobile. No
antenna arrays are considered for the mobile.

26.2.1. Base-to-mobile link

We first focus on the downlink scenario from the base station to K mobile users
being arbitrarily distributed in the cell. The data stream for each user, say user k, is
spread over the antenna array by the kth column of the matrix U = (u1, . . . , uK ) ∈
CM×K . The columns of U are referred to as beamforming vectors. Without loss of
generality, we assume that ‖uk‖2 = 1 for each 1 ≤ k ≤ K . Let1

p := (
p1, . . . , pK

) ≥ 0 (26.1)

denote power allocation, let the system noise for user k (excluding interference
from other users) be σ̃2

k > 0, and finally let h1, . . . , hK be the corresponding channel
signatures. In the downlink channel, there is a total power constraint in the sense
that the total transmission power of all users must be smaller than or equal to a
predefined value P > 0. Formally, we have p ∈ P where

P :=
{

x ≥ 0 : ‖x‖1 =
∑
k

xk ≤ P

}
(26.2)

is the set of all power allocations satisfying the total power constraint.
Now assuming a perfect instantaneous power control, SINR measured at the

antenna output of the kth receiver is given by (see also the foregoing chapter)

SINRk(U, p) = pkuH
k Rkuk∑K

l=1
l �=k

pluH
l Rkul + σ̃2

k

, 1 ≤ k ≤ K , (26.3)

where Rk, 1 ≤ k ≤ K is used to denote the spatial covariance matrix. If the channel
is slowly varying in the sense that the channel signatures remain constant within
the observation window, then Rk = hkhH

k , 1 ≤ k ≤ K , is a one-rank matrix. Oth-
erwise, if the channels are independent and rapidly time varying, Rk = E[hkhH

k ]
has a full rank.

26.2.2. Mobile-to-base link

In the uplink scenario, the antenna array acts as a linear receiver. We use the same
notation for the beamforming vectors, power allocation, and channel signatures as
before. In contrast to the downlink scenario, however, there are individual power

1If x is a vector in RK , the notations x > 0 and x ≥ 0 indicate that all coordinates of x are positive
or nonnegative, respectively. Similarly, if X is a real matrix, the notations X > 0 and X ≥ 0 indicate that
all entries of X are positive or nonnegative, respectively. R+ denotes the set of nonnegative reals.
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constraints on each user denoted by P1, . . . ,PK > 0. Hence, in this case, we require
that p ∈ Pi where

Pi := {
x ≥ 0 : xk ≤ Pk, 1 ≤ k ≤ K

}
. (26.4)

Moreover, we have

SINRk(U, p) = pkuH
k Rkuk∑K

l=1
l �=k

pluH
k Rluk + σ̃2

k

, 1 ≤ k ≤ K. (26.5)

Thus, unlike the downlink SINR, the uplink SINR depends on all channel signa-
tures.

26.2.3. Power control for fixed beamformers

The best system performance can be achieved only by jointly optimizing power
and beamforming vectors. The optimum is usually found by means of iterative al-
gorithms that alternately optimize a given function of SINRk(U, p), k = 1, . . . ,K ,
with respect to p ∈ P (or p ∈ Pi) and U with ‖uk‖2 = 1, 1 ≤ k ≤ K (see the pre-
ceding chapter and [2]). In this chapter, however, we consider a classical approach
of power control for fixed beamformers. Due to its simplicity, this approach may
be interesting for some practical systems. For instance, one reasonable choice is
uk = hk, 1 ≤ k ≤ K , in which case beamforming vectors are matched to channel
signatures.

If beamforming vectors are fixed, then there is, except for the power con-
straints, no substantial difference between the downlink and uplink scenarios.
Thus, it is reasonable to rewrite SINR so as to include both scenarios. To this end,
define Vk,l ≥ 0 and σ2

k ≥ 0 as

Vk,l =


uH
l Rkul downlink,

uH
k Rluk uplink,

σ2
k = σ̃2

k

Vk,k
, (26.6)

respectively. Moreover, let vk,l ≥ 0 be the interference factor defined to be

vk,l =

Vk,l

Vk,k
, l �= k,

0, l = k.
(26.7)

Using these definitions, we can write (26.3) and (26.5) as

SINRk(p) := SINRk(U, p) = pk∑K
l=1 plvk,l + σ2

k

, 1 ≤ k ≤ K , (26.8)

where the interference factor vk,l depends on the transmission scenario under con-
sideration and the beamforming matrix U with ‖uk‖2 = 1, 1 ≤ k ≤ K , is arbitrary
but fixed.
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Note that since vk,l = 0 if k = l, there is no self-interference in (26.8). How-
ever, we point out that most of the results hold if vk,k = ck > 0 for some positive
constant ck proportional to the self-interference level at the receiver output. In fact,
in Section 26.6, we implicitly assume that vk,k > 0 for each 1 ≤ k ≤ K .

26.2.4. Quality of service and SINR

We assume that there is a one-to-one relationship between SINR given by (26.8)
and a certain QoS parameter of interest. To be more specific, let Qk ∈ G, k =
1, . . . ,K , be given QoS parameter values where G denotes any interval on the real
line. Then, by assumption, there exists a bijective function ϕ : R+ → G (called QoS
function) so that

Qk = ϕ
(
SINRk

)
, 1 ≤ k ≤ K. (26.9)

For instance, if the linear receiver is followed by single-user decoders, one for each
user, the information theoretic rate is a logarithmic function of SINR so that in this
case ϕ(x) = log(1 + x), x > 0. Common examples of QoS parameters are the data
rate and service delay, but other QoS parameters such as the effective spreading
gain have been also considered in the literature [10]. Note that in general, the
function ϕ depends on the desired bit error rate.

Due to the bijectivity of ϕ, we know that there is a certain quality of service
for the users if

ϕ
(
SINRk

) ≤ qk if ϕ is strictly decreasing,

qk ≤ ϕ
(
SINRk

)
if ϕ is strictly increasing

(26.10)

for each 1 ≤ k ≤ K , where q1, . . . , qK ∈ G are given real numbers referred to as
QoS requirements. We can rewrite (26.10) to obtain

0 < γ
(
qk

) ≤ SINRk(p), 1 ≤ k ≤ K , (26.11)

or, equivalently,

1 ≤ min
1≤k≤K

SINRk(p)
γ
(
qk

) , (26.12)

where γ : G→ R+ is referred to as the inverse QoS function, that is, we have

γ
(
ϕ(x)

) ≡ x, x > 0. (26.13)

The positive real numbers γ(q1), . . . , γ(qK ), referred to as SINR requirements, can
be interpreted as the minimum SINR levels necessary to satisfy the QoS require-
ments. In order to simplify the notation, sometimes we write γk := γ(qk),
1 ≤ k ≤ K .
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One of the central problems in communications network design is the prob-
lem of admissibility [5]. Here, the question is whether or not there exists a power
allocation p ≥ 0 for which (26.12) holds. If such a power allocation exists, we say
that q := (q1, . . . , qK ) ∈ GK is feasible. The set of all feasible QoS vectors q is called
the feasible QoS region. Note that the feasible QoS region is parameterized by the
inverse QoS function γ. Moreover, it is important to emphasize that these defini-
tions assume a concurrent transmission of all users (no time-sharing protocol).

26.3. The optimal power allocation and the feasible QoS region

If there are no power constraints, a necessary and sufficient condition for the vec-
tor q ∈ GK to be feasible immediately follows from (26.12) by taking the supre-
mum of the right-hand side with respect to p ≥ 0. To be precise, the QoS vector q
is feasible if and only if

1 < sup
p≥0

min
1≤k≤K

SINRk(p)
γ
(
qk

) . (26.14)

We point out that unlike some other strategies, (26.14) ensures that all users meet
their individual QoS requirements provided that they are feasible. The price for
this is that the cost function is not continuously differentiable so that smooth op-
timization methods such as the gradient method cannot be used to solve this prob-
lem. However, we can rewrite (26.14) in terms of the spectral radius of a certain
nonnegative matrix. To this end, let V = (vk,l) ∈ RK×K

+ be the interference matrix
and Γ(q) := diag(γ(q1), . . . , γ(qK )). Now if V is irreducible,2 we know from the
Perron-Frobenius theory that q ∈ GK is feasible if and only if [5, 11]

ρ(q) < 1, (26.15)

where ρ(q) is the spectral radius (the Perron root) of Γ(q)V. Consequently, if there
are no power constraints, the feasible QoS region Fγ ⊂ GK is

Fγ = {
q ∈ GK : ρ(q) < 1

}
. (26.16)

In Section 26.7, we investigate the complement of Fγ in GK , which is called the
infeasible QoS region and is denoted by Fcγ = GK \ Fγ.

Recall that a matrix A ∈ RK×K
+ is said to be reducible if there exists a permu-

tation matrix P such that PTAP = ( X Y
0 Z ) where X and Z are both square matrices.

Otherwise, A is said to be irreducible. In a special case, when all nondiagonal el-
ements of V are positive, Γ(q)V is irreducible. A comprehensive reference on the
Perron-Frobenius theory and its application is [11].

When users operate under some power constraints, inequality (26.14) or,
equivalently, (26.15) is not sufficient anymore. This is because we additionally

2There is no loss in generality in assuming that V is irreducible since otherwise the problem
decomposes into small problems of the same type [10].
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need to satisfy the power constraints. First we consider the downlink scenario.
In this case, the right-hand side of (26.12) attains its maximum on P defined by
(26.2). Consequently, with a total power constraint assumed, q ∈ GK is feasible if
and only if

1 ≤ max
p∈P

min
1≤k≤K

SINRk(p)
γ
(
qk

) . (26.17)

This max-min problem can be reformulated in terms of the minimum total power
Pm : Fγ → R+ defined to be [12]

Pm(q) := min
p∈RK

+
γ(qk)≤SINRk(p), 1≤k≤K

‖p‖1 < +∞. (26.18)

Now it is easy to see that (26.17) is satisfied if and only if the minimum total power
Pm(q) < +∞ exists and satisfies the total power constraint:

Pm(q) ≤ P. (26.19)

Thus, the feasible QoS region under a total power constraint Fγ(P) is given by

Fγ(P) = {
q ∈ GK : Pm(q) ≤ P

}
. (26.20)

Note that Pm(q) is the minimum total power for which all users satisfy their QoS
requirements. Any power allocation p∗ := p∗(q) ≥ 0 with

∥∥p∗∥∥
1 = Pm(q) < +∞ (26.21)

is called optimal. It may be easily verified [13] that if ‖p∗‖1 = Pm(q), then

γ
(
qk

) = SINRk
(

p∗), 1 ≤ k ≤ K. (26.22)

Using (26.8), we can rewrite this to obtain

p∗
k − γk

K∑
l=1

p∗
l vk,l = σ2

k γk, 1 ≤ k ≤ K. (26.23)

In the matrix form, this becomes

(
I − Γ(q)V

)
p∗ = Γ(q)C1, (26.24)

where 1 denotes the vector of K ones and C := diag(σ2
1 , . . . , σ2

K ). Consequently, the
vector p∗ = p∗(q) must be a positive solution to (26.24). By the Perron-Frobenius
theorems [11, Theorem 1.5 and Theorem 2.1], there exists a positive solution to
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(26.24) if and only if (26.15) holds. Furthermore, the solution is unique and given
by

p∗(q) = (
I − Γ(q)V

)−1
Γ(q)C1. (26.25)

Consequently, if ρ(q) < 1 is true, then the minimum total power Pm(q) < +∞
exists and

Pm(q) = 1T
(

I − Γ(q)V
)−1

Γ(q)C1. (26.26)

Now we consider the uplink channel. Clearly, under individual power con-
straints, q ∈ GK is feasible if and only if

1 ≤ max
p∈Pi

min
1≤k≤K

SINRk(p)
γ
(
qk

) , (26.27)

where Pi is given by (26.4). The following lemma provides everything we need for
identifying the feasible QoS region [6].

Lemma 26.1. Inequality (26.27) is satisfied if and only if (26.25) exists and
p∗
k (q)≤Pk for each 1 ≤ k ≤ K .

Thus, by Lemma 26.1, it is sufficient to find the optimal power allocation (if
exists), and then verify whether or not the power allocation satisfies individual
power constraints. As an immediate consequence of this, the feasible QoS region
under individual power constraints is

Fγ
(
P(i)) = {

q ∈ GK : p∗
k (q) ≤ Pk

}
. (26.28)

26.4. Convexity of the feasible QoS region: sufficient conditions

In this section, we provide sufficient conditions for the convexity of the feasible
QoS region.

26.4.1. Systems with no power constraints

First we show that the spectral radius is jointly log-convex if γ defined by (26.13)
is log-convex. Note that the log-convexity is stronger than the ordinary convexity
and both imply the convexity of the feasible QoS region. Indeed, since the loga-
rithmic function is concave, it is easy to see that any positive log-convex function
is a convex one but not vice versa [9]. More precisely, if f : R → R+ is log-convex,
then, for all x̂, x̌ ∈ R and α ∈ [0, 1],

f
(
(1 − α)x̂ + αx̌

) ≤ f (x̂)1−α f (x̌)α

≤ (1 − α) f (x̂) + α f (x̌)

≤ max
{
f (x̂), f (x̌)

}
.

(26.29)
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In what follows, let q̂ = (q̂1, . . . , q̂K ) ∈ GK and q̌ = (q̌1, . . . , q̌K ) ∈ GK be two
arbitrary vectors of QoS requirements. Moreover, given q̂, q̌ ∈ GK , define q(α) ∈
GK with α ∈ [0, 1] as

q(α) = (1 − α)q̂ + αq̌. (26.30)

The key ingredient in the proof of the main result is the following lemma [14].

Lemma 26.2. Let X ∈ RK×K
+ be irreducible. Then,

log ρ(X) = sup
A∈S

( K∑
k,l=1

ukak,l log
xk,l

ak,l

)
, (26.31)

where S := S(X) is a set of all stochastic matrices so that ak,l = 0 whenever xk,l =
0 for each A ∈ S and u = (u1, . . . ,uK ) is the left Perron eigenvector of A with∑K

k=1 uk = 1. The supremum in (26.31) is attained if and only if ak,l = xk,lwl/
(wkρ(X)), where w = (w1, . . . ,wK ) is a positive right eigenvector of X, that is, Xw =
wρ(X).

By Lemma 26.2, if X = Γ(q)V and γ is log-convex, then each sum term, say
term (k, l), on the right-hand side of (26.31) is a convex function of qk. Thus,
since the sum of convex functions is convex and sup( f + g) ≤ sup f + sup g for
any positive functions f and g, the left-hand side of (26.31) is a convex function
of q = (q1, . . . , qK ). This gives rise to the following theorem.

Theorem 26.3. Suppose that V is irreducible. If γ : G → R+ defined by (26.13)
is log-convex, then the spectral radius ρ : GK → R+ is jointly log-convex. In other
words, if

γ
(
(1 − α)x̂ + αx̌

) ≤ γ(x̂)1−αγ(x̌)α (26.32)

for all x̂, x̌ ∈ G and α ∈ [0, 1], then

ρ
(

q(α)
) ≤ ρ(q̂)1−αρ(q̌)α (26.33)

holds for all q̂, q̌ ∈ GK and α ∈ [0, 1].

Thus, by Theorem 26.3 and (26.29), we can conclude that if q̂ and q̌ are feasi-
ble and γ is log-convex, then ρ(q(α)) ≤ max{ρ(q̂), ρ(q̌)} < 1,α ∈ [0, 1], is feasible
as well. We summarize this observation in a corollary.

Corollary 26.4. If V is irreducible and γ : G → R+ is log-convex, then Fγ is a convex
set.
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26.4.2. Systems with a total power constraint

Corollary 26.4 does not carry over to systems with power constraints. This is be-
cause (26.15) is necessary but not sufficient for the QoS vector q to be feasible. For
this reason, in [12], we proved the following result.

Theorem 26.5. If γ : G → R+ is log-convex, then Pm : Fγ → R+ is jointly log-convex
so that

Pm
(

q(α)
) ≤ Pm(q̂)1−αPm(q̌)α (26.34)

for all q̂, q̌ ∈ Fγ and α ∈ [0, 1].

As in Theorem 26.3, Theorem 26.5 requires that γ is log-convex. It is worth
pointing out that in contrast to systems without power constraints, there is no
need for V to be irreducible. An immediate consequence of Theorem 26.5 is the
following corollary.

Corollary 26.6. If γ : G→ R+ is log-convex, then Fγ(P) is a convex set.

26.4.3. Systems with individual power constraints

A trivial but important observation is that if p∗
k (q) was jointly log-convex for each

1 ≤ k ≤ K , then Fγ(P(i)) would be a convex set since the intersection of convex
sets is convex. To see that p∗

k (q) is jointly log-convex if γ is log-convex, note that

p∗
k (q) = eTk

(
I − Γ(q)V

)−1
Γ(q)C1, 1 ≤ k ≤ K , (26.35)

where ek = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector with a 1 in the kth position and
zeros elsewhere. Comparing this with (26.26) reveals that instead of the vector of
K ones, we have the unit vector ek. Consequently, proceeding essentially as in the
proof of Theorem 26.5 proves the following theorem.

Theorem 26.7. If γ : G→ R+ is log-convex, then Fγ(P(i)) is a convex set.

In fact, if p∗
k (q) is jointly log-convex, so is

∑
k wk p

∗
k (q) for any positive co-

efficients w1, . . . ,wK since the sum of positive log-convex functions is log-convex.
Finally, we point out that the same reasoning as above shows that if the function
γ is log-convex, the feasible QoS region under both individual power constraints
and a total power constraint is a convex set. Figure 26.2 depicts the feasible QoS
region for two users and ϕ(x) = γ(x) = 1/x, x > 0.

26.4.4. Applications

All the results above hold provided that the function γ : G → R+ is log-convex.
Thus, there are at least two interesting applications of these results.
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Figure 26.2. An example of the feasible QoS region Fγ(P(i)) under individual power constraints.

(1) ϕ(x) = log(x), x > 0, in which case γ(x) = exp(x), x ∈ G = R. Obvi-
ously, the exponential function is log-convex on R since (log exp(x))′′ = x′′ = 0
for all x ∈ R.3 Thus, by Theorems 26.3 and 26.5, the spectral radius ρ(q) and the
minimum total power Pm(q) are both log-convex functions when SINR require-
ments are expressed in logarithmic scale (for instance in decibels). Furthermore,
by Corollaries 26.4 and 26.6, the corresponding feasible log-SINR regions are con-
vex sets. This case is of practical interest since if SINRk(p) � 1, then

log
(
1 + SINRk(p)

) ≈ log
(
SINRk(p)

)
. (26.36)

Consequently, in systems in which the rate-power curve for each user, say user k, is
given by α log(1+βSINRk(p)) for some arbitrary positive constants α and β, the set
of feasible rates at large values of SINR is a convex set. The logarithmic rate-power
curve can be approximated by a piecewise constant rate-power curve determined
by different QAM modulation schemes designed for a given bit error probability
[15].

(2) ϕ(x) = 1/x, x > 0, so that γ(x) = 1/x, x > 0. Since (log(1/x))′′ = 1/x2 > 0
for all x > 0, the function γ(x) = 1/x, x > 0, is log-convex on G = R+. Thus,
if γ(x) = 1/x, x > 0, the spectral radius and the minimum total power are log-
convex. Furthermore, the feasible inverse-SINR regions are convex sets. Now con-
sider a system with random packet arrivals and transmission rate for user k given
by W log2(1 + SINRk(p)) bits per second where W denotes a total bandwidth. If
λk < W log2(1 + SINRk(p)) is the packet arrival rate (expressed in bits/s) of user k,
then the average customer delay is often well approximated by [16]

1
W log2

(
1 + SINRk(p)

)− λk
≈ 1

WSINRk(p) − λk
, SINRk(p) � 1. (26.37)

Note that if SINRk(p) � 1, log2(1+SINRk(p)) ≈ SINRk(p) is a reasonable approx-
imation for the rate-power curve [3]. Consequently, at low values of SINR, the set

3( f (x))′′ denotes the second derivative of f (x) with respect to x.
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Figure 26.3. The minimum total power Pm(q(α)) as a function of α ∈ [0, 1] for some given q̂ and q̌.
We have vk,l > 0, 1 ≤ k, l ≤ K , k �= l.
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Figure 26.4. The feasible log-SINR region for a 2-user system with different total power constraints P.

of feasible delays can be assumed to be convex. Finally, we point out that the effec-
tive spreading gains of the users considered in [10] are also inversely proportional
to SINR.

Figure 26.3 depicts Pm(q(α)) as a function of α ∈ [0, 1] for three examples
of the function γ corresponding to the following QoS functions: ϕ(x) = log(x),
x > 0, ϕ(x) = 1/x, x > 0, and ϕ(x) = log(x/(1 + x)), x > 0, where the latter one
is the effective bandwidth expressed in logarithmic scale [17]. Figure 26.4 shows
the feasible log-SINR regions (ϕ(x) = log(x), x > 0) for different total power
constraints.

26.4.5. Necessity of the log-convexity

The above results provide sufficient conditions for the feasible QoS region to be a
convex set. In fact, they provide more than that. From Theorem 26.3, we know that
if γ : G → R+ is log-convex, then the spectral radius ρ(q) is a jointly log-convex
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function of the QoS requirements. However, for the feasible QoS region to be a
convex set, it is not necessary that the spectral radius is log-convex. This gives rise
to the following problem.

Problem 26.8. Let K > 1 be arbitrary. Suppose that the Perron root ρ(q) is jointly
convex on GK for any irreducible matrix V ≥ 0. Is the inverse QoS function γ :
G→ R+ log-convex?

The theorem below shows that if γ is at least twice differentiable, the answer
is that this function is indeed log-convex.

Theorem 26.9. Let K > 1 be arbitrary and let γ : G → R+ be twice differentiable.
Suppose that ρ(q) is convex on GK for any irreducible interference matrix V. Then, γ
is log-convex on G.

Note that if γ : G : R+ is twice differentiable, a necessary and sufficient condi-
tion for γ to be log-convex is [9]

γ′(x)2 ≤ γ(x)γ′′(x), x ∈ G. (26.38)

It should be emphasized that, by Theorem 26.9, the function γ needs to be log-
convex if the spectral radius is required to be convex for any interference matrix
V ≥ 0. This is not true if V is fixed, in which case the requirement on γ may be
less restrictive. For instance, if the linear receiver is followed by single-user de-
coders, one for each user, then the information theoretic rate is proportional to
log(1 + SINR) nats per channel use. In this case, the QoS function and its inverse
are ρ(x) = log(1 + x), x > 0, and γ(x) = ex − 1, respectively. Unlike the expo-
nential function, the map x → ex − 1 is not log-convex since (log(ex − 1))′′ =
−1/4(csch(x/2))2 < 0, x > 0, where csch(x) denotes the hyperbolic cosecant of x.
However, despite the fact that γ(x) = ex − 1 is not log-convex, it may be easily
verified that the feasible QoS region becomes convex for sufficiently small entries
of the interference matrix V.

26.5. Symmetric interference matrices

When confined to certain classes of interference matrices, the inverse QoS function
γ does not need to be log-convex in order to obtain a convex feasible QoS region.
Symmetric matrices constitute an important class of such matrices.

The following theorem provides a necessary and sufficient condition for the
spectral radius to be a convex function of the QoS requirements.

Theorem 26.10. Let Fγ : G2 → R+ be defined as

Fγ(x, y) :=
√
γ(x)γ(y). (26.39)
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Then, the spectral radius ρ(q) is convex on GK for any irreducible symmetric matrix
V if and only if Fγ : G2 → R+ is jointly convex on G2.

The necessary condition is easily derived by considering the 2-user case with

V =
(

0 �
� 0

)
and ρ(q) =

√
γ(q1)γ(q2)�. Thus, Fγ defined above must be a jointly

convex function on G2 for the spectral radius to be jointly convex. To see the con-
verse, note that for any symmetric matrix V,

ρ
(

q(α)
) = ρ

(
W(α)

)
, α ∈ [0, 1], (26.40)

where W(α) := Γ1/2(q(α))VΓ1/2(q(α)). The entries of W(α) are

wk,l(α) =
√
γ
(
qk(α)

)
vk,l

√
γ
(
ql(α)

) = Fγ
(
qk, ql

)
vk,l . (26.41)

Hence, by the joint convexity of Fγ,

wk,l(α) ≤ (1 − α)F
(
q̂k, q̂l

)
vk,l + αF

(
q̌k, q̌l

)
vk,l, α ∈ [0, 1], (26.42)

and the converse immediately follows from the monotony of the spectral radius.
Also, it is easy to see that the spectral radius is strictly convex if and only if Fγ
defined above is strictly convex.

26.6. Positive semidefinite interference matrices

Positive semidefinite matrices form another important class of interference ma-
trices. Observe that if trace(V) = 0, then the interference matrix V is always in-
definite. Roughly speaking, the interference matrix becomes positive semidefinite
when the diagonal entries of the matrix are dominant, which is the case in systems
with relatively strong self-interference.

Now assume that V ≥ 0 is positive semidefinite. Then, there exist a unitary
matrix U and a diagonal matrix Λ ≥ 0 so that V = UΛUH . Furthermore, we have

ρ(q) = λmax
(
Γ(q)1/2VΓ(q)1/2), (26.43)

where λmax(Γ(q)1/2VΓ(q)1/2) is the largest eigenvalue of Γ(q)1/2VΓ(q)1/2. Using el-
ementary algebra, these basic observations lead to the following theorem.

Theorem 26.11. Suppose that V ≥ 0 is positive semidefinite and γ : G → R+ is any
convex function. Then, ρ(q) is jointly convex on GK .

As an immediate consequence of the theorem, we know that Fγ is a convex set
if V is positive semidefinite and γ : G → R+ is a convex function. In particular,
we can conclude that Fγ is convex when γ(x) = x, x > 0. This case is of particular
interest and is considered in Section 26.7.



S. Stanczak and H. Boche 535

q2

q1

Fγ

zH (Γ−1(q) − V)z = 0

�c(z)

Figure 26.5. The feasible SINR region for a positive semidefinite interference matrix.

Note that due to (26.43), the feasibility region is given by

Fγ = {
q : λmax

(
Γ1/2(q)VΓ1/2(q)

)
< 1

}
. (26.44)

Thus, since λmax(Γ1/2(q)VΓ1/2(q)) < 1 if and only if λmin(Γ−1(q) − V) > 0 or,
equivalently, if and only if

0 < zH
(
Γ−1(q) − V

)
z (26.45)

for all z ∈ RK , we can write

Fγ =
⋂

z∈RK

M(z) =
( ⋃

z∈RK

Mc(z)

)c

, (26.46)

where Mc(z) is used to denote the complement of M(z) in GK and

M(z) := {
q : zH

(
Γ−1(q) − V

)
z > 0

}
. (26.47)

Thus, given an arbitrary positive semidefinite matrix, the feasible QoS region,
which by Theorem 26.11 is a convex set for any convex function γ, can be rep-
resented as the intersection of the sets M(z) with respect to all vectors z ∈ RK .
This is illustrated in Figure 26.5 for γ(x) = x, x > 0. It is important to notice
that although M(z) are not convex in general, the intersection of these sets yields
a convex set for any convex function γ. Finally, note that Mc(z) is a convex set if
γ(x) = x, x > 0 (see Figure 26.5). This immediately follows from (26.45) whose
right-hand side is

zHΓ−1(q)z − zHVz =
∑
k

∣∣zk∣∣2

γ
(
qk

) − zHVz. (26.48)

Clearly, this function is convex if γ(x) = x, x > 0, so that Mc(z) as the sublevel set
of this function with respect to the zero value must be a convex set for any fixed z.
The linear case γ(x) = x, x > 0, is of great practical interest, and hence is separately
considered in the next section.
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Figure 26.6. The feasible SINR region with SNR = 1 and � = 1/2.

26.7. The feasible and infeasible SINR regions

Unfortunately, since γ(x) = x, x > 0, is not log-convex, the results of Section 26.4
do not apply to this linear case. Note that if γ(x) = x, x > 0, SINR is itself the
QoS parameter of interest and Fγ, Fγ(P), and Fγ(P(i)) are sets of all feasible SINR
requirements referred to as feasible SINR regions. Throughout this section, we
drop the subscript γ and write F, F(P), and F(P(i)) while referring to the feasible
SINR regions. The complements of these sets in GK are called the infeasible SINR
regions and are designated by the superscript “c.” For instance, Fc = GK \ F.

Since γ(x) = x, x > 0, is convex, Theorem 26.11 implies that the feasible SINR
region is convex when V is positive semidefinite. Otherwise, there is little known
about the feasible SINR region. In what follows, we assume that trace(V) = 0 so
that V cannot be positive semidefinite. We conjecture that the infeasible SINR re-
gions Fc and Fc(P) are convex sets when trace(V) = 0 [12]. The consequences of
this conjecture (if true) are far-reaching. Indeed, if this conjecture were true, the
optimal scheduling for the downlink scenario in the low SINR regime would in-
volve a simple time-sharing protocol between different users transmitting at the
maximal power (see also Figure 26.6). In contrast, in the uplink scenario (individ-
ual power constraints), neither the feasible nor infeasible SINR region is convex
(see Figure 26.7). Thus, in this case, a more sophisticated time-sharing protocol
between groups of several users may help improve the system performance.

26.7.1. An upper bound

As log ρ(q) depends logarithmically on the SINR requirements and γ(x) = x,
x > 0, is a log-concave function, one might be inclined to prove the conjec-
ture mentioned above by showing that the spectral radius is log-concave. How-
ever, because of the supremum operator in (26.31), this approach must fail. This
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Figure 26.7. The feasible SINR region under individual power constraints.

is because exchanging the supremum and sum operator always yields an upper
bound instead of a lower bound that would be necessary for proving the log-
concavity property.

The problem is left open. In [6], we derived the following upper bound, which
supports the conjecture for systems without power constraints.

Theorem 26.12. Let V ≥ 0 be irreducible. If q1, . . . , qK are feasible, then

K∏
l=1

(
γ
(
ql
))xl yl < 1

ρ(V)
, (26.49)

where y and x with xTy = 1 are positive left and right eigenvectors of V, respectively.

The bound leads to a superset of the feasible QoS region, and in particular to
the feasible SINR region if γ(x) = x, x > 0. It is easy to see that the complement
of this superset is a convex set. Obviously, this result does not solve the original
problem but the bound provides a convenient necessary condition for the feasi-
bility of QoS requirements. Furthermore, (26.49) gives a useful insight into the
optimal QoS tradeoff.

The bound in (26.49) still requires the computation of both the spectral radius
and the corresponding eigenvectors. When all nondiagonal elements of V are pos-
itive, this computation can be avoided completely at the expense of tightness of the
bound. To see this, observe that if all nondiagonal elements of V are positive, then
the matrix A in (26.31) can be chosen to be ak,l = 1/(K − 1) if k �= l and zero oth-
erwise. Thus, since the corresponding Perron eigenvector is u = (1/K , . . . , 1/K),
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we obtain

log ρ(q) ≥ 1
K(K − 1)

∑
k,l
k �=l

log vk,l + log(K − 1) +
1
K

K∑
l=1

log γ
(
ql
)
. (26.50)

Now due to (26.15), we conclude that if q1, . . . , qK are feasible, then

K∏
l=1

(
γ
(
ql
))1/K

<
1

(K − 1)
∏K

k,l=1
k �=l

(
vk,l

)1/K(K−1) . (26.51)

Note that neither the spectral radius of V nor the corresponding eigenvectors ap-
pear in (26.51).

26.7.2. The 2-user case

To illustrate some of the results, we consider a simple 2-user system. In this case,
the minimum total power can be explicitly computed to give

Pm(q) = σ2 γ
(
q1

)
+ γ

(
q2

)
+ 2�γ

(
q1

)
γ
(
q2

)
1 − �2γ

(
q1

)
γ
(
q2

) , (26.52)

where, without loss of generality, we assumed that � = v1,2 = v2,1 and C = (σ2, σ2).
The characteristic polynomial for the matrix Γ(q)V is p(λ) = λ2 − �2γ(q1)γ(q2).
Hence, Pm < +∞ exists if and only if

ρ(q) = �
√
γ
(
q1

)
γ
(
q1

)
< 1. (26.53)

Thus, since ρ(q) is concave on G2 if γ(x) = x, x > 0, the infeasible SINR region in
the 2-user case is a convex set. This is also true if there is a total power constraint.
To see this, let γ(x) = x, x > 0, and qk = γ(qk). We need to show that Pm(q) = P
or, equivalently,

q2
(
q1

) = SNR−q1

1 + 2�q1 + �2q1 SNR
(26.54)

is convex, where SNR = P/σ2. It may be easily verified that

q′
2

(
q1

) = −(1 + � SNR)2(
1 + �(2 + � SNR)q1

)2 . (26.55)

Since the numerator is independent of q1 and the denominator is increasing in
q1 > 0, we must have q′′

2 (q1) ≥ 0 for every q1 > 0. From this, it follows that q2

is a convex function of q1, and hence Fc(P) must be a convex set. Furthermore, if
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� > 0, then q′′
2 (q1) > 0 for every q1 > 0 in which case q2(q1) is strictly convex.

Assuming SNR = 1 and � = 1/2, Figure 26.6 shows the resulting feasible SINR
region.

If there are individual power constraints on each user and γ(x) = x, x > 0, we
know from Section 26.4.3 that (q1, q2) ∈ F(P(i)) if and only if

p∗
1 = σ2 q1 + �q1q2

1 − �2q1q2
≤ P1, p∗

2 = σ2 q2 + �q1q2

1 − �2q1q2
≤ P2, (26.56)

where p∗ = (p∗
1 , p∗

2 ) is given by (26.25). Proceeding essentially as before shows
that p∗

1 = P1 and p∗
2 = P2 are both convex if they are written as functions of q1.

Obviously, F(P(i)) = F1(P(i)) ∩ F2(P(i)) is not convex since F1(P(i)) = {(q1, q2) :
p∗

1 ≤ P1} and F2(P(i)) = {(q1, q2) : p∗
2 ≤ P2} are not convex sets but their com-

plements Fc1(P(i)) and Fc2(P(i)). Also, the infeasible SINR region

Fc
(
P(i)) = (

F1
(
P(i))∩ F2

(
P(i)))c = Fc1(P(i))∪ Fc2(P(i)) (26.57)

does not need to be convex since the union of convex sets (Fc1(P(i)) and Fc2(P(i))) is
not convex in general. This situation is illustrated in Figure 26.7.

26.7.3. The conjecture and its consequences

The preceding results support the conjecture about the convexity of Fc and F(P)c.
Although the problem is open, it is interesting to consider the consequences of this
conjecture.

Note that in order to prove the conjecture for systems without power con-
straints, it is sufficient to show that

ρ
(

q(α)
) = ρ

(
(1 − α)Γ(q̂)V + αΓ(q̌)V

) ≥ 1 (26.58)

for all α ∈ [0, 1] and arbitrary QoS vectors q̂, q̌ ∈ GK with

ρ(q̂) = ρ(q̌) = 1. (26.59)

In other words, if q̂ and q̌ lie on the boundary of F, then the line connecting them
should be outside of the feasible SINR region. The following theorem provides a
necessary and sufficient condition for (26.58) with (26.59) to be satisfied.

Theorem 26.13. Inequality (26.58) with (26.59) holds if and only if the spectral ra-
dius ρ(q) is concave on GK .
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It is worth pointing out that if

ρ
(

q(α)
) ≥ min

{
ρ(q̂), ρ(q̌)

}
, α ∈ [0, 1] (26.60)

holds for all q̂, q̌ ∈ GK , so does (26.58) with (26.59). Thus, by Theorem 26.13, this
inequality is equivalent to concavity of the spectral radius.

In fact, Theorem 26.13 applies to any function γ : G → R+ for which (26.58)
with (26.59) holds. Thus, considering the special case of γ(x) = x, x > 0, the
theorem implies that the infeasible SINR region is convex if and only if the spectral
radius is concave onGK . The problem whether or not the spectral radius is concave
strongly depends on the diagonal elements of Γ(q)V. To see this, let γ(x) = x,
x > 0, and consider

Γ(q)V =
(
q1 0
0 q2

)(
α β
β α

)
=

(
αq1 βq1

βq2 αq2

)
, (26.61)

where α ≥ 0 and β > 0 are some real constants. It may be easily verified that

ρ(q) = α
(
q1 + q2

)
+
(
α2

(
q1 − q2

)2
+ 4β2q1q2

)1/2

2
. (26.62)

Thus ρ(q) may be either jointly convex or jointly concave or neither of them de-
pending on the constants α and β. However, when α = 0 or, equivalently, trace(V)=
0, we obtain ρ(q) = β

√
q1q2, which is jointly concave. Thus, in order to prove the

conjecture, it is necessary to exploit the fact that trace(V) = 0.

26.8. Further remarks and future work

We presented necessary and sufficient conditions for the convexity of the feasi-
ble QoS region in multiuser systems with a linear antenna array at the base sta-
tion. The beamforming vectors were assumed to be fixed so that power control
was the only mechanism to provide desired QoS performance to the users. This
immediately raises the following question: do the convexity results hold for sys-
tems in which beamforming vectors are adjusted to changing channel signatures?
Here we are particularly interested in the case when beamforming vectors are opti-
mized to maximize the right-hand side of (26.12). Note that the convexity results
do not carry over to this case because of the fact that the union of convex sets is
not convex in general. In contrast, the intersection of convex sets is always convex.
Consequently, the infeasible SINR region under the optimal beamforming strategy
would be a convex set if the conjecture discussed in Section 26.7 was true.
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The convexity property of the feasible QoS region plays a fundamental role in
the design of power control strategies which aims at optimizing a certain global
QoS function. In some sense, such functions correspond to a QoS measure of the
entire cell and can be interpreted as the utility of a network operator who is in-
terested in the maximization of his revenue. Although there are many possibilities
for choosing such a global QoS function, the most common approach is to find a
power allocation p∗ given by [8, 15, 18]:

p∗ =


arg max

p≥0

K∑
k=1

wk · ϕ
(
SINRk(p)

)
, ϕ strictly increasing,

arg min
p≥0

K∑
k=1

wk · ϕ
(
SINRk(p)

)
, ϕ strictly decreasing,

(26.63)

where ϕ is the QoS function defined by (26.10) and w1, . . . ,wK > 0 are given pos-
itive weights to prioritize the users. The weights represent the significance of the
users and are usually adjusted to some system variables to achieve higher global
utility or better system fairness. Indeed, if the weights were constant, the approach
in (26.63) could be quite unfair in the sense that only users having the highest
impact on the QoS functional are assigned power resources and all other users
are kept idle. This stands in clear contrast to a “social” system where all users are
treated fairly according to some price factors. In an ideal social system with no
prioritization, all users are provided with the same QoS. The tradeoff between
fairness and efficiency is investigated in [19, 20].

The optimization problem in (26.63) is not convex in general. However, if
the inverse QoS function γ, γ(ϕ(x)) ≡ x, x > 0, is log-convex, there is a unique
optimum and the KKT (Karush-Kuhn-Tucker) conditions are both necessary and
sufficient for this optimum [9, 18]. In [21], we propose iterative algorithms that
have been shown to converge to the global optimum provided that γ is a log-
convex function. These algorithms require a central network controller with a
global knowledge of all system parameters and variables. So, in light of distributed
wireless networks, it would be important to find a distributed version of these al-
gorithms.

Finally, it would be interesting to extend this work to other (nonlinear) re-
ceivers. Note that the results presented here do not apply to the linear minimum
mean square error (MMSE) receiver. This is because the MMSE receiver depends
on power allocation. References [2, 22] considered a multiple-input multiple-
output uplink channel with successive decoding at the receiver and random ar-
rivals. The authors proved the capacity and stability region as well as presented the
optimal scheduling policy in the sense of achieving the largest stability region.
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Abbreviations

CDMA 1xEV-DO Code division multiple access 1x Evolution-data only

KKT Karush-Kuhn-Tucker

MMSE Minimum mean square error

QAM Quadrature amplitude modulation

QoS Quality of service

SINR Signal to interference-plus-noise ratio

SNR Signal-to-noise ratio

Bibliography

[1] S. Verdu, Multiuser Detection, Cambridge University Press, Cambridge, UK, 1st edition, 1998.
[2] H. Boche and M. Wiczanowski, “Stability region of arrival rates and optimal scheduling for

MIMO-MAC—A cross-layer approach,” in Proc. IEEE International Zurich Seminar on Commu-
nications (IZS 2004), pp. 18–21, Zurich, Switzerland, February 2004.

[3] R. L. Cruz and A. V. Santhanam, “Optimal routing, link scheduling and power control in multi-
hop wireless networks,” in Proc. 22nd IEEE Conference Computer Communications (INFOCOM),
pp. 702–711, San Francisco, Calif, USA, March/April 2003.

[4] T. ElBatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,”
IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 74–85, 2004.

[5] S. Hanly and D. Tse, “Power control and capacity of spread spectrum wireless networks,” Auto-
matica, vol. 35, no. 12, pp. 1987–2012, 1999.

[6] H. Boche and S. Stanczak, “Convexity of some feasible QoS regions and asymptotic behavior of
the minimum total power in CDMA systems,” to appear in IEEE Trans. Commun., 2004.

[7] H. Boche and S. Stanczak, “Optimal QoS tradeoff and power control in CDMA systems,” in Proc.
23rd IEEE Conference on Computer Communications (INFOCOM ’04), Hong Kong, March 2004.

[8] K. Kumaran and L. Qian, “Uplink scheduling in cdma packet-data systems,” in Proc. 22nd IEEE
Conference Computer Communications (INFOCOM ’03), vol. 1, pp. 292–300, San Francisco, Calif,
USA, March/April 2003.

[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge,
UK, 2004.

[10] D. Catrein, L. Imhof, and R. Mathar, “Power control, capacity, and duality of up- and downlink
in cellular CDMA systems,” Tech. Rep., RWTH Aachen, Aachen University, Germany, 2003.

[11] E. Seneta, Non-Negative Matrices and Markov Chains, Springer, New York, NY, USA, 1981.
[12] H. Boche and S. Stanczak, “Log-convexity of the minimal feasible total power in CDMA chan-

nels,” in Proc. 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC), Beijing, China, September 2003.

[13] H. Boche and S. Stanczak, “Iterative algorithm for finding resource allocation in symbol-
asynchronous CDMA channels with different SIR requirements,” in Proc. 36th Asilomar Con-
ference on Signals, Systems, and Computers, Monterey, Calif, USA, November 2002.

[14] H. Boche and S. Stanczak, “Representation for the Perron root and its applications,” preprint,
2004.

[15] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and routing for time vary-
ing wireless networks,” in Proc. 22nd IEEE Conference Computer Communications (INFOCOM),
pp. 745–755, San Francisco, Calif, USA, March/April 2003.

[16] D. P. Bertsekas and R. G. Gallager, Data Networks, Prentice Hall, Englewood Cliffs, NJ, USA, 1992.
[17] D. Tse and S. Hanly, “Linear multiuser receivers: effective interference, effective bandwidth and

user capacity,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 641–657, 1999.
[18] H. Boche, M. Wiczanowski, and S. Stanczak, “Characterization of optimal resource allocation in

cellular networks,” in Proc. 5th IEEE Workshop on Signal Processing Advances in Wireless Commu-
nications (SPAWC 2004), Lisbon, Portugal, July 2004.



S. Stanczak and H. Boche 543

[19] H. Boche, M. Wiczanowski, and S. Stanczak, “Tradeoff between utility optimization and provid-
ing max-min fairness in cellular networks: The saddle point problem,” preprint, 2004.

[20] S. Stanczak and H. Boche, “Information theoretic approach to the Perron root of nonnegative
irreducible matrices,” in Proc. Information Theory Workshop (ITW ’04), San Antonio, Tex, USA,
October 2004.

[21] M. Wiczanowski, H. Boche, and S. Stanczak, “Characterization of optimal resource allocation in
cellular networks: Optimization theoretic view and algorithmic solutions,” preprint, 2004.

[22] H. Boche and M. Wiczanowski, “Optimal scheduling for high speed uplink packet access—A
cross-layer approach,” in Proc. IEEE Vehicular Technology Conference (VTC Spring), vol. 5, pp.
2575–2579, Milan, Italy, May 2004.

[23] M. Schubert and H. Holger, “Solution of the multi-user downlink beamforming problem with
individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–28, 2004.

Slawomir Stanczak: Fraunhofer German-Sino Lab for Mobile Communications, Einsteinufer 37,
D-10587 Berlin, Germany

Email: stanczak@hhi.fhg.de

Holger Boche: Heinrich Hertz Chair for Mobile Communications, Faculty of EECS, Technical Uni-
versity of Berlin, Einsteinufer 25, D-10587 Berlin, Germany; Fraunhofer German-Sino Lab for Mobile
Communications, Einsteinufer 37, D-10587 Berlin, Germany; Fraunhofer-Institute for Telecommuni-
cations, Heinrich-Hertz-Institut, Einsteinufer 37, D-10587 Berlin, Germany

Email: boche@hhi.fhg.de

mailto:stanczak@hhi.fhg.de
mailto:boche@hhi.fhg.de


27
Duality theory for uplink
and downlink multiuser
beamforming

Holger Boche and Martin Schubert

27.1. Introduction and problem statement

Beamforming has historically evolved from radar and sonar applications, where it
can be used to detect and locate objects by steering the angular response of a λ/2
antenna array in any desired direction. Undesired interference can be suppressed
by null steering. The processing of the array elements can be seen as sampling and
filtering in the space domain [1, 2, 3, 4, 5].

This traditional view of beamforming has meanwhile been partly replaced by
a broader approach, which sees beamforming within a more general framework,
where one is interested in optimizing the transmission of digital information over
multiple antennas, provided that channel information is available. This view is
supported by information theoretical insights, which show that beamforming can
be a capacity-achieving strategy [6, 7].

The theory of beamforming is relatively well understood from a user-centric
point of view. That means that one user is the “desired one,” and all other users
act as interferers. From a network point of view, however, this assumption is not
valid. Consider a cellular wireless system with an antenna array deployed at the
base station and K decentralized users. Also assume that all users share the same
carrier and time slot. Thus, each user is a potential interferer to all other users. This
results in a competitive situation where each user tries to counteract interference
by increasing its transmit power and by properly adjusting its beam pattern. Each
user simultaneously acts as “desired user” and as an interferer for the rest of users.
Hence, all beamformers and transmit powers should be jointly optimized.

In the following we will discuss joint optimization strategies in a single-
frequency multiuser beamforming scenario, which may be limited by cochannel
interference. We start by revisiting the uplink scenario, which has already been
widely studied in the past decades (see, e.g., [1, 2, 3, 4, 5] and the references
therein). Then, we turn our attention to the downlink, which is more difficult
to handle due to its point-to-multipoint structure (as described later). Downlink
beamforming recently gained more attention because of its potential of boosting
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the capacity without the need of costly signal processing at the mobile station
[8, 9, 10, 11, 12, 13, 14].

One main result of this chapter will be to show that multiuser beamform-
ing for uplink and downlink are closely linked and are actually dual problems of
each other. Here, the term duality is not used in a mathematical sense, but rather
to emphasize that both problems can be solved by a unified approach. By solv-
ing the dual uplink problem, a solution for the downlink is obtained, and vice
versa. Although the problem under consideration is highly nonlinear in nature, its
special mathematical structure allows for the design of very efficient algorithms
[15, 16].

From a network operator’s perspective, it is desirable to support individual
target QoS with optimal spectral efficiency. The QoS of a given link mainly de-
pends on the signal-to-interference-plus-noise ratio (SINR). It can be modeled
as f (SINR), where the function f takes into account various system aspects, like
modulation, coding, pulse shaping, and so forth. For successful communication
(both uplink and downlink), it is necessary to fulfill individual target SINRs γ1,
. . . , γK , where each SINR depends on the choice of all beamformers and transmis-
sion powers (as specified later).

Thus, a straightforward strategy for joint optimization is to maximize
mini SINRi /γi. We refer to this problem as (P1), that is,

(P1) max(min1≤i≤K SINRi/γi) under a total power constraint.
Certain targets γ1, . . . , γK are feasible if and only if the optimum of (P1) is greater
than or equal to one. The optimization problem (P1) therefore provides a single
performance measure that reflects the quality of the corporate multiuser channel.
Such a measure is required, for example, by the medium access control to decide
whether spatial multiplexing is meaningful or not. In other words, (P1) measures
the “spatial separability” of a given set of users.

If a set of SINR requirements is feasible, then another interesting problem
formulation is as follows:

(P2) minimize the total transmission power while fulfilling SINRi ≥ γi for all
i ∈ {1, 2, . . . ,K}.

This strategy not only improves the power efficiency of the system, but also mini-
mizes the interference to neighboring cells. Both (P1) and (P2) play an important
role for a thorough understanding of multiuser beamforming and will be discussed
in the following.

Note, that (P1) and (P2) have already been studied in the context of single-
antenna power control (see, e.g., [17]). Despite the obvious similarities, the mul-
tiantenna case considered here has a more complicated analytical structure, which
is due to the interaction between powers and beamformers. Single-antenna power
control can be seen as a special case of the more general problem addressed here.

We start by showing how to jointly optimize beamformers when there is a
linear mapping between the information signals and the array antennas. We refer
to this case as “classical beamforming.” Then, it is shown how the system perfor-
mance can be further improved by nonlinear interference cancellation and pre-
coding. Such a strategy is spectrally efficient and decouples the users to a degree
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that the system is no longer interference-limited. This has an interesting relation
to problems in information theory.

Finally, we investigate the interaction of beamforming with the resource allo-
cation. That is, how the power resource should be allocated according to different
utility functions. The tradeoff between throughput maximization and fairness will
be discussed.

27.2. Classical beamforming

Partial results on joint beamforming and power control already appeared in [8, 10,
11, 12, 13, 14, 18, 19], mainly in a downlink context. An overview is also given in
[9]. The different strategies can be classified as follows.

(i) Problem (P1) was studied and solved in [20] for fixed beamformers, which
reduces the problem to pure power control.

(ii) Problem (P1) was also studied in [11, 12, 18, 19] without power con-
straints (neglecting noise and assuming interference-limitedness). An iterative
strategy based on eigenvalue optimization was proposed in [12]. This work has
been extended by [18], where global convergence was proved. An alternative strat-
egy based on �1-norm optimization was proposed in [11]. Both strategies are com-
pared within a unified theoretical framework in [19], where it was shown that the
�1-norm approach is in general suboptimal.

(iii) Problem (P2) was studied in [10, 13, 14]. In [10] a heuristic strategy was
proposed. In [13, 14] an iterative solution based on “virtual uplink powers” was
derived. This result already indicates that there is an interesting duality between
uplink and downlink multiuser channels (this will be specified and further ex-
ploited later in this chapter). The disadvantage of this iterative strategy is that the
aspect of feasibility is neglected. Algorithms designed under the assumption that
a solution exists may yield unpredictable results in case that the SINR constraints
are infeasible. A more integral strategy, that accounts for the aspect of feasibility,
will be discussed in Section 27.2.7.

(iv) A conceptually different approach to (P2) appeared in [8, 9], where it
was proposed to embed the beamforming problem in a semidefinite optimization
program. Thus, recently developed semidefinite programming techniques can be
applied, and are able to handle infeasible scenarios. However, the optimization is
performed over matrices with more degrees of freedom than the original beam-
forming vectors. Hence, the solution comes at the cost of relatively high computa-
tional complexity. This approach will not be discussed here.

27.2.1. Downlink transmit beamforming

Consider K independent signals s1, s2, . . . , sK with zero mean and power allocation
p = [p1, . . . , pK ]T . The signals are jointly transmitted from an M-element antenna
array to K decentralized receivers, as depicted in Figure 27.1. Since the transmit-
ter is assumed to have channel knowledge, it can adapt its transmit strategy to
the spatial structure of the propagation channel. The spatial signatures (complex,



548 Duality theory for uplink and downlink multiuser beamforming

s1

s2

...
sK

Tx

x1

x2

xM

...

h1

h2

hK

y1

y2

yK

Rx

Rx

...

Rx

ŝ1
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Figure 27.1. Downlink broadcast channel with cooperative transmit antennas and noncooperative
receivers.

vector-valued path attenuations) of all K users are denoted by h1, h2, . . . , hK . Each
receiver performs single-user detection, thus most of the processing complexity
resides at the transmitter. Note that the model under consideration can be seen as
a multiple-input multiple-output (MIMO) channel with partial antenna coopera-
tion.

Channel knowledge at the transmit side can be obtained either by estimat-
ing the channels at the receiver and feeding back the information via a separate
channel, or by transferring the estimated uplink channel to the downlink. Both
strategies have limitations, which are discussed, for example, in [9].

For fast fading channels, the assumption of perfect channel knowledge is
somewhat unrealistic. Thus, the channel signatures are often considered as sto-
chastic quantities, and beamforming is performed based on the spatial covariance
matrices

Ri = E
[

hi(t)h∗
i (t)

]
, 1 ≤ i ≤ K , (27.1)

where the operator E{·} denotes the ensemble average over the time-fluctuating
fading channel.

Note, that the representation (27.1) can be used in the following to incorpo-
rate both cases: stochastic and deterministic channel knowledge. Coherent spatial
processing is possible if rank{Ri} = 1. This corresponds to the deterministic case
and is fulfilled, for example, when the channel does not change within the ob-
servation window. If the channel is rapidly time-variant and the total number of
transmission paths per user exceeds the number of antenna elements, then Ri has
full rank. This assumption will be required later when we study beamforming in
the absence of noise.

One simple way to perform preprocessing at the transmitter is to map the data
streams on the M transmit antennas by using a matrix U ∈ CM×K . The ith data
stream is spread over the antenna array by the ith column of

U = [
u1, . . . , uK

] ∈ C
M , (27.2)

which is constrained as follows:

∥∥ui

∥∥
2 = 1, 1 ≤ i ≤ K. (27.3)
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Figure 27.2. Uplink multiple access channel with noncooperative transmitters and cooperative receive
antennas.

The resulting SINR measured at the antenna output of the ith receiver is

SINRDL
i (U, p) = piu∗

i Riui∑K
k=1
k �=i

pku∗
k Riuk + σ2

i

, 1 ≤ i ≤ K , (27.4)

where σ2
i is the variance of the additive white Gaussian noise. The superscript “DL”

stands for downlink.
It can be observed from (27.4) that the users are coupled by interference,

which not only depends on the transmit powers, but also on the choice of all beam-
formers u1, . . . , uK , which therefore cannot be optimized independently, not even
for a fixed power allocation. This makes the downlink channel more difficult to
handle than its uplink counterpart, which will be introduced next.

27.2.2. Uplink receive beamforming

Consider the uplink scenario depicted in Figure 27.2. The antenna array acts as
a receiver for the K independent data streams transmitted from the decentralized
mobile units. The transmit power allocation is q = [q1, . . . , qK ]T . The same beam-
forming matrix U = [u1, . . . , uK ] that has been used for downlink transmission
is now used for reception. We also assume reciprocity of the propagation chan-
nel, that is, downlink and uplink are both characterized by R1, . . . , RK . Then, the
uplink SINR is given by

SINRUL
i

(
ui, q

) = qiu∗
i Riui

u∗
i

(∑K
k=1
k �=i

qkRk + σ2
i I
)

ui

, 1 ≤ i ≤ K. (27.5)

As for the downlink channel, the uplink SINR (27.5) are coupled by the transmit
powers q. The crucial difference is that the interference coupling no longer de-
pends on the beamformers but on the channel signatures h1, . . . , hK . That is, for a
fixed power allocation q, the beamformers can be found by independently maxi-
mizing the expressions (27.5). The optimal beamformer of the ith user is given as
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the principal generalized eigenvector of the matrix pair (Ri, Zi), where

Zi =
K∑
k=1
k �=i

qkRk + σ2
i I (27.6)

is the interference-plus-noise spatial covariance matrix (see, e.g., [3]).
Due to this special structure, the uplink is easier to handle than the downlink.

However, the users are still coupled by the power allocation and a joint approach
is required for optimization. Thus, the coupling between the users will be studied
in more detail in the following section.

27.2.3. SINR feasibility

An important question is which SINR levels can be simultaneously achieved? This
problem was already studied by Zander in [21, 22] in the context of power control,
and in [23] in the general context of QoS tradeoff regions (see also Chapter 26).

To answer this question, assume that the link gains between all possible trans-
mitter/receiver pairs are collected in a K × K matrix

[
Ψ(U)

]
ik

u∗
k Riuk, k �= i,

0, k = i.
(27.7)

Assume that some (fixed) beamforming matrix Û is given, and let Ψ̂ := Ψ(Û)
for short. The vector Ψ̂p contains the interference levels experienced by all K

downlink users and Ψ̂
T

q the interference of the uplink users. By properly choos-
ing the transmit powers, all SINRs can be jointly controlled. The relationship be-
tween power allocations p, q, and SINR values γ1, . . . , γK is described by (27.4)
and (27.5). Using matrix notation, these sets of equations can be rewritten as

Ψ̂p + σ = D−1p (downlink), (27.8)

Ψ̂
T

q + σ = D−1q (uplink), (27.9)

where σ = [σ2
1 , . . . , σ2

K ]T and

D = diag

{
γ1

u∗
1 R1u1

, . . . ,
γK

u∗
KRKuK

}
. (27.10)

The vector on the left-hand side of (27.8) and (27.9) contains the interference-
plus-noise powers. While the downlink users are coupled by Ψ̂, the uplink users

are coupled by Ψ̂
T

, thus both channels are a transpose of each other.
A set of SINRs γ1, . . . , γK is feasible whenever there exists a positive power

allocation such that (27.8) (resp., (27.9)) is fulfilled. The following result can be
shown [24, 22].
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Proposition 27.1. Targets γ1, . . . , γK are jointly feasible in uplink and downlink if
and only if the spectral radius ρ of the weighted coupling matrix satisfies

ρ
(

DΨ̂
)
< 1. (27.11)

Note, that ρ(DΨ̂) = ρ(DΨ̂
T

). Thus, target SINRs γ1, . . . , γK are feasible in the
uplink if and only if the same targets are feasible in the downlink. The following
power allocations achieve the targets with minimal total power:

p̂ = (
D−1 − Ψ̂

)−1
σ (downlink), (27.12)

q̂ =
(

D−1 − Ψ̂
T)−1

σ (uplink). (27.13)

The vectors p̂ and q̂ are guaranteed to be strictly positive as long as (27.11) is
fulfilled. Otherwise, at least one component of the power vector will be negative
or zero.

27.2.4. Sum-power-constrained SINR region

So far we have established a duality between uplink and downlink beamforming
in terms of feasible SINR. Possible constraints on the powers have been neglected.

In [15, 16, 25, 26] it was independently shown that a similar result holds when
the total power is limited by Pmax. Suppose that ρ(DΨ̂) < 1 is fulfilled, that is, the
targets can be achieved in downlink and uplink by power allocations (27.12) and
(27.13), respectively. Let σ = σ21K be a noise power vector with equal compo-
nents, and 1K denotes the all-one vector. Then, the total required uplink power
‖q̂‖1 is the same as the downlink power ‖p̂‖1. This result follows immediately
from the following relation:

∥∥q̂
∥∥

1 = 1T
K q̂ = σ21T

K

((
D−1 − Ψ̂

)−1
)T

1K

= σ21T
K

(
D−1 − Ψ̂

)−1
1K = 1T

K p̂ = ∥∥p̂
∥∥

1.
(27.14)

Hence the following proposition.

Proposition 27.2. Both uplink and downlink have the same SINR feasible region
under a sum-power constraint, that is, target SINRs are feasible in the downlink if
and only if the same targets are feasible in the uplink.

Note, that this duality holds under the assumption of reciprocal propagation
channels and equal noise powers. An analysis of the unequal case can be found in
[24].

With Proposition 27.2 it is possible to focus on the uplink. All the results
can be transferred to the downlink. The feasibility issue is closely linked with the
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CUL(Ũ, Pmax)

1

Feasible

Infeasible

Total transmission power Pmax

Figure 27.3. Balanced SINR margin CUL(Ũ,Pmax) versus total transmission power Pmax.

problem of finding a power allocation q with total power ‖q‖1 ≤ Pmax that fulfills
1 ≤ mini SINRUL

i /γi. This leads to the following problem formulation:

CUL(Û,Pmax
) = max

q
min

1≤i≤K
SINRUL

i

(
ûi, q

)
γi

subject to ‖q‖1 ≤ Pmax, q ∈ R
K
+ .

(27.15)

Some important observations can be made.
(1) Target SINRs γ1, . . . , γK are feasible if and only if CUL(Û,Pmax) > 1. Then

SINRUL
i /γi > 1 for all i ∈ {1, 2, . . . ,K}.

(2) The function CUL(Û,Pmax) is strictly monotonically increasing in Pmax, as
illustrated in Figure 27.3. Thus, there is a one-to-one relationship between each
balanced SINR margin and the total transmission power.

(3) The optimum of (27.15) is balanced and the inequality constraint is ful-
filled with equality. Any optimizer q̃ fulfills the following equations:

CUL(Û,Pmax
) = SINRUL

i

(
ûi, q̃

)
γi

, 1 ≤ i ≤ K ,

Pmax = ∥∥q̃
∥∥

1.

(27.16)

For a given total power Pmax, there is a unique optimizer q̃ which is characterized
by (27.16), which can be rewritten in matrix notation as an eigensystem

Λ
(

Ũ,Pmax
)[q̃

1

]
= 1

CUL
(

Ũ,Pmax
) [

q̃
1

]
, (27.17)

where Λ is the extended uplink coupling matrix

Λ
(

U,Pmax
) =

 DΨT(U) Dσ
1

Pmax
1T
KDΨT(U)

1
Pmax

1T
KDσ

 . (27.18)

Thus, the balanced level CUL(Ũ,Pmax) is a reciprocal eigenvalue of the nonnegative
extended coupling matrix Λ.
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However, not all eigenvalues represent physically meaningful balanced levels.
In particular, q ∈ RK

+ and CUL(Ũ,Pmax) ∈ R+ must be fulfilled. It is known (see,
e.g., [27]) that for any nonnegative square matrix B ≥ 0 with spectral radius ρ(B),
there exists a vector q(B) ≥ 0 and λ(B) = ρ(B) such that Bq(B) = λ(B)q. Thus,
the nonnegative eigenvector associated with the maximal eigenvalue (equal to the
spectral radius) is associated with a valid solution. If the matrix Λ is irreducible,
then it follows from the Perron/Frobenius theorem [27] that this solution is the
only valid solution. All eigenvectors associated with other eigenvalues have at least
one negative component.

Note, that for the special problem under consideration, it is even not nec-
essary to invoke the assumption of irreducibility. Due to the special structure of
the extended coupling matrix Λ, it can be shown that only the maximum eigen-
value is associated with a valid solution [20]. This follows from the monotonicity
of CUL(Ũ,Pmax), which can be used to rule out the existence of two different bal-
anced levels with the same total power.

Hence, the solution of the SINR balancing problem (27.15) is given by

CUL(Û,Pmax
) = 1

ρ
(
Λ
(

Û,Pmax
)) . (27.19)

The power allocation which balances the relative SINRs at the level (27.19) is ob-
tained as the first K components of the principal eigenvector of Λ(Û,Pmax), scaled
such that its last component equals one. The optimally balanced uplink SINR mar-
gin is associated with the spectral radius ρ(Λ(Û,Pmax)). Clearly, ρ(Λ(Û,Pmax)) ≤ 1
must be fulfilled, otherwise the targets γ1, . . . , γK are not feasible.

The same argumentation can be used for the downlink, where the users are
coupled by an extended coupling matrix

Υ
(

U,Pmax
) =

 DΨ(U) Dσ
1

Pmax
1T
KDΨ(U)

1
Pmax

1T
KDσ

 . (27.20)

In analogy to the uplink, it can be shown that γ1, . . . , γK are feasible if and only
if ρ(Υ(Û,Pmax)) ≤ 1. The optimal power allocation which balances the relative
SINRs is given as the firstK components of the principal eigenvector of Υ(Û,Pmax).

From Proposition 27.2 (duality), we know that uplink and downlink have the
same SINR achievable regions, thus ρ(Λ(Û,Pmax)) = ρ(Υ(Û,Pmax)). Hence the
following proposition, which provides a measure for the feasibility of target SINRs
under a sum-power constraint.

Proposition 27.3. Targets γ1, . . . , γK are jointly feasible in uplink and downlink un-
der a sum-power constraint Pmax if and only if the spectral radius ρ of the extended
coupling matrix satisfies

ρ
(
Λ
(

Û,Pmax
)) ≤ 1. (27.21)
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27.2.5. Max-min SIR downlink beamforming

In the previous sections we have studied the feasible SINR values under the as-
sumption of fixed beamformers. The choice of the beamformers, however, de-
pends on the power allocation. On the other hand, power allocation depends on
beamforming, thus a joint optimization approach is required.

We start by studying the effect of interference balancing in the absence of
noise, which brings out clearly the analytical structure of the underlying prob-
lem. This is the first step towards finding the more general solution of power-
constrained SINR balancing, which will be studied in Section 27.2.6.

For given channel covariance matrices R1, . . . , RK , one is interested in the
beamforming matrix U and power allocation p, which jointly balance the values
SIRDL

i /γi, 1 ≤ i ≤ K , as high as possible. Each SIR is a function of p and U, that is,

SIRDL
i (p, U) = piu∗

i Riui∑K
k=1
k �=i

pku∗
k Riuk

, 1 ≤ i ≤ K. (27.22)

This problem can be expressed mathematically as

BDL
Inf = max

U,p

(
min

1≤i≤K
SIRDL

i (U, p)
γi

)
subject to

∥∥ui

∥∥
2 = 1, 1 ≤ i ≤ K ,

‖p‖1 = 1.
(27.23)

In the absence of noise, we have to assume that Ψ is irreducible [27]. Roughly
speaking, this means that all users are coupled by interference. Then the optimum
BDL

Inf exists.
One example for which this is always fulfilled is the case where positive semi-

definite covariance matrices Ri have full rank K , that is, u∗
i Rkuk �= 0. Then, the

optimum is characterized by balanced relative SIR levels. The max-min opera-
tions are interchangeable and one can equivalently balance the reciprocal quanti-
ties γi/ SIRDL

i . Hence, problem (27.23) is solved by minimizing the �∞-norm of the
vector

ξ(U, p) =
[

γ1

SIRDL
1 (U, p)

, . . . ,
γK

SIRDL
K (U, p)

]T

. (27.24)

By optimizing over both U and p, the optimally balanced level BDL
Inf is found:

1
BDL

Inf

= min
U,p

∥∥ξ(U, p)
∥∥∞. (27.25)

Assuming that all users are coupled by interference, the optimum of (27.25) will
be balanced, that is, all components of ξ are the same. Using similar arguments as
in Section 27.2.4, it can be shown, that the balanced optimum can be expressed by
an eigensystem and BDL

Inf is given by the inverse eigenvalue of the coupling matrix
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DΨ(Uopt), where Uopt is an optimizer of (27.23). Thereby, it can be shown [11, 12]
that problem (27.25) is equivalent to an eigenvalue optimization problem

BDL
Inf = 1

minU ρ
(

DΨ(U)
) subject to

∥∥ui

∥∥
2 = 1, 1 ≤ i ≤ K. (27.26)

Note, that this problem no longer depends on p. Once an optimizer Uopt is found,
the associated popt is given as the dominant right-hand eigenvector of the matrix
DΨ(Uopt).

The coupling matrix Ψ is generally nonsymmetric, thus (27.26) is a noncon-
vex optimization problem. Nevertheless, very efficient algorithms have been de-
vised which solve the problem iteratively [12, 18, 19]. They are based on the duality
that has been established in Section 27.2.3. That is, the optimizer Uopt is equiva-
lently found by minimizing the spectral radius ρ(DΨT(U)), which is associated
with the dual uplink channel.

In the following we exploit that the maximal eigenvalue of any nonnegative
irreducible matrix B can be expressed as [28]

ρ(B) = max
x>0

min
y>0

xTBy
xTy

= min
x>0

max
y>0

xTBy
xTy

. (27.27)

This characterization will turn out very useful for the development of algorithmic
solutions for eigenvalue optimization problems of the form (27.26). In particular,
the eigenvalue minimization problem (27.26) can be rewritten as

1
BUL

Inf

= min
U:‖ui‖2=1

min
q>0

f̂ (U, q) with f̂ (U, q) = max
x>0

xTDΨT(U)q
xTq

. (27.28)

Here, x is an auxiliary variable which has no physical meaning. The vector q can
be interpreted as the uplink power vector. Even though problem (27.28) depends
on more variables than the original eigenvalue optimization problem (27.22), it
will turn out to prove useful for developing an algorithmic solution. We start with
the following observations.

(1) For a fixed beamforming matrix Û the objective function f̂ (Û, q) is mini-
mized by the dominant eigenvector of DΨT(Û).

(2) For a fixed power allocation q̃ the objective function f̂ (U, q̃) is minimized
by Ũ = [ũ1, . . . , ũK ], where ũi is the dominant eigenvector which solves the gener-
alized eigenproblem

Riui = λmax · Qi(q̃)ui with Qi(q) =
K∑
k=1
k �=i

[q]kRk. (27.29)

These properties together with the characterization (27.27) can be used to
prove the following necessary and sufficient condition for optimality [18].
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(1) n := 0

(2) q(0) := [1, . . . , 1]T

(3) ρ(0) := 0
(4) repeat
(5) n := n + 1

(6) u(n)
i := arg max

ui

u∗
i Riui

u∗
i Qi(q(n−1))ui

, subject to ‖ui‖2 = 1, 1 ≤ i ≤ K

(7) (ρ(n), q(n)) is solution of DΨT(U(n)) · q(n) = ρ(n) · q(n)

(8) until |ρ(n) − ρ(n− 1)| ≤ ε

Algorithm 27.1. Solution of the eigenvalue minimization problem (27.26).

Proposition 27.4. A beamforming matrix Ū solves the eigenvalue minimization
problem (27.26) if and only if for all x > 0

xTDΨT(Ū)q̄
xT q̄

= min
U

xTDΨT(U)q̄
xT q̄

, (27.30)

where q̄ fulfills

DΨT(Ū) · q̄ = ρ
(

DΨT(Ū)
) · q̄. (27.31)

This motivates an alternating optimization scheme that keeps one of the vari-
ables U and q fixed while minimizing with respect to the other. The iteration is
stopped as soon as the conditions (27.30) and (27.31) are jointly fulfilled, that is, if
the optimization does not yield any further improvement. The algorithm is sum-
marized in Algorithm 27.1.

It should be noted that the method of alternating variables in general is known
to approach the optimum very slowly and may even get stuck. The above algo-
rithm, however, exploits the analytical structure of the given problem and there-
fore rapidly converges towards the global optimum of the eigenvalue minimization
problem. Monotonicity and convergence are proved in [18]. Typically, only a few
iterations are required to approach the global optimum with very good accuracy.

The beamformers obtained by the algorithm solve the joint beamforming
problem (27.23), as well as the corresponding problem formulation for the uplink.
The optimal downlink power vector solving (27.23) is the principal eigenvector of
the coupling matrix DΨ(Uopt). The optimal uplink power vector is the principal
eigenvector of the coupling matrix DΨT(Uopt).

27.2.6. Joint beamforming under a sum-power constraint

Next, the results are extended to the case where each receiver has a certain noise
level and a sum-power constraint is imposed. The goal is to achieve SINR thresh-
olds γ1, . . . , γK by jointly optimizing over all beamforming vectors and trans-
mission powers. In the downlink, the target SINRs are feasible if and only if
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CDL
opt(Pmax) > 1, where

CDL
opt

(
Pmax

) = max
U,p

min
1≤i≤K

SINRDL
i (U, p)
γi

subject to ‖p‖1 ≤ Pmax,∥∥ui

∥∥
2 = 1, 1 ≤ i ≤ K.

(27.32)

The achievable margin CDL
opt(Pmax) provides a single performance measure for the

quality of the composite multiuser channel. Each beamforming solution obtained
by (27.32) is optimal in the sense that no other beamforming algorithm can
achieve a balanced level larger than CDL

opt(Pmax) under the same power constraint.

Since CDL
opt(Pmax) is monotonically increasing in Pmax, the SINR levels SINRDL

i =
CDL

opt(Pmax)γi are achieved with minimal transmission power.
The same optimization problem can be formulated for the uplink:

CUL
opt

(
Pmax

) = max
U,q

min
1≤i≤K

SINRUL
i

(
ui, q

)
γi

subject to ‖q‖1 ≤ Pmax,

‖ui‖2 = 1, 1 ≤ i ≤ K.

(27.33)

From the duality discussed in Section 27.2.4, we know that problems (27.32) and
(27.33) have the same optimum CDL

opt(Pmax) = CUL
opt(Pmax). Moreover, the optimum

is achieved by the same beamforming matrix Uopt. Thus, it is sufficient to focus
on the uplink problem (27.33), which has a more convenient structure, as will
be shown in the following. Once, the optimizer Uopt has been found, the opti-
mal power allocations for downlink and uplink are given by (27.12) and (27.13),
respectively.

Problem (27.33) can be solved in a similar way as the SIR balancing problem
studied in Section 27.2.5. First, it can be shown [15] that the problem is equivalent
to an eigenvalue optimization problem

CUL
opt

(
Pmax

) = 1
minU ρ

(
Λ
(

U,Pmax
)) , (27.34)

where the extended coupling matrix Λ has been defined in (27.18). Like the SIR
balancing problem in the absence of noise, the joint SINR balancing problem can
be transformed into an equivalent problem, which no longer depends on the trans-
mit powers.

To solve this nonconvex problem, we again make use of the characterization
(27.27). By introducing a function

λ̂(U, y) = max
x>0

xTΛ
(

U,Pmax
)

y
xTy

, (27.35)
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problem (27.34) can be rewritten as

CDL
opt

(
Pmax

) = 1

minU minqext>0 λ̂
(

U, qext
) . (27.36)

Here, qext = [ q
1 ] is the extended uplink power vector, as introduced in (27.17),

whereas the (K +1)-dimensional vector x > 0 has no physical meaning. The global

optimum is found by minimizing the cost function λ̂(U, qext) over all U and qext >
0.

At first sight, the problem (27.36) seems to be more complicated than the
original problem (27.34), since it depends on more variables. However, the repre-
sentation (27.36) allows for an efficient algorithmic solution.

A key observation is that the cost function λ̂(U, qext) does not depend on the
last row of the extended coupling matrix Λ, that is,

max
x>0

xTΛ
(

U,Pmax
)

qext

xTqext
= max

x:[x]K+1=0

xTΛ
(

U,Pmax
)

qext

xTqext

= max
1≤i≤K

γi
SINRUL

i

(
ui, q

) where q = [qext]1:K .
(27.37)

The same relation holds when replacing max by min. A beneficial consequence is

that minimizing the cost function λ̂(U, qext) with respect to U (keeping qext =
[ q

1

]
fixed) leads to a set of K decoupled problems

ûi = arg max
ui

SINRUL
i

(
ui, q

) = arg max
ui

u∗
i Riui

u∗
i Zi(q)ui

, 1 ≤ i ≤ K. (27.38)

The interference-plus-noise covariance matrices

Zi(q) =
K∑
k=1
k �=i

[q]kRk + σ2I, 1 ≤ i ≤ K (27.39)

are nonsingular and symmetric, thus (27.38) can be solved efficiently by eigende-
composition. These observations are summarized as follows.

(1) For fixed q̂ext, the cost function λ̂(U, q̂ext) is minimized by Û=[û1, . . . , ûK ],
where ûk is the dominant generalized eigenvector of the matrix pair (Rk, Zk(q̂ext)),
1 ≤ k ≤ K .

(2) For fixed Ũ, the cost function λ̂(Ũ, qext) is minimized by the vector q̃ext,
which fulfills

Λ
(

Ũ,Pmax
) · q̃ext = ρ

(
Λ
(

Ũ,Pmax
)) · q̃ext with [q̃ext]K+1 = 1. (27.40)
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(1) n := 0

(2) q(0)
ext := [0, . . . , 0, 1]T

(3) repeat
(4) n := n + 1

(5) for given q(n−1)
ext compute U(n) = [u(n)

1 , . . . , u(n)
K ] as the solution of

u(n)
i = arg max

ui

u∗
i Riui

u∗
i Zi

(
q(n−1)

ext

)
ui

, 1 ≤ i ≤ K

(6) for given U(n) compute q(n)
ext as the solution of

Λ
(

U(n),Pmax
)

q(n)
ext = ρ(n)q(n)

ext with
[

q(n)
ext

]
K+1

= 1

(7) until ρ(n− 1) − ρ(n) < ε

Algorithm 27.2. Algorithmic solution of the eigenvalue minimization problem (27.34).

We can again use the characterization (27.27) to prove the following optimality
condition [15].

Proposition 27.5. A matrix Û = [û1, . . . , ûK ] solves the eigenvalue minimization
problem (27.34), as well as the joint beamforming problems (27.32) and (27.33), if
and only if there exists a q̂ext such that

λ̂
(

Û, q̂ext
) = min

U
λ̂
(

U, q̂ext
)
, Λ

(
Û,Pmax

)
q̂ext = ρ

(
Λ
(

Û,Pmax
))

q̂ext. (27.41)

This motivates the alternating algorithm summarized in Algorithm 27.2. The
quantities associated with the nth iteration step are denoted by the superscript
(·)(n). Monotony and global convergence of the algorithm can be proved by ex-
ploiting the max-min characterization (27.27) of the spectral radius [15].

The optimization problems (27.32) and (27.33) are both solved by a beam-
forming matrix Uopt = U(n→∞). The associated power allocations, however, may
be different. The power allocation which balances the relative uplink SINRs at the
level (27.33) is obtained as the first K components of the principal eigenvector of
Λ(Uopt,Pmax), scaled such that its last component equals one. The optimal down-
link powers are associated with the coupling matrix Υ(Uopt,Pmax).

27.2.7. Power minimization under SINR constraints

In the previous section it has been shown that the max-min SINR balancing prob-
lem is equivalent to an eigenvalue optimization problem, where the optimization
is over the beamformers. There always exists a set of beamformers, which maxi-
mizes the jointly achievable SINR margin.

In this section, we focus on the total transmit power. To this end, suppose that
there exists a beamforming matrix Ũ such that ρ(Λ(Ũ,Pmax)) < 1. That is, target
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(1) initialize: n := 0, q(0) := [0, . . . , 0]T , C(0) := 0
(2) repeat
(3) n := n + 1

(4) U(n) = [u(n)
1 , . . . , u(n)

K ] := arg max
ui

u∗
i Riui

u∗
i Zi(q(n−1))ui

, 1 ≤ i ≤ K

(5) if C(n) < 1 then

(6) P(n)
sum := Pmax

(7) solve Λ(U(n),P(n)
sum)[ q(n)

1
] = ρ(n)[ q(n)

1
]

(8) C(n) := 1/ρ(n)
(9) else

(10) q(n) := (I − DΨT(U(n)))−1Dσ

(11) P(n)
sum := ‖q(n)‖1

(12) C(n) := 1
(13) end if

(14) until max
1≤i≤K

SINRUL
i (u(n)

i , q(n−1)) − min
1≤i≤K

SINRUL
i (u(n)

i , q(n−1)) < ε

Algorithm 27.3. Algorithmic solution of the power minimization problem (27.42).

SINRs γ1, . . . , γK are not only feasible, but there are even excess degrees of freedom
which can be used for minimizing the total power.

We start with the problem formulation for the uplink channel, which can be
written as

min
U,q

K∑
i=1

qi subject to SINRUL
i ≥ γi, 1 ≤ i ≤ K ,∥∥ui

∥∥
2 = 1, 1 ≤ i ≤ K.

(27.42)

Note, that this problem formulation is only meaningful if the SINR constraints
are feasible. Since all users are coupled, the optimum is characterized by balanced
quantities SINRUL

i /γi = 1 [14]. Thus, problem (27.42) can be seen as a special
case of the more general max-min balancing problem (27.32). Since (27.42) is only
feasible if the target SINRs can be achieved, a two-stage strategy must be pursued:

(1) check whether the constraints SINRUL
i ≥ γi can be fulfilled (by solving

(27.33)). If the targets are infeasible (i.e., CUL
opt(Pmax) ≤ 1), then relax the

targets γ1, . . . , γK until the problem becomes feasible,
(2) for given targets, minimize the total power by solving (27.42).

Both steps are contained in Algorithm 27.3, which was proposed in [15]. It starts
the same way as Algorithm 27.2. As soon as it turns out that the problem is feasible,
the global power minimum (27.42) can be found by changing the power control
policy. Instead of computing the power allocation which maximizes the balanced
ratio SINRUL

i /γi for given Pmax, we are now interested in finding the allocation
that minimizes the total transmission power while satisfying SINRUL

i /γi = 1. The
power allocation with minimal total power is known to be (27.13). These steps are



H. Boche and M. Schubert 561

CUL(U, Psum)

1

Global
power minimum

P(∞)
sum P(4)

sum P(3)
sum Pmax

Sum power
. . . Initialization (infeasible)

Feasible

U(∞)...
U(4)

U(3)

U(2)

U(1)

Figure 27.4. Schematic illustration of the iterative power minimizer (Algorithm 27.3).

repeated until convergence. The algorithm is summarized in Algorithm 27.3 and
illustrated in Figure 27.4. The proof of convergence can be found in [15].

Proposition 27.6. If the target SINRs γ1, . . . , γK are feasible, then Algorithm 27.3
yields a monotonically decreasing sequence ‖p(n)‖1. The sequence converges to the
optimum of the optimization problem (27.42).

The beamforming matrix obtained by the algorithm not only solves the uplink
problem (27.42), but also the corresponding downlink problem. Having found the
optimal beamformers, the associated downlink and uplink power allocations with
minimum total power are given by (27.12) and (27.13), respectively.

27.2.8. Semi-algebraic approach

The eigenvalue optimization approach (27.34) shows that joint beamforming opti-
mization does not necessarily need explicit optimization over the transmit powers.
The optimization only depends on the beamformers (although the problem struc-
ture is still determined by the power coupling). Now we show that the problem
can also be seen from a different perspective, where the optimization is carried out
with respect to transmit powers only [29].

Suppose that targets γ1, . . . , γK are feasible and ûi, q̂ are optimizers of (27.42),
then the constraints are active, that is, SINRi(ûi, q̂) = γi, i ∈ {1, 2, . . . ,K}. This
can be rewritten as

û∗
i Bi(q̂)ûi = 0, (27.43)

where

Bi(q) := σ2I +
K∑
k=1
k �=i

qkRk − 1
γi
qiRi. (27.44)
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It follows from the optimality of ûi that for any z ∈ CM the optimizers ûi and q̂
jointly fulfill

0 = û∗
i Bi(q̂)ûi ≤ z∗Bi(q̂)z ∀i ∈ {1, . . . ,K}. (27.45)

Thus, Bi(q̂) % 0 (positive semidefinite). It can be concluded that (27.43) can only
be fulfilled if Bi(q̂) is singular, that is, det |Bi(q̂)| = 0. Thus, ûi is an element of the
nullspace of Bi(q̂).

It can be shown [29] that the optimal power allocation q̂ is contained in the
intersection of polynomial roots

B =
K⋂
i=1

{
q : φi(q) = 0

}⋂
R

K
+ , (27.46)

where

φi(q) := det
∣∣Bi(q)

∣∣ ∀i ∈ {1, 2, . . . ,K}. (27.47)

Assuming that the target SINRs are feasible, a solution q̂ ∈ B solving the joint
beamforming problem (27.42) is given by

q̂ = arg min
q∈B

‖q‖1. (27.48)

That is, q̂ together with ûi arbitrarily chosen from the nullspace of Bi(q̂), 1 ≤ i ≤
K , jointly achieve the targets γ1, . . . , γK with minimal total power P = ‖q̂‖1.

It is known from semi-algebraic geometry that if the polynomials φi(q) are
different, then B is always finite. Thus, the optimization in (27.48) is over a finite
set. For the special problem at hand, it can even be shown that the subset of opti-
mal solutions {q : q ∈ B,‖q‖1 = P} cannot contain more than a single element.

Proposition 27.7. The multiuser beamforming problem (27.42) has a unique opti-
mizer q̂. Having found q̂, an optimal beamformer ûi of the ith user can be arbitrarily
chosen from the nullspace of Bi(q̂).

27.2.9. Discussion

The results show that SINR-based multiuser beamforming has an interesting an-
alytical structure, which allows to solve the joint optimization problems (P1) and
(P2), which we have introduced at the beginning of this chapter.

The same problems can be formulated for other performance measures, for
example, the information theoretical capacities

Rk = log2

(
1 + SINRk(U, p)

)
, 1 ≤ k ≤ K , (27.49)
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under the assumption that Gaussian-distributed codebooks are used for signal-
ing. Since there is a one-to-one correspondence between SINR and capacity, the
proposed beamforming strategy can be used to distribute the system resources
according to individual target capacities R̂1, . . . , R̂K . Provided that these rates are
feasible, the strategy with optimal power efficiency is

min
U,p

K∑
k=1

pk subject to Ri ≥ R̂i ∀i ∈ {1, . . . ,K}. (27.50)

The rate constraints directly translate into SINR constraints, thus the algorithm in
Section 27.3 can be used to find the optimum. Moreover, it can be concluded that
the duality theory derived in Section 27.2.4 immediately carries over to a duality
of rate regions. That is, a rate point is achievable in the uplink if and only if the
same point is achievable in the downlink.

This duality has been shown to be very useful for the development of algo-
rithms. The uplink problem is easier to handle than the corresponding downlink
problem, which is because the users are coupled by the channels, rather than by
the beamformers. Instead of optimizing the downlink directly, one can find the
optimum by solving the equivalent dual problem.

For MIMO links, it would be desirable to find a similar duality. Important
steps have been made in [26, 30, 31], under the assumption that the information
content of the signals can be exploited in an optimal way, that is, by canceling
known interference (as will be discussed in the following section). For the “clas-
sical” approach considered in this section, the K data streams and the M array
antennas are related by a linear mapping. Under this assumption, the capacity of
the kth link of the Gaussian multiuser MIMO is

Ck = log2 det
∣∣I + HkQkH∗

k Z−1
k

∣∣, (27.51)

where Hk is the nr × nt channel matrix (nr receive antennas, nt transmit anten-
nas) and Qk is the transmit covariance matrix with power Tr{Qk}. The users are
coupled by interference, which is included in the noise covariance matrix

Zk = σ2I +
K∑
l �=k

HlQlH∗
l . (27.52)

Thus, the kth user receives interference from all other users l �= k. In order to fulfill
individual target capacities R̂1, . . . , R̂K with optimal power efficiency, one has to
solve a joint optimization problem

min
Qi%0,1≤i≤K

K∑
k=1

Tr
{

Qk
}

subject to Ci ≥ R̂i ∀i ∈ {1, . . . ,K}. (27.53)

This multiuser MIMO problem has a complicated structure and is still open. One
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way to gain intuition about multiuser MIMO is to analyze the capacity C(Q, Z) as
a function of the desired signal Q and the noise Z [32].

The beamforming problem discussed in Section 27.3 can be seen as a special
case, where the channels can be expressed as vectors. For the more general MIMO
case, it is still not clear whether a similar duality between uplink and downlink
holds. Duality has been shown under the assumption of Gaussian channels with
interference cancellation (resp., precompensation) [30, 31, 33]. However, the gen-
eral case is still open.

27.3. Precoding and successive interference cancellation

Next, we will discuss the joint beamforming problem in an information theoretical
context. The uplink is often modeled as a multiple access channel (MAC) and the
downlink as a broadcast channel (BC).

The MAC capacity region has been established in [34] based on earlier results
[35, 36]. The problem formulation goes back to Shannon itself. See also [37, 38]
for an overview. In [39] it was shown for a vector channel (e.g., beamforming) that
the vertices of the region can be achieved by a combination of linear filtering and
successive interference cancellation (SIC).

The broadcast channel was introduced by Cover in [40]. The general (nonde-
graded) capacity region has been a longstanding problem, which was not solved
until [33] based on earlier results [30, 31, 41]. It turns out that both BC and MAC
are duals of each other and their regions coincide (see Figure 27.5). The points
within this region can be achieved by “dirty paper” precoding, nicknamed after
Costa’s result [42]. This information theoretical result says (for a scalar single-
antenna channel) that if interference is known noncausally at the transmitter,
then this knowledge can be taken into account by a precoding strategy, which
achieves the same capacity as if the interference would not exist. Moreover, such
an ideal precoding comes at no extra cost in terms of transmit power. The result
has been extended to vector channels and practical strategies have been proposed
[30, 43, 44, 45, 46, 47].

27.3.1. Uplink beamforming with SIC

Uplink successive interference cancellation can be applied in combination with
linear receivers (beamformers). In [39] it was shown that the vertices of the ca-
pacity region can be achieved by using a combination of successive interference
cancellation (SIC) and normalized linear MMSE receivers

uMMSE
i = Z−1

i hi∥∥Z−1
i hi

∥∥
2

∀i ∈ {1, 2, . . . ,K}, (27.54)

where Z1, . . . , ZK are the interference-plus-noise spatial covariance matrices, which
depend on the order in which SIC is performed. The users can be renumbered
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arbitrarily, thus K ! different combinations exist. Assuming an order K , . . . ,1, we
have

Zi
(
q1, . . . , qi−1

) = σ2I +
i−1∑
k=1

qkhkh∗
k . (27.55)

The following signal is obtained at the ith cancellation step:

yi(t) = si(t)u∗
i hi +

i−1∑
k=1

sk(t)
(

uMMSE
i

)∗
hk + ni(t), 1 ≤ i ≤ K. (27.56)

This leads to “coded” SINRs

SINRUL,SD
i

(
uMMSE
i , q1, . . . , qi

) = qi
∣∣(uMMSE

i

)∗
hi

∣∣2(
uMMSE
i

)∗
Zi
(
q1, . . . , qi−1

)
uMMSE
i

= qih∗
i Z−1

i hi.

(27.57)
Similar to classical beamforming studied in Section 27.2, we are interested in the
power allocation and beamformers that solve the power minimization problem

min
q,U

K∑
i=1

qi subject to SINRUL,SD
i

(
ui, q1, . . . , qi

) ≥ γi, 1 ≤ i ≤ K. (27.58)

Note, that unlike the linear beamforming problem studied before, problem (27.58)
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(1) Z−1
1 := I/σ2

(2) for i = 1–K do

(3) q
opt
i := γi

h∗
i Z−1

i hi

(4) u
opt
i := Z−1

i hi/‖Z−1
i hi‖2

(5) Z−1
i+1 := Z−1

i − q
opt
i Z−1

i hih∗
i Z−1

i

1 + γi
(6) end for

Algorithm 27.4. Solution of the uplink problem (27.58): joint beamforming and power allocation
under the assumption of SIC (order K , . . . , 1).

is always feasible in the absence of power constraints. This is due to the triangular
channel structure imposed by the successive decoding. The interference-plus-noise
covariance matrix has a recursive structure

Zi−1(q) = Zi(q) + qihih∗
i , 1 ≤ i ≤ K , (27.59)

where ZK = σ2I (the last decoded user transmits over an effective AWGN channel).
Thus, we can use the rank-one update formula for matrix inversion to compute the
matrix inverses. For any nonsingular matrix A and vectors c, d, we have (see, e.g.,
[27])

(
A + cd∗)−1 = A−1 − A−1cd∗A−1

1 + c∗A−1d
. (27.60)

Using the shorthand notation Zi := Zi(q) and (27.60), we have

Z−1
i−1 = Z−1

i − qiZ−1
i hih∗

i Z−1
i

1 + γi
, Z−1

K = I
σ2

. (27.61)

This leads to Algorithm 27.4, which provides a recursive solution for the uplink
problem (27.58). The proof is given in [16]. Note, that the total transmit power
required to achieve certain targets generally depends on the coding order. Addi-
tional performance gains can be achieved by optimizing over the coding order as
well.

27.3.2. Closed form solution for the two-user case

The results show that the highly nonlinear optimization problem (27.58) can in
principle be solved in closed form, by recursive back-substitution. For K = 2 and
a decoding order 2, 1, this leads to the following jointly optimal transmit powers:

q
opt
1 = γ1σ2∥∥h1

∥∥2 , q
opt
2 = γ2σ2∥∥h2

∥∥2

(
1 − γ1

1 + γ1
ρ2

12

)−1

, (27.62)
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where ρik denotes the normalized inner product between the channels hi and hk,
that is,

ρik = h∗
i hk∥∥hi

∥∥∥∥hk

∥∥ . (27.63)

Hence, for fully correlated channels or equal targets it is always optimal to decode
first the user with the largest channel norm. If both channels have the same norm,
then both coding orders yield the same total power. For uncorrelated or partly
correlated channels |ρ12| < 1, the optimal decoding order also depends on the
choice of the target SINRs.

With q1 + q2 ≤ Pmax, the SINR achievable region with successive decoding
(order 2, 1) is characterized by the following inequality:

γ2 ≤ ∥∥h2
∥∥2

(
1 − γ1

1 + γ1
ρ2

12

)(
Pmax

σ2
− γ1

‖h1‖2

)
. (27.64)

It can be observed that for uncorrelated channels ρ12 = 0, there is a linear tradeoff

between the achievable SINR values γ2 and γ1.

27.3.3. Downlink beamforming with precoding

In [41] it was proposed to use “dirty paper precoding” to precompensate interfer-
ence in a multiuser broadcast channel (downlink). The basic idea is as follows:
if the users are subsequently encoded with order 1, . . . ,K , and perfect channel
knowledge is available, then the interference caused by the users i+ 1, . . . ,K to the
user i is known prior to transmission. The interference can therefore be rendered
harmless by an appropriate encoding and has no effect at the decoder output. This
imposes a triangular structure on the interference structure and leads to a par-
tial decoupling of the users. In particular, the Kth user sees no interference after
demodulation.

The duality theory discussed in Section 27.2.4 extends to the nonlinear case
(SIC/precoding) in a straightforward way. In analogy to classical downlink beam-
forming (Section 27.2), the optimal beamformers and powers required for pre-
coding can be found as well by solving a dual uplink problem instead. Target
SINRs γ1, . . . , γK are achieved in the downlink with optimal power efficiency by
Algorithm 27.5. It starts by computing the optimal transmit beamformers u

opt
1 , . . . ,

u
opt
K by solving the dual uplink problem with SIC. The SIC decoding order has to

be chosen as the reverse encoding order. Having found the optimal beamformers,
the associated downlink power allocation popt can be computed.

27.4. Network resource allocation

In order to provide end-to-end QoS for individual users, a system-wide point
of view is required. A common approach to handle various system parameters



568 Duality theory for uplink and downlink multiuser beamforming

(1) compute u
opt
1 , . . . , u

opt
K with Algorithm 27.4 (order K , . . . , 1)

(2) for i = K to 1 do

(3) p
opt
i := γi

|u∗
i hi|2

(
∑K

k=i+1 p
opt
k |u∗

k hi|2 + σ2)

(4) end for

Algorithm 27.5. Joint downlink beamforming and power allocation under the assumption of inter-
ference precompensation (dirty paper precoding) with encoding order 1, . . . ,K .

is to model the QoS of all users as SINR-dependent functions fk(SINRk), k ∈
{1, . . . ,K}. QoS control for mixed services with individual priorities and rate re-
quirements can be realized by optimizing a weighted sum

F(p, U) =
K∑
k=1

wk fk
(

SINRk(p, U)
)
. (27.65)

The factors wi account for the individual user requirements and possibly incor-
porate system aspects like scheduling, resource allocation, priorities, and so forth.
Some possible strategies will be discussed in the remainder of this chapter.

27.4.1. Throughput maximization

A special realization of f (SINR) is the Shannon capacity log2(1 + SINR), which
was already used in Section 27.3, where the tradeoff region between the users was
characterized. Now, we consider a special point on the boundary of this region,
namely the maximal sum rate

Csum = max
U,‖q‖1≤Pmax

K∑
k=1

log2

(
1 + SINRk(p, U)

)
, (27.66)

which is obtained by maximization over all beamformers U and power allocations
p with total power ‖p‖1 ≤ Pmax. All users are weighted equally, that is, wk = 1, for
all k ∈ {1, 2, . . . ,K}.

27.4.1.1. Uplink sum capacity

Assuming MMSE beamformers (27.54) and SIC with order K , . . . , 1, we have

log2

(
1 + SINRi

) = log2

(
1 + qih∗

i Z−1
i hi

)
= log2

∣∣I + qiZ
−1/2
i hih∗

i Z−1/2
i

∣∣
= log2

∣∣qihih∗
i + Zi

∣∣− log2

∣∣Zi

∣∣,

(27.67)

where the interference-plus-noise spatial covariance Zi has the special recursive
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structure Zi+1 = Zi + qihih∗
i , with Z1 = σ2I, thus

K∑
k=1

log2

(
1 + SINRk

) =
K∑
k=1

log2

∣∣Zk+1
∣∣−

K∑
k=1

log2

∣∣Zk

∣∣
= log2

∣∣∣∣σ2I +
K∑
k=1

qkhkh∗
k

∣∣∣∣− log2

∣∣σ2I
∣∣.

(27.68)

Hence, the sum capacity is

Csum = max
‖q‖1≤Pmax

log2

∣∣∣∣I +
1
σ2

K∑
k=1

qkhkh∗
k

∣∣∣∣. (27.69)

The objective in (27.69) is concave on the set of transmit powers. The optimal
power allocation qopt, with ‖qopt‖1 = Pmax, can be computed efficiently by recently
developed interior point methods, like the one in [48].

Finally, it should be noted that the sum capacity does not depend on the cod-
ing order, as can be observed from (27.69).

27.4.1.2. Downlink sum capacity

It follows from the uplink/downlink duality in Section 27.2.4 that the sum capacity
(27.69) is also the sum capacity of the broadcast channel (see also [26, 31, 49] for
a discussion of more general MIMO channels).

In particular, the SINR levels which are associated with the uplink sum ca-
pacity (27.69) must equal the SINRs associated with the BC sum capacity. Thus,
the joint beamforming approach proposed in Section 27.2.6 can be used to deter-
mine the optimal BC power allocation and transmit beamformers. In particular, it
is known that the MAC beamformers also achieve the BC sum capacity, however
with a different power allocation. For known SINR targets, the optimal downlink
power allocation has been derived in Section 27.3.3. As for the MAC, the BC sum
capacity does not depend on the encoding order.

27.4.1.3. Sum capacity with classical beamforming

Consider the uplink channel (due to duality, all results can be transferred to the
downlink). Without interference cancellation, the covariance of interference-plus-
noise is

Zk(q) = σ2I +
K∑
k=1
k �=i

qkhkh∗
k . (27.70)
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Thus, the sum rate is given by

Clin(q) = K log2

∣∣∣∣∣σ2I +
K∑
k=1

qkhkh∗
k

∣∣∣∣∣−
K∑
k=1

log2

∣∣Zk(q)
∣∣. (27.71)

The function Clin(q) is the sum of a convex and a concave term. The result need
not be convex nor concave, as can be observed from the two-user example de-
picted in Figure 27.6. Nevertheless, there are some properties which can be used
for numerical optimization.

(i) The sum rate function is continuous and infinitively often differentiable.
(ii) The optimum always lies on the boundary of the domain defined by the

sum-power constraint.
Thus, iterative algorithms might lead to acceptable results. Starting the itera-

tion process from the interior of the domain, it is always assured that the algorithm
converges towards an optimum on the boundary, where the sum-power constraint
is fulfilled with equality. Thus, instead of searching the entire domain, only the
boundary has to be searched.

27.4.2. Max-min fairness

Throughput maximization does not account for the individual capacity require-
ments. This may lead to a situation where all the available power resource is fo-
cused on a single user. Often, a more fair approach is required.

The max-min technique proposed in Section 27.2.6 and the constrained
power minimization strategy in Section 27.3.1 both offer optimal fairness based
on the SINR criterion (also denoted as max-min fairness). However, forcing all
SINRs to achieve a given target threshold may be a waste of resource, for example,
when the path attenuation of some link is so high that meaningful communication
is not possible. Thus, a tradeoff between throughput maximization and max-min
fairness is required. An optimal strategy should be flexible enough to not only in-
corporate the channel condition, but also other system parameters, for example,
the lengths of the data queues.

As a first step, we show how optimal max-min fairness can be achieved within
the framework of the sum-optimization strategy (27.65). In particular, we consider
the case where the QoS depends inversely on the SIR. Suppose that all beamform-
ers are constrained to fulfill u∗

i Riui = 1, then we are interested in minimizing the
cost function

F(U, p) = 1
K

K∑
k=1

wk
γk

SIRDL
k (U, p)

= 1
K

K∑
i=1

piu∗
i

 K∑
k=1
k �=i

wkγkRk

pk

ui. (27.72)
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Figure 27.6. Sum capacity with (a) SIC/precoding: ‖h1‖2 = 2, ‖h2‖ = 1, and (b) classical beamform-
ing: ‖h1‖2 = 1, ‖h2‖2 = 0.99. K = 2, M = 2, σ2 = 1, and P1 + P2 = Pmax.

The optimization problem can be written as

min
U,p

F(U, p) subject to uiRiui = 1, 1 ≤ i ≤ K ,

‖p‖1 = 1.
(27.73)

A similar problem was introduced in [11], where equal weighting wi = 1 was as-
sumed (we add the fixed factors γi to enable comparison with the max-min prob-
lem discussed in Section 27.1) in order to achieve max-min fairness. It was shown
in [19] that equal weighting generally does not lead to the optimum of the max-
min balancing problem (27.23), except for the two-user case.

Necessary and sufficient conditions for the equivalence of problem (27.73)
and the max-min problem (27.23) are given in [19]. In particular, it can be shown
[50] that the problem is convex on U and log-convex on p. This motivates an al-
ternating optimization scheme that keeps one of the variables U and q fixed while
minimizing with respect to the other. In each optimization step, the weighting
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(1) n := 0
(2) q(0) := [1, . . . , 1]T , w(0) := [1, . . . , 1]
(3) ρ(0) := 0
(4) repeat
(5) n := n + 1
(6) for given q(n) compute

U(n) := arg min
U

F(U, p(n−1),w(n−1)), s.t. u∗
i Riui = 1, 1 ≤ i ≤ K

(7) compute q(n) and p(n) as the left and right-hand principal
eigenvectors of ΓΨ(U(n)), respectively. The spectral radius is ρ(n)

(8) wi = p̂i · q̂i, i ∈ {1, . . . ,K}, w(n)
i = p(n)

i · q(n)
i , i ∈ {1, . . . , k}

(9) until ρ(n− 1) − ρ(n) ≤ ε

Algorithm 27.6. Problem (27.73): max-min fairness by minimizing the sum of weighted inverse
downlink SIR..

factors wi (which are constrained to fulfill
∑

i wi = 1) must be adjusted as fol-
lows [50]:

wi = p̂i · q̂i, i ∈ {1, . . . ,K}, (27.74)

where p̂ = [ p̂1, . . . , p̂K ]T is the right-hand eigenvector of the coupling matrix ΓΨ
and q̂ is the left-hand eigenvector.

Problem (27.73) is solved by the algorithm summarized in Algorithm 27.6.
We define Γ = diag{γ1, . . . , γK}. The beamformers computed by the algorithm
solve the max-min SIR problem (27.23) (after rescaling such that ‖ui‖2 = 1).
Monotonicity and convergence are shown in [51].

27.5. Implementation aspects and conclusions

The problem of jointly optimizing beamformers and transmit powers has an in-
teresting analytical structure. Although it is highly nonlinear, very efficient opti-
mization strategies can be devised. This is due to the duality between uplink and
downlink, which allows to find the downlink optimum by solving an equivalent
uplink problem instead.

The proposed beamforming strategies rely on channel knowledge, which can
only be obtained by sacrificing a part of the available bandwidth for channel esti-
mation. For downlink beamforming, the situation is even more difficult, since the
information has to be available prior to transmission. Promising strategies to ob-
tain channel knowledge are available (e.g., [9]). Nevertheless, robustness to chan-
nel mismatch remains an important aspect.

The classical beamforming approach discussed in Section 27.2 only relies on
covariance channel information, which is obtained by averaging over the time-
fluctuating fading channel. It exploits the slow-varying geometry of the propa-
gation paths and is therefore inherently robust. This strategy could be assisted
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by directional information. A study on calibration strategies for directional array
transmission can be found in [52, 53, 54]. An example of a successful implemen-
tation of multiuser beamforming can be found in [55], where spatial multiplexing
is combined with bit loading and adaptive modulation.

Future work will have to focus on the interaction of the proposed techniques
with higher layer functionalities, for example, transmit scheduling, link control,
and resource management. To this end, the SINR alone may not be sufficient as
a performance criterion. Other performance measures were investigated, for ex-
ample, in [56], where the balancing of effective bandwidths was considered. More
general measures have been recently studied, for example, in [57, 58, 59].

After this chapter has been completed, it has been shown [60, 61] that the
resource allocation problem discussed in Section 27.4 can be treated within a
more generic framework, where interference is described by parameter-dependent
coupling matrices. Thereby, it is possible to analyze the interaction between power
control and receiver (resp., precoder) design in a more general way. These results
could be useful for the development of future cross-layer strategies, which still re-
quire simple, yet comprehensive analytical models for optimization.
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Abbreviations

QoS Quality of service

MAC Multiple access channel

BC Broadcast channel

SINR Signal-to-interference-plus-noise ratio

SIR Signal-to-interference ratio

SNR Signal-to-noise ratio

MIMO Multiple-input multiple-output

SIC Successive interference cancellation

MMSE Minimum mean square error

AWGN Additive white Gaussian noise
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28
Scheduling in
multiple-antenna
multiple-access channel

Holger Boche, Marcin Wiczanowski,
and Thomas Haustein

28.1. Introduction to problem statement

Recent evolution of services in cellular wireless networks exhibits a growing im-
portance of pure data traffic, currently in form image transmission and low-rate
data download. In future cellular wireless networks beyond 3G data connections
are expected to become the most significant part of the overall traffic. Such evo-
lution enforces fundamental changes in the philosophy of resource allocation in
wireless networks. Classical networks are dominated by voice connections. The
aim of classical resource allocation is the satisfaction of SINR (signal-to-interfer-
ence-and-noise ratio) thresholds, which allow for sufficiently perspicuous speech
perception [1]. Once the threshold is exceeded, any differences in the SINR values
do not lead to perceivable differences in the quality of speech understanding. This
is not the case for nonvoice connections in the framework of the so-called new
services, like, for example, multimedia download, real-time streaming, data up-
load, and so forth. Under nonelasticity of the traffic, that is, in the case when some
minimum service quality must be satisfied permanently, equal SINR thresholds
are replaced by link-specific thresholds of quality of service (QoS). These could
be, for example, maximal tolerable delay or minimum tolerable throughput. In
the nonvoice case, SINR variations do have influence on human-perceived service
quality, which is mirrored, for example, in the fluency of the multimedia stream.
A counterpart to nonelastic traffic is elastic traffic [2], which has no minimum ser-
vice requirements and accepts temporary transmission periods with deficient QoS.
Optimal resource allocation aims in such case at the optimization of a global cell
QoS measure, regarded also as cell, respectively, operator, utility [2]. The example
of such elastic connection is high-rate data download. An important class of QoS
measures arises from the cross-layer view of the physical and data link layer [3].
This is due to the strong association of issues like queuing delay, buffer occupancy,
buffer overflow prevention with human-perceived service quality. In this context,
there arises the notion of scheduling, which comes originally from computer sci-
ence, precisely from the investigations of job-sharing schemes. In the context of
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wireless networks scheduling is meanwhile understood as the resource allocation
and medium access/transmission policy, which is based on some multiuser data
link layer objectives like minimum sum of delays, equalization of buffer occupan-
cies, and so forth.1

We investigate the cellular uplink, representing a multiple-access channel
(MAC) in terms of information theory. The considerations in the remainder con-
centrate on the scheduling aiming at system stability. Stability can be regarded as
a global, binary (whether the system is stable or not) QoS measure of the net-
work cell. In these terms stability belongs formally to the framework of scheduling
of elastic traffic, but its importance is spanning the traffic-type classes. The cen-
tral element of the cross-layer uplink model represents queues of bits, which await
their transmission at user nodes. Informally said, the system of queues is stable if
there is no queue, such that its length blows up to infinity with time. If any queue
in the cellular uplink suffers instability, the corresponding buffer overflows and the
node is forced to drop the transmission. This machinery makes stability an attrac-
tive objective from the system and network operator point of view. The queues are
fed by arrival processes of bits or bit-bursts incoming from higher layers. The de-
pletion of the queue system is determined by the physical layer scheduling policy
and the quality of channels. Hence, the dynamic behaviour of the queue system,
including the stability behaviour, depends on the issues of both physical and data
link layer. With any depletion policy is associated a stability region of bit arrival
rates. In broad terms, it is the set of arrival rate tuples for which the queue system
remains stable. From the system point of view it is therefore desired to optimize the
queue server, that is, the scheduling policy, in terms of the size of the achievable
stability region. Stability-optimal scheduling policy achieves the largest possible
stability region and hence allows the operator to carry the densest possible traffic
without the need of dropping service of any links.

The presented theoretical framework is developed for multiple-input multi-
ple-output MAC (MIMO-MAC). This is motivated by the high interest in the mul-
tiantenna transmission technique, which is a promising candidate for standardiza-
tion in future networks and includes the SISO transmission as a special case. We
first introduce the notation and fundamental definitions arising from the cross-
layer view. Then we present formal notions of stability and stability region and
introduce the framework of Lyapunov drift of Markov chains essential for our re-
sults. With these basics we characterize the stability-optimal scheduling policy and
analyse the stochastic behaviour of the queue system under its use. Next, we step
into the physical layer and study the stability-optimal policy in terms of physical
rates and achievable rate regions. Finally, we consider the optimization-theoretic
side of stability-optimal scheduling and propose an iterative way of computing the
optimal policy.

1In numerous works, scheduling is understood as a general medium access/transmission policy,
not restricted to data link layer objectives.
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28.2. Notation and preliminaries

We consider the uplink with K user nodes k = 1, 2, . . . ,K transmitting to the base
station. We time-discretize the considerations in that we observe and influence
the system only at discrete-time instances nT , n ∈ N. When there is no risk of
ambiguity, we sometimes omit the dependence on n in the notation. The lack of
differentiation between processes and process realizations in our notation does
not lead to ambiguities. Symbol E[x] denotes the mean with regards to all values
influencing process x.

28.2.1. Data link layer

The traffic of the multiple-access data link layer and higher layers is organized in
bursts. The processed data bursts destined for transmission arrive at the data link
layer of every user node at arrival times, which are assumed here to be independent
of each other. This feature characterizes the Poisson arrival process. Knowing or es-
timating the mean packet lengths E[lk] and packet arrival rates λk, k = 1, 2, . . . ,K ,
we can easily derive bit arrival rates ρk = E[lk]λk, grouped into ρ = (ρ1, ρ2, . . . , ρK )
[4]. The vector a(n) = (a1(n), a2(n), . . . , aK (n)) contains the numbers of bits ar-
rived at every queue in the time interval [(n−1)T ;nT]. Clearly, due to fading chan-
nels and interference limitation of the MAC, the data packets in general cannot be
transmitted immediately and are queued in queues of lengths qk(n), grouped into
q(n) = (q1(n), q2(n), . . . , qK (n)). We assume the vector valued process of queue
system evolution q(n) to be stationary and ergodic. The base station is always as-
sumed to have knowledge of the current queue system state q(n).

28.2.2. Physical layer

Each user node is equipped with nt transmit antennas and the base station has
nr receiver antennas. However, all results are easily generalizable to the case with
different antenna numbers nt(k), k = 1, 2, . . . ,K . Instantaneous and average link
rates are grouped into the vectors R(n) = (R1(n),R2(n), . . . ,RK (n)) and R(E) =
(R(E)

1 ,R(E)
2 , . . . ,R(E)

K ), respectively. The fading process is assumed to be an ergodic
process with instantaneous values H(n) = {H1(n), H2(n), . . . , HK (n)} as K-
element sets of nr × nt matrices, such that for any pair (m,n), m �= n, H(m) and
H(n) are independent (memoryless process). It is assumed that the realizations
H(n) remain nearly constant within time slots [(n − 1)T ;nT], for any n ∈ N,
which corresponds to the usual block-fading assumption. We assume an addi-
tive, spatially uncorrelated white Gaussian noise with covariance matrix Iσ2. The
nt×nt transmit covariance matrix of node k in time slot [(n−1)T ;nT] is Qk(n) =
E[xk(n)xH

k (n)], with xk(n) as the column vector-valued transmit process. Trans-
mit covariance matrices are grouped in the set Q(n) = {Q1(n), Q2(n), . . . , QK (n)}
(clearly, Q(n) with variable n ∈ N is a matrix-set-valued process). Transmit co-
variance matrices can be either calculated at each user node when the channels
are known at the transmitters, or be computed at the base station and fed back



580 Scheduling in multiple-antenna multiple-access channel

through a reliable feedback channel. Hence, we assume perfect channel knowl-
edge at both sides of every link or reliable delayless feedback channels. The power
allocation to user nodes during [(n−1)T ;nT] is p(n) = (p1(n), p2(n), . . . , pK (n)).
We consider the case of individual transmit power constraints p̂ = ( p̂1, p̂2, . . . , p̂K )
and of a global sum-power constraint P. The base station is assumed to perform
successive decoding with negligible error propagation. We use the permutation
symbol πk, with k ∈ {1, 2, . . . ,K !}, to denote one of K ! possible successive inter-
ference cancellation (SIC) orders. In such notation link signal πk(K) is decoded
first, link signal πk(K − 1) is decoded second, . . ., and link signal πk(1) is decoded
last. Alternatively we write πk = πk(1) ← πk(2) ← ·· · ← πk(K).

28.2.3. Scheduling policies

We regard the scheduling policy as a mapping, which assigns a set of transmit
covariance matrices and an SIC order to the set of current channel states, current
queue system state, and the time instant itself. Define first a general mapping

{
H(n), q(n),n

}
�→ φ

({
H(n), q(n),n

})
:= {

Q(n),πk(n)
}
. (28.1)

We also use the splitted notation for the the mapping according to

{
H(n), q(n),n

}
�→ φQ

({
H(n), q(n),n

})
:= Q(n),{

H(n), q(n),n
}
�→ φπ

({
H(n), q(n),n

}
) := πk(n)

(28.2)

in order to access separately the assigned transmit covariance matrices and the SIC
order. The policies of the form (28.1) are realizable in constrained MIMO-MAC
only if they pertain to the set

Mp̂ = {
φ : ∀(H , q,n, k) trace

(
φQ,k(H , q,n)

) = Qk(n) ≤ p̂k
}

(28.3)

in case of individual power constraints and to the set

MP =
{
φ : ∀(H , q,n)

K∑
k=1

(
φQ,k(H , q,n)

) =
K∑
k=1

Qk(n) ≤ P

}
(28.4)

in case of sum-power constraint. The dependence on all arguments in (28.1) is not
necessary. In particular, in Section 28.5, the special subclass of policies

{
H(n), q(n)

}
�→ φ

({
H(n), q(n)

})
:= {

Q(n),πk(n)
}

(28.5)

called spatial is of interest. The scheduling policies are assumed to remain constant
within time slots [(n−1)T ;nT] for any n ∈ N. The scheme of a routine computing
the scheduling policy in the described sense is depicted in Figure 28.1.
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Figure 28.1. The routine of computation of a scheduling policy in the MIMO-MAC.

28.2.4. Markov property

The queue lengths evolve according to

qk(n + 1) = [
qk(n) − Rk

(
φ, H(n)

)
T
]

+ + ak(n), (28.6)

for n ∈ N and k = 1, 2, . . . ,K , where [·]+ suppresses the term inside, whenever it is
negative. In opposition to classical queueing-theoretic literature, we utilize a more
precise model of the system and allow for noninteger depletion in every time slot.
This implies that q ∈ RK

+ and hence that the domain of q is uncountable. Utilizing
the statements regarding the PASTA (Poisson arrivals see time averages) property of
Markov chains on countable spaces in [4] and the general theory of Markov chains
in [5] the following can be shown.

(i) Due to memorylessness of H(n) and definition (28.1) the process q(n)
is a DTMC (discrete-time Markov chain) on RK

+ .
(ii) The DTMC q(n) is ψ-irreducible, with ψ as the maximal irreducibility

measure.
The last property corresponds to simple irreducibility of Markov chains on count-
able spaces, since it implies that there is a nonzero probability of achieving a state
in any set A ⊂ RK

+ , with ψ(A) > 0 (in most cases we can take ψ simply as the
K-fold product measure of Lebesque measures on R+).

28.3. Stability analysis

With the above statements we are prepared for the brief introduction of the frame-
work of stability analysis. Due to the Markov property of the queue system be-
haviour in the MIMO-MAC our concern is in Markovian systems. In this field we
find the drift techniques basing on Lyapunov functions to be the key tool in our
considerations.
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28.3.1. Different stability notions

There are three notions of stability, which are of interest.

Definition 28.1 (observation based stability). The system of K queues is called sta-
ble, if for all k = 1, 2, . . . ,K , it holds that

lim
M→∞

gk(M) = 0, (28.7)

with

gk(M) = limsup
t→∞

1
t

∫ t

0
1{qk(τ)≥M}τdτ,

1{qk(τ)≥M} =
1 qk(τ) ≥ M,

0 elsewhere.

(28.8)

Definition 28.2 (weak stability). The queue system is called weakly stable, if for
every ε > 0, there exist B > 0 and n0 = n0(ε), such that for all n ≥ n0,

Pr
[∥∥q(n)

∥∥ > B
]
< ε, (28.9)

where ‖ · ‖ denotes any vector norm.

Definition 28.3 (strong stability). The queue system is called strongly stable, if

limsup
n→∞

E
[∥∥q(n)

∥∥] < ∞. (28.10)

In broad terms, observation-based stability notion requires the queue system
to assume infinite lengths of any queue extremely rarely. With Markov inequality,
it can be further shown that strong stability implies the weak one but not inversely.
Interestingly, none of the above stability definitions requires the existence of a
steady-state distribution of the DTMC describing the system evolution. The ex-
istence of the steady state of the DTMC is implied by its positive recurrence, which
means that any accessible state can be achieved in finite number of steps when
starting from an arbitrary state. Positive recurrence of a DTMC is also a sufficient
condition for its weak stability [5]. Under steady-state existence, limit expressions
arise in Definitions 28.1 and 28.3. With ergodicity of the queue evolution process
there also arises a connection to observation-based notion of stability. Since un-
der ergodicity the time portion spend in any state corresponds to the stationary
probability of this state, the observation-based stability becomes the weak one.

28.3.2. Stability region

We can associate different stability regions with different policies of serving the
queue system. We use the term stability region to describe the largest achievable
stability region for the given queue system.
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Definition 28.4. The stability region D of the system of K queues is the set of all
arrival rate vectors ρ, such that there exists a possibility to achieve stability in the
observation-based sense for all arrival rate vectors lying in the interior of D .

Loynes’ theorem [6] additionally says that for vectors pertaining to the bound-
ary of the stability region, stability is possible, but not guaranteed. Moreover, in
such case also the so-called substability can occur [6].

28.3.3. Drift and Lyapunov functions

Stability of the queue system can be determined using a specific lower-bounded
real-valued function L(q(n)), called Lyapunov function. The theory of stability
determination by means of drift conditions and Lyapunov functions is well devel-
oped [5, 7]. Here we only outline statements of interest and refer to the literature
for details.

Theorem 28.5. Given the system of K queues evolving according to a ψ-irreducible
DTMC, if there exist B < ∞, α > 0, and a lower-bounded real-valued function L :
RK → R, such that

∀q(n) :
∥∥q(n)

∥∥ ≤ B, E
[
L
(

q(n + 1)
)|q(n)

]
< ∞,

∀q(n) :
∥∥q(n)

∥∥ > B, E
[
L
(

q(n + 1)
)− L

(
q(n)

)∣∣q(n)
] ≤ −α,

(28.11)

then the DTMC is positive recurrent and for all ε > 0, there exists B > 0, such that

lim
n→∞ Pr

[∥∥q(n)
∥∥ > B

] = Prstat
[‖q‖ > B

]
< ε. (28.12)

In other words, the queue system does not blow up to infinity and approaches
a steady state in the sense of stationary distribution, if for the corresponding
DTMC, there exists a Lyapunov function with finite conditional one-step mean.
Further it must hold that the DTMC has the tendency to decrease the conditional
one-step mean of the Lyapunov function, whenever the state is outside some com-
pact set of states. From the last subsection it is also clear that Theorem 28.5 implies
weak stability of the queue system.

Theorem 28.6. Given the system of K queues evolving according to a ψ-irreducible
DTMC, if there exist a lower-bounded real-valued function L : RK → R and positive
scalars α and C < ∞, such that

∀q(n), E
[
L
(

q(n + 1)
)− L

(
q(n)

)|q(n)
] ≤ C − α

∥∥q(n)
∥∥, (28.13)

then the DTMC is positive recurrent and additionally

lim
n→∞E

[∥∥q(n)
∥∥] = Estat

[‖q‖] < ∞. (28.14)
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Figure 28.2. Schematic illustration of the drift of the DTMC describing the queue system evolution
in the weak (left) and strong (right) stability case assuming ‖q(n)‖ := ‖q(n)‖1 and two queues.

The theorem implies strong stability and provides a concrete illustration of
strong stability property and its difference to weak stability. If the tendency of the
DTMC to decrease the conditional mean of the Lyapunov function increases pro-
portionally to the norm of the system state, then there exists a stationary distribu-
tion with finite mean and the stability is strong. In the general case, when the drift
is proportional to any nonnegative function of the system state f (q(n)), the sys-
tem property implied by Theorem 28.6 is called f -ergodicity (not to be confused
with the ergodicity in the usual sense!). Figure 28.2 illustrates schematically the
drift theorems in the two-queue case. For more details regarding drift conditions,
like, for example, the type of convergence to the stationary distribution, we refer
to [5, 7].

28.4. Optimal scheduling policy—the data link layer view

With the general insights from the last section we now step into the particular
analysis of stability in the MIMO-MAC. We propose a stability-optimal scheduling
policy and show its influence on the stochastic system behaviour.

28.4.1. Stability-optimal scheduling

We desire to analyse the Lyapunov drift in the queue system in the MIMO-MAC
using simple quadratic Lyapunov function of the form

L(q) = ∥∥q(n)
∥∥2

2 =
K∑
k=1

q2
k(n), (28.15)
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as is done, for example, in [8, 9]. With this function we are able to characterize
a scheduling policy achieving the largest stability region. This is expressed by the
following theorem proven in [10] (see also [8]). In the theorem, M is a universal
notation for Mp̂ and MP , depending on constraint type.

Theorem 28.7. The largest stability region in the MIMO-MAC with K links is
achieved by the scheduling policy φ̂ satisfying

φ̂ = arg max
φ∈M

K∑
k=1

qk(n)Rk
(
φ, H(n)

)
, (28.16)

for all n ∈ N.

For readers familiar with system control and dynamic system theory, the re-
sult is not surprising. The principle of weighted sum, as in (28.16), occurs in the
context of stability-optimal policies in many fields, like, for example, switch the-
ory in wired networks [11, 12] and automation network control [9]. An obvious
conclusion from (28.16) is that the knowledge of arrival rate vector cannot be uti-
lized to improve the stability behaviour of the MIMO-MAC, since the functional
in (28.16) is independent of it. This is a specific feature of stability-optimal sched-
uling. If any other cross-layer policy is utilized, like, for example, the one aiming at
minimizing the maximal queue length or the sum of all queue lengths, then knowl-
edge of ρ is required. We observe that the objective

∑K
k=1 qk(n)Rk(φ, H(n)) is max-

imized if the majorization order of assigned rates complies with the majorization
order of corresponding queue lengths. The length of the queue can be regarded as
a temporary measure of threat by instability. According to Theorem 28.7, the most
threatened queues are assigned highest depletion rates, which reduces their insta-
bility potential, relatively to other queues, until the next scheduling time instant.
This machinery shows the plausibility behind Theorem 28.7.

28.4.2. Stochastic behaviour

Since the proof of Theorem 28.7 is based on the Lyapunov drift condition for weak
stability in Theorem 28.5, it can be concluded that the DTMC q(n) approaches a
stationary state and weak stability of q(n) is guaranteed. The next corollary shows
even more.

Corollary 28.8. Under the use of policy φ̂ in the MIMO-MAC, for any vector of bit
arrival rates from the interior of the stability region achieved by φ̂, it holds that

lim
n→∞E

[∥∥q(n)
∥∥] < ∞. (28.17)

Hence, the policy φ̂ guarantees strong stability for stabilizable arrival rate vec-
tors. Regarding the norm in (28.17) as the maximum norm, it follows that the
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average occupancy of every buffer in the steady state is finite. We can go even a
step further and provide a bound for the first moment of the system in the steady
state.

Corollary 28.9. Under the use of policy φ̂ in the MIMO-MAC, for any vector of bit
arrival rates from the interior of the stability region achieved by φ̂, the first moment
of the queue system satisfies

lim
n→∞E

[∥∥q(n)
∥∥] ≤ TC

2α
, (28.18)

with C < ∞ and α expressing the distance d := α1 between ρ and the boundary of the
stability region.

We conclude that with decreasing distance of the arrival rate vector to the
boundary of the stability region the bound on average system occupancy (28.18)
increases and becomes trivial at the boundary (possible instability). By means
of Markov inequality we can extract from (28.18) steady-state buffer occupancy
asymptotics. For any threshold value γ, we yield

lim
n→∞ Pr

[∥∥q(n)
∥∥ ≥ γ

] = lim
n→∞ Pr

[∥∥q(n)
∥∥

γ
≥ 1

]

≤ lim
n→∞

1
γ
E
[∥∥q(n)

∥∥] ≤ TC

2αγ
.

(28.19)

To completely characterize the behaviour under policy φ̂ it is necessary to have
insights holding for nT , with n ∈ N, and not only for the stochastically stationary
state under n → ∞. Some insights are provided by the following theorem.

Theorem 28.10. Under the use of policy φ̂ in the MIMO-MAC, for any vector of bit
arrival rates from the interior of the stability region achieved by φ̂, it holds that

(i) E[sup
n

‖q(n)‖] < ∞, which further implies

(ii) Pr[‖q(n)‖mm < ∞] = 1, for m = 1, 2.

Especially property (i) illustrates that the system is very well behaved under
the use of φ̂.

In [10], we outline further features of the stochastic behaviour and charac-
terize the type of convergence to the stationary state. Further we assume there
a modified, event-dependent pattern of control instances {tn}n∈N instead of nT .
This is an analytical model accounting for boundness of the number of arrivals
in time slots, which is the case under real-world conditions. In such realistic case
the geometric moment E[exp(ε‖q(n)‖)] (ε > 0 is some system-dependent con-
stant) can be shown to be bounded. This very restrictive feature further implies an
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asymptote on buffer occupancies of the form

limsup
γ→∞

log
(

Pr
[∥∥q

(
tn
)∥∥ > γ

])
γ

≤ −ε. (28.20)

28.4.3. Stability region

The remaining question is the question of possibility of further characterization
of the stability region of the MIMO-MAC, which is achieved by policy φ̂. The next
statement, proven in [10], provides such characterization.

Theorem 28.11. The stability region of the MIMO-MAC is equal to the ergodic ca-
pacity region of the MIMO-MAC (i.e., the set of all achievable R(E)).

The above theorem provides a junction between pure queuing-theoretic phe-
nomena of the data link layer and the physical layer issues like capacity and capac-
ity region. Such interlayer dependence could be expected since the service process
of the queue system is determined by physical layer issues. The plausibility behind
the result is clear. The arrival rate tuples which componentwise do not exceed the
achievable service rate tuples lead to a stable MIMO-MAC. The system disposes in
such case of sufficient depletion resources to prevent exploding queue lengths. On
the other side, if any arrival rate is greater than the achievable depletion rate, the
queue length will blow up to infinity with n → ∞ regardless of utilized scheduling
policy.

28.5. Optimal scheduling policy—the physical layer view

We now move one layer downwards in the communication stack and study the
stability-optimal scheduling policy in the framework of physical layer transmit
strategies. The section gives insights in the geometry behind stability-optimal
scheduling and explains the stability-optimal choice of the link decoding order.

28.5.1. Geometry behind optimization

Consider the optimization problem leading to the stability-optimal policy

max
φ∈M

q(n)TR
(
φ, H(n)

)
, (28.21)

for n ∈ N. It is obvious that in terms of rates the above problem can be rewritten
as

max
R(n)∈C(H(n))

q(n)TR(n), (28.22)
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with C(H(n)) as the instantaneous capacity region of the MIMO-MAC, which is

C
(
H(n)

)
= cl

{ ⋃
φ(H(n)):φ∈M

{
R ≥ 0 :

∑
k∈A

Rk

≤ log det

(
I +

1
σ2

∑
k∈A

Hk(n)φQ,k
(
H(n)

)
HH

k (n)

)
, A ⊆ {1, . . . ,K}

}}
,

(28.23)

where cl denotes the closure operation (depending on constraint type M = Mp̂ or
M = MP). From basics of information theory we know that the capacity region of
MAC is convex [13]. Further, the objective in (28.22) corresponds to a hyperplane
with normal vector q(n). Hence, the optimization (28.22) corresponds to finding
a point (rate vector), at which the hyperplane q(n)TR(n) = const supports the
instantaneous capacity region [14]—the so-called Pareto optimal or Pareto efficient
point.

28.5.2. Stability optimality of the SIC order and spatial scheduling policy

The rate vectors included in the capacity region can be achieved by different
transmit-receive strategies, like successive decoding, linear joint decoding, and
time sharing (combination over time) of both of them, and so forth. From infor-
mation theory we know again [13] that all vectors at the boundary of the capacity
region can be achieved by SIC and time sharing (the approach of the so-called
rate splitting is also known [15]). In this context, we define special subregions
Sπk (H(n)) of the entire capacity region C(H(n)), with k = 1, 2, . . . ,K !, which
are the regions of all rate vectors achievable by transmit strategies utilizing the SIC
order πk. They can be described as

Sπk

(
H(n)

)
= cl

{ ⋃
φ(H(n)):

φ∈M,φπ (H(n))=πk

⋃
0≤β≤1
βπk (K)=1

{
R ≥ 0 : Rπk(i)

≤ log
det

(
Iσ2 +

∑i
j=1 βπk( j)Hπk( j)(n)φQ,πk( j)

(
H(n)

)
HH

πk( j)(n)
)

det
(

Iσ2 +
∑i−1

j=1 βπk( j)Hπk( j)(n)φQ,πk( j)
(
H(n)

)
HH

πk( j)(n)
) , i∈{1, . . . ,K}

}}
,

(28.24)

with k = 1, 2, . . . ,K !. We refer to regions Sπk (H(n)) as the S-rate regions, since
they are associated with transmit-receive strategies utilizing pure spatial channel-
ization of link signals within one SIC order. Analogically, we refer to scheduling
policies utilizing pure spatial channelization in all time slots [(n−1)T ;nT] as spa-
tial policies. Spatial policies are mappings of the form (28.5), where in comparison
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to (28.1) the time argument accounting for possible time sharing disappears. Con-
sequently, under a spatial policy the transmit strategy is determined solely by the
queue system state and the channel states and does not depend directly on time.

For the instantaneous capacity region, it holds obviously that

C(H) = conv

( ⋃
k=1,2,...,K !

Sπk (H)

)
, (28.25)

with the convex-hull operator conv accounting for arbitrary time-sharing com-
binations. An immediately arising conclusion is that stability-optimal rate tuples
resulting from (28.22) can be achievable by different SIC orders at different time
instants n ∈ N, depending on the current state q(n). In this context we desire a
more detailed characterization of the optimal scheduling policy φ̂ in terms of the
q(n)-dependent choice of SIC order. Such characterization is done in the following
theorem, which is based on the results from [16].

Theorem 28.12. The largest stability region in the MIMO-MAC with K links is
achieved by the spatial scheduling policy φ̂S satisfying

φ̂S
Q = arg max

φQ :φ∈M

K∑
k=1

qk(n)Rk
(
φQ, H(n)

)
, (28.26)

qπ(1)(n) ≥ qπ(2)(n) ≥ · · · ≥ qπ(K)(n) ≥ 0, (28.27)

with π = φS
π for all n ∈ N.

An obvious conclusion is that since there exists a spatial stability-optimal
scheduling policy, there is no need to resort to time sharing among different SIC
orders. This is a significant advantage in terms of implementation efficiency and
cost. Another interesting insight following from the theorem is that at any time
n ∈ N the stability-optimal SIC order is determined solely by the current queue
system state and is independent of the channel fading states. Chain inequality
(28.27) is illustrative and says that under stability-optimal policy link signals have
to be decoded in the order complying with the increasing order of current queue
lengths. Assuming the choice of SIC order satisfying (28.27), the set of transmit co-
variance matrices φS

Q = Q then has to satisfy (28.26). Depending on the dynamics
of queue system evolution, it is possibly not necessary to change the SIC order
at every control time instant nT . On the other side, the frequency of changes of
transmit covariance matrices depends highly on the fading process. In Figure 28.3
a scheme of the routine conducting spatial stability-optimal scheduling is pre-
sented. Using the introduced notion of S-rate regions, Theorem 28.12 is easily
interpretable in terms of optimization over rates. Precisely, the theorem says that
the stability-optimal rate tuple solves

max
R∈Sπ (H(n))

qT(n)R(n) (28.28)



590 Scheduling in multiple-antenna multiple-access channel

nT (n+ 1)T (n+ 2)T (n+ 3)T (n+ 4)T t

Compute

Q =ϕQ(H (n),
q(n))

Compute

Q =ϕQ(H (n+1),
q(n+ 1))

Compute

Q =ϕQ(H (n+2),
q(n+ 2))

Compute

Q =ϕQ(H (n+3),
q(n+ 3))

Compute

Q =ϕQ(H (n+4),
q(n+ 4))

· · · Fixed
Q

Fixed
Q

Fixed
Q

Fixed
Q

· · ·

π -optimality π -optimality π -optimality π -optimality π -optimality

True True True

False False

Choose optimal

π =ϕπ(H (n+ 1),q(n+ 1))
Choose optimal

π =ϕπ(H (n+ 4),q(n+ 4))

· · · Fixed π Fixed π · · ·

nT (n+ 1)T (n+ 2)T (n+ 3)T (n+ 4)T t

Figure 28.3. A schematic graph of the routine computing spatial stability-optimal scheduling policy
in the MIMO-MAC.
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Figure 28.4. Exemplary instantaneous capacity region of a 2×2 sum-power constrained MIMO-MAC
with two links (channel matrices generated randomly from the elementwise uniform distribution with
average SINR = 6 dB, SIC orders π1 = 1 ← 2, π2 = 2 ← 1). Three exemplary optimization objectives
are modelled by lines with normal vectors corresponding to queue system states.

for n ∈ N with π characterized by (28.27). This is a precise restatement of (28.22)
for spatial scheduling policies. The geometric view of (28.22) and (28.28) is pro-
vided in Figure 28.4, where an exemplary instantaneous capacity region and S-
rate regions of a two-link MIMO-MAC are plotted. The optimization objectives
are associated with queue system states satisfying (28.27) for two different SIC
orders and both SIC orders together (i.e., q1 = q2). Given any such q(n), the



Holger Boche et al. 591

stability-optimal rate tuple represents the point of support at the boundary of
the capacity region, which pertains to S-rate region Sπk (H(n)) if φS

π = πk satis-
fies (28.27). For the symmetric queue system state, both SIC orders are stability-
optimal and the associated hyperline supports both S-rate regions. Figure 28.4
makes plausible (which is shown with more formality in [16]) that the boundary
part of any S-rate region Sπk (H(n)), which is supportable by hyperplanes satisfy-
ing (28.27) with π = πk, is convex, whereas the complementary boundary parts
are in general nonconvex. Moreover, the independence of channel states in (28.27)
shows that the geometric “positions” of convex boundary parts of all S-rate regions
do not depend on fading states.

28.5.3. Overall optimality of the SIC order

Chain inequality (28.27) characterizes the stability-optimal SIC order for a current
queue system state q(n). We ask if there is a possibility that a certain SIC order π̂ is
optimal regardless of the queue system state. It can be concluded from Figure 28.4
and Theorem 28.12 that in such case the entire boundary of the capacity region
must pertain to the S-rate region Sπ̂(H(n)) and for the normal vectors q of all
supporting hyperplanes condition (28.27) must hold with π = π̂. Consequently, it
must hold that C(H(n)) = Sπ̂(H(n)), that is, π̂ is a unique superior SIC order also
in terms of capacity. The answer to the question turns out to be constraint-type
dependent.

Theorem 28.13. In the MIMO-MAC with individual power constraints no SIC order
can be instantaneously stability-optimal for all queue system states. In the sum-power
constrained MIMO-MAC the SIC order π̂ is instantaneously stability-optimal for all
queue system states if and only if there exist a queue system state q and a constant C
satisfying

λMAX

(
qπ̂(K)HH

π̂(K)

(
Iσ2 + Hπ̂(K)Qπ̂(K)HH

π̂(K)

)−1
Hπ̂(K)

)
= C,

λMAX

(
qπ̂(K)HH

π̂(k)

(
Iσ2 + Hπ̂(K)Qπ̂(K)HH

π̂(K)

)−1
Hπ̂(i)

+
1
σ2

(
qπ̂(k) − qπ̂(K)

)
HH

π̂(k)Hπ̂(k)

)
≤ C ∀1 ≤ k < K.

(28.29)

The theorem is proven in [17]. The illustration to overall optimality of SIC
order is provided in Figure 28.5. It can be seen there that the SIC order π̂ = π1 =
1 ← 2 is optimal for all queue system states, since the corresponding S-rate region
Sπ1 (H(n)) equals the capacity region. The other S-rate region is a proper subset
of the overall optimal one. Moreover, the convex-hull part of the capacity region
vanishes and the capacity region can be shown to be strictly convex.

28.6. Optimal scheduling policy—the optimization-theoretic view

From the last section we already know the machinery behind the stability-optimal
policy in terms of physical rates and decoding orders. Now, we approach the
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Figure 28.5. Exemplary instantaneous capacity region of a 2×2 sum-power constrained MIMO-MAC
with two links (channel matrices generated randomly from the elementwise uniform distribution with
average SINR = 6 dB, SIC orders π1 = 1 ← 2, π2 = 2 ← 1) under overall optimality of SIC order
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problem of determining instantaneous stability-optimal transmit strategy in more
detail in terms of optimization theory.

28.6.1. Stability-optimal transmit covariance matrices

Having the characterization of stability-optimal SIC order at hand, the interest is
in the manner of specification of stability-optimal transmit covariance matrix set
φS

Q = Q, that is, in the more precise reformulation of (28.26). For this aim, the
optimization problem stated over the capacity region (28.22) must be transferred
into the domain of trace-constrained positive-semidefinite matrix sets Q. Since
every S-rate region is in general a nonconvex set and represents the optimization
domain in (28.28), it can be expected that the optimization problem leading to op-
timal transmit covariance matrices is also nonconvex. Interestingly, the next theo-
rem shows the counterpart.

Theorem 28.14. Given any queue system state q(n), any set of fading states H(n)
and the stability-optimal SIC order π satisfying (28.27), the optimization problem
leading to stability-optimal transmit covariance matrix set has the form

max
Q=φS

Q :Qk%0
φS∈M

K∑
k=1

(
qπ(k) − qπ(k+1)

)
log det

(
Iσ2 +

i∑
j=1

Hπ( j)(n)Qπ( j)HH
π( j)(n)

)
(28.30)

and is convex (M = Mp̂ or M = MP depending on constraint type).

The theorem results from simple regrouping of capacity terms of successively
decoded links in the functional qTR. Convexity of the problem specifying stability-
optimal transmit covariance matrices is of extreme importance in terms of design
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and implementation of iterative optimization routines in real-world systems. Con-
trary to general nonconvex optimization problems the solution to the convex op-
timization problem can be found iteratively regardless of the starting point of the
search. The optimizer set of the convex problem is a connected set, in particu-
lar, a unique optimizer. Iterative convex optimization methods are well developed
and allow also for the analysis of convergence rate to the optimum. The Karush-
Kuhn-Tucker (KKT) conditions of convex problems are necessary and sufficient
for the optimum, and can be utilized in the design of iterative optimization meth-
ods (e.g., dual and primal-dual interior-point methods, see [14]). All these features
of convex optimization let us regard convex optimization problems as efficiently
solvable. On the other side, a great class of nonconvex problems is not efficiently
solvable in real-world applications because of existence of several disconnected lo-
cal optimizer sets and hence the dependence on the starting search point in the
corresponding optimization routines. In Section 28.6.5, we present our iterative
approach to computing the instantaneous stability-optimal set of transmit covari-
ance matrices.

The KKT conditions for the problem (28.30) can be written in case of MIMO-
MAC with individual power constraints, for all 1 ≤ k ≤ K , as [17]

−Qπ(k) ) 0,

trace
(

Qπ(k)
)− pπ(k) ≤ 0,

Zπ(k) % 0,

λπ(k) ≥ 0,

trace
(

Qπ(k)Zπ(k)
) = 0,

λπ(k)
(

tr
(

Qπ(k)
)− pπ(k)

) = 0,
K∑
j=k

(
qπ( j) − qπ( j+1)

)
HH

π(k) ×
(

Iσ2 +
j∑

i=1

Hπ(i)Qπ(i)HH
π(i)

)−1
Hπ(k) = λπ(k)I − Zπ(k)

(28.31)

and in case of sum-power constrained MIMO-MAC, for all 1 ≤ k ≤ K , as

−Qπ(k) ) 0,
K∑
k=1

trace
(

Qπ(k)
)− P ≤ 0,

Zπ(k) % 0,
λ ≥ 0,

tr
(

Qπ(k)Zπ(k)
) = 0,

λ

( K∑
k=1

trace
(

Qπ(k)
)− P

)
= 0,

K∑
j=k

(
qπ( j) − qπ( j+1)

)
HH

π(k) ×
Iσ2 +

j∑
i=1

Hπ(i)Qπ(i)HH
π(i)

−1

Hπ(k) = λI − Zπ(k).

(28.32)
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The scalar λ, vector λ = (λ1, λ2, . . . , λK ), and matrix sets Z = {Zk}Kk=1 are dual
variables resulting from the Lagrangean statement for the problem (28.30). The
sets of KKT conditions are the origin of our optimization-theoretic insights to be
presented.

28.6.2. Stability-optimal transmission for N < K busy queues

It is plausible that in the real-world cellular uplink some nodes happen to have
empty queues during single time slots [(n− 1)T ;nT] or possibly even over longer
time periods. We call such nodes (and queues) idle, in difference to other active or
busy nodes (and queues). It is of importance for the network provider to dispose
of insights in the features of instantaneous stability-optimal transmission strategy
under only N < K busy queues. Precisely, the question of interest can be the al-
location of powers among all links as in the case of overall optimality of the SIC
order, this issue turns out to be constraint-type dependent.

Theorem 28.15. In the MIMO-MAC with individual power constraints subject to
stability-optimal scheduling policy all links corresponding to idle queues can be allo-
cated transmit powers 0 ≤ pk ≤ p̂k, whereas in the sum-power constrained MIMO-
MAC subject to stability-optimal scheduling the links corresponding to idle queues
must also be kept idle.

The theorem is proven in [17]. We conclude that the intuitively plausible
equivalence idle queue ≡ idle link holds only in the case of sum-power constrained
MIMO-MAC and does not hold under individual power constraints. This feature
can be explained by the fact that in case of sum-power constraints the links are
coupled both by interference and by the joint resource budge. Hence, busy nodes
needing the power resource to deplete the queues have to partition it optimally
and entirely among them and there remains no residual resource to be partitioned
among idle queues. In opposition to this, under individual power constraints, ev-
ery node transmit power is constrained and hence node power budgets are decou-
pled. Due to this busy nodes cannot use more power than the sum of their power
constraints, so that there remains power to be allocated to idle nodes. Idle nodes
are allowed to use this power, when their transmission does not disturb the opti-
mality of transmission of busy links characterized by (28.27) and (28.30). This is
the case when their links are decoded before all links corresponding to busy nodes,
since then the busy nodes do not “see” the interference caused by the links of idle
nodes. On the other side, links of idle nodes suffer the entire interference from
busy nodes.

28.6.3. Stability optimality of N < K link regime

The problem of N < K link regimes is someway complementary to the problem of
optimal transmission under N < K busy queues. We now assume that all queues
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in the MIMO-MAC are busy and study stability optimality of the transmission
strategy allowing only N < K links be allocated nonzero transmit powers. Assum-
ing a subset of active links A, with Card(A) = N , we call such transmission scheme
N link regime and denote it by U(A). Conditions for instantaneous optimality of
any N < K link regime can lead to reduction of computational complexity of the
stability-optimal policy. This is because the evaluation of such conditions preced-
ing the optimization process can lead to the identification of active link subset and
reduce the dimension of the optimization process by K − N . Again, our results
from [17] stated in the following theorem indicate constraint-type dependence of
the optimality of N link regimes.

Theorem 28.16. Assume that there are no idle queues in the MIMO-MAC. Then,
(i) under individual power constraints and stability-optimal scheduling policy,

all links have to be allocated maximal powers p̂k, k = 1, 2, . . . ,K ,
(ii) under sum-power constraints and stability-optimal scheduling policy, the

N link regime of a link subset A ⊂ {1, 2, . . . ,K} is stability-optimal for
some queue system state q if and only if

λMAX

( K∑
j=k

(
qπ( j) − qπ( j+1)

)
HH

π(k)

×
(

Iσ2 +
j∑

i=1,π(i)∈A
Hπ(i)Qπ(i)HH

π(i)

)−1

Hπ(k)

)
= C ∀π(k) ∈ A,

λMAX

( K∑
j=k

(
qπ( j) − qπ( j+1)

)
HH

π(k)

×
(

Iσ2 +
j∑

i=1,π(i)∈A
Hπ(i)Qπ(i)HH

π(i)

)−1

Hπ(k)

)
≤ C ∀π(k) /∈ A,

(28.33)

where π denotes the stability-optimal SIC order satisfying (28.27), Qπ(k)

denote stability-optimal transmit covariance matrices, and C denotes some
constant.

The above optimality condition becomes especially useful under optimality
of any single-link regime, since then the K single-link optimal transmit covariance
matrices are needed for the evaluation and they are easily computable according
to the water-filling principle [18]. Although in the case of sum-power constraints
there is no possibility to reduce the problem dimension due to nonexistence of any
N link regime optimality, we have a nice feature that whenever the queue is busy,
its link must be allocated nonzero transmit power.
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Figure 28.6. Exemplary instantaneous capacity region of a SISO-MAC with individual power con-
straints and two links (channel coefficients generated randomly from the uniform distribution with
average SINR = 6 dB). The vertex rate tuples are the only rate tuples, which can be stability-optimal.

28.6.4. Vertex property

The fact that the capacity region of the MIMO-MAC is a nonpolyhedral set can
be regarded in terms of optimization as a slight disadvantage compared to the
SISO case. In case of stability-optimal scheduling, this is because with high prob-
ability for a certain queue system state, there exists a unique optimal value of the
scheduling policy {φQ,φπ} and hence a unique stability-optimal rate tuple. Hence,
with high probability (however, depending on queue system evolution and the fad-
ing process) the stability-optimal scheduling policy forces the network operator to
change the transmit strategy from slot to slot. This is not the case in the SISO-
MAC with individual power constraints, where only K ! rate tuples and their time
combinations are stability-optimal for certain ranges of the queue system state
and the optimization problem corresponding to (28.30) becomes combinatorial.
In the geometrical view K ! rate tuples which can be stability-optimal correspond
to vertices of the capacity region, which has a special polyhedral structure called
polymatroid [19]. In Figure 28.6 this geometry behind stability-optimal schedul-
ing in the SISO-MAC with individual power constraints is presented in the two-
link case. We conclude that the vertex rate tuple remains stability-optimal in the
SISO-MAC whenever the queue system state evolves within the range of system
states associated with stability optimality of this tuple (in particular, in the two-
link case from Figure 28.6 whenever q1(n) ≥ q2(n) or q1(n) ≤ q2(n) hold over
some time period). This feature gives potential to reduce the operational effort
of stability-optimal scheduling in real-world systems, compared with the multi-
ple antenna case. The worth studying question is therefore the question of occur-
rence of vertices in the capacity region of the MIMO-MAC. In order to address
this issue we first introduce the following special transmission scheme. Given any
SIC order π, assume that all nodes utilize single-link capacity optimal transmit
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strategy. Precisely, assume that the transmit covariance matrix of the π(k)th link
with k = 1, 2, . . . ,K in [(n− 1)T ;nT] for n ∈ N is

Q(π)
π(k) = arg max

Qπ(k)=φS
Q,k :φS∈M

log det
Iσ2 +

∑k
j=1 Hπ( j)(n)Qπ( j)Hπ( j)(n)H

Iσ2 +
∑k−1

j=1 Hπ( j)(n)Qπ( j)Hπ( j)(n)H
, (28.34)

with M = Mp̂ or M = MP depending on constraint type. This means that ev-
ery link disposes of transmit covariance matrix optimally (in terms of achievable
rate) adapted to the “seen” interference from link signals decoded later in the SIC
order. The computational principle of such matrix set Q(π) corresponds to K-fold
water-filling and is well known and efficiently implementable. Due to the specific
geometrical position of the rate tuple achieved by φS := {Q(π),π} on the boundary
of the capacity region, we denote it as marginal rate tuple (for details, see [20]).
With the above, we can now restate the key results from [20] as follows.

Theorem 28.17. Assume any queue system state q(n) and the corresponding stabili-
ty-optimal SIC order π satisfying (28.27).

(i) Transmit strategy φS := {Q(π),π} is stability-optimal for q(n) in the MIMO-
MAC with individual power constraints if and only if, for k = 1, 2, . . . ,K ,

eigvec
(

Q(π)
π(k)

)
= eigvec

(
HH

π(k)(n)

(
Iσ2 +

K∑
j=1

Hπ( j)(n)Q(π)
π( j)HH

π( j)(n)

)−1

Hπ(k)(n)

)
,

qπ(K) eigval

(
HH

π(k)(n)

(
Iσ2 +

K∑
j=1

Hπ( j)(n)Q(π)
π( j)HH

π( j)(n)

)−1

Hπ(k)(n)

)
= λπ(k) − λπ(k)|qπ(K)=0 ,

(28.35)

hold for all eigenvectors associated with nonzero eigenvalues, with λπ(k) as dual vari-
ables associated with π(k)th power constraint.

(ii) If transmit strategy φS := {Q(π),π} is optimal for some queue system state
q(n), then it is optimal for all queue system states satisfying (28.27).

Property (ii) corresponds to the vertex property of R(φS, H(n)) in the geo-
metrical sense. The conclusion is that when vertices on the boundary of the capac-
ity region of the MIMO-MAC with individual power constraints occur, then they
correspond to marginal rate tuples achieved by (28.34). Hence, when the condi-
tions in (i) are satisfied during some number of slots with sufficient accuracy, the
network operator and user nodes can benefit from the ease of transmit strategy
computation consisting in K-fold water-filling. Moreover, due to vertex property
under condition (28.35) optimality of K-fold water-filling holds as long as queue
system evolution does not violate (28.27). This is satisfied with high probability
if for k = 1, 2, . . . ,K , qk(n) � ak(n) in some time interval n1 ≤ n ≤ n2, that is,
during a low traffic period with busy queues. In Figure 28.7 an exemplary capacity
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Figure 28.7. Exemplary instantaneous capacity region of a MIMO-MAC with individual power con-
straints and two links (channel matrices generated randomly from the elementwise uniform distribu-
tion with average SINR = 6 dB, SIC orders π1 = 1 ← 2, π2 = 2 ← 1) with one vertex corresponding to
SIC order π1 = 1 ← 2.

region of a two-link MIMO-MAC with individual power constraints and the ver-
tex R({Q(π),π}, H(n)), with π = 1 ← 2, is depicted. For completeness it has to be
stated that in case of the MIMO-MAC with sum-power constraint vertices cannot
occur on the boundary of the capacity region. This holds also for sum-power con-
strained SISO-MAC. For further details regarding the occurrence of vertices and
their behaviour subject to power variations, we refer to [20].

28.6.5. Iterative computation of the stability-optimal policy

We show now that the multilink scheduling problem (28.30) can be splitted into
K coupled single-link optimization problems. We present an iterative algorithm
(Algorithm 28.1) for such splitted optimization. The presented splitting of the op-
timization bases on the approaches taken in [18, 21] regarding the maximization
of the sum rate. Splitted optimization can be utilized in the design of optimization
routines in the real-world system in order to partially distribute the computational
load among all nodes in the cell. The single-link optimization problem for the kth
link arises, by fixing the transmit covariance matrices Q j for all j = 1, 2, . . . ,K ,
j �= k, in the stability scheduling problem (28.30). Hence, the stability objectives
for such problems are

fq,π(k)
(

Qπ(k)
) =

K∑
j=k

(
qπ( j) − qπ( j+1)

)
log det

(
N

( j)
π(i) + Hπ(k)Qπ(k)HH

π(k)

)

−
k−1∑
j=1

(
qπ( j) − qπ( j+1)

)
log det

(
N

( j)
π(k)

)
,

(28.36)
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Initialization phase
(1) Set inner counter l := 1.
(2) Set outer counter m := 1.
(3) Set π=π(q(n)) satisfying qπ(1)(n)≥qπ(2)(n)≥· · ·≥qπ(K)(n)≥0.
(4) For k = 1 to K ,

(a) set Q(l)
k := Q(0)

k ,

(b) for j = k to K , compute N
( j),(l)
π(k) ,

(c) if (sum-power constraint = true), then set p(m)
k := p(0)

k ,

else p(m)
k := pk.

(5) Repeat (outer loop)
(a) repeat (inner loop)

(i) for k = 1 to K
(i1) maximize fq(n),π(k)(Qπ(k)) =∑K

j=k(qπ(j)(n) − qπ( j+1)(n))×
log det(N

( j),(l)
π(k) + Hπ(k)(n)Qπ(k)HH

π(k)(n))

subject to trace(Qπ(k)) ≤ p(m)
π(k) for all k=1, 2, . . . ,K ,

(i2) set Q(l)
π(k) = arg max

Qπ(k)

fq(n),π(k)(Qπ(k)),

(i3) for j = k to K , update N
( j),(l)
π(k) ,

(ii) set inner counter l := l + 1,

(iii) for k = 1 to K , for j = k to K , set N
( j),(l+1)
π(k) := N

( j),(l)
π(k)

until (desired accuracy 1 = true)
(b) if (sum-power constraint = true), then

(i) maximize fπ(p) = ∑K
k=1(qπ(k)(n) − qπ(k+1)(n))×

log det(Iσ2 +
∑k

j=1 pπ( j)Hπ( j)(n)Q(l−1)
π( j) /

trace(Q(l−1)
π( j) )HH

π( j)(n)), subject to
∑K

k=1 pk = P,
(ii) set outer counter m := m + 1,

(iii) set p(m) = arg max
p

fπ(p),

until (desired accuracy 2 = true).

Algorithm 28.1

with k = 1, 2, . . . ,K , where the terms N
( j)
π(k) are defined as

N
( j)
π(k) = Iσ2 +

j∑
l=1,l �=k

Hπ(l)Qπ(l)HH
π(l), (28.37)

for all j = 1, 2, . . . ,K . The terms N
( j)
π(k) consist of noise and interference caused

by links j �= k at the base station, so that the second sum in (28.36) becomes
negligible in the optimization. It is evident that the transmit covariance matrices
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Q̂k (positive semidefinite and satisfying given power constraints) solving single-
link scheduling problems with objective (28.36) for k = 1, 2, . . . ,K build a matrix
set Q̂, which solves the multilink scheduling problem (28.30). From [17] we know
that the KKT conditions for the kth single-link optimization problem in case of
individual power constraints are

−Qπ(k) ) 0,

trace
(

Qπ(k)
)− pπ(k) ≤ 0,

Zπ(k) % 0,

λπ(k) ≥ 0,

trace
(

Qπ(k)Zπ(k)
) = 0,

λπ(k)
(

trace
(

Qπ(k)
)− pπ(k)

) = 0,

K∑
j=k

(
qπ( j) − qπ( j+1)

)
HH

π(k)

(
N

( j)
π(k) + Hπ(k)Qπ(k)HH

π(k)

)−1
Hπ(k) = λπ(k)I − Zπ(k)

(28.38)

and in case of sum-power constraint are

−Qπ(k) ) 0,

trace
(

Qπ(k)
)− Pπ(k) ≤ 0,

Zπ(k) % 0,

λπ(k) ≥ 0,

trace
(

Qπ(k)Zπ(k)
) = 0,

λπ(k)
(

trace
(

Qπ(k)
)− Pπ(k)

) = 0,

K∑
j=k

(
qπ( j) − qπ( j+1)

)
HH

π(k)

(
N

( j)
π(k) + Hπ(k)Qπ(k)HH

π(k)

)−1
Hπ(k) = λπ(k)I − Zπ(k),

(28.39)

with

Pπ(k) = P −
K∑

l=1,l �=k
tr
(

Qπ(l)
)
. (28.40)

Although we splitted the optimization into K problems, the problems remain
coupled. On the one side, the optimal transmit covariance matrix for every link
is dependent on the transmit covariance matrices of links decoded later in the
SIC order, since they influence the problem in form of interference. On the other
side, due to retained multilink character of the stability objective, every link sig-
nal adapts spatially to the link signals decoded earlier in the SIC order. As already
mentioned in Section 28.6.2 (28.40) indicates further that under sum-power con-
straints the single-link problems are coupled additionally due to common power
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budget. Hence, it is evident that the dual variables λπ(k), for k = 1, 2, . . . ,K , be-
come equal at the optimum, which corresponds to a unique dual scalar variable of
the multilink problem.

Constructing the iterative algorithm we make use of the fact that the MIMO
capacity functional is concave over p, when the spatial signal correlations (in form
of ratios between all pairs of elements of transmit covariance matrices) remain
fixed. With this insight we can conduct splitted optimization in sum-power con-
strained MIMO-MAC in two steps. The first step corresponds to the sequence of
maximizations of K single-link objectives (28.36), subject to some constraint vec-
tor p satisfying

∑K
k=1 pk ≤ P. The second step is the multilink optimization over

p itself, subject to the same sum-constraint (in the algorithm we therefore denote
the constraint vector as if it were a variable). Clearly, under individual power con-
straints, the second optimization step is superfluous.

The input values of our algorithm are the queue system state q(n), set of fad-
ing states H(n), noise variance σ2, power constraint vector p̂ or power budget P,

and two levels of accuracy. The start values are p(0), with
∑K

k=1 p
(0)
k ≤ P and Q(0).

The algorithm can be described as follows.
The inner loop of the algorithm corresponds to the series of single-link op-

timization steps. The ordering of single-link optimization steps in the inner loop
was chosen above to comply with π, but it can be chosen arbitrarily.

Theorem 28.18. The presented iterative optimization algorithm converges to the so-
lution of the multilink problem (28.30), that is, for k = 1, 2, . . . ,K ,

lim
l→∞

Q(l)
k = Q̂k, (28.41)

with l the number of inner iteration.

Fortunately using the analysis method from [18] we are able to make a state-
ment about the speed of convergence of the algorithm.

Theorem 28.19. Assume the ordering of single-link optimization steps in the inner
loop of the algorithm complying with π and a power constraint vector p̂. Then, the
distance to the value of the multilink objective after the first inner cycle, when starting

with Q(0)
k = 0 for k = 1, 2, . . . ,K , is not larger than

∑K
k=2 qknr .

Both theorems are proven in [17].

28.7. Conclusions

In the cross-layer view of the physical and data link layer of a cellular uplink sta-
bility is a fundamental requirement for efficient system operation. The size of the
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stability region expresses systems capability of carrying dense data traffic without
occurring buffer overflows and resulting service dropouts. Therefore, on the one
side, the scheduling policy achieving the largest stability region is desirable from
the social point of view at the system. On the other side, it provides the network
operator with the highest achievable utility from serving the user links. In con-
trast to common SISO uplink the stability-optimal scheduling policy in multiple-
antenna uplink is of more intricated nature. Its construction combines physical
and data link layer issues and utilizes interdependences among the spatial signal
structure and the order of link signal decoding. The machinery behind such policy
is easily understood from the analysis of the geometry of the capacity region and
spatially achievable rate regions. Furthermore, some useful features of the policy
behaviour, like, for example, conditions for link idling, can be extracted from the
optimality conditions. A great advantage is convexity of the underlying optimiza-
tion problem, which facilitates the design and implementation of efficient iterative
optimization routines. The queue system under the stability-optimal policy is well
behaved and allows for several bounds and asymptotics.

Appendix

A. Real-time multiple-user multiple-antenna scheduling

A.1. Multiple-user transmission experiments with multiple antennas and
channel-aware scheduling and bit loading

Since the work of [22, 23], a lot of research effort has been directed into radio
transmission schemes with multiple antennas. Meanwhile many results found en-
try into the actual standardization in 3GPP for the high-speed uplink and down-
link packet access.

A further extension of the single-user multiantenna results towards multiuser
multiple-access scenarios was found to be a challenging task. Basic papers towards
the solution of the multiuser scheduling problem [24] considering, for example,
stability [25] or detection order [26], were published recently. Independently, [27]
discussed a similar but simplified scenario for the optimization problem.

Despite the fact that the optimum solution [20, 28] appears to be rather com-
plex, it is possible to implement suboptimum variations on state-of-the-art hard-
ware today. In multiuser transmission experiments with multiple antennas at the
base station, we could show that tremendous gains towards sum throughput and
queue length can be achieved when the X-laxer optimized solutions are applied
onto a real-time system.

The experiments were conducted on a multiantenna transmission test bed
which is reconfigurable and capable of real-time data transmission at several hun-
dred Mbps. The aim was to show that already with today’s hardware real-time
algorithms can be implemented which can evaluate instantaneous channel state
information to improve the reliability of the transmission over the fading radio
channel and increase the achievable data throughput by spatial multiplexing. Be-
ing able to exploit the advantages of channel-aware bit loading [29, 30] with only
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Figure A.1. Multiuser multiple-antenna MAC system.

little feedback from the Rx to the Tx, we could enhance the system performance
towards reliability and throughput dramatically [31]. A further step was the im-
plementation of multiuser (MU) scheduling policies which are or great interest for
mobile network providers to increase the spectral efficiency by spatial multiplex-
ing.

Since the search for an optimum scheduling solution can easily exceed the
time constraints for real-time channel adaptivity, we proposed a suboptimum fair
scheduling algorithm [32] which considers the channel between all users and the
base station and all individual queue states of the users. An implementation [33]
of the proposed fair scheduler in an indoor scenario with 4 users and 3 BS anten-
nas showed that the sum throughput could be tripled at high SNR compared to
the best-user-only strategy which is still very common, despite the fact that single-
user support with multiple antennas at the BS is only optimum at very low SNR.
Therefore MU detection in spatial domain is a prerequisite to exploit the high po-
tential of the multipath channel. A sum throughput optimum approach achieved
a slightly higher average throughput but the queuing states grew unbalanced since
they were not considered.

A.2. Measured capacity of the MIMO channel

The prediction of an immense channel capacity which can be exploited in mul-
tipath propagation environment [22, 23] by means of smart multiantenna signal
processing led to an intense research into the MIMO area. In a first experiment
[34], Wolniansky et al. could prove that the successful exploitation of the multi-
path environment can be realized with spatial multiplexing. Narrowband channel
measurements campaigns conducted in indoor environments [35, 36] or dense ur-
ban environments like Manhattan [37, 38] showed a similar richness in the multi-
path channel which should allow spatial separation of up to 16 independent data
streams transmitted at the same time at the same frequency at high signal-to-noise
ratio (SNR).

Our own independent broad band measurements (BW = 120 MHz@5.2 GHz)
focused on the channel capacity in quasi static scenarios between two or more
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Figure A.2. Linear increase of the ergodic capacity versus the number of antennas (nT = mR), theory
and measurements (broadband measurements).

multiantenna terminals. The dependence on antenna configurations and environ-
ment was studied in detail in [39, 40, 41, 42] and the main results are summarized
in the following.

(i) In indoor environments, the capacity increases linearly with the number
of antennas min(nT ,mR) (see Figure A.2).

(ii) The statistical distribution of the eigenvalues is very similar to that of a
synthetic Rayleigh or Ricean channel with low Ricean factor (k ≤ 10 dB)
obtainable from Monte Carlo simulations (see Figure A.3).

(iii) Even in a worst case scenario with little multipath to exploit the channel
has at least two strong eigenvalues due to the polarization multiplex if
suitable antennas are used for transmission.

(iv) Moving objects in the surrounding of the terminals induce much less
channel variation than a movement of one of the terminals itself.

Narrowband measurements/flat fading. For the experiments the receiver was
driven by a little electric motor thus enabling varying speed and reproducible
channel statistics with high accuracy. The trek was 5 meters long and the min/max
distance between Tx and Rx was 1 m and 3 m, respectively. The start and the end
were marked on the floor and the antennas looked into fixed directions in all ex-
periments. During all measurements only one person was operating the system
avoiding unnecessary movements about 2 m away from the Rx antennas. By this
means all measurements could be reproduced very accurately.

Channel statistics. For the statistical channel measurements, about 2 · 103 chan-
nel realizations were monitored and file logged. The 10 × 8 real-valued channel
matrices (4 Tx and 5 Rx antennas) were normalized to unit channel gain and de-
composed by singular value decomposition (SVD).
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Figure A.3. Channel statistics along 5 m trek across the lab. The distribution of the singular values
is shown for a 4 × 5 MIMO configuration at the right. The shift of the smallest SVs can be seen in
logarithmic scale on the left.

Figure A.3 shows the belonging singular value (SV) distribution. The distri-
bution (right) clearly reflects the I/Q—imbalance caused by the analog up- and
downconversion [43]. The 8 SVs of the real-valued channel matrix H should be
pairwise degenerated, for example, SV 1 and SV 2. Due to the I/Q imbalance this
degeneracy is split up and we find 8 SVs instead of 2 × 4. This effect can be mod-
elled as an additive noisy channel estimation error ∆H on the real-valued channel
matrix H. Furthermore we see the increase of the smallest SVs when we add one
more antenna (the left part of the figure). This shift in the SV distribution was dis-
cussed in detail in [44, 45]. It explains the improvement of the BER performance
generally described by a rising diversity order for high SNR.

We can conclude from these results that a sufficient channel statistics was
found in the chosen environment which is in accordance to the extensive chan-
nel measurements conducted at 5.2 GHz (bandwidth 120 MHz) [40]. Now, further
experiments to study the diversity gain [31] and the effect of channel adaptive rate
control [31, 46] could be conducted.

A.3. Multiuser SIMO MAC—scheduling and bit loading

We assume an MMSE receiver and SIC at the BS. Then the optimization problem
for the power allocation under a sum power constraint is a concave functional
which was shown in detail in [47]:

f SIC =
K∑
k=1

RSIC
k = log2

∣∣∣∣∣I +
K∑
k=1

pkhkhH
k

∣∣∣∣∣, (A.1)

where Rk is the rate of user k, pk is its allocated transmit power, and hk is the
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Figure A.4. Sum rate region for 3 users and different detection order with SIC-MMSE. Colored dots
show the maximum sum rate for each detection order. The belonging power allocation of all 6 maxima
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receive vector from user k to all BS antennas. The optimum power allocation can
be found by convex optimization techniques, like the maxdet algorithm [48].

In [30], we showed that the maximum sum rate and the optimum power allo-
cation per user is independent of the detection order of the users (see simulation
results in Figure A.4). This is of great importance towards rate control for the in-
dividual users. Without loosing sum capacity the individual user rates can be con-
trolled at least partially by simply changing their detection order. In [32], it was
shown by simulation that this law still holds in principle even when we perform
bit loading with discrete symbol alphabets, for example, M-QAM.

For the assumption of individual power constraints which can be motivated
by a limited amplifier range at the transmitter, the sum rate functional becomes
monotonically rising in p, therefore all users will transmit with maximum power
each.

We exploit this behavior in our proposed fair scheduler which is very easy to
implement. The scheduling strategy is as follows.

(i) Choose one or some (k) users with the longest queue states.
(ii) Choose then the remaining mR − k users such that the sum rate is max-

imized.
(iii) Choose the detection order according to the queue length as proposed

in [26].
A detailed numerical performance comparison with algorithms like round robin,
best-user-only, maximum sum rate, and so forth towards sum rate and queue
length can be found in [32, 33]. The same algorithms were then implemented and
their performance was measured in an experiment [33] (see Figure A.6a).

Experiments on multiuser SIMO scheduling. The scheduling policies discussed be-
fore are implemented in the real-time demonstration test bed at HHI. The ex-
perimental setup of the test bed (Figure A.5) which is based on a hybrid setup of
FPGAs and a DSP at the BS was published in detail in [31, 43].
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Figure A.5. Setup of the test bed for the multiuser multiple-antenna MAC scenario.

For the first time to our knowledge, we show measurement results on achiev-
able data throughput, delay, and buffer size with real-time channel adaptive bit-
loading and scheduling. The performance of several scheduling policies is evalu-
ated with regard to sum throughput and delay (queuing state) under certain QoS
(BER and average rate) requirements of the individual users. We show the pros and
cons of each scheduler depending on the available SNR at the BS. The real-time
data transmission was performed with up to 5 MSymbols/s and up to 64-QAM
modulation. The transmission scenario consists of 4 users which are distributed
in the lab, assuming the same average individual rate request during the measure-
ment. The BS is equipped with only 3 antennas, meaning that spatial multiplexing
can be performed with up to 3 users maximum. The BS is moved over 5 meters
(speed approx. 5 cm/s) across the room on a railway-like construction to ensure
the same channel realizations for all experiments.

Figure A.6a shows the achievable average sum rate along the 5m trek across
the room. The 3 of 4 cyclic scheduler (black) is outperformed by the fair scheduler
(red) and the maximum capacity approach (blue) in the high SNR region. With
decreasing SNR the fair scheduler degrades below the cyclic scheduler since the
sum rate is here dominated by the user which has the worst average channel. The
best-user-only scheme shows the lowest cutoff rate while the other schemes tends
to reach three times as much at high SNR.

The possible average throughput per user is displayed Figure A.6b. The filled
symbols represent the averaged rate of the best user and the open symbols the
average rate of the worst user. Here, over the whole SNR range, the newly proposed
fair scheduler achieves the highest QoS (average rate)—highest minimum average
rate. This rate, at least, can be assured (open circles) to all users. This clearly shows
that already with today’s hardware simple but efficient fair scheduling algorithms
can be implemented.
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Figure A.6. (a) Achieved average spectral efficiency with different scheduling schemes. BS: 3 antennas
and 4 users with one antenna each. (b) Average spectral efficiency per user with different scheduling
schemes. Filled symbols: user with best rate, open symbols: user with lowest rate. Note that the mini-
mum rate can be assured to all users as a QoS.

Figure A.7 depicts the comparison of the sum throughput achieved in the
experiment (circles) with the expected throughput on the measured channel along
the 5 m trek in the lab (solid lines) and a simulated Rayleigh channel (dotted lines).
The slope of 3 bps/Hz per 3 dB SNR increase is not found in the experiment which
is due to the fact that before full-spatial multiplexing can be exploited, the sum
rate is cutoff due to the limited level of the QAM modulation. Therefore the figure
coincide very well with what can be expected from the theory.

A.4. Conclusion

This work shows that channel-aware bit loading and scheduling are key factors
to exploit the high capacity of the multipath channel efficiently. We showed that
multiple-antenna techniques are applicable already on today’s hardware by imple-
menting channel-aware bit loading and scheduling on a real-time experimental
test bed. We achieved an average spectral efficiency of 17 bps/Hz with 3 BS anten-
nas and 4 users which means 75 Mbps average payload data rate in the uplink with
an assured uncoded average BER ≤ 10−3.
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Figure A.7. Comparison of theoretical and experimental results. Simulated and measured sum
throughput with bit loading. Simulation on Rayleigh channels (–), simulation on the measured chan-
nels (· · · ), measured throughput in the experiment (•).
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Abbreviations

SINR Signal-to-interference-and-noise ratio

QoS Quality of service

MAC Multiple-access channel

MIMO-MAC Multiple-input multiple-output MAC

SIC Successive interference cancellation

PASTA Poisson arrivals see time averages

DTMC Discrete-time Markov chain

KKT Karush-Kuhn-Tucker

SISO Single-input multiple-output

SISO-MAC Single-input multiple-output MAC

3GGP 3rd-Generation Partnership Project

MU Multiuser

BS Base station

SNR Signal-to-noise ratio
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BW Bandwidth

SVD Singular value decomposition

SV Singular value

BER Bit error rate

MMSE Minimum mean square error

M-QAM M-quadrature amplitude modulation

SIMO Single-input multiple-output

FPGA Field-programmable gate array

DSP Digital signal processor
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André Bourdoux

This part deals with the real physical elements of a multiantenna transceiver and
their nonidealities. Indeed, these systems operate in real life with physical com-
ponents or supercomponents such as antennas, front ends, modems, and so forth.
Many of the benefits of multiantenna techniques (rate enhancements, more robust
links, etc.) are dependent on the characteristics of these physical components. The
scope of this part is very broad and encompasses antenna (array) design, paral-
lel transceivers, transceiver nonidealities, emerging air interfaces, and prototyping
issues.

The second chapter in this part addresses the antenna: how is the spatial prop-
agation channel sampled and modified by the antenna array? This is of prime im-
portance to the system designer since the antenna elements characteristics (e.g.,
gain, radiation pattern) as well as their spatial location can significantly mod-
ify the channel matrix and the mutual coupling between antennas. An accurate
way of modeling antenna arrays for wireless communications is described. The
exploitation of spatial, pattern, and polarization diversity for MIMO systems is
discussed. The power budget analysis of multiantenna systems is reviewed, tak-
ing into account mutual coupling. After that, a broadband antenna concept, called
multimode diversity, is presented. The chapter closes with a major challenge for
antenna engineers: the integration of arrays in small hand-held devices.

Multiantenna transceivers are usually thought of as a parallel implementation
in which N antennas each feed or are fed by their own transceiver. The third chap-
ter of this part takes a new look at the implied parallelization and analyzes how
“conventional” multiplexing techniques such as frequency, time, or code division
multiplex can be exploited to share a single transceiver between several antennas.
These three techniques are compared with the classical full parallel approach and
the relative merits of each technique are highlighted. Ideal transceiver(s) are as-
sumed in this chapter.

In the next chapter, the issue of nonidealities in multiantenna front ends is
addressed. Nonidealities such as IQ imbalance, ADC or DAC resolution, phase
noise, and amplifier nonlinearities can degrade the performance of multiantenna
transmission. The modeling aspect of such nonidealities is described and their
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impact on several MIMO schemes will be assessed. Spatial multiplexing and diver-
sity, transmit or receive processing, and multicarrier transmission are covered in
this analysis and in the simulation results.

The trend in modern wireless communication systems is to go for more com-
plex waveforms that are better suited to cope with the intersymbol interference and
the multiuser access. Chapter 5 addresses the combination of multicarrier modu-
lation and code-division multiple access (MC-CDMA). This combination can be
done in several ways and each can be used to achieve a certain benefit. Perfor-
mance metrics such as multiuser separation, receiver complexity, peak-to-average
power ratio, robustness to channel time variation can be cleverly traded off in this
context. The chapter also covers how MC-CDMA can benefit from MIMO tech-
niques.

The last chapter deals with prototyping. After some motivation and a brief
classification of prototypes in general, an overview of some of the recently pre-
sented MIMO prototypes is given. Subsequently, digital hardware issues that need
to be considered for a successful implementation are considered for SISO and later
in particular for MIMO systems. The end of the chapter concentrates on rapid
prototyping design methodology and tools.

André Bourdoux: Wireless Research, Interuniversity MicroElectronics Center (IMEC), Kapeldreef 75,
3001 Leuven, Belgium

Email: bourdoux@imec.be
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30.1. Introduction

Antennas are the connecting elements between the propagation channel and the
radio frequency circuits. The characteristics of antennas and antenna arrays deter-
mine the options for exploiting multipath propagation channels. Only by choosing
appropriate arrays, smart antenna and MIMO systems can work well. Smart an-
tenna and MIMO systems both require multiple antennas, in other words antenna
arrays. The theoretical description as well as the practical setup of antenna arrays
is more complex than the consideration of single antennas, in particular if the an-
tennas are closely spaced. Mutual coupling between the single antennas leads to an
interaction of all antenna elements in an array. Considering the antennas in an ar-
ray as independent radiators is a simplification that is only valid for large spacings
between the antennas. Most practical applications require rather small antenna
spacings, thus considering the interaction between antennas is essential.

This chapter deals with new developments in antenna engineering for MIMO
systems. First, an accurate way of modeling antenna arrays for communications
is given. The exploitation of spatial, pattern, and polarization diversity for MIMO
systems is discussed. One key point of the consideration of antennas in MIMO sys-
tems is the power budget, since mutual coupling strongly influences the efficiency
of arrays. Therefore, it is shown how to assess antenna arrays in terms of power
for the application in MIMO systems. After that a broadband antenna concept,
called multimode diversity, is presented. The chapter closes with a new challenge
for antenna engineers: the integration of arrays in small handheld devices.

30.2. Characterization of antennas

Antennas radiate electromagnetic fields. To describe the radiation properties of an
antenna, fundamental measures are defined in the following section.
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30.2.1. Gain

Antennas focus the radiated energy into certain directions. This property is de-
scribed by the directivity and the gain. For the definition it is necessary to consider
a reference antenna, usually an isotropic radiator. The gain G of an antenna is the
ratio of the power Pi fed into the isotropic lossless radiator to the power Ps fed
into the antenna, if both powers are chosen to excite the same power density for a
certain distance r from the antennas. Note that the antenna gain is not an amplifi-
cation. It is just the ratio of the transmitted power density in a certain direction to
the power density of an isotropic and lossless radiator.

30.2.2. Pattern

The radiating properties as a function of the angles θ and ψ are given by the radi-
ation pattern C(θ,ψ)

C(θ,ψ) =
∣∣�E(θ,ψ)

∣∣∣∣�E(θ,ψ)
∣∣

max

∣∣∣∣∣∣
r→∞

=
∣∣�H(θ,ψ)

∣∣∣∣�H(θ,ψ)
∣∣

max

∣∣∣∣∣∣
r→∞

, (30.1)

where �E and �H are the field vectors of the electric and magnetic fields in the far
field. The pattern is a directional measure between 0 and 1. For a complete descrip-
tion of the far field the phase information as a function of the angles θ and ψ has
to be added. The complex radiation pattern includes both phase and amplitude
information:

�C(θ,ψ) =
�E(θ,ψ)e jkr∣∣�E(θ,ψ)

∣∣
max

∣∣∣∣∣∣
r→∞

= Cθ(θ,ψ)�eθ + Cψ(θ,ψ)�eψ , (30.2)

where k is the wave number. With the complex radiation pattern the radiation
properties of an antenna are completely given.

30.3. Antennas in a MIMO system: network theory analysis

30.3.1. Introduction

The capacity or spectral efficiency, respectively, of MIMO systems depends on the
signal-to-noise ratio (SNR), the correlation properties among the channel transfer
functions of different pairs of transmit and receive antennas, and the number of
transmit and receive antennas.

In almost all studies about MIMO, the SNR is assumed to be independent
of the spatial correlation properties of the channel matrix H , which contains the
channel transfer functions or, in the flat fading case, the channel coefficients. Many
handheld devices like laptops or palmtops require small antenna spacings. Espe-
cially when investigating small antenna spacings the assumption of the indepen-
dence of H and SNR is critical, as mutual coupling influences both. The efficiency
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Figure 30.1. System model of the complete radio frequency transmission chain. All elements are de-
scribed by scattering matrices.

of single antennas in an array depends on mutual coupling and influences the
power gain of the transmission channel. Thus the SNR is also influenced, if a con-
stant transmit power is assumed, which has to be taken into account for a fair
comparison of different arrays. In recent studies about mutual coupling this effect
has been neglected and a constant mean SNR was assumed, see [1, 2]. The same
holds for mismatching of the antenna arrays. Mismatching and mutual coupling
may lead to signals that oscillate between the antennas and the loads connected to
them, thus influence both SNR and H .

For compact antenna arrays it is necessary to analyze the SNR and the prop-
erties of H together to allow for a fair comparison of different antenna arrays.
Therefore an extended channel, including signal source (transmitter), signal drain
(receiver), antennas, and the physical channel is taken into account. This network
model of the channel allows to analyze the whole radio frequency transmission
chain, including mutual coupling and mismatching effects.

30.3.2. Components of the network model

The complete radio frequency transmission chain consists of five elements: sig-
nal source (transmitter), transmit antennas, physical channel, receive antennas,
and signal drain (receiver), given in Figure 30.1. The number of transmit anten-
nas is M, the number of receive antennas N . For the analysis of the transmission
chain by network theory the single components are modeled as networks which
are described by scattering matrices [3]. First, some general remarks on scattering
matrices are given. A scattering matrix as used here is defined by the following
equation:

b(X×1)
1

b(Y×1)
2

 =
S(X×X)

11 S(X×Y)
12

S(Y×X)
21 S(Y×Y)

22


a(X×1)

1

a(Y×1)
2

 , (30.3)

where a1 and b1 are the inward and outward propagating wave vectors with the
unit

√
W of port group 1 with X ports and a2 and b2 of port group 2 with Y

ports. The submatrices Sii represent the reflection of the wave vector ai to bi and
Si j (i �= j) the transmission from aj to bi.

Signal source. The signal source is the beginning of the transmission chain and
determines the power distribution among the transmit antennas. It has M ports,
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according to the number of transmit antennas. The output impedances of the sig-
nal source are characterized by the reflection matrix rSTx, where the upper index S
denotes source. The outward propagating wave vector is

bSTx = bS0,S + rSTxa
S
Tx. (30.4)

bS0,S is the wave vector fed into the network, which determines the power distri-
bution among the source ports. aSTx is the wave vector reflected by the transmit
antennas. The impedance matching of signal source and transmit antennas influ-
ences the mutual coupling effects.

Transmit antennas. The antennas suffer from different effects when placed close
together. They couple and interact, and cannot be considered as independent ele-
ments. The main effects, which have to be taken into account, are the following.

(i) The shape of the radiation pattern of the single antennas changes due to
the other adjacent antennas. If, for example, omnidirectional antennas are used a
pattern diversity effect occurs.

(ii) The active gain of the single antennas has to be considered. The active gain
is defined as the gain of a single antenna surrounded by the other terminated an-
tennas. As the other antennas influence the pattern, the gain in terms of directivity
changes, accordingly we call it the active gain. Additionally, the energy radiated
from an antenna may be directly absorbed by another closely spaced antenna, see
[4], thus the active gain is reduced. With this definition the active gain is a prop-
erty of each individual antenna in an array and depends on the array topology and
termination of the antennas. It is not a function of the incident field.

(iii) The signals received or transmitted by an antenna directly couple to the
other antennas, shifted in amplitude and phase.

All these effects are included in the general scattering parameter description
of the transmit antennas based on [5]

bTxA
Tx

bTxA
F

 =
STxA

Tx Tx STxA
Tx F

STxA
F Tx STxA

FF

aTxA
Tx

aTxA
F

 , (30.5)

where the upper index TxA denotes transmit antennas. Each antenna in the array
is basically seen as a two-port network. One port describes the excitation side of
the antenna whereas the other port describes the far field properties. The subma-
trix STxA

Tx Tx describes the excitation ports of the antennas. It contains the scattering
parameters corresponding to the self-coupling (diagonal elements) and mutual
coupling (off-diagonal elements) impedances of the array [4]. The self-impedance
of an antenna is the input impedance if the antenna is remote, in other words
isolated, from its surrounding. With other antennas in the near surrounding of
an antenna the influence of these antennas on the input impedance is considered.
The mutual coupling impedances describe the coupling between the antennas. The
submatrices STxA

F Tx and STxA
Tx F describe the transmission of the signals from the ex-

citation side of the antenna network to the far field and vice versa, thus contain
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information on the pattern and active gain of the antennas. They are reciprocal.
The submatrix STxA

FF contains the structural antenna scattering of the array with
the excitation ports of the antennas terminated in matched loads. The elements of
the structural antenna scattering matrix and the transmission matrices are direc-
tional, that is, they are a function of the geometry and change for different angles
of arrival and departure for different paths.

Physical channel. The physical channel is modeled by

bCTx

bCRx

 =
 SCTx SCTx Rx

SCRx Tx SCRx

aCTx

aCRx

 , (30.6)

where the upper index C denotes channel. This scattering matrix expresses the
relationship between the far field ports of the transmit and receive antenna arrays
thus the coupling disappears by definition. Note, that the coupling between single
antennas is included in the scattering matrices for the antennas. Additionally it is
assumed that there is no reflection from the far field. In other words nothing of
the once radiated transmit power is received by the transmit antennas, thus the
submatrices SCTx and SCRx equal the zero matrix. SCTx Rx and SCRx Tx are reciprocal and
directional.

Receive antennas. The receive antennas are described analogously to the transmit
antennas. For the sake of completeness the scattering matrix with the upper index
RxA (receive antennas) is given:

bRxA
F

bRxA
Rx

 =
SRxA

FF SRxA
F Rx

SRxA
Rx F SRxA

Rx Rx

aRxA
F

aRxA
Rx

 . (30.7)

Signal drain. The signal drain is similar to the signal source. It is described by the
reflection matrix rDRx with the dimension N ×N , where the upper index D denotes
drain. It describes the reflections from the signal drain in case the receive antennas
are not perfectly matched.

30.3.3. Assembled network model

The five units given in the previous section are connected together in two steps.
The outward propagating wave vectors of a component of the network model are
the inward propagating wave vectors of the adjacent components. First, the inner
three components, that is, transmit antennas, physical channel, and the receive
antennas are merged. The unilateral channel is introduced, which simplifies the
problem. Second, the signal source and signal drain are connected to the network.
After that the power gain of the transmission chain is available and the channel
matrix H of the extended channel with signal source and drain is given, which
allows for capacity calculation.
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Merging of inner components. The transmit antenna scattering matrix is connected
to the scattering matrix of the physical channel by a cascaded connection. Consid-
ering that SCTx and SCRx equal the zero matrix, one yields

STxA+C
Tx Tx = STxA

Tx Tx,

STxA+C
Tx Rx = STxA

Tx F S
C
Tx Rx,

STxA+C
Rx Tx = SCRx TxS

TxA
F Tx ,

STxA+C
Rx Rx = SCRx TxS

TxA
FF SCTx Rx.

(30.8)

These matrices are then connected to the scattering matrices of the receive
antennas, which yields

SHTx Tx = STxA
Tx Tx + STxA

Tx F S
C
Tx Rx

(
I − SRxA

FF SCRx TxS
TxA
FF SCTx Rx

)−1

· SRxA
FF SCRx TxS

TxA
F Tx ,

(30.9)

SHTx Rx = STxA
Tx F S

C
Tx Rx

(
I − SRxA

FF SCRx TxS
TxA
FF SCTx Rx

)−1
SRxA
F Rx , (30.10)

SHRx Tx = SRxA
Rx F

(
I − SCRx TxS

TxA
FF SCTx RxS

RxA
FF

)−1
SCRx TxS

TxA
F Tx , (30.11)

SHRx Rx = SRxA
Rx Rx + SRxA

Rx F

(
I − SCRx TxS

TxA
FF SCTx RxS

RxA
FF

)−1

· SCRx TxS
TxA
FF SCTx RxS

RxA
F Rx .

(30.12)

Equations (30.9)–(30.12) describe the extended channel without signal source
and drain:

SH =
SHTx Tx SHTx Rx

SHRx Tx SHRx Rx

 . (30.13)

The back transmission of signals through the physical channel is subject to
the channel attenuation, thus the power reradiated by the receiver and received by
the transmitter is twice as strong attenuated as the signals at the receiver. Therefore
it is justified to neglect the back transmission, see also [6], and to set SCTx Rx = 0,
which simplifies (30.9)–(30.12). We call this a unilateral channel. The result is

SH =
 STxA

Tx Tx 0

SRxA
Rx F S

C
Rx TxS

TxA
F Tx SRxA

Rx Rx

 . (30.14)

The term SRxA
Rx F S

C
Rx TxS

TxA
F Tx in (30.14) describes the transmission of the signals

from the input ports of the transmit antennas to the output ports of the receive
antennas. Using the Heaviside transformation, it can be expressed as the ratio of
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Figure 30.2. The transmit antennas, physical channel, and receive antennas are merged into one net-
work. Source and drain terminate the network.
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Figure 30.3. Signal flow graph for the network above.

the voltages U at the mth transmit and nth receive antenna.

SHRx Tx,nm =
√

Z0,m

Z0,n

Un

Um

∣∣∣∣
ak=0

∀k �= m, (30.15)

where Z0 is the characteristic impedance of the scattering parameters.

Termination with source and drain. Since the mutual coupling effects strongly de-
pend on the termination of the transmit and receive antennas, the signal source
and drain are added to the inner components of the network. There can be sig-
nals oscillating between the antennas and the loads (source/drain) connected to
them. Figures 30.2 and 30.3 show the merged inner components network termi-
nated with source and drain. With the wave vectors aTxA

Tx , aRxA
Rx , bTxA

Tx , and bRxA
Rx at

the input and output ports of the terminated network it is possible to calculate the
power gain of the extended channel and the extended channel matrix H .

aTxA
Tx = (

I − rSTxS
H
Tx Tx

)−1
bS0,S,

aRxA
Rx = (

I − rDRxS
H
Rx Rx

)−1
rDRxS

H
Rx Tx

(
I − rSTxS

H
Tx Tx

)−1
bS0,S,

bTxA
Tx = (

I − SHTx Txr
S
Tx

)−1
SHTx Txb

S
0,S,

bRxA
Rx = (

I − SHRx Rxr
D
Rx

)−1(
SHRx Tx + SHRx Txr

S
Tx · (I − SHTx Txr

S
Tx

)−1
SHTx Tx

)
bS0,S.

(30.16)

The extended channel matrix H , which allows for the capacity calculations in
the next section, expresses the ratio of the voltages at the receive antennas URx to
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the voltages at the transmit antennas UTx.

URx = HUTx. (30.17)

Using the Heaviside transformation leads to

Z1/2
0,Rx

(
aRxA

Rx + bRxA
Rx

) = HZ1/2
0,Tx

(
aTxA

Tx + bTxA
Tx

)
. (30.18)

To solve this equation for H the voltages URx can be expressed as a function of the
voltages UTx. By using (30.16) the result is

H = (
Z0,Rx

)1/2(
I + rDRx

)(
I − SHRx Rxr

D
Rx

)−1

· SHRx Tx

(
I + SHTx Tx

)−1(
Z0,Tx

)−1/2
.

(30.19)

The power gain GH of the extended channel is the ratio of the real power
delivered to the signal drain to the real power fed into the transmit antennas. It
allows to draw conclusions on the efficiency of the whole transmission chain.

GH = bRxA†
Rx bRxA

Rx − aRxA†
Rx aRxA

Rx

aTxA†
Tx aTxA

Tx − bTxA†
Tx bTxA

Tx

. (30.20)

Using this definition the power gain depends on the power distribution among
the elements of the excitation vector bS0,S. Since in MIMO system simulations or
measurements a large number of different channel realizations are considered the
power gain of the extended channel GH is a random variable.

In order to assess the performance of an array in terms of power we define
the effective array gain. The effective array gain Geff of an array is the ratio of the
mean received (or transmitted) power of the array to the mean power received
by an isotropic antenna, used in the same physical channel with the same trans-
mit antenna. This definition is similar to the mean effective gain definition for
single antennas given in [7]. The effective array gain is a function of the antenna
array, but also of the physical channel (in particular the conformance of pattern
and spatial channel characteristics), the load impedances (source/drain), that are
connected to the array, and of bS0,S, that is, the power distribution among the an-
tennas. Since the physical channel influences the effective array gain, it is a random
variable, thus we use the 10% outage probability as a statistical value.

30.3.4. Comparison of different compact antenna arrays

In this chapter, different antenna array configurations are discussed. First the rela-
tionship of the network model to path-based channel models is shown. The influ-
ence of the correlation among the elements of the channel matrix on the capacity
of different types of MIMO systems is discussed. After that MIMO systems with
antenna arrays consisting of parallel dipoles are analyzed. Finally the potential of
polarization diversity for compact MIMO arrays is shown.
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Antennas and channel model. A frequently used transmission channel represen-
tation is path models (here the physical channel, Section 30.3.2). Each path p is
described by the polarimetric transfer matrix

Γp =
(
Γϑϑ,p Γϑψ,p

Γψϑ,p Γψψ,p

)
, (30.21)

where the single matrix elements contain the amplitude and phase information of
the path between a transmit and a receive antenna. With the transfer matrix of each
path the voltage at the receive antennas for a given voltage at the transmit antennas
can be calculated, according to [8]. Using (30.15), one yields for the scattering
parameter between transmit antenna m and receive antenna n:

SHRx Tx,nm =
√

Z0,m

Z0,n

√√√√�{
ZA,n

}
�{

ZA,m
}
√√√√√(

λ0

4π

)2

GnGm

·
P∑

p=1

(
Cϑ,n

(
ϑp,ψp

)
Cψ,n

(
ϑp,ψp

))T

Γp

(
Cϑ,m

(
ϑp,ψp

)
Cψ,m

(
ϑp,ψp

)) .

(30.22)

G denotes the active gain and C is the complex, polarimetric pattern of the
coupled antennas. P is the number of relevant paths. �{ZA} is the real part of the
self-impedance of the antennas. The channel model used here is a polarimetric,
three-dimensional, and double-directional indoor model [9] with the extension
given in [10]. For all capacity calculations (following section) the same 1000 chan-
nel realizations are used each with the same mean attenuation.

For all following simulations the array configuration under test is always used
at both the transmitter and the receiver. Since in realistic systems a perfect conju-
gate complex matching is impossible due to the coupling effects, self-impedance
matching is assumed. In other words the source and drain are perfectly matched
to the self-impedances of the antennas, but the mutual coupling impedances are
not matched.

The transmit power of the MIMO systems is determined, so that the 10%
outage capacity of a single-input single-output (SISO) system with one transmit
and one receive dipole on each side of the link is 3.5 bps/Hz.

Parallel half-wavelength dipoles. The determining parameter for a compact an-
tenna array is its total size. Therefore the three antenna array configurations (a)–
(c) given in Figure 30.4 are compared with regard to the total array width D. The
results are given in Figure 30.5 for MIMO systems with uniform and optimal (wa-
ter filling) transmit power distribution among the transmit antennas. If the area
covered by the dipoles is smaller than 0.2λ2, systems with two dipoles reach higher
capacities than systems with three or four dipoles.

Figure 30.6 shows the cumulative distribution function of the power gain
of the extended channel for different antenna spacings between the two dipoles,
which are used as transmit and receive arrays. The transmit power is uniformly
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Figure 30.4. Antenna configurations of parallel dipoles.
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Figure 30.5. Capacity of the MIMO systems given in Figure 30.4 with uniform and optimal (water
filling) transmit power distribution among the transmit antennas.

distributed among the transmit antennas. With decreasing antenna spacings the
active gain of the antennas decreases, which reduces the power gain of the ex-
tended channel. For extremely small spacings the mean power gain of the 2 × 2
MIMO system can be worse than the one of a SISO system. But for low outage
probabilities MIMO always outperforms SISO.

Polarization and pattern diversity. The main disadvantage of MIMO systems with
arrays consisting of parallel dipoles is the sensitivity to polarization mismatching,
when applied in handheld devices due to random orientations of the device. If the
transmit and receive arrays are orthogonal only the cross polarization is received,
thus the SNR is very low. To overcome this effect, polarization diversity may be
exploited. Figure 30.7 shows antenna array configurations (d)–(h) with different
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Figure 30.6. Power gain distributions of the extended channel for different antenna spacings of array
(a). The mean attenuation of the physical channel is 132 dB, which is given by the channel model.

Table 30.1. 10% outage capacity in bit/s/Hz and 10% outage effective array gain for different antenna
array configurations. Systems (a)–(d) have an array size of 0.25λ2.

Array (a) (b) (c) (d) (e) (f) (g) (h)

Capacity 7.4 8.3 7.7 12 8.4 6 9.5 6.7

Geff (dBi) 3.8 4.3 2.6 4.8 4.1 3.8 5.1 3.6

numbers of dipoles based on either polarization and pattern diversity or combina-
tions of polarization and spatial diversity. The area the antennas cover is indicated
in gray. The comparison of the capacities is given in Figure 30.8. For antenna con-
figuration (d) the spacing of the antennas is increased as a parameter. The other
antenna configurations have a fixed size, but the transmit and receive antennas are
rotated against one another to demonstrate the robustness against polarization
mismatching. The systems based on the combination of polarization and spatial
diversity perform best in the tradeoff between space and capacity. Mutual coupling
can extremely influence the system performance, which leads to the bad perfor-
mance of system (f). The comparison of configuration (f) with (h) shows again
that two antennas can perform better than three on a limited amount of space.

Table 30.1 gives the effective array gain of different arrays for a uniform trans-
mit power distribution in bS0,S. It is evident that the 10% outage capacity depends
on both the correlation properties of H and the effective array gain, which de-
termines the SNR. For example system (b) has a larger effective array gain than
system (e), but the 10% outage capacity is lower, which is explicable by the corre-
lation properties.
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Figure 30.7. Different dipole antenna array configurations. The array size is indicated in gray. Systems
(e)–(h) are rotated to show the robustness against polarization mismatching, see Figure 30.8.
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tribution among the transmit antennas. For the systems exploiting polarization diversity (e)–(h) the
transmit array is rotated between 0◦ and 180◦ against the receive array. For the parallel dipoles (a)–(c)
and array configuration (d) the total array size is changed.
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30.3.5. Summary

The RF system model presented here allows for a comparison of small arrays for
MIMO. It connects detailed and accurate antenna simulations with sophisticated
channel models, without restrictive simplifications. All aspects of mutual coupling
are completely taken into account. The properties of the channel matrix and the
SNR have to be considered together to compare the performance of different com-
pact arrays, since mutual coupling influences both. It is shown that placing too
many antennas on a small area deteriorates the MIMO system performance. For
arrays that are robust against polarization mismatching, polarization and spatial
diversity have to be combined. The power gain of the extended transmission chan-
nel and the effective array gain are used to compare the efficiency of complete ar-
rays within the physical channel.

30.4. Multimode antennas: a compact wideband
antenna concept for MIMO and diversity

30.4.1. Introduction

This section presents new broadband antenna solutions, that are small enough to
fit into laptops or organizers, but that still yield uncorrelated signals for MIMO
or diversity applications. The compactness of the broadband MIMO antenna sys-
tem is not achieved by using different antennas, but by one antenna with differ-
ent, independently fed, modes. This results in multimode diversity, a combination
of pattern and polarization diversity to obtain uncorrelated channel impulse re-
sponses for the MIMO or diversity system. Multimode diversity for MIMO has al-
ready been suggested in [11], but this chapter presents a completely new antenna
concept, based on spiral antennas.

This section is organized as follows. In Section 30.4.2, four-arm spiral and
sinuous antennas and the different excitations for the modes are presented. In
Section 30.4.3, the correlation properties of signals received by different modes
of the antenna are given as a function of the incident field and its spatial distribu-
tion. In Section 30.4.4, MIMO capacity calculations and measurements with spiral
antennas are given.

30.4.2. Spiral antennas

The self-complementary, Archimedian, four-arm spiral antenna is well described
in the literature, see, for example, [12, 13, 14], thus only the properties crucial
for multimode diversity are given here. The spiral antenna, see Figure 30.9, can
basically radiate three different modes depending on the excitation. For this ap-
plication mode 1 and mode 2 are used. Mode 1 is characterized by a phase shift
of 90◦ between adjacent sources at the single arms of the spiral, see Figure 30.9.
Mode 2 has a phase shift of 180◦. Due to the self-complementarity the anten-
nas are frequency independent or, in other words, extremely broadband. Since the
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Figure 30.9. Geometry of a spiral antenna with voltage sources between the single arms of the spiral.

geometrical structure of the spiral antenna is finite, there exists a lower frequency
bound. This bound is

fmin,mode 1 = c0

2πr
√
εr,eff

, fmin,mode 2 = c0

πr
√
εr,eff

, (30.23)

where c0 is the speed of light, r the outer radius of the spiral, and εr,eff the effective
substrate permittivity. Above this lower frequency bound, all antenna properties
are almost stable and do only slightly change with frequency. The patterns in ele-
vation C(θ) of modes 1 and 2 are given in Figures 30.10 and 30.11. The azimuth
patterns C(ψ) are omnidirectional. The phase of the complex radiation pattern,
which among other parameters determines the correlation among the receive sig-
nals, is shown in Figure 30.12. The phase of mode 1 changes 360◦ and the one of
mode 2 changes 720◦ for each circulation around the antenna. The modes can be
excited in two ways: first by feeding the spiral arms at the inner ends, that is, at
the center of the spiral and second at the outer ends of the arms. Those modes
are orthogonally polarized left-hand circular (lhc) and right-hand circular (rhc).
The third mode of the spiral antenna (270◦ phase shift between adjacent arms at
the excitation) has a pattern similar to mode 2, but the unwrapped phase of the
pattern changes 1080◦ per circulation around the antenna.

30.4.3. Multimode diversity

MIMO transmission channels are characterized by the channel matrix H , which
contains the channel impulse responses or the channel coefficients in the flat fad-
ing case between different sets of transmit and receive antenna ports. The diversity
gain or MIMO capacity strongly depends on the correlation coefficients among
those channel coefficients ofH , see [15]. The correlation is influenced by the statis-
tical properties of the wave propagation and the antenna properties, in this case the
properties of the single modes. In the following the correlation coefficient among
two receive signals as a function of the incident field is calculated. This is equiva-
lent to the correlation among the channel coefficients of H for one transmit and
two receive antennas in a MIMO system.
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Figure 30.10. Pattern of mode 1 of the spiral antenna with a radius of 10 cm at 2 GHz separated into
left- (lhc) and right-hand circular (rhc) polarization. If the spiral is fed at the outer end of the arms,
the polarization is orthogonal to the one obtained by exciting at the center of the spiral.
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Figure 30.11. Pattern of mode 2 of the spiral antenna with a radius of 10 cm at 2 GHz. The pattern
hardly changes versus frequency for frequencies above 1.2 GHz.

The spatial wave propagation properties are describable by the power azimuth
and elevation profile pθ,ψ(ψ) and pθ,ψ(θ) for both polarizations θ and ψ. Measure-
ments have shown that the power azimuth spectrum pθ,ψ(ψ) is best modeled by
a Laplacian function [16] for both polarizations. For the power elevation profile
pθ,ψ(θ) a Gaussian function is assumed. The total power angle spectrum is given
by the product of the Laplacian function for the azimuth and a Gaussian function
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Figure 30.12. Phase of the patterns of mode 1 and mode 2, shown in Figures 30.10 and 30.11. The
phase of mode 1 changes 360◦ per circulation around the antenna, mode 2 changes 720◦.

for the elevation, normalized so that
∫
pθ,ψ(θ)pθ,ψ(ψ)dΩ = 1. With [7] it can eas-

ily be shown that the complex correlation coefficient among two signals received
by different antennas, in this case different modes, is given by

ρ12 = R12√
σ2

1σ
2
2

(30.24)

with the covariance R12

R12 = K
∫ π

−π

∫ π

0

[
XPR ·Cθ1(θ,ψ) · C∗

θ2(θ,ψ) · pθ(θ,ψ)

+ Cψ1(θ,ψ) · C∗
ψ2(θ,ψ) · pψ(θ,ψ)

]
sin(θ)dθ dψ,

(30.25)

where K is constant and the variance σ2
i

σ2
i = K

∫ π

−π

∫ π

0

[
XPR ·∣∣Cθi(θ,ψ)

∣∣2 · pθ(θ,ψ)

+
∣∣Cψi(θ,ψ)

∣∣2 · pψ(θ,ψ)
]

sin(θ)dθ dψ.
(30.26)

XPR is the ratio of the power in θ polarization to the power in ψ polarization at
the receiver. Note that ρ12 is a function of the polarimetric radiation pattern, thus
disappears for orthogonally polarized antennas or left- and right-hand circular
polarized modes.

Basically it is possible to use spiral or sinuous antennas with any different
modes and polarizations for multimode diversity. In the following a spiral antenna
is used to calculate the correlation coefficients among receive signals. The orien-
tation of the antenna plane is vertical. A spiral antenna with mode 1 and mode 2,
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Figure 30.13. Correlation |ρ12|2 among mode 1 (a) and mode 2 (c), excited at the center of the spi-
ral, and mode 1 (b), excited at the outer edge of the spiral to generate orthogonal polarizations. The
incident field has an elevation spread of 5◦ and azimuth spread of 60◦. The lower frequency bound of
mode 2 is 1.2 GHz, thus the spiral does not work correctly for lower frequencies.

excited at the center of the antenna, and a third mode (mode 1) with orthogonal
polarization excited at the outer edge of the antenna is used. Figures 30.13 and
30.14 show the power correlation coefficient |ρ12|2 between different modes for a
large azimuth angular spread of 60◦ and a small spread of 20◦ of the incident waves.
The third mode is orthogonally polarized to the other modes, thus the correlation
is almost zero. The other modes are more strongly correlated as the patterns of
modes 1 and 2 partly overlap. On the other hand, the different phases of the pat-
terns of mode 1 and 2 (see Figure 30.12) decorrelate the received signals, since the
single plane waves from different directions superpose differently for each mode.

The correlation coefficients are low enough to obtain a diversity gain or capa-
ble MIMO system over a large bandwidth.

30.4.4. Capacity of MIMO systems based on multimode diversity

In order to show the potential of multimode antennas in MIMO systems, simu-
lations of the capacity of a MIMO system with one multimode spiral antenna on
each side of the link were performed. Additionally a comparison with dipole an-
tennas, arranged in parallel, is drawn. Figure 30.15 shows the capacity distribution
for a fixed SNR of 10 dB for 1000 channel realizations at 2 GHz. The 10% outage
capacity is approximately 7.3 bps/Hz.

For comparison two dipole arrays, consisting of three dipoles each, were used,
one at each side of the link. The dipoles were arranged in parallel with spacings of
λ/4 and vertical polarization. The array covers approximately the same space as
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elevation spread of 5◦ and an azimuth spread of 20◦. Due to slight changes in the pattern for different
frequencies the correlation coefficient changes. But it is over the whole frequency range low enough to
obtain a diversity gain.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
4 5 6 7 8 9 10 11

Capacity (bps/Hz)

P
ro

ba
bi

lit
y

(c
ap

ac
it

y
<

ab
sc

is
sa

)

Spiral, NLOS

Spiral, LOS
3 dipoles, λ/4, NLOS

3 dipoles, λ/4, LOS
Spiral, channel model

Figure 30.15. Cumulative distribution functions of the capacity for different antenna scenarios at
2 GHz for a constant mean SNR of 10 dB. The three dipoles have spacings of λ/4.

the spiral antenna with dimensions, so that the resonance frequency of the dipoles
equals the lower frequency bound of the spiral. Figure 30.15 shows that the dipoles
perform worse than the spiral, since neither polarization nor pattern diversity is
exploited. The spatial diversity is very limited due to the small antenna spacings.
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Figure 30.16. Cellular phone model with two crossed dipole antennas.

Metallic block

PVC housing

Figure 30.17. Cellular phone model with three inverted-F antennas. The size of the housing is 43 ×
105 × 27 mm3.

30.5. The new challenge: multiple antennas in handhelds

For the application of MIMO it is essential to integrate antenna arrays in small
handheld devices for mobile communications. Since uncorrelated signals at the
antennas and high efficiencies of the arrays are required for mobile devices, it is
difficult to design capable arrays. The integration of several antennas into hand-
held devices is possible by a detailed analysis and simulation of the arrays. In the
following an example showing the feasibility is given.

30.5.1. Simulation setup

For the handheld devices half-wavelength dipole antennas and inverted-F anten-
nas were used. The aim of the antenna setup was to combine different diversity
techniques, such as pattern, spatial, and polarization diversity, to obtain uncorre-
lated signals at the antennas, see [17]. Additionally polarization diversity makes the
antenna system robust against polarization mismatching. The simulation model of
the handheld device consists of a metallic block, representing the battery and the
display, and a PVC housing with a wall thickness of 2 mm. The size of the hous-
ing is 43 × 105 × 27 mm3. Three different antenna configurations in the handheld
device were modeled: (a) two crossed dipoles, see Figure 30.16, (b) 3 inverted-F
antennas at a large (length = 5 cm), and (c) at a small (length = 3 cm) metal-
lic block, see Figure 30.17. Usually inverted-F antennas require a large ground
plane, which is not given in the small handheld device. Thus the metallic block,
representing the ground plane, acts as a part of the antenna and influences the
system performance. Due to that reason, the size of the metallic block changes
the pattern of the inverted-F antennas compared to an idealized antenna and the
mutual coupling impedances among the antennas. For the system simulations,
self-impedance matching between the antennas and the loads (signal source and
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Table 30.2

Antenna

configuration

Power correlation

at mobile

10% outage

capacity in bps/Hz
GH/GSISO

at 50% in dB

2 dipoles, λ spacing ≤ 0.1 12.9 8

3 dipoles, λ spacing ≤ 0.1 14.5 11

2 crossed dipoles ≤ 0.1 11.5 6.9

3 inv.-F, large block ≤ 0.35 13 9.6

3 inv.-F, small block ≤ 0.2 13.5 9.6

SISO — 3.5 0

drain) was assumed. Perfect (in terms of power) conjugate complex matching is
very unrealistic for handheld devices, since the mutual coupling impedances can
hardly be matched. They change during usage of the device.

In the following scenario, a link between a small handheld device and a base
station in a microcell scenario is considered.1 The focus here is on the antennas in
the handheld device and the base station, thus no interference or multiple users
are assumed.

30.5.2. Simulation results

Table 30.2 shows the results. In the second column the maximum power corre-
lation coefficient among all the signals at the handheld device is given. The third
column shows the 10% outage capacity in bps/Hz for a given constant transmit
power. The transmit power was chosen to result in a 10% outage capacity for the
SISO system of 3.5 bps/Hz. In the last column the ratio of the mean transmission
gain of the MIMO system to the mean transmission gain of a SISO system with one
half-wavelength dipole at the transmitter and at the receiver is given. For compari-
son large antenna arrays with two and three dipoles with one-wavelength antenna
spacing were used instead of the small integrated arrays. The MIMO systems with
one-wavelength antenna spacings and no influence of any housing, and so forth
perform best, as shown in the first and second rows of Table 30.2. They can be
considered as a reference for the other antenna configurations in the handheld
device for a comparison of MIMO systems with equal number of antennas. It is

1The base station is equipped with three antennas with spacings of 1 meter. The pattern of the
commercially available base station antenna “Kathrein Antenne 735 147 (GSM 1800)” was modeled, see
[18], for the simulations. The channel data were obtained from ray-tracing simulations of a microcell
scenario. The campus of the University of Karlsruhe and the surrounding buildings were used for
the simulations. The base station with three Kathrein antennas radiating into the same 120◦ sector,
is placed on one of the highest buildings in the scenario, 3 meters above the roof. At 2000 randomly
distributed locations on the campus the channel data are collected. The power azimuth spectrum at
the base station is relatively narrow, since there are no scatterers around the antennas. At the mobile
the angular spread is wide, as the mobile is surrounded by scatterers.
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evident, that all small antenna arrays in the handheld device perform well in terms
of correlation and power and thus lead to capable MIMO systems. Surprisingly the
handheld device with the large metallic block does not outperform the one with
the small block, though the antenna spacings are larger. This is due to the fact that
the pattern diversity between the antennas is stronger for the small metallic block.
That clearly shows that the whole configuration of the handheld device has to be
taken into account.

Further details on the integration of arrays into handhelds and the influence
of the user can be found in [19, 20, 21].

30.6. Conclusion and future trends

In this chapter, new antenna concepts for MIMO have been shown. The key obser-
vation is that antennas may not be seen independent of the propagation channel or
the front ends of the communication devices. For the antenna engineer it becomes
essential to understand the whole RF transmission chain to optimize antennas for
MIMO systems. On the other hand, system engineers may not neglect the anten-
nas with their specific properties. Using a suitable antenna setup, that, for example,
exploits different types of diversity, can improve the MIMO system performance
distinctly.

In the near future, many wireless handheld devices will have several antennas
to allow for diversity and MIMO. Today’s development tools for antennas will have
to be extended for the analysis of antenna arrays and their specific properties in
diversity and MIMO systems. Classical characteristics of antennas as the pattern
and gain are not sufficient for multiantenna systems, new characteristics as the
correlation, effective gain, and the capacity will have to be used.

While the theoretical influence of compact antenna arrays on the MIMO sys-
tem performance is meanwhile well understood, there have been hardly any pub-
lication on practical implementations. Future work will fill that gap. Another key
topic for antenna engineers will be base station antennas for MIMO and diversity.
In the past, this topic has been disregarded because large antenna spacings have
been considered to be unproblematic. But due to extremely small angular spread
at base stations new concepts like distributed antenna elements of an array need
to be discussed.

Abbreviations

MIMO Multiple-input multiple-output

SISO Single-input single-output

SNR Signal-to-noise ratio

lhc Left-hand circular (polarization)

rhc Right-hand circular (polarization)

XPR Cross-polarization scattering ratio
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[10] C. Waldschmidt, T. Fügen, and W. Wiesbeck, “Spiral and dipole antennas for indoor MIMO-
systems,” IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 176–178, 2002.

[11] T. Svantesson, “An antenna solution for MIMO channels: the multimode antenna,” in Proc. 34th
Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 1617–1621, Pacific Grove,
Calif, USA, October 2000.

[12] E. Gschwendtner and W. Wiesbeck, “Multi-service dual-mode spiral antenna for conformal inte-
gration into vehicle roofs,” in Proc. IEEE Int. Symposium on Antennas and Propagation, vol. 3, pp.
1532–1535, Salt Lake City, Utah, USA, July 2000.

[13] R. G. Corzine and J. A. Mosko, Four-Arm Spiral Antennas, Artech House, Boston, Mass, USA,
1990.

[14] T. T. Chu and H. G. Oltman, “The sinuous antenna,” Microwave Systems, News and Communica-
tion Technology, vol. 18, pp. 40–48, June 1988.

[15] C. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity scaling in MIMO wireless
systems under correlated fading,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp.
637–650, 2002.

[16] K. I. Pedersen, P. M. Mogensen, and B. H. Fleury, “Spatial channel characteristics in outdoor en-
vironments and their impact on BS antenna system performance,” in Proc. IEEE Vehicular Tech-
nology Conference (VTC ’98), pp. 719–724, Ottawa, Canada, May 1998.

[17] C. Waldschmidt, S. Schulteis, and W. Wiesbeck, “Pattern and polarization diversity in MIMO
systems,” in IEEE International Symposium on Advances in Wireless Communications (ISWC ’02),
pp. 11–12, Victoria, BC, Canada, September 2002.

[18] M. Baldauf, A. Herschlein, and W. Wiesbeck, “Schutzabstände in der mobilkommunikation,” Fre-
quenz, vol. 55, no. 11–12, pp. 310–316, 2001.

[19] C. Waldschmidt, C. Kuhnert, S. Schulteis, and W. Wiesbeck, “MIMO handheld performance in
the presence of a person,” in URSI International Symposium on Electromagnetic Theory, Pisa, Italy,
May 2004.

[20] C. Waldschmidt and W. Wiesbeck, “Quality measures and examples of arrays for MIMO in hand-
held devices,” in Proc. IEEE Antennas and Propagation Society International Symposium, Monterey,
Calif, USA, June 2004.



Christian Waldschmidt et al. 639

[21] C. Waldschmidt, C. Kuhnert, S. Schulteis, and W. Wiesbeck, “On the integration of MIMO sys-
tems into handheld devices,” in Proc. ITG Workshop on Smart Antennas, Munich, Germany, March
2004.
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Werner Sörgel: Institut für Höchstfrequenztechnik und Elektronik, Universität Karlsruhe, 76128
Karlsruhe, Germany

Email: werner.soergel@ihe.uka.de
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31
Radio architectures for
multiple-antenna systems

D. Evans

31.1. Introduction

Multiple-input multiple-output antenna systems invariably suffer a complexity
and cost penalty. The signals from each antenna must have a means of being inde-
pendently connected to the associated processing so that the spatial and temporal
integrity of the antenna signals are preserved. This requirement appears to neces-
sitate a complete transmitter or receiver for each antenna element in the multiple-
antenna array. However, this does not mean that a physically complete transmitter
or receiver is necessarily required for each antenna. A question should be asked
as to whether it is possible by some means to reduce the inherent replication or
parallelism of the transceiver system without sacrificing overall performance.

There are several other systems that exploit multiple transmit and receive el-
ements and these range from phased-arrays radar to ultrasound imaging. Along
with MIMO systems, they all share the need to convert and connect signals from
the sensor elements to the associated processing. In most instances, the number of
elements in these systems is much larger than is typical for MIMO systems indi-
cating greater need to avoid replication in the transceiver systems. However, there
is no obvious evidence that this has been given a due consideration. A likely rea-
son for this is that some of these systems are invariably wideband systems and they
have many channels (� 10). It is probably very difficult to combine the chan-
nels, and hence the reason that there is no evidence of any techniques to reduce
replication in either their transmitter or receiver systems.

There are two ways of approaching the replication problem. The first is to con-
sider whether there is replication that could be removed from multiple transceiver
architectures by sharing certain common functions. An example of this is where a
common local oscillator is shared by the multiple radios. The second approach is
to investigate whether there are radical ways of reusing or sharing the functional
elements of the radio architecture between the several antennas by exploiting an
additional dimension. Here we could consider whether a radio can be multiplexed
between several antennas noting that the multiplexing can be done either in time
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or in frequency, or by using codes, analogous to the commonly used multiple ac-
cess schemes in communications.

Of the various MIMO test beds and demonstrators, the European IST METRA
project seems to have given the most consideration to the issues discussed here.
Not only has the METRA project studied the impact of using multiple antennas
in terms of baseband processing, implementation details, and the cost and com-
plexity overhead; the project also considered the architecture for receiver systems
[1]. They describe three potential approaches to radio receiver design but unfortu-
nately give little of their detailed implementation or their likely performance. The
successor I-METRA project does not seem to have continued to investigate this as-
pect of the former project’s work. The IST FLOWS project has subsequently taken
up this work and considered it in detail and has now proposed a fourth approach
which overcomes some of the limitations of the others [2]. Overall, it appears that
as yet, little consideration has been given to the topic of multiple-antenna radio
systems and for most demonstrators a traditional full-parallel radio architecture is
used [3].

The following sections consider the various approaches that may be used, how
they can be implemented, and what limitations they may pose to the performance
of the radio system. The techniques are mainly implemented in the radio front
end whose primary role is to convert the RF signals at the antennas to and from
baseband, and this is performed mostly in the analogue domain.

31.2. Architectures for MIMO RF front ends

The scope of the RF front-end architectures that are considered here extends from
the antenna to the analogue-to-digital interface at either the DAC or the ADC.
The elements of the front end are taken as generic functional blocks and, except
in some limited instances, no consideration is given to the detailed performance
of these blocks. The description of the four architectures focuses on the receiver
though some issues that may affect the performance of the transmitter are noted
when a particular technique is used.

31.3. Multiple-radio architectures

This approach assumes that each antenna will use a complete radio system at least
as far down as the ADC. Each receiver consists of a complete chain of functional el-
ements comprised of an RF filter, LNA, mixer, LO, IF and IF filter, I and Q mixers,
channel filters, and finally a pair of ADC. The receiver may be a zero-IF config-
uration in which case the first IF will be missing, this arrangement is shown in
Figure 31.1 for two receivers.

From the elements within the receiver chain, the entity that can most obvi-
ously be shared between multiple receivers is the LO. This is a worthwhile saving
since the LO is a high-performance element and may itself consist of several ele-
ments such as a synthesiser and frequency reference. An increase in power will be
required so that the LO can drive several mixers but this is not a significant penalty.
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Figure 31.1. Multiple-radio architectures for two antennas.

There are several other common or sharable elements that are not obvious
from the figure. These are the housekeeping and conditioning functions such as
power distribution and circuit biases, and these can easily be distributed between
several transmitters and receivers. This benefit would mostly be gained where mul-
tiple receivers are integrated into a single chip. Consequently, a doubling of the
functions in an integrated circuit does not necessarily imply a doubling of the sili-
con area of the die. Another advantage that comes from integration is the sharing
of the associated bonding pads since these usually require a significant area. These
advantages would be even greater when four receivers are integrated into a single
chip. Most of these benefits so far result in a saving of silicon-chip area by exploit-
ing the sharing functions. A further advantage may be gained in low-transmission-
power MIMO radio systems, where the housekeeping functions may consume a
significantly higher proportion of the overall power.

The performance issues that may need to be considered with the full-parallel
approach are the balance between the multiple receivers or transmitters, and RF
components in particular can be prone to this. However, the integration of several
parallel systems onto a single silicon chip may help to minimise the device and
circuit performance variations. Furthermore such imbalances will most likely be
taken into account by the MIMO radio channel estimation processes. Intercircuit
coupling is more significant in an integrated circuit than in separate circuits but
this is still much lower than the coupling within the MIMO antenna array where
the typical levels of intercoupling are not thought to have a significant impact on
system performance. The specification and performance of the RF stages including
the ADCs is therefore expected to be the same as that of a single-input single-
output system.

31.4. Multiplexing in time

In the time-multiplexed approach, the outputs from the antenna array are multi-
plexed together by using an RF switch. The combined signals are then passed into
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RF switch − j

I

Q

Figure 31.2. Single receiver multiplexed in time between four antennas.

a single radio receiver for the purposes of down conversion to baseband [1]. The
radio contains all of the necessary functions such as the front-end filter and LNA,
RF mixer, LO, IF, and channel filter; this arrangement is shown in Figure 31.2. The
individual signals can then be recovered by demultiplexing at baseband, though
this is not shown in the figure. Since the received signals at each antenna must be
preserved in each sample interval for the chosen transmission scheme, the mul-
tiplexing together of all of the signals from the antennas must take place within
the sample interval. The switch therefore has to operate at a speed of N times the
sampling rate, where N is the number of antennas.

The demultiplexing may be implemented either before or after the ADC.
Clearly only one pair of ADCs is required if the demultiplexing is done in the
digital domain but the rate that the ADC is running at must be proportionately
higher. The choice is therefore between having N ADCs running at S samples/s
with a resolution of X bits versus one ADC running at N × S samples/s and po-
tentially also having X bits. Providing that the resolution is the same in both cases,
the power consumption is the same. The demand on the dynamic range would ini-
tially appear to be the same in both cases. However, it is interesting to note that this
might need to be larger than the situation where separate receivers (plus associated
ADCs) are used for each antenna. Here each receiver can set its own AGC level ac-
cording to the instantaneous received signal strength at each antenna so as to be
able to position the signal within the dynamic range window of the ADC. When
several received signals are combined, the dynamic range is likely to be larger since
it now has to cover the range from faded to strong signals. This will necessitate
supporting a higher dynamic range, and hence an ADC having a larger resolution
may be required.

The main weakness of this approach, as far as the receiver performance is
concerned, is that the signal at each antenna is only sampled for a fraction of the
nominal sample or symbol period, that is, 1/N times sample time. Therefore only
a fraction of the received power that is available at each antenna is actually being
used. If the system is using two antennas (N = 2), then an inherent 3 dB loss is
experienced and proportionately more when further antennas are used. It is possi-
ble that the loss of performance may be more than offset by the gain when using a
MIMO system so there could be a substantial cost saving in the radio component
count at the expense of some loss of performance. There are however a few more
issues that need to be considered.
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Firstly, can a radio switch perform sufficiently well given that the associated
losses are near to the antenna? This loss will result in a degradation of the receiver
noise figure. This situation will be compounded by the need for switching rates
that are typically well in the MHz region for wireless LANs and by the need for
N-way switching. It is possible to overcome the loss by placing the switch after a
set of low-noise amplifiers that are directly connected to the antennas but this then
defeats the objective of trying to reduce the replication in the system.

Secondly, since the sample interval of the data in the RF chain has increased
by N , then the bandwidth of the IF must increased proportionately. For the same
reason, the sampling rate of the ADC must be increased. Care will need to be taken
to ensure that the aliasing into and out of the adjacent channels does not affect
performance.

Thirdly, the effects of this approach have only been considered when applied
to the receiver, and similar issues apply equally to the transmitter. Each transmitter
would only be transmitting for 1/N of the time and hence its efficiency is reduced.
The switching rate is potentially so rapid that it is probably not possible to turn
off or power down each transmitter when it is not being used. In addition and as a
consequence of the switching at the output of transmitters, there will be a sin x/x
type of spectrum from each transmitter and the necessary spectrum control and
filtering will be difficult to achieve.

Finally, there may be some interesting array effects that could be associated
with this approach. Since only one antenna is “sampled” at any one instant, the
question arises as to whether the array is still behaving like an array as far as the
MIMO processing is concerned. It is possible that the switching process can be
exploited by providing certain impedance terminations on the “off” antennas to
deliberately affect the directional properties of the array.

It should be noted that something slightly similar to the time-multiplexed
approach was previously suggested by Hammerschmidt et al. [4]. In their proposal,
the antenna switching was only a means of preselecting one of the set of antennas
during a training interval. The switch then remained locked for the rest of the
transmission burst so that the maximum received power was obtained.

31.5. Multiplexing in frequency

Several signals can be multiplexed together by applying a different frequency offset
to each of them. This offset would typically correspond to a radio channel spacing
(FCH) or a multiple thereof and this would allow several signals to be combined
and then passed through a common receiver [5]. This arrangement for up to three
antennas is shown in Figure 31.3.

Following down conversion to baseband, the three combined frequency offset
signals are then separated into individual signals. There are several weaknesses to
this approach. Firstly, there is a need for additional RF local oscillators, probably
synthesisers, to create the necessary frequency offsets. Secondly, the RF amplifiers
and associated RF filters are probably required between each antenna and mixer
to overcome the high loss in each mixer. This is not shown in the figure. Thirdly,
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Figure 31.3. Single receiver where the signals from three antennas are multiplexed together by the use
of differing frequency offsets.

there is a requirement to position the signals from the antennas into what is effec-
tively the adjacent RF channels even though this is being performed within an IF
frequency band. This last point may give rise to problems if the adjacent channels
are already occupied though [5] indicates that the use of clear channels that are
two or more adjacent channels away could also be used if the immediate ones are
known to be occupied. It is likely that only the IF stage can most usefully be shared
in this scheme and given these potential problems, this approach appears not to
have been pursued in any great detail.

31.6. Multiplexing using orthogonal codes

The third method of combining several individual signals into a single channel is
to use a code-division technique. An example of this method is the use of Walsh
functions (orthogonal codes) to differentiate users and services in CDMA mobile
telephony [6]. This technique can also be applied as a solution to the problem that
is being addressed here. The received signal at each antenna is given a unique iden-
tity by the application of an orthogonal code and the signals are then combined
into one signal prior to passing them through a single RF receiver chain [2]. This
approach is shown in Figure 31.4.

The combined signals can then be separated by making use of the orthogonal
property of the coding such that

RX 1 =
∑

Wal(0, θ) × [
RX 1 × Wal(0, θ) + RX 2 × Wal(1, θ)

]
,

RX 2 =
∑

Wal(1, θ) × [
RX 1 × Wal(0, θ) + RX 2 × Wal(1, θ)

]
,

(31.1)
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Q

Figure 31.4. Single receiver using orthogonal codes to combine the signals from four antennas.

where RX 1 and RX 2 are the signals from the two antennas, the summation is over
the nominal sample time, and Wal(0, θ) and Wal(1, θ) are the zeroth and the first
Walsh functions, respectively. If additional antennas are used, then higher-order
Walsh functions can be used accordingly as indicated in Figure 31.4.

Since the application of the digital coding signals is in the analogue domain,
it is appropriate for mixer elements to apply a constant amplitude biphase mod-
ulation to the RF signals. Signal recovery is assumed to be after the ADCs and
at baseband though the original received signals could be recovered in either the
analogue or digital domains.

Several of the issues that apply to the previous case of multiplexing or switch-
ing in time also apply here such as the choice of ADCs, the increase in the receiver
bandwidth, and the losses within the biphase modulators, plus the need for sub-
sample time switching speeds. Significantly though, the orthogonally coded ap-
proach does not suffer the 1/N sensitivity degradation that the time-multiplexed
approach is subjected to since all of the received energy is retained over the full-
symbol period. The orthogonal multiplexed receiver is therefore a potentially
promising approach.

Clearly, the key components in this scheme are the biphase modulators. These
will be required to have a relatively low loss, perhaps 1 dB or lower at the desired
RF frequency. Likewise, the phase accuracy and the amplitude balance between
the 0 and 180 degrees states will need to be within acceptable limits so as not to
degrade the MIMO performance. In addition and depending on the number of
antennas, they will have to switch several times during a nominal symbol period
and for a wideband system, such as a wireless LAN having for example a band-
width of 20 MHz, the switching times will need to be about a nanosecond or less.
The implication here is that these are potentially high-performance components
though within the capabilities of a technology such as GaAs.
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Table 31.1. Comparative merits of the four proposed MIMO radio architectures.

Feature Full-parallel Time Frequency Code

System redundancy High Low Medium Low

Complexity 2 1 4 3

Inherent system loss None 1/N None Not significant

Implementation loss None In switch In mixers In bi-f mods

IF bandwidth increase No Yes, N Yes, N Yes, N

Increased dynamic range at ADC No Potentially Potentially Potentially

Imbalance between antennas Yes No No No

Applicable to TX as well as RX Yes No No No

31.7. Comparison

Table 31.1 lists the key features of the four approaches for a receiver having N an-
tennas. The system redundancy that is considered here is the level of radio function
replication and clearly represents an indication of the cost overhead. However it
should be noted that high level of redundancy does imply a robust system, this
may be of interest in some instances [1]. The complexity is ranked on a subjective
scale, a value of 4 is deemed to be the most complex and 1 is the least.

The performance and complexity of all these four approaches varies consid-
erably though it would appear that only the full-parallel and the code-multiplexed
schemes offer potentially usable solutions where the issues of performance and
cost savings are important.

31.8. Conclusion

Four radio front-end schemes for multiple-antenna systems were described. The
traditional approach is to use a full-parallel scheme with a shared local oscillator.
Further investigation shows that additional circuit functions may be shared and
that the assumed complexity and associated cost seem to be less severe than ini-
tially expected. Three alternative approaches are possible that enable sharing the
single radio between several antennas by means of either time or frequency or code
multiplexing. Of these three, only the code-multiplexing scheme offers an accept-
able performance and worthwhile savings in component replication.

The full-parallel approach has the least risk and offers an RF system perfor-
mance very similar to that of a single transmitter and receiver system. The code
multiplexing scheme needs further investigation before the potential advantages
can be exploited.
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Abbreviations

ADC Analogue-to-digital convertor

AGC Automatic gain control

CDMA Code-division multiple access

DAC Digital-to-analogue convertor

I In-phase

IF Intermediate frequency

IST Information society technologies

GaAs Gallium arsenide

LAN Local area network

MIMO Multiple-input multiple-output

LNA Low-noise amplifier

LO Local oscillator

Q Quadrature phase

RF Radio frequency

RX Receiver

TX Transmitter

Wal Walsh
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32
Transceiver nonidealities
in multiantenna systems

André Bourdoux and Jian Liu

32.1. Introduction

The great benefits of MIMO transmission described and analyzed in the previ-
ous chapters do not come, unfortunately, for free. If only one drawback of MIMO
transmission had to be mentioned, the higher complexity—both digital and ana-
log—would certainly rank first. This complexity impacts both the hardware cost
and the power consumption. Especially the analog part of the MIMO transceiver
needs a careful design approach to avoid performance loss or a prohibitive im-
plementation. Chapter 3 of this part covers in detail the architectural alternatives
of MIMO transceivers that can potentially lead to saving in hardware real estate.
The assumption throughout the architectural analysis was that the analog building
blocks such as mixers, amplifiers, A/D and D/A converters, and so forth were ideal.
This chapter will address the issue of nonidealities.

The correct analysis and specification of the transmitter and receiver modems
is important for the following reasons:

(i) to assess the performance degradation (e.g., BER or PER degradation)
of a given nonideality or combination of nonidealities;

(ii) to be able to provide specifications to the analog designers. It indeed
turns out that overspecifying a front end can result in dramatic increase
in silicon area, cost and power consumption in a practical commercial
application. This is even more crucial for multiantenna systems because
of the larger number of transceivers;

(iii) because of standardization and regulatory issues, the transmitted signal
must comply with a transmit frequency mask and the received signal
can be impaired by interference from adjacent bands due to finite out-
of-band rejection and/or intermodulation.

In this chapter, the coverage of nonidealities in MIMO transmission will fol-
low the following approach.

(i) We will describe a generic transceiver architecture and describe a low-
pass equivalent model for the MIMO transceiver and the nonidealities.
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(ii) Our analysis will be made for the combination of MIMO techniques
with OFDM because this is a practical design challenge and MIMO-
OFDM transmission is, at the time of this writing, seen as a strong can-
didate for upcoming standards (e.g., IEEE 802.11n).

(iii) We will consider several types of MIMO transmission, including spatial
division multiplex (SDM), space-time block coding (STBC), and maxi-
mum ratio combining (MRC); SDM and MRC will be applied at either
the transmitter or receiver side; joint transmit-receive processing (with
SVD prefilters and postfilters) will also be addressed.

(iv) The following nonidealities will be analyzed:
(a) IQ mismatch, assuming a frequency flat behavior of the transceiver;
(b) clipping and quantization;
(c) saturation (AM-AM);
(d) phase noise, effect (common contribution, noncommon, tracking).

Note that we will not consider the effect of nonperfect synchronization or
nonideal channel estimation since these effects are addressed in Part 1, Chapter
6 and Part 2, Chapter 5, respectively. More specifically, in the following, we will
assume that the carrier and clock frequency and timing offsets have been perfectly
compensated and that, whenever or wherever channel knowledge is needed, it has
been perfectly estimated.

32.2. Analog transceivers and nonidealities

32.2.1. Ideal transceiver

Figure 32.1 shows 2 generic transceiver architectures. In the analog SSB architec-
ture (Figure 32.1a), the complex digital signal is converted to analog at baseband or
higher rate, lowpass filtered and SSB modulation is achieved by mixing with a local
oscillator (LO) with 0◦ and 90◦ components. If needed (super-heterodyne archi-
tecture), additional upconversion is added to bring the signal to RF where it is fil-
tered, amplified and a filter removes unwanted harmonics generated by the power
amplifier. The digital SSB transmitter (Figure 32.1b) generates the SSB modulation
by digitally upsampling and lowpass filtering the I and Q components of the com-
plex baseband signal. The resulting complex upsampled signal is digitally mixed
with a complex exponential. The real part of this mixing is the SSB modulated
carrier which is then converted to analog and upconverted.

Two dual generic receiver architectures are shown in Figure 32.2. In the ana-
log quadrature architecture (Figure 32.2a), the received signal is filtered (to re-
move out-of-band interference), amplified by an LNA, which is usually the dom-
inant noise contribution of the receiver, and filtered again to remove undesired
signals at the input of the mixer. After optional down conversion, the signal is
fed to two mixers with LOs in quadrature, yielding the in-phase and quadrature
components that are further lowpass filtered and digitized. The digital quadra-
ture receiver (Figure 32.2b) achieves quadrature in the digital domain after IF or
bandpass sampling, mixing with a complex exponential having the components
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0◦ and 90◦ out-of-phase, lowpass filtering and decimating to baseband rate. Note
that without optional up- or down-conversion architecture, the analog SSB trans-
mitter architecture and analog quadrature receiver architecture correspond to the
so-called zero-IF or direct conversion architecture [1].

32.2.2. Nonidealities in analog transceivers

Clipping and quantization. The number of bits (NOB) of the ADC and DAC must
be kept as low as possible for obvious reasons of cost and power consumption. On
the other hand, a large number of bits is desirable to reduce the effect of quanti-
zation noise, reduce the risk of clipping, and accommodate signal level variations.
Following the derivations in [2, 3], the total SNR after quantization and clipping
on an L2-QAM modulated signal is

SNRTOT =
[(

SNRQuant
)−1

+
(
SNRClip

)−1
]−1

, (32.1)

where

SNRQuant = 12 · 22b

(2µ)2
. (32.2)

SNRClip =
{(

1 + µ2) erfc
(

µ√
2

)
−

√
2
π

· µeµ2/2

}−1

(32.3)

and m is the normalized clipping level, that is, the ratio of the clipping level to
the rms amplitude of the time-domain signal. Figure 32.3 shows the evolution of
the total SNR for various values of NOB. All curves exhibit an optimal value for µ
between 3 and 5. The presence of an optimum is logical since, at constant NOB,
increasing the value of µ first improves the total SNR. But, when µ is so large that
clipping does not occur, further increasing µ does not improve SNRClip and only
degrades SNRQuant.

IQ imbalance. The SSB modulation and quadrature conversion described in the
ideal architectures are usually not perfect: the amplitude of the two components
can differ slightly and their phase difference can be different from 90◦. IQ im-
balance typically arises with the analog SSB generation at the transmitter or with
the analog quadrature generation at the receiver or both. The degradation due to
IQ imbalance is best interpreted in the frequency domain. It can be shown that,
for a positive frequency component, IQ imbalance will slightly modify the am-
plitude and phase of that component and introduce a spurious signal at the image
(i.e., opposite) frequency. For an amplitude mismatch ε and a phase orthogonality
mismatch ∆ϕ (Figure 32.4), an ideal complex baseband signal r(t) is transformed
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into a distorted complex signal rIQ(t) as follows [1, 4]:

rIQ(t) = (1 + ε) cos∆φ�{
r(t)

}− (1 + ε) sin∆φ-{r(t)
}

+ 
[
(1 − ε) cos∆φ-{r(t)

}− (1 − ε) sin∆φ�{
r(t)

}]
= (cos∆ϕ + ε sin∆ϕ) · r(t) + (ε cos∆ϕ−  sin∆ϕ) · r∗(t)

= α · r(t) + β · r∗(t),

(32.4)

where �{} denotes the real part and -{} the imaginary part. The SNR resulting
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from IQ imbalance is given by

SNRIQ = cos2 ∆φ + ε2 sin2 ∆ϕ

ε2 cos2 ∆φ + sin2 ∆ϕ
= 1 + ε2 tan2 ∆φ

ε2 + tan2 ∆φ
. (32.5)

Phase noise. Phase noise originates from nonideal clock oscillators and frequency
synthesis circuits. In the frequency domain, phase noise is most often character-
ized by the SSB phase noise, which is the power spectral density (PSD) of the phase
ϕn(t) of the oscillator signal �(eωt+ϕn(t)). An ideal oscillator has a Dirac-like PSD
at DC, corresponding to no phase fluctuation at all. In practice, the PSD exhibits
an approximately decreasing behavior as the offset from the carrier frequency in-
creases. Nonmonotonic behavior is attributable to, for example, phase locked loop
(PLL) filters in the frequency synthesis circuit. The effect of phase noise on OFDM
signals has been extensively reported and analyzed in the literature. A good treat-
ment is provided in [5]. Phase noise can be thought of as consisting of a large
number of complex exponentials, each at an offset ∆ f from the carrier and with
an amplitude weighted by the value of the PSD at that offset. Each of these complex
exponentials create 2 sorts of effects:

(i) a rotation of the constellations, identical on all subcarriers, called own
noise contribution in [5] and that we will refer to as common phase
error (CPE);

(ii) leakage on all subcarriers, appearing as noise on all subcarriers, called
foreign noise contribution in [5] and which is commonly known as in-
tercarrier interference (ICI). Because of the large number of subcarriers,
this contribution is approximately Gaussian.

The CPE and ICI contributions can be captured by a single equation:

η[n] = eπ(∆ f /Bs−n)((P−1)/P) sinπ
(
∆ f /Bs − n

)
sin (π/P)

(
∆ f /Bs − n

) (32.6)

with ∆ f the frequency offset of the phase noise component, Bs the subcarrier spac-
ing, P the number of subcarriers, and n the frequency index. With n = 0, the value
of the CPE is returned while n �= 0 will return the value of the ICI. The total impact
of phase noise is obtained by integrating the leakage for all frequency components
weighted by their PSD and the FFT filter bank characteristic.

Nonlinear power amplification. Nonlinear behaviors can occur in any amplifier
but it is more likely to occur in the last amplifier of the transmitter (power am-
plifier or PA) where the signal power is the highest. For power consumption rea-
sons, this amplifier must have a saturated output power that is as low as possible,
compatible with the system level constraints such as TX power and link budget.
The gain characteristic of an amplifier is almost exactly linear at low input level
and, for increasing input power, deviates from the linear behavior as the input
power approaches the 1 dB compression point (IP1: the point at which the gain
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Figure 32.5. The global simulation model allows simulating the nonidealities together with many
MIMO transmission schemes.

is reduced by 1 dB because the amplifier is driven into saturation) and eventually
reaches complete saturation. The input third-order intercept point (IIP3) is also
often used to quantify the nonlinear behavior of amplifiers. It is the input power
at which the power of the two-tone third-order intermodulation product would
become equal to the power of the first-order term. There is no analytical link be-
tween the real IIP3 and the 1 dB compression point but “rules of thumb” are often
used to relate one to the other. Because of the high peak-to-average power ratio of
the OFDM waveform, several dB of back-off are necessary, that is, the rms input
power level must be kept several dB below the 1 dB compression point so that the
high peaks present in the OFDM waveform can be reliably amplified. This back-
off actually dramatically reduces the power efficiency of the power amplifier and
must be kept to a minimum.

32.2.3. Modeling nonidealities

Global simulation model. The nonidealities analyzed in this section do not eas-
ily lend themselves to analytical derivations. Especially, the prediction of the BER
degradation in presence of these effects is not easily performed analytically. We
have therefore developed a simulation model to assess the performance degrada-
tions. Figure 32.5 illustrates the functional block diagram of the MIMO-OFDM
simulation environment, including the nonidealities. The nonidealities can be
added at the transmitter, the receiver, or both. However, in our coverage of MIMO
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transmission, we will only apply the nonidealities where the MIMO processing
actually takes place, which is at the receiver for RX processing, at the transmitter
for TX processing, or at both sides for TX-RX processing. Indeed, a nonideality
applied where the antenna branches are independent will not directly introduce
MSI and have the same effect as in SISO-OFDM transmission, which has been
extensively covered in the literature, for example, in [3].

Note that the order in which the nonidealities are applied is important. It has
to correspond to the order in which they physically occur in the hardware.

MIMO transmission model and MIMO modes. We consider a generic linear MIMO
transmission scheme where K symbols are transmitted from M TX antennas and
received by N RX antennas.

It can be described by the following equation:

x̂ = Gr = G · (Hs + n) = G · (HFx + n), (32.7)

where x is the Kx1 transmitted symbol vector, s is the Mx1 transmitted signal
vector, r is the received signal vector, x̂ is the estimated received symbol vector,
F is the MxK TX spatial filter, and G is the KxN RX spatial filter. OFDM with P
subcarriers is used and the MIMO processing in (32.7) is applied per subcarrier.
Processing per subcarrier according to (32.7) is valid if the following conditions
are fulfilled.

(i) Correct timing and carrier frequency synchronization occurs (no ICI
and no ISI).

(ii) The channel delay spread is shorter than the OFDM cyclic prefix.
Note that the nonidealities that are considered here basically violate the first as-
sumptions: they generate a mixture of ICI and MSI that cause performance degra-
dation when the linear model in (32.7) is used. Table 32.1 shows the various MIMO
transmission schemes that are analyzed in this section, together with the prefilter
and postfilter used and the number of TX and RX antennas.1 An important point
is that in the case of TX processing, no channel state information (CSI) is theoret-
ically needed at the receiver because no spatial processing needs to be applied. In
practice, per-stream channel estimation and equalization is still needed in order
to scale and rotate the received constellations because of transceiver effects such as
AGC, residual frequency offsets, phase noise, and so forth.

Clipping and quantization. The amount of clipping depends on where the rms
level of the signal is put in the dynamic range of the A/D or D/A converter. Once
this is done, quantization and clipping are easily performed. The parameters for

1Almost all the transmission schemes indicated in Table 32.1 can be described by the linear model
of (32.7). STBC requires a small modification to take into account the simultaneous transmission of
2 symbols in 2 symbol periods. Note that STBC (which is a transmit diversity technique) has been
included in both the RX and TX processing schemes because it does require processing, though very
simple, at both sides.
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Table 32.1. MIMO set-ups simulated in the analysis of transceiver nonidealities. (H = UΣVH , u1 and
v1 are the principal left and right singular vectors, H̃ is the virtual matrix corresponding to the STBC
precoding).

Type Transmission Spatial filter Number of antennas

scheme F G M ×N

RX

SDM-ZF IM,M H−1 or H† 2 × 2, 2 × 3

SDM-MMSE IM,M HH (HHH + σ2
nI)−1 2 × 2, 2 × 3

MRC IM,M HH 1 × 2

STBC Alamouti H̃H 2 × 1, 2 × 2

TX

SDM-ZF Fu = H−1 or H† IN ,N 2 × 2, 3 × 2

F = Fu/‖Fu‖FRO
SDM-MMSE Fu = HH (HHH + σ2

nI)−1 IN ,N 2 × 2, 3 × 2

F = Fu/‖Fu‖FRO
MRC HH/‖H‖FRO IN ,N 1 × 2

STBC Alamouti H̃H 2 × 1, 2 × 2

TX-RX
SDM-MMSE VΣMMSE (ΣΣMMSE)−1UH 2 × 2, 2 × 3, 3 × 2

MRC v1
1
σ1

uH
1 2 × 2, 2 × 3, 3 × 2

clipping and quantization are
(i) the number of bits;

(ii) the clipping level expressed as a multiple of the signal average power.

IQ imbalance. IQ imbalance can be directly modeled by means of (32.4). The
parameters for IQ imbalance are

(i) the amplitude imbalance;
(ii) the phase imbalance.

Phase noise generation. Phase noise can be generated by generating values of the
phase ϕ(t) at the desired sample rate with the desired PSD. The phase noise PSD
is usually defined by a piecewise linear model. There are two basic approaches:
generation in the time domain or in the frequency domain. In the time domain
approach (Figure 32.6a), the PSD is first used to define the impulse response of a
filter whose frequency-domain transfer function is equal to the square root of the
PSD. Then, the samples of the phase of the phase noise are obtained by filtering
(convolving) a gaussian noise source with this filter impulse response.

In the frequency domain approach (Figure 32.6b), a complex gaussian noise
sequence is first generated. It is then element-wise multiplied with the square root
of the desired PSD and converted to the time domain by means of an inverse
Fourier transform. Note that the frequency-domain sequence must be complex
conjugate symmetric about DC so that its corresponding time-domain signal is
purely real.

For MIMO transmission, it is assumed that the same LO is used across all
antenna branches. If this is not the case, the impact of the phase noise can be
shown to be higher and a more sophisticated tracking loop is needed (one tracking
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Figure 32.6. The phase noise can be generated in the (a) time domain or (b) frequency domain and
then transformed to the time domain.
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Figure 32.7. Piecewise linear phase noise PSD definition used in the phase noise model.

loop per stream). The PSD of the phase noise can be defined by a few parameters
to model real behaviors. We characterize the phase noise by a set of 3 parameters
(Figure 32.7) [3]:

(i) the integrated PSD, expressed in dBc, which is the two-sided integral of
the phase noise PSD;

(ii) the 3 dB bandwidth;
(iii) the noise floor.
Note that these 3 parameters will fix the value of the phase noise PSD at low-

frequency offsets.
The CPE due to either TX or RX phase noise can largely be tracked by the re-

ceiver in a common frequency offset/phase noise tracking loop. The tracking loop
for MIMO-OFDM relies on the presence of pilot signals on certain subcarriers.
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Figure 32.8. A single-phase noise tracking loop can be used in the receiver if both the transmitter and
the receiver use a single LO distributed over all antenna branches.

Tracking is performed in the frequency domain, that is, after OFDM demodula-
tion. For a given (multiantenna) symbol, the frequency offset of the previous sym-
bol is first applied. Then, the residual frequency offset of the symbol is measured
on the pilot subcarriers. This residual frequency offset correction is applied to the
current payload symbol and accumulated/filtered with the correction of the pre-
vious OFDM symbol. This is illustrated in Figure 32.8. In synchronization termi-
nology, this structure can be classified as data-aided hybrid feedback/feedforward
synchronization.

Since both the transmitter and the receiver use a common LO for all antenna
branches, a single-phase noise/carrier frequency offset tracking loop can be used.

Nonlinear amplification. When a signal x(t) is fed to the input of a power amplifier
modeled by a third-order AM-AM nonlinearity, the output signal y(t) takes the
form [3]

y(t) = x(t) ·G ·
(

1 − α · ∣∣x(t)
∣∣2

)
, (32.8)

where G is the amplifier gain and α is the third-order coefficient given by

α = 4
3 · IIP32

= 4 · (1 − 10−1/20
)

3 · IP2
1 dB

. (32.9)

In (32.9), IIP3 is the input third-order intercept point and IP1 dB is the input 1 dB
compression point. In this cubic model, IIP3 and IP1 dB are linked as follows: IIP3−
IP1 dB = 9.6 dB.
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Table 32.2. Simulation parameters.

Number of subcarriers 64

Number of data subcarriers 48

Number of pilots subcarriers 4

Sample rate 20 Msps

Upsampling Upsampling by 4

Synchronization offsets None

Channel estimation Ideal

Channel
Hiperlan2 type A profile,

Rayleigh fading on each tap

Mode Uncoded QAM64

Number of channel realizations 1000 or more

Number of bits per channel realization 13824

32.2.4. Impact of nonidealities

32.2.4.1. Simulation parameters

The simulation parameters are derived from the IEEE 802.11a or Hiperlan2 stan-
dards and extended for MIMO transmission. They are summarized in Table 32.2.

32.2.4.2. Simulation results

We first introduce how the performance degradations are estimated for an individ-
ual MIMO mode and then show results for all modes together in a more compact
form. The uncoded BER performance for MIMO-RX-SDM-ZF with 2 TX and 3
RX antennas is shown in Figure 32.9 for IQ imbalance at the receiver side. We take
the uncoded performance at a BER of 10−3 as a reference.

From these curves, the performance degradation of MIMO-RX-SDM-ZF at
a BER of 10−3 can be derived. It is, for example, 2.2 dB for an IQ imbalance of
1.5% for MIMO-SDM-ZF with 2 TX and 3 RX antennas. The same procedure will
be used throughout this section to assess the performance degradation of other
transmission schemes in the presence of other impairments. In order to emphasize
on the MIMO aspect, nonidealities will be introduced where the spatial processing
takes place: at the receiver side for MIMO-RX processing, at the transmitter side
for MIMO-TX processing, and at both sides for MIMO-TX-RX processing.

RX processing schemes. The performance degradation for the RX processing
schemes is illustrated in Figures 32.10, 32.11, and 32.12 for clipping and quan-
tization, IQ imbalance, and phase noise, respectively, all at the receiver side. Some
interesting conclusions can be drawn from these figures.
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Figure 32.9. Example of performance degradation: BER performance of RX-SDM zero forcing, 2× 3,
with IQ offsets.

(i) The RX-SDM schemes at full load (N = K) are the most sensitive to all 3
types of degradation. ZF and MMSE are equally sensitive.

(ii) The RX-SDM schemes become less sensitive when receive diversity is
present (diversity order: N − M + 1 = 3 − 2 + 1 = 2). This can be explained
by the fact that the SNR required to achieve the same BER of 10 − 3 is lower in
the 2 × 3 case. Hence, for the same BER, more MSI noise can be added before it
becomes comparable with the AWGN noise and degrade the performance.

(iii) The 2 × 2 STBC scheme is less sensitive than the 2× 1 STBC for the same
reason.

(iv) The RX-MRC scheme (diversity order: N − M + 1 = 2 − 1 + 1 = 2) is
slightly less sensitive than the 2×3 RX-SDM scheme (diversity order: N−M+1 =
3 − 2 + 1 = 2). This is due to the fact that, for MRC, no MSI interference exists.

(v) For the SDM schemes at full load, 10 bits are necessary and it is better
to have the AGC fixing the average incoming power to 5σ . When spatial diversity
is present, a smaller number of bits is acceptable (7 or 8) and it is better to set
the average level to 4σ . This last point is very important when different MIMO
modes are implemented on the same platform, since it allows to make trade-offs
and possibly to tune the receiver hardware for different optimization criteria.

(vi) The phase noise has a smaller impact on the schemes with diversity.
These schemes indeed allow to combine the tracking over the various RX antennas,
yielding a diversity gain. This gain is not apparent on the 2 × 2 RX-SDM schemes
where the (irreducible) MSI is dominant.

(vii) Globally, the SISO sensitivity to nonidealities is somewhat between that
of the RX-SDM schemes at full load and that of the other schemes with diversity
order 2 or more.
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Figure 32.10. SNR degradation of MIMO-RX schemes at BER = 10−3 in the presence of clipping and
quantization: (a) 4σ , (b) 5σ .

TX processing schemes. The performance degradation for the TX processing
schemes is illustrated in Figures 32.13, 32.14, 32.15, and 32.16 for clipping and
quantization, IQ imbalance, phase noise, and amplifier nonideality, respectively,
all at the transmitter side. Most observations made for the MIMO-RX schemes are
also applicable for the MIMO-TX schemes (fully loaded SDM is highly sensitive,
less sensitivity is observed when spatial diversity is present, and comments on the
required number of bits). The following are additional observations.

(i) With IQ imbalance, all MIMO-TX modes are more sensitive than SISO.
In fact it is the SISO behavior that is very insensitive to IQ imbalance at the TX
side [4].

(ii) The phase noise influence is smaller for the MIMO-TX schemes.
(iii) The power amplifier nonlinearity analysis shows a major performance

degradation for the TX-SDM schemes at full system load (M = K). At reduced
load (M > K), the TX-SDM scheme is much less degraded and so are all other
schemes that enjoy diversity order 2 or more.
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Figure 32.11. SNR degradation of MIMO-RX schemes at BER = 10−3 in the presence of IQ imbal-
ance.

(iv) The TX-SDM schemes at full load are also more sensitive than the SISO
case, requiring about 6 dB more input back-off.

Globally, this nonideality analysis of the MIMO TX and RX schemes shows
that moving the MIMO processing from the receiver to the transmitter also moves
the MIMO specific transceiver requirements (IQ imbalance, DAC/ADC, and phase
noise) from the receiver to the transmitter. It places an additional requirement on
the linearity of the power amplifier for the fully loaded SDM cases.

TX-RX processing schemes. The performance degradation for the TX-RX process-
ing schemes is illustrated in Figures 32.17, 32.18, 32.19, 32.20, 32.21, 32.22, 32.23,
32.24, and 32.25 for clipping and quantization, IQ imbalance, phase noise, and
amplifier nonideality, respectively. Transmitter and receiver nonidealities were ap-
plied separately so that their effect can be analyzed independently. The observa-
tions for the impact of nonidealities on the TX-RX schemes are as follows.

(i) Both the clipping and quantization and the IQ imbalance cause a higher
degradation at the RX side. This effect has already been observed in the
case of SISO-OFDM [4]. The reason is that the receiver equalizer can be
seen as suffering from noise enhancement, which is aggravated by the
nonidealities. A 7-bit resolution is needed at the TX side while 9 bits are
needed at the RX side.

(ii) The phase noise has a similar impact at the transmitter side and the re-
ceiver side.

(iii) The impact of nonlinear amplification calls several comments.
(a) Globally, all TX-RX schemes perform well in the presence of ampli-

fier nonlinearity.
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Figure 32.12. SNR degradation of MIMO-RX schemes at BER = 10−3 in the presence of phase noise.

(b) The 2×3 TX-RX-MRC case has a higher degradation than the 2×2
case. This is due to the fact that the limiting factor for the 2×3 case is
the nonlinearity itself. Observation of the BER curved showed that
the 2 × 2 and 2 × 3 cases have the same error floor, hence the differ-
ence between the ideal case and the nonideal case is higher for the
2 × 3 case.

Comparison between RX, TX, and TX-RX processing schemes

Clipping and quantization. The TX and RX processing exhibit similar sensitivity
to this nonideality. The TX-RX processing is much less sensitive at both the TX
and RX sides.

IQ imbalance. The TX and RX processing exhibit similar sensitivity to this non-
ideality, with the exception of STBC and SISO that are much less sensitive to IQ
imbalance at the TX side. Both TX-SDM and RX-SDM have tough requirement
at full load (about 0.2%). As far as the TX-RX processing is concerned, TX non-
idealities cause significantly less interference. Nevertheless, since the IQ imbalance
requirement is on the order of 0.4 to 2% according to the TX-RX scheme, it is likely
that IQ imbalance mitigation will also be required for TX-RX schemes, at least for
direct conversion (zero IF) architecture that have nonideal quadrature generation.

Phase noise. Since a value of −32 dBc integrated phase noise is moderately easy to
achieve, the worst case is for receiver phase noise for the fully loaded RX-SDM case.
Even in that case, a degradation of 0.8 dB could be tolerable. All other schemes
show less than 0.5 dB degradation even at −28 dBc.
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Figure 32.13. SNR degradation of MIMO-TX schemes at BER = 10−3 in the presence of clipping and
quantization: (a) 4σ , (b) 5σ .

Power amplifier nonideality. The TX-RX scheme exhibits much less sensitivity to
PA nonlinearity than the TX schemes. The reason for this lies in the structure of
the prefilter: the TX-RX scheme uses the right singular vectors of the channel ma-
trix which are by definition vectors of unitary matrices and do not need to be
normalized; the TX schemes use (pseudo-)inverse of the channel matrix or chan-
nel covariance matrix and must be normalized by their Frobenius norm to keep
the total TX power constant. Because of this, the TX schemes are comparatively
more sensitive to additive MUI than the TX-RX schemes.

32.2.5. Mitigation of nonidealities

The nonidealities analyzed in the previous section can to some extent be mitigated
at implementation, architecture, or system level. We will briefly review the possible
solutions against the nonidealities analyzed in this section.
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Figure 32.15. SNR degradation of MIMO-TX schemes at BER = 10−3 in the presence of phase noise.

Clipping and quantization. (i) This is mostly an implementation issue. As shown
in Section 32.2.2 and in the simulation results, for a given resolution, the clipping
level can be optimized in order to minimize the degradation.

(ii) At the system level, providing spatial diversity and/or resorting to TX-RX
processing will reduce the adverse impact of low-resolution converters.
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Figure 32.16. SNR degradation of MIMO-TX schemes at BER = 10−3 in the presence of TX power
amplifier nonlinearity.
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Figure 32.17. SNR degradation of MIMO-TX-RX schemes at BER = 10−3 in the presence of clipping
and quantization at the TX side: (a) 4σ , (b) 5σ .
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Figure 32.18. SNR degradation of MIMO-TX-RX schemes at BER = 10−3 in the presence of clipping
and quantization at the RX side: (a) 4σ , (b) 5σ .
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Figure 32.19. SNR degradation of MIMO-TX-RX schemes at BER = 10−3 in the presence of IQ
imbalance at the TX side.
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Figure 32.20. SNR degradation of MIMO-TX-RX schemes at BER = 10−3 in the presence of IQ
imbalance at the RX side.

3

2.5

2

1.5

1

0.5

0

D
eg

ra
da

ti
on

(d
B

)

−36 −34 −32 −30 −28 −26 −24 −22 −20
Integrated single-sideband phase noise (dBc)

TX-RX-SDM-MMSE-2 × 2
TX-RX-MRC-2 × 2
TX-RX-SDM-MMSE-2 × 3

TX-RX-MRC-2 × 3
TX-RX-SDM-MMSE-3 × 2
TX-RX-MRC-3 × 2

Figure 32.21. SNR degradation of MIMO-TX-RX schemes at BER = 10−3 in the presence of phase
noise at the TX side.

IQ imbalance. (i) At the architecture level, selecting super-heterodyne architec-
tures with digital SSB and quadrature generation introduced in Section 32.2.1 can
completely eliminate IQ imbalance provided that the receiver down sampling fil-
ters have sufficient rejection in the stopband.

(ii) Since zero-IF architectures are highly desirable, it is also possible to ex-
tend the SISO-OFDM IQ imbalance compensation techniques proposed in [4]
to MIMO schemes. This method consists in estimating the values of α and β
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Figure 32.23. SNR degradation of MIMO-TX-RX schemes at BER = 10−3 in the presence of TX
amplifier nonlinearity.

introduced in (32.4) and then compensating digitally to recover the in-phase and
quadrature components free of IQ (image frequency) interference, as follows:

r̂ = α̂∗rIQ − β̂r∗IQ∣∣α̂∣∣2 − ∣∣β̂∣∣2 . (32.10)



A. Bourdoux and J. Liu 673

The method can be directly extended to multiantenna reception by implementing
the estimation and compensation in each receive antenna branch. However, when
the number of transmit antennas is greater than 1, the training symbols from each
TX antenna must be transmitted one after the other to allow the measurement
of the IQ imbalance interference in the receiver without additional interference
from other transmit antennas. The receiver IQ imbalance compensation method
in [6, 7] also applies in the presence of phase noise and carrier frequency offset.
As far as the transmitter is concerned, the automatic calibration introduced in [8]
can easily be extended to multiantenna transmitters.

Phase noise. (i) For a given integrated phase noise level, it is possible to distribute
the PSD so as to have more phase noise power close or far from the carrier. For
OFDM systems, it is desirable to have more close-in phase noise and less far phase
noise since this will result in more CPE (that can be tracked) and less (irreducible)
ICI. This amounts to a trade-off between the voltage-controlled oscillator (VCO)
noise floor and the cut-off frequency of the PLL used in the frequency synthesizer.
The phase/frequency tracking loop of the receiver can be optimized for this trade-
off (cut-off frequency of the tracking loop).

(ii) In a MIMO context, the phase noise can be made identical in all branches
of the transmitter by using common LOs and sampling clocks in all antenna
branches. The same applies to the receiver. In this way, a single global phase noise
has to be estimated and tracked.

(iii) Pilot signals are of prime importance to help tracking the phase noise over
the total duration of an OFDM burst. They are usually implemented as known
BPSK symbols on a subset of evenly spaced subcarriers. The use of identical pilot
symbols—combined with common LOs—allows to implement the tracking be-
fore the spatial processing, thereby significantly simplifying the architecture when
several STP algorithms are supported.

Power amplifier nonlinearity. (i) At the system level and as shown in the simula-
tion results, the impact of nonlinearities can significantly be reduced by the use of
TX-RX schemes or spatial diversity order greater than 1.

(ii) At the implementation level, conventional SISO methods (pre-distortion,
linearization, . . .) can be applied at the TX side.

32.2.6. Conclusions

To conclude, transceiver nonidealities can have a dramatic impact on overall sys-
tem performances. We have shown by means of a case study of MIMO-OFDM
transmission that the impact can vary at a large degree according to the trans-
mission scheme, the spatial diversity order, and whether TX or RX nonideality is
introduced. Such a system level approach is of paramount importance when de-
signing a system since it allows to make system level trade-offs, thereby optimizing
complexity and power consumption, which is especially important for mobile or
portable MIMO terminals.
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32.3. Transceiver reciprocity for MIMO with TX processing

This section analyzes specific transceiver requirements related to the reciprocity
for MIMO-TX and MIMO-TX-RX schemes.

32.3.1. System model with the reciprocity assumption

We consider a wireless communication setup with a multiantenna access point
(AP) and a single-antenna or multiantenna terminal (UT). The AP intends to ap-
ply a downlink OFDM-MIMO scheme with TX processing, thus requiring CSI
knowledge at the AP. This CSI knowledge will be acquired through an uplink burst
with the assumption of channel reciprocity. The uplink model is as follows on ev-
ery subcarrier p:

yUL[p] = HUL[p] · xUL[p] + n[p], (32.11)

where xUL[p] is the vector of the N frequency-domain symbols transmitted by
the terminals, yUL[p] is the vector of the M signals received by the AP antenna
branches, and HUL is the composite uplink channel. In the sequel, we drop the
explicit dependency on [p] for clarity. Including the terminal transmitters and the
AP receiver, HUL can be expressed as

HUL = DRX,AP · H · DTX,UT , (32.12)

where DRX,AP and DTX,UT are complex diagonal matrices containing, respectively,
the AP receivers and UT transmitters frequency responses (throughout the anal-
ysis, we use the letter D to emphasize that the matrices are diagonal). The matrix
H contains the propagation channel itself, which is reciprocal. In order to recover
the transmitted symbols, the AP uses a channel estimation algorithm that provides
the estimate ĤUL affected by DRX,AP and DTX,UT . To simplify the analysis, we will
assume that there are no channel estimation errors so that ĤUL = HUL. In the
downlink, the stream separation is achieved by applying a per-carrier prefilter that
pre-equalizes the channel. This prefiltering is contained in the matrix FDL of the
linear model

yDL = HDL · FDL · xDL + n. (32.13)

HDL also captures the AP and UT transceiver transfer function:

HDL = DRX,UT · HT · DTX,AP , (32.14)

where DTX,AP and DRX,UT are complex diagonal matrices containing, respectively,
the AP transmitters and mobile terminal receivers frequency responses and HT is
the transpose of H, the uplink propagation channel. We can use HT for the down-
link if two conditions are fulfilled: the duplex scheme is TDD and the downlink
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transmission occurs without significant delay after the uplink channel estimation,
compared to the coherence time of the channel. In what follows, we assume that
the channel is static.

For the zero-forcing strategy, the prefiltering matrix is the inverse (or pseu-
doinverse if N ≤ M) of the transpose of the uplink channel matrix so that, ideally,
the product of the prefiltering matrix and the downlink channel matrix is equal to
the identity matrix [9]:

FDL = (
H−T) = (

DRX,AP · H · DTX,UT
)−T

. (32.15)

By replacing HDL and FDL from (32.14) and (32.15) in the downlink linear system
model (32.13), the received downlink signal per subcarrier becomes

yDL = DRX,UT · HT · DTX,AP︸ ︷︷ ︸
HDL

·D−1
RX,AP · H−T · D−1

TX,UT︸ ︷︷ ︸
(HUL)−T

·xDL + n. (32.16)

32.3.2. Multistream interference due to nonreciprocity

The linear model in (32.16) lends itself to several useful interpretations and high-
lights the origin of the MUI.

(i) The effect of channel prefiltering is altered by the two diagonal matri-
ces appearing between HT and H−T in (32.16). Interestingly, this is solely due to
transceiver effects at the AP. What causes MUI is the AP nonreciprocity: DTX,AP ·
D−1

RX,AP is not equal to the identity matrix multiplied by a scalar, although this
product is diagonal. However, the identity matrix, multiplied by an arbitrary com-
plex scalar could be inserted between HT and H−T in (32.16) without causing
MUI.

(ii) The UT front end effects (DRX,UT and DTX,UT) do not contribute to MUI.
The net effect of the UT front-end frequency responses is to scale and rotate the
received signals on each antenna branch. This can be equalized at the UT by a
conventional time-only equalizer in each receive antenna branch (as opposed to a
space-time equalizer). This equalizer is also needed to compensate the unknown
phase difference between the AP and UT at TX time.

(iii) The propagation matrix H in this model also includes the parts of the AP
or terminals that are common to uplink and downlink, hence reciprocal. This is
the case for the antennas and for any common component inserted between the
antenna and the TX/RX switch (or circulator).

(iv) For the product DTX,AP ·D−1
RX,AP to have all diagonal elements equal, com-

mon LOs are mandatory. This condition is desirable at the transmitter side for
MIMO-RX since it simplifies the carrier frequency offset/phase noise tracking loop
(see Section 32.2.3); for MIMO-TX, it is mandatory.
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32.3.3. Effects of transceiver nonreciprocity

To illustrate the dramatic impact of the AP transceiver nonreciprocity, we show
here simulation results of a MIMO-OFDM system with a zero-forcing prefilter
used at the transmitter side. The simulations were run for Hiperlan2 parameters
[10] with the Hiperlan2 type A channel [11] (non-LOS, 50- nanosecond delay
spread) between any pair of antenna. The AP had 4 antennas and the UT num-
ber of antennas (hence the number of transmitted streams) was varied from 1 to
4. Other important parameters were QPSK modulation on all subcarriers, OFDM
with 16 samples cyclic prefix length. The entries of the channel matrix were zero
mean iid gaussian random variables with variance 1 and were generated indepen-
dently for each realization. No channel coding was applied. Since channel knowl-
edge is critical in this discussion, we have included uplink channel estimation in
the simulations (uplink and downlink SNR were assumed identical). The channel
estimation itself is based on a classical least-squares method with a constraint on
the length of the channel [12]. The following simulations have been carried out:

(i) simulation 1: perfect reciprocity, perfect channel knowledge,
(ii) simulation 2: perfect reciprocity, downlink channel obtained from up-

link channel estimation,
(iii) simulation 3: a random 5 degree rms phase error and 0.7 dB rms ampli-

tude error is introduced in the downlink transmitters; these errors are
introduced on each subcarrier before transmission (a different error on
each subcarrier). Note that this level of matching is very hard to achieve
for complete TX and RX chains unless special design and manufacturing
techniques are used.

The simulation results (Figure 32.24) show that
(i) even small phase/amplitude differences between the transmitter and re-

ceiver sections of the AP significantly degrade the quality of the MIMO-
TX transmission;
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(ii) the highest performance degradation occurs at high system load, con-
firming that the degradation is due to MSI. Obviously, for higher-order
constellations, the sensitivity to transceiver nonreciprocity would be
even higher.

32.3.4. Transceiver calibration

In a practical system, there are basically two ways to avoid the MSI introduced by
the AP front-end nonreciprocity:

(i) perform some form of manufacturing-time matching that ensures that
the transmitter is matched to the receiver. This is not very realistic since
it imposes a very tight overall matching of the magnitude and phase
response of the transmitter and receiver (with an accuracy of a fraction
of 1 dB and of 1 degree for the most demanding schemes such as fully
loaded SDM with QAM64),

(ii) online calibration loop that measures the transmitter and receiver fre-
quency responses so that the mismatches can be pre-compensated dig-
itally at the transmitter. We opt for the calibration option and develop
further this idea.

The calibration aims at estimating the product DRX,AP · D−1
TX,AP so that it can

be applied at transmit time to remove the effect of DTX,AP · D−1
RX,AP appearing in

(32.16). An unknown common complex multiplicative error of the form α · Inxn is
allowed. Mathematically, without compensation the transmitted signal is F ·x and
with calibration it becomes αDRX,AP · D−1

TX,AP · F · x.
Before calibration, the carrier frequency and all transceiver parameters that

have an effect on the amplitude or phase response of the transmitter and/or re-
ceiver are set. This includes attenuator, power level, pre-selection filters, carrier
frequency, gain of variable gain amplifiers, and so forth. Note that this may re-
quire several calibrations for a given carrier frequency. Once the parameters are
set, the frequency responses are assumed static and the calibration can be carried
out for this set of parameters. Note that all described calibration operations are
complex. We now introduce two calibration methods: method (A) uses a noise
source as a reference and method (B) uses an auxiliary transceiver.

(A) Calibration with a noise source. The block diagram of the AP transceiver with
the calibration hardware is illustrated in Figure 32.25. In this block diagram, the
complex frequency response of each transmitter is represented by a single transfer
function dTX,m, which is, for the transmitter of antenna branch m, the concatena-
tion (product) of the frequency response of the baseband section with the lowpass
equivalent [13] of the IF/RF section frequency response. These terms are the diag-
onal elements of the DTX,AP matrix. A similar definition holds for dRX,m.

Step 1 (transmit-receive calibration (measurement of DTX · DRX)). The transmit-
receive switch is connected so as to realize a loop-back connection. A known sig-
nal is generated in the baseband section of the transmitter and is routed all the
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Figure 32.25. Multiantenna AP with calibration loops, noise source method (shown for 2 antennas).

way from baseband to RF and back from RF to baseband in the receiver. The RF
calibration noise source is turned off. In each antenna branch, this yields, after av-
eraging an estimate of the product of the transmitter frequency response by the
receiver frequency response, the product D1 = DTX · DRX. Note that this is not
equal to the desired estimate.

Step 2 (RX-only calibration (measurement of DRX)). The transmit-receive switch
is connected so as to isolate the receiver from both the transmitter and the antenna.
The calibration noise source is turned on. Its excess noise ratio (ENR) must be suf-
ficient to exceed the thermal noise generated by the LNAs by, for example, 20 dB
or more. The signal is sampled and measured at baseband in the receiver of all an-
tenna branches simultaneously, which is essential for perfect phase calibration. As
shown in [14], using one of the (unknown) receiver branches as a reference, this
yields, after some manipulations and averaging, D2 = (1/dRX,1) · DRX which is a
diagonal matrix containing the frequency responses of the receiver branches with
a complex error coefficient 1/dRX,1, common to all antenna branches. The multi-
plication of D2

2 by the inverse of D1 yields the desired calibration values, namely,

D2
2 · D−1

1 = 1
d2

RX,1
· DRX · D−1

TX. (32.17)
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(B) Calibration with an auxiliary front end. The second calibration method is
based on an auxiliary front end. The setup for this calibration method is illustrated
in Figure 32.26. The auxiliary front end used for the calibration is a conventional
front end. Remarkably, its frequency responses need not to be known.

Step 1 (measurement of DTX). A known signal is generated by the AP transmitter
and received by the calibration receiver. This yields the following measurement:
DT = DTX · DC · dRX,CAL where DC contains the transfer function of the passive
calibration circuit linking the calibration front end to the AP front ends that need
to be calibrated.

Step 2 (measurement of DRX). A known signal is generated by the calibration
transmitter and received by the AP receiver front end. This yields the following
measurement: DR = dTX,CAL · DC · DRX.

The multiplication of DR by the inverse of DT yields the desired calibration
values (the product of diagonal matrices is commutative) DR · D−1

T = DRX · D−1
TX ·

dTX,CAL · d−1
RX,CAL. The unknown last term in this calibration value is allowed since

it is common for all antenna branches.

Comparison of the two calibration methods. The two methods are in fact very simi-
lar: they exploit at best the peculiar problem at hand, namely, the estimation of the
AP frequency responses with the degree of freedom allowed (the common error
coefficient). In the first method, the unknown noise values and the first antenna
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branch make up the unknown coefficient while in the second method it is the
auxiliary front end and the coupling values that make up the unknown coefficient.

(i) Method (A) has a clear advantage in implementation cost since the only
extra hardware is the noise source (a lousy RF amplifier will do!) and the coupling
circuitry. However, the splitter and the coupler transfer function do not cancel out
as in method (B), thereby placing some (moderate) requirement on these compo-
nents.

(ii) Method (B) is more costly. However, it has the advantage of being able do
define arbitrarily the baseband signal used to measure the AP receiver: it is then
possible to generate special training sequences to achieve certain purposes such as
partial spectral filling, longer cyclic prefix, and so forth. This method also allows a
fine control of the signal level during the measurement.

Avoiding pitfalls in the calibration. Several precautions need to be taken so that the
use of the calibration data is correct.

(i) When doing the uplink channel estimation, each receive antenna branch at
the AP will use a particular AGC setting, according to the power received by that
antenna. The calibration value corresponding to that AGC setting must then be
used.

(ii) During both UL channel estimation and downlink transmission, all AP
antennas must be synchronized. More specifically, timing synchronization offsets
are allowed as long as they are identical to those present during the calibration.

(iii) The calibration must be executed repeatedly. The frequency of the mea-
surement depends on the stability over time and temperature of the analog cir-
cuitry.

These calibration methods are very general and can be used in all MIMO-
TX schemes were TX-CSI is acquired in the reverse link with the assumption of
channel reciprocity.

32.3.5. Conclusions

If reverse link channel knowledge is used to compute the MIMO-TX or MIMO-
TX-RX prefiltering matrix, near-perfect channel reciprocity is required. We have
shown that the transceiver nonreciprocity at the transmit side is the source of MUI.
The nonreciprocity at the receive side does not create MUI and can be compen-
sated by a conventional equalizer. We have introduced two inexpensive calibration
methods in order to yield after calibration, in each antenna branch, identical trans-
mitter and receiver frequency response, up to a common coefficient.

Abbreviations

A/D Analog-to-digital (converter)

AGC Automatic gain control

BER Bit error rate

CPE Common phase error

CSI Channel state information
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D/A Digital-to-analog (converter)

FFT Fast Fourier transform

ICI Intercarrier interference

IIP3 Input third-order intercept point

IP1 1 dB compression point

LO Local oscillator

MIMO Multiple-input multiple-output

MRC Maximum ratio combining

NOB Number of bits

OFDM Orthogonal frequency division multiplex

PA Power amplifier

PER Packet error rate

PLL Phase locked loop

PSD Power spectral density

SDM Spatial division multiplex

SSB Single sideband

STBC Space-time block coding

STP Space-time processing

SVD Singular value decomposition

VCO Voltage control oscillator
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33
Multiple antennas for 4G
wireless systems

François Horlin, Frederik Petré,
Eduardo Lopez-Estraviz,
and Frederik Naessens

It is not the strongest species that will survive, nor the most
intelligent, but the one most responsive to change.

Charles Darwin

33.1. New air interfaces

New air interfaces for 4G broadband cellular networks are being developed under
the auspices of the World Wireless Research Forum (WWRF) [1] and the IEEE
802.20 study group for Mobile Broadband Wireless Access (MBWA) [2].

Cellular systems of the third generation (3G) are based on the recently emerg-
ed direct-sequence code-division multiple-access (DS-CDMA) technique [3]. In-
trinsically, DS-CDMA has interesting networking abilities. First, the communicat-
ing users do not need to be time synchronized in the uplink. Second, soft handover
is supported between two cells making use of different codes at the base stations.
However, the system suffers from intersymbol interference (ISI) and multiuser in-
terference (MUI) caused by multipath propagation, leading to a high loss of per-
formance.

The use of the orthogonal frequency-division multiplexing (OFDM) modu-
lation is widely envisaged for wireless local area networks (WLANs) [4]. At the
cost of the addition of a cyclic prefix, the time-dispersive channel is seen in the fre-
quency domain as a set of parallel independent flat subchannels and can be equal-
ized at a low-complexity. Using channel state information (CSI) at the transmitter,
the constellation on each subchannel can be further adapted to the quality, which
is known as bit loading for adaptive OFDM. An alternative approach to OFDM,
that benefits from the same low-complexity equalization property, is single-carrier
block transmission (SCBT), also known as single-carrier (SC) modulation with
cyclic prefix [5, 6]. As a counterpart of adaptive OFDM, it has been proposed to
use a decision-feedback equalizer at the receive side of an SCBT system. It has been
shown in [7, 8] that the two approaches perform equally well. Since the SCBT tech-
nique benefits from a lower peak-to-average power ratio (PAPR), [9] encourages
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Figure 33.1. GMCBS-CDMA transmitter model.

the use of SCBT in the uplink and OFDM in the downlink in order to reduce the
constraints on the analog front end and the processing complexity at the terminal.

There are potential benefits in combining OFDM (or SCBT) and DS-CDMA.
Basically the frequency-selective channel is first equalized in the frequency domain
using the OFDM modulation technique. DS-CDMA is applied on top of the equal-
ized channel, keeping the interesting orthogonality properties of the codes. The
DS-CDMA signals are either spread across the OFDM carriers, leading to mul-
ticarrier CDMA (MC-CDMA) [10, 11, 12, 13], or along the carriers, leading to
multicarrier block-spread CDMA (MCBS-CDMA) [14, 15, 16, 17, 18, 19]. The
SCBT counterparts named here single-carrier CDMA (SC-CDMA) and single-
carrier block-spread CDMA (SCBS-CDMA) have also been proposed in [20, 21]
and [19, 22, 23], respectively.

33.2. Generic transmission scheme

We propose a transmission chain composed of generic blocks and able to instan-
tiate all the communication modes combining OFDM/SCBT and TDMA/CDMA
as special cases. In contrast with the transceiver proposed in [24, 25, 26] that relies
on a sharing of the set of carriers to retain the orthogonality between the users,
our transmission scheme relies on orthogonal CDMA, and thus inherits the nice
advantages of CDMA related to universal frequency reuse in a cellular network,
like increased capacity and simplified network planning. Furthermore, the focus
is especially put on the communication modes emerging in the standards.

The generalized (G) MCBS-CDMA transmission scheme for the mth user
(m = 1, . . . ,M) is depicted in Figure 33.1. Since we focus on a single-user trans-
mission, the transmission scheme applies to both the uplink and downlink. In the
uplink, the different user signals are multiplexed at the receiver, after propagation
through their respective multipath channels. In the downlink, the different user
signals are multiplexed at the transmitter, before the inverse fast Fourier transform
(IFFT) operation.

The GMCBS-CDMA transmission scheme comprises four basic operations:
intrablock spreading, interblock spreading, IFFT, and adding transmit redun-
dancy. The information symbols sm[ j] are first serial-to-parallel converted into
blocks of B symbols, leading to the block sequence

sm[ j] :=
[
sm[ jB] · · · sm[( j + 1)B − 1]

]T
. (33.1)



François Horlin et al. 685

The blocks sm[ j] are linearly precoded with aQ×B (Q ≥ B) matrix, θ=
m, which pos-

sibly introduces some redundancy and spreads the symbols in sm[ j] with length-Q
codes:

s̃m[ j] := θ=
m · sm[ j]. (33.2)

We refer to this first operation as intrablock spreading, since the information sym-
bols sm[ j] are spread within a single precoded block, s̃m[ j]. The precoded block
sequence s̃m[ j] is then block spread with the length-Ninter code sequence cm[n]
leading to Ninter successive chip blocks:

x̃m[n] := s̃m[ j]cm
[
n− jNinter

]
, (33.3)

where j = �n/Ninter . We refer to this second operation as interblock spreading,
since the information symbols sm[ j] are spread along Ninter different chip blocks.
The third operation involves the transformation of the frequency domain chip
block sequence x̃m[n] into the time-domain chip block sequence:

xm[n] := F=
H

Q
· x̃m[n], (33.4)

where F=
H

Q
is the Q × Q IFFT matrix. Finally, the K × Q (K ≥ Q) transmit matrix

T= possibly adds some transmit redundancy to the time-domain chip blocks:

um[n] := T= · xm[n]. (33.5)

With K = Q + L, T= = T= cp
:= [I=

T

cp
, I=

T

Q
]
T

, where I=Q
is the identity matrix of size

Q and I=cp
consists of the last L rows of I=Q

, T= adds redundancy in the form of

a length-L cyclic prefix (CP). The chip block sequence um[n] is parallel-to-serial
converted into the scalar sequence [um[nK] · · · um[(n + 1)K − 1]]T := um[n]
and transmitted over the air at a rate 1/Tc.

In the following, we will detail how our generic transmission scheme instanti-
ates different communication modes and, thus, supports different emerging com-
munication standards. We distinguish between the multicarrier modes, on the one
hand, and the single-carrier modes, on the other hand.

33.2.1. Instantiation of the multicarrier modes

The multicarrier (MC) modes always comprise the IFFT operation and add trans-
mit redundancy in the form of a cyclic prefix (T= = T= cp

). The MC modes comprise

MC-CDMA and MCBS-CDMA as particular instantiations of GMCBS-CDMA.
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33.2.1.1. MC-CDMA

As we have indicated in the introduction, MC-CDMA first performs classical DS-
CDMA symbol spreading, followed by OFDM modulation, such that the infor-
mation symbols are spread across the different subcarriers [10, 11, 12]. With Q =
BNintra andNintra the intrablock spreading code length, theQ×B intrablock spread-
ing matrix θ=

m = β
=
m spreads the chips across the subcarriers, where the mth user’s

Q × B spreading matrix β
=
m is defined as

β
=
m := I=B

⊗ am, (33.6)

with am := [am[0] · · · am[Nintra − 1]]T the mth user’s Nintra × 1 code vector
and ⊗ the Kronecker product. The interblock spreading operation is discarded by
setting Ninter = 1. Since it does not preserve the orthogonality among users in
a frequency-selective channel, MC-CDMA requires advanced multiuser detection
for uplink reception in the base station, and frequency domain chip equalization
for downlink reception in the mobile station. MC-CDMA has been proposed as a
candidate air interface for future broadband cellular systems [13].

33.2.1.2. MCBS-CDMA

The MCBS-CDMA transmission scheme is the only MC mode that comprises the
interblock spreading operation Ninter = N . As detailed in [18, 19], by relying on
block spreading, MCBS-CDMA retains the orthogonality among users in both the
uplink and downlink, even after propagation through a frequency-selective chan-
nel. Hence, it converts a difficult multiuser detection problem into an equivalent
set of simpler and independent single-user equalization problems. In case no CSI is
available at the transmitter, it performs linear precoding to robustify the transmit-
ted signal against frequency-selective fading. In case CSI is available at the trans-
mitter, it allows to optimize the transmit spectrum of each user separately through
adaptive power and bit loading. Note that classical MC-DS-CDMA can be seen
as a special case of MCBS-CDMA, since it does not include linear precoding, but,
instead, relies on bandwidth consuming forward error correction (FEC) coding to
enable frequency diversity [14, 15, 17].

33.2.2. Instantiation of the single-carrier modes

The single-carrier (SC) modes employ a fast Fourier transform (FFT) as part of the
intrablock spreading operation to annihilate the IFFT operation. For implemen-
tation purposes, however, the IFFT is simply removed (and not compensated by
an FFT), in order to minimize the implementation complexity. The SC modes rely
on cyclic prefixing (T= = T= cp

) to make the channel appear circulant. The SC modes

comprise SC-CDMA and SCBS-CDMA as particular instantiations of GMCBS-
CDMA.
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33.2.2.1. SC-CDMA

The SC-CDMA transmission scheme, which combines SCBT with DS-CDMA, can
be interpreted as the SC counterpart of MC-CDMA [20, 21]. This mode is cap-
tured through our general transmission scheme, by setting Q = BNintra. The intra-
block spreading matrix θ=

m = F=Q
· β

=
m with β

=
m defined in (33.6), performs symbol

spreading on the B information symbols, followed by an FFT operation to com-
pensate for the subsequent IFFT operation. The interblock spreading operation is
left out by setting Ninter = 1.

33.2.2.2. SCBS-CDMA

The SCBS-CDMA transceiver can be considered as the SC counterpart of MCBS-
CDMA. It is the only SC mode that entails the interblock spreading operation
Ninter = N . The intrablock spreading matrix θ=

m = F=Q
only performs an FFT op-

eration to compensate for the subsequent IFFT operation. Like MCBS-CDMA,
SCBS-CDMA retains the orthogonality among users in both the uplink and down-
link, even after propagation through a frequency-selective channel, and, hence,
converts a difficult multiuser detection problem into an equivalent set of simpler
and independent single-user equalization problems.

33.3. Multiple antennas

To meet the data rate and quality-of-service (QoS) requirements of future broad-
band cellular systems, their spectral efficiency and link reliability should be con-
siderably improved, which cannot be realized by using traditional single-antenna
communication techniques. To achieve these goals, multiple-input multiple-
output (MIMO) systems, which deploy multiple antennas at both ends of the wire-
less link, exploit the extra spatial dimension, besides the time, frequency, and code
dimensions, which allows to significantly increase the spectral efficiency and to
significantly improve the link reliability relative to single-antenna systems [27, 28,
29]. On the one hand, MIMO systems promise huge capacity gains by creating
a number of spatial pipes, through which independent information streams can
be simultaneously transmitted at the same frequency [30, 31]. This is called the
spatial multiplexing gain. On the other hand, they also enable huge performance
gains by creating an independently fading channel between each transmit/receive
antenna pair, which allows to receive many independently fading replicas of the
same signal [32, 33, 34]. This is called the spatial diversity gain.

However, until very recently, the main focus of MIMO research was on single-
user communications over narrowband channels, thereby neglecting the multiple
access aspects and the frequency-selective fading channel effects, respectively. In
this section, we demonstrate the rewarding synergy between existing and evolving
MIMO communication techniques and our generalized MCBS-CDMA transmis-
sion technique, which allows to increase the spectral efficiency and to improve the
link reliability of multiple users in a broadband cellular network.
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dm1 [i] θm ↗ Ninter cm[n] FH
Q

T um1 [n]

sm1 [ j] s̃m1 [ j] x̃ m
1 [n] xm1 [n]

MIMO
coding

dmNT
[i] θm ↗ Ninter cm[n] FH

Q
T umNT

[n]

smNT
[ j] s̃mNT

[ j] x̃ m
NT

[n] xmNT
[n]

...
...

Figure 33.2. MIMO GMCBS-CDMA transmitter model.

The generic transmission model is extended in Figure 33.2 to include the two
types of MIMO techniques. We assume NT antennas at the transmit side and NR

antennas at the receive side. The information symbols dmnT [i], which are assumed
independent and of variance equal to σ2

d , are first serial-to-parallel converted into
blocks of B symbols, leading to the block sequence

dmnT [i] :=
[
dmnT [iB] · · · dmnT

[
(i + 1)B − 1

]]T
(33.7)

for nT = 1, . . . ,NT . A MIMO coding operation is performed across the different
transmit antenna streams, that results into the NT antenna sequences, smnT [ j], input
to the generic transmission scheme.

33.3.1. Space-division multiplexing

On the one hand, MIMO systems create Nmin parallel spatial pipes, which allows
to realize an Nmin-fold capacity increase in rich scattering environments, where
Nmin = min {NT ,NR} is called the spatial multiplexing gain [27, 28, 29]. Specifi-
cally, space-division multiplexing (SDM) techniques exploit this spatial multiplex-
ing gain, by simultaneously transmitting Nmin independent information streams at
the same frequency [30] (see also [31]). In [35], SDM is combined with SC-CDMA
to increase the data rate of multiple users in a broadband cellular network.

In this section, we combine our generalized MCBS-CDMA transmission
scheme with SDM, which allows to instantiate all combinations of SDM with
OFDM/SCBT and TDMA/CDMA as special cases. The SDM technique is im-
plemented by sending independent streams on each transmit antenna nT , as ex-
pressed in

smnT [ j] = dmnT [i], (33.8)

where j = i.

33.3.2. Space-time block coding

On the other hand, MIMO systems also create NTNR independently fading chan-
nels between the transmitter and the receiver, which allows to realize an NTNR-fold
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diversity increase, where NTNR is called the multiantenna diversity gain. Specifi-
cally, space-time coding (STC) techniques exploit diversity and coding gains, by
encoding the transmitted signals not only over the temporal domain but also over
the spatial domain [32, 33, 34].

Space-time block coding (STBC) techniques, introduced in [33] for NT = 2
transmit antennas, and later generalized in [34] for any number of transmit an-
tennas, are particularly appealing because they facilitate ML detection with simple
linear processing. However, these STBC techniques have originally been designed
for frequency-flat fading channels exploiting only multiantenna diversity of or-
der NTNR. Therefore, time-reversal (TR) STBC techniques, originally proposed in
[36] for single-carrier serial transmission, have been combined with SCBT in [37,
38] for signaling over frequency-selective fading channels. While [37] only exploits
multiantenna diversity, [38] exploits multiantenna as well as multipath diversity,
and achieves maximum diversity gains of order NTNR(L + 1) over frequency-
selective fading channels, where L is the order of the underlying multipath chan-
nels.

In [39, 40], the TR-STBC technique of [37] is combined with SC-CDMA to
improve the performance of multiple users in a broadband cellular network. Al-
though this technique enables low-complexity chip equalization in the frequency
domain, it does not preserve the orthogonality among users and, hence, still suf-
fers from multiuser interference. The space-time coded multiuser transceiver of
[19, 41], which combines the TR-STBC technique of [38] with SCBS-CDMA, pre-
serves the orthogonality among users as well as transmit streams, regardless of
the underlying multipath channels. This allows for deterministic ML user sep-
aration through low-complexity code-matched filtering as well as deterministic
ML transmit stream separation through linear processing. Moreover, applying ML
Viterbi equalization for every transmit stream separately guarantees symbol recov-
ery. Therefore, maximum diversity gains of NTNR·(L+1) can be achieved for every
user in the system, irrespective of the system load. Another alternative to remove
MUI deterministically in a space-time coded multiuser setup [42, 43] combines
generalized multicarrier (GMC) CDMA, originally developed in [24], with the
STBC techniques of [34] but implemented on a per-carrier basis.

In this section, we combine our generalized MCBS-CDMA transmission
scheme with STBC, which encompasses the previously discussed space-time coded
multiuser transceivers as special cases. For conciseness, we limit ourselves to the
case of NT = 2 transmit antennas. The STBC coding is implemented by coding
the two antenna streams across two time instants, as expressed in

[
sm1 [ j]

sm2 [ j]

]
=

[
dm1 [i]

dm2 [i]

]
,

[
sm1 [ j + 1]

sm2 [ j + 1]

]
= χ

=
·
dm1 [i]

∗

dm2 [i]
∗

 ,

(33.9)
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where i = � j/2 and

χ
=

:= χ
=NT

⊗ χ
=B

with χ
=NT

:=
[

0 −1
1 0

]
. (33.10)

In the case of the MC modes, the STBC coding is applied in the frequency domain
on a per-carrier basis, so that

χ
=B

:= I=B
. (33.11)

In the case of the SC modes, the STBC coding is applied in the time domain by
further permuting the vector elements, so that

χ
=B

:= F=
T

B
· F=B

(33.12)

is a B × B permutation matrix implementing a time reversal.
It is easily checked that the transmitted block at time instant j + 1 from one

antenna is the time-reversed conjugate of the transmitted symbol at time instant
j from the other antenna (with possible permutation and sign change). As we will
show later, this property allows for deterministic transmit stream separation at the
receiver, regardless of the underlying frequency-selective channels.

33.4. Receiver design

33.4.1. Cyclo-stationarization of the channels

Adopting a discrete-time baseband equivalent model, the chip-sampled received
signal at antenna nR (nR = 1, . . . ,NR), vnR[n], is the superposition of a channel-
distorted version of the MNT transmitted user signals, which can be written as

vnR[n] =
M∑

m=1

NT∑
nT=1

Lm∑
l=0

hmnR,nT [l]umnT [n− l] + wnR[n], (33.13)

where hmnR,nT [l] is the chip-sampled finite impulse response (FIR) channel of or-
der Lm that models the frequency-selective multipath propagation between the
mth user’s antenna nT and the base station antenna nR, including the effect of
transmit/receive filters and the remaining asynchronism of the quasi-synchronous
users, and wnR[n] is additive white Gaussian noise (AWGN) at the base station an-
tenna nR with variance σ2

w. Furthermore, the maximum channel order L, that is,
L = maxm{Lm}, can be well approximated by L ≈ �(τmax,a + τmax,s)/Tc + 1, where
τmax,a is the maximum asynchronism between the nearest and the farthest users
of the cell, and τmax,s is the maximum excess delay within the given propagation
environment.

The received sequence vnR[n] is serial-to-parallel converted into the block se-

quence vnR[n] :=[vnR[nK] · · · vnR[(n + 1)K − 1]]
T

, assuming perfect time and
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frequency synchronization. From the scalar input/output relationship in (33.13),
we can derive the corresponding block input/output relationship

vnR[n] =
M∑

m=1

NT∑
nT=1

(
H=

m

nR,nT
[0] · umnT [n] + H=

m

nR ,nT
[1] · umnT [n− 1]

)
+ wnR[n],

(33.14)

wherewnR[n] :=[wnR[nK] · · · wnR[(n + 1)K − 1]]
T

is the corresponding noise
block sequence, H=

m

nR,nT
[0] is a K ×K lower triangular Toeplitz matrix with entries

[H=
m

nR,nT
[0]]

p,q
= hmnR,nT [p − q], and H=

m

nR,nT
[1] is a K × K upper triangular Toeplitz

matrix with entries [H=
m

nR,nT
[1]]

p,q
= hmnR,nT [K + p − q] (see, e.g., [24] for a de-

tailed derivation of the single-user case). The delay-dispersive nature of multipath
propagation gives rise to so-called interblock interference (IBI) between successive
blocks, which is modeled by the second term in (33.14).

The Q × K receive matrix R= removes the redundancy from the chip blocks,

that is, y
nR

[n] := R= · vnR[n]. With R= = R=cp
= [0=Q×L

, I=Q
] in which 0=Q×L

is a matrix

of zeros of size Q×L, R= again discards the length-L cyclic prefix. The purpose of the

transmit/receive pair is twofold. First, it allows for simple block-by-block process-
ing by removing the IBI, that is, R= ·H=

m

nR,nT
[1] ·T= = 0=, provided the CP length is at

least the maximum channel order L. Second, it enables low-complexity frequency
domain processing by making the linear channel convolution appear circulant to
the received block. This results in a simplified block input/output relationship in
the time domain:

y
nR

[n] =
M∑

m=1

NT∑
nT=1

Ḣ=
m

nR,nT
· xmnT [n] + znR[n], (33.15)

where Ḣ
m
nR,nT = R= · H=

m

nR,nT
[0] · T= is a circulant channel matrix, and znR[n] = R= ·

wnR[n] is the corresponding noise block sequence. Note that circulant matrices can
be diagonalized by FFT operations, that is, Ḣ=

m

nR,nT
= F=

H

Q
·Λ=

m

nR,nT
· F=Q

, where Λ=
m

nR,nT
is a diagonal matrix composed of the frequency domain channel response between
the mth user’s antenna nT and the base station antenna nR.

33.4.2. Matrical model

The generalized input/output matrix model that relates the MIMO coded symbol
vector defined as

s[ j] :=
[
s1[ j]

T · · · sM[ j]
T
]T

(33.16)
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with

sm[ j] :=
[
sm1 [ j]T · · · smNT

[ j]T
]T

, (33.17)

for m = 1, . . . ,M, to the received and noise vectors defined as

y[ j] :=
[
y

1
[ j]T · · · y

NR
[ j]T

]T
,

z[ j] :=
[
z1[ j]T · · · zNR

[ j]T
]T (33.18)

with

y
nR

[ j] :=
[(

y
nR

[
jNinter

])T · · ·
(
y
nR

[
( j + 1)Ninter − 1

])T]T

,

znR[ j] :=
[(

znR
[
jNinter

])T · · ·
(
znR

[
( j + 1)Ninter − 1

])T]T

,

(33.19)

for nR = 1, . . . ,NR, is given by

y[ j] = C= · F=
H ·Λ= · θ= · s[ j] + z[ j], (33.20)

where the channel matrix is

Λ= :=



Λ=
1

1
· · · 0=Q

...
. . .

...
0=Q

· · · Λ=
M

1
...

...
...

Λ=
1

NR

· · · 0=Q
...

. . .
...

0=Q
· · · Λ=

M

NR



(33.21)

with

Λ=
m

nR
:=

[
Λ=
m

nR,1
· · · Λ=

m

nR,NT

]
, (33.22)
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for m = 1, . . . ,M and nR = 1, . . . ,NR, and

θ= =


I=NT

⊗ θ=
1 · · · 0=NTQ×NTB

...
. . .

...
0=NTQ×NTB

· · · I=NT

⊗ θ=
M

 ,

F= = I=NRM
⊗ F=Q

,

C= = I=NR

⊗
[
C=

1 · · · C=
M
]

(33.23)

in which

C=
m := cm ⊗ I=Q

(33.24)

with cm := [cm[0], . . . , cm[Ninter − 1]]T .

33.4.2.1. Space-division multiplexing

Taking (33.8) into account, the model (33.20) is extended to the SDM input/output
matrix model

y
sdm

[i] = C= sdm
·
(
F=sdm

)H

·Λ= sdm
· θ=sdm

· χ
=sdm

· d[i] + zsdm[i], (33.25)

where the vector of transmitted symbols is defined as

d[i] :=
[
d

1
[i]

T
· · · d

M
[i]

T
]T

(33.26)

with

d
m

[i] :=
[
dm1 [i]

T · · · dmNT
[i]

T
]T

, (33.27)

for m = 1, . . . ,M, and the received and noise vectors are defined as

y
sdm

[i] := y[ j],

zsdm[i] := z[ j],

χ
=sdm

:= IMNTB,

θ=sdm
:= θ=,

Λ= sdm
:= Λ= ,

F=sdm
:= F=,

C= sdm
:= C= .

(33.28)
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33.4.2.2. Space-time block coding

Taking (33.9) into account, the model (33.20) is extended to the STBC input/out-
put matrix model

y
stbc

[i] = C= stbc
·
(
F=stbc

)H

·Λ= stbc
· θ=stbc

· χ
=stbc

· d[i] + zstbc[i], (33.29)

where the vector of transmitted symbols is given in (33.27) assuming NT = 2, the
received and noise vectors are defined as

y
stbc

[i] :=
[

y[ j]
y[ j + 1]∗

]
,

zstbc[i] :=
[

z[ j]
z[ j + 1]∗

]
,

χ
=stbc

:=
 I=MNTB

I=M
⊗ χ

=

 ,

θ=stbc
:=

 θ= 0=MNTQ×MNTB

0=MNTQ×MNTB
θ=
∗

 ,

Λ= stbc
:=

 Λ= 0=NRMQ×MNTQ

0=NRMQ×MNTQ
Λ=

∗

 ,

F=stbc
:=

 F= 0=NRMQ×NRMQ

0=NRMQ×NRMQ
F=

∗

 ,

C= stbc
:=

 C= 0=NRNinterQ×NRMQ

0=NRNinterQ×NRMQ
C=

∗

 .

(33.30)

33.4.3. Multiuser joint detector

In order to detect the transmitted symbol block of the pth user d
p
[i], based on the

received sequence of blocks within the received vector, y
mode

[i] (“mode” stands
for “SDM” or “STBC”), a first solution consists of using a single-user receiver, that
inverts successively the channel and all the operations performed at the transmit-
ter. The single-user receiver relies implicitly on the fact that CDMA spreading has
been applied on top of a channel equalized in the frequency domain. After CDMA
despreading, each user stream is handled independently. However the single-user
receiver can fail in the uplink where multiple channels have to be inverted at the
same time.
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The optimal solution is to jointly detect the transmitted symbol blocks of the
different users within the transmitted vector, d[i], based on the received sequence
of blocks within the received vector, y

mode
[i]. The optimum linear joint detector

according to the minimum mean square error (MMSE) criterion is computed in
[44]. At the output of the MMSE multiuser detector, the estimate of the transmit-
ted vector is

d̂[i] =
(
σ2
w

σ2
d

I=MNTB
+ G=

H

mode
·G=mode

)−1

·G=
H

mode
· y

mode
[i], (33.31)

where

G=mode
:= C=mode

·
(
F=mode

)H

·Λ=mode
· θ=mode

· χ
=mode

. (33.32)

The MMSE linear joint detector consists of two main operations [44, 45].
(i) First, a filter matched to the composite impulse responses multiplies the

received vector in order to minimize the impact of the white noise. The matched
filter consists of the CDMA interblock despreading, the FFT operator to move
to the frequency domain, the maximum ratio combining (MRC) of the different
received antenna channels, the CDMA intrablock despreading, the IFFT to go back
to the time domain in case of the SC-modes, and the STBC de-coding.

(ii) Second, the output of the matched filter is still multiplied by the inverse
of the composite impulse response autocorrelation matrix of size MNTB that mit-
igates the remaining intersymbol, interuser, and interantenna interference.

When no linear precoding is considered in the system, it can be easily checked
that the linear MMSE estimate in (33.31) exactly reduces to the single-user receiver
estimate for the MC and SCBS-CDMA systems.

In the case of MC and SC-CDMA, however, the linear MMSE receiver is dif-
ferent from the single-user receiver and suffers from a higher computational com-
plexity. Fortunately, both the initialization complexity, which is required to com-
pute the MMSE receiver, and the data processing complexity can be significantly
reduced for MC and SC-CDMA, by exploiting the initial cyclo-stationarity prop-
erty of the channels. Based on a few permutations and on the properties of the
block circulant matrices given in [20], it can be shown that the initial inversion of
the square autocorrelation matrix of size MNTB can be replaced by the inversion
of B square autocorrelation matrices of size MNT .

33.5. Results

In this section, a performance comparison between the different communication
modes is made, which can serve as an input for an optimal mode selection strat-
egy. We consider a static cellular system, which operates in an outdoor urban mi-
crocell propagation environment. According to the 3GPP TR25.996 spatial chan-
nel model, this propagation environment is characterized by a specular multipath
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with a mean excess delay of 251 nanoseconds, a mean angle spread at the base sta-
tion of 19 degrees and a mean angle spread at the mobile terminals of 68 degrees.
The system operates at a carrier frequency of 2 GHz, with a system bandwidth
of 5 MHz. We assume an antenna spacing of 2 wavelengths at the mobile termi-
nals and of 10 wavelengths at the base station. Monte-Carlo simulations have been
performed to average the bit error rate (BER) over 500 stochastic channel realiza-
tions and to compute the corresponding goodput defined as the actual through-
put offered to the user assuming a retransmission of the erroneous packets. The
information bandwidth is spread by a spreading factor (SF) equal to 8. The user
signals are spread by periodic Walsh-Hadamard codes for spreading, which are
overlayed with an aperiodic Gold code for scrambling. QPSK, 16-QAM, or 64-
QAM modulation is used with Q = 128 subchannels and a cyclic prefix length of
L = 32. We assume a packet size of 512 symbols (4 blocks of 128 symbols in case
of MC/SCBS-CDMA or 32 blocks of 16 symbols in case of MC/SC-CDMA). Con-
volutional channel coding in conjunction with frequency domain interleaving is
employed according to the IEEE 802.11a/g standard. The code rate is 1/2, 2/3, or
3/4. At the receiver, soft-decision Viterbi decoding is used.

We distinguish between the uplink and the downlink. In the uplink, trans-
mit power control is applied, such that the received symbol energy is constant for
all users. The power transmitted by each terminal depends on the actual channel
experienced by it. The BER (or the goodput) is determined as a function of the
received bit energy or, equivalently, as a function of the transmit power averaged
over the different channel realizations. In the downlink, no transmit power control
is applied. For a constant transmit power at the base station, the received symbol
energy at each terminal depends on the channel under consideration. The BER (or
the goodput) is determined as a function of the transmit power or, equivalently, as
a function of the received bit energy averaged over the channel realizations. For a
given received symbol energy, the required transmit powers for the different com-
munication modes appear to be very similar.

Rather than comparing all possible modes for the two link directions, we only
consider the relevant modes for each direction. For the uplink, SC demonstrates
two pronounced advantages compared to OFDM [9]. First, SC exhibits a smaller
PAPR than OFDM modulation, which allows to reduce the power amplifier back-
off and, thus, leads to increased power efficiency. Second, SC allows to move the
IFFT at the transmitter to the receiver, which results in reduced terminal com-
plexity. No computational effort is needed at the transmitter. For the downlink,
OFDM is the preferred modulation scheme, since it only incurs a single FFT oper-
ation at the receiver side (as opposed to two FFT operations for SC), which leads
to reduced terminal complexity.

Figure 33.3 illustrates the gain obtained by the use of different multiple-an-
tenna techniques in the downlink of an MCBS-CDMA-based system. Three dif-
ferent system configurations have been considered (1 × 1, 1 × 2, 2 × 2). A full user
load is assumed (number of users is equal to the SF). A 16-QAM constellation is
used and the coding rate is equal to 1/2. A gain of maximum 4 dB is achieved by
combining the signals received through 2 antennas at the mobile terminal (MRC
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Figure 33.3. Multiple-antenna gain in the downlink of an MCBS-CDMA-based communication
system.

technique), while a supplementary gain of maximum 1 dB can be achieved by fur-
ther performing STBC coding across two antennas at the base station (STBC and
MRC techniques together). On the other hand, SDM suffers from a high 15 dB
loss in the goodput regions that can also be reached by a single-antenna system.
One can only achieve an increase of capacity by the use of multiple-antennas at
very high signal-to-noise-ratio (SNR) values. Due to the limited angle spread that
characterizes the outdoor channels, the gain obtained by the use of multiple an-
tennas is on the overall quite low. In the next simulation results, one directive
antenna will be assumed at the base station to increase the cell capacity and two
antennas will be assumed at the mobile terminal to improve the link reliability.
The MRC combining technique is performed in the downlink, while the STBC
coding scheme is applied in the uplink.

Figure 33.4 illustrates the total goodput of the MCBS-CDMA communication
mode in the downlink for different combinations of the constellation sizes and
code rates. A full user load has been assumed. Looking to those combinations that
give the same asymptotic goodput (16-QAM and CR 3/4 compared to 64-QAM
and CR 1/2), it is always preferable to combine a high constellation size with a low
code rate. The same conclusion holds in order to get the optimal trade-off for each
SNR value. The envelope is obtained by progressively employing QPSK, 16-QAM,
64-QAM constellations, and a code rate equal to 1/2, and then by increasing the
code rate progressively to the values 2/3, 3/4 while keeping the constellation size
fixed to 64-QAM.

Figure 33.5 compares the user goodput of MC-CDMA versus MCBS-CDMA
in the downlink for a varying load (number of users is equal to 1, 5, and 8).
Again a 16-QAM constellation and a coding rate equal to 1/2 are selected. The
MMSE multiuser receiver for MCBS-CDMA reduces to an equivalent but simpler
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single-user receiver, which performs channel-independent block despreading fol-
lowed by MMSE single-user equalization. The performance of MC-CDMA in-
creases for a decreasing number of users, since it is limited by MUI. On the other
hand, MCBS-CDMA is an MUI-free transceiver, such that its performance re-
mains unaffected by the user load. Nevertheless, MCBS-CDMA always performs
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Figure 33.6. Comparison SCBS-CDMA and SC-CDMA in the uplink of a communication system
performing STBC coding (IA stands for intrablock spreading and IE stands for interblock spreading).

worse than MC-CDMA, because the latter benefits from the diversity offered by
spreading.

Figure 33.6 compares the user goodput of SC-CDMA versus SCBS-CDMA in
the uplink for a varying load (number of users is equal to 1, 5, and 8). As for MC-
CDMA, MMSE multiuser reception is needed for SC-CDMA, since a single-user
receiver cannot get rid of the MUI, and features a BER curve flattening already at
low SNRs. For the SCBS-CDMA mode, the MMSE multiuser receiver also reduces
to a set of independent and low-complexity MMSE single-user receivers, which
perform channel-independent block despreading followed by MMSE single-user
equalization. The performance of SC-CDMA increases for a decreasing number of
users, since it is limited by MUI. This effect is more pronounced than for the down-
link MC-CDMA since the signals propagate through different channels, which is
more difficult to compensate for. On the other hand, since SCBS-CDMA is an
MUI-free transceiver that preserves the orthogonality among users (even after
propagation through frequency-selective channels), its performance is indepen-
dent of the user load.

33.6. Summary

Because of the limited frequency bandwidth on one hand and the potential limited
power of terminal stations on the other hand, spectral and power efficiency of fu-
ture systems should be as high as possible. New air interfaces need to be developed
to meet the new system requirements. Combinations of the multicarrier (MC) and
spread-spectrum (SS) modulations, named multicarrier-spread-spectrum tech-
niques, could be interesting candidates. They might benefit from the main advan-
tages of both MC and SS schemes such as high spectral efficiency, multiple-access
capabilities, narrowband interference rejection, simple one-tap equalization, and
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so forth. The huge potential of multiple antenna technologies is now widely recog-
nized. One could rely on the diversity offered by the wireless channels to improve
significantly the link reliability. Another possibility is to create artificially indepen-
dent channel pipes between the transmit and receive antenna arrays so that the
link capacity is highly increased.

Different flavors exist to mix the MC and SS modulations, that complement
each other and allow to make an optimal trade-off between the spectral and power
efficiency according to the user requirements, channel propagation characteristics
(time and frequency selectivity), and terminal resources. In this chapter, we pro-
posed a generic transmission scheme that allows to instantiate all the combina-
tions of orthogonal frequency-division multiplexing (OFDM) and cyclic-prefixed
single-carrier (SC) modulations with direct-sequence code-division multiple ac-
cess (DS-CDMA). The space-division multiplexing (SDM) and spacetime block
coding (STBC) multiple-antenna techniques are next integrated in the generic
transmission scheme. For each resulting mode, the optimal linear minimum mean
square error (MMSE), multiuser receiver is derived. An optimal strategy for the
selection of the communication mode is proposed. It is shown that an adaptive
transceiver is interesting to support different communication modes and to opti-
mally track the changing communication conditions.
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Abbreviations

AWGN Additive white Gaussian noise

BER Bit error rate

CIR Channel impulse response

CSI Channel state information

CDMA Code-division multiple access

DS-CDMA Direct-sequence code-division multiple access

FEC Forward error coding

FIR Finite impulse response

FFT Fast Fourier transform

GMCBS-CDMA Generalized multicarrier block-spread code-division multiple access

IBI Interblock interference

IFFT Inverse fast Fourier transform

MC Multicarrier

MC-CDMA Multicarrier CDMA

MCBS-CDMA Multicarrier block-spread CDMA

MBWA Mobile broadband wireless access

MIMO Multiple-input multiple-output

MMSE Minimum mean square error
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MRC Maximum ratio combining

MUI Multiple-user interference

OFDM Orthogonal frequency-division multiplexing

PAPR Peak-to-average power ratio

QoS Quality-of-service

SC Single carrier

SC-CDMA Single-carrier CDMA

SCBS-CDMA Single-carrier block-spread CDMA

SCBT Single-carrier block transmission

SDM Space-division multiplexing

SF Spreading factor

SNR Signal-to-noise ratio

STBC Space-time block coding

STC Space-time coding

TR-STBC Time-reversal space-time block coding

WLAN Wireless local area network

WWRF World Wireless Research Forum
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34
Demonstrators and testbeds

Andreas Burg and Markus Rupp

34.1. Introduction

Since the establishment of the first point-to-point radio communication by
Guglielmo Marconi in 1895, the complexity of communication systems has grown
dramatically in the continuing search for higher system capacity, higher data rates,
and bandwidth efficiency. Research in information theory and digital signal pro-
cessing has been the foundation for the development of systems that are able to
handle millions of users all over the globe.

However, the enormous proliferation of systems such as GSM or IS-95 has
only become possible through the additional significant advances in integrated
circuits technology. The ability to integrate complex algorithms and systems in a
small, low-power device at a reasonable price has been the key factor for the success
of mobile communication.

While modern ASIC technology allows for the integration of systems, the cost
factor is largely dependent on the development effort and time to market. As sys-
tems become larger and more complex, the majority of the development effort
is spent on its verification and performance analysis [1, 2]. With the necessity to
introduce standards as the basis for enormous future development efforts, impor-
tant decisions need to be made very early in the design cycle of a new system. At
this point the actual implementation of a product is often not an immediate issue
or might even not yet be feasible at reasonable cost. Erroneous decisions at this
point can have significant impact on the success of a future system. An example of
this is the introduction of HIPERLAN/1, where after many years of successful stan-
dardization, only one product came on the market, see http://www.proxim.com.
At the time of standardization, it was believed that an equalizer would solve all
observed transmission problems. Although equalizer algorithms are well explored
in literature and showed very promising behavior in simulations, once the equal-
izer was to be implemented, the realization became very difficult. Particular solu-
tions had to be investigated [3, 4, 5] in order to meet the stringent requirements,
which finally turned out to be far too expensive to become a successful product.

http://www.proxim.com
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A quick-and-dirty implementation of a proposed system or at least of its critical
components (sometimes referred to as “rapid” prototyping) is often a means to
detect potential problems early and thus de-risk a future product development.

34.1.1. Overview of the chapter

After some motivation and a brief classification of prototypes in general, this
chapter first gives an overview of some of the recently presented MIMO proto-
types. Subsequently hardware issues that need to be considered for a successful
implementation are considered for SISO and later in particular for MIMO sys-
tems. The last section concentrates on rapid prototyping design methodology and
tools.

34.1.2. Implementation types

Three types of systems can be identified, which from the management perspec-
tive serve a different purpose and from an engineering perspective are based on
very different design and implementation requirements. It therefore makes sense
to distinguish between the three experimental platforms based on the following
definitions which are derived from their use in the literature [6] and from the dic-
tionary.

(1) A prototype is the initial realization of a research idea or a standard, either
as a reference, a proof of concept, or as a vehicle for future developments and
improvements. As opposed to a simulation, it is not an imitative representation
of the device. Instead it has significant similarities. In industry, a migration into a
product is often intended.

(2) A demonstrator mainly serves as a sales vehicle and to show technology to
customers. In general it will implement a new idea, concept, or standard that has
already been established and has been finalized to some degree. Requirements on
scalability are therefore less important than its functionality and often the required
design time.

(3) A testbed on the other hand is generally used for research. It is a vehicle for
further developments or for verification of algorithms or ideas under real-world
or real time conditions. This results in the requirement for scalability, modularity,
and extendibility.

A second criterion that allows a categorization of an implemented system is
the real-time aspect. Most systems that have been implemented operate based on
one of the following two paradigms.

(1) Offline processing schemes have the least stringent real-time requirements
and are in general the easiest to implement. They have therefore been frequently
used in a number of testbeds [7]. These schemes are often also called record and
playback. They are based on offline preparation of a radio frame that is then sent in
real time through the channel. A simple device records the received signal and all
further processing is done offline without any timing constraints. The most strin-
gent limitation of such a system is its inability to support feedback loops between
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transmitter and receiver. Also, no (or only little) information will be gained about
the actual implementation complexity of an algorithm.

(2) Real-time processing on the other hand generates the transmitted signal on
the fly. The receiver processing takes place at essentially the same rate at which data
is transmitted. This allows for a continuous operation of the system, which is its
main characteristic and difference with respect to the offline-processing approach.
However, at the same time it should be noted that real-time operation does not
necessarily require the system to operate at its final target frequency or bandwidth.
This is, for example, of interest if an appropriate scaling of all transmitter- receiver-
, and channel-parameters is possible (e.g., when operating through a channel em-
ulator).

34.1.3. Justification of a prototyping effort

It has been widely recognized that prototype implementations and field trials are
an essential part of the verification of new system concepts, standards, and prod-
ucts. Consequently, extensive prototyping efforts have been carried out for today’s
single-input single-output (SISO) systems, such as GSM/GPRS, WLAN, HIPER-
LAN, and UMTS/HSDPA.

While the effort for a MIMO prototype is significantly higher than for a SISO
system, its justification is also much more obvious and is founded on five critical
issues.

(1) The availability of multiple antennas at the transmitter and at the receiver
allows for a variety of new algorithms. Each of them has particular advantages and
disadvantages and the optimum choice depends strongly on the actual channel
conditions and the overall system context. Due to poor knowledge of the behavior
of the MIMO channel, simulations often do not reflect them accurately and real-
time/real-world experiments as well as field trials are necessary.

(2) In addition to the more realistic channel conditions and operating en-
vironment, a prototype also has the advantage over simulations of providing a
significantly more exhaustive data set. The full or near real-time operation allows
to test a system with a dramatically higher number of scenarios that can never be
fully covered in slow computer simulations, especially in the high-SNR (low-BER)
regime.

(3) It is also noticed that computer simulations often make numerous as-
sumptions and rely on mathematical models which may turn out to be overly op-
timistic. Examples are the assumption of perfect channel- or even SNR knowledge
at the receiver.

(4) From an implementation point of view, prototyping efforts have the ad-
vantage of pointing out complexity issues early in the design cycle of a new prod-
uct or even already during standardization. Critical implementation issues are dis-
cussed from the beginning and delays due to unrealistic specifications (as in the
rollout of UMTS) are avoided.

(5) Demonstrators are also important from a marketing perspective, as they
show the ability of the company or product division to realize the latest technology.
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34.1.4. Prototyping and SDR

Numerous synergies are recognized between rapid prototyping of communica-
tion systems and what is generally referred to as software-defined radio (SDR), see
http://www.sdrforum.org/index.html. Both efforts aim at the implementation of
a radio system on a generic reusable platform. A significant portion of the avail-
able literature in both fields is therefore of interest. A difference between the two
subjects can be seen in the level at which the development is conducted and in the
constraints under which the efforts are made.

For rapid prototyping (RP), design time of a new system is most critical and
often more important than its cost, form-factor, or power consumption. A major
focus is therefore on the efficiency of the tools that are being used in the devel-
opment process. The hardware is built on standard components, flexible at design
time.

In an SDR project, an efficient and flexible hardware platform capable of be-
ing reprogrammed or even reorganized (reconfigured) instantly after design time
is the key to success. While of course suitable tools need to be available that al-
low to use the platforms capabilities, they are less crucial than the hardware itself
and the supporting real-time operating system (RTOS). Consequently, most SDR
projects are concerned with the development of flexible processing devices in or-
der to meet the stringent constraints of mobile communication. Once such HW
devices are available, they are interesting candidates for the hardware of a testbed.
On the other hand, tools from RP-efforts may eventually be considered as valuable
support tools for an actual SDR platform, which itself might have been developed
and tested initially in an RP-environment.

From this short discussion it can be concluded that RP and SDR efforts com-
plement each other quite well and will profit from each other.

34.2. Existing systems

In 1998 Bell-Labs reported the first narrowband MIMO prototype using the V-
BLAST architecture. The prototype was built to obtain initial measurements to
verify the predicted gains [8] of MIMO transmission. The system supported 8
transmit and 12 receive antennas; signal processing was performed offline on a
frame-by-frame basis on a Pentek platform using TI-C40-DSPs [9].

Between 2000 and 2002, the first prototypes appeared applying MIMO con-
cepts to broadband systems. In particular Lucent had shown the application of
MIMO as an extension to the CDMA-based UMTS-FDD downlink. As opposed
to the original V-BLAST prototype the new design used a combination of DSPs
and FPGAs and was able to operate in real time [10]. IOSpan Wireless was the first
company to develop and demonstrate MIMO-OFDM system prototypes as a basis
for products that were then tested in field trials. Some of the results from this work
are summarized in [11].

http://www.sdrforum.org/index.html
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Table 34.1. List of selected MIMO prototypes.

Tx/Rx Mode Platform Fc/BW Year Ref.

Lucent 8/12 Offline
Pentek 1.9 GHz

1998 [8]
C-40 DSP 30 KHz/QAM

Virginia Tech. 2/2 Real time
TI-EVM 2.05 GHz

2001 [14]
Boards 750 KHz

IOSpan 3/2 Real time
ASIC 2.5 GHz

2001/02 [11]
FPGA/DSP 2 MHz

Lucent/ETH 4/4 Real time
Custom 2 GHz

2002 [10]
FPGA/DSP 5 MHz/CDMA

Lucent 4/4 Real time
ASIC 2 GHz/5 MHz

2003 [13]
FPGA/DSP 5 MHz/CDMA

Brigham 16/16 Offline PC 2.4 GHz 2003 [15]

Rice Univ. 2/2 Real time
Nallatech 2.5 GHz

2003 [16]
FPGA 20 MHz

HHI 4/5 Real time DSP/FPGA 5.2 GHz/12.5 MHz 2003 [17]

TU-Eindhoven 3/3 Offline PC
5 GHz/20 MHz

2003 [18]
20 MHz/OFDM

ETH 4/4 Real time
Hunt Eng. 2 GHz

2004 [19]
FPGA 20 MHz/OFDM

TU Wien 4/4 Offline
Sundance 2.45 GHz

2004 [20]
DSP/FPGA 6 MHz

IMEC 2/2 Real time
FPGA 5.2 GHz

2004 [12]
ASIC 20 MHz

Since then a number of universities have developed their own testbeds and
experimental platforms to perform MIMO measurements and real-time experi-
ments. Many of these systems (in particular those considering wideband systems)
are based on offline processing of sampled data and use commercially available
prototyping platforms. These again are often intended to perform channel mea-
surements and to verify the performance of algorithms without considering im-
plementation issues. Consequently, the usage of feedback is generally not possible.

However, some implementations are also capable and specifically designed
for real-time operation, either to demonstrate adaptive modulation and other al-
gorithms involving feedback or to also consider implementation complexity. An
example for the former is the demonstrators reported by the Heinrich Hertz In-
stitute (HHI) or for the latter the MIMO-OFDM demonstrator, developed at the
Swiss Federal Institute of Technology (ETH). Another testbed [12], developed at
IMEC, implements real-time operation of a 2 × 2 OFDM system with up- and
downlink to demonstrate and evaluate MIMO processing at the transmitter.

Prototyping has also been used in conjunction with ASIC design [13] to
demonstrate and test their functionality. Thereby the ASIC contains a critical part
of the entire system and is supported by other ASICs, FPGAs, DSPs, and micro-
processors.

An overview of some existing MIMO platforms is given in Table 34.1. Note
that the distinction between real-time and offline processing in the table only refers
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to how the platform has been used in recent publications, while some of the de-
scribed offline hardware platforms also do support real-time signal processing.
Also note that work in this field is also conducted at numerous other universities,
research institutes, and companies. An extensive list of prototypes and products,
which use smart antennas on only one side of the link to extend the capacity of
existing systems is given in [21].

34.3. Hardware platform

34.3.1. Processing architectures and partitioning

Today, three main processing options are available for a prototyping hardware
setup in wireless communications: FPGAs, high-performance DSPs, and micro-
processors. Each of them is most suitable for a particular kind of operation and
typically takes a particular role in a wireless communication system.

FPGAs are most suitable for high-rate regular datapath-dominated operations
(e.g., despreading) that can be carried out in fixed-point arithmetic with relatively
short word lengths. They also allow the efficient implementation of simple but
real-time critical control functions that can often be realized efficiently in finite
state machines with a limited number of states. FPGAs are found in almost all
modern prototype designs. The amount of functionality that is realized by them
generally grows rapidly as the real-time aspect becomes increasingly important. In
a prototype design for a future ASIC implementation, FPGAs have the advantage
that the code can often be mapped directly onto an ASIC process with only mi-
nor modification, which greatly eases the verification and reduces the coding time.
While different FPGA vendors exist, the market is clearly dominated by the Xilinx-
Virtex(II) series and the Altera Apex and Stratix series (see http://www.xilinx.com
and http://www.altera.com), due to their very high capacity. Devices with inte-
grated processors are also available. Both vendors focus on wireless communi-
cations for which the devices are well suited in prototyping. From the examples
reported in the literature it appears that Xilinx devices are used more frequently in
research prototypes.

DSPs are also mostly suited for regular arithmetic operations but impose less
constraints on the regularity of an algorithm and thus also support control-domi-
nated functions. Some DSPs are also able to efficiently carry out floating-point op-
erations, which makes them a particularly appealing choice for numerically critical
algorithms. From the rapid prototyping point of view, they are easier to program
as compared to FPGAs. Their ability to directly use code from high-level simula-
tions (typically ANSI C or even C++) makes them attractive wherever they provide
sufficient performance.

Microprocessors (usually in a host PC) are most frequently used in offline pro-
cessing prototypes, where no real-time constraints apply for the actual processing
of the data. In this configuration, only little knowledge is gained about the actual
complexity of an algorithm, but this is often also not of interest. The large variety
of available tools greatly simplifies in general the implementation. In a real-time

http://www.xilinx.com
http://www.altera.com
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Figure 34.1. Partitioning example of a UMTS-FDD receiver.

prototype, microprocessors usually handle the higher layers of the protocol stack
and interfaces to the outside world.

34.3.2. Partitioning

The previously discussed properties of the processing components dictate the par-
titioning of the system to a large extent. As an example, a block diagram of the
physical layer of a UMTS-FDD downlink is given in Figure 34.1. It can be seen
that almost all of the straightforward sample- and chip-rate processing is done in
the FPGAs, covering a significant part of the overall complexity [22]. The DSP
handles low-rate control functions and those parts of the design that are under
development and require constant modifications. Important criteria for the par-
titioning are also the real-time and bandwidth constraints of the communication
between the functional blocks.

34.3.3. A basic setup

Building a dedicated and highly optimized hardware platform from scratch for
a particular system appears initially often to be a cost effective and powerful so-
lution. However, the effort for the development of the hardware itself and espe-
cially of suitable middleware (device drivers and interfaces) and the debugging of
the system is enormous and reliable schedules are hard to make. This is particu-
larly true for systems that combine different processing architectures such as DSPs,
microprocessors, and FPGAs. Such risky development may jeopardize the entire
project. As a consequence, commercially available or existing proprietary process-
ing or even dedicated prototyping platforms are mostly used. These are available
from a variety of vendors offering configurations from data acquisition modules
with virtually no processing capability over dedicated FPGA or DSP modules to
flexible systems that can be equipped with different processing elements, accord-
ing to the individual requirements. Widely used are products from Sundance, Pen-
tek, Nallatech, Spectrum Signal Processing, Hunt Engineering, and many others.
Some companies offer complete design environments, consisting of hardware and
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Figure 34.2. Typical architectures of commercial prototyping platforms: (a) common bus structure
and (b) point-to-point interconnect of a carrier/module-based system.

software either for system development (such as Lyrtech) or for so-called presil-
icon prototyping of ASICs (such as Aptix). However at the same time, custom-
designed platforms are often still of interest in the industry for customer demon-
strations and field trials.

Whether a proprietary system is to be designed or a commercially available
prototyping platform is to be used, a few basic points should be considered care-
fully.

System topology and connectivity. For the topology of a system two basic approach-
es are generally considered (see Figure 34.2). The first integrates all components of
the system as independent modules, connected through a standard bus or point-
to-point links [23, 24]. Especially the bus-based architecture allows to combine
products from various vendors and provides a maximum flexibility. It also allows
seamless access from a DSP or microprocessor to the remaining hardware which
appears as part of its address space. This greatly facilitates the implementation of
interfaces and improves the operability of the hardware for debugging or perfor-
mance analysis. The common bus architecture typically resembles an architecture
as it would most likely be used in a future system-on-chip (SoC) integration. How-
ever it also quickly becomes a performance bottleneck that ultimately limits the
extension of such systems.

The second alternative is a modular (carrier-based) system which is often re-
alized on the basis of a carrier board extendable by different (DSP, FPGA) mod-
ules. This type represents the majority of the commercially available prototyping
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platforms. Such systems often use a more restrictive proprietary module intercon-
nect scheme (such as the Hunt Engineering HEART system, the Sundance SHB-
bus, or the Pentek VIM interconnect) on the basis of point-to-point links or ring
structures supported by FIFO-interfaces. While this often provides a significantly
increased bandwidth between the components, it reduces the flexibility and limits
the use of boards from other vendors. Moreover, it often requires tedious proto-
cols to allow a mapping of hardware components into a DSP or host processors
address space. Consequently, the observability of the hardware states is reduced
and significant interface changes are required when a successfully tested prototype
is to be integrated as an SoC. A combination of a bus architecture with high-speed
point-to-point connections based on a standard bus is therefore most desirable.

Integration of custom components. The ability to integrate custom boards or com-
ponents into a system is a great advantage. On one hand it allows to supplement
an existing system with custom ASICs implementing functions exceeding the ca-
pabilities of the prototyping system. On the other hand it allows the verification
and debugging of custom boards or circuits in the system for which it was origi-
nally developed.

Standalone operation. While for a pure R&D platform a standalone operation
is not of utmost importance, its marketing value in a technology demonstrator
setup should not be underestimated. Depending on the field of application it is
therefore important to consider the ability of a system to function and startup au-
tonomously, for example, from a configuration in a flash memory or (E)EPROM.

Real-time capability. As a system needs to be partitioned into multiple DSP de-
vices, real-time capability becomes an important aspect. The resulting require-
ments are essentially low-latency links between the components or boards with
predictable deterministic delays. For systems which are partially based on DSPs
and/or processors, interrupt capabilities are also of significant importance. A typi-
cal example is guaranteeing real-time constraints in time critical control functions
such as in the IEEE 802.11 medium access control layer.

Memory. In particular when real-time processing is not required or a system can
tolerate some latency, block processing has proven to be significantly more efficient
than stream processing. However, on the other hand this gain often comes along
with large memory requirements that may exceed the already significant amounts
of storage on today’s FPGAs. It is therefore advantageous to ensure that sufficient
additional memory is or can be made available on a system.

Clocks and synchronization. In particular in a carrier-based system with multi-
ple modules, clock distribution and synchronization becomes an important issue.
If a common reference clock cannot be distributed between modules, resynchro-
nization measures have to be taken to effectively design a system that works as
an ensemble of locally synchronous, but globally asynchronous components. This
can often be tedious and error-prone and adds additional hardware and latency,
especially in systems that use a stream based processing (e.g., CDMA).
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Baseband versus digital IF. In a SISO system, convincing arguments can be made
for both digital baseband and digital-IF architectures. A digital-IF architecture,
however, is known to avoid a number of problems such as carrier leakage and IQ-
imbalance and is therefore often preferred. An appealing choice seems to be an
approach, where the low-IF mixer of a superheterodyne receiver is substituted by
bandpass sampling using an appropriate IF. Similarly at the transmitter, an image
of the digital IF would be used directly as the low IF. The disadvantage of such
a topology is its sensitivity to jitter, which requires high-quality clock sources for
the converters. The resulting requirements often exceed the specifications of the
DLLs that are usually contained in FPGAs. A thorough frequency planning is also
required that leaves almost no room for scaling of the bandwidth of the signal if
the system cannot immediately operate at its final speed.

34.3.4. Additional requirements for MIMO systems

The previous section discussed some basic requirements for the hardware of a
generic prototyping platform. However, the systems considered so far were not
particularly assuming multiple transmit and receive antennas; their constraints
would equally apply to single-antenna systems. For the realization of a multiple-
antenna system, some additional points need to be considered.

Baseband versus digital IF. In addition to the general arguments that were already
presented for the SISO case, the reduced number of converters needed for a digital-
IF realization becomes another strong argument in a MIMO scenario. The reduced
cost, size, and number of connections needed usually compensate clearly for the
higher sampling rate requirements which, for reasonable system bandwidth, still
lie in the range of numerous available devices.

Clocks and synchronization. As the number of antennas grows, it becomes often
necessary to distribute DA/AD conversion to multiple boards. As many MIMO
systems rely on the in principle reasonable assumption of fully synchronized an-
tennas, a timing or frequency offset can often not be tolerated. These constraints
apply equally to the transmit and receive chains, but generally not between them.
Having all transmit chains on one board and all receive chains on the other should
therefore be strongly preferred over a solution where A/D and D/A converters are
combined and the antennas are distributed over different boards.

Bandwidth and storage. A further important point is the significant increase in
internal communication bandwidth in MIMO systems. While data rates between
data acquisition and processing modules grow only linearly with the number of
transmit/receive antennas, most existing platforms have been designed with SISO
systems in mind. In a MIMO configuration, many of them quickly approach their
performance limits even with moderate number of antennas (such as in a 4×4 sys-
tem). In offline processing systems more high-speed storage needs to be provided
close to the converters. However for some parts of a MIMO system, in particu-
lar for the channel state information (CSI), storage requirements grow quadratic
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Table 34.2. Rate and storage requirements for future MIMO systems.

NT ×NR
Baseband Raw Samples for Words for

data rate bitrate 1 frame 1 set of CSI

HSDPA
1 × 1 15.36 Msps 4.8 Mbps 150 K 64

4 × 4 61.44 Msps 19.2 Mbps 600 K 1024

802.11a
1 × 1 20.00 Msps 54 Mbps 107 K 64

4 × 4 80.00 Msps 216 Mbps 427 K 1024

with the number of antennas. Two examples are given in Table 34.2. They consider
a MIMO extension of HSDPA and 802.11a with four antennas on both sides of the
link. The former assumes an oversampling factor of four while the latter applies
no oversampling. For the channel, 64 taps are considered in both cases. In an of-
fline processing setup, for example, the on-chip memory of a large FPGA would
be sufficient to record an entire SISO frame, while the corresponding MIMO con-
figuration would require additional external memory. Similarly with some effort,
the PCI bandwidth would allow a direct transfer of the baseband samples to the
PC for a SISO system, while in the MIMO setting the PCI bandwidth would not
be sufficient.

Module connectivity. A typical partitioning, especially in an open MIMO system,
often allows for multiple data acquisition modules each of which supports only
one or two channels. Many of these modules (as they are available) combine ADCs
(DACs) with some limited processing capability through an FPGA. This is desir-
able to allow, for example, digital up-/down-conversion (DUC/DDC), automatic
gain control (AGC), or subsampling algorithms to be placed as close to the con-
verters as possible to avoid unnecessary data traffic to the main processing units.
However, in MIMO designs some of these functions need to be coordinated among
the different modules. It is therefore important that in addition to the high-speed
data links they also provide a means for communicating with each other and to ex-
change control information. Direct coordination is typically only required within
the receive and transmit chains, but not between them. Combining all transmit
chains on one board and all receive chains on another should therefore again be
preferred over a mix of both, distributed over two or more boards.

Processing requirements. Often MIMO systems are derived directly from similar
SISO systems. Therefore, the actual MIMO processing is typically separated from
the remaining part of the transmitter/receiver. The complexity of the latter gen-
erally scales linearly or quadratically (for channel estimation and equalization re-
lated parts) with the number of antennas. However, the complexity of the MIMO
decoding itself (typically matrix inversions or ML-detection) can quickly become
the dominant part. A quantification of the processing requirements, however, is
certainly difficult to make as it strongly depends on the implemented system and
algorithms. Therefore, it is even more important in MIMO systems to ensure an
open system architecture that can be extended with new processing devices, which
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can be connected to each other with sufficient bandwidth. It is also noted that
FPGA technology evolves quickly and it should always be ensured that an upgrade
to new devices remains possible without fundamental architecture changes.

34.3.5. System evolution: from SISO to MIMO

As mentioned before, most MIMO systems are based on an underlying SISO mod-
ulation scheme which by itself (e.g., in wideband systems) can be quite challenging
to implement. It therefore appears most useful to develop a MIMO prototype on
the basis of a suitable successfully tested SISO link implementation. Good exam-
ple are CDMA or OFDM-based systems, where a significant amount of the pro-
cessing is merely a replication of a corresponding SISO link from an algorithmic
point of view [25]. This is generally exploited in DSP-based prototypes. However,
for FPGA-based system components, simple replication is often not possible due
to area constraints and/or because it is simply not economic. In this case inter-
leaving of the multiple data streams is an interesting option. While this leads to a
higher clock rate and still requires more storage elements in a design, it avoids
replication of complex functional units (e.g., multipliers) and thereby leads to
more efficient designs. Some FPGAs even provide dedicated hardware inside their
configurable logic blocks (CLBs) for interleaved processing of multiple streams
(e.g., Xilinx Virtex FPGAs). In this context it should be noted that interleaving
is even recommended by FPGA vendors as a means to improve the utilization of
their devices and to increase throughput through the resulting pipelining. This
is founded on the observation that sampling rates even in wideband systems are
often far below the capabilities of today’s FPGA technology. An example is the
straightforward realization of transversal SRRC filters in a four times oversampled
UMTS system, which will run at a clock of less than 16 MHz, while 64 MHz are eas-
ily achievable on most commercially available FPGAs. It is noted that interleaved
processing of multiple independent streams allows even pipelining of recursive al-
gorithms, without causing stalls due to data dependency problems (e.g., multiple
FFTs/IFFTs).

34.3.6. Channel emulation

While in most cases the eventual goal is the demonstration of a system under real-
world and real-time conditions, this might sometimes not be feasible or is not
even required. In particular when a system is designed for high mobility and large
cell sizes, practical experiments are major cost factors that are often overlooked or
underestimated at the beginning of a project. Only a few of them will be briefly
mentioned here to undermine the argument for the necessity of channel emula-
tion.

(i) Operating licenses for a particular spectrum need to be obtained, as power
restrictions in the ISM bands do not allow for experiments with larger cells.

(ii) Power amplifiers with their undesired nonlinear behavior and other ex-
pensive RF equipment are needed.
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(iii) Prototyping systems are usually not suitable for mobility and mechanical
problems are most likely to occur.

Moreover, real-world scenarios are inherently uncontrollable and unpredicta-
ble and therefore particularly unsuitable for the initial analysis of a new algorithm.
Instead, artificial but repeatable conditions are necessary to obtain an intuitive
understanding for a prototype’s behavior and to be able to compare it to other
alternatives and simulations. From a functional verification point of view, debug-
ging also calls for the ability to reproduce a problem and its history as accurately
as possible to be able to analyze its origins. Therefore in addition to the control
over channel conditions, it might be desirable to have full control over the noise
in the system. This is only possible if all analog components are eliminated. Con-
sequently, channel emulation is an essential development method that cannot be
avoided and fully digital-IF or baseband interfaces are definitely a helpful feature.
SISO systems have been available for quite some time. However, emulators with
a sufficient number of channels for the emulation of a MIMO system have only
emerged recently (see http://www.elektrobit.com and www.spirentcom.com) and
are still extremely expensive. The main reason is the high complexity. To put this
into perspective, the number of sample-spaced taps that can be emulated in a state-
of-the-art FPGA (Xilinx XC2V6000-6) is illustrated in the following, assuming a
bandwidth of 20 MHz. In a 1 × 1 system, the 144 integrated real-valued multipli-
ers suffice to support 144 taps, whereby each multiplier is timeshared to perform a
complex multiplication. In a 2 × 2 system only 36 taps can be emulated. In a 4 × 4
system the limit comes down to only 9 taps.

34.4. Design flow and tools

While many different HW platforms for prototyping exist, only little attention has
been paid in the past to design methods and utilities. On the one hand expensive
electronic design automation (EDA) tools for chip design were used, on the other
hand particular DSP chips and FPGAs always come with development tools, some
even being excellent. As long as cost and complexity of a design is not an issue,
such tools can offer excellent design environments. However, in wireless MIMO
prototypes, the designer has to realize very high complexities of the involved algo-
rithms and thus a design methodology supporting a team effort as well as different
hardware targets becomes more and more important. This section will discuss re-
quirements of such a design methodology and give an overview of existing flows
and available tools.

34.4.1. Requirements

Rapid prototyping of wireless MIMO systems faces similar problems as today’s
chip design in wireless: high complexity algorithms are to be implemented in a short
time by a design team. While high complexity can easily be solved by parallel sys-
tems, in particular in prototyping where size and power consumption is not so

http://www.elektrobit.com
http://www.spirentcom.com
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much of interest, short implementation time, changing specifications, and team
effort, clearly require some organization.

In a classical chip design cycle [26], several design teams are working more
or less interconnected one after the other using different design environments and
languages, always those that suit their needs best. Since such languages and en-
vironments are incompatible, manual work is required to translate intermediate
design results from one team to the next. Naturally, such a procedure is inconsis-
tent, unnecessarily slow, and error-prone.

In [26] five concepts to improve design efficiency in a rapid prototyping de-
sign flow have been specified:

(1) one design environment,
(2) one automatic documentation by specification,
(3) one forward-backward compatible code revision tool,
(4) one code to be worked on by refinement steps,
(5) one team, to improve communication.

This paradigm is called the five-ones approach.
(1) It is shown that the design effort appears as a feed-forward system, hand-

ing the design over from one part of the design team to the next and a feedback
loop concerning communication about the common design goals, and progress
achieved. Such feedback slows down the design process. Since communication is
required, the feedback loops cannot be broken. Also the required skill sets are not
present in all parts of the teams. However, the response time can be changed dra-
matically, once all design teams share one-design environment. This observation
on its own is not new and many tools in the EDA community exist (Simulink,
COSSAP/CoCentric System Studio, and SPW to name the most widespread).
However, since they have been developed to support specifically chip design (and
to some extent algorithmic design) the architectural level and its exploration, as
well as testing and system integration on specific hardware platforms (so-called
platform-based design) are not supported. Also, due to specific language con-
straints, many researchers refuse to use such systems, since they believe their pro-
ductivity is dramatically reduced by them. On top of that, high license costs pre-
vent many companies from using them throughout the entire design chain.

(2) A second aspect is the missing documentation of the research part of
the design team. While such people focus on meaningful results of their simula-
tions, the following design teams are mostly interested in functional specifications.
Graphical systems like COSSAP/CoCentric System Studio, SPW, and Simulink of-
fer the possibility to define functional blocks with clearly defined input and output
ports and corresponding data rates. Using such a graphical system induces a doc-
umentation while specifying the functional blocks. Specification allows detection
of flaws at an early stage and, much more importantly, it can be used to supply
additional information into functional descriptions of algorithms. The graphical
description has further advantages: it avoids global variables. Global variables can
lead to the undesired effect that information from the transmitter and/or chan-
nel is known at the receiver and some (undesired) cheating can be the result. It
is, for example, quite common in the literature to present MMSE receivers having
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perfect knowledge of the signal-to-noise ratio (SNR), while this value in reality
needs to be estimated. The problem of estimating such a value is typically under-
estimated. In addition to the graphical specification, COSSAP, for example, allows
writing so-called Generic-C, an ANSI C program enriched by essentially a header
specifying the names, types, and rates of the input and output variables, a feature
well preserved in the so-called PRIM models of the new version CoCentric System
Studio.

(3) A third aspect of the slowdown in the product flow is the required per-
manent recoding. Although the research part of the design team defines a code for
simulation, the system design team is not able to reuse the code, mainly due to
its poor documentation and coding style used. Based on the anticipated hardware
platform, other languages (assembler, VHDL) have to be used at a certain level
of refinement, requiring time-consuming hand recoding. Such foregoing is error
prone and requires a solution based on automatic recoding tools. See, for example,
[27] where it is claimed that errors found late in the design process cost up to 100
times more than those found early. While graphical tools do not provide an im-
mediate solution to the tedious recoding process, they can support it by allowing
multiple, but different descriptions for each block. This alleviates the transfor-
mation and allows doing it piece by piece. Simulink, COSSAP/CoCentric System
Studio (see http://www.synopsys.com), and SPW (see http://www.cadence.com)
allow for such code versions, but only on a block level, that is, if a modification
impacts several blocks at the same time, the system does not work out the required
consistency.

Revision control tools (such as CVS, see http://www.gnu.org/software/cvs/,
or ClearCase, see http://www.rational.com/products/clearcase/index.jsp) can help
here. At certain times in the design flow, the entire design becomes frozen and can
be reinstantiated at a later time allowing to track a bug that shows up at a certain
(refinement) stage in the design flow, but was not noticed before. Further aspects
of revision level tools are personal responsibility: the blocks can be assigned to
specific people in the team and cannot be altered by others. Using such blocks, it is
guaranteed that everybody in the team is working in the same, rather than in a per-
sonal environment. In order to guarantee backward compatibility, it is important
to stick with one code and the same language for as long as possible.

(4) Furthermore, graphical systems allow an easy method of code refinement
by cosimulation. The code can be refined from one revision level to the next and
by instantiating the two versions at the same time, their output can be compared
while they are fed by the same input. An important step in code refinement is
the switch from float to fix-point code. The recent SystemC initiative [28], and
also see http://www.systemc.org supports this step by extending ANSI C with fix-
point data types. A|RT-Library from Adelante Technologies (now owned by ARM)
offered such C++ Library extension for many years. The underlying idea is that by
providing more and more details in the code at a very high level, the automatic
tools modify the code iteratively into the required (meta-) descriptions until the
final product is defined in every (technical) detail. These final descriptions express
the code in a desired form, that is, assembler code to program a DSP chip, VHDL,

http://www.synopsys.com
http://www.cadence.com
http://www.gnu.org/software/cvs/
http://www.rational.com/products/clearcase/index.jsp
http://www.systemc.org
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or VERILOG code to program an FPGA or synthesize the required masks for an
ASIC. However, since the automatic tools map the code from a high level to each
of the lower levels, the refinement of the code is only performed on the high level
description, that is, the C-code. By iteratively rewriting the original C-code used
in simulation to suit the needs of a specific hardware platform, the code remains
backward compatible at any state and thus allows all teams to share the code and
investigate problems. Specifically, there is no need to switch design environments
or test benches when transferring from one team to another. While commercial
tools rarely support hardware-in-the-loop, this becomes an important feature to
check proper functionality and should be a requirement for future prototyping
platforms. In [26], a so-called real-sync method is reported which allows to map
DSP algorithms automatically from Simulink to TI C6X DSPs and run them there
while the rest of the environment still runs under Simulink.

(5) One last aspect when analyzing the slow development process is the team
size. Poor communication is a drawback of rather large teams. Fortunately, the
required amount of people in a prototype team is much smaller and it is possible
to keep all team members as one team supporting full information to everybody.
This is clearly a particularity in rapid prototyping that cannot easily be realized in
a large product design team.

34.4.2. Existing tools

DSP providers, in particular TI (see http://www.ti.com) offer a rich design envi-
ronment that can be customized to specific DSP evaluation boards, including also
real-time operating systems. Due to the excellent C-compiler and optimizer, sig-
nal processing procedures can be specified in a high-level language and mapped
automatically onto a DSP. Many prototyping platform providers take advantage
of this environment and customize their platforms accordingly. Mathworks (see
http://www.mathworks.com) offers Simulink, a graphical interface with a rich li-
brary of toolboxes and fixed-point design tools, easing the design of communi-
cation algorithms. The recent introduction of cosimulation links between Mat-
lab/Simulink and Mentor Graphics’ popular ModelSim VHDL simulator helps to
close the gap between algorithm and VHDL simulations. Most interesting is also
the real-time workshop supporting automatic mapping of Simulink designs into C
code for TIs C6x and other processors. However, so far the efficiency of the coding
is quite limited. Harsh conditions on real time as they are common in wireless de-
signs are not supported. FPGA providers like Xilinx and Altera enriched Simulink
with their own libraries, called Xilinx System Generator and Altera’s DSP Builder,
respectively. They allow to simulate predefined DSP functions under Simulink and
map the designs directly onto the corresponding FPGA chips. These tools lead to
quite efficient FPGA designs, provided the DSP functions are available in the li-
braries. Especially, data-flow-oriented designs can be performed quickly, utilizing
such tools.

http://www.ti.com
http://www.mathworks.com
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34.5. Summary

The number of recently published papers on MIMO prototypes and testbeds by
companies and universities is a clear indication that the effort is justified from a
research as well as from a business point of view. It is therefore expected that the
number of reported MIMO prototypes will significantly increase in the next years.

While on the hardware side the basic requirements for a successful realization
are quite similar to SISO systems, more attention needs to be paid to proper syn-
chronization of the system components, the increased communication bandwidth
between them, and the higher processing and storage requirements. The variety of
complex algorithms makes an open extendable system even more important than
in the SISO case.

From the design methodology and implementation side, the more complex
designs call for a well-organized design and prototyping methodology. Clearly de-
fined interfaces between the design stages are most important. A common design
environment using one language for high-level simulations and implementation
based on successive refinements of the code is highly desirable.
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Abbreviations

ADCs Analog-to-digital converters

AGC Automatic gain control

ASIC Application-specific integrated circuit

CLBs Configurable logic blocks

CSI Channel state information

DACs Digital-to-analog converters

DDC Digital down-conversion

DLLs Delay-locked loops

DSPs Digital signal processors

DUC Digital up-conversion

EDA Electronic design automation

FPGAs Field programmable gate arrays

GPRS General packet radio service

GSM Global system for mobile communication

HSDPA High-speed downlink packet access

IF Intermediate frequency

MIMO Multiple-input multiple-output

PLLs Phase-locked loops

RP Rapid prototyping
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RTOS Real-time operating system

SDR Software-defined radio

SISO Single-input single-output

SoC System-on-chip

UMTS Universal mobile telecommunication system

WLAN Wireless local area network
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35
Introduction

Thomas Kaiser

Nowadays, first prestandard MIMO products for wireless local area networks
(WLANs) are already commercially available. While the corresponding indoor
MIMO-WLAN standard is likely to be released in 2006, the outdoor world looks
quite different. Here, progress in standardization is slow, mainly because spectral
efficiency today is rather low (e.g., UMTS up to 0.4) and therefore MIMO repre-
sents merely an extension to other sophisticated data-rate accelerating techniques
(e.g., high-speed downlink packet access (HSDPA)). Hence, “MIMO-HSDPA” is
likely to get ready for the market, although not immediately. It will take a few more
years, probably until 2010. However, the smart antenna world is partially opposite
to “MIMO” for cellular systems. More than 250 000 smart antenna base stations,
fully compliant to the Asian PHS standard designed for low mobility, have been
sold, but nothing comparable can be observed for systems with high mobility, for
example, CDMA 2000 or WCDMA, yet.

This part, therefore, takes on board two aspects. On one hand, future applica-
tions of multiantenna techniques in cellular communication systems are discussed,
on the other hand two examples for multiantenna testbeds, facilitating and validat-
ing the all-embracing design of MIMO-WLAN- and MIMO-UMTS-based systems
are explained in detail.

Chapter 2 addresses smart antenna solutions for UMTS as the forerunner of
full cellular MIMO systems. Smart antennas (SAs) are considered here only at the
base station, because the user terminal suffers from size and power limitations, se-
verely complicating successful multiantenna deployment. Moreover, because the
downlink data rate is on average greater than the uplink data rate, and uplink
beamforming is rather well understood, this contribution is focused on downlink
beamforming only. Note that UMTS offers a low-rate feedback channel, so that the
corresponding algorithms for weight estimation can take into account the channel
characteristics and are therefore adaptive in nature. While numerous contributions
on link-level downlink beamforming have been published in the last few years, not
much literature is devoted to system-level aspects, for example, system capacity,
system coverage, and electromagnetic emission. Hence, the present contribution
further fills this gap by focusing on the network level, while not losing track of
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the link-level by adequately considering it within the signal-to-interference calcu-
lation.

As an extension of the second chapter, Chapter 3 is devoted to UMTS link-
level simulations with SAs. The constraints imposed by standardization compli-
cate the successful exploitation of multiantenna benefits. The aim of this chapter
is to point out several low-complexity algorithmical approaches aiming for in-
tegrated circuit solutions. A review of conventional UMTS-SISO terminals, with
special emphasis on well-proven RAKE receiver structures, is followed by an exten-
sion to the SIMO link where the base station acts as a space-time RAKE receiver.
Furthermore, MIMO aspects including radio frequency (RF) and baseband (BB)
decoding techniques are considered, and future realisations of MIMO prototypes
are discussed to allow a wider perspective.

As an extension of the third chapter, Chapter 4 continues the discussion of
MIMO algorithms for the HSDPA frequency division duplex (FDD) mode of
UMTS. After summarizing HSDPA features relevant for applying multiantenna
techniques, various MIMO-HSDPA transceiver architectures, for example, space-
time transmit diversity, vertical BLAST, and linear dispersion codes on the trans-
mitter side and RAKE, reduced maximum-likelihood, and turbo space-time
decoder-typed receivers are discussed and evaluated by simulations with respect
to fading and mobility.

Chapter 5 introduces a modular real-time MIMO platform from several per-
spectives, with the goal of enabling the reader to set up a complete MIMO testbed
on his own. It covers the basic testbed concept, an offline, hybrid, and online pro-
cessing mode as well as selected network topologies. Moreover, hardware and soft-
ware for BB and RF processing are highlighted, for example, module interfacing,
digital signal processor (DSP) programming, and field programmable gate array
(FPGA) synthesis, plus project and revision control software. In addition to hints
on system debugging some real-time requirements are pointed out. A major al-
gorithmical challenge for any MIMO testbed working in online mode consists in
reliable and accurate synchronisation issues, for example, coarse and fine timing
acquisition, carrier frequency synchronisation, and tracking. At the end, a sim-
plified MIMO testbed, based on acoustical transmission is presented, facilitating
access to complex MIMO theory and practice to students in a somewhat playful
manner.

In Chapter 6 another more sophisticated testbed is presented, targeting real-
time prototyping of broadband MIMO-WLAN systems. Special emphasis is given
to analog front-end impairments, for example, phase noise and amplifier non-
linearity and to possibilities of their cancellation. Starting with a single-antenna
prototype and progressing step-by-step to a multiantenna scenario allows reuse of
ideas from SISO impairment compensation also for the multiantenna case. Cali-
bration architectures and higher-layer issues are addressed as well. An outlook on
further developments winds up this contribution.

Thomas Kaiser: Smart Antenna Research Team, University of Duisburg Essen, 47057 Duisburg,
Germany

Email: thomas.kaiser@uni-duisburg.de
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36
Smart antenna solutions
for UMTS

Andreas Czylwik, Armin Dekorsy,
and Batu Chalise

Standards of third-generation mobile communication systems such as UMTS
(universal mobile telecommunications system) are designed to support various
smart antenna techniques. Smart antennas exploit the inherent spatial diversity of
the mobile radio channel, provide an antenna gain, and also enable spatial interfer-
ence suppression leading to reduced intra- as well as intercell interference. While it
is feasible to adopt antenna arrays at base stations, however, their implementation
in a handset is difficult with today’s hardware due to its limitations in size, cost,
and energy storage capability.

In such a setting, transmit beamforming at base stations provides a powerful
method for increasing downlink capacity [1, 2, 3, 4]. Here, we focus on down-
link beamforming concepts being in line with third generation partnership project
(3GPP) standardization [5]. In particular, the beamforming concepts illuminated
are fixed beamforming (FxB) and adaptive (user-specific) beamforming (ABF).
While the latter one will be the main scope of this section, FxB is of minor interest.
Since UMTS-FDD uplink channels are designed to be low-rate feedback channels,
all downlink beamforming concepts described exploit uplink information being
measured by the base station for spatially filtering the downlink signals. We fur-
ther restrict to circuit-switched data transmission in UMTS-FDD mode [6]. In
what follows, 3GPP terminology is used throughout this section, thus, the user
equipment (UE) represents the user or mobile station and Node-B the base sta-
tion, respectively.

The main scope of this section is to give an insight on system-level perfor-
mance for UMTS-FDD downlink beamforming concepts if beamforming is sub-
ject to UMTS constraints. In general, system-level investigations supplement link-
level simulations and deliver assessments in terms of system capacity, system cover-
age, as well as radiated electromagnetic power. System-level investigations carried
out by static simulation approaches are described in [7, 8, 9]. Dynamic simulations
of beamforming concepts for different antenna array topologies can, for example,
be found in [10, 11, 12, 13, 14]. Apart from delivering system performance as-
sessments, the dynamic simulation approach used in this section is discussed in
detail. The simulation approach takes into account relevant UMTS-FDD concepts
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and side information such as UMTS-FDD fast power control, UMTS-FDD physi-
cal channel structure, models for wave propagation, typical UMTS traffic models,
and user mobility.

For adaptive beamforming, maximization of the SINR (signal-to-interfer-
ence-and-noise power ratio) is investigated. We work out its performance espe-
cially under UMTS constraints such as strong interference from pilot and control
channels. To obtain suitable assessments, we focus on three essential aspects. First,
proper SINR modelling is considered including spatially formed inter- and intra-
cell interference as well as pilot interference prevailing UMTS networks. Although
we focus on the network level, fast channel fluctuations are taken into account
by including them analytically into the signal-to-interference calculation. Further-
more, receiver techniques like maximum ratio combining of multipath compo-
nents play an important role in the system performance. Finally, the interaction
between UMTS specific radio resource management algorithms (power and load
control) and beamforming concepts is discussed.

36.1. Signal model

In this section, either a uniform linear array (ULA) or a uniform circular array
(UCA) is considered for the base station (Node-B), where the number of array el-
ements for both array topologies is M. Mobile stations (user equipments—UEs)
use one single antenna for transmission and reception only. For notational clarity,
it is assumed that the multipath components of the frequency-selective mobile ra-
dio channel can be lumped into spatially or temporally resolvable (macro-)paths.
The number of resolvable paths is determined by the angular resolution of the an-
tenna array and the angular power distribution of the propagation scenario as well
as by the relation of the delay spread to the symbol duration of the signal of inter-
est. It is assumed that the number of resolvable paths is the same for uplink and
downlink. Here, the number of resolvable paths between the kth mobile station
and the jth base station is denoted by Lk, j . The total number of users in the entire
network is K and the number of base stations is J . Throughout this section, uplink
parameters and variables will be denoted by “̂ ” and correspondingly downlink
parameters and variables by “

̂

.”
In the following, we focus on uplink transmission at first. The mobile station

k is assigned to the base station j(k). At the receiver, the base stations see a sum of
resolvable distorted versions of the transmitted signals ŝk(t) of users k = 0, . . . ,K−
1. The complex baseband representation of the antenna array output signal vector
of base station j is given by

r̂ j(t) =
K−1∑
k=0

√
P̂k

Lk, j−1∑
l=0

ĥl,k, j ŝk
(
t − τ̂l,k, j

)
+ n̂ j(t), (36.1)

where P̂k is the transmitted power from the kth user and ĥl,k, j represents the chan-
nel vector of length M of path l between user k and base station j. It is assumed
that the channel is quasi-time-invariant within the period of interest. The kth user
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uplink signal ŝk(t) includes the complete baseband signal processing as channel
encoding, data modulation, and spreading for UMTS WCDMA transmission, and
τ̂l,k, j is the time delay of the lth path between user k and base station j. Finally,
n̂ j(t) is a spatially and temporally white Gaussian random process with covariance
matrix

R̂N = E
{

n̂ j n̂H
j

}
= σ̂2

N I for j = 0, . . . , J − 1, (36.2)

where E{·} denotes the expectation.
The angular spread of the individual incoming resolvable paths determines

the amount of spatial fading seen at an antenna array [2] and the size of the array
employed will affect the coherence of the array output signals as well as which
detection algorithms are applicable. For the remainder of this section, we assume
closely spaced antenna elements yielding highly spatially correlated signals at the
array elements. For this case, we can express the channel vector as

ĥl,k, j = α̂l,k, j â
(
θ̂l,k, j

)
, (36.3)

where α̂l,k, j is the channel coefficient which is composed of path loss, log-normal

shadow fading, as well as fast Rayleigh fading. The vector â(θ̂l,k, j) denotes the array
response or steering vector to a planar wave impinging from an azimuth direction
θ̂l,k, j . In our model, we assume that the angles of arrival θ̂l,k, j with l = 0, . . . ,Lk, j−1
are Laplacian distributed variables with mean θk, j , which equals the line-of-sight
direction between user k and base station j [7, 8].

With the assumption of planar waves and uniformly located array elements,
the frequency-dependent array response of a ULA is given by [7, 15, 16]

aL(θ) =
[

1, e−j2π(d/λ) sin(θ), . . . , e−j2π(M−1)(d/λ) sin(θ)
]T

. (36.4)

The interelement spacing of the antenna array is d, and λ represents the wavelength
of the impinging wave. For the UCA, we have [15]

aC(θ) =
[

1, e−j2π(R/λ) cos(θ−2π/M), . . . , e−j2π(R/λ) cos(θ−2π(M−1)/M)
]T

, (36.5)

where R represents the radius of the array.
In order to form a beam for user k and detect its signal at base station j(k),

the received vector signal r̂ j(k)(t) is weighted by the weight vector ŵk:

ŷk(t) = ŵH
k r̂ j(k)(t). (36.6)

These weights depend on the optimization criterion, for example, maximizing the
received signal power (equivalent to SNR), maximizing the SINR, and minimizing
the mean squared error between the received signal and some reference signal to
be known at the base station [2].
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Equation (36.6) which also holds for fixed beamforming, can be rewritten
with (36.1), (36.3), and either (36.4) or (36.5) as

ŷk(t) =
√
P̂k

Lk, j(k)−1∑
l=0

α̂l,k, j(k)ŵH
k â

(
θ̂l,k, j(k)

)
ŝk
(
t − τ̂l,k, j(k)

)

+
K−1∑
κ=0
κ �=k

√
P̂κ

Lκ, j(k)−1∑
l=0

α̂l,κ, j(k)ŵH
k â

(
θ̂l,κ, j(k)

)
ŝκ
(
t − τ̂l,κ, j(k)

)
+ ŵH

k n̂ j(k)(t).

(36.7)

The first term describes the desired signal, the second term represents the inter- as
well as intracell interference, and the last expression describes additive Gaussian
noise. Assuming that the data signals ŝk(t − τ̂l,k, j(k)) and the additive noise n̂ j(k)(t)
are zero-mean and statistically independent random processes, the total received
uplink signal power of the user of interest at the base station can be expressed in
the form

P̂R,k = E
{∣∣ ŷk(t)

∣∣2
}

= P̂k

Lk, j(k)−1∑
l=0

∣∣α̂l,k, j(k)
∣∣2 · ∣∣ŵH

k â
(
θ̂l,k, j(k)

)∣∣2

+
K−1∑
κ=0
κ �=k

P̂κ

Lκ, j(k)−1∑
l=0

∣∣α̂l,κ, j(k)
∣∣2 · ∣∣ŵH

k â
(
θ̂l,κ, j(k)

)∣∣2
+ E

{∣∣ŵH
k n̂ j(k)(t)

∣∣2
}

= ŵH
k R̂S,kŵk + ŵH

k R̂I,kŵk + ŵH
k R̂N ŵk,

(36.8)

where the expectation operation is carried out with respect to the fast varying data
signal and the additive noise. Note that the expectation is not carried out with
respect to the fast fading processes, since we assume that the channel remains un-
changed during a block of data. Here, it has been assumed that also time-delayed
versions of the same data signal are uncorrelated. The kth user signal is normal-
ized by E{|sk|2} = 1 for k = 0, . . . ,K − 1. The essential elements in antenna array
beamforming design are the spatial covariance matrices R̂S,k for the desired signal
as well as the spatial covariance matrices R̂I,k for the interference of user k. Both
matrices are instantaneous covariance matrices which are fluctuating according to
fast fading. According to (36.8), these matrices are given by

R̂S,k = P̂k

Lk, j(k)−1∑
l=0

∣∣α̂l,k, j(k)
∣∣2 · â

(
θ̂l,k, j(k)

)
â
(
θ̂l,k, j(k)

)H
,

R̂I,k =
K−1∑
κ=0
κ �=k

P̂κ

Lκ, j(k)−1∑
l=0

∣∣α̂l,κ, j(k)
∣∣2 · â

(
θ̂l,κ, j(k)

)
â
(
θ̂l,κ, j(k)

)H
.

(36.9)
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These covariance matrices include all the spatial information necessary for beam-
forming. They can be measured in the uplink by correlating all antenna array out-
put signals:

E
{

r̂ j(k)r̂Hj(k)

}
= R̂S,k + R̂I,k + R̂N . (36.10)

The only remaining task is to distinguish between the contribution of the desired
signal and the contribution of interference plus noise. This can be accomplished
by evaluating user-specific training sequences. In case of UMTS, the signals prior
to despreading and after RAKE combining may be evaluated [17].

Next, downlink transmission is considered. A mobile terminal receives the
desired signal from the base station to which it is connected. But it also receives
interference from all other base stations. The received signal is given by

y̌k(t) =
√
P̌k

Lk, j(k)−1∑
l=0

α̌l,k, j(k)w̌H
k ǎ

(
θ̌l,k, j(k)

)
šk
(
t − τ̌l,k, j(k)

)
+ ǐk(t) + ňk(t). (36.11)

The first term in (36.11) is the desired signal and the second term ǐk(t) is inter-
ference which is composed of intracell as well as intercell interference. Here, P̌k
denotes the total transmitted downlink power at base station j(k). The last term
ňk(t) is additive white Gaussian noise which is created from thermal and amplifier
noise. Assuming that the data signals for different mobile stations are statistically
independent and that also time-delayed versions of the same data signal are un-
correlated, the power of the received signal at mobile station k yields

P̌R,k = E
{∣∣ y̌k(t)

∣∣2
}

= P̌k

Lk, j(k)−1∑
l=0

∣∣α̌l,k, j(k)
∣∣2 · ∣∣w̌H

k ǎ
(
θ̌l,k, j(k)

)∣∣2
+ E

{∣∣ǐk∣∣2
}

+ E
{∣∣ňk∣∣2

}
= w̌H

k ŘS,kw̌k + E
{∣∣ǐk∣∣2

}
+ E

{∣∣ňk∣∣2
}
.

(36.12)

Here, ŘS,k denotes the downlink covariance matrix for the desired signal compo-
nent:

ŘS,k = P̌k

Lk, j(k)−1∑
l=0

∣∣α̌l,k, j(k)
∣∣2 · ǎ

(
θ̌l,k, j(k)

)
ǎ
(
θ̌l,k, j(k)

)H
. (36.13)

For UMTS WCDMA as an FDD system, fast fading processes in uplink and
downlink are almost uncorrelated. Therefore, the instantaneous uplink covariance
matrix cannot be used directly for downlink beamforming. But on the other hand,
measurements have shown that the following spatial transmission characteristics
for uplink and downlink are almost the same if—as in case of WCDMA—the fre-
quency spacing between uplink and downlink bands is not too large (see [18],
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[19, Section 3.2.2], and [20]):

θ̂l,k, j
∼= θ̌l,k, j , (36.14)

τ̂l,k, j
∼= τ̌l,k, j , (36.15)

E
{∣∣α̂l,k, j

∣∣2
} ∼= E

{∣∣α̌l,k, j
∣∣2

}
. (36.16)

In (36.16), the expectation is taken over the fast fading processes. The equation
implies that fading processes from shadowing are almost the same for uplink and
downlink. Because of this reason, a part of the spatial information which is avail-
able from the uplink covariance matrices can be utilized also for the downlink.

Since the instantaneous full spatial information is not available for the down-
link, downlink beamforming has to be based on averages (with respect to fast fad-
ing) of the covariance matrices.

36.2. UMTS downlink beamforming solutions

In this section, we briefly illuminate applicable UMTS downlink beamforming so-
lutions, with a focus on the UMTS frequency-division duplex (FDD) mode. We
further restrict the description to UMTS-dedicated physical channels (DPCH),
that is, the dedicated physical data channel (DPDCH) and the dedicated physical
control channel (DPCCH). We review the opportunities and constraints for ap-
plication of beamforming techniques for these channels. Throughout the section,
we will adopt UMTS terminology, so a base station is referred to as Node-B and
a mobile terminal as user equipment (UE). Further descriptions on UMTS-FDD
beamforming solutions can be found in [5, 21, 22].

UMTS-FDD offers to support different beamforming concepts depending on
the designed UMTS network structure which is mainly determined by the primary
common pilot channel (P-CPICH) assignment. In this context, a logical UMTS
cell1 refers to the area covered by the P-CPICH. First, beamforming solutions syn-
thesizing beams within one logical cell are fixed and adaptive beamforming where
the latter one is also denoted as user-specific beamforming [5]. Fixed beamform-
ing refers to the case where a finite set of beams is synthesized at Node-B and the
beams are formed to cover the area of a logical cell. The second and more compu-
tational intensive concept is user-specific beamforming by adaptively synthesizing
beams in order to meet an optimum criterion as to minimize the SINR.

Apart from applying beamforming in a logical cell, high-order sectorization
via beamforming represents a further approach for UMTS-FDD. Here, the an-
tenna array at Node-B is exploited to create individual cells where the coverage
area of each beam represents a logical cell. This implies that each beam is trans-
mitted under a unique primary scrambling code, and, in addition, each beam will
have its own P-CPICH as well as further broadcasted UMTS downlink channels
like BCH (broadcast channel), PCH (paging channel), and so forth.

1In this section, the terms cell and sector are used in the same manner.
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Node-B with four
single antennas

Per beam:
P-CPICH
DPDCH
DPCCH

Figure 36.1. High-order sectorization with four synthesized beams each representing a logical cell
with its own P-CPICH.

Node-B with four
single antennas

Sector beam:
P-CPICH

Directional beams:
DPDCH
DPCCH
S-CPICH

Figure 36.2. Fixed beamforming with four beams per logical cell (no sidelobes of beams and antenna
patterns are shown).

Figure 36.1 shows the high-order sectorization principle with four beams rep-
resenting one logical cell each. Note that neither the attenuation of the beams due
to the single antenna array beam pattern nor sidelobes are depicted. Further infor-
mation about high-order sectorization via beamforming can be found in [3, 5, 21].
In the following, we restrict to beamforming solutions in a logical cell-like fixed as
well as adaptive beamforming.

36.2.1. Fixed beamforming

With fixed beamforming, the antenna array installed at Node-B is used to create
a number of fixed beams covering the area of a cell, so multiple UEs may receive
signals transmitted under the same beam. Figure 36.2 shows the separation of one
logical cell (120◦ sector) in a grid of four beams.
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Assignment of users to beams is based on the received uplink power per user
at Node-B. In particular, Node-B measures the average uplink SINR on the uplink
dedicated physical control channel (DPCCH) received from each UE. A UE is as-
signed to cell portions of the logical cell due to UMTS-FDD soft/softer handover
algorithms. In the third-generation partnership project (3GPP) terminology, a cell
portion is defined as the part of a cell that is covered by a specific radiated antenna
pattern. Hence, the terms cell portion and beam may be used interchangeably. This
pseudo-direction-of-arrival (DoA) measurement is reported to the radio network
controller (RNC) where it is further used for managing available radio resources
[5]. Even though fixed beamforming is referred to as fixed, radio resource man-
agement algorithms can be used to slowly vary the beam arrangement over time
to adjust to long-term load variations in the logical cell as in case of time-variant
hot-spot scenarios.

In addition to the broadcasted P-CPICH, with fixed beamforming, each
beam is associated with a unique secondary common pilot channel (S-CPICH).
This associated S-CPICH allows for proper channel estimation as well as beam
identification since UEs may be informed to use it for phase reference via higher-
layer protocols. But, on the other hand, S-CPICH implementation suffers from
higher interference levels limiting the system performance. A further potential loss
of using a grid of fixed beams evolves from the finite set of steering directions re-
sulting in received power fluctuations at the UE if it moves [21]. This drawback is
also often denoted as steering error.

The signals toward different UEs assigned to the same logical cell are typi-
cally transmitted under the same primary scrambling code while separation is per-
formed by orthogonal channelization codes selected from a channelization code
tree [23]. The number of channelization codes is rather limited severely cutting
down expected performance gains of capacity enhancing techniques like beam-
forming. With fixed beamforming, however, some of the beams of a logical cell
may be transmitted under a secondary scrambling code with its own associated
channelization code tree. Especially, the same channelization code trees with dif-
ferent secondary scrambling codes could be assigned to spatially nonoverlapping
beams. The secondary scrambling codes are any of 15 different secondary scram-
bling codes associated with the primary scrambling code.

Comparisons of several beamforming solutions also including a detailed de-
scription of fixed beamforming can be found in [24, 25, 26]. An overall conclusion
reveals that for interference-limited UMTS-FDD networks where the traffic is ex-
clusively carried on dedicated channels, fixed beamforming shows quite similar re-
sults in terms of system capacity as well as power reduction at Node-B compared
to the more sophisticated solution of user-specific beamforming. Furthermore,
evolving UMTS networks (Release 5 and beyond) will support packet data trans-
mission on channels commonly shared by several users in a time-division mode
like the high-speed downlink shared channel (HS-DSCH) in high-speed downlink
packet access (HSDPA). There, the support of user-specific beamforming is not
mandatory and the preferred beamforming mode might be fixed beamforming to
ensure compatibility with traffic carried on dedicated channels (DCHs) [21].
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Node-B with four
single antennas

Sector beam:
P-CPICH

User-specific beams:
DPDCH
DPCCH

Figure 36.3. User-specific beamforming with two UEs in a logical cell with its own P-CPICH (no
sidelobes of beams and antenna patterns are shown).

36.2.2. Adaptive downlink beamforming

36.2.2.1. Application to UMTS

The most sophisticated beamforming solution is to assign each UE an individual
beam which is to be adapted to the interference situation and location of the user
considered. With user-specific beamforming, also denoted as adaptive beamform-
ing [15, 22], the dedicated physical data and control channel in UMTS are both
spatially formed by an individual spatial filter while the P-CPICH is transmitted
over the entire sector providing coverage for the entire sector area, see Figure 36.3.

This prevents the UE from using the P-CPICH as phase reference for chan-
nel estimation, since the transfer function of the P-CPICH is likely to be different
from the one of the transmitted dedicated signal. In order to properly estimate the
downlink channel, a UE subject to user-specific beamforming is to be informed
via higher-layer protocols to use the pilot bits of the dedicated physical control
channel (DPCCH) for phase reference. Note that this channel estimation lacks
of quality compared to P-CPICH-based estimation as in case of fixed beamform-
ing [5] and results in higher signal-to-interference ratio requirements. The UMTS
specification allows for using a secondary common pilot channel (S-CPICH) per
UE, but this method is very unattractive due to the high interference caused. The
UMTS specification is also open for a hybrid beamforming concept. For this case,
each UE is user-specific beamformed and, in addition, S-CPICHs are transmitted
via fixed beams enabling S-CPICH reception for phase reference at the UE.

The signals toward different UEs from the same sector are typically transmit-
ted under the same primary scrambling code. Separation is performed by orthog-
onal channelization codes in a CDMA manner where the codes are selected from
a channelization code tree [3, 27]. The number of available channelization codes
is rather limited corresponding to the minimum data rate carried on the DCHs
[27]. With fixed beamforming, different (secondary) scrambling codes each with
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its own associated channelization code tree can be assigned to different beams
avoiding code limitation in a sector. In case of user-specific beamforming, all UEs
have to share one channelization code tree under one primary scrambling code
likely resulting in code limitation. Utilizing the above-mentioned joint combina-
tion of fixed and user-specific beamforming avoids code limitation.

To fully exploit spatial filtering capabilities, complete downlink spatial infor-
mation is required at the base station to reduce intercell as well as intracell inter-
ference. Complete spatial information comprises the knowledge of the covariance
matrices which include the knowledge of instantaneous magnitudes of the channel
coefficients |αl,k, j(k)|, the angles of arrival θl,k, j(k), and transmitted powers Pk. The
beamforming strategies, which will be discussed later in this section, are directly
based on covariance matrices.

Usually, spatial information is only available for uplink transmission by eval-
uating user-specific training sequences at base stations. For the downlink, a back-
ward transmission of channel state information from the mobile stations to the
base stations would be necessary. Since mobile communication systems as UMTS
are commonly designed with low data rate signalling feedback channels in order
to obtain high bandwidth efficiency [3], neither the instantaneous channel coeffi-
cients nor steering vectors are known at the base station. Although the fast fading
processes for uplink and downlink are uncorrelated, the averaged magnitudes of
channel coefficients can be assumed to be insensitive to small changes in frequency.
Thus, the averaged channel coefficients (averaged with respect to fast fading) and
angles of arrival can be estimated from the time-averaged uplink covariance matri-
ces. For power control procedures which are controlled by base stations, all trans-
mitted power levels are also known at the base stations.

The following methods can be used to estimate the downlink covariance ma-
trices.

(i) After estimation of angles of arrival and power transfer factors with high-
resolution estimation methods [28] from the time-averaged uplink covariance ma-
trices, the downlink covariance matrices are calculated using (36.13).

(ii) Alternatively, the covariance matrices are transformed directly from up-
link to downlink carrier frequency by linear transformations as proposed in the
literature [17, 29, 30].

Estimation errors cause some degradation compared with the ideal case where
the covariance matrices are exactly known. A downlink beamforming method that
provides robustness against such estimation errors can be found in [30]. For sim-
plicity and in order to estimate the ultimate performance, in this section, we as-
sume perfectly known time-averaged downlink covariance matrices.

The optimum beamforming method optimizes all transmit powers as well
as all beam patterns jointly for all UEs [31, 32]. This optimum centralized beam-
forming method is by far too complex for an implementation in a practical system.
Therefore, we discuss in the following only noncentralized suboptimum beam-
forming methods. A first suboptimum beamforming method maximizes the vir-
tual signal-to-interference-and-noise ratio. This ratio is defined as the ratio of the
received signal power at the desired mobile to the total interference (and noise)
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power caused at any other mobile. Clearly, this ratio cannot be measured any-
where—therefore, it is called virtual SINR. The second suboptimum method max-
imizes the received power at the UE. It can be derived from the optimum central-
ized beamforming method by separating beamforming and power control as well
as assuming that the interference causes spatially white noise.

36.2.2.2. Maximum (virtual) SIR beamforming

The optimum centralized beamforming method maximizes the SINRs at all mo-
biles k jointly. The instantaneous received signal power at UE k is given by

P̌S,k = w̌H
k ŘS,kw̌k, (36.17)

where ŘS,k denotes the instantaneous downlink covariance matrix of the desired
signal (36.13). As mentioned before, the instantaneous downlink covariance ma-
trix is not known at Node-B. Instead, we are using the time-averaged version which
can be calculated with the above-described methods. Therefore, a suboptimum
beamforming algorithm can be based on the time-averaged downlink covariance
matrix R̃S,k which corresponds to the expectation of the instantaneous covariance
matrix ŘS,k (see (36.13)):

R̃S,k = E
{

ŘS,k
} = P̌k

Lk, j(k)−1∑
l=0

E
{∣∣α̌l,κ, j(k)

∣∣2
}
· ǎ

(
θ̌l,κ, j(k)

)
ǎ
(
θ̌l,κ, j(k)

)H
. (36.18)

Be aware that the steering vectors have to be determined at downlink frequency.
Since we are averaging with respect to Rayleigh fading, the actual beamforming
strategy for the downlink is to maximize the average downlink power,

P̃S,k = w̌H
k R̃S,kw̌k, (36.19)

while keeping the average intracell and intercell interference power P̃I,k received at
UE k constant, which is derived from (36.11):

P̃I,k =
K−1∑
κ=0
κ �=k

P̌κ

Lk, j(κ)−1∑
l=0

E
{∣∣α̌l,k, j(κ)

∣∣2
}
· ∣∣w̌H

κ ǎ
(
θ̌l,k, j(κ)

)∣∣2 =
K−1∑
κ=0
κ �=k

w̌H
κ R̃I,k,κw̌κ. (36.20)

Here, R̃I,k,κ denotes the downlink covariance matrix of interference received at mo-
bile k from the downlink signal of mobile κ which is transmitted from Node-B
j(κ). It is averaged with respect to the data signals and Rayleigh fading processes:

R̃I,k,κ = P̌κ

Lk, j(κ)−1∑
l=0

E
{∣∣α̌l,k, j(κ)

∣∣2
}
· ǎ

(
θ̌l,k, j(κ)

)
ǎ
(
θ̌l,k, j(κ)

)H
. (36.21)
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With these definitions, the downlink SINR of user k results in

SINRk = w̌H
k R̃S,kw̌k∑K−1

κ=0
κ �=k

w̌H
κ R̃I,k,κw̌κ + σ̌2

N

, (36.22)

where σ2
N represents the additive noise power, respectively. For simplicity of a sub-

optimum approach, the intracell and intercell interference in the denominator of
(36.22) are replaced by the sum of interference powers received at all other mobile
stations caused by the signal transmitted to mobile station k. This results in

SINRk,virt = w̌H
k R̃S,kw̌k∑K−1

κ=0
κ �=k

w̌H
k R̃I,κ,kw̌k + σ̌2

N

. (36.23)

Note that the SINR of (36.23) cannot be measured at any terminal since the de-
nominator contains the sum of interference powers measured at different mobile
stations. Therefore, we call it virtual SINR.

The optimization problem to maximize the virtual SINR can mathematically
be expressed as follows: maximize the received power of the desired signal corre-
sponding to (36.19) while keeping the virtual interference-plus-noise power con-
stant:

P̃I,k,virt = w̌H
k R̃I,k,virtw̌k + σ̌2

N = const. (36.24)

with

RI,k,virt =
K−1∑
κ=0
κ �=k

w̌H
k R̃I,κ,kw̌k. (36.25)

Using the method of Lagrange multipliers, this optimization problem leads to
a generalized eigenvalue problem. The optimum weight vector w̌

opt
k equals the

eigenvector of the matrix pair associated with the largest eigenvalue [2, 7, 17].
That is,

R̃S,kw̌
opt
k = λmaxR̃I,kw̌

opt
k , (36.26)

where λmax denotes the largest eigenvalue. This beamforming method will be called
max-SIR method since only the signal and the interference covariance matrices
have an influence on the optimum weights.

36.2.2.3. Maximum SNR beamforming

Another suboptimum beamforming method may be adopted which assumes that
the denominator of (36.22) is constant and does not depend on the weight vector
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w̌k. This corresponds to the assumption that the interference can be interpreted as
spatially white noise. The only remaining boundary condition for the beamform-
ing problem is that the transmit power is limited:

∥∥w̌k

∥∥2 = w̌kIw̌H
k = 1. (36.27)

So the optimization problem can be stated as follows: maximize the received
downlink power (36.19) while keeping the transmit power constant (36.27). Using
again the method of Lagrange multipliers, this leads to the generalized eigenvalue
problem:

R̃S,kw̌
opt
k = λmaxIw̌

opt
k . (36.28)

In the following, this beamforming method which only maximizes the received
downlink power and which does not try to minimize interference will be called
max-SNR method.

36.2.2.4. Maximum SINR beamforming

Finally, a heuristic beamforming approach is considered in this section. Instead of
using one of the boundary conditions (36.24) or (36.27), a linear combination of
these boundary conditions may be used. This corresponds to a diagonal loading
of the max-SIR eigenvalue problem:

R̃S,kw̌
opt
k = λmax

(
c1R̃I,k + c2I

)
w̌

opt
k . (36.29)

In the following, this beamforming method which forms a compromise between
max-SIR and max-SNR beamforming will be called max-SINR method.

36.3. Downlink SINR

The total gain of the antenna array is given by [15]

Ǧtot
k (θ) = ∣∣w̌

opt
k ǎ(θ)

∣∣2 ·Gele(θ), (36.30)

where the first term is due to the applied beamforming method and dependent on
the topology used, ǎ(θ) is given by (36.4) or (36.5), respectively. The second term
Gele(θ) takes into account the antenna-element-specific antenna pattern. Typical
patterns of base station sector antennas show a smooth behavior within the main
beam. Such a characteristic can be modelled quite well with a squared cosine char-
acteristic:

Gele(θ) =


cos2

(
π

2
· θ

θ3dB

)
for |θ| ≤ θ0,

10−aR/10 for |θ| ≥ θ0

(36.31)
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with θ0 = θ3dB·2/π·arccos 10−aR/20. In (36.31), the angle θ3dB is the 3 dB two-sided
angular aperture of an antenna element (often termed half-power beam width)
and aR denotes the backward attenuation. By taking very large values for θ3dB, an
omnidirectional antenna characteristic can be modelled.

As introduced before, each resolvable path at the base station receiver is com-
posed of micropaths (often modelled by many small scatterers) with slightly dif-
ferent angles of arrival at the antenna arrays. Thus, the power is spread around
the average angle of arrival θ̌l,k, j(k) of each resolvable path and a (path-specific)
azimuthal power spectrum has to be incorporated in the calculation of the signal
and interference power for downlink transmission. To carry out the calculation, we
again fall back on the long-term reciprocity of the uplink and the downlink chan-
nel, see (36.14), (36.15), and (36.16). For the remainder of this section, we assume
identical Laplacian-shaped azimuthal power spectra pl,k, j(θ) = p(θ) for all paths
in the system [7, 33]. With this assumption, the resulting gain factor seen by the
lth departing path of user k at base station j(k) can be evaluated by convolving the
total antenna gain diagram (36.30) with the azimuthal power spectrum:

G
path
k

(
θ̌l,k, j

) =
∫ π

−π
Ǧtot
k (θ)p

(
θ − θ̌l,k, j

)
dθ. (36.32)

Within this section, G
path
k is also referred to as a path diagram [34].

In the following, we will give an expression for the SIR at a mobile station
based on beamformed antenna diagrams at all base stations in the network. We
consider CDMA systems with RAKE reception and assume the systems to be in-
terference limited. Thus, the influence of thermal and amplifier noise can be ne-
glected. With these assumptions and with reference on (36.12), the (instanta-
neous) post-despreading SIR per path of the user of interest (indexed with k) is
given by

γl,k = GSP̌l,k
P̌cross
l,k + P̌intra

k + P̌inter
k

, l = 0, . . . ,Lk, j(k) − 1 (36.33)

with path power

P̌l,k = P̌k
∣∣α̌l,k, j(k)

∣∣2
Ǧ

path
k

(
θ̌l,k, j(k)

)
(36.34)

and path-crosstalk interference [35]

P̌cross
l,k =

Lk, j(k)−1∑
l′=0
l′ �=l

P̌k
∣∣α̌l′,k, j(k)

∣∣2
Ǧ

path
k

(
θ̌l′,k, j(k)

)
. (36.35)

Here, P̌k with k = 0, . . . ,K − 1 denotes the transmitted power to be adjusted by
power control [32, 36, 37]. In the remainder of this subsection, we neglect the ef-
fect of power control and therefore assume P̌k = P̌ for k = 0, . . . ,K − 1. Since
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we focus on CDMA systems, GS denotes the processing gain (despreading gain)
[3, 35]. The variable α̌l,k, j(k) is given by (36.16) and includes signal fading. In im-
plementable CDMA receivers, the number of paths to be evaluated is determined
by the applied number of RAKE fingers [35]. Since we are interested in upper-
bound assessments for beamforming concepts, we neglect this restriction and as-
sume all paths to be exploited by the RAKE receiver. Note that this leads to the
highest degree of achievable path diversity in the time domain [35]. The intracell
interference power yields

P̌intra
k =

∑
κ∈Ak

Lk, j(k)−1∑
l=0

P̌κ
∣∣α̌l,k, j(k)

∣∣2
Ǧ

path
κ

(
θ̌l,k, j(k)

)
. (36.36)

The set Ak contains intracell users of user k. Note that the intracell signals pass
through the same mobile channel as the signals of the user of interest, but they are

weighted with their corresponding user-specific path diagram Ǧ
path
κ . Finally, the

intercell interference power can be expressed as

P̌inter
k =

∑
κ∈Bk

Lk, j(κ)−1∑
l=0

P̌κ
∣∣α̌l,k, j(κ)

∣∣2
Ǧ

path
κ

(
θ̌l,k, j(κ)

)
, (36.37)

where Bk, k = 0, . . . ,K − 1, describes the set of users causing intercell interfer-
ence seen by the kth user. The interference signals differ from the signals of in-
terest by the mobile channels as well as path diagrams. Note that a large num-
ber of interfering signals arrive at each mobile. Thus, it is valid to approximate
the path-crosstalk interference by including the path of interest, that is, P̌cross

l,k ≈∑
l P̌k|α̌l,k, j(k)|2Ǧ

path
k (θ̌l,k, j(k)). This leads to identical interference powers (identical

denominators in (36.33)) for all paths and simplifies the following analysis.
Not only in link-level simulations but also in system-level simulations, short-

term propagation aspects as fast fading have to be taken into account. First, it
has to be mentioned that combining of the resolvable paths is done by maximum
ratio combining (MRC). Secondly, rather than explicitly modelling fast fading, we
mathematically incorporate it in the evaluation of the SIR distribution when MRC
is applied for different path power transfer factors [33, 35].

In many analyses [7, 8, 33] related to performance improvement obtained
from antenna arrays, the cumulative distribution function (CDF) of the SIR is
taken as a key parameter. It is assumed that all channel coefficients α̌l,k, j are com-
plex Gaussian random variables which correspond to Rayleigh fading magnitudes.
We furthermore presume that the channel coefficients α̌l,k, j are statistically inde-

pendent. The path gain factor Ǧ
path
k (θ̌l,k, j(k)) in (36.34) depends on the optimum

beam pattern (solution of (36.26)) which changes only very slowly with time since
it is based on time-averaged covariance matrices. Because of the large number of
terms in the denominator of (36.33), we can neglect the fluctuations of the de-
nominator. Therefore, the only variables which fluctuate because of the Rayleigh
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fading are the channel coefficients α̌l,k, j . The Gaussian distribution of channel co-
efficients results in an exponentially distributed signal power per path (numerator
of (36.33)). Since the interference power and all other terms of (36.33) (except the
coefficients α̌l,k, j) are assumed to be fixed or very slowly fluctuating, the signal-to-
interference power ratios γl,k per path are distributed according to an exponential
distribution [35]. That is,

fγl,k
(
γl,k

) = 1
γl,k

e−γl,k/γl,k , (36.38)

where γl,k denotes the average SIR of a single path (ensemble average with respect
to fast fading). Assuming that the interference in each path is independent, the SIR
after MRC results in

γk =
Lk, j(k)−1∑

l=0

γl,k. (36.39)

Furthermore, it is assumed that the small scale fading of the individual desired
paths is statistically independent. Since γk is the sum of the random variables γl,k,
the resulting probability density function (PDF) is obtained from convolving the
individual PDFs:

fγk
(
γk

) = fγ1,k ∗ fγ2,k ∗ fγ3,k∗· · · ∗ fγLk,n(k)−1,k . (36.40)

Utilizing the characteristic functions of the PDFs, the resulting PDF of γk can be
found to be [33, 35]

fγk
(
γk

) =
Lk, j(k)−1∑

l=0

cl,k
γl,k

e−γk/ γl,k (36.41)

with the coefficients

cl,k =
Lk, j(k)−1∏
l′=0
l′ �=l

γl,k
γl,k − γl′,k

. (36.42)

In order to compare the different beamforming concepts, the CDF has to be aver-
aged over all mobiles and possibly over several simulations where different loca-
tions for the mobiles and different radio channels are determined. Most informa-
tion can be extracted from the averaged distribution function of the SIR:

Fγk =
∫ γk

0
E
{
fγk (u)

}
du, (36.43)

where the expectation is taken over all mobile stations and snapshots.
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36.4. Power and load control

36.4.1. Power control

The enhancement of UMTS networks by advanced technologies like downlink
beamforming requires investigation of the interaction of these more sophisticated
techniques with given UMTS-FDD radio resource management algorithms like
power control or load control. To cope with quality-of-service (QoS) constraints,
we introduce γk,min denoting the required SINR per user to underrun a certain
block error rate (BLER) in order to maintain a particular service quality. Power
control is applied to ensure the QoS constraints per user at the mobile stations.
But, power control in conjunction with the use of optimum downlink beamform-
ing [1, 22, 36] leads to a coupled optimization problem, where the optimization
has to be performed jointly with respect to powers and beamforming weights. Be-
cause all the beamformers of users assigned to the logical cell of interest are in-
volved in the joint power control beamforming solution, there is a clear indication
that the optimum joint solution must be calculated centrally for the logical cell.
Also, the mobile radio channel between every combination of node-B and UE has
to be known. These are two main objections to implement optimum joint beam-
forming and power control in real system-like UMTS-FDD. Therefore, we restrict,
in this section, to suboptimum downlink beamforming solutions where we lever-
age the long-term spatial characteristics of the uplink (see also Section 36.2.2).
Thus, from the downlink power control perspective, the beamforming weights per
user are computed in advance.

With this assumption of precomputed, and thus, fixed beamforming weights
in the downlink, the objective of power control is to find all transmitted powers
P̌k > 0 with k = 0, . . . ,K − 1 such that the total transmitted power is minimized
while the required QoS is guaranteed for each user. The instantaneous signal-to-
interference-plus-noise ratio at mobile station k is given by

SINRk = P̌kψk,k∑
κ �=k P̌κψk,κ + σ2

N

. (36.44)

The element ψk,κ is the total power transfer factor between Node-B j(κ) trans-
mitting to UE κ and the kth user receiving interference. The elements ψk,κ can be
collected in a K × K matrix Ψ. The matrix Ψ includes system characteristics like
the user-specific signatures and beamforming weights, receiver structures (RAKE,
etc.), as well as mobile radio channel profiles. For the following, a power vector p̌ is
defined which contains all transmit powers: p̌ = [P̌0, . . . , P̌K−1]T . Utilizing (36.44)
as well as the SINR constraint γk,min, the power control problem can mathemati-
cally be expressed in the form

min
p̌

K−1∑
k=0

P̌k s.t. SINRk ≥ γk,min, 0 < P̌k ≤ Pmax
L (36.45)
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for k = 0, . . . ,K − 1. Each transmit power P̌k is restricted to be positive as well as
lower than the maximum allowable link power Pmax

L . Zander introduced in [38]
a centralized optimal solution with the necessity of controlling the entire power
vector p̌. Therein it is shown that for this optimum solution, the constraints in
(36.45) are active (i.e., they are satisfied with equality) leading to

P̌
opt
k = min

{
P̌∗
k ,Pmax

L

}
(36.46)

with

p̌∗ = (I − ΓΨ)−1Γn. (36.47)

Here, the matrix Γ = diag[γ0,min, . . . , γK−1,min] is of diagonal structure includ-
ing the user-specific SINR requirements γk,min and vector n summarizes the noise
components including all pilot channels like P-CPICH or S-CPICH in case of fixed
beamforming (see Section 36.2.1), intercell interference, as well as thermal noise.
Finally, I is a K × K identity matrix.

An iterative approach to find the optimal power settings was introduced by
Foschini and Miljanic in [39]. This algorithm controls each power adjustment sep-
arately without requiring knowledge of power settings of all other users. Hence, it
can be implemented in a decentralized or distributed fashion, that is, per mobile
station, and it is used as the basic approach in UMTS-FDD fast power control [27].
The power update procedure can be expressed mathematically in the form

P̌S,k(t) = γk,min

SINRk
P̌S,k(t − 1), (36.48)

where t denotes the iteration index and SINRk the instantaneous SINR measured
after the RAKE receiver. It is mathematically proven in [36, 39, 40] that (36.48)
converges to the optimum solution (36.46) if a feasible solution of the power con-
trol problem (36.45) exists.

36.4.2. Load control

Beside link-specific power restrictions in (36.46), it is of utmost importance in
UMTS-FDD to keep the air interface load under predefined thresholds, especially
in order to guarantee the needed QoS requirements of already established calls.
Load control for UMTS-FDD dedicated channels composes admission and con-
gestion control. While the first one controls the setup of new calls, the latter one
is responsible for already established calls. In UMTS, the cell-specific load can be
monitored by measuring the total radiated or transmitted power of a logical cell
utilizing the power rise in downlink and noise rise in uplink [3, 41]. The power rise
PR is defined as a cell’s total transmit power Ptot over the power Ppilot dedicated to
the P-CPICH:

PR = Ptot

Ppilot
, (36.49)
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where the total power Ptot composes the sum of all user powers P̌k and the P-
CPICH power. Note that P-CPICH consumes 10% of the maximum transmitted
cell power. If secondary common pilot channels (S-CPICHs) are transmitted to
mobile stations as in case of fixed beamforming [42], these channels also con-
tribute to Ptot.

For the uplink, the noise rise is defined as

NR := I0

Ith
. (36.50)

In the third-generation partnership project (3GPP) terminology, I0 denotes the
total received wideband power at the antenna connector including user signal, in-
terference, as well as noise, and Ith is the thermal noise power in the 3.84 MHz
frequency band. A new call will be set up if both the NR as well as PR remain
below a maximum allowable threshold. This decision is due to admission control
and requires an a priori estimation of expected load after the new UE is set up [43].
Moreover, congestion control drops an active subscriber if the NR or PR exceeds a
given congestion threshold. Typical values for both NR and PR are 6 dB in case of
admission control and 10 dB in case of congestion control [41].

For cells with beamforming capabilities, inclusion of spatial filtering into the
admission and congestion thresholds is advantageous [5]. An attractive power-
based admission control scheme was introduced in [43] where the load in differ-
ent beams is monitored via beam-specific power measurements yielding beam-
dependent noise or power rise measurements, respectively. More information on
the impact of beamforming strategies on radio resource management algorithms,
especially a detailed description of handover strategies being not covered in this
section, can be found in [5, 21].

36.5. Cellular simulation model and methodology

In this section, a dynamic system-level simulator for analyzing the system-level
performance of a UMTS-FDD cellular system which uses smart antennas at the
base stations is presented. The key parameter to express performance is the average
number of mobile stations that can be supported in the downlink with the fulfill-
ment of some quality-of-service (QoS) requirement. A mobile station is dropped
if its SINR measured after RAKE reception with maximum ratio combining falls
below the service-dependent required SINR threshold. The dynamic system-level
simulator incorporates a mobility model for describing the movement of the mo-
bile stations and a traffic model for arranging the incoming and outgoing calls
from mobile stations. The mobility and traffic models are based upon a random
walk model [44] and Poisson processes [45], respectively. Soft handover, power
control, downlink SINR calculation, and so forth. are implemented as proposed
in [46]. The traffic or dedicated channels (DPDCH) are transmitted directionally
using beamforming method while pilot channels (CPICH) are transmitted om-
nidirectionally. Beamforming along with power control for DPDCH channels is
carried out after preassigning each mobile station to a set of base stations from
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Figure 36.4. Block diagram of simulation flow.

which the mobile station receives the strongest pilot channel. No power control is
used for CPICH channel.

36.5.1. Simulation flow

Figure 36.4 shows the simulation flow. The simulation is based upon snapshots.
In each snapshot, mobile stations move, traffic situation changes, and hence the
channels between the mobile stations and base stations are either newly calculated
or updated. The uplink spatial covariance matrix is calculated for all the possi-
ble combinations of channels between the base stations and active [45] mobile
stations. Mobile stations are assigned to base stations based upon the received pri-
mary common pilot channel (P-CPICH) power. Using the long-term uplink chan-
nel covariance matrix downlink beamforming can be performed for the DPDCH
channel. The uplink spatial channel covariance matrix can also be transformed
into downlink frequency for downlink beamforming. The SINR values for the
DPDCH and CPICH channels are calculated at each mobile station. An iterative
fast closed-loop power control method with a frequency of fpc = 1.5 kHz is used to
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Figure 36.5. Locations of base and mobile stations.

adjust the powers of DPDCH channels from all the base stations so that the mobile
stations achieve the SINR target value for the DPDCH. The mobile stations that
cannot be provided with the target SINR for DPDCH at the end of power control
loop are considered to be in outage. The assignment of mobile stations to base
stations is updated after dropping the mobile stations that are out of the coverage
range or could not be provided with required quality of service. The outer loop
starts the next iteration with a new snapshot. The inner loop or power control
loop is assumed to be converged within the time difference T between two con-
secutive snapshots. The time duration of the outer loop T represents the sampling
time used for simulation. More detailed description of the different modules of
simulator can be found in [45].

36.5.2. Cell configuration

A cellular configuration consisting of a main area and six surrounding areas is
created as shown in Figure 36.5.

In order to enhance the computational speed of the simulator, a wrap-around
technique is used. This means that the areas other than the main area represent the
periodic continuation of the main area in all possible directions, assuming there
identical behaviour of all base and mobile stations. Each area consists of a central
hexagonal cell surrounded by six other hexagonal cells. Each cell has a single base
station at its centre. Before the first snapshot is calculated, mobile stations are dis-
tributed uniformly in the main area. Although the SINR evaluation is done only
for mobile stations in the main area, because of the wrap-around technique, the
effect of equivalent mobile and base stations of all other areas has to be consid-
ered. A base station of the main area and its equivalent base stations in all other
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areas have the same downlink beam patterns and the same transmission powers.
We consider a system with uniform circular arrays (UCAs) at the base stations thus
not considering sectorization.

36.5.3. Propagation model

A realistic model of the wave propagation plays an important role in the signifi-
cance of the simulation results. One common approach, especially in context with
downlink beamforming, is to use deterministic propagation scenarios [17, 47] or
to apply propagation models which do not take into account the probabilistic na-
ture of all parameters (e.g., the number of paths) [48, 49]. In this section, a com-
pletely probabilistic propagation model between each base station and each mobile
station is used which has the following properties.

The number of resolvable propagation paths is random and exhibits a bi-
nomial distribution [50]. Shadowing is modelled by a log-normal fading of the
total received power [19, Section 3.1.1.2]. The random distribution of the to-
tal (log-normal fading) power to individual propagation paths (often denoted as
macropaths or paths from scattering clusters) is modelled by applying an addi-
tional log-normal fading to the delayed paths with respect to the direct path (line-
of-sight). Furthermore, a basic path attenuation and an extra attenuation that is
proportional to the excess delay are taken into account. The basic attenuation is
determined by the COST-Hata model [51] and a break point limits the attenua-
tion to a certain minimum value for small distances. The excess delay of reflected
paths is exponentially distributed leading to an exponential power delay profile
[19, Section 3.1.1.3.3]. As mentioned before, the directions of arrival which are
denoted by θ̂l,k, j(k) obey a Laplacian distribution with respect to the direct path
(standard deviation = several tens of degrees) [19, Section 3.2.2.1]. Moreover, ac-
cording to (36.32), the azimuthal power spectrum of each individual path is also
incorporated in the simulations. As mentioned before, the azimuthal power spec-
tra follow also a Laplacian shape (standard deviation in the order of one degree
or less) and are identical for the different paths. In order to reduce the compu-
tational complexity, fast fading processes are included analytically as described in
Section 36.3.

As the mobile stations move slowly, the channel parameters, for example, log-
normal fading, do not change rapidly. The time correlation of log-normal fading
is not known in general. However, measured data [52] reveal that it can be mod-
eled as a simple exponentially decreasing correlation function. This can be realized
by filtering white Gaussian noise by a simple first-order infinite impulse response
(IIR) filter with a pole at

a = εv(kT)T/D �⇒ H(z) = z

z − a
, (36.51)

where ε is the spatial correlation between two points separated by a distance D, T
denotes the sampling period, and v(kT) is the velocity of the mobile station.
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36.5.4. Simulation methodology and parameters

One main objective of this section is to find the average number of mobile sta-
tions that can be supported in the downlink provided that the SINR of DPDCH
and CPICH channels for each mobile station is above the service-dependent re-
quired SINR threshold. The average number of mobile stations supported in the
downlink depends on a large number of parameters like the number of antenna el-
ements, beamforming methods, mobility, traffic scenarios, and so forth. The per-
formance indicating factor, that is, the number of supported mobile stations is
computed in a dynamic way using beamforming with power control and without
power control for different numbers of antenna elements. During all simulations,
the parameters that characterise traffic model (call arrival rate and average call du-
ration), mobility model (standard deviation of the mobile station speeds and av-
erage velocity of mobile stations), and channel model (average number of paths,
mean number of paths, etc.) are fixed. All mobile stations are provided with the
same service, that is, the transmission of data at 384 kbps in the downlink. For
this specific service, the spreading factor GS = 8 is used. The CPICH channel is
spread with a higher spreading gain of 256. If the SINR requirement for a mobile
station is not fulfilled, that particular mobile station is not dropped immediately.
A time window is implemented so that within its period the channel situation may
improve and this mobile station may stay connected.

Note that the simulations are based on snapshots, and hence no admission
control or congestion control methods are applied. In each snapshot, the number
of mobile stations that can be supported with the required SINR threshold can be
determined. The following list gives a short overview of the main simulation steps.

(1) We calculate the downlink spatial covariances under the assumption of
perfectly known downlink radio channels as well as with the transformation of
the uplink spatial covariance matrices from uplink to downlink frequency.

(2) In a second step, the path diagrams are evaluated taking into account
the beamformed diagram, the element-specific diagrams, as well as the azimuthal
power distribution of each resolvable path.

(3) With this, the user-specific SINRs after RAKE reception for both DPDCH
and CPICH channels are calculated.

(4) Finally, the average number of mobile stations that fulfill the SINR re-
quirement for DPDCH and CPICH channels is determined.

The main simulation parameters are summarized in Tables 36.1 and 36.2. It
has to be mentioned that for the dynamic system-level investigations, we simulate
seven different areas, each with seven base stations (see Figure 36.5).

For illustration purposes, Figures 36.6 and 36.7 show examples of path di-
agrams for an identical propagation scenario with a UCA having 4 and 8 array
elements, respectively. It can be observed in Figures 36.6 and 36.7 that the beam-
forming algorithm tries to suppress the undesired paths. Obviously, the four- or
eight-element antenna array cannot produce nulls in the direction of all interferers
because of the fact that the number of interferers is greater than the number of an-
tenna elements. However, the eight-element antenna array has greater degrees of
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Table 36.1. Simulation parameters.

Number of base stations 49

Cell radius 1 km

Average number of paths 3

Max. number of paths 6

Standard deviation of slow fading 10 dB

Standard deviation of path fading 6 dB

Standard deviation of DoAs 20◦

Standard deviation of mobile station speeds 5 m/s

Call arrival rate 5 s−1

Mean call duration 1.5 min

Sampling period 0.2 s

Max. TX base station power 43 dBm

Max. DPDCH power 30 dBm

CPICH power 30 dBm

Thermal noise power −99 dBm

Handover margin 3 dB

Orthogonality factor 0.4

SINR threshold for DPDCH 4.5 dB

Upper bound for the DPDCH SINR (for power control) 6.5 dB

Power control step size 1 dB

Spreading factor for CPICH 256

Spreading factor for DPDCH 8

Data rate per user 384 kbps

User activity 100%

Table 36.2. Antenna arrays.

Uplink carrier frequency 1950 MHz

Downlink carrier frequency 2140 MHz

Number of elements (UCA) 1, 2, 4, 8

Element spacing λ/2 = 0.075 m

Antenna height of base stations 30 m

Antenna height of mobile stations 1.7 m

freedom and is able to suppress interferers more efficiently than the four-element
antenna array. The bars in the diagrams correspond to the gain factors of the indi-
vidual paths—for the displayed example, only one desired path exists.

36.6. Simulation results

The simulation results are the average of ten simulation runs. Each simulation run
is carried out for a time interval of 2000T with the parameters listed in Tables 36.1
and 36.2.
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Figure 36.6. Example for an optimized path diagram for a UCA with 4 antenna elements.
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Figure 36.7. Example for an optimized path diagram for a UCA with 8 antenna elements.

The number of mobile stations that can be supported in the downlink with
a data rate of 384 kbps for different numbers of antenna elements (M = 1, 2, 4, 8)
with a beamforming algorithm that uses no diagonal loading of the interference
covariance matrix is shown in Figure 36.8. These mobile stations are also referred
to as active users [45]. After a transient, the number of mobile stations that can
be supported in the downlink remains more or less constant. This indicates that
even if new mobile stations are generating calls in each snapshot, the number of
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Figure 36.8. Number of active users versus time with different antenna elements (max-SIR).

mobile stations that can be served is limited. Thus, the downlink capacity of the
system reaches saturation. The fluctuations in the curves are because of the lim-
ited number of simulation runs that are averaged. It can be easily seen that as the
number of array elements increases, the downlink capacity also increases. The re-
sults of Figure 36.8 correspond to the max-SIR beamforming method. Although
the omnidirectionally transmitted P-CPICH channel causes severe interference to
the directionally transmitted DPDCH channel, the improvement in capacity due
to higher number of antenna elements is significant.

A comparison of the beamforming methods max-SIR, max-SNR, and max-
SINR is presented in Figure 36.9 for a UCA with 4 antenna elements. The simula-
tion result shows that diagonal loading increases the capacity compared with vir-
tual max-SIR beamforming. The highest capacity is achieved using the max-SNR
beamforming method which even does not try to suppress individual interferers.
The reason for this effect might be the strong influence of the omnidirectionally
transmitted CPICH channel which results in almost spatially white noise.

The number of active users versus time that can be supported in the downlink
with a data rate of 384 kbps with and without transformation techniques [53] is
shown in Figure 36.10 for M = 2, 4, 8 antenna elements. Note that for illustrative
convenience, only 10 out of 2000 samples have been shown with the marks con-
nected by straight lines. We compare the capacity improvement with the following
methods:

(a) taking directly the uplink covariance matrix for downlink beamforming
without any frequency transformation;

(b) a linear transformation based upon the minimum mean square error
(MMSE) method [29];
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Figure 36.9. Number of active users versus time with different beamforming methods.
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Figure 36.10. Number of active users versus time for different number of antenna arrays.

(c) a transformation based upon the minimum variance distortionless re-
sponse (MVDR) method [54].

It can be observed that in all cases, the downlink capacity increases with the num-
ber of antenna elements. The MMSE and MVDR transformation methods per-
form equally well for M = 2, 4, 8 antenna elements. However, if no transformation
is carried out, the downlink capacity decreases significantly. For example, with
M = 4 array elements, MMSE and MVDR methods support about 32% and 36%
more users than without transformation, respectively. This is due to the fact that
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as the number of antenna elements increases, the effect of different uplink and
downlink steering vectors becomes more significant.
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With the exploration of multiple antennas at transmitter and possibly also at re-
ceiver end, the original concept of UMTS (universal mobile telecommunications
system), specified within 3GPP (3rd-generation partnership project), needs to be
reconsidered. While the so-called MIMO (multiple-input multiple-output) tech-
niques promise huge improvements in spectral efficiency, in general, once con-
straints by standards are specified, it can become quite cumbersome to achieve
such improvements. The success of MIMO techniques in UMTS depends on the
availability of technically feasible and affordable solutions. The terminal side needs
special attention due to its limitations in computational and battery power. In
general, MIMO algorithms are rather complex, making their implementation as
FPGA or ASIC difficult. Therefore, low-complexity solutions for MIMO systems
attract more and more attention.

In this chapter, steps towards integrated circuit solutions for MIMO systems
are reported. The discussion starts with a review of a state-of-the-art UMTS SISO
(single-input single-output) mobile terminal in Section 37.1. RF (radio frequency)
as well as baseband signal processing challenges and requirements are addressed.
Furthermore, principle RFIC (radio frequency integrated circuit) and baseband
chip architectures, with particular regard to the RAKE receiver, are discussed. In
Section 37.2 the SISO RAKE concept is extended to the SIMO (single-input
multiple-output) case, which is especially of interest for the uplink. Space-time
(ST) RAKE receivers for UMTS base stations (node B) are presented. General
MIMO system considerations covering RF aspects as well as baseband MIMO de-
coding techniques, including their implementation constraints, are highlighted in
Section 37.3. In addition, insight in the complexity of MIMO decoding algorithms
is provided. First realizations of UMTS MIMO prototypes and even ASICs are re-
ported on in Section 37.4.

37.1. SISO UMTS receiver review

In this section, we review the principle architecture of a UMTS standard Release 4
[1] compliant mobile terminal. For a more detailed structure of a node B UMTS
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Figure 37.1. Receiver structure for mobile terminal.

receiver, we refer to [2]. The receiver structure for a UMTS mobile terminal is
shown in Figure 37.1. After passing the RF front end and the ADC (analog-to-
digital converter), the digital signal processing starts with a synchronization phase
including AGC (automatic gain control) and CFO (carrier frequency offset) com-
pensation. Subsequently, the signal is processed by an RRC (root raised cosine)
filter, which results in an overall RC (raised cosine) pulse shape of the received
symbols, since the transmit pulse shaping filter has also an RRC response. The
actual data detection is performed by a RAKE receiver followed by the channel de-
coder. This chapter focuses on the RF front end on the one hand, and on the cru-
cial data detection algorithms and architectures, for example, the RAKE receiver,
on the other hand.

Compared to GSM (global system for mobile communications) compliant
solutions, the development of UMTS RF chipsets results in some new challenges.
Obviously, the higher channel bandwidth of UMTS influences the RFIC design.
Beyond that, there are some other critical points that clearly distinguish UMTS
from GSM in terms of RF requirements. Both, transmitter and receiver have to
fulfill much tighter dynamic range demands. Moreover, the higher ACS (adjacent
channel-selectivity) requirements aggravate the receiver design. The transmitter
architecture is mainly influenced by the large peak-to-average power ratio (PAR)
and the tighter requirements on the output power control. Current solutions use
linear power amplifiers to limit RF emissions in neighbouring channels. As a con-
sequence, the power amplifiers have to be operated with adequate backoffs, which
results in low PAE (power added efficiency) values. The general tendency in RF
transceiver design for wireless communications systems leads towards direct con-
version architectures, which do not require costly IF filters, for example, surface
acoustic wave (SAW) devices, that are not amenable to monolithic integration (see
Section 37.1.2).

By comparison, UMTS is by far the most challenging wireless cellular standard
in terms of baseband computational complexity. In [3] it is shown that a GSM, a
GPRS, and an EDGE modem requires approximately 100, 350, and 1200 MIPS,
respectively. This grows to around 5000 MIPS for a UMTS modem, but a more
precise figure depends on the mobility class and the data rate. It is not possible
to map the entire set of operations onto a standard, single DSP chip with today’s
technology. As a consequence, the most complex parts have to be implemented in
hardware. These dedicated hardware accelerators are typically supported by a DSP,
which handles the less costly tasks. The approximate computational complexity in
MIPS for the different functional modules of a UMTS mobile terminal (Release 4)
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Table 37.1. MIPS complexity of receiver blocks for 384 kbps class modem.

Digital filtering (RRC, channelization) 2000 MIPS

Searcher (slot and frame synch., code identification) 2500 MIPS

RAKE receiver 850 MIPS

Maximum ratio combining (MRC) 24 MIPS

Channel estimation 12 MIPS

AGC, AFC 10 MIPS

Deinterleaving, rate matching 14 MIPS

Turbo decoding 65 MIPS

Total 5500 MIPS

Table 37.2. RF performance characteristics and related TCs.

Reference sensitivity TC Noise figure

Adjacent channel selectivity TC Selectivity

Intermodulation TC 3rd-order intercept point

Maximum input TC
1-dB compression point, tolerable

inchannel distortions
Blocking TC Reciprocal mixing

is shown in Table 37.1. It has to be noted that different mobility classes and data
rates result in different complexity.

Interestingly, the bulk of the computational complexity is concentrated in two
blocks.

(i) Digital filtering. The functions for signal shaping up to the RRC filter are of
high computational complexity due to the high sample rate, which is at least twice
the chip rate (i.e., 7.68 MHz sample rate).

(ii) Searcher. The aim of the cell search module is to detect the slot/frame
sequence of the base station among all received signals in order to establish a com-
munication link. In a low SNR environment, the detection probability can be en-
hanced by retrying this procedure. This increases the processing load until the cor-
rect sequence is detected. Hence, this detection is of random nature and its final
MIPS count is difficult to estimate.

37.1.1. Basic 3GPP requirements

RF requirements. The requirements for a UMTS-FDD (frequency division duplex)
mode compliant RF transceiver can be derived from the testcases (TCs) given
in [4]. Almost all receiver related TCs in this document define the required re-
ceiver performance indirectly, that is, by stating that under given signal condi-
tions at the terminal antenna connector, a predefined BER (bit error rate) or BLER
(block error rate) of a certain value must not be exceeded. The most important re-
ceiver TCs together with their related RF performance measures are summarized
in Table 37.2.
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Most of the RFIC performance figures mentioned in Table 37.2 have to be
derived via detailed system simulations, taking into account the RF-receiver ar-
chitecture and the subsequent digital baseband receiver structure. Requirements
that can be estimated by means of simple calculations are rare. One notable ex-
ception is the calculation of the receiver noise figure (NF) based on the reference
sensitivity-level TC [5]. The impact of limited receiver linearity has been evaluated
in [6]. The influence of channel-selection filtering is investigated in [7, 8]. A link
between the RF performance measures for sinusoidal signals and for W-CDMA
(wideband code division multiple access) signals can be found in [9].

Most of the RF performance figures are defined for sinusoidal signals excita-
tion only. These measures cannot readily be applied for W-CDMA signals due to
different signal statistics and bandwidths. Especially important in this context is
the PAR, which can be derived from the complementary cumulative probability
density function (CCDF). The peak power PPeak for the calculation of the PAR is
defined as

CCDF
(
PPeak

) = 0.1%. (37.1)

Thus, the instantaneous signal power is lower than the peak signal power PPeak

with a 99.9% probability. Figure 37.2 shows the CCDF of a downlink UMTS signal
for several numbers of dedicated physical data channels (DPDCHs). Remarkably,
the peak power increases substantially for higher numbers of DPDCHs.

Baseband requirements. The main parameters for the physical layer of the UMTS
mobile communications system are defined in the standards document [4]. These
parameters impose constraints on hardware design aspects such as the processing
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speed and the temporary storage of information among others. UMTS is a CDMA
system with chip rate fc = 3.84 Mcps leading to a sample rate of at least 7.68 Msps
for baseband signal processing. The data frames consist of 15 slots, each one with
2560 chips. The base station transmits a CPICH with a fixed spreading factor (SF)
of 256 and identical spreading code to support parameter estimation at the termi-
nal side. The SF for data ranges from 4 to 256.

A low BER can only be achieved, if as much as possible transmit power is
received. In a multipath environment, several receive paths with significantly dif-
ferent time delays have to be combined. The UMTS standard [4] defines TCs with
channel delays up to 20 microseconds. The RAKE receiver for a UMTS system
combines several receive paths into a single output signal. The direction, the in-
tensity, and the arrival time of the received signals change as the user moves. There-
fore, the path search window has to be sufficiently large around the peak level. In
practice, the observation window spans from −10 microseconds to +20 microsec-
onds, which corresponds to the chip positions −40 to +80. Furthermore, in soft
handover mode, the terminal combines the received signal of up to six base sta-
tions. In this case, the observation window is extended to ±38.5 microseconds
(equivalent to ±148 chips).

The dynamic channel properties naturally depend on the mobile’s speed. As-
suming a mobile moving with 250 kmph results in a path delay change of approx-
imately half a chip duration within 56 frames or 560 milliseconds. This exhibits
that the delay estimation rate may be substantially lower than the frame rate.

37.1.2. RF front end

The first step in receiver design is the choice of the receiver architecture. Besides
achieving the required RF performance, several criteria like the number of exter-
nal components, cost, power dissipation, and complexity determine the selected
receiver structure. However, as IC technologies evolve, the relative importance of
each of these criteria changes, allowing to return to approaches that once seemed
impractical as plausible solutions. UMTS compliant RF receivers are quite differ-
ent from their 2nd-generation TDMA/FDMA (TDMA: time division multiple ac-
cess, FDMA: frequency division multiple access)-based counterparts, due to the
separation of the user signal in the code domain rather than in the time and/or
frequency domain. In this section, we will only focus on the two dominant re-
ceiver architectures used for cellular terminals, which are the homodyne and the
heterodyne receiver structures.

Heterodyne receiver architecture. Figure 37.3 shows the heterodyne receiver struc-
ture. This architecture first translates the signal band down to some intermediate
frequency (IF), which is usually much lower than the initially received frequency
band. Channel-select filtering is usually done at this IF, which requires some band-
pass filter with a center frequency equal to the IF. The choice of the IF is a principle
consideration in heterodyne receiver design (see Figure 37.4).



764 UMTS link-level demonstrations with smart antennas

Band-
select
filter LNA

Image-
reject
filter

VCO

Channel-
select
filter

VGA

VCO0
90

A
D I

Q
A

D

Figure 37.3. Heterodyne receiver structure.

Image-reject
filter

Interferer
ImageWanted band

ωwanted ωimage ω

Channel-select
filter

ωIFωIF

ωLO

ωIF

ω

ω0

Figure 37.4. Image rejection and channel selection for the heterodyne receiver structure.

As the first mixer downconverts frequency bands symmetrically located above
and below the local oscillator (LO) to the same center frequency, an image-reject
filter in front of the mixer is needed. As depicted in the left part of Figure 37.4,
the filter is designed to have a relatively small loss in the desired band and a large
attenuation in the image band, two requirements that can be simultaneously met
if 2 · ωIF is sufficiently large. Thus, a large IF relaxes the requirements for the im-
age reject filter, which is placed in front of the mixer (see Figure 37.3). On the
other hand it complicates the design of the channel-selection filter (right part of
Figure 37.4), because of the higher IF. In today’s cellular systems, the channel-
selection filtering is normally achieved with external SAW filters, because imple-
mentations amenable to monolithic integration like active-RC or Gm − C-filters
would be too power consuming for the required performance.

An interesting situation arises if an interferer with frequency

ωwanted + ωLO

2
(37.2)

is present. If this interferer experiences second-order distortion and the LO con-
tains a significant second harmonic, then a component at

∣∣(ωwanted + ωLO
)− 2ωLO

∣∣ = ωIF (37.3)



Klemens Freudenthaler et al. 765

Preselect
filter LNA

VCO

Channel-
select
filter VGA

0
90

A
D I

QA
D

Figure 37.5. Homodyne receiver structure.

arises, which can be extremely troublesome, because this interference source di-
rectly occurs in the receive band. Thus, it cannot be removed by filtering in subse-
quent receiver stages. This phenomenon is called half-IF problem.

Due to the fixed receive bandwidth of the heterodyne receiver structure caused
by the external IF-filter, the multimode and multiband capabilities can only be im-
plemented by using separate IF sections for each mode. Clearly, this would result
in high costs and a complex receiver structure. One example of an RFIC for UMTS
based on this architecture can be found in [10].

Homodyne receiver architecture. The homodyne receiver structure (also called
zero-IF or direct-conversion architecture) depicted in Figure 37.5 avoids the dis-
advantages of the heterodyne concept by reducing the IF to zero. This saves the
first mixer, the LO, and the IF channel-selection filter. Moreover, also the image
problem vanishes if a quadrature converter is used. Thus, the simplicity of this
structure offers two important advantages over its heterodyne counterpart. First,
the problem of image is circumvented because ωIF is 0. As a result no image filter
is required. This may also simplify the LNA (low noise amplifier) design because
there is no need for the LNA to drive a 50Ω load, which is often necessary when
dealing with image-rejection filters [11]. Second, the IF SAW filter and IF ampli-
fiers can be replaced by lowpass filters and baseband amplifiers that are amenable
to monolithic integration.

The zero-IF or homodyne receiver topology entails a number of issues that do
not exist or are not as serious in a heterodyne receiver. Since in a homodyne topol-
ogy the downconverted band extends to zero frequency, offset voltages can corrupt
the signal and, more importantly, saturate the following stages. There are three
main possibilities of how DC offsets are generated. First, the isolation between the
LO port and the inputs of the mixer and the LNA is not infinite. Therefore, a finite
amount of feedthrough from the LO port to the mixer or the LNA input always
exists. This “LO leakage” arises from capacitive and substrate coupling and, if the
LO signal is provided externally, bond wire couplings. This leakage signal is now
mixed with the LO signal, thus producing a DC component at the mixer output.
This phenomenon is called “self-mixing.” A similar effect occurs if a large inter-
ferer leaks from the LNA or mixer input to the LO port and is multiplied by itself.
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A time-variant DC offset is generated if the LO leaks to the antenna and is radiated
and subsequently reflected from moving objects back to the receiver.

Large amplitude modulated signals that are converted to the baseband section
via second-order distortion of the IQ mixers may also lead to time-variant DC
offsets. The spectral shape of this signal contains a significant component at DC
accounting for approximately 50% of the energy. The rest of the spurious signal
extends to twice the signal bandwidth before being downconverted by the second-
order nonlinearity of the mixers. The reason for the large signal content at DC is
due to the fact that every spectral component of the incident interferer is coher-
ently downconverted with itself to DC. In order to prevent this kind of DC offset,
a large second-order intercept point (IP2) of the IQ mixer is necessary.

3GPP compliant receivers approximately need 80 dB gain. Most of this gain is
contributed by the baseband amplifiers. That means that even small DC offsets (in
the range of several mV) at the mixer outputs may lead to DC levels sufficient to
saturate the ADCs.

In TDMA systems, idle time intervals can be used to carry out offset cancel-
lation. This would be a practical solution for the 3GPP-TDD (time division du-
plex) mode. It cannot be used for offset cancellation in the FDD mode because
of the continuous signal reception. Here, the natural solution for DC offset can-
cellation is highpass filtering. Since the signal band extends from DC to approxi-
mately 2 MHz, a high-pass filter with a cutoff frequency of several kHz results in
an acceptable degradation of the system performance [12]. This approach is only
possible because of the wideband nature of the signal. An interesting solution to
overcome the switching transients due to highpass filtering is presented in [13]. A
system level DC offset compensation approach can be found in [14].

IQ mismatches are another critical issue for the zero-IF receiver topology.
Fortunately, pilot-symbol-assisted channel estimation is performed in W-CDMA
systems. Irrespective of the pilot symbols used (either the time-multiplexed pilot
symbols or the common pilot signal), this estimation additionally leads to a cor-
rection of the IQ phase and amplitude mismatch.

Most of the published work on receiver design is based on the direct conver-
sion topology [15, 16, 17, 18, 19]. This comes at no surprise due to the importance
of the highest possible integration, which is clearly advantageous for the zero-IF
receiver structure. All these receivers are designed using standard BiCMOS pro-
cesses. An interesting option is the use of SiGe bipolar technology for the receiver
front end [20, 21]. Recent advances in UMTS compliant RFIC receiver design are
often focused on the use of RF-CMOS as the semiconductor technology of choice
[22, 23].

37.1.3. Baseband receiver architectures—the RAKE receiver

The RAKE receiver as shown in Figure 37.6 combines signal energy arriving from
different paths requiring a correlator assigned to each (relevant) propagation path.
In the RAKE literature, these correlators are called RAKE fingers. They are pa-
rameterized by the positions of the propagation paths in time, such that the code
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Figure 37.6. Principle structure of a RAKE receiver.

generator for descrambling/despreading runs synchronously to the slot start. The
finger outputs are combined to one signal in a maximum ratio combiner.

Typically, the RAKE fingers process samples at twice the chip rate. However,
the actual path delay is, in general, not a multiple of half a chip duration. Hence,
the analog signal is not sampled at the optimum time. Therefore, a code-tracking
unit is used at each finger to reconstruct the input signal for optimum sampling
(see Figure 37.7). Each RAKE finger contains a timing error correction (code-
tracking unit), a descrambler to distinguish different base stations, a despreader,
and an integrate-and-dump operation. The descrambling and despreading codes
are generated in respective code generators. The code numbers are available prior
to the start of the data demodulation.

The multipath combiner comprises a channel estimation block to estimate
the channel weights for each individual path, and an MRC weighting and MRC
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adder block, which combine the received signals according to the maximum ratio
criterion.

The RAKE receiver processes the sampled and quantized output signal of
the RRC filter. To achieve adequate system performance, a path resolution of
±(1/16)Tc (with chip duration Tc = 1/ fc) is required. This accuracy may either
be achieved by using a high oversampling rate (OSR), or by using a low OSR (e.g.,
the minimum OSR of two) in combination with interpolation methods. The latter
case implicates a lower ADC clock rate. The interpolator reconstructs the signal
from the received samples, for example, by linear or quadratic interpolation (see
Figure 37.7). The code-tracking unit selects the sample closest to the optimal sam-
pling point.

Due to multipath propagation, the signals of different paths arrive with a time
difference. In order to combine them coherently, the arrival delays have to be com-
pensated. This can either be performed at chip level, that is, at the input of the
RAKE fingers (see Figure 37.8) or at symbol level, that is, at the output of the
RAKE fingers (see Figure 37.9). The preferred method depends on the number of
fingers, the OSR, as well as the spreading factor.

In the first case, an input buffer is required and the RAKE fingers point at
different locations in this buffer. Since data is stored consecutively, there is a unique
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relation between path delay and memory address. The buffer size is determined by
the OSR and the maximum path difference to be covered (see Section 37.1.1). All
the RAKE fingers run synchronously, their corresponding code generators start at
the same point in time, which simplifies a synchronous design.

In the second case, the path delay is compensated at the output of the RAKE
fingers, where the symbols have to be buffered. The multipath combiner selects
symbols from these buffers according to their path delays. In this approach, the
fingers run asynchronously, therefore the code generators have to be adjusted ac-
cording to the path delays.

The buffer size for data and control overhead is different for both approaches.
The choice depends on the number of fingers and the spreading factor. For com-
parison, the buffer size is calculated for both cases. The signal is assumed to be
complex-valued (IQ = 2), the OSR is set to two, and soft handover mode is as-
sumed. SHO chips are stored and maximum channel delay spread (corresponding
to DS chips) has also been taken into account. Considering the requirements dis-
cussed in Section 37.1.1, the size of the input buffer (IB, see Figure 37.8) follows
to be

IB = IQ ·OSR ·(2 · SHO + DS)

= 2 · 2 · (2 · 148 + 120) samples

= 1664 samples.

(37.4)

This amounts to a memory size of around 13 kb for an 8-bit data input.
The second option is to process the input data without prior delay compensa-

tion. In this case, a separate code generator is used for each path synchronized to
the corresponding path delay. The symbol rate at the output of the fingers is fc/ SF
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with SF ranging from 4 to 256. The size of the output buffer (OB) is given by

OB = IQ ·F · 2 · SHO + DS
SF

= 2 · 10 · 2 · 148 + 120
4

samples

= 2080 samples.

(37.5)

In this estimation, F = 10 was assumed. For the chosen parameter set, a 16 kb data
memory would be required. The first solution is preferable for a large number of
RAKE fingers and a small OSR. An additional problem that arises with the archi-
tecture shown in Figure 37.9 occurs when a terminal is moving towards the base
station. In this case, the path delay decreases, and the phase of the code generator
has to be adjusted accordingly. A solution to this problem applying a one-bit delay
line at the output of the code generator is proposed in [24].

37.2. Extensions of SISO RAKE receiver

The RAKE receiver for SISO UMTS discussed in Section 37.1.3 is very effective
in optimum combining of multipath components, and thus represents a receiver
structure utilizing time diversity (multipath diversity). The use of multiple anten-
nas at the receiver additionally enables to exploit the spatial dimension, that is, it
allows for spatial diversity. This section focuses on ST RAKE receivers which are
especially interesting for the UMTS uplink because of the obvious facility to apply
multiple antennas at the base stations. This system approach illustrates a SIMO
extension of the scheme addressed in Section 37.1.2.

In this section, we will present two different approaches of how to exploit the
spatial dimension, namely, the MRC-ST RAKE receiver in Section 37.2.1 and the
beamforming-ST RAKE receiver in Section 37.2.2.

37.2.1. MRC-space-time RAKE receiver

This straight forward approach combines the outputs of individual temporal
RAKE receivers (one for each antenna) in an MRC sense. This scheme [25] (see
Figure 37.10), called MRC-ST RAKE, accomplishes diversity by means of temporal
and subsequently spatial combining. Note that the order of temporal and spatial
combining can also be exchanged without performance degradation.

As it is shown in Figure 37.10, the entire SISO RAKE receiver chain (Figure
37.6) has to be implemented for each antenna. If nR is the number of receive anten-
nas, the computational complexity of the MRC-ST RAKE is approximately nR-fold
that of a SISO RAKE (see Table 37.1):

CMRC - ST - RAKE ≈ nR · CSISO - RAKE. (37.6)

Due to the close spacing of the receiver antennas, the delays of the dominant tem-
poral taps (RAKE fingers) of the individual channel profiles are strongly correlated.
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Figure 37.10. MRC-space-time RAKE receiver.

Complexity can therefore essentially be reduced by centralizing the delay estima-
tion block, which does not need to be implemented for each branch individually.
Since the delay estimation is the most complex part in the RAKE receiver (see
Table 37.1), this may reduce the overall complexity of the MRC-ST RAKE signifi-
cantly.

37.2.2. Beamforming-space-time RAKE receiver

The use of multiple antennas enables to exploit the spatial diversity of the channel
and, in addition, to reduce the effects of multiuser interference (MUI) by the use of
beamforming. Figure 37.11 shows the block diagram of a beamforming-ST RAKE
receiver. Here, spatial beamforming is implemented for each path (i.e., for each
RAKE finger), followed by a temporal RAKE combiner. Each spatial beamforming
operation (one beamforming for each temporal path) is implemented by applying
a spatial weight vector to the nR antenna signals. The position of each RAKE finger
in turn is determined by the delay estimation block.

Applying the spatial weight vectors can be regarded as a beamforming pro-
cedure, one for each temporal RAKE finger, which rejects interfering signals of
other users. This rejection is achieved by pointing one or more narrow beams
at the incoming desired signals. Any one of several beamforming criteria such as
minimum mean square error (MMSE) or minimum variance distortionless re-
sponse (MVDR) may be used to calculate the spatial weight vector. Both MMSE
and MVDR require the antenna array covariance matrix and its inverse [2]. A less
complex alternative to these beamforming criteria called approximate MVDR is
described in [26].

Note that the multipath combiner block in Figure 37.11 not only consists of
the MRC weighting and adder parts, but also comprises an estimation block for



772 UMTS link-level demonstrations with smart antennas

Beamforming-space-time RAKE receiver

Spatial combining
Antenna 1

RF front-end
ADC
RRC

...

RF front-end
ADC
RRC

Antenna nR

Delay
est.

Calculate
spatial
weight
vectors

Beamforming

Beamforming

Finger 1

Finger N

RAKE-
finger
bank

Multipath
combiner

...
...

Channel
decoding

Multipath combining
(temporal)

Figure 37.11. Beamforming-space-time RAKE receiver.

determining the weights of the temporal RAKE fingers (see Figure 37.6). These
temporal weight vectors should be updated every time slot to track the fast fading,
while the spatial weight vectors can be averaged over several slots since the spatial
characteristics change much slower than the fast fading.

In rural environments (i.e., high spatial correlations), the beamforming-ST
RAKE typically outperforms the MRC-ST RAKE, because it directs its beams to-
wards the strongest incoming signal (dominant eigenvector). On the other hand,
in the so-called pico-environments (low spatial correlation), the MRC-ST RAKE
typically outperforms the beamforming-ST RAKE, since in that case the beam-
forming-ST RAKE is hardly able to exploit spatial diversity (only the strongest
eigenvector which represents only a small part of the corresponding path is ex-
ploited) [25, 27].

In [25] the idea of ST RAKE receivers is furthermore extended to closed loop
diversity schemes, on the W-CDMA downlink. In such schemes parts of the com-
plexity and multiple antenna processing are shifted to the base station where the
transmit signals are predistorted. Note that the predistortion requires channel state
information, therefore a feedback channel is needed. For further improvements on
ST RAKE receiver concepts (eigen-RAKE, joint-ST RAKE) and performance com-
parison demonstrations, we refer to [25, 27].

37.3. MIMO system architectures

Most of the published work in the MIMO field focuses on the algorithmic parts
and on their respective implementations in the digital domain. There is only little
work available that specifically takes MIMO compliant RF front ends into account.
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In Section 37.3.1, the principle conceivable MIMO RF receiver architectures are
discussed. In Section 37.3.2, MIMO baseband algorithms are considered and their
complexity is evaluated.

37.3.1. RF front end

Basic work on MIMO RF receiver architectures is reported in [28, 29]. One of the
obvious challenges in MIMO optimized RF front-end design is the separation of
the antennas. Obviously, small-sized mobile terminals fit poorly for multiantenna
implementations. To properly implement multiple antennas into a small terminal,
a minimum distance of half the wavelength λ could be taken as a rule of thumb
to sufficiently decouple the antennas. Further decoupling can be realized by using
cross-polarized antennas. At 2 GHz carrier frequency, λ/2 corresponds to 7.5 cm.
Therefore, the size limitations of cellular terminals set a natural limit on the re-
spective number of implemented antennas.

The straight forward approach of a MIMO capable RF front-end implemen-
tation is the use of one dedicated receiver per antenna to preserve the spatial and
temporal integrity of the antennas signals. This structure is called a full-parallel
MIMO RF receiver. In principle, it is also possible to separate the received sig-
nals from different antennas in the analog front end in the time, frequency, or
code domain. All of the mentioned techniques have their distinct advantages and
shortcomings. At least the separation in frequency and time does not seem to be
an option for a highly integrated RFIC due to inherent technical problems.

Frequency-domain-multiplexed MIMO RF receiver. In this approach, the received
signals from different antennas would typically be mixed onto different frequency
bands. Obviously, each receive path requires separate LOs and mixers, but the ana-
log IF or baseband section and the subsequent ADCs could be shared. The result-
ing frequency bands should be as close as possible, that is, one channel spacing of
the standard under consideration. There are however some severe disadvantages
inherent to this concept. All the problems common to the design of heterodyne re-
ceivers would aggrevate for such frequency-domain-multiplexed MIMO receiver.
Trying to implement this receiver structure on a single RFIC could prove to be
impractical due to frequency planning issues taking into account the number of
different frequency sources needed. Furthermore, filtering requirements would be
hard to realize.

Time-domain-multiplexed MIMO RF receiver. In the time-multiplexed approach,
the outputs from the different antennas are multiplexed together using an RF
switch. The combined signals are subsequently downconverted to baseband by a
single radio receiver. Since the sample interval of the received signals at each an-
tenna has to be preserved, the RF switch must operate atN·S (N-number of anten-
nas, S-nominal sampling frequency). One disadvantage of this approach is the fact
that only a fraction of the received power that is available at each antenna is actu-
ally being used for further processing. From an implementation point of view, this
concept seems even more challenging than the frequency-domain-multiplexed RF
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receiver described above. Finding suitable RF switches and realizing the demulti-
plexing operation correctly are just two issues that make this architecture only a
theoretical option.

Code-domain-multiplexed MIMO RF receiver. This method uses a code-division
approach for the signal separation similar to techniques employed in CDMA sys-
tems. A unique identity is assigned to each received antenna signal by application
of an orthogonal code (i.e., a Walsh code). Due to the orthogonality of the used
codes the combined signals can be separated in the digital domain after they passed
through a single RF chain with subsequent ADCs. Biphase modulators can be used
to apply the code domain multiplexing in the analog domain.

Full parallel MIMO RF receiver. This approach necessitates one full receiver front
end (see Figures 37.3 or 37.5) per antenna. However, it should be noted that im-
portant blocks can be shared among the different receivers. The sharable blocks in-
clude the frequency generation (VCO, PLL), the IQ divider, the biasing circuitry,
and the clock generation functionality. Furthermore, the digital calibration cir-
cuits, for example, for the analog channel-selection filters, can be commonly used
by all the receiver chains. Consequently, the integration of, for example, two par-
allel receivers onto one RFIC would not simply result in a doubling of the required
die area compared to the single receiver implementation. Thus, the area and power
saving potential of an optimized RFIC implementation of a full-parallel MIMO RF
receiver might be significant.

From all the mentioned architectures only the full-parallel MIMO RF receiver
offers the full benefits of a MIMO system. Due to the severe technical challenges of
the frequency- and time-domain multiplexing approaches, only the code-domain
multiplexing RF receiver is left as a second potential solution.

37.3.2. Baseband receiver architectures

General MIMO decoder considerations. The actual decoding stage takes place af-
ter AGC, RRC filtering, synchronization, and frequency offset compensation have
been performed. The decoder comprises from the RAKE receiver correlators for
channel estimation (CE), the correlator bank (CB) of selected fingers, the MIMO
decoder (M-Dec), and the finger position search and management (FPM) unit as
shown in Figure 37.12. The channel estimator is supported by a pilot code gen-
erator (PCG), while the correlator bank is supported by separate code generators
depending on the user codes. In MIMO transmissions, the linear RAKE combiner
is typically replaced by a specific decoder unit that performs ML (maximum likeli-
hood) decoding or matrix inversion techniques, like ZF (zero forcing), MMSE, or
V-BLAST (vertical Bell Laboratories Layered Space-Time) [30]. Finally, the con-
trol unit (Cntr) converts the timing synchronization into appropriate signals for
each block. The channel decoding is done by a turbo decoder (turbo).

The complexity of all these units depends strongly on the channel require-
ments. For a channel impulse response of 10 microsecond duration, roughly 40
channel taps are required when running a T-spaced receiver. For higher sampling
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rates, the number increases accordingly. Note that for a MIMO system with nT
transmit and nR receive antennas, a total number of nTnR subchannels need to
be estimated. The channel example (10 microsecond impulse response duration)
above with four transmit and four receive antennas and an oversampling rate of
four, easily ends up in 2560 channel taps to estimate. While this estimation requires
2560 correlator operations, it does not require 2560 correlators working indepen-
dently. The relative long time duration of 260 nanoseconds between two chips
allows to reuse the correlators, that is, to fold the required HW. Also, the several
pilot sequences for the antennas do not need to be independent sequences. In [31]
a real-time system with four transmit antennas was reported using the secondary
pilot channel (SPICH) to transmit four pilot sequences stemming from the same
branch of the OVSF (orthogonal variable spreading factor) code tree. This allowed
to substantially decrease complexity. In the 3GPP standard document TR 25.869
[32], a four-antenna transmit and receive system is proposed for UMTS Release
6. There, the four transmit antennas are supported by one CPICH signal only, but
this signal is split into two patterns (AA) and (−AA) and further split into four dif-
ferent antenna signals by using two different OVSF codes. A low-complex solution
for the receiver can also be found in this 3GPP document.

In particular, there will be more than one OVSF code assigned to each user
in HSDPA (high-speed downlink packet access) mode (see also proposed 3GPP
standard document TR 25.848 [33]). Many complexity reductions are possible [34,
35, 36] since the codes can be grouped into stems from the same branch of the
code tree. Higher modulation schemes (16-QAM and 64-QAM) have also been
proposed for increased data rates, but at the price of increased complexity for the
decoding algorithm.

Further advantages that can be elaborated on are the dynamic channel prop-
erties. Due to the Doppler speed, a finger appearing on a certain position will not
change its position abruptly. Since radio waves propagate with the speed of light,
they travel about 75 m in 260 nanoseconds. Assume a slow mobile moving with
3.6 kmph, or, equivalently, 1 mps. At this speed, it takes 75 seconds or 7500 frames
until the finger position moves to the next chip. For a fast mobile moving with
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180 kmph, this duration decreases to 1.5 seconds or 150 frames, still a very long
time that can be used either for averaging and thus improving estimation quality
or can be traded against complexity by assigning only fractions of this period per
channel tap estimation. Thus, it is possible to substantially reduce the estimation
rate of the channels and at the same time to reduce the HW complexity.

Due to noisy estimation and fast Doppler, the finger energy may vary substan-
tially over time while its position remains constant for a much longer period. In
this case, it may be a better strategy to keep the location of the finger fixed even if
its observed energy drops below a certain level. While for a short period other loca-
tions may appear as better choices, they can easily be mistaken and are of random
nature. An intelligent FPM unit is thus required to decide whether a finger posi-
tion remains unchanged even if the corresponding observed finger energy drops
or a new finger location is selected. Measuring the finger energy at a certain finger
position requires the computation of a norm of the correlator output signals. This
can be performed by a complex-valued multiplication, computing the squared l2-
norm:

‖r‖2
2 = �2{r} + -2{r}. (37.7)

Thus, two multiplications per finger are required. If this is to be reduced in com-
plexity, a good approximation of the nonsquared l2-norm is given by

‖r‖2 ≈ 3
8

max
(∣∣�{r}∣∣,

∣∣-{r}∣∣) +
5
8

(∣∣�{r}∣∣ +
∣∣-{r}∣∣), (37.8)

which gave excellent results in [31, 34].
Furthermore, the optimal number of fingers is a challenging question. In

some wireless channels, many strong reflections appear, while in others such re-
flections may be so close to each other that their received superposition cannot be
resolved as independent paths.

The number of detection fingers allocated to a specific code has to be kept low,
since it determines the complexity of the receiver. Thus, an intelligent finger man-
agement unit allocates the fingers separately for each code based on the channel
estimation and the available resources.

While the classical RAKE receiver linearly combines the signals on the var-
ious finger outputs, better methods for MIMO transmissions are available (see
Section 37.2 for SIMO extensions and Section 37.3.2 for MIMO extensions of the
SISO UMTS system).

Complexity considerations for MIMO decoding algorithms. Decoding algorithm for
MIMO transmissions can be divided into two groups: (i) matrix inversion meth-
ods and (ii) ML decoding. Since ML decoding is considered the most complex
algorithm, it is typically not considered in transmission techniques and only the
lower complexity version utilizing suboptimal ML sequence estimation techniques
are used instead. However, for QPSK and transmission systems of order 4×4, it has



Klemens Freudenthaler et al. 777

been shown [34] that an ML implementation can be much cheaper than a BLAST
technique, achieving much higher decoding quality. In ML decoding, the com-
plexity of the algorithm is typically of the order (nR number of receive antennas,
nT number of transmit antennas)

CML = O
(
nR

(
nTK

)P)
, (37.9)

forK transmitted antenna symbols with P being the alphabet size. For flat Rayleigh
fading channels, the symbols sent in different time periods arrive independently
in time, reducing the ML complexity to

CML = O
(
nRn

P
T

)
, (37.10)

for each transmitted antenna symbol. In particular, for higher-order constella-
tions, this seems to be a very high complexity. However, in [37, 38, 39], tech-
niques for low-complexity implementations especially for 16-QAM and 64-QAM
have been proposed reducing the complexity considerably. Also smart, subopti-
mal techniques like sphere decoding [40], geometrical approaches [41], and other
techniques [42] have been proposed.

Suboptimal ML sequence estimation techniques, originally invented by
Viterbi [43], are usually favoured since their complexity is given by

CML = O
(
nR

(
nTnC

)P)
, (37.11)

with nC denoting the channel length. Since such techniques also work in non-
flat channels and, in particular, when the encoding part forces a certain mem-
ory, this technique can be found in 3GPP in form of turbo coding [44] (see also
Figure 37.12). While many turbo coding implementations for UMTS in ASICs
[45, 46] and standard DSPs [47] have been reported, there is only little informa-
tion available on implementations for MIMO systems.

Matrix inversion methods are ZF, MMSE, and V-BLAST techniques, the sim-
plest one being ZF, forcing the symbols s to be correct no matter what happens to
the noise symbol v. Let r = Hs + v be the received symbol, with H denoting the
channel matrix. Then, ŝ = (HHH)−1HHr is the ZF estimate. Such operation will
force the noise to be filtered: ŝ = s + ṽ with ṽ = (HHH)−1HHv. The complexity
is next to the required channel estimation defined by the inverse operation of a
matrix, thus, in general,

CZF = O
(
n3
T

)
, (37.12)

and does only need to be performed once the channel changes. The decoding part
is then simply a matrix multiplication of r by the term (HHH)−1HH , thus of order
nTnR for each transmitted symbol. A hard decision is usually required afterwards
to decide which symbol from the symbol alphabet has been received. While the or-
der nTnR per symbol seems to be much smaller than in the case of ML, the matrix
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inversion operation requires high-precision techniques. Standard 16-bit DSPs have
problems performing such operations with sufficient precision. Alternatives are
either expensive floating-point processors or dedicated logic with QR algorithms
[48, 49] or similar techniques using energy preserving CORDIC operations [50].

While ZF usually gives the poorest performance, only slightly better than lin-
ear combination techniques, MMSE promises better quality with approximately
the same complexity. Different to ZF, the noise impact is taken into consideration
when forming the matrix inverse: ŝ = (HHH + σ2

v I)
−1HHr is the MMSE estimate.

While the computation of the matrix inverse is not more complex, the additive
noise term improves the condition number and thus the requirement on float-
ing point precision. However, such matrix inverse still requires, in general, more
than 16-bit precision and thus nonstandard HW. Also the additive noise part of
the channel needs to be estimated now, a task not simple in a time-variant chan-
nel environment. In case the noise estimation is more than 3 dB off, the quality
improvement compared to ZF is typically lost again [51].

A better method utilizing matrix inversion is given by the so-called V-BLAST
algorithm. It exists in ZF and MMSE form. Rather than performing the matrix
inverse for all symbols, it is only performed for the symbol with the strongest en-
ergy, estimated on the matrix inverse. After the first symbol has been detected,
the channel matrix is reduced in rank and the entire procedure is repeated until
the last symbol is detected. The V-BLAST complexity is thus of nT times the ZF
complexity. Performance quality is substantially improved compared to ZF and
MMSE. However, like in the ZF and MMSE case, a standard, low-cost 16-bit DSP
has problems in computing accurate matrix inverses.

37.4. Implementation examples

In this section, we only focus on MIMO baseband prototype and chip solutions,
since little work is available on MIMO complient RFICs. MIMO systems are cur-
rently in the process of 3GPP standardization. It turns out that MIMO will only be
established for the HSDPA extension of UMTS [52]. Naturally no low-cost mass
products are available yet. However, two trends can be observed. At universities
and research centers, demonstrations are performed with off-the-shelf equipment
(see, e.g., [53, 54, 55], a more complete listing will be provided in the chapter
Demonstrators and Testbeds in this book). A second trend in MIMO realization,
mainly driven by the semiconductor industry, concerns first steps towards inte-
grated solutions.

Demonstrator and prototype developments are often evolutionary starting
with rather simple and easy manageable approaches, which are enhanced step
by step, finally resulting in real-time systems. The air interface is usually real-
ized by standard RF and mixed signal components (see Figure 37.13) covering
the WLAN and/or the UMTS band. Typically, a PC generates data, which is trans-
mitted over real or artificial channels. After down conversion, the received signals
are stored and processed, again in a PC, online or offline. The transmission is typi-
cally performed in burst mode. Such a configuration is ideally suited for algorithm
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Figure 37.14. HSDPA MIMO receiver as reported in [2].

development under real physical channel conditions. A modular and flexible de-
sign allows to enhance the system towards real-time processing by replacing PC
software by DSP and FPGA modules step by step. A complete four-antenna re-
ceiver design following this approach was presented in [31, 34] for the UMTS
downlink. In [31] the authors report on the prototype experience of a UMTS
MIMO system with four transmit (TX) and receive (RX) antennas considering ZF-
V-BLAST and ML algorithms. The different MIMO detectors including appropri-
ate channel estimation procedures are evaluated by comparing their performance
and complexity.

A number of experimental and commercial smart antenna systems are pub-
lished in [56]. The purpose of these systems was the demonstration of the perfor-
mance increase through the use of smart antennas.

Several chip solutions have already been presented by Lucent Technologies
and Agere Systems. A baseband chip for the base station was presented in [2].
The detection is performed using the V-BLAST algorithm, a 0.16 µm CMOS tech-
nology is used for chip implementation. Figure 37.14 shows a simplified block
diagram of the receiver.

In this implementation, the channel estimation and matrix inversion are per-
formed by a DSP. An ML detector for a flat-fading channel is introduced in [57].
The block diagram of this receiver is shown in Figure 37.15.

The detection is performed either for four RX antennas in combination with
QPSK, or for two RX antennas and 8PSK/16QAM. A maximum number of 10



780 UMTS link-level demonstrations with smart antennas

M transmit
antennas

N receive
antennas

r0

r1

rN−1

c0

cM−1

y0

yM−1

H

RF to
base-
band

ST
equalizer

ML
MIMO
detector

despreader

Channel
estimator

Figure 37.15. HSDPA MIMO receiver as reported in [57].
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Figure 37.16. HSDPA MIMO receiver for frequency-selective fading channel as reported in [60].

spreading codes of length 16 allows a data rate of 19.2 Mbps. The detector outputs
are derived by approximating the log-likelihood ratios of the a posteriori proba-
bility (APP). Hence, this algorithm is called ML-APP detector.

Different MIMO 3GPP-HSDPA detectors have been reported in [57, 58, 59,
60] by the same group of authors. As an example, Figure 37.16 shows the block
diagram of a 28.8 Mbps 4 × 4 MIMO 3GPP-HSDPA receiver [60]. This approach
is capable of handling frequency-selective channels by applying an ST equalizer at
chip level. A normalized least mean square (LMS) algorithm is used for the esti-
mation of the equalizer coefficients. A peak data rate of 28.8 Mbps can be achieved
by using 15 spreading codes and a 4 × 4 system.

Implementation examples of square root MIMO detection algorithms are re-
ported in [48, 61, 62].

All these chip implementations and prototypes depict important steps to-
wards cost efficient integrated MIMO HSDPA solutions. They play a crucial role in
the standardization process, which is currently in progress. Note that final MIMO
HSDPA solutions have to be downwards compatible to current 3GPP standard re-
leases.

37.5. Summary

The development of MIMO techniques for UMTS is a major field of ongoing
research at university and industry level. MIMO algorithms typically exhibit
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extremely high complexity. Therefore, the exploration of low-complexity solutions
is highly desirable with respect to today’s semiconductor technology implementa-
tions. A number of prototype systems and chip solutions have already been re-
ported. Most of these solutions act on simplified assumptions, for example, flat-
fading channels. Nevertheless, these first prototypes are extremely helpful in iden-
tifying problems inherent to MIMO signal processing. Thus, they are driving the
standardization process of UMTS MIMO systems.

There is only little work available that specifically deals with MIMO compli-
ant RF front ends. The straight forward approach of a MIMO RF front-end im-
plementation is the use of a dedicated receiver per antenna. This approach shows
significant area and power saving potential, and therefore tends to be the most
favored technology.
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Abbreviations

3GGP 3rd-Generation Partnership Project

MIMO Multiple-input multiple-output

SISO Single-input single-output

RFIC Radio frequency integrated circuit

ST Space-time

ADC Analog-to-digital converter

AGC Automatic gain control

RRC Root raised cosine

GSM Global system for mobile communication

ACS Adjacent channel selectivity

PAR Peak-to-average ratio

PAE Power added efficiency

SAW Surface acoustic wave

MIPS Million instructions per second

UMTS-FDD UMTS-frequency division duplex

BER Bit error rate

BLER Block error rate

W-CDMA Wideband code division multiple access

CCDF Complementary cumulative probability density function

DPDCH Dedicated physical data channel

CPICH Common pilot channel

CCPCH Common control physical channel

PICH Paging indicator channel

SCH Synchronization channel

SF Spreading factor

TDMA Time division multiple access

FDMA Frequency division multiple access
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LO Local oscillator

LNA Low noise amplifier

IP2 Intercept point

OSR Oversampling rate

MRC Maximum ratio combining

MUI Multiuser interference

MMSE Minimum mean square error

MVDR Minimum variance distortionless response

FPM Finger position search and management

PCG Pilot code generator

ML Maximum likelihood

ZF Zero forcing

V-BLAST Vertical Bell Laboratories Layered Space-Time

SPICH Secondary pilot channel

HSDPA High-speed downlink packet access

APP A posteriori probability
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38
MIMO systems for the HSDPA
FDD mode UMTS service

Alba Pagès-Zamora and Markku J. Heikkilä

38.1. Introduction

The high speed downlink packet access (HSDPA) concept was first standardized
by the Third Generation Partnership Project (3GPP) in UMTS Release 5 specifica-
tions [1]. It considers several enhancements for a downlink shared channel to pro-
vide UTRA with a downlink packet access service with data rates up to 10 Mbps.
These enhancements are (a) adaptive modulation and coding (AMC), (b) Hybrid
Automatic Repeat on reQuest (H-ARQ), (c) fast cell selection, (d) MIMO antenna
processing, and (e) stand alone DSCH. The first two technologies were under study
in Release 5, the MIMO antenna processing technology was initially scheduled for
Release 6, and the fast cell selection and stand alone DSCH technologies were post-
poned for future evolutions.

This chapter focuses on the incorporation of MIMO techniques in the HSDPA
service of the UMTS FDD mode. First, those features of the HSDPA service that
are more relevant for the MIMO systems are summarized. Then, several MIMO
transmitter and receiver schemes fully compliant with the HSDPA specifications
are proposed for evaluating the MIMO systems in the HSDPA service. Some sim-
ulation results are also included in order to show their performance under several
fading conditions and mobile speeds. The chapter ends with the conclusions.

38.2. HSDPA features and physical layer HS-DSCH structure

The HSDPA service is based on a high-speed downlink shared channel (HS-
DSCH) shared by several users in the time and code domains. The spreading fac-
tor for the HSDPA physical channels is 16. One code is for the CPICH channel,
up to 15 codes are for the HSDPA users, and the rest are for dedicated channels
usually for speech services. Figure 38.1 illustrates an example of the time-code
multiplex division of 3 HSDPA users. In this example, 10 codes are assigned to
the HSDPA service and 5 would remain for other services. In the FDD mode, the
HS-DSCH frame structure is organized in time transmission intervals (TTIs) of
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Figure 38.1. HSDPA mapping to physical channels with fixed spreading code and shared by means of
time multiplex.

2 milliseconds, which consist of 3 slots with a length of 0.67 milliseconds and with
2560 chips in each slot.

As mentioned before, the AMC and H-ARQ technologies were studied for
the HSDPA service in UMTS/UTRA Release 5. The AMC technique allows updat-
ing the modulation and channel coding configuration at each TTI according to
the channel propagation conditions. The purpose is to increase the overall system
throughput assigning higher rates to those users under the most favorable channel
conditions and lower rates to the users experiencing poor channel conditions. The
H-ARQ technique allows the retransmission of those packets erroneously detected
by the HSDPA user. Both technologies rely on the HS-DSCH associated uplink
channel that carries information about the channel state and the ACK/NACK of
the received packet. The details of the codification of this feedback information
can be found in [2]. According to this information sent by the HSDPA user and
the network state information, the Node B schedules the HSDPA transmission.

The transport channel coding structure for the HS-DSCH channel is shown
in Figure 38.2. A CRC of 24 bits is attached to the information bits before the
TTI is segmented into code blocks. The CRC polynomial and the code block seg-
mentation details are specified in [3]. Then, a turbo encoder with coding rate 1/3
[2] with the internal interleaver given in [3] encodes each code block. Other code
rates based on that turbo encoder can be obtained using puncturing or repeti-
tion. After channel encoding, the TTI is mapped to several physical channels each
one with a different spreading code. The bit rearrangement stage and the spread-
ing/scrambling and modulation procedures can all be found in [2]. The modula-
tions specified for the HSDPA service are QPSK and 16-QAM.
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Figure 38.2. Transport channel coding structure for HS-DSCH.

38.3. HSDPA MIMO transmitter techniques

The main interest of MIMO techniques is twofold. On the one hand, the diversity
MIMO techniques improve the transmission reliability since the multiple anten-
nas are useful to increase the diversity gain [4]. On the other hand, the layered
MIMO techniques increase the data rate by means of spatially multiplexing sev-
eral data streams. Since the HSDPA service aims at providing a high-speed data
service, the main motivation of MIMO techniques for HSDPA is to achieve, or
even exceed, the 10 Mbps upper limit data rate of the single-input single-output
channel under sufficient reliability conditions. However, it is widely accepted that
the multiplexing gain cannot be increased without a penalization in the diversity
gain [5]. Therefore, both diversity and layered MIMO schemes should be evalu-
ated when specifically developed for the HSDPA service. The MIMO transmitter
schemes selected to be tested for the HSDPA service are four classical MIMO space
and/or time coding schemes:

(1) space-time transmit diversity (STTD),
(2) double-STTD (D-STTD),
(3) vertical-BLAST (V-BLAST),
(4) linear dispersion codes (LDC).

The STTD technique [6] is an orthogonal space-time block code for a MIMO
configuration with M = 2 antennas at the transmitter and N = 1 antennas at the
receiver (although more receive antennas can be used). The D-STTD technique is
based on the STTD technique for M = 4. It doubles the data rate but it loses the
orthogonal properties of the STTD code. The third proposed scheme is V-BLAST,
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Figure 38.4. Specification of the ST coding block of Figure 38.3 for the four proposed MIMO trans-
mission schemes.

which multiplexes the data symbols in as many streams as transmit antennas. The
theoretical capacity of this layered MIMO scheme was studied in [7] assuming the
receiver detects the different data streams by means of a successive interference
canceller algorithm. Finally, a specific LDC for M = 3 and N = 2 is proposed [8].
The main features of the LDC codes are their near-optimal capacity properties and
the linear relation that simplifies the receiver design.

The transmitter scheme for each HSDPA user is shown in Figure 38.3. The
data bits are first grouped into code blocks and then channel encoded. After the
interleaving, the signal is modulated and then the symbols are multiplexed in K
branches, with K the number of spreading codes assigned to that HSDPA user.
The symbols corresponding to each branch are grouped in B blocks of Q symbols.
Each block is either space-time encoded (STTD, D-STTD, or LDC) or multiplexed
into several parallel streams (V-BLAST). It is important to remark that although
V-BLAST is not usually denoted as a space-time coding technique, the “ST code”
name will be used for all the schemes in this section. Finally, the spreading and
scrambling procedures are applied before the signal is transmitted.

The ST coding block of Figure 38.3 encodes the Q symbols of the bth block
of code k, denoted by {s(q,b,k) ∀q = 1, . . . ,Q}, in a matrix Sb,k ∈ CM×T , with T
being the number of channel uses before spreading. Figure 38.4 specifies the Sb

matrix for each MIMO transmission scheme (for the LDC code see details in [8]).
Table 38.1 includes the {Q,T ,M,N} values.
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Table 38.1. Selected {Q,T ,M,N} values for each transmitter scheme.

STTD D-STTD V-BLAST LDC

Q 2 4 2 8

T 2 2 1 4

M 2 4 2 3

N {1,2} {1,2} 2 2

Now we want to show that the signal at the receiver depends linearly on the
real and imaginary parts of the symbols. For that purpose, first note that matrix
Sb,k could be expressed as follows:

Sb,k =
Q∑
q=1

(
Aq Re

{
s(q,b,k)

}
+ jBq Im

{
s(q,b,k)

})
, (38.1)

with {s(q,b,k) ∀q = 1, . . . ,Q} the Q symbols of block b and code k, and with an
appropriate definition of matrices {Aq, Bq} ∈ RM×T specific for each transmitter
scheme [8]. After the spreading and scrambling procedure, the chip-level signal
transmitted through the M antennas corresponding to block b can be gathered in
matrix Xb ∈ CM×TF , with F the spreading factor. Assuming K active spreading
codes,

Xb =
K∑
k=1

(
Sb,k ⊗ cTk

)	 Cscr
b , (38.2)

where ⊗ denotes the Kronecker product, 	 the element-by-element matrix prod-
uct, ck ∈ CF×1 is the vector with the Walsh sequence of the kth spreading code,
and Cscr

b ∈ CM×TF is a matrix defined as follows:

Cscr
b = 1 · (cscr

b

)T
, (38.3)

and it applies the long complex scrambling code of vector cscr
b ∈ CTF×1. For con-

venience, matrix Xb is stacked in columns to build vector xb ∈ CMTF×1 as follows:

xb = vec
(

Xb
) = Db · sb, (38.4)

with Db ∈ CMTF×2QK and sb ∈ R2QK×1 defined, respectively, as

Db = [
vec

((
A1 ⊗ cT1

)	 Cscr
b

) · · · vec
((

AQ ⊗ cT1
)	 Cscr

b

)
· · · j vec

((
B1 ⊗ cT1

)	 Cscr
b

) · · · j vec
((

BQ ⊗ cT1
)	 Cscr

b

)
· · · vec

((
A1 ⊗ cT2

)	 Cscr
b

) · · · j vec
((

BQ ⊗ cTK
)	 Cscr

b

)]
,

sb = [
Re

{
s(1,b,1)

} · · ·Re
{
s(Q,b,1)

}
Im

{
s(1,b,1)

}
· · · Im

{
s(Q,b,1)

}
Re

{
s(1,b,2)

} · · · Im
{
s(Q,b,K)

}]T
.

(38.5)
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For each block b, the transmitter sends vector xb through the MIMO channel
and vector yb ∈ CNTF×1 is received. We now define vector x ∈ CBMTF×1 and vector
y ∈ CBNTF×1 as follows:

x = [
xT

1 xT
2 · · · xT

B

]T
, y = [

yT
1 yT

2 · · · yT
B

]T
. (38.6)

Assuming a frequency-selective MIMO channel with L resolvable paths with a
channel impulse response defined by the matrix set {H(l) ∈ CN×M ; ∀l=1, . . . ,L},1

the received chip-level signal is equal to

y = Hx + w, (38.7)

with H ∈ CBNTF×BMTF being the block convolutional matrix built with {H(l) ∀l =
1, . . . ,L} and w the additive noise. This additive noise models the intracell inter-
ference due to non-HSDPA channels, the intercell interference, and the thermal
noise. Equations (38.7), (38.6), and (38.4) show the linear relation between the
received signal and the in-phase and in-quadrature components of the symbols.
Therefore, relatively simple schemes can be proposed in the receiver design.

38.4. HSDPA MIMO receiver techniques

There are several sources of interference in HSDPA systems which combined with
a multiantenna transmission technique and a high-order modulation form a dif-
ficult environment for a mobile handset. A main source of interference is multi-
path propagation in the radio channel. Although the used Walsh spreading codes
are orthogonal, the received spreading waveform is a convolution of the channel
and the original spreading code. The distorted spreading codes are not orthogo-
nal causing signal leak between code channels. Also the fact that a neighbouring
cell can use the same carrier frequency makes it difficult to apply higher-order
modulation near the cell edge. The service range of high-speed connections may
thus be very limited. The third type of interference is the interference between
the transmit antennas of a MIMO downlink. Layered MIMO transmission tech-
niques, such as BLAST, completely rely on the receiver’s ability to separate the
parallel data streams, while diversity MIMO transmission applies an orthogonal
or near-orthogonal block code to provide the receiver with diversity while trying
to avoid interantenna interference.

The emphasis in this section is on practical HSDPA MIMO receivers that are
implementable with reasonable complexity and also on more advanced receivers.
In both cases the special requirements set by the current HSDPA air-interface are
taken into account.

1If L = 1, then the channel is frequency nonselective.
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38.4.1. RAKE

A RAKE receiver collects the signal energy given knowledge of the channel impulse
response and spreading codes. The RAKE receiver can be implemented using a
bank of code correlators the outputs of which are maximal-ratio combined using
estimated channel coefficients.

We define the vector ck,b,t ∈ CF×1 which gathers the spreading and scrambling
codes corresponding to code channel k and tth channel use of ST code block b,
with t = 1, . . . ,T . For each channel use t of block b, the output of the correlator
for code k decoupled to receive antenna n and synchronized to multipath l can be
written as

zn,l,k(bT + t) = cH
k,b,t · yn,l(bT + t), (38.8)

where yn,l(bT + t) ∈ CF×1 is obtained by taking chip-spaced samples from (38.7)
corresponding to symbol interval bT + t and multipath delay τl. The correlator
output carries information about the desired symbol through the applied space-
time code spanning over T symbol intervals. For instance, the correlator outputs
for STTD-encoded signal of the kth code can be expressed as (T = 2)

zn,l,k(bT) = h1,n,ls2,b,k + h2,n,ls
∗
1,b,k + ηn,l,k(bT),

zn,l,k(bT + 1) = h1,n,ls1,b,k − h2,n,ls
∗
2,b,k + ηn,l,k(bT + 1).

(38.9)

hm,n,l is the channel coefficient from antenna m to antenna n through multipath
l (time indices neglected) and ηn,l,k is noise. Correlator outputs for all N anten-
nas and L multipaths can be stacked into a single vector, zk(bT + t) ∈ CNL×1 for
t = 1, 2. Correspondingly arranged channel coefficient vector hm holds the chan-
nel coefficients corresponding to transmit antenna m. STTD decoder generates
estimates for the data symbols as

ŝ1,b,k = hH
1 zk(bT + 1) +

(
hH

2 zk(bT)
)∗

,

ŝ2,b,k = hH
1 zk(bT) − (

hH
2 zk(bT + 1)

)∗
.

(38.10)

The RAKE receiver does not try to suppress the various sources of interference
and relies on the interference suppression due to the despreading operation. In
case of diversity MIMO transmission, the orthogonality of the underlying space-
time block code (such as the STTD code) suppresses most of the interantenna
interference, but the interference caused by a multipath channel may prohibit the
use of higher-order modulation. Moreover, the interantenna interference due to
layered MIMO transmission causes inadequate performance of the receiver even
in flat channels.

38.4.2. Linear space-time equalisers

Linear channel equalisation can be used for restoration of the orthogonality of
the spreading waveforms. When equipped with multiple receive antennas, it is



794 MIMO systems for the HSDPA FDD mode UMTS service

Equaliser 1

Equaliser M

HS-DSCH
correlator

bank

HS-DSCH
correlator

bank

ST
decoder

&
H-ARQ

combiner

Deinterl.
& depunc.

Channel
decoder

ARQ command
Channel
estimator

Tap
solver

y1

yN
...

...

...

...

· · ·

· · ·

Figure 38.5. Linear multiantenna space-time equaliser for MIMO HSDPA channels.

also possible to suppress interantenna interference effectively through linear space-
time processing.

A key point in utilization of linear equalisation is to notice that, despite the
fact that multiuser chip vector x in (38.7) is formed as a sum of multiple spreading
codes each modulated by its own data symbol, it is enough to estimate the trans-
mitted multiuser chip vector to remove the interference from other code channels.
That is, information about the active spreading codes is not necessary if the trans-
mitted chip stream is considered to be a random sequence. This assumption is
also statistically valid due to the applied scrambling and simplifies the equaliser
solution significantly.

Figure 38.5 illustrates the structure of linear multiantenna equaliser for M-
by-N MIMO channels. Each BS transmit antenna requires its own space-time
equaliser. An option is to apply the linear minimum mean-square error (LMMSE)
criterion in the tap solver blocks decoupled to the equalisers. Given knowledge of
the channel, LMMSE tap solver finds a solution for system of equations

Cyum = σ2
x HδD, (38.11)

where um ∈ CBTFM is the unknown equaliser for transmit antennam, σ2
x is the chip

variance, and vector δD ∈ CBTFM is a unit vector with unity in the Dth position.
Note that δTDx is the multiuser chip to be estimated by the equaliser and HδD gives
the corresponding channel coefficient vector. In practice, equaliser vector um and
the matrices in (38.11) are truncated to correspond to a signal vector the length
of which is a function of the channel delay spread. Typically, a vector length of
three times the channel delay spread multiplied by the number of receive antennas
results in near-optimal performance.

The signal covariance matrix in (38.11) is defined as

Cy = E
{

yyH} = σ2
x HHH + Cw (38.12)
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assuming that the spreading codes are random. If deterministic spreading codes
were assumed, then (38.12) would be a function of the spreading codes. Since
scrambling changes the effective codes symbol-by-symbol, each chip interval
would require a different equaliser filter leading to intolerable complexity. It should
be noted that, in principle, also the covariance of the intercell interference and
thermal noise, Cw, should be known.

There are several algorithms for solving (38.11) such as direct matrix inver-
sion (DMI), Cholesky decomposition, and conjugate-gradient method. Also adap-
tive techniques are possible. The eigenvalue spread (spectral condition number)
of the underlying covariance matrix plays an important role in the stability or
convergence rate of the system solver. With multiple antennas and especially with
oversampling, a form of preconditioning might be useful.

Equaliser outputs are obtained as

x̂m(i) = uH
m(i) · y, m = 1, 2, . . . ,M, (38.13)

which is an LMMSE estimate of multiuser chip xm(i) for i = 1, . . . ,BTF. In gen-
eral, the approach is referred to as chip-equalisation. For HSDPA reception, it is
sufficient to decouple a single code correlator (per each HS-DSCH) to the equaliser
output to generate a symbol estimate, as shown in Figure 38.5.

If space-time coding was applied in the transmitter, the corresponding de-
coder uses the correlator outputs to recover the original symbols similarly to
Section 38.4.1. A difference is that a single path channel can be assumed due to
equalisation.

The equaliser suppresses the multiple access interference due to multipath,
interantenna interference, and intercell interference at the same time. A property
of a chip-equaliser is also that it suppresses interference from code channels whose
activity, power level, and spreading code is unknown to the receiver. Unfortunately,
the more there are transmit antennas and multipaths, the more there are signals to
be suppressed. This is why the degrees of freedom supplied by a limited number of
receive antennas are quickly depleted causing high residual interference in many
practical HSDPA MIMO environments.

38.4.3. Maximum-likelihood detection and interference
cancellation techniques

To improve the performance of linear space-time equalisation-based receivers,
nonlinear techniques can be considered. Many of the receiver algorithms proposed
for MIMO detection are modifications of the techniques proposed for multiuser
detection. Multiuser detectors often approximate ML criterion which, assuming
white Gaussian noise, finds an estimate for the unknown symbol vector s as

ŝ = arg min
s

(|z − Rs|2) (38.14)

in which z is the input data collected, for example, using spreading code correla-
tor bank similar to (38.8). Matrix R holds the information on how the symbols
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interfere with each other; a nondiagonal matrix indicates intersymbol interference
in the signal. Assuming, for example, ten HSDPA code channels and two MIMO
data layers using QPSK and code reuse results in more than 1012 combinations
which need to be tested for an ML solution even if the interference between suc-
cessive symbols is neglected. Going through all possible combinations is clearly
impossible and an approximation must be used.

A way to reduce the complexity is to concentrate on the most significant off-
diagonal elements of R. In case of layered MIMO HSDPA transmission, the dom-
inating interference is due to the parallel data symbols that are received with the
same propagation delay and spreading code. The residual interference due to mul-
tipath may however limit the performance of this approach.

Nonlinear interference cancellation (IC) techniques may be useful in approxi-
mating the ML solution especially with layered MIMO HSDPA transmission which
suffers from strong interlayer interference. IC methods in general involve three
basic steps: (a) generation of tentative symbol decisions, (b) regeneration of inter-
ference, and (c) interference cancellation. The processing can be repeated for the
detection of remaining symbols or for improving already detected symbol deci-
sions iteratively.

Parallel IC (PIC) generates tentative symbol estimates and subtracts the re-
generated interference between the symbols. Since the off-diagonal elements of R
are the source of the interference, PIC estimates symbols iteratively as

ŝ j = decision
{

z − (
R − diag(R)

)
ŝ j−1

}
, (38.15)

where j is an iteration index. Depending on the quality of the initial estimates,
the iterations may improve the symbol estimates. However, an aspect of HSDPA
MIMO systems is that there are only few (2 to 4) transmit antennas in the sys-
tem, which function as time varying interference sources to each other. Parallel IC
schemes tend to suffer from error propagation, if the levels of the interfering signal
streams vary significantly with respect to each other. Because of the time varying
nature of the layers and because there are only few of them, successive IC methods
may be more robust for MIMO communication.

A successive interference canceller structure suitable for layered HSDPA
MIMO reception with two layers (data streams) is illustrated in Figure 38.6. The
receiver applies ordered successive interference cancellation (OSIC) where the
strongest layer is first detected using a ST equaliser. The signal is regenerated and
cancelled from the input signal. This involves respreading of the data and filtering
with the channel response. After this, the next strongest layer is detected. It should
be noted that IC is performed to the original signal samples since chip-level equal-
isation has been assumed. Figure 38.6 shows that interference cancellation may
also be based on channel-decoded data. This requires that each layer is separately
encoded in the transmitter and reencoded prior its cancellation. This so-called
postdecoding IC is not a preferred option compared to predecoding IC due to its
higher complexity and delay requirements.
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38.4.4. Composite linear and nonlinear techniques

Interference cancellation techniques rely on an accurate signal model used for in-
terference regeneration and cancellation. A property of WCDMA downlink is that
it may simultaneously support several speech users and MIMO HSDPA users while
the receiver may have information only about the code channels intended for the
terminal in question. IC techniques may thus be ineffective in a practical system
since only a part of the signal can be modeled accurately.

A solution to the problem is combining linear and nonlinear methods: a linear
equaliser is able to suppress interference from all code channels without knowl-
edge of their activity while nonlinear techniques are more efficient in suppressing
interantenna interference. Such a receiver is illustrated in Figure 38.7.
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38.4.5. Turbo space-time decoding receivers

As mentioned in Section 38.4.3, the optimal ML receiver would be too complex. It
would involve a Viterbi algorithm of the effective supertrellis associated with the
concatenated encoders and the frequency-selective channel. Therefore, a subopti-
mal approach first presented in [9] based on the “turbo algorithm” is proposed.
As shown in Figure 38.8, the interleaver allows decoupling the demodulation stage
and the decoding stage. They exchange soft information iteratively until a hard
decision ŝ is made on the transmitted symbols.

The soft information is expressed using log-likelihood ratios (LLRs). The in-
put to each stage is the a priori LLRs denoted by LA(d). The a posteriori LLRs
denoted by LD(d) can then be calculated. The difference between these LLRs is
usually referred to as extrinsic LLR and is denoted by LE(d). The extrinsic LLRs
of each stage are used as the a priori LLRs for the next stage. This procedure is
repeated in an iterative fashion.

The decoder uses the well-known BCJR algorithm [10] which calculates the
a posteriori LLR of each bit as a function of the a priori LLR of all the other bits
and correlations between them induced by the encoder’s trellis. Similarly, the de-
modulation algorithm calculates the extrinsic LLR of each bit as a function of the
a priori LLR of all the other bits and the received samples. This algorithm was
first proposed in [9] and is based on the soft-input soft-output linear multiuser
detector of [11].

As shown in Figure 38.8, the inputs of each demodulator are the a priori LLRs
and vector yb, that is, the received chip-level signal of the bth space-time block.
According to (38.7) and (38.4), yb is equal to

yb = Ĥxb + HIBIxb−1 + wb = ĤDbsb + HIBIxb−1 + wb, (38.16)

with Ĥ ∈ CNTF×MTF the block convolutional matrix built with {H(l) ∀l=1, . . . ,L},
the term HIBIxb−1 that accounts for the interblock interference (IBI), and the noise
wb. As shown in Figure 38.9, the demodulator consists of a decision-feedback
equaliser (DFE), a maximum-likelihood estimator, and additional functions that
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transform symbols to LLR and vice versa. Firstly, the DFE assumes perfect chan-
nel knowledge and eliminates the IBI from yb. Therefore, the output of the DFE
denoted by ỹb is equal to

ỹb = ĤDbsb + wb = Gb · sb + wb, (38.17)

with matrix Gb ∈ CNTF×MTF defined as Ĥ · Db. For convenience, we now isolate
the contribution of the ith component of sb in ỹb to obtain

ỹb = Gbδisb + Gb
(

I − δiδ
T
i

)
sb + w, (38.18)

with δi the ith unity vector. Then, the linear estimator is derived from (38.18)
as the maximum-likelihood estimate of the ith component of sb assuming it to
be a deterministic parameter while taking all the other components as Gaussian
random variables. As detailed in [9], the resulting estimator of sb vector becomes

ŝb = ηsb + C̃sbGT
b C−1

y

(
yb − Gbηsb

)
, (38.19)

with ηsb = E[sb] and Csb = E[sbsTb ] being the second-order statistics of sb obtained
by transforming the a priori LLRs LA1 of the symbols delivered by the decoder in
the previous iteration (see Figure 38.9). C̃sb is a diagonal matrix with elements
1/λl, where λl are the diagonal elements of the matrix GbCyGT

b with

Cy = GbCsbGT
b + σ2

ωI, (38.20)

and σ2
ω the equivalent noise variance. This scheme assumes perfect channel knowl-

edge, although an extension of this receiver incorporating channel estimation was
proposed in [12].

38.5. Numerical results

This section evaluates the MIMO systems in the FDD mode UMTS HSDPA ser-
vice. For this purpose, several simulation results will be presented for different
combinations of the transmitter and receiver schemes presented previously and
detailed in Table 38.2.
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Table 38.2. Selected combinations of transmitter and receiver schemes.

1 TX STTD D-STTD V-BLAST LDC

(1 × 2) (2 ×N) (4 × 2) (2 × 2) (3 × 2)

RAKE — X — — —

Linear ST equaliser X — — — —

OSIC — — — X —

Reduced ML — — X X —

Turbo ST decoder — X — X X

Table 38.3. Simulation channel models.

Channel model Relative path powers (dB) UE velocity (km/h)

Ped. A 0;−12.7 3

Veh. A 0;−1.9;−7.3;−10.4;−10.9 50

The results are based on link-level simulations without adaptive modulation
and coding (MC) schemes or scheduling. However, H-ARQ technique is used for
some of the results. The HSDPA service may use QPSK or 16-QAM modulation
and three different channel coding rates, R = {1/3, 1/2, 3/4}. The selected modu-
lation and coding scheme together with the number of spreading codes assigned
to the HSDPA sets the maximum bit rate provided by the service. Two different
channel scenarios compliant with 3GPP specifications are considered: (a) pedes-
trian A (PEDA) channel with two chip-spaced multipath components and 3 km/h
mobile velocity and (b) vehicular A (VEHA) channel with five chip-spaced multi-
path components and 50 km/h mobile velocity. Table 38.3 illustrates the temporal
properties of the channel models.

38.5.1. Comparison of MIMO transmission and low-complexity
reception techniques

In this section, the performance of MIMO techniques is demonstrated using dif-
ferent transmission schemes with a receiver algorithm that has been considered
practical for the specific MIMO HSDPA system. The shown simulation results
point out the problems faced in MIMO channels but are not intended for making
any final conclusions about the relative performance of different MIMO HSDPA
schemes. Two receive antennas have been assumed to limit the complexity of the
terminal receiver. This basically limits the number of MIMO data layers to two.

Figure 38.10 shows data throughput with uncorrelated antennas in PEDA
channel as a function of geometry factor G, which is defined as a ratio of the av-
erage received base station power and intercell interference power. The factor is
large when the terminal is close to the serving base station and gets smaller near
the cell edge. Modulation and coding scheme with channel coding rate R was fixed
during the simulations and the HSDPA user had five code channels in use. The
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Figure 38.10. HSDPA throughput in uncorrelated MIMO PEDA channel, 80% HSDPA power alloca-
tion, 5 HSDPA code channels, and dual-antenna receiver.

simulations applied H-ARQ technique for packet retransmissions using so-called
Chase-combining at the receiver. Channel estimation was based on orthogonal
common pilot symbol streams transmitted from the base station antennas. The
base station transmit power is divided into three parts. Ten percent is allocated for
the CPICH channel, HSDPA code channels use 80% of the total power, and the re-
maining 10% is for speech services. Note that the transmit power is evenly divided
between the transmit antennas.

Figure 38.10 shows how the throughput increases with G until the maximum
data rate of the specific MC scheme is reached. Surprisingly no significant differ-
ences between the MIMO schemes can be seen. The receiver for 4 × 2 D-STTD
scheme applies a symbol-level maximum-likelihood (ML) detector that neglects
interference due to multipath but optimally takes into account the interference be-
tween parallel STTD code blocks that use the same spreading code. The dual-layer
2 × 2 V-BLAST scheme uses OSIC receiver since signals from two transmit an-
tennas can be separated with a dual-antenna receiver. Note that post-decoding IC
was not used in OSIC receiver. The simple STTD diversity transmission achieves
the same nominal peak data rate by using 16-QAM instead of QPSK used by the
layered MIMO schemes. The results show that STTD performance is comparable
to layered MIMO schemes although simple RAKE receiver has been used.

The results are totally different in VEHA channel which has five resolvable
multipaths. Figure 38.11 shows that V-BLAST using OSIC receiver is able to sup-
press the multipath interference to some extent and the interlayer interference
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Figure 38.11. HSDPA throughput in uncorrelated MIMO VEHA channel, 80% HSDPA power allo-
cation, 5 HSDPA code channels, and dual-antenna receiver.

while D-STTD with the simplified ML receiver suffers from the multipath prop-
agation when a weak channel code is used. The RAKE receiver used with STTD
transmission also neglects the multipath interference and, thus, has similar prob-
lems as D-STTD.

Assumption of uncorrelated transmit and receive antennas favours diversity
schemes and especially layered MIMO schemes. In addition, the number of active
HSDPA code channels may be unrealistically low compared to the used HSDPA
power allocation of 80% used in Figures 38.10 and 38.11. In Figure 38.12, the
HSDPA transmit power is divided between ten code channels while the antennas
are spatially correlated. Two parallel layers transmitted from correlated antennas
cannot be separated reliably by using the OSIC receiver with two strongly corre-
lated antennas. The figure also shows V-BLAST results with an ML receiver similar
to the used D-STTD receiver. Its performance is much better than that of OSIC
indicating that the linear processing used in OSIC receiver is inefficient with cor-
relating antennas. In addition, linear suppression of the interfering layer causes
loss of diversity order even with uncorrelated antennas.

D-STTD benefits from the diversity of the STTD code and outperforms V-
BLAST while pure STTD transmission achieves slightly better performance. The
figure also shows a SIMO (single-input multiple-output) performance curve with
single-antenna transmitter and dual-antenna ST equaliser, which was discussed
in Section 38.4.2. Especially in high G region, the method is superior to other
methods.
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Figure 38.12. HSDPA throughput in correlated MIMO PEDA channel, 80% HSDPA power allocation,
10 HSDPA code channels, and dual-antenna receiver.

Taking into account the problems caused by significant multipath propaga-
tion as was shown in Figure 38.11 and the problems caused by antenna correlation,
even more complex receivers may be required to make layered MIMO techniques
work reliably in a practical HSDPA environment. With a small number of receive
antennas, conventional single-antenna transmission with a channel equaliser at
the receiver may offer the best performance-complexity trade-off. STTD offers
transmit diversity but makes channel equalisation difficult due to introduction
of the second transmit antenna.

38.5.2. Simulation results with the turbo space-time decoder

The simulation results for the STTD scheme with M = 2 and N = 1 at the trans-
mitter and the turbo space-time decoder at the receiver are first presented. In this
subsection, the antennas are assumed to be spatially correlated and no packet re-
transmissions are considered. Figure 38.13 shows the throughput in kbit/s ver-
sus Eb/N0 in a PEDA channel at 3 km/h for one HSDPA user with different MC
schemes. Figure 38.14 shows the same kind of results but in the VEHA channel
at 50 km/h. In these simulations, both the intercell and intracell interferences are
modelled as zero-mean white Gaussian noise (see [13] for details).
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Figure 38.13. Throughput for STTD 2 × 1 and PEDA channel at 3 km/h for one single HSDPA user
with K = {1, 5, 10} spreading codes for QPSK and 16-QAM modulations and coding rate 1/2.
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As expected, the MC schemes with QPSK modulation require a lower Eb/N0

to attain the maximum rate than the ones with 16-QAM. Moreover, if we compare
the two MC schemes with the same maximum bit rate of 2.4 Mbps, it can be seen
that the one with QPSK needs 2.5 dB less power to achieve the maximum rate.
Another remark is that the receiver performs almost independently of the number
of spreading codes of the HSDPA user in the PEDA channel, that is, all the MC
schemes with the same modulation attain the maximum rate almost with the same
Eb/N0. In the VEHA channel, this property also holds for the MC schemes with
QPSK but fails for the MC schemes with 16-QAM, which is due to their higher
sensitivity to multipath interference.

A significant parameter to evaluate the results is the maximum Eb/N0 that the
MIMO system can attain for a given HSDPA power percentage, denoted hereafter
by (Eb/N0)max. This value is equal to the Eb/N0 only when the intracell interference
is present, and is not affected by the used channel profile. Assuming that 80% of
the available power is assigned to the HSDPA user, (Eb/N0)max for the MC schemes
used in Figures 38.13 and 38.14 is usually much greater than the minimum Eb/N0

required to attain the maximum throughput. For instance, (Eb/N0)max for the MC
scheme of 2.4 Mbps with QPSK modulation is 8 dB, which is higher than the 2 dB
needed to achieve the maximum rate. The most critical case is the MC scheme
with the 4.8 Mbps maximum rate, because the (Eb/N0)max is equal to 5 dB, which
is lower than the minimum Eb/N0 required to attain the maximum rate, especially
in the VEHA channel. Therefore, the effective data rate attained by this MC scheme
will be lower than the theoretical 4.8 Mbps. In practice, this means that this MC
would be rarely scheduled.

Figures 38.15 and 38.16 show the throughput curves for the LDC scheme with
M = 3 and N = 2 at the transmitter and the turbo space-time decoder at the re-
ceiver in a PEDA channel at 3 km/h and in a VEHA channel at 50 km/h, respec-
tively. The achieved performance is rather disappointing in the PEDA channel even
with a QPSK modulation. For instance, the same MC scheme in the PEDA chan-
nel needs 5 or 6 dB more than in the VEHA channel to attain the maximum rate.
Since the PEDA channel at 3 km/h is a slowly fading channel, the LDC MIMO sys-
tem designed to achieve a relatively high multiplexing gain performs poorly. The
MIMO systems with high multiplexing gains perform reliably only in fast fading
channels. In such a channel, the receiver deals with several realizations of the chan-
nel impulse response within one code block and therefore, the error probability is
not only limited by the probability of the channel outage but by other aspects such
as the noise and the spatio-temporal channel encoder. This phenomenon is even
more critical in case of V-BLAST with M = 4 and N = 4. Detailed results for
4 × 4 V-BLAST system with the presented turbo space-time decoder can be found
in [13].

38.5.3. Conclusions

Application of MIMO techniques in the HSDPA environment has been shown
to be difficult. The main cause for the problems is the multipath channel often
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encountered in CDMA-based systems. The complex structure of the multipath
propagated signal makes linear separation of the parallel data streams a challeng-
ing task. On the other hand, nonlinear maximum-likelihood techniques suffer
from very high complexity unless the signal model is artificially simplified. This,
however, causes residual interference that may compromise the performance.

An option is to decouple linear and simplified nonlinear processing to over-
come the weaknesses of the two techniques as was described in Section 38.4.4. An
even more complex approach is to further apply iterative processing by using the
presented turbo space-time decoding approach studied in Section 38.4.5. The sim-
plest transmission schemes, such as single antenna or STTD transmission, seem to
offer the best trade-off between performance and receiver complexity as long as
only a few receive antennas can be considered practical in a mobile receiver.
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AMC Adaptive modulation and coding

BS Base station

CDMA Code division multiple access

CPICH Common pilot channel

CRC Cyclic redundancy check

DFE Decision-feedback equaliser

DSCH Downlink shared channel

D-STTD Double-STTD

FDD Frequency division duplex

H-ARQ Hybrid automatic repeat on request

HS-DSCH High-speed DSCH

HSDPA High-speed downlink packet access

IBI Interblock interference

IC Interference cancellation

LDC Linear dispersion codes

LLR Log-likelihood ratio

LMMSE Linear minimum mean-square error

MC Modulation and coding

MIMO Multiple-input multiple-output

ML Maximum likelihood

OSIC Ordered successive interference cancellation

PEDA Pedestrian A

PIC Parallel IC
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QPSK Quadrature (quaternary) phase-shift keying

SIMO Single-input multiple-output

ST Space-time

STTD Space-time transmit diversity

TTI Time transmission interval

UE User equipment

UMTS Universal mobile telecommunications system

UTRAN Universal terrestrial radio access network

UTRA UMTS terrestrial radio access

V-BLAST Vertical-BLAST

VEHA Vehicular A

WCDMA Wideband code division multiple access

3GPP Third Generation Partnership Project

16-QAM 16-quadrature amplitude modulation
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39.1. Introduction

While the first breakthroughs in multiple-input multiple-output (MIMO) research
were mostly of theoretical nature, the past few years reflected a significant progress
in application-oriented MIMO systems. Meanwhile, MIMO techniques are under
intense discussion in the standardization bodies for wireless local area networks
(WLAN), wireless metropolitan area networks (WMAN), and cellular communi-
cation systems of third generation (3G). Above all, “MIMO” will probably become
mandatory in fourth-generation systems (4G) with high spectral efficiency. More-
over, the first prestandard MIMO products for WLANs are already commercially
available on the mass market.

Despite these auspicious indications, numerous open questions on how to ef-
ficiently implement MIMO systems still remain. For example, optimized topology
of compact antenna arrays, cost-effective large-scale integration of multiple radio-
frequency (RF) branches, multichannel analog-to-digital (AD) conversions, algo-
rithm complexity versus performance tradeoffs, appropriate protocol designs, and
last but not least low-power consumption and chip die will be persistent research
and development topics for the next years.

Nowadays, development of communication systems is achieved either with
specialized software packages (digital part) only, or by successively improving pro-
totype chips through multiple test runs (analog part). While the digital part (base-
band (BB) processing) is primarily faced with a limited chip die and low power
constraints, the reduction of the algorithm complexity without significant perfor-
mance loss is most often in the foreground. The analog part (RF processing) con-
fronts its limitations by physical effects so that designated circuit design expertise
is mandatory. Hence, with some exceptions, the conventional interface between
the analog world and the digital world is usually well defined in such a way that
the all-embracing development can be separated into two major parts. The clear
advantage of such a separation is the split of complexity into two seemingly inde-
pendent tasks facilitating the overall design. Quite the contrary, “MIMO” requires
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a closer alliance between the analog and the digital world, because of the addi-
tional interactions among them, for example, adequate consideration of antenna
coupling in the baseband. This may largely prevent the complexity splitting and
reveals the need for a MIMO platform covering simultaneously all components of
a communication link. In other words, a close team play among the RF and the
BB worlds seems to be required for successful MIMO development. Thus, a corre-
sponding MIMO development platform has to possess a large degree of flexibility
and modularity to take into account as many real-world limitations as possible.
Needless to say that the computational performance should be close to the state
of the art. Last but not least, a MIMO platform hosted by an academic institu-
tion should be obviously of educational value in order to inspire scientific novices,
foster teamwork, and improve communication skills.

Hence, our aim was the development of a flexible and modular MIMO plat-
form satisfying the following major needs:

(i) multistandard capability;
(ii) RF controllability by dedicated BB links;

(iii) state of the art in high-speed data transmission;
(iv) algorithm testing and development in real-world environments (i.e., of-

fline mode);
(v) algorithm testing and development under real-world constraints (i.e.,

online mode);
(vi) educational value.

Since “MIMO” is without doubt a multidisciplinary field of research, a close col-
laboration among different experts is essential in order to rapidly progress to-
wards the targeted goals. The German RF-design group of the Californian com-
pany ATMEL cares about the analog MIMO front ends, the English enterprise
SUNDANCE developed the baseband hardware in a modular manner and, Duis-
burg’s Smart Antenna Research Team (SmART) assembles the hardware, carries
out the measurements, and primarily focuses on MIMO algorithm development
and testing.

The unifying platform is called SmarT Antenna Real-time System (STARS)
and is shown in Figure 39.1.

STARS is split into independent devices, so that not only classical multiuser
scenarios can be investigated but also cooperation among users becomes feasible.

The aim of this section is to explain STARS in such a deep detail that the
reader is equipped with a thorough knowledge to place him into the position of
setting up a MIMO testbed by his own. Hence, we do not focus on performance
of algorithms (this is done at several other places within this book), but describe a
testbed from various other perspectives, that is,

(i) the STARS basic concept, processing modes, technical data, network
topologies;

(ii) the hardware for baseband (BB) and radio-frequency (RF) processing,
internal and external interfaces, periphery;

(iii) the software for digital signal processor (DSP) and field programmable
gate arrays (FPGAs) development, project, and revision control;
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Figure 39.1. Presentation of STARS at EUSIPCO 2004 in Vienna, Austria.

(iv) the system debugging;
(v) the evaluation of real-time requirements;

(vi) the synchronisation as a major algorithmical challenge for an online
MIMO testbed, including coarse and fine timing acquisition, carrier fre-
quency synchronisation, tracking, and its implementation;

(vii) the STARS “little brother” testbed with educational value;
(viii) some exemplary results.

A conclusion and an outlook finish this contribution.

39.2. Overview

STARS offers a rich variety of state-of-the-art modules for processing, analog-to-
digital conversion, digital-to-analog conversion, and logging of signals, assisted by
a comprehensive set of software tools like a multi-DSP real-time operating system
(RTOS), DSP development tools, software development kits (SDKs), and FPGA
development tools. A microcontroller-based transparent interface to control and
setup different analog RF front ends (IEEE 802.11b,g,a; UMTS) facilitates the tar-
geted flexibility. Four independent units each equipped with multiple antennas
enable to investigate multiuser scenarios, point-to-point links, ad hoc networks, as
well as infrastructured networks (networks with access point/base station). There-
fore, several system configurations can be envisioned.

The integration of powerful FPGAs and DSPs beside large memory modules
makes STARS feasible for testing MIMO algorithms not only with recorded real
data but also for real-time systems meeting real-world needs. This is of particular
relevance if a feedback link from the receiver to the transmitter and/or cooperation
among multiple users or systems are under consideration. Furthermore, the facil-
ity to log data on high sampling rates (105 MHz) with suitable resolution (14 bits)
permits, beside system debugging, to some extent even channel sounding. The
complete system, including host PCs, can be remotely controlled over local area
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network (LAN) using TCP/IP, which also supports its use in an isolated measure-
ment chamber.

39.2.1. STARS concept

Before the underlying concept of STARS is illustrated, the properties and limita-
tions of today’s processing devices, like DSPs and FPGAs, are briefly revisited.

DSPs provide a specialized core with multiple-functional units, which is op-
timized for digital signal processing operations like filtering and transformations.
These operations can be accomplished either in a floating-point number format
or a fixed-point number format. In order to fully exploit the provided hardware,
scheduling of the resources is mandatory. Indeed, the DSP obtains most of its
power from advanced software pipelining, hardwired instructions, and specialized
instruction set. Another relevant feature is the memory architecture. To ensure
that the DSP core can fetch instruction and data in parallel, the Harvard archi-
tecture is typically chosen. This architectural concept has been modified and im-
proved over the past decades, for example, by introducing a cache hierarchy and
allowing dual data accesses. Beside highly optimized code in assembly language
written by hand, the C/C++ language facilitates DSP programming.

The technological barriers of DSPs lie in the inefficient bit-level operation and
in unavoidable sharing of the DSP core, which limit the parallelism of operation.
In addition, the restricted data transfer rate to the external memory interface is a
typical bottleneck in high-speed signal processing.

Programmable logic devices (PLDs) like FPGA are today a feasible alternative
or an extension to DSPs. One advantage of FPGAs concerning MIMO is the ability
to provide special hardware structures in parallel, and to handle high data rates
without affecting the other implemented algorithms. They provide true bit-level
operations and have almost no restrictions concerning the word width. Neverthe-
less, an FPGA loses flexibility in programming in contrast to a DSP. There is a wide
variety of techniques to design and simulate hardware systems, ranging from gate-
level schematics up to functional-level C-like description languages (for instance,
SystemC or VHDL). Unfortunately, all such techniques require distinct develop-
ment experience of such systems. Automatic tools can help to evaluate an approach
and may alleviate the experience burden.

In conclusion, FPGAs are the processing devices of choice for regular and sel-
dom varying algorithms, especially if they have to operate at high data rates. DSPs
in contrast are more appropriate if the algorithm is less regular and often varying
over time, but require only limited computational demands. To take advantage of
both technologies, STARS is based on a mixed FPGA/DSP concept.

Basic concept. The basic concept of STARS is shown in Figure 39.2. The block dia-
gram is organized in stages, representing the processing stages of a transceiver. The
processing stages are connected by either analog cables or digital buses. These bus-
es must be able to handle the required data rate, which depends on the resolution
and conversion rate of analog-to-digital converters (ADCs), digital-to-analog con-
verters (DACs), and on the number of antennas.
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Figure 39.2. Basic concept for a 4 × 4 transceiver.

The first stage consists of the RF modules mixing the signals of each antenna
from RF to BB (in-phase signal (I) and quadrature (Q) signal). A common clock is
adopted in order to provide each mixer with synchronized oscillator signals so as
to avoid individual frequency offsets. The RF modules are controlled by a micro-
controller providing a transparent interface between the BB processing controller
(implemented on DSP) and the RF components. This generic approach eases an
exchange of RF modules, for example, to investigate different wireless standards.
Following the receiver path, the next stage consists of the ADCs triggered by a
common sampling clock derived from the common clock signal. The succeeding
FPGA stage allows high-speed parallel data processing for regular and seldom-
varying processing tasks. Therefore, the FPGA stage covers the complete digital
MIMO front end, that is, hosting per antenna the filtering operations, the syn-
chronization of time and frequency, the basic signal demodulation, and all other
regular processing operations. The FPGA operates on the incoming high-data-rate
digital signal and reduces the data-rate stepwise, so that the subsequent DSP stage
is not overstrained. In the DSP stage, all less regular MIMO processing takes place,
that is, algorithms which are under study. The DSPs are also used to control and
setup all components of STARS.

The transmitter path is opposite to the receiver path, but it might be rea-
sonable to share the DSP-based processing power among the transmitter and the
receiver to some extent. The upload of firmware to the FPGA stages and the con-
figuration of ADCs or DACs are done by an internal communication link. The
microcontroller for the RF modules is controlled over a 3-wire bus (SPI) provided
by the DSP stage.

The components contained in the gray box represent the real-time system
for baseband processing, which is mounted in a host PC offering also the power
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supply. The host PC is used to initialize the system, to upload applications to the
real-time components, and to provide hard-disk space for data and applications.
Using the PCI bus, data transfer between the real-time components and the host
PC is possible. The host PC further allows remote control of the whole system over
LAN using TCP/IP.

39.2.2. Processing modes

Based on the presented concept, we introduce two main modes which are devel-
oped in parallel in a step-by-step manner.

The first mode is the so-called offline mode, where preprocessed digital data
are transmitted from memory and received data are stored into memory. The re-
quirement here is that the memories must be accessible in real time by the ADC
or DAC, respectively. The FPGA stage can be skipped and is replaced by fast mem-
ory modules. The DSP stage only acts as controller; it provides access to the host
for uploading/downloading data and while being responsible for the setup of the
ADC, DAC, and RF modules. This mode is especially reasonable for algorithm test-
ing on logged real data and also for system debugging purposes. However, it does
not allow deeper insight into the system behavior, for example, how the receiver
interacts with the transmitter or impacts of multiuser scenarios like cooperation
among users. Nevertheless, this mode is a rather convenient starting point for de-
velopment and is a favorable way to analyze nonidealities like RF impairments and
their cancellation.

In the second mode, the so-called online mode, the whole processing is done in
real time, so it will allow us to study the system behavior in multiuser scenarios (see
Figure 39.3) like ad hoc networks, infrastructured networks, and point-to-point
links with interferers, and also point-to-point links with transmission adaptation
by feeding back information. Also the cooperation among multiple users requires
real-time processing and can be studied within this mode.

In order to assist a step-by-step development of such a real-time system, we
introduce a hybrid or partly-online mode which is strongly related to system debug-
ging. In this intermediate mode, memory modules, acting as independent buffers,
can be connected with almost any stage of the system. They allow data record or
data playback in real time. For example, the memory modules can be placed di-
rectly after the ADC stage to log the data, to store them for later analysis, or for
later playback by feeding the data directly into the FPGA stage. Alternatively, the
modules can be placed after the FPGA stage, if, for example, the synchronization
has already been validated. Again, the resulting data stream can be recorded for
succeeding offline processing and analysis.

39.2.3. Technical data

The major technical details of STARS are pointed out in Table 39.1.
The possible MIMO topologies mainly depend on the used analog interface

to the RF front ends. If an intermediate frequency (IF) is used, only one ADC (or
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Figure 39.3. Network topologies.

DAC) per antenna path is required, which gives from the hardware point of view
the possibility to double the number of antennas on the cost of additional digital
processing. In case of zero-IF modulation/demodulation, two ADCs (or DACs)
are required per antenna path, because the inphase (I) and quadrature (Q) signals
have to be converted. It is therefore called in the following I/Q interface.

In general, additional mechanical constraints (space, number of bus connec-
tors, and so on) give further constraints to the possible number of antennas.

Table 39.2 highlights the possible number of systems assuming an I/Q inter-
face depending on the number of receive antennas, number of transmit antennas,
and occupied signal processing resources.

39.3. Hardware platform

39.3.1. Hardware for baseband processing

STARS baseband processing hardware consists of modules mounted on so-called
carrier boards and manufactured by Sundance Ltd. The modules are intercon-
nected using over-the-air cabling and carrier-board connections allowing flexible,
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Table 39.1. STARS technical data.

ADC/DAC

Overall number of channels 24/24-2/2 per module

ADC/DAC

DAC

Conversion rate Up to 160 MSPS/400 MSPS (interp.)

Resolution 16 bit

Baseband processing

Front end

Processing device Xilinx Virtex-II 4000-5

Overall system gate count 4 × 4 M = 16 M + FPGAs on DAQ/DSP modules

External memory 8 MB (ZBTRAM)

Back end

Processing devices
TI TMS320C6416@600 MHz

TI TMS320C6713@225 MHz

Overall calculation power, peak
28 800 MIPS (fixed-point DSPs)

8100 MFLOPS (floating-point DSPs)

Overall DSP memory (internal/external) 7 824 kB/816 MB

Independent memory modules

Capacity 4 × 1 GB

Maximum data rate 100 MHz × 32 bit

Operating modes Real-time logging, real-time playback

Table 39.2. STARS possible MIMO configurations.

Number of

systems
Receive antennas

1 2 3 4 5 6

Transmit

antennas

1 4 4 4 3(4) 2(3) 2(3)

2 4 4 4 2(3) 2 2

3 4 4 d 2 2 2

4 3(4) 3 2 1(2) 1(2) 1(2)

5 3 3 2 1(2) 1 1

6 3 3 2 1(2) 1 1

scalable, and powerful processing architectures. The carrier boards provide access
to the PCI bus of the host PC and can carry up to four Sundance modules (based
on Texas Instruments Module (TIM) specifications). Changing the host bus to
other bus standards, for example, cPCI or VME, is possible by exchanging the car-
rier boards.

Four categories of modules are employed by STARS:
(i) ADC and DAC modules;

(ii) FPGA modules;
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(iii) DSP modules;
(iv) memory modules.

All modules, except for the FPGA modules, employ a supplementary FPGA
to provide external and internal interfaces and the modules own firmware. Both
types of interfaces will be pointed out within the next section. Typically, these sup-
plementary FPGAs are not fully occupied by the present firmware, so that the pro-
grammer can incorporate his own functions to some extent.

The DAQ modules offer two-channel ADC and DAC. The ADC (2x AD6645)
allows a resolution of 14 bit and a maximum sampling frequency of 105 MHz. The
data are gripped by the Sundance high-speed bus connector (SHB) and forwarded
by this bus to the targeted module. The DAC (AD9777) shows a 16-bit resolu-
tion at an input rate of 160 megasamples per second (MSPS). It also features an
interpolation filter to achieve the DACs maximum rate of 400 MSPS. The DAC
data are allocated by a second SHB connector. The on-module Xilinx Virtex-II
FPGA (loaded from PROM or JTAG) provides further firmware allowing, beside
communication interfaces, complete control of all ADC/DAC features and system
debugging facilities. Additional user pins are provided for extra connections, for
example, automatic gain control (AGC). The module provides 50Ω single-ended
analog inputs and outputs, external triggers, and external clocks, which can be
deployed on behalf of the internal ones.

The pure FPGA modules make use of a Xilinx Virtex-II XC2V4000-5, with
4 million system gates as reconfigurable hardware resource and provide 2 MB of
external zero bus turnaround (ZBT-)random access memory (RAM). Four SHB
connectors are available for module interconnection. The programming is done
over a communication link to a DSP module or can be done using JTAG.

The DSP modules use either one TI TMS320C6416 (fixed-point) clocked with
600 MHz or two TI TMS320C6713 (floating-point) clocked with 225 MHz. Flash
memory on the DSP modules can be used to store programs and configurations
especially for the on-board Xilinx Virtex-II XC2V2000-4 FPGA also existent on the
DSP modules. The TMS320C6416 module provides 8 MB of external ZBT-RAM
and around 1 MB of internal memory. Two SHB connectors can be deployed for
module interconnection. The dual TMS320C6713 module shows 128 MB of exter-
nal memory and 256 kB of internal memory per DSP. It offers two SHB connectors
(one per DSP) and one direct SHB connection between the two DSPs.

The memory modules exploit a Virtex-II Pro XC2VP7 and offer 1 GB mem-
ory to store numerous snapshots of data even at 100 MHz sampling frequency.
The firmware also facilitates playback of stored data in real time. It can also be
interconnected with all other modules offering SHB connectors.

39.3.2. Platform interfaces

For a modular rapid prototyping platform like STARS, the interfacing plays a
rather important role. Such a platform must provide different kinds of interfaces
for internal high-speed data transfer, interfaces for internal communication, and
interfaces for control and setup of external peripherals (e.g., RF front ends, host).
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Aim of this section is to give an overview of the most relevant interfaces and to
point out the facilities to add further interfaces. Full knowledge of all specifica-
tions (including the source code of interface cores) is needed for future interface
modifications or improvements.

Internal interfaces. The internal interfaces of the platform are mainly dedicated
for communication between the involved Sundance TIM modules and for setup
purposes. The interfaces are managed by the TIM’s FPGA firmware, which can
be reprogrammed for customizing the interfaces if required. Sundance therefore
grants access to the interface sources codes on request.

(i) The communication port (CP) can connect two TIMs together to provide
a bidirectional 8-bit wide path for exchanging streams of 32-bit values at about
20 MBps. This is the basic communication method for all TIMs and is usually
used to load programs into processor TIMs and configuration of TIMs offering
A/D, D/A, memory, and others.

(ii) The Sundance digital bus (SDB) is a 16-bit parallel data link that allows
transfer at up to 200 MBps using a ground interlaced signal cable. Like the CP, the
SDB is accessed as 32- bit interface, which is presented at the connector as pairs of
two 16-bit accesses.

(iii) The Sundance high-speed bus (SHB) is the second generation of the Sun-
dance digital bus (SDB). The SHB can be used as a custom-design 60-way I/O port
from the FPGA or can be configured as 2×16-bit SDB ports, 1×8-bit and 1×32-
bit or 5 × 8-bit ports. The maximum speed for the SHB is rated up to 200 MHz
(800 MBps) using Virtex-2 FPGAs fitted on the module sites. Between DSP mod-
ules and others, typically a 2 × 16-bit port or a 1 × 32-bit port rated at 100 MHz is
used, which leads to a transfer rate of about 400 MBps.

For all mentioned interfaces there are usually no restrictions on the direction
of transfer, as the hardware device will automatically switch from reading to writ-
ing as necessary. By using the FPGA firmware, all communication devices appear
as operating on 32-bit values—so a virtual 32-bit interface is used. In case of the
DSP, a communication device is a set of memory-mapped status, control, and data
registers, which the DSP reads and writes to access the communication resource.
The firmware implementation determines how these bits are presented on physical
interface—the connector. This may involve a conversion process, for example the
CP interface takes the 32 bits of the virtual interface and transmits them to the CP
connectors in four sequential lumps of eight bits.

External interfaces. Thanks to the mixed approach of DSP and FPGA, several in-
terfaces can be used to control or communicate with external peripherals or the
host PC. The TI DSPs of the C6000 family know several communication standards
off the shelf (e.g., SPI, GPIO1) which are accessible on I/O pin headers of the
TIM modules. The FPGA modules also provide beside JTAG access over a pin
header some user I/O pins on the SHB connectors. In general, it is thereby possi-
ble to create specialized and fast interfaces using the signals presented on the SHB

1General-purpose input/output.
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connectors. In addition, an external buffered CP and a JTAG connector for ex-
ternal debugging are present on the carrier boards. Interfacing to the host PC is
done using the global bus (32-bit wide), which interconnects a TIM module to the
PCI-bus of the host PC. Usually this is the root DSP module. Data transfer rate to
the host PC is 60–100 MBps, which is directly supported by the Sundance software
tools and the 3L Diamond real-time operating system (RTOS).

39.3.3. RF front end

ATMEL’s AT86RF240 is a fully integrated, low-cost RF 2.4 GHz IEEE 802.11b stan-
dard direct-conversion transceiver for wireless LAN applications. It combines ex-
cellent RF performance at small size and current consumption. The transceiver
combines low noise amplifiers (LNAs), receiver (Rx) I/Q mixers, transmitter (Tx)
up-converters, Rx and Tx filters, power amplifier (PA) driver, voltage controlled
oscillator (VCO), synthesizer, and autonomous automatic gain control (AGC),
which also includes antenna diversity, all fully digital controlled. The number of
necessary external devices is limited to only a few devices.

The transceiver is able to operate with nearly every baseband (BB) and medi-
um access controller (MAC) combination existing in the market. The circuit con-
tains four main blocks: receiver, transmitter, synthesizer, and periphery.

Transceiver control. Configuration registers serve as control elements for the ana-
log circuit blocks. The registers are able to set currents and voltages controlling
transceiver modes, timing, frequencies, and gain levels. A SPI 4-wire bus is able
to write/read the registers. Before the transceiver is able to work, certain initial-
izations are necessary. After power on, a device initialization takes place and loads
the registers according to a predefined table. Then the transceiver can be set to the
following

(i) Sleep mode (all circuit blocks are powered down).
(ii) Standby mode (only bias system and internal clock reference block are

active).
(iii) Filter calibration mode (automatic filter calibration, tunes filters to de-

sired filter behavior independently from process parameter spread).
(iv) Synthesizer mode (VCO and PLL synthesizer are powered up and chan-

nel setting is done).
(v) Tx mode (synthesizer mode and all Tx path circuits switched on).

(vi) Rx mode (synthesizer mode and all Rx path circuits switched on); this
mode also contains different AGC modes:
(1) AGC control (automatic (successive approximation) or manual gain

setting (gain map table) via SPI of all Rx blocks);
(2) antenna diversity (enabling or disabling).

Receive chain. The receive chain consists of LNA, I/Q mixer, lowpass filter (LPF),
and several AGC amplifiers. All circuit blocks are based on differential architecture.

The transceiver covers the whole 2.4 GHz band. The Rx path exhibits a total
gain range of 10 dB–100 dB, with coarse gain tuning in 6 dB steps and fine gain
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tuning in 0.376 dB steps. The sensitivity is −84 dBm for 11 Mbp/s complementary
code keying (CCK) signals. The noise figure and 1 dB compression point are 3.5 dB
and −5 dBm, respectively. The LNA shows four gain modes: 0 dB, 6 dB, 12 dB, and
18 dB. In the high-gain operation, inductive emitter degeneration is used. This
topology also provides low input impedance, good noise behavior, and a good
linearity. In the lower gain modes, resistive emitter degeneration is used. The core
cell consists of differential modified common emitter with cascaded transistors
providing high isolation between LNA input and output.

The external LNA input impedance shows 50Ω differential. An external balun
transfers 50Ω single-ended board impedance to this differential input port im-
pedance. The I/Q mixer is a doubly balanced Gilbert-cell-type mixer. The gain
control for the gain modes 4 dB, 10 dB, 16 dB, and 22 dB is realized by switching
between different gain-mode input transistor pair configurations and their bias
currents in both frequency modes. The DC feedback amplifiers are used to remove
any undesired differential DC offsets from the output, which is essential in direct-
conversion receiver topology. In addition to compensating bias current change due
to gain mode switching, a constant current control loop is introduced. Its purpose
is to maintain constant load bias current in order to have fixed output RC pole.
The process variations over the output RC pole are compensated via the 5-bit con-
trolled CDAC. The I/Q output of the mixer is DC coupled to the following LPF
stages.

The Rx lowpass filter is a 6th-order active leapfrog structure with Butterworth
characteristic. The corner frequency is 5.5 MHz. Each stage contains an opera-
tional amplifier. RC calibration circuit, described under periphery, tunes the cor-
ner frequency independently of temperature and process variations.

Three succeeding AGC amplifiers level up the Rx signal. Each is switchable
in 6 dB gain steps. The first amplifier is adjustable at 3 dB, 9 dB, 15 dB, and 21 dB,
while the second and the third amplifier realize gains at 0 dB, 6 dB, 12 dB, and
18 dB. The amplifier chain is completed by the fine gain stage. To match the needs
of different BBs, an output buffer is added delivering a nominal I and Q output
voltage of 1 Vpp differential at 0 dB gain setting. The output voltage can be ad-
justed in a range of −9 dB to 2.25 dB in steps of 0.76 dB.

The main advantages of direct-conversion receivers—lower number of neces-
sary circuit blocks, easy to integrate lowpass filter, and use of operational amplifier
with relatively low upper frequency corner—show at least one essential drawback:
DC offsets at Rx path output would be converted into a frequency offset in the
BB which results in higher error vector magnitude of the desired signal. The DC
feedback circuit reduces the different offset sources in a direct-conversion receiver.
DC feedback offset compensation is distributed over the gain stages.

Transmit chain. The transmit path consists of fine-gain amplifier, followed by Tx
low pass filter, I/Q up-converter, and PA driver.

While the fine-gain amplifier serves as level shifter and gain matching circuit,
the following lowpass filter behaves similar to the Rx filter: the same Butterworth
filter type but only of 5th order with a corner frequency of 8.25 MHz. The same RC
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calibration circuit, described under Receive chain, tunes the corner frequency in-
dependently of temperature and process variations. The complex filtered baseband
signal is up-converted with an I/Q up-converter. The differential voltage is con-
verted into a differential current. This allows to maximize the input voltage swing
and a direct drive of the up-conversion mixer. The power amplifier control block
based on the Gilbert cell architecture controls the output power of the following
PA driver by more than 30 dB in 1 dB steps. The PA driver delivers 5 dBm power at
50Ω differential output impedance. An external balun transfers 50Ω single-ended
board impedance to this differential output port impedance.

Synthesizer. The main parts of the synthesizer are VCO and fractional N PLL. The
VCO is a differential 5 GHz LC oscillator with a fully integrated resonator. The
VCO is serving the 2.4 GHz band. Dividing by two and following the quadra-
ture generator provide the necessary differential I/Q local oscillator (LO) input
signal for the I/Q mixer stages. Coarse and fine tuning elements have been used
to cover the wide frequency range and to fulfill a high-frequency resolution. The
main reason using a combined analog and digital hybrid operating phase-locked
loop (Hybrid PLL) is to overcome tolerance, noise, and integration problems in
the VCO. The coarse tuning is realized by switching on and off parts of a capacitor
array, which also compensates technology variations; it gets the digital frequency
information directly from the digital PLL. The fine tuning is realized by a varac-
tor, which compensates frequency drifts due to temperature change too; it gets the
analog voltage from the analog PLL that adjusts the small frequency offset.

Periphery. Several supporting circuits are necessary to setup the right functional-
ity of the transceiver. The most important circuits have been described below. The
crystal oscillator delivers the time base for all time-dependent transceiver func-
tions. The complete oscillator has been integrated into the transceiver. Only the
22 MHz crystal and two additional load capacitances has to be added externally.
The RC calibration circuit tunes the integrated receive path lowpass filter, which
uses on-chip RC components to define the corner frequency. The time constant
must be calibrated because of the strong process dependence of the absolute RC
values (30%–40%). The transceiver is programmable via a 4-wire SPI bus conform
interface. The SPI of the transceiver operates only in slave mode. So data have been
transferred between transceiver and BB/MAC via radio’s registers.

Antennas. The STARS platform is equipped with omnidirectional, stacked half-
wave dipole antennas with a frequency range of 2350–2500 MHz and 7 dBi gain.

39.3.4. Interfacing the RF front end’s

Two connections to each RF module have to be realized: first the analog signal
path with a bandwidth of 10 MHz on each I and Q path, and second, a digital
connection to control the RF module itself.

For the analog path the RF module provides a so-called differential signal de-
sign interface for the Tx and Rx signals at each I and Q path. With this, two signal
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lines run from each signal source to the interface connector and to the connected
external component. The signal itself is included in the voltage-level difference be-
tween these lines. Any common voltage of both lines is removed. This interfacing
design is used for maximum noise rejection, whereas Sundance ADC and DAC
modules were delivered in single-ended signal design, when the signal is between
one line and module ground. This design is sensitive to noise error, because it picks
up environmental electrical activity.

So a single-ended-to-differential conversion has to be done at the transmitter
side and the opposite conversion at the receiver side. These conversions are realized
by wideband, single-ended-to-differential line drivers and differential-to-single-
ended line receiver. Such general-purpose converters are available on the market
as integrated circuits. Less external components are required for making use of
them.

For the digital control of the registers inside the RF modules, a 4-wire serial
peripheral interface (SPI) is applied. In order to interface up to four RF modules
to be controlled by one STARS DSP module, a SPI master controller is required. A
Texas Instruments TMS320C6713 DSP is assigned for this task. It is equipped with
one accessible multichannel buffered serial ports (McBSPs), which is configured as
the SPI master. It operates with a 440 kHz SPI clock frequency. The RF modules act
as SPI slaves. A resource-saving external microcontroller to transparently interface
up to four radio modules is under development.

39.4. Software platform

Among the hardware platform and its components, a rich set of software tools is
required to develop DSP- and/or FPGA-based applications in an efficient and fast
way. This section therefore points out the software platform and tools used within
the STARS project, including additional project support software like revision con-
trol for developed software.

39.4.1. DSP development tools

For a single processor system, TI’s Code Composer Studio (CCS) for the C6000
family of TI’s DSPs gives all tools needed for developing, analyzing, and debug-
ging DSP algorithms in an integrated development environment (IDE). It provides
a rich set of tools to profile and optimize the code. Together with TI development
starter kits (DSKs), we use the CCS for evaluating computational complexity of
single algorithms in a predevelopment process. The RTOS provides tools for de-
velopment of multiprocessor DSP-based STARS platform. Compilation, linking,
and debugging are still done using TI’s CCS, to which the RTOS adds a com-
prehensive framework for multiprocessor software development. The RTOS also
supports networks of mixed C6000 types and provides access to host services, C
standard I/O, and Windows GUI, from all DSPs in the system. It provides a multi-
processor, multithreading microkernel with preemptive, priority-based real-time
scheduling and a context switch time around 500 nanoseconds (200 MHz CPU).



T. Kaiser et al. 825

The transparent, deadlock-free communication between DSPs is independent of
network topology, which is configured in a single configuration file. It is thereby
possible to develop task-structured multiprocessor software on a single-processor
hardware and then later deploy the tasks on a multiprocessor hardware without
code changes, recompilation, or relinking. Data can be transferred between the
host and any DSP in the system over high-speed interprocessor links, leaving the
slow JTAG chain free for debugging. It also allows effortless parallelization of se-
quential code and hassle-free control of on-chip resources, like DMA channels,
host PC interaction, and peripheral interface.

39.4.2. FPGA development tools

For FPGA development, several design suites are offered by the market. Target-
ing at Xilinx’s Virtex-II family, three major players are well-known: Xilinx Cor-
poration with its integrated software environment (ISE), Mentor Graphics Cor-
poration with its FPGA advantage suite, and synplicity Inc. with its synthesis and
verification solutions.

Typically, they all support up to three most common hardware description
languages (HDLs): VHDL, Verilog, and advanced boolean equation language
(ABEL). VHDL stands for VHSIC (very high speed integrated circuit) hardware
description language. It is a language that describes a logic circuit by functions,
data flow behavior, and/or structure. The VHDL programming syntax is similar
to the ADA (similar Pascal) programming language, where the Verilog language is
similar to the C programming language. ABEL is simpler than VHDL and is es-
pecially used in low-complexity designs. Within the STARS project the in Europe
widely spread VHDL is used for FPGA programming.

A VHDL design begins with a so-called ENTITY block that describes the in-
terface of the design. The interface defines the input and output logic signals of
the circuit. The ENTITY block is followed by an ARCHITECTURE block which
describes the operation of a design entity by specifying its interconnection with
other design entities, by its behavior, or by a mixture of both. The VHDL language
groups the constants and the subprograms into a PACKAGE block. For customiz-
ing generic descriptions of design entities, CONFIGURATION blocks are used.
VHDL also supports libraries and contains constructs for accessing packages, de-
signs entities, or configurations from various libraries.

The VHDL language is related to other programming languages like ADA
or C. It has also the sequential statement like a loop or if-then-else enquiry. The
VHDL code is not a construct of a program which runs in a process but a function
which describes the logic block and is realized in a programmable logic device
(PLD). It provides several concurrent constructs that relate more closely to real
hardware design. The program for example written with C is executed sequen-
tially, which means that the next expression runs after the previous one, while
the VHDL code highlights the concurrency. Since in an actual digital system, all
small or large elements of the system are active simultaneously and perform their
tasks concurrently, the concurrency aspect of VHDL is heavily emphasized. In a
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hardware description language, concurrency means that transfer statements, de-
scriptions of components, and instances of gates of logical units are all executed
such that in the end they appear to have been executed simultaneously. Meanwhile
the VHDL language requirements also specify the need for software-like sequential
control which describes the internal operational details of the components or sub-
sections by sequential programming language constructs such as case, if-then-else,
and loop statements.

After the design is created by VHDL programming language it can be simu-
lated and synthesized to check its logical operation. SIMULATION is a base bones
type of test to see if the basic logic works according to design and concept. SYN-
THESIS allows timing factors and other influences of actual FPGA devices to effect
the simulation thereby doing a more thorough type of check before the design is
committed to the FPGA or a similar device.

The FPGA programming of the STARS platform is mainly assisted using soft-
ware tools offered by Xilinx Corporation, which are centralized in Xilinx’s ISE
Foundation software. The VHDL files and the schematic design files will be used.
The FPGA programming starts from writing different small blocks with VHDL
programming language. In the Project Navigator interface of the ISE, these VHDL
files can be converted into schematic symbols. By interconnecting all these small
schematic symbols and adding corresponding user constraints, the top schematic
file can be built.

The functionality of the sources can be verified by the ISE by using integrated
simulation capabilities, including ModelSim Xilinx edition and the HDL Bencher
test bench generator. HDL sources can be synthesized by using the Xilinx Syn-
thesis Technology (XST) as well as partner synthesis engines used standalone or
integrated into ISE. The Xilinx implementation tools continue the process into
a placed and routed FPGA or fitted CPLD, and finally produce a bitstream file
∗.bit for the device configuration. This bitstream file is the exact configuration file
that can be downloaded into the FPGA and implement the desired design into the
FPGA.

39.4.3. Simulink-based development of DSP & FPGA processing

Rapid application development (RAD) tools for fast prototyping are getting very
popular, because they are promising reduced learning time and project time. This
is done by integrating a system-based and block-oriented development, which is
hiding the high effort in programming of complex hardware and their interfaces.
RAD tools give also the possibility of hardware and software codesign by putting
simulation in software and real hardware together. A typical application is for ex-
ample the study of bit resolution effects in digital systems. RAD tools can there-
fore help to evaluate an approach, without getting deep into programming details,
which get necessary when tuning is required.

For DSP-based signal processing, Mathworks offers with Simulink and the
Real-Time Workshop (RTW) a seamless RAD tool for fast prototyping in DSP-
based systems. This approach also offers the possibility of hardware-in-the-loop
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simulation, where parts of the application may run on the target DSP and oth-
ers run on the PC. With the SMT6050, Sundance integrates this Simulink/RTW
approach to the Sundance platform concept. It is a software tool, which allows
even novice users to develop an entire application targeting Sundance hardware
within the Simulink environment and then to automatically generate target DSP
code in C programming language. Therefore, the SMT6050 includes a blockset for
Simulink providing an optimized library of routines supporting specific Sundance
interfaces for communication between DSPs, ADCs, and DACs present in the sys-
tem.

In Simulink, a model of the application could be developed and simulated
on the host computer. The application can consist of components running on the
DSP system, and/or components running on the host system. The part running
on the DSP platform could be for an embedded application and does not commu-
nicate with the host at all. On the other hand, the DSP application could exchange
data with Matlab running on the host and benefit from its powerful graphical and
functional resources or communicate with a host application also developed under
Simulink.

Following a similar approach for FPGA-based development with help of
Simulink, Sundance provides the SMT6040 hardware development tool, which
gives Simulink the capability of describing digital hardware circuits and systems.
The SMT6040 can generate VHDL code from Simulink diagrams and allows accu-
rate and fast cosimulation of the hardware subsystem interacting with associated
software subsystems and, when existing, with external devices and systems. This
gives the ability to describe, simulate, tune, debug and optimize hardware systems,
and eventually programming the FPGA board accordingly, in a straightforward
and transparent way. Therefore, an extended hardware blockset is supplied with
SMT6040, which supports (in hardware) most blocks from the basic Simulink
blockset and the full range of Sundance communication interfaces.

39.4.4. Project and revision control

Once multiple developers are sharing their code and work together on one or more
different projects or subprojects, it becomes obligatory to track the changes in soft-
ware and hardware. Revision software control is done by using the open-source
tool CVS (www.cvshome.org), which provides, combined with a graphical user
interface like WinCVS (www.wincvs.org) or TortoiseCVS (www.tortoisecvs.org),
a powerful and advanced framework for software development and revision of
documentation. Hardware changes are tracked within a logbook file, which could
also be tracked using CVS. As pointed out in the Five-Ones approach (see, e.g.,
[1]), a rapid prototyping team requires diverse experts, which are willing to share
their specific knowledge in a single team. The knowledge of our team members
covers advanced MIMO algorithms as well as hardware and software for DSP and
FPGA implementations. The ease-of-use platform is provided by using the Mat-
lab graphical user interface (GUI) facilities and binary file format to exchange and
store the configuration data and auxiliary information beside the transmitted or

file:www.cvshome.org
file:www.wincvs.org
file:www.tortoisecvs.org
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received data in one file. Revision control, documentation, and ease of use of hard-
and software are also the basics for international cooperation in research and de-
velopment using such a platform.

39.5. System debugging

In the previous sections, the conceptual design of the STARS platform and the used
hardware and software components are presented. With setting up the MIMO
platform, several challenges must be met to produce and verify the expected be-
havior of the platform.

In this section, we therefore like to point out some of these challenges and
their relation to system debugging:

(i) common clock for radio frequency and sampling;
(ii) automatic gain control issues;

(iii) measurements of usable analog system bandwidth;
(iv) insight to the on-air signal.

39.5.1. Providing a common clock

The RF front ends are equipped with a frequency synthesizer for the up-/down-
converter. The reference of the frequency synthesizer is a 22 MHz clock signal. In
order to synchronize multiple RF front ends, the same 22 MHz reference clock is
applied to all front ends on transmitter side or receiver side, respectively. There-
fore, it is ensured that a common radio frequency is used for transmitting or
receiving. For system debugging reasons, it is also possible to provide the same
22 MHz reference clock to the transmitter and receiver, thereby a transmission
chain with a negligible frequency offset is produced.

Basically the same is required for the ADC/DAC modules. Since each of the
used ADC/DAC modules consists of two already synchronized channels, all of the
used ADC/DAC modules are supplied with a common synchronized clock. This
ensures a synchronous conversion by each of the ADCs/DACs used. In addition,
a common trigger is used to obtain a fully synchronized data flow from/to the
ADCs/DACs.

39.5.2. Controlling the automatic gain control (AGC)

Usually an AGC is used to ensure that the analog signals are within the dynamic
range of the ADCs. In addition, multiple gain-controlled stages can be found
within the RF front end to prevent any of its components from being overstrained.
The AGC of the used RF transceiver chips are designed for single antenna opera-
tion and can run independently and autonomously of baseband processing. The
transceiver chip allows to digitally read back the state of AGC, to switch off the
AGC, and allows also fully digital control of gain stages by baseband processes.

In principle, two concepts of AGC in case of MIMO can be investigated.
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(i) Each antenna path has its own AGC running independently of all other
paths. Benefit is that the dynamic range of each ADC is optimized, but for later
MIMO processing, the gain in each path is required. Therefore it is mandatory to
have the ability to read back the state of each AGC.

(ii) The required gain of each antenna path is acquired and some kind of gain
controller decides for a gain setting to be used in all antenna branches. For exam-
ple, the strongest antenna path determines this setting. In MIMO processing, no
additional information is thereby required. One drawback of this method is that
dynamic range of all ADCs will not be fully exploited in all cases.

For system debugging purposes, the AGC is switched off and the gain settings
are then optimized by hand regarding the currently incoming signals seen on os-
cilloscopes. This method is of course only useful in case of system debugging. In
all other cases, the AGC have to react very fast to lock the currently received signal
power and hold this state until one frame is completely received.

39.5.3. Measurement of the usable analog system bandwidth

The usable RF bandwidth of every platform is limited due to several band limiting
filters like Rx and Tx filters in the RF front end. To determine the total usable band-
width, a digital sine wave signal with constant magnitude and sweeping frequency
is generated offline, loaded into the memory of the DAC module of the platform,
and transmitted using the offline mode of the platform. The received signal, af-
fected by all filters in the transmit-receive chain, is logged by the receiver for later
offline analysis. The total transfer function is obtained by analyzing the received
signal offline and determining the spectral components in the frequency domain.
Since the transmitted signal consists in the frequency domain of a sweeping im-
pulse with constant magnitude, the received signal also consists in the frequency
domain of a sweeping impulse but with damped magnitude due to the total trans-
fer function such that the total transfer function can be determined step by step.

39.5.4. Insight to the on-air signal

By simply connecting an antenna to the input of an adequate spectrum analyzer,
the on-air signal’s spectrum can be viewed. This method allows verifying the oc-
cupied signal bandwidth and is giving insight to possible distortions, interferes,
nonlinearities, and signal power situations. This convenient approach helps for
system debugging by probing the on-air signal in different positions.

In order to verify the on-air signals in the time-domain, a digital storage oscil-
loscope can be exploited in the same way, providing sufficient analog bandwidth,
sampling rate, and memory to store snapshots of signals for later analysis.

39.6. Evaluation of real-time requirements

One of the major challenges of STARS results from the real-time requirements. On
the one hand, a sufficient degree of flexibility can be achieved only by rather slow
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DSP implementations, on the other hand, high-speed algorithms have to be imple-
mented by programming-intensive FPGAs. The following two sections highlight
some basic aspects and show some first results for an IEEE 802.11a transceiver.

39.6.1. Real-time requirements of DSP

The response time (latency and execution time) for processing an OFDM symbol
according to IEEE 802.11a standard is 4 microseconds. On the DSP TMS320C6416
@600 MHz, 4 microseconds translates to 2400 cycle count. Designing the tran-
sceiver with this constraint is necessary to avoid dropped data or noise in the
output that will decrease the targeted performance. One conventional way to de-
velop real-time transceivers is to distribute bitwise (serial) software (SW) process-
ing tasks on a multiprocessor environment. However, the need for more than one
DSP and the interconnecting hardware (HW) significantly increase the develop-
ment cost. Consequently, a new real-time transceiver based on blockwise parallel
SW architecture is developed, which operates efficiently in a single processor envi-
ronment.

39.6.2. Real-time transceiver performance of DSP

The implementation of a bitwise processing SW for the transceiver gives the ex-
pected poor performance. A significant speedup comes from unrolling the loops.
However, this contributes a little towards satisfying the real-time requirement. A
spectacular speedup comes from the blockwise parallel processing. The blockwise
parallel SW architecture splits input data into 16-bit or 32-bit sliding window, de-
pending on the processing block, and processes the bits within each window in
parallel. The blockwise parallel SW architecture thus allows minimum cycle count
per bit, minimizes memory access, and maximizes first-level cache hit ratio. The
overall result is a dramatic speedup in cycle count per OFDM symbol for various
data rates as shown in Table 39.3. As can be seen, the highly optimized bitwise SW
for various data rates are 1.6 to 3.5 orders of magnitude slower than the corre-
sponding parallel SW.

The required number of DSPs for the two SW architectures per OFDM sym-
bol is also presented for comparison. It shows that at least three DSPs and the
interconnecting HW are required for the serial SW to operate in real time while
the parallel SW algorithm requires only one DSP. To extend the developed real-
time transceiver for real-time MIMO-OFDM, we propose to implement compu-
tation intensive tasks such as the interleaver, FFT, IFFT, and frequency and timing
synchronization on the FPGA module. This is expected to free the DSP for other
primitive control requirements and further improve the overall performance of a
target real-time MIMO-OFDM transceiver.

39.6.3. Implementation opportunities on FPGA

As mentioned earlier, the high-speed requirements for data processing motivate
the employment of FPGAs in order to accelerate the overall execution in the digital
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Table 39.3. Cycle count per OFDM symbol for different rates.

Data rate

(Mbps)
Modulation

Coding

rate

Cycle count
for the serial
SW
architecture

Required
DSP(s) for
the serial
SW in real
time

Cycle count
for the
parallel SW
architecture

Required
DSP(s) for
the parallel
SW in real
time

6 BPSK 1/2 1927 1 1176 1

9 BPSK 3/4 2109 1 1263 1

12 QPSK 1/2 2759 2 1472 1

18 QPSK 3/4 3006 2 1550 1

24 16-QAM 1/2 3744 2 1425 1

36 16-QAM 3/4 4533 2 1650 1

48 64-QAM 2/3 6001 3 1860 1

54 64-QAM 3/4 6169 3 1942 1

front end. With a high data-rate operation, most of front-end algorithms for cor-
recting RF impairments, filtering, channel equalization, and IFFT/FFTs, among
others, can be suitably implemented at the desired data rate.

In MIMO scenarios, the parallelism delivered by FPGAs is convenient for pro-
cessing signals arriving from different antenna branches. Thus, the overall sys-
tem throughput is improved by either replicating hardware structures for each
receiving antenna, by using multiplexing techniques for the data acquired in each
branch, or by pipelining the data paths while making use of the high board clock
speeds.

Internally, FPGAs are provided with logic resources that can be configured
as registers and memory banks, which help for queuing and intermediate storage;
logic and arithmetic functions; and dedicated digital multipliers distributed over
the chip area. The amount of resources available makes it feasible to synthesize cus-
tomized digital signal processing algorithms that execute in a concurrent model.
In addition, the high number of input/output pins (configurable for working at
different I/O standards, like CMOS, LVTTL, and so forth, with programmable I/O
impedance) enables the interfacing to external hardware elements like analog-to-
digital and digital-to-analog converters, digital signal processors, and even trans-
mission lines, building up complex high-performance systems. In such an ap-
proach, the FPGA can run parallel algorithms in hardware that relieve other pro-
cessing cores, like DSPs, from computational burden, leaving it for more complex,
control-oriented execution. For this, commercial off-the-shelf (COTS) and intel-
lectual property (IP) blocks developed by different manufacturers or providers are
thoroughfully tested and ready to synthesize which will improve the development
time.

Moreover, FPGA solutions are provided with facilities for generating highly
accurate and stable internal and external digital clock managers, which implement
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functions like digital locked loops, frequency synthesis, and clock distribution,
among others. With the help of these, common clocks can be generated to syn-
chronize MIMO components during testing and eventually in a final design, for
example, ADCs and DACs, reducing the complexity of synchronization algo-
rithms.

Among others, algorithms for solving signal impairments, like I/Q mismatch,
DC and frequency offset, power amplifier, and analog filters nonlinearities, in-
troduced in the analog radio front ends, are strong candidates for being imple-
mented in FPGAs. They produce unwanted negative effects, like the increase of
the bit error rate, interchannel and intersymbol interference, out-of-band emis-
sions, and performance degradation. Hence, the calibration of the RF part must be
performed in the digital front end of a communication system in order to improve
the system performance, before delivering the received data for further processing.
Other applications that are suitable for implementation in a pure hardware ap-
proach include fast Fourier transformations, digital filtering, and synchronization
tasks.

As first test case and for gaining experience in FPGA development we decided
to start implementing the synchronization unit as shown in Section 39.7.3. The re-
quired COordinate Rotation DIgital Computer (CORDIC) is a class of hardware-
efficient iterative solutions for calculating arithmetic, trigonometric, hyperbolic,
exponential, and their inverse functions.

The CORDIC algorithm can be used in general for tasks like channel esti-
mation and equalization, digital modulation and demodulation, and frequency
synchronization for fixed-point arithmetics. The algorithm uses elementary oper-
ations like addition, subtraction, and shifts to perform its task.

There are a number of ways to synthesize a CORDIC processor. The imple-
mentation depends on the speed versus computational complexity tradeoffs in
hardware. An iterative architecture is a direct translation from the CORDIC equa-
tions, it can be obtained simply by mapping each of the CORDIC equations in
hardware. Its disadvantage is that if implemented, it will require several layers of
logic and the result is a slow design that uses a large number of logic cells. A result
is produced only after all the iterations are completed.

The iteration process can be unrolled so that each of the processing elements
always performs the same iteration. The unrolled processor is easily pipelined by
inserting registers between the adder-subtractors. This results in a considerably
faster CORDIC processor but the need for FPGA resources increases.

The iterative parallel architecture can be seen in Figure 39.4. The schematic
contains 3 adder-subtractors, one for each equation, 2 variable-shift shifters, a
ROM, a counter, 2-bit inverters, some registers, and a controller that multiplexes
between the original inputs and the iterated values according to a control signal
generated by the counter. A clock input synchronizes the whole process.

Table 39.4 gives a summary of the device utilization. The target FPGA is a
XC2v4000-6-ff1152 Virtex 2 device. The whole implementation process was car-
ried out with help of Xilinx ISE (see Section 39.4.2).
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Figure 39.4. Parallel iterative CORDIC architecture.

Table 39.4. Device utilisation summary.

Selected device XC2v4000-6-ff1152

Number of slices 563 out of 23040 2%

Number of slice flip flops 316 out of 46080 0%

Number of 4 input LUTs 1019 out of 46080 2%

Maximum achieved frequency 123.84 MHz

39.7. An algorithm example

As a test case of the STARS platform, this section presents baseband processing al-
gorithms, which can be used at the receiver to recover the transmitted information.
In order to have a common notation, first a mathematical transmission model is
introduced.

39.7.1. SIMO OFDM system model

We consider a 1×Q SIMO transmission. In OFDM, data is transmitted blockwise.
An N-point inverse fast Fourier transform (IFFT) of Nu modulated subcarriers
sn(k) of the kth block is performed:

xi(k) =
Nu/2−1∑
n=−Nu/2

sn(k)ej(2π/N)in, 0 ≤ i ≤ N − 1. (39.1)
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To combat interblock interference (IBI), a cyclic prefix of length Ng is preceded
before the signal is digitally filtered and D/A converted. In a baseband model, the
signal is sent via the baseband radio propagation channel to the qth receive an-
tenna and filtered with the receive pulse shaping filter. Combining transmit filter,
channel, and receive filter yields the overall time-variant impulse response

hq(τ, t) =
L
q
c∑

l=1

h
q
l (t)δ

(
τ − τ

q
l

)
, (39.2)

where L
q
c is the number of relevant paths between the transmit and the qth receive

antenna.
After A/D conversion, the cyclic prefixes are removed and a fast Fourier trans-

form (FFT) is performed to demodulate the signals. In case of perfect synchro-
nization, the signal on the nth subcarrier is given by

d
q
n(k) =

N−1∑
i=0

ri(k)e−j(2π/N)in + v
q
n(k) = H

q
n(k)s

q
n(k) + v

q
n(k) (39.3)

with ri(k) denoting the received samples of the kth block and qth antenna and
H

q
n(k) being the channel transfer factor on the qth receive antenna and nth tone.

v
q
n(k) is assumed to be additive white Gaussian noise. For our testbed, the fol-

lowing system parameters are used concordant with the IEEE 802.11a standard:
N = 64, Nu = 52, Ng = 16, and Q = 2.

39.7.2. Synchronization algorithm

Synchronization in time is essential in any communication system. However,
OFDM-based systems make an additional demand on the synchronization unit as
even frequency rather than timing synchronization is more critical. In case of car-
rier frequency offsets (CFOs) which are caused by mismatches between transmitter
and receiver oscillators or Doppler effects, and also of sampling frequency offsets
(SFOs) between D/A and A/D converters, the fundamental principle of OFDM,
named the orthogonality between subcarriers, is destroyed. Hence, it is indispens-
able for a properly running system to estimate and compensate for carrier and
sampling frequency offsets. Also one major effect of oscillator phase noise—the
so-called common phase error (CPE)—must be eliminated.

Time synchronization involves finding the optimal position of the DFT win-
dow for demodulation. Usually, the cyclic prefix length is designed to be larger
than the channel impulse response length. Due to this margin, the performance
requirements are relaxed. If the OFDM block start is found to be within this mar-
gin, an imperfect DFT window position start causes only a constant phase rotation
for all subcarrier symbols. The phase shift cannot be distinguished from the chan-
nel influence and is estimated and compensated for by the channel estimation and
equalization unit.



T. Kaiser et al. 835

In principle, synchronization algorithms for SISO systems can be extended to
SIMO scenarios without major changes. Mostly, data-aided approaches are based
on the correlation between repeated signal parts which are provided by the IEEE
802.11a training structure and the cyclic prefixes. For the STARS platform, we
adopt the preamble of the IEEE 802.11a standard consisting of ten short and two
long training symbols [2].The synchronization procedure that we have chosen is
performed in several steps.

39.7.2.1. Coarse timing acquisition

Coarse timing synchronization is found by maximizing the metric (similar to [3])

m̂1 = arg max
m

∣∣∣∣∣
Q∑
q=1

Rq(m)
Eq(m)

∣∣∣∣∣
2

, (39.4)

where Rq(m) denotes the complex correlation sum and Eq(m) the signal energy on
each antenna branch. Rq(m) and Eq(m) are composed as the running sums:

Rq(m) =
m+Np∑
i=m

(
r
q
i

)∗
r
q
i+Np

(39.5)

Eq(m) = 1
2

(m+Np∑
i=m

∣∣rqi ∣∣2
+
∣∣rqi+Np

∣∣2
)

, (39.6)

with r
q
i being the ith received signal sample at antenna q including all nonidealities

and Np = 16 for the short training symbols. Since the metric turns out to form a
plateau, we detect the frame start on the falling slope of this plateau. The timing
on all branches is assumed to be the same such that diversity is used to increase
the estimation accuracy.

39.7.2.2. Carrier frequency synchronization

Since all receive antennas share a common oscillator, respectively, only one CFO
must be estimated and compensated. In the SISO case, most algorithms are based
upon the observation that CFOs only cause linear phase shifts of the received time-
domain symbols. Hence, frequency offsets can be estimated by “measuring” the
phase rotation. If there is only one CFO in SIMO, still this signal property can be
exploited. The effect of a CFO on the received signal r

q
i (k) for the ith time-domain

sample and kth block can be expressed as

r̃
q
i (k) = ej(2π/N)(k(N+Ng)+i) fε r

q
i (k), (39.7)

where fε is the (relative) frequency offset normalized to the subcarrier spacing
∆ f = 312.5 kHz.
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When the symbol timing is found, the CFO is estimated by (see [4, 5])

f̂ε = 1
2π

N

Np
∠

 Q∑
q=1

Rq
(
m̂1

) . (39.8)

Due to the limited acquisition range of | f̂ε,max| = N/(2Np) in (39.8), the estimate
for the frequency offset is found in two steps.

Step 1 (finding coarse estimate f̂ε,1). Assuming for the short training symbols that,
for example, N = 64, Np = 16, and a subcarrier spacing of ∆ f = 312.5 kHz, fre-
quency offsets in the range from −625 kHz to 625 kHz can be uniquely estimated.
This large range satisfies usual constraints. For many applications, the accuracy of
local oscillators is much higher. As the preamble offers ten identical symbols, we
average the estimates from as many symbols as are not distorted from the AGC
unit. Typically, half of them can be utilized. Once the coarse estimate is found, all

subsequent incoming symbols are multiplied by exp(−j2π f̂ε,1i/N) to remove the
CFO.

Step 2 (finding fine estimate f̂ε,2). Next, since the CFO is significantly reduced by
Step 1, we can use the long training symbols to improve the estimation perfor-
mance. The acquisition range for the long training symbols (Np = 64) is [−162.5,

162.5] kHz. Again, we multiply by exp(−j2π f̂ε,2i/N) to further reduce the fre-
quency offset.

The same estimator can be applied to the signal repetition due to the cyclic
prefix to track the CFO [6]. However, for our testbed, the CFO does not change
significantly during one burst and hence, only post-FFT processing (see Section
39.7.2.4) to track the blockwise phase rotation is necessary.

39.7.2.3. Fine timing acquisition

If needed, a fine symbol timing acquisition can be achieved by cross-correlating
the received symbols with the transmitted long training symbols tL,m:

R2(m) =
Q∑
q=1

i+Np∑
m=i

tL,m
(
r
q
m
)∗∣∣tL,m
∣∣2 , (39.9)

and finding the maximum of |R2| for m. For complexity reasons, the cross-correla-
tion is only computed a few samples around the coarse timing estimate.

39.7.2.4. Tracking

At the acquisition stage, the CFO was compensated such that it virtually produces
no intercarrier interference. However, a residual frequency offset δ fε still remains
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and rotates the phase linearly with time. Moreover, oscillator phase noise induces
intercarrier interference that cannot be eliminated with reasonable effort and—
which can be compensated—a common phase error constant for all subcarriers
and changing on a symbol-by-symbol basis [7]. Finally, imperfect sampling syn-
chronization between Tx and Rx clock generators affects the phase in a similar
fashion as CFOs. But the difference is that the phase increases linearly also with
the subcarrier index n:

d̃
q
n(k) ≈ ejΦCPE(k)ej(2π/N)k(N+Ng)(δ fε+n fs,ε)d

q
n(k), (39.10)

where ΦCPE(k) and fs,ε denote the CPE of the kth block and the SFO, respectively.
As a conclusion, the phase must be tracked by post-FFT processing. On the

four pilot subcarriers p which are embedded in the OFDM block structure, the
phase rotation from block to block is estimated by

∆Φ̂
q
p(k) = ∠d

q
p(k + 1)sp(k)

sp(k + 1)d
q
p(k)

∀p ∈ [−21,−7, 7, 21], (39.11)

and eliminated in a phase-locked loop (PLL) fashion.2 Here, we used d
q
p(k) =

H
q
psp(k) implying that the channel is constant over several blocks. sp(k) are the

known transmitted training symbols and d
q
p(k) the received symbols on the pilot

subcarriers. The phase rotation for other subcarriers is found by linearly interpo-
lating between the equally spaced pilot subcarriers to account for the SFO.

In spite of negligible ICI, SFO reduces the bit error ratio significantly if not
further considered. The SFO continuously shifts the position of the FFT window.
Once the FFT window start has left the undisturbed part of the cyclic prefix, in-
terblock interference occurs. Therefore, we estimate the SFO from (39.10), feed
this information back, and eliminate the SFO in the time domain by interpolation.
A less complex alternative would be to regularly correct the FFT window position
according to the estimated SFO.

39.7.3. Implementation of synchronization unit

Equation (39.4), which provides the coarse timing acquisition, is a continuously
running sample-based calculation that makes use of the diversity obtained from
each receive antenna branch. In each of these branches, the terms in (39.5) and
(39.6) need to be calculated; for both terms, in each receive branch, the procedure
described below needs to be performed.

The received signal in each antenna needs to be delayed byNp samples in order
to be able to correlate the complex samples of the repeated signal parts. This delay-
ing can be implemented efficiently with RAM memories, and such structures will
be dominant over other components in terms of hardware size. Note that the sepa-
ration by Np will be different when correlating the samples from the short training

2The estimated phase rotation can be filtered to reduce estimation errors. However, note that this
measure also filters out the contribution of the common phase error.
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Figure 39.5. Metric calculation structure per antenna branch.

symbol and from the long training symbol. Both cases can be implemented in the
same memory, if it has the size of the longest training sequence extension and if it
is provided with a selectable output. If the in-phase and quadrature components
of the samples are represented by B bits, the total storage required for delaying
the samples for Q receivers will be Q × Np × 2 × B bits. Assuming a 1 × 2 SIMO
transmission, Np = 64 and 16- bits samples for in-phase and quadrature parts, the
whole delaying memory size will be 4096 bits.

Once the samples are delayed, they will be correlated and their energies will be
calculated by means of multipliers, according to the metrics in (39.5) and (39.6).
The correlation term, which is a complex value that contains the phase informa-
tion for estimating the CFO, will be summed up over the last Np samples; the
same is done for the energy term, which will be a real value. Both cases of run-
ning sums require buffering of length Np per antenna branch, containing either
complex-valued samples (see (39.5)) or real-valued samples, what can be imple-
mented with the RAM memories described before. The running sums and the
metric calculation structure is represented in Figure 39.5.

Hence, the metric for calculating the coarse time acquisition will require 3
buffers per antenna branch. As the number of receiving antennas increases, the
whole storage will increase linearly.

At each sample period, (39.4) is calculated. In order to avoid false detections
of the preamble, this value is continuously compared with a threshold appropri-
ately chosen. Once above the threshold, the maximum of (39.4) is searched for
by comparing each new calculation with the previously recorded maximum, and
updating the maximum when required.

Once the frame start has been found, (39.8) can be used for estimating the
carrier frequency offset. On fixed-point format, the phase calculation is properly
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realized by a CORDIC system. Since the frequency offset is common for all trans-
mitters and receivers, only one estimation needs to be performed. The frequency
offset can be compensated for all the samples arriving from this instant on. The
correction takes place by multiplying the new arriving samples from each receive

branch by exp(−j2π f̂εi/N). This can be achieved by calculating the real and imagi-
nary parts (cosine and sine) of the argument and using complex multipliers at each
receive branch. The same CORDIC used before can be employed for correcting the
incoming samples from all the antenna branches from just one sine and cosine cal-
culation; thus, the complexity is not considerably increased as the number of the
receive antennas grows.

With the preamble structure of the IEEE 802.11a standard, coarse and fine
carrier frequency offsets estimation can be performed. By use of appropriate con-
trol signals, the same hardware construction can be used for performing this task.
A state machine will be necessary to keep track of the preamble under considera-
tion.

39.7.4. Channel estimation

It is well known that the overall system performance highly depends on the quality
of the channel estimation. Therefore, a relatively high amount of data must be re-
served for training symbols. As already mentioned, the same frame structure as in
IEEE 802.11a is used in the STARS testbed (for SIMO transmission). The pream-
ble is designed to assist an initial channel estimation. BPSK modulated symbols on
four pilot subcarriers, which are equally spaced on fixed positions in the frequency
grid, serve to track the channel. We consider the SIMO transmission model intro-
duced in the previous chapter. The channel is estimated on each antenna branch q
and subcarrier n, separately. The estimation approach to minimize the least square
error yields

Ĥ
q
n = d

q
n/tL,n ∀n, q (39.12)

with tL,n denoting the training symbols in the frequency domain. Note that we
average the result over the two long training symbols. Taking into account the
limited maximum allowed burst duration of 4096 blocks in IEEE 802.11a and the
fact that the channel changes slowly with time in indoor scenarios (Doppler fre-
quencies fD < 5 Hz), it is sufficient to track the channel only each several hundred
OFDM blocks (on the pilot subcarriers). Depending on the available processing
complexity and the availability of the channel statistics, different kinds of interpo-
lating techniques (such as Wiener filtering) in time and frequency directions can
be used. Note that the phase rotation is estimated each block anyway.

39.7.5. Equalization

One major advantage of OFDM is the simple receiver structure, especially the
equalization unit. As the broadband channel (20 MHz bandwidth) is split into 64



840 A MIMO platform for research and education

almost flat subchannels (312.5 kHz bandwidth), the equalization in OFDM turns
to a simple division per subcarrier (zero forcing):

ŝ qn(k) = [
Ĥ

q
n(k)

]−1
d
q
n(k) ∀n, q. (39.13)

To exploit spatial diversity in SIMO systems, three possible strategies can be ap-
plied: selection combining (SC), equal-gain combining (EGC), and maximum-
ratio combining (MRC). In SC, only the strongest (in terms of the highest SNR)
branch signal passes. In EGC, antenna signals are averaged. In MRC, all antenna
signals are utilized advantageously such that signals with higher SNR are empha-
sized, which leads to a superior performance in all situations. The receive signals

r(1)
n (k) and r(2)

n (k) are weighted with w(1)
n and w(2)

n :

ŝn(k) = w(1)
n ŝ (1)

n (k) + w(2)
n ŝ (2)

n (k) (39.14)

with w(1)
n = 0 (or w(2)

n = 0) for SC, w(1)
n = w(2)

n for EGC, and w
q
n ∝

√
SNR

q
n for

MRC.
If the noise power is the same for all antenna branches, it follows

√
SNR

q
n ∝

|Hq
n |.

39.8. First measurements with STARS

In the following, first measurement results of a SIMO transmission gained from
the STARS testbed are presented. QPSK and 16-QAM modulated symbols embed-
ded into several successive frames (with idle periods of 100 samples in between) are
transmitted over air. One transmitted frame consists of 1 000 OFDM blocks—the
frame structure used for this transmission is in agreement with the IEEE 802.11a
standard. Two receive antennas are used to improve the system performance by
spatial diversity.

39.8.1. Synchronization

The synchronization procedure is carried out as described in Section 39.7.2. An
example for the metric of the coarse timing versus the sampling instants m is de-
picted in Figure 39.6.

Clearly, as almost close to the noise-free result, the detection of the frame
as well as of the exact position of the frame start can be performed already very
precisely such that fine timing synchronization is not needed. However, if the co-
herence bandwidth of the radio propagation channel becomes less, also fine tim-
ing synchronization may be required. After estimating and correcting the CFO up
to less than a few kHz, the cyclic prefix is removed and the signals are demodu-
lated blockwise by the FFT. In order to account for the low Doppler frequencies
in indoor scenarios and to save demanding computations, the channel estima-
tion is carried out only at the frame start. Nevertheless, the effects of the residual
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Figure 39.6. Metric of coarse timing synchronization.
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Figure 39.7. Estimated phase rotation ∆Φp(k).

synchronization imperfections, mainly causing phase shifts, must be taken into
consideration block by block. The estimated phase rotation of the symbols on the
four pilot subcarriers in the frequency domain versus the block index k is shown
in Figure 39.7. Three effects can be seen: a linear increase of the phase (caused by
the residual CFO), a different slope (caused by the SFO), and random fluctuations
(caused by the CPE and estimation errors). In a PLL structure, the phase is dero-
tated blockwise. However, from the estimated phase shift, a very precise estimate
of the residual CFO (here, 5.3 kHz) and the SFO (here, 1.2 kHz) can be obtained
and fed back to the pre-FFT processing unit. Here, the estimated residual CFO can
be compensated (if the error is higher than that of the (limited) bit resolution) for
the next incoming symbols. Moreover, the SFO can be corrected via interpolation
or by continuously shifting the FFT starting position.

39.8.2. Equalization

The channel estimates Ĥ
q
n for both receive antennas and all subcarriers are esti-

mated by the use of the long training symbols according to the algorithm which
was presented in the last section. The estimates for the two different long training
symbols are averaged to decrease the estimation variance. With the estimates H

q
n ,
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Table 39.5. Properties and parameters of educational testbed.

Conversion

number of A/D & D/A channels 2 (each)

A/D sampling rate 48 kHz

D/A conversion rate 48 kSPS

Up-/Down-conversion

Performed Digitally

Carrier 8 kHz

Bandwidth Approx. 4 kHz

Rx/Tx Filtering RRC with roll-off factor α = 0.22

Signal processing devices

2x TI DSK TMS320C6713@225 MHz

with 16 MB SDRAM (external),

with AIC23 audio codec,

and with USB interface to host

Loudspeaker 2x active PC speakers with amplifier

Microphones 2x SONY F-V120 (60-12.000 Hz)

Testbed modes
Offline mode (pre- and postprocessing on host using Matlab)

Real-time (under development)

the equalized symbols are obtained by zero forcing. Figure 39.8 shows a constella-
tion diagram example of demodulated QPSK symbols on each branch, separately
and combined. Obviously, by combining the information of both antenna signals
(here MRC is used), a better result from the exploited diversity is achieved.

Another example of a constellation diagram for a 16-QAM transmission is
given in Figure 39.9, already the maximum-ratio combined symbols are displayed.
Note that here the raw BER without coding is presented. The BERs are significantly
decreased by coding, which is required in any OFDM system (coded OFDM—
COFDM).

39.9. Educational project

STARS is accompanied by an educational project for our undergraduate students
in order to attract and inspire them for technology-based MIMO research.

The project is denoted as STARS “little brother” (Figure 39.10). Based on TI’s
DSKs for TMS320C6713 and its included audio codec, we built up an audio trans-
mission link facilitating the hardware access by students. Because the right and
left stereo channels can be deployed independently, a 2 × 2 MIMO system is im-
plemented, opening a wide range for studying basic MIMO algorithms. Trans-
mission can be done alternatively over cable, by using an audio equalizer to ad-
just frequency selectivity, or over air by using two loudspeakers and two micro-
phones. The basic properties and parameters of the educational testbed are shown
in Table 39.5. The system setup is pointed out in Figures 39.11 and 39.12.

Measurements have shown that the used hardware elements (microphones,
loudspeaker) introduce severe frequency selectivity. The channel transfer function
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Figure 39.8. Constellation diagrams of demodulated QPSK symbols, BER = 0 (without coding). (a)
Antenna signal 1. (b) Antenna signal 2. (c) Signal after combination.
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Figure 39.9. Constellation diagram of demodulated 16-QAM symbols, BER ≈ 10−3 (without coding).

Figure 39.10. Educational 2 × 2 MIMO testbed.
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Figure 39.11. Educational testbed transmitter.
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Figure 39.12. Educational testbed receiver.

seen by the baseband processing can be measured with help of the so-called Chu
sequences [8], which are defined for an even sequence length N as

an = ejπ(n2/N), n ∈ {0, 1, . . . ,N − 1}. (39.15)

Chu sequences have been designed to show up almost perfect autocorrelation
properties (single peak). For channel measurement, it is beneficial that they exhibit
a constant envelope in time domain and that the magnitude of their frequency
transform is also constant over all frequencies. Thereby frequency selectivity of
the effective channel of the testbed can be easily measured by transmitting these
sequences. Fine timing synchronization is not required if the sequence is repeated
multiple times and only an FFT window of the length of sequence is used. The
position of the FFT window is thereby irrelevant; it must only be placed within
the detected frame. A different position of the FFT window only results in a phase
shift very similar to OFDM systems employing cyclic extension. A power delay
profile can be obtained by transmitting a single, but long, Chu sequence and us-
ing a matched filter to it. Here the good autocorrelation properties of the Chu
sequence can be exploited. Sample measurements of the frequency selectivity seen
by the baseband processing are given in Figure 39.13.

Open-loop space-time diversity transmission system was implemented first
as a MIMO/MISO demonstration for our educational testbed. It uses the offline-
mode of the system, so all pre- and postprocessing of data is done on the host PCs
with help of Matlab. Transmitter and receiver are fully independent to each other,
so all synchronization tasks (frame detection, fine timing, and frequency offset
estimation) have to be done.

In contrast to STARS, where special emphasize is given to IEEE 802.11a, we
here focus on a CDMA system as given in 3GPP TS 25.213 Release 5, but all system
parameters are properly downscaled to meet the requirements of the testbed. The
relevant parameters are given in Table 39.6. Space-time encoding and decoding
follow the ideas given in [9].

The frame detection and initial synchronization are achieved by using a pre-
amble and a common matched filter approach. A RAKE receiver structure is used
to equalize the received signals. The channel estimation is done by exploiting the
primary Common PIlot CHannel (pCPICH) and the secondary Common PIlot
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Figure 39.13. Baseband channel attenuation—transmitter’s (Tx) left (L) and right (R) audio channel
to receiver’s (Rx) left (L) and right (R) audio channel. (a) Tx R ≥ Rx R. (b) Tx R ≥ Rx L. (c) Tx L ≥ Rx
R. (d) Tx L ≥ Rx L.

Table 39.6. Signaling parameters of MISO/MIMO demonstration.

Signaling method
Direct sequence spread spectrum (DS-SS)

based on 3GPP TS 25.213 and 25.211

Release 5

Equalizer RAKE receiver

Data modulation QPSK

Chip rate 4 kchips/s

Spreading factor (SF) 16

Channel estimation Based on pCPICH and sCPICH

Synchronization Preamble (Gold sequence)

MIMO/MISO technique deployed Alamouti coding with/without MRC

CHannel (sCPICH) as given in the specification 3GPP TS 25.211 Release 5. Both
provide permanent phase references and allow to distinguish between the two
transmit sources (loudspeakers). With help of this phase reference, the frequency
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Figure 39.14. Constellation diagram for MISO Alamouti, measured received SNR = 24.41 dB.
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Figure 39.15. Constellation diagram for MISO Alamouti, measured received SNR = 29.81 dB.

offset is estimated and compensated by phase derotation. All operations are done
in a frame-by-frame manner.

Sample received constellation diagrams for MISO Alamouti and MIMO
Alamouti are given in Figures 39.14 and 39.15. The measured received SNRs indi-
cate a significant edge of MIMO Alamouti over MISO Alamouti of 5.4 dB. The dis-
tance between transmitter and receiver was 200 cm. The transmissions take place
in a typical office environment with line-of-sight (LOS). For simplicity, only the
dominant LOS path is assigned to a single RAKE finger of the RAKE receiver. The
same receive data set was used for decoding MISO and MIMO. In case of MISO,
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only one of the received signals was decoded. In the MIMO case, both received sig-
nals were decoded and maximum-ratio combining (MRC) was exploited to gain
performance from the receive diversity.

39.10. Conclusions and outlook

Aims of this contribution were to demonstrate a general concept for a flexible and
multiuser capable MIMO testbed, to explain the essential requirements, to illus-
trate the most useful tools, to exemplary derive necessary algorithms, to underpin
its educational value by the “little brother,” and finally to show first results.

After dealing with the baseband architecture, the role of DSPs and FPGAs and
their splitting inside the STARS were pointed out. Next, the most relevant tech-
nical data of STARS, the analog front end and its possible MIMO configurations,
were illustrated. The succeeding section covers the system equipment and the mea-
surement setup. Synchronization of STARS has been explained afterwards. Finally,
some results are shown under real-world conditions. In conclusion, this chapter
can be seen as an introductory construction manual targeted to engineers and sci-
entists who are planning to set up their own MIMO testbed.

Abbreviations

3G Third generation

3GPP TS Third Generation Partnership Project Technical Specification

4G Fourth generation

A/D Analog-to-digital

ABEL Advanced boolean equation language

ADC Analog digital converter

AGC Automatic gain control

BB Baseband

BER Bit error rate

BPSK Binary phase-shift keying

CCS Code composer studio

CCK Complementary code keying

CDMA Code division multiple access

CFO Carrier frequency offset

CMOS Complementary metal-oxide-semiconductor

COFDM Coded OFDM

CORDIC Coordinate rotation digital computer

COTS Commercial off-the-shelf

CP Communication port

CPE Common phase error

CPLD Complex programmable logic device

cPCI Compact peripheral component interconnect

CVS Concurrent versions system

D/A Digital-to-analog

DAC Digital-to-analog conversion

DAQ Data aquisition
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DC Direct current

DFT Digital Fourier transform

DMA Direct memory access

DSK Development starter kit

DS-SS Direct-sequence spread spectrum

DSP Digital signal processor

EGC Equal-gain combining

EUSIPCO European Signal Processing Conference

FFT Fast Fourier transform

FIFO First-in first-out

FPGA Field programmable gate array

GPIO General purpose input/output

GUI Graphical user interface

HDL Hardware description language

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

I Inphase

I/O Input output

IBI Interblock interference

ICI Intercarrier interference

IDE Integrated development enviroment

IF Intermediate frequency

IFFT Inverse fast Fourier transform

IP Intellectual property

ISE Integrated synthesis environment

JTAG Joint test action group interface

kSPS Kilosample per second

LAN Local area network

LNA Low-noise amplifier

LOS Line of sight

LPF Lowpass filter

LVTTL Low-voltage transistor-transistor logic

MAC Medium access controller

McBSP Multichannel buffered serial port

MFLOPS Mega floating-point operations

MIMO Multiple-input multiple-output

MIPS Mega instructions per second

MISO Multiple-input single-output

MSPS Megasamples per second

OFDM Orthogonal frequency-division multiplex

PA Power amplifier

PC Personal computer

PCI Peripheral component interconnect

pCPICH Primary common pilot channel

PLD Programmable logic device

PLL Phase-locked Loop

PROM Programmable read-only memory

Q Quadrature

QAM Quadrature amplitude modulation
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QPSK Quadrature phase-shift keying

RAD Rapid application development

RAM Random access memory

RF Radio frequency

RRC Root raised cosine

RTOS Real-time operating system

RTW Real-time workshop

Rx Receiver

SC Selection combing

sCPICH Secondary common pilot channel

SDB Sundance digital bus

SDK Software development kit

SFO Sampling frequency offset

SHB Sundance high-speed bus

SIMO Single-input multiple-output

SISO Single-input single-output

SmART Smart Antenna Research Team, Duisburg

SNR Signal-to-noise ratio

SPI Serial peripheral interface

STARS SmarT Antenna Real-time System

SW Software

TCP/IP Transmission Control Protocol/Internet Protocol

TIM Texas instruments module

TTL Transistor-transistor logic

Tx Transmitter

UMTS Universal Mobile Telecommunication System

USB Universal serial bus

VCO Voltage controlled oscillator

VHDL VHSIC hardware description language

VHSIC Very-high-speed integrated circuit

WLAN Wireless local area network

WMAN Wireless metropolitan area network

ZBTRAM Zero bus turnaround random access memory
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40
Real-time prototyping of
broadband MIMO WLAN
systems

Maryse Wouters and Tom Huybrechts

40.1. Introduction

Algorithmic research on multiple-input multiple-output transmission schemes
has proven that impressive capacity or diversity gains can be achieved compared to
single-antenna systems. The analytical performances of these algorithms are well
known. However, they are still based on models of the channel. Mostly these mod-
els do not include the front-end impairments such as phase noise and amplifier
nonlinearity. A prototype can be built to ensure the designers of the performance
of their algorithms in a real-world environment. The prototyping of a wireless
system gives a better understanding of the key tradeoffs between the analog and
digital architecture designs in order to come to the best combination of digital
compensation techniques and low-cost front-end implementations. In this chap-
ter, a generic platform is presented that enables real-time wireless MIMO trans-
mission for indoor applications. The chapter is organized as follows. Section 40.1
is the introduction. In Section 40.2, a multiple-antenna application scenario is
described that is used as a driving example for the definition of the platform hard-
ware and software concepts. In Section 40.3, the architecture of the platform is
proposed. Section 40.4 outlines the board library that is developed for real-time
broadband WLAN demonstration. The prototyping of a single-antenna WLAN
system is given in Section 40.5. Section 40.6 describes the prototyping of a broad-
band MIMO WLAN system composed of a 2-antenna base station with trans-
mit processing and of single-antenna user terminals. The know-how that is gained
from the characterization of the single antenna terminal is reused for the imple-
mentation of the 2-antenna base station. The impact of certain front-end radio
effects, adjustments, and compensation techniques are described in Section 40.7.
Section 40.8 gives an insight of the future research for wireless systems.

40.2. Focus on MIMO-OFDM WLAN application scenario

The third-generation WLAN standards (IEEE 802.11a [1] and ETSI HIPERLAN/2
[2]) define data transmission rates ranging from 6 Mbps to 54 Mbps in a 20 MHz
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band for an indoor environment with a cell radius of 100 meter. It is based on
coded orthogonal frequency-division multiplexing (OFDM) because of its good
performance for frequency-selective channels. The WLAN standards evolve and
change quickly steered by the demands of new services, advanced functionality,
and new features. Spatial multiplexing on top of the time-frequency slots is an
attractive technique to increase the spectral efficiency for next-generation WLAN
systems. The most important requirements for the MIMO-OFDM WLAN appli-
cation scenario are as follows: (1) the product should not disturb other WLAN
systems and should be operational with existing single-antenna WLAN systems,
(2) the product should give an increase in capacity or in link quality, (3) the prod-
uct should be attractive for the service provider and the user, and (4) the product
should include quality-of-service (QoS) management to target multimedia and
high-speed internet access at low power. The first requirement is covered by the
standardization and regulation committees who define the frequency bands of
operation, the limitation on transmission power, and the transmission spectral
mask. The cooperation of multiple antenna with existing single-antenna systems
offers a smooth migration from SISO to MIMO systems, for example, base sta-
tions can be upgraded while (legacy) user terminals can still be operational in
the system. The three other requirements are important from business point of
view. They show that multiple antenna gives additional system capacity and ro-
bustness. As an application scenario, the upgrade of a single-antenna base station
towards a multiple antenna base station is chosen. A 2-antenna base station is pro-
totyped, using the space-division multiple-access (SDMA) technique to enhance
the link capacity by serving several single-antenna users at the same time and in
the same bandwidth (Figure 40.1). This implementation doubles the downlink ca-
pacity with a maximum capacity of 2 times 54 Mbps. Besides SDMA processing,
the prototype base station incorporates maximum ratio combining (MRC) to en-
hance the downlink quality. The broadcast channel is done in SISO mode. The
medium access controller (MAC) guarantees an optimal mode selection, trading
off cost (power consumption) and performance (rate, latency). In this broadband
MIMO-OFDM WLAN system implementation, the spatial multiplexing and the
spatial diversity processing techniques are all located in the transmitter of the base
station. This has the benefit that the user terminal can remain at (1) low complex-
ity, (2) low cost, (3) low power, and (4) small size. The capabilities of the system
are demonstrated by running demanding applications. The chosen scenario uses
the HIPERLAN/2 standard which through its centrally controlled operation and
QoS is suitable for SDMA and multimedia applications. The communication rules
of the HIPERLAN/2 protocol are used to implement, for example, the allocation
of network resources to mobile terminals based on the link quality and on the
application requests of the user.

40.3. Platform concepts

The major challenges in the design of a SISO/MIMO-OFDM prototyping plat-
form are (1) flexibility, (2) the availability of hardware resources to implement
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Figure 40.1. Application scenario: MIMO-OFDM with transmit processing.

the complex algorithms, and (3) the availability of real-time high-data-rate com-
munication links between components and between boards. The platform should
exhibit large flexibility to fulfil these needs: (a) FPGA for programmable intellec-
tual property (IP) core connectivity and for application implementation, (b) easy
ASIC and PCB integration, (c) dedicated high-speed interboard data communica-
tion links, (d) on-board master or slaved clock and local oscillator selection, and
(e) debug logic. The development time for the prototyping of current and next-
generation WLAN system can be shortened by defining platform concepts that
enables reuse. These concepts should raise the abstraction level of the hardware
and software design and makes in this way the platform more accessible to the ap-
plication engineers. The platform should also comply with a standard PC family
bus interface. By doing this, a robust prototyping system can be built by plugging
several boards in a standard chassis available from many suppliers. The system can
be extended with off-the-shelf PC add-on boards, like video adaptors and digital
signal processor (DSP) boards. Imec vzw has developed a platform for real-time
prototyping of current and next-generation WLAN systems. It is called PICARD
[3]: “Platform for Integrated Communication Applications, Research and Demon-
stration”. Existing platforms do not support real-time prototyping of high-speed
telecom systems. For example, [4] proposes a multiboard, multiprocessor proto-
typing framework with the PCI bus to exchange data between the boards. How-
ever, the PCI bus is not appropriate to transfer real-time high-data-rate payload
data. Other platforms are single board and are either tuned for emulation and in-
tegration of IP cores on small daughter boards (see http://www.chipit.de) or are
tuned for system-on-chip verification with multiple field programmable gate ar-
rays (FPGAs) (see http://www.aptix.com). Existing MIMO demonstrators are fo-
cusing on spatial diversity techniques at the receiver side to enhance the capacity
and on space-time block codes to exploit spatial diversity [5].

40.4. Achieving modular board design for MIMO-OFDM systems

To prototype the SISO-OFDM WLAN system, two boards are designed following
the PICARD modular board concepts. Both PCBs are derived from the same basic
schematic netlist and contain a common part which includes the central FPGA,

http://www.chipit.de
http://www.aptix.com
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Figure 40.2. General-purpose digital board.

Figure 40.3. General-purpose front-end board.

the cPCI connector, the power unit, the clock unit, and the serial high-speed data
links. The central FPGA is connected to all inputs and outputs of the application-
specific IP cores and contains the communication management unit. The first
board is a general-purpose digital board (Figure 40.2) which contains as IP cores
a second FPGA, a commercial Viterbi decoder, an in-house developed low-power
turbo codec [6], and a 2×4 Mb fast SRAM memory. The second board is a general-
purpose front-end board (Figure 40.3) with a socket for a daughter board. The two
boards are general in the sense that both contain configurable hardware (max 2
Xilinx XC2V6000 FPGAs at http://www.xilinx.com) for the implementation of the
digital part of the SISO/MIMO-OFDM modem and that one board has a socket
to plug in a daughter board with the antenna array RF front end. A complete sys-
tem can be prototyped on the platform using one or more boards. The platform
concepts foresee dedicated high-speed data links (1.4 Gbps per link) between the
boards to transfer the payload data with low latency. The shared cPCI bus [7]
is used for initialization of the boards and for fast DMA transfers (1 Gbps). The
number of boards depends on the required system processing power and the level
of integration of the antenna array. For example, the antenna array can be built
as a set of single-antenna RF boards or can be integrated in one system in pack-
age module. An in-house developed 5 GHz superheterodyne WLAN transceiver
designed with discrete components can be used in a single-antenna system or in
a multiple-antenna system. The platform has the connections to synchronize the
ADC and DAC sampling clocks of the antenna branches to a common clock and to
steer the phase-locked loops of the RF and IF synthesizers, with the same reference
clock. In this way, the antenna branches are synchronized in time and in phase.

http://www.xilinx.com
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Figure 40.4. Prototyping of OFDM-SISO terminal on PICARD platform.
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Figure 40.5. Block diagram of SISO-OFDM terminal.

40.5. SISO-OFDM prototyping

The complete SISO-OFDM terminal consists of four boards (Figure 40.4): a gen-
eral-purpose digital board, a general-purpose front-end board, a clock board, and
a host processor. The SISO-OFDM baseband transceiver, turbo codec, and the soft
MAC processor core are integrated on the general-purpose digital board (Figure
40.5). The 5 GHz superheterodyne front end and its digital filters and automatic
gain control (AGC) are integrated on the general-purpose front-end board.
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40.5.1. SISO-OFDM transceiver modem with digital front end
compensation

The block diagram of the SISO-OFDM transceiver is shown in Figure 40.5. In
transmission mode, the coded payload data enters through a 6-bit parallel in-
terface transceiver and is mapped on either BPSK, QPSK, 16-QAM, or 64-QAM
symbols. A complex value weights each subcarrier, allowing for transmitter pre-
emphasis and phase predistortion. The data is converted to time domain by IFFT.
The preamble and cyclic prefix are added to format the burst. The preamble serves
as reference sequence for synchronization and channel estimation. It is composed
of two sections. The first section contains ten known short training sequences
(STSs) with a total duration of 8 microseconds. The second section consists of two
long training sequences (LTSs), which are two OFDM symbols of normal length
(3.2 microseconds), preceded by a cyclic prefix which is a copy of the last 32 sam-
ples of the LTS. The cyclic prefix are inserted in front of each symbol to avoid inter-
symbol interference. In reception mode, the AGC [8] adjusts the front-end gains
in order to put the incoming data stream within the dynamic range of the AD con-
verter. The AGC converges within 4 microseconds. The time and frequency offset
acquisition and compensation are done in a feed-forward way before the FFT. The
start of a burst is detected by combined coarse autocorrelation peak detection on
the STS and fine cross-correlation peak detection on the LTS on which the carrier
frequency is [9] removed. The frequency offset is determined by autocorrelation
on the LTS. The I/Q imbalance estimation [10] is calculated after the FFT in the
frequency domain on the second LTS. The algorithm minimizes the square error
between two successive subcarriers of the channel estimation. The I/Q estimation
is made robust for large carrier frequency offsets and the compensation takes place
before the equalizer. This gives that the equalizer remains a simple one-tap equal-
izer per subcarrier. In our implementation the equalizer is further improved by
adaptive interpolation to mitigate time-variant channels, rotations due to slow-
varying oscillator phases (common phase noise), and remaining frequency offset.
Resource sharing between the transmitter and receiver chain is exploited for the
(I)FFT. The implementation figures on the XC2V6000 are given in Table 40.1. The
44 multipliers of the adaptive interpolator in the equalizer are mapped on slices
and this gives an increase of 17% in usage of slices compared when the dedicated
multipliers of the FPGA are used. Extra memory is allocated to store debug data
and channel measurements. For example, an OFDM burst of 819 microseconds
and the data on the internal busses can be stored in memory. The data in the
memory is processed offline by the cPCI processor for analysis calculations and
the results are displayed on screen. In this way, measurements like constellation
plots and channel estimation can be visualized on the platform at run time. The
AGC unit and up- and down-sampling filters are mapped on the central FPGA of
the general-purpose front-end board. The up- and down-sampling filters are im-
plemented as a 41-tap square root raised cosine (SRRC) filter. The implementation
is optimized towards FPGA by using the canonical signed digit representation of
the coefficients and by expanding the multiplications in add/shift operations. The
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Table 40.1. FPGA key features of SISO-OFDM transceiver.

FPGA XC2V6000

Internal main clock 20 MHz

Slices 25 033 = 74% usage

of which acquisition 2949 = 11.8%

of which equalizer 9162 = 36%

of which FFT 1963 = 7.8%

of which I/Q estimation & 3390 = 13.5%

compensation

Multipliers 144 = 100% usage

of which in equalizer 56 = 39%

of which in fft 8 = 5.6%

of which in I/Q estimation & 44 = 30.6%

compensation

AGC unit calculates the power of the incoming signal and selects based on thresh-
old comparisons the optimal front-end gain settings that are stored in lookup ta-
bles. The AGC unit and filters are mapped on a XC2V3000. It takes 59% of the
slices from which 2.5% are used for the AGC at a 80 MHz clock.

40.5.2. The QoS MAC architecture

The MAC layer coordinates the access of the terminals to the common air interface
and includes quality-of-service enhancements. The non-timing-critical functions
such as association and authentication exchanges or data frame preparation run
on the host processor. The time critical functions require the MAC to act within
microseconds of an event or at precise intervals. For this purpose, Imec vzw de-
signed a soft processor core with an optimized architecture and instruction set
for fast data shuffling. The MAC processor core has three busses for input/output
(Figure 40.6). One bus communicates with the dual-port RAM. This RAM con-
tains the firmware and specific MAC data. The host processor writes at startup data
for the processor core to the RAM. The configuration bus is used to control the
system behavior such as setting up registers and data routing. The third bus is an
extension bus that houses different functional units that support the functioning
of the processor core. Examples of these units are timers and interrupt controllers.
The MAC processor core is integrated in the communication management unit
on the central FPGA. The communication management unit has two busses: the
configuration bus and the payload data bus. The payload data flow is handled and
executed by an arbiter leaving the MAC processor tasks reduced to the control of
the data flow directions. The arbiter is based on a round-robin system. It supports
every clock cycle a data transfer requested by another component on the shared
payload bus. The programming of the data flow directions by the MAC processor
has the benefit that a system can be gradually built by adding new communication
links without changing the content of the central FPGA. The MAC processor does
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Figure 40.7. Prototyping of MIMO-OFDM base station on PICARD platform.

not have to take care of the data formatting of the entire transmission and recep-
tion bursts. This is self-controlled in the baseband transceiver. The transceiver only
requires initial programming of parameters and a trigger from the MAC processor
to start transmission and reception. The transceiver delivers to the MAC processor
measures for QoS enhancement like channel state information and received sig-
nal strength. Based on this information the MAC will schedule the priority of the
transmitted queus and will determine the error coding rate and the used constel-
lation scheme. For example, video streaming requires different error coding than
packet-based messages.

40.6. Two antenna MIMO-OFDM base station prototyping

The 2-antenna base station using transmit processing including special front-end
techniques for the exploitation of channel reciprocity is prototyped on the plat-
form on eight boards (Figure 40.7): two general-purpose digital boards to imple-
ment the baseband modem, two general-purpose front-end boards to implement
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Figure 40.8. Block diagram of 2-antenna base station with MIMO transmit compensation and online
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the antenna array, a general-purpose front-end board to calibrate the base station
antennas, a clock board, a common local oscillator board, and a host processor.
The MIMO transmit processing is more difficult to implement compared with
MIMO receive processing because of the lack of instantaneous channel informa-
tion at the transmitter. In our implementation (Figure 40.8), the channel informa-
tion is retrieved from the uplink where TDMA is used as an access technique. The
channel is composed of the propagation channel between the antennas, the front
ends themselves, and the digital filter circuits. To precompensate the channel, the
base station receive and transmit front ends should be reciprocal in amplitude and
phase for the entire bandwidth [11]. Nonreciprocity causes extra multiuser inter-
ference which gives link degradation. The front-end matching accuracy in the base
station must be below 0.04 dB and 0.25 degrees to obtain a degradation loss smaller
than 1 dB for uncoded 64-QAM at BER of 10−3. These tight overall manufacturing
and time-variation matching of the RF and analog circuits between the transmitter
and receiver are practically not realizable. Therefore, an online calibration loop is
implemented that measures the product DTx,BS· D−1

Rx,BS at the base station so that
the mismatches between transmitter and receiver can be compensated digitally in
the downlink. DTx,BS and DRx,BS are diagonal matrices representing the multiple-
antenna transmit and receive front-end frequency responses.

40.6.1. The SDMA transceiver architecture

In the downlink, the two user streams are first turbo encoded before entering the
MIMO transmit precompensation unit. The MIMO transmit precompensation
unit (Figure 40.9) maps the 2 streams on BPSK, QPSK, 16-QAM, or 64-QAM
symbols. The preamble and cyclic prefix to format the burst are added in the
frequency domain before the MIMO transmit compensation. The MIMO trans-
mit compensation is a linear prefilter that is achieved by a multiplication of the
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transmit symbol vector by a matrix as follows:

yDL = HDL · F · xDL + n, (40.1)

where xDL is the column vector of the 2 symbols transmitted simultaneously by the
base station, yDL is the column vector of the signal received by the 2 user terminals,
HDL is the composite downlink channel, and F is the linear prefilter. The depen-
dency of the subcarrier is dropped in the equation for clarity. For the calculation of
the prefilter matrix F, it is assumed that the downlink channel is the transpose of
the uplink channel. We have implemented an MMSE prefilter that trades off noise
and multiuser interference. The MMSE prefilter is given by

FMMSE = (
HDL)H ·

(
HDL · (HDL)H + σ2 · IUxU

)−1
. (40.2)

The FMMSE filter coefficients are multiplied with the front end reciprocity com-
pensation values. The data streams are linearly prefiltered and converted to the
time domain by IFFT. In the uplink, the users are assigned to separate time slots
(TDMA). The user data is received at the base station on the 2 antennas. The AGC
at each front end puts the incoming stream within the range of the AD converter.
In the uplink TDMA receiver, the timing and the carrier frequency offset is es-
timated on the preamble of one antenna and the compensation is done on the
streams of both antennas. The channel is estimated on the preambles for each an-
tenna and for each user in the uplink time slot. These channel estimations are used
as input to the FMMSE coefficients calculation. The remainder of the uplink burst
contains the user payload data and is in the receiver further demodulated, turbo
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Table 40.2. FPGA key features of 2-antenna MIMO transmit precompensation unit.

FPGA XC2V6000

Internal main clock 40 MHz

Slices 17 000 = 50% usage

of which FMMSE calculation 5200 = 30%

of which linear prefilter 1200 = 7%

of which IFFT 2600 = 15%

of which reciprocity precompensation 2100 = 12%

Multipliers 86 = 59% usage

of which FMMSE calculation 46 = 53%

of which linear prefilter 8 = 9%

of which IFFT 8 = 9%

of which reciprocity precompensation 12 = 13%

Block RAM 17 = 12% usage

decoded, and passed to the MAC layer. Two general-purpose digital boards are
used to integrate the turbo codecs, the MIMO baseband transceiver, and the soft
MAC processor. The MIMO transmit precompensation unit is mapped on one
XC2V6000. The implementation figures are listed in Table 40.2. The TDMA re-
ceiver is the SISO-OFDM baseband transceiver extended with memory to capture
the burst on the second antenna. It is mapped on one XC2V6000 of the second
general-purpose digital board.

40.6.2. Multiple antenna and calibration transceiver architecture

On the platform, the 2-antenna array is build from two single-antenna 5 GHz su-
perheterodyne front-end boards. The AGC unit and up- and down-sampling fil-
ters are reused from the SISO-OFDM terminal and are mapped on the FPGA be-
longing to the front end. For online calibration purposes, a calibration transceiver
with 5 GHz superheterodyne front end is added in the base station. This is a refer-
ence front end to measure the transmit and receive transfer functions of the front-
end array. It is connected to the 2 antenna branches with combiner, splitters, and
cables. The 2 antenna branches on the platform are slaved to the same local oscilla-
tors and the same ADC and DAC sampling clocks. In this way, phase noise impair-
ments and synchronization mismatches between the antennas are avoided during
calibration. Synchronization offsets result in a phase slope across the frequency
response in case of timing offset differences or in a phase shift in case of carrier
frequency offset differences. It is also required that the transfer function measure-
ments are done simultaneously over all branches so that the impact of phase noise
is identical on all branches. Therefore, calibration sequences on nonoverlapping
subcarriers with low PAPR have to be defined (e.g., even subcarriers for antenna 1,
odd subcarriers for antenna 2). The calibration is done in three steps. In a first step,
the transfer functions of the 2-antenna array receivers are measured for all AGC
settings. The reference front end is the transmitter. In a second step, the transfer
functions of the 2-antenna array transmitters are measured for all transmit power
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Figure 40.10. MIMO demonstrator set-up: (a) 2 terminals with single-antenna, (b) access point with
2 antennas.

settings. The reference front end is the receiver. The calculation of the transfer
functions is done in software. In a third step, the reciprocity precompensation val-
ues, that is, the ratio of the transmitter frequency responses and receiver frequency
responses, are calculated on the host processor and stored on the host memory.

40.6.3. MIMO MAC architecture

Besides allocating network resources for uplink and downlink transmissions, the
MAC processor also programs the MIMO baseband transceiver with the reci-
procity precompensation value that corresponds to the AGC couple of the up-
link transmission link of a user. The MAC soft processor core is present on each
transceiver board to control the shuffling of the data and to program the tran-
sceiver settings. In the SDMA application, three MAC soft processor cores are used.
Each MAC soft processor core has a timer counter on which the actions of the three
cores are synchronized. The non-time-critical functions are executed on the host
processor.

40.6.4. Wireless MIMO-OFDM demonstrator

The picture in Figure 40.10 shows the composition of the MIMO setup. On the
left Figure 40.10a, the 2-user terminals with a single antenna are shown, on the
right Figure 40.10b a base station with 2 antennas. Two demonstrators are imple-
mented. The first one is an experimental research demonstrator. The user can se-
lect between SDMA or MRC as MIMO schemes, can (des-)activate the reciprocity
compensation, and can choose the modulation scheme. On the screens of the user
terminal and the base station, the constellation diagram, the channel estimation,
BER, and PER are plotted. This wireless demonstrator proves that capacity increase
is possible with transmit processing only and proves that reciprocity of the base
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Figure 40.11. Screenshot of base station.

station front end is necessary. In the downlink, two streams of uncoded 16-QAM
are transmitted simultaneously to the two user terminals. The channel seen by the
user terminal does not vary in time and reflects the ratio of the front-end transfer
function of the user terminal and the front end transfer function of the reference
front end. This proves that the base station transmit processing compensates the
wireless channel. When only compensation of the AGC values is done, this means
no compensation of the nonreciprocity of the base station front ends is done, the
downlink quality decreases with 5 dB. Calibration and digital compensation of the
nonreciprocity between transmit and receive front ends at the base station are re-
quired. A detailed view of the screen of the base station is shown in Figure 40.11.
The uplink channel estimations in frequency domain are plotted for each user and
for each antenna (top right). The wireless channels represent (deep) fades. In the
left bottom corner, the product of the FMMSE matrix with the channel estimations
HDL is shown. The X-axis represents the subcarrier, the Y-axis the values of the
2 × 2 matrix expressed in dB. The plot shows that the multiuser interference is
reduced below −30 dB due to transmit processing at the base station. The second
demonstrator includes the MAC layer. In real-time, multimedia applications are
served to the two user terminals in the same time slot and bandwidth.

40.7. Digital front-end compensation and adjustments techniques

The RF circuits introduce phase noise, I/Q imbalance, nonlinear gain, and sat-
uration. These imperfections are measured on the platform by applying an RF
signal at the receive antenna via cable and by capturing the data after the AD
converter. The RF signal can come from a signal generator or from a transmit-
ter front end. The post processing to extract the front-end characteristics is done



866 Real-time prototyping of broadband MIMO WLAN systems

Symbol phase rotation
due to common phase
noise component

Compensation in digital domain

ICI due to foreign phase
noise component

Cannot be compensated in digital domain

QAM64 with phase noise constellation

Q

I

Figure 40.12. Impact of phase noise on the constellation.

in floating point. The measured characteristics are then fed back into the algorith-
mic model to verify the performance for this front-end realization. Two examples
are described: phase noise characterization and AGC characterization.

40.7.1. Example 1: phase noise

Phase noise can be very destructive for OFDM symbols. It reflects as common
phase noise on all subcarriers that can be compensated (close-in phase noise, for
frequencies below 20 kHz) and as far-end phase noise that increases the noise level
by intercarrier interference. Figure 40.12 shows the effect of the phase noise of the
superheterodyne front end on the constellation plot. To measure the phase noise a
single-carrier QPSK signal is applied at the transmitter (Figure 40.13). The trans-
mitter and receiver front ends are programmed to work in their linear operation
range at high signal-to-noise ratio. The captured data at the output of the AD con-
verter represents the time-domain phase noise and the jitter of the AD converter.
We have done the measurement on a 5 GHz superheterodyne front end and have
compared the power spectrum density (PSD) profile with the measurement on a
spectrum analyzer. Both PSD profiles match. The data captured on the platform
gives extra information on the phase and amplitude jumps. The performance of
the algorithms can be simulated in the high-level system model by multiplying the
transmitted burst with the time-domain measured phase noise.

40.7.2. Example 2: AGC characterization

Characterization of the receiver front end for all incoming power levels has to
be done to determine the control settings of the attenuators in the front end.
An automatic AGC characterization loop is implemented on the platform (see
Figure 40.14). During characterization, a software programmable attenuator is
placed in the transmission path to regulate the receive input power between
−90 dBm and −20 dBm in steps of 1 dB. For each incoming RF power, the Pareto
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Figure 40.13. Phase noise measurement on PICARD.

optimal front-end settings are calculated (right bottom plot in the figure). They
correspond to maximum signal-to-noise-and-distortion ratio (SINAD) and with
the desired baseband input power or dynamic range (left bottom plot in the fig-
ure). These front-end control settings are programmed in a lookup table. In receive
operation, the front-end control settings corresponding with the incoming power
are programmed during AGC.

40.8. Future work

Further research will investigate the combined transmit-receive processing, and
SDMA separation of MIMO terminals in which a multiple-antenna transmitter
sends to several multiple-antenna receivers. This smart MIMO technology is a
building block for future multimode terminal implementation. This smart MIMO
technology combined with a flexible air interface will enable multimode terminals
that can seamlessly switch between different communication types, such as WLAN
and cellular communications.
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Figure 40.14. Automated characterization of the receive front end on PICARD.
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Abbreviations

ADC Analog digital converter

AGC Automatic gain control

ASIC Application specific integrated circuit

BPSK Binary phase-shift keying

DAC Digital analog converter

DMA Direct memory access
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DSP Digital signal processor

FFT Fast Fourier transform

FPGA Field programmable gate array

IFFT Inverse fast Fourier transform

LTS Long training sequence

MAC Medium access controller

MIMO Multiple-input multiple-output

MMSE Minimum mean square error

MRC Maximum ratio combining

OFDM Orthogonal frequency division multiplexing

PAPR Peak-to-average power ratio

PCB Printed circuit board

QAM Quadrature amplitude modulation

QoS Quality-of-service

QPSK Quadrature phase-shift keying

RF Radio frequency

SDMA Space-division multiple access

SINAD Signal-to-noise-and-distortion-ratio

SISO Single-input single-output

STS Short training sequence

SRRC Square root raised cosine

TDMA Time-division multiple access

WLAN Wireless local area network
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