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Abstract

This thesis concerns with redundant and non-redundant multi-channel non-uniform periodic sampling

and reconstruction of square-integrable multi-banded signals on locally compact Abelian groups, involving

linear preprocessors (in which some practical relevant domains are contained, e.g. cartesian product of R,

of Z, of Z{kZ). In particular, this problem is connected to the problem of finding a frame of exponentials

weighted by functions for the frequency space of the signal of interest. We give necessary and sufficient

conditions on the corresponding collection of functions s.t. it forms this class of frames. Some particular

examples are also given.

Furthermore, this thesis provides an extension of the method of recovering continuous 1-dim. signals

from modulus of its Fourier measurements in infinite dimensional spaces given in [60, 48] to continuous

2-dim. signals in infinite dimensional spaces. We shall show that 8 times the 2-dim. Nyquist rate, instead

of expected 16 times is sufficient to reconstruct compactly supported signals, up to some exceptions, from

its fourier measurements.

1





Acknowledgements

It has been a pleasure working with the chair for theoretical information technology (LTI) in Munich for

about three years. I would like to express my profound and sincere gratitude to my advisors Dr. Volker

Pohl and Prof. Holger Boche for their constant supports, the useful comments, remarks, engagement, and

patience through the learning process of this master thesis. Foremost, i would like thank Dr. Volker Pohl

for providing his time and energy to supervise me all the years, through the Bachelor’s thesis, seminar

work, and research project. I owe far more than i could put into words.

Furthermore, i would like to thank Gisbert Janßen for introducing me the interesting field of quantum

communication, and supervising me in my seminar work in the corresponding course. Also i would

thank to everyone else in LTI, especially Dr. Philipp Walk, Dr. Janis Nötzel, and for my ”room mates”
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Basic Notations

Let X be a set, and A,B � X be subsets. We denote the complement of A by Ac, and set difference of

A and B by AzB. The set of real numbers is denoted by N :� t1, 2, � � �u, the set of real numbers included

zero by N0 :� N Y t0u, the set of integers by Z :� t� � � ,�1, 0, 1, � � �u, the set of real numbers by R, the

set of rational number by Q, and the set of complex numbers by C. A field is denoted by F, which is in

our case either R or C. We denote the unit circle/1-dim. torus by T.

Let X and Y be two sets. The notation f : X Ñ Y stands for a function/mapping f with domain X

and codomain Y . We denote the set of mappings between the sets X and Y as MappX,Y q. The image

or range of the function f is the set ranpfq :� tfpxq : x P Xu. The direct image of a subset S � X

under f is denoted by fpSq :� tfptq : t P Su. The inverse image of a subset A � X is denoted by

f�1pAq :� ty P Y : fpyq P Au. A function is said to be injective, or one-to-one, if for each x P X, there

is exactly one y P Y , s.t. fpxq � y, or equivalently: if fpaq � fpbq implies a � b. The function f is

said to be surjective, or onto, if fpXq � Y . f is said to be bijective, if f is both injective and surjective.

Let S � X, the restriction of f s.t. its domain is S, is denoted by f |S . Given a subset A of a set X.

The characteristic function of A is defined as a function χA : X Ñ R, for which χApxq � 1, @x P A, and

χApxq � 0, @x P Ac holds.

A set I is said to be an index set if all members of I label another set. Notice that an index set may

also be an uncountable set. If it is not otherwise stated, I denotes an arbitrary index set.

Let be tXiuiPI be a collection of sets indexed by an index set I. The (cartesian) product of tXiuiPI is

defined as the set of functions:¹
iPI

Xi :� tf : I Ñ
¤
iPI

Xi : @i P I : fpiq P Xiu.

If Xn � X, @n P I, we usually write XI instead of
±
nPI X. We shall often call XI the power of X. For

a countable index set I, we call the elements of the power XI of a set X sequence in X. Specifically,

sequences in X has the form txnunPI , where xn P X, @n P I. If it is clear from context, we write simply

txnun
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1. Sampling and interpolation problem

Sampling theory concerns with the problem of reconstruction of a function from its values, taken at a

countable set of points in its domain. This field is insofar important for electrical engineering applica-

tions, since sources of informations (e.g. which are objects of image processing - and audio processing

applications) in the ”real-world” are available in form of analog signals (which can be seen as functions

whose domain is a connected subset of RN , where N P N) and most devices, in course of increasing

digitalization, can only deal with countable data. Due to this limitation, it demands a transformation,

which converts analog - to digital signals, of course, with a possibility to convert the transformed signal

back, possibly without error.

The sampling and reconstruction problem can roughly be described as follows: Given a function f

defined on some domain D. We look for expansions of f by the so-called sampling series:

f �
¸
nPI

f̃pλnqSn,

where I is an index set (necessarily countable), f̃ a function defined on D, which constitutes the pre-

processed version of f (f̃=Tf, where T is some transformation), tλnun a countable points in D, and

tSnun a collection of functions, defined on D. In particular, we will especially consider sampling series,

s.t. the collection of functions tSnun is basically the shifts of a suitable function φ by tλnun, specifically

Sn, for which Sn � φpp�q � λnq, @n P I, holds.

A classical approach to the sampling and reconstruction problem for one-dimensional signals, i.e. signals

which are defined in a domain of R, was presented by Shannon in his paper “Communication in the

presence of noise” in 1949 [52], which constitutes a milestone in the history of sampling theory. This

work was based basically on Nyquist’s considerations about transmission of finite sequence of numbers

by means of trigonometric polynomials (see: [43]). Independently from it, Shannon’s result was already

given earlier in other similar forms by Raabe in 1939 [49], by Kotelnikow in 1933 [34], and by Whittaker

in 1915 [57]. The Nyquist-Shannon Theorem ensures the reconstructibility of a signal by its samples,

provided that the samples was taken by the rate at least twice of the bandwidth of the signal to be

sampled. The correspondent reconstruction process can described by the formula (WRKS-formula):

fpxq �
¸
kPZ

fpkT q sincp x
T
� kq, (1.1)

With regard to above equation, a perfect reconstruction of f from the samples tfpkT qukPZ, taken uni-

formly on the time instances of integer multiples of T , can be obtained, if the representation f in the

frequency domain is supported in the interval r�π{T, π{T q i.e. f̂pωq � 0, @ω R r�π{T, π{T q. On the

one hand, the signal obtained by this method is determined self-evidently by its samples tfpkT qukPZ,

which gives an essential informations about the appearance of the signal object f . On the other hand,

it is determined by the sequence tsincp xT � kqukPZ, which declares the belonging of f to a certain signal

space, which in this case: the space of square-integrable, band-limited signal, which is also known as the

Paley-Wiener Space.

There exists successful efforts to extend above idea to other domains. For square-integrable band-

limited functions on RN , Parzen provides in [44] (1956) a corresponding sampling formula for this case.
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1. Sampling and interpolation problem

However, the possible shape of the band-limit is restricted to a rectangular symmetric around 0. The

corresponding reconstruction formula can be basically seen as the WRKS-formula applied to each degrees

of freedom:

fpx1, . . . , xN q �
¸
k1PZ

� � �
¸
kNPZ

fpk1T1, . . . , kNTN q sincpx1

T1
� k1q � � � sincpxN

TN
� kN q, (1.2)

where the frequency occupation of the square-integrable signal f , for which above formula holds, is

contained in the interval r�π{T1, π{T1q � � � � � r�π{TN , π{TN q. However, by establishing a sampling

theorem for signals band-limited to a hexagonal, Gaarder [16] asserts that the corresponding sampling

points in non-rectangular cases are no more uniformly placed in RN , but still in some sense periodic.

Furthermore, the keyword ”periodicity” suggests to involve group theoretic view to this problem. Another

result was made by Kluvanek [31] in 1965. In this work, he stated a sampling and reconstruction algorithm

for square-integrable band-limited signal, whose domain is a so-called LCA group. In this work, we will

concern ourselves with this sort of topological group. The theory of LCA group, as we shall see, provides

a ”nice” way to unify the signals which is of importance in the electrical engineering, viz. array signals,

disrete-time signals, and continuous signals.

However, in many applications, e.g. multi-carrier systems, the frequency occupation of the signals of

interests is contained in mutually disjoint subsets. The sampling methods proposes above is inefficient,

since it yields a higher rate than the theoretical possible rate asserted by Landau and Beurling [35], which

is related to the volume of the frequency occupation of the signal. There are some approaches to overcome

this disbenefit. Sampling by the Sub-Nyquist method, e.g. [36], [23], and [54] yields an optimal choice.

Moreover, there are some extension of the Sub-Nyquist to handle the case, in which the information of

the frequency occupation of the signals to be sampled is partially available, e.g. see: [13], [61], [39], [40].

In particular, as we shall see later, the problem of sampling and reconstruction of finite-energy and

band-limited signal is closely related to the problem of finding a (possibly redundant) representation

system consisting of exponential functions for the space of square-integrable signals, supported on some

subset of the considered domain. Recently, the problem of finding such a representation system has

attracted some interests: The existence of Riesz bases for the Hilbert space L2pΩq, where Ω � RN is a so

called multi-tiling set, which is not necessarily a connected subset of RN , was proved in [17], using the

theory of quasicrystals [37], [38]. A similar result was proven in [33] based on a more elementary approach

from linear algebra. Agora et. al. generalize in [1] the result for general LCA groups. In this paper,

we consider the construction of Riesz bases and frames together with the corresponding dual frames for

L2pBq with domains. However, no attempt was made to derive the corresponding dual frames. Our

approach here is more elementary and based on techniques used for shift-invariant spaces with support

in R [46], allowing us to give the corresponding dual frame. Yielding from this result, we shall give a

corresponding sampling and reconstruction scheme, which can basically seen as multi-channel sampling,

involving linear preprocessor on each of the sampling branches. In special cases, the proposed sampling

method coincides with WKRS-formula, and Sub-Nyquist sampling method. Furthermore, we shall state

the result in general LCA group setting.

This thesis is organized as follows: In the first two chapters, some necessary mathematical fundamentals

will be introduced. The first chapter is devoted to the theory of generating systems in Hilbert spaces.

There, we shall introduce the notion of frames which constitute one fundamentals of our approach. The

second chapter is devoted to the so-called locally compact group. In particular, we shall see, what

does ”frequency” means in connection to this sort of a topological group. The corresponding abstract

form of Fourier transformation shall be given and studied there. The third chapter is devoted to the

derivation of sampling theorem for square-integrable functions on LCA groups, whose spectrum is band-

limited to a subset in an LCA groups. We will formalize the notions of not-necessarily uniform, but

periodic, sampling points. We will see that the notion of ”admissible” band-limit for periodic sampling,
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is determined by those points. In particular, we shall recapitulate, up to some modifications, the sampling

and reconstruction algorithm proposed by Kluvanek in [31]. For convenient, we shall at the end of this

chapter apply this algorithm to the case, that the signal domain is Euclidean, which yields a formula,

similar to WKRS-formula. In the fourth chapter, we concern ourselves with the so-called phase retrieval

problem. By taking the approach analogue to [60] and [48], and the sampling theorem introduced in

chapter three, we shall see that the phase retrieval of infinite dimensional planar signal is possible, which

extend the results given in [60] and [48]. The fifth chapter is devoted to the so-called frames of exponentials

weighted by some collection of functions. We shall derive a necessary and sufficient conditions s.t. the

collection of functions tφpmqeλum,λ forms a frame for the function space L2pBq, where tφpmqum is a

collection of functions defined on B, teλu is an orthonormal basis for the function space L2pBq, and B
an appropriate subset of an LCA group. We shall show, that this sort of frames induces a sampling and

reconstruction scheme. In the sixth chapter, Some explicit choices concerning to the so-called multi-coset

sampling and Gabor system shall be considered in the sixth chapter. Finally, this thesis ends in the

seventh chapter with a summary, discussions, and an outlook to future works.
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2. Bases and frames

Later, we shall see, that the set of objects of our interests, viz. finite-energy band-limited signals, can be

integrated into the theory of Hilbert space of square-integrable functions. Specifically, each signal f of

our interests can be seen as an element of the Hilbert space L2pGq, where G corresponds to the domain

of f . Thus, the sampling and reconstruction problem of such signals can be translated appropriately into

a mathematical problem, namely: find a collection of ”primitive” elements, called generating system, of

the Hilbert space L2pGq s.t. all f P L2pGq can be expanded as an ”infinite linear combination” of this

collection.

The statements made in this chapter is taken up to some modifications from [47], [8], [56], and [22].

2.1. Basics on operator theory in Banach- and Hilbert spaces

In this section, if not otherwise stated, X and Y stand for normed spaces, X and Y for Banach spaces,

and H and K for Hilbert spaces.

We start by introducing linear mapping between normed spaces. Thereby, we follow the following

convention: An operator V : X Ñ Y is defined as a linear mapping between vector spaces, i.e. Vpαx �
βyq � αVpxq � βVpyq, for x, y P X and α, β scalary. If the image of this mapping is a field (in particular

real or complex), so it is called a functional. If there is no possible confusions, Vpxq shall be written as

Vx. It is assumed, that definitions of pointwise - and uniform continuity of real-valued functions on the

real line is known for the readers. By some modifications, one can easily extend this notions to mappings

between normed spaces (use norm instead of modulus). The continuity of an operator between normed

spaces can equivalently be expressed by means of convergent sequences: V : X Ñ Y is continuous, if for

each sequence txnun, xn Ñ x w.r.t. the norm in X, implies Vxn Ñ Vx w.r.t. to the norm of Y .

One can easily prove that an operator is pointwise continuous if and only if it is uniformly continuous.

Hence, if considering an operator between normed spaces, it is unnecessary to make a distinction between

pointwise continuity and uniform continuity of an operator. Furthermore, to show that an operator is

continuous, it is sufficient and necessary to show that it is continuous at 0, which clearly makes the

analysis on operators w.r.t. this property easier.

It is common to define the norm of an operator by the following way: For an operator V : X Ñ Y ,

define ‖V‖ :� inftM ¥ 0 : ‖Vx‖ ¤M‖x‖, @x P X u. To say roughly, the norm of an operator gives the

maximal quantity of ”gain”, which each x P X obtains, if it is mapped by V. It is not hard to see, that

the norm of an operator V : X Ñ Y can also be written equivalently as:

‖V‖ � sup
x�0

‖Vx‖
‖x‖

� sup
‖x‖�1

‖Vx‖ � sup
‖x‖¤1

‖Vx‖.

Note that, the following fundamental inequality concerning to operator norms holds:

‖Vx‖ ¤ ‖V‖‖x‖.

In case that there are possibilities for confusions, the norm is written more specifically by ‖V‖XÑY . An

operator is said to be bounded if its norm is finite, else it is said to be unbounded. It is not hard to

show, that an operator is continuous if and only if it is bounded. So, it seems likely, when speaking about

11



2. Bases and frames

operators, to interchange the terms ”continuous” and ”bounded”. The set of bounded operators between

normed spaces X and Y is denoted by BpX,Y q, which is, as we have already seen, equivalent to the set

of continuous operator between X and Y .

The following classes of bounded operators between Banach spaces shall be considered later:

• V is said to be isomorphic, if V is bijective and its inverse operator V�1 is continuous/bounded.

• V is said to be isometric if ‖Vx‖ � ‖x‖, @x P X .

• V is said to be a isometric isomorphism if V is isometric and isomorphic.

If there exist an isometric isomorphic operator between X and Y, then they both are said to be linear

isometric isomorphic to each other, written: X � Y. We call an isometric isomorphic (resp. isometric)

operator also linear isometric isomorphism (resp linear isometry). It is not hard to show, that linear

isometry between Hilbert spaces can also alternatively be characterized as follows: V : H Ñ K is an

isometry if and only if xVx,Vyy � xx, yy, @x, y P X , i.e. V preserves the ”correlation” between elements

of X . Sometimes, we call isometric isomorphic operator V between Hilbert spaces H and K unitary

operator. Also, we say V is a unitary equivalence between H and K. From a topological point of view,

isomorphic operator can also be seen as linear homeomorphism. As an application of the Open Mapping

Theorem (of Banach spaces), it can be shown, that a bounded bijective operator between Banach spaces

is indeed a linear homeomorphism. In particular, bounded bijective operator between Banach spaces

preserves vector space structures, and simultaneously, an open - and a closed map.

To each bounded operator V between Hilbert spaces H and K, there corresponds a unique operator

V� : KÑ H called the adjoint operator of V, which is determined by the equation:

xVx, yyK � xx,V�yyH, x P H, y P K.

The existence and the uniqueness of adjoint of an operator is ensured by Riesz Representation Theorem.

By some efforts, one can proof that the adjoint mapping BpH,Kq,Ñ BpKÑ Hq, V ÞÑ V�, which assigns

each element of the space of continuous mapping between Hilbert spaces the corresponding unique adjoint,

is norm-preserving and conjugated linear, i.e. for V,V1,V2 P BpH,Kq, and a, b P F, it holds:

• ‖V�‖ � ‖V‖,

• paV1 � bV2q� � aV�
1 � bV�

2 .

Furthermore, the following statements concerning to the range - and the kernel of an V P BpH,Kq and

its adjoint V�, are equivalent:

• ranpVq is closed

• ranpVq � kerpV�qK

• ranpV�q is closed

• ranpV�q � kerpVqK

To define the adjoint of a not necessarily bounded operator, one needs some efforts:

Definition 2.1 (Adjoint of a Not Necessarily Bounded Operator). Let V : KÑ H be an opera-

tor between Hilbert spaces K and H. An operator S : H � DomS Ñ K is called the formal adjoint of V,

if the following equality is fulfilled:

xy,VxyH � xSy, xyK, @x P K, y P DomS,

12



2.1. Basics on operator theory in Banach- and Hilbert spaces

where Dom pSq is the subset of H, containing points y for which x ÞÑ xy,VxyH is a continuous/bounded

functional. The operator S with Dom pSq maximal under the partial order of set containment in H is

called the adjoint of V and denoted by V�.

We say, an operator V : X Ñ Y is densely defined, if its domain is dense in X . Later, we need the

following statement:

Proposition 2.1. Let V : K Ñ H, Ṽ : H Ñ H̃ be dense defined operators mapping between Hilbert

spaces. Then:

(a) V is bounded if and only if V� P BpH,Kq. In this case, it holds: ‖V‖ � ‖V�‖.

(b) If Ṽ P BpH, H̃q, then it holds pṼVq� � V�Ṽ�.

The following easy statements might also be helpful for later approach:

Lemma 2.2. Let X , Y be Banach spaces, A � X a closed subspace. The restriction T|A : AÑ TpAq of

an (isometric) isomorphism T : X Ñ Y is again an (isometric) isomorphism.

Proof. Since A a closed subspace of the Banach space X , it follows that A, equipped with the structure

inherited from X , is itself a Banach space. The restriction T|A : A Ñ TpAq of T to the closed subspace

A remains clearly linear (provided that T pAq is equipped with vector space structure inherited from Y),

injective, and surjective, and bounded. Furthermore, from linearity of T, and since A is a subspace, it

follows immediately that TpAq is a subspace of Y . Summarily, T |A is a bijective bounded operator from

A to TpAq, and accordingly a linear homeomorphism between both spaces, thence it is clear that TpAq
must also be closed. Equipping TpAq with the Banach space structure inherited from Y is also itself a

Banach space. Accordingly, T|A is an isomorphism between A to TpAq. Let T be in addition isometric.

The fact, that T|A : AÑ TpAq is also isometric, is obvious.

Lemma 2.3. Let X1, X2, and X3 be Hilbert spaces. Further, assume that X2 and X3 are isometric

isomorphic to each other, by the isometric isomorphism T : X2 Ñ X3. Given an operator V : X1 Ñ X2.

If T �V : X1 Ñ X3 is bounded and surjective, then V is also bounded and surjective.

Proof. Since T is assumed to be an isometric isomorphism, T is clearly bounded. Hence, it holds:

pT �Vq� � V� �T�. It follows from the assumption that T �V is bounded and surjective, that pT �Vq�,

and respectively also V� � T� is bounded and bounded below. Since T is isometric isomorphic, and

accordingly T� is also isometric isomorphic, it follows that V� is bounded and bounded below, which

shows the desired statement.

Proposition 2.4. Let X and Y be Banach spaces, and D a dense subset of X . Given an operator

T P BpD,Yq. Then there exists a unique continuous operator T̂ : X Ñ Y, for which T̂
���
D
� T, and

‖T̂‖ � ‖T‖ holds. The corresponding operator T̂ , can be defined by the following process: For each

convergent sequence txnunPN, converges to an x P X , define T̂ x :� limn Txn.

2.1.1. Direct Sum of Operators

Let tBkukPI be a countable family of Banach space, we write
À

kPI Bk for the direct sum of the elements

of that family, i.e.

à
k

Bk :� tf :� tfkukPI P
¹
kPI
Bk : fk � 0, @k P I � I, I finiteu,

13



2. Bases and frames

where
±

denotes the usual cartesian product. Equipping
À

kPI Bk with the usual addition and scalar

multiplication canonical to the product structure, it is not hard to see that
À

kPI Bk becomes a vector

space. Furthermore, one can show that `kBk equipped with the norm:

‖f‖ :�
¸
kPI
‖fk‖Hk

is a Banach space. If Bk � B, where B is a Banach space, we write the direct sum of tBkukPI simply by

B`I . In case that I is finite, and I � rKs, we write simply B`K instead of B`rKs. Consider the direct

sum B :� `kPIBk of Banach spaces. By the notation xδδδk, where k P rKs and x P Bk, it is meant, the

sequence/vector in B, which is x on the kth-element/entry, and zero elsewhere.

Given a direct sum
À

kPI Hk of Hilbert spaces. We can canonically define an inner product on
À

kPI Hk
by:

xf ,gyÀ
kPI Hk

:�
¸
kPI

xfk, gky, @f, g Pà
kPI
Hk.

It is not hard to show, that
À

kPI Hk equipped by this structure is a Hilbert space. The direct sum of

Hilbert spaces, which we shall mostly consider is the direct sum of Lebesgue spaces, viz. the direct sum

of the form
À

kPI L
2pΩkq, tΩkukPI is a collection of measure spaces. Let G be a measure space (later, G

will be mostly an LCA group, equipped with the corresponding Borel σ-algebra, and Haar measure), and

Ω � G a measureable subset. Given an f :� pf1, . . . , fKq P L2pΩq`K . Since the domains of each tfkukPrKs
coincides, it stands clear to treat f as a vector-valued function f : Ω Ñ CK , x ÞÑ pf1pxq, . . . , fKpxqq.

Given a collection of operators, each acts on a Banach space. One can canonically define the following

class operator:

Definition 2.2 (Direct Sum Operator). Let tBkukPI and tB1

kukPI be countable collections of Banach

spaces. Write the direct sum of tBkukPI by B, and the direct sum of tB1

kukPIby B1 .
Let Tk : Bk Ñ B

1

k, k P I, be a collection of bounded operators. The direct sum operator T :� `kPITk :

B ÞÑ B1 is defined by:

T pà
kPI

xkq :�à
kPI

Tkxk.

The following lemma, concerning to invertibility of direct sum operator, is not hard to establish:

Lemma 2.5. Given a direct sum operator T � `kPITk : B Ñ B1 mapping between direct sum Banach

spaces B � `kPIBk and B1 � `kPIB1

k. Then T is invertible, if and only if each Ti, i P I, is invertible.

Correspondingly, the inverse of T is given by the direct sum operator T�1 :� `kPIT�1
k .

2.2. Some Classes of Generating systems in Hilbert spaces

First, we recall some facts about sequences and series. Consider a normed vector space X and let txnu
be a sequence in X . txnu is said to converge to x P X if: limnÑ8‖x� xn‖ � 0, and txnu is said to be a

cauchy sequence if for all ε ¡ 0 the exist a number N P I s.t.: ‖xn � xm‖   ε, @n,m ¥ N . Convergent

sequences are automatically Cauchy sequences. The converse is true, in the case that the considered

space is in addition a Banach space (which is exactly the definition of this space). A sequence txnu in

a normed vector space is said to be bounded below (bounded above) if infn‖xn‖ ¡ 0 (supn‖xn‖   8),

respectively. It is not hard to see that all Cauchy sequences in a normed space is bounded above. Let

txnunPI be a sequence in a Banach space B and consider the series in the form
°
nPI xn.

°
nPI xn is said

to converge unconditionally if
°
nPI xσpnq converges, with σp�q denotes an arbitrary permutation on I.

Otherwise, txnu is said to converge conditionally.
°
nPI xn is said to converge absolutely if

°
nPI‖xn‖

converges.

14



2.2. Some Classes of Generating systems in Hilbert spaces

In this section, we consider ourself with generating systems in Hilbert spaces H, i.e. collection A of

countable elements in that space which allows a representation of each element of H as an ” infinite linear

combination” of elements of A, where the corresponding representation has to be seen as limiting process.

More specific, we consider a sequence txnunPN s.t. any element x of H can be written, not necessarily in

a unique way, as x � °8
n�1 cnxn, for some scalars tcnunPN, where the equality has to be understand as:

x � limnÑ8
°n
k�1 ckxk, with the convergence is w.r.t. the norm of H.

Let X be a vector space over a F (which is in our case either complex - or real field), and txnu8n�1 be a

countable collection of elements of X . The expression x � °8
n�1 cnxn, with cn P F @n, is called expansion

of x w.r.t. txnunPN. In the following subsection, we give some discussions on generating systems in

Hilbert spaces X , which provides a unique expansion of each element of X .

2.2.1. Bases for Hilbert Spaces

On a Banach space, one can provide a generating system as follows:

Definition 2.3 (Basis). Let X be a Banach space and txnu � X countable. txnu is said to be a basis

of X if the expansion of every element of X w.r.t. txnu is unique. The corresponding expansion is called

basis expansion.

Let txnu be a basis of X . txnu is said to be unconditional/absolutely convergence if the basis expansion

of each element of X converges unconditionally/absolutely, respectively.

The following easy but useful lemma asserts the invariance of bases under linear homeomorphism.

Lemma 2.6. Let X and Y be Banach spaces and V : X Ñ Y be a linear homeomorphism. If txnu
is a basis in X , then tVxnu is a basis in Y. In particular, let f P X , and consider the representation

f � °n cnxn by means of the basis txnun, then it holds
°
n cnVxn converge w.r.t. the norm of Y to f̃ ,

where f̃ � Vf .

Proof. Consider an arbitrary y P Y. There corresponds an x P X with basis expansion
°
n cnxn, s.t.

x � V�1y. Applying V to that basis expansion and by linearity and continuity of V, one obtains

y � °n cnVxn. Suppose that there is another representation y � °n bnVxn. Applying V�1 to this

representation and by continuity and linearity of this mapping, one gets
°
n bnxn. Since basis expansion

is always unique, it yields cn � bn, @n. Hence, the statements hold.

Now, it can be said that two bases txnu and tynu for Banach spaces X and Y, respectively, possessing

a linear homeomorphism V : X Ñ Y is V-equivalent or simply: equivalent (written txnu �V tynu or

simply: txnu � tynu) if yn � Vxn. The following theorem states that convergence properties of a basis

is preserved by linear homeomorphism:

Theorem 2.7. Let X and Y be Banach spaces, txnu be a basis in X , and tynu be a basis in Y. Then

the following statements are equivalent:

1. txnu � tynu.

2.
°
cnxn converges (-/unconditionally/absolutely) if and only if the infinite sum

°
cnyn converges

(-/unconditionally/absolutely).

Proof. From 1. to 2.:

Suppose txnu �V tynu with a linear homeomorphism V and take a convergence sum
°
cnxn. Applying

V to this sum and by linearity of V, it yields
°
cnVxn which converges since V is continuous. For the

other way, note that � is symmetric. So one can show that analogously.

Especially, we are interested in the following classes of bases for Hilbert spaces:
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2. Bases and frames

Definition 2.4 (Orthonormal Basis). Let H be a Hilbert space, and tenu be a countable sequence

in H. tenu is said to be an orthonormal basis for H if tenu is a basis for H and tenu is an orthonormal

system in H, i.e. xek, ely � δk,l.

Orthonormal bases constitute an important class of bases of a Hilbert space. As a consequence of the

fact, that bases are preserved by linear homeomorphisms, and the fact that unitary operators preserve

correlations, one obtains immediately the following statement, which is simply a modification of lemma

2.6:

Lemma 2.8. Let H1 and H2 be (separable) Hilbert spaces. Suppose that there exists a isometric iso-

morphism V : H1 Ñ H2. Let teλuλPΛ be an orthonormal basis of H1. Then tVeλuλPΛ is an orthonormal

basis of H2. In particular, let x � °λ cλeλ be an expansion of an x P H1 by means of teλu. Then°
λ cλVeλ is an expansion of Vx.

In case that each Hilbert space Hi in the finite collection tHiu is separable, one can easily construct

an orthonormal basis for the direct sum of this collection:

Proposition 2.9. Let tHjujPrns be a finite collection of separable Hilbert spaces. For each j P rns,
denote the ONB for Hi by tepjqλ uλPΛpjq , where Λpjq is a countable index set. Then, an orthonormal basis

for `jPrnsHj is the union
�
jPrnstepjqλ δδδjuλPΛ.

From an orthonormal basis one can construct another class of bases for Hilbert spaces, called Riesz

bases:

Definition 2.5 (Riesz Basis). Let H be a Hilbert space, and tenu be an orthonormal basis for H. A

countable sequence tφnu is said to be a Riesz basis if:

φn � Ven, @n,

for a V : H Ñ H bounded bijective operator. A sequence tφnu is said to be a Riesz sequence, if it is a

Riesz basis for its closed span.

It is obvious that orthonormal bases are also Riesz bases. It is well-known, that Riesz basis is a bounded

unconditional basis for a Hilbert space. Furthermore, there is an equivalent characterization of a Riesz

basis: txnun is a Riesz basis for a Hilbert space H, if and only if there exists constant A,B ¡ 0 s.t.:

A
¸
n

|cn|2 ¤ ‖
¸
n

cnxn‖ ¤ B
¸
n

|cn|2, @tcnu P l2. (2.1)

It can be shown, that to check whether (2.1) holds for some positive constant A and B, it is sufficient

and necessary to check (2.1) only for all sequences, with only finitely many non-zero elements.

2.2.2. Frames for Hilbert Spaces

Let be txnun a countable collection of elements of a Hilbert space H. We say txnun is said to be a Bessel

sequence if:
°
n|xx, xny|2   8, @x P H. Suggested by previous definition, one can define the so called

analysis operator corresponding to a sequence txnun mapping from a Hilbert space H to a sequence

space, by Cx � txx, xnyun, x P H. One immediately see, that the analysis operator corresponding to

a Bessel sequence is a bounded operator from a Hilbert space into l2. Furthermore, expansions w.r.t.

a Bessel sequence, provided that the corresponding coefficients is quadratic summable, converges. So,

corresponding to a Bessel sequence txnun in a Hilbert space H, one can define another bounded mapping

from l2 into H, by Rtcnun � °n cnxn, @tcnu P l2, which is also known as the synthesis operator

corresponding to the Bessel sequence txnun. Furthermore, one can show, that latter sum converges
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2.2. Some Classes of Generating systems in Hilbert spaces

unconditionally. Notice that R is the adjoint operator of C. By composition of synthesis - and analysis

operator of a Bessel sequence txnu in a Hilbert space H, one obtains a well-defined and bounded operator

called frame operator S � RC.

Now we give in the following the notion of generating systems in a Hilbert space, which provides a

not-necessarily unique expansion of the elements of the considered space:

Definition 2.6. Let H be a separable Hilbert space, and tφλu � H a countable family. tφλu is said to

be a frame, if there exist A,B ¡ 0 s.t.:

A‖x‖2 ¤
¸
λ

|xx, φλy|2 ¤ B‖x‖2, @x P H. (2.2)

A is called lower frame bound and B upper frame bound. For ease of notations, we write sometimes°
λ|xx, φλy|2 � ‖x‖2 instead of (2.2).

We call a frame is tight if A � B. Furthermore, a frame is said to be exact, if it ceases to be a frame

when an element of this collection is removed. One can show, that a Riesz basis is basically an exact

frame, and an ONB is a tight exact frame.

Some statements of particular interests about analysis -, synthesis -, and frame operator corresponding

to a frame tφλu in a Hilbert space H can be given. One can show that the analysis operator corresponding

to tφλu is a bounded operator with closed range. Furthermore, the frame operator S corresponding to

tφλu is a positive invertible operator. Involving a left inverse of S, the latter fact asserts a way to

reconstruct each element x P H by means of tφλu. So, given a frame for a Hilbert space. By means of

the so called canonical dual frame one obtain a reconstruction formula for each elements of this Hilbert

space:

Theorem 2.10 (Reconstruction formula - Canonical Frame Expansion). Given a frame tφnu for

a Hilbert space H with frame bounds A,B ¡ 0. The sequence tS�1φnu is a frame with frame bounds

B�1, A�1 ¡ 0, which is called the canonical dual frame. Every x P H can be expanded in the following

way:

x �
¸
xx,S�1φnyφn, and x �

¸
xx, φnyS�1φn.

Furthermore, both sums converge unconditionally.

As same as bases, frames constitute a class of generating system in a Hilbert space, which is preserved

by linear homeomorphism:

Lemma 2.11. Let H and K be Hilbert spaces. Let tφnun be a frame for a Hilbert space H, and

V : H Ñ K be a linear homeomorphism. Then tVφnun is a frame for K. If A and B are frame bounds

of tφnun, then tVφnun has the frame bounds A‖V�1‖ and B‖V‖. If S is the frame operator for tφnun,

then VSV� is the frame operator of tφnun. Furthermore, tφnu is exact, if and only if tVφnun is exact.

For later approaches, we need the following statements:

Lemma 2.12. Let K and H be (separable) Hilbert spaces, teKλ uλ be an orthonormal basis in K and

V : K ÞÑ H an operator. Then:

1. V is bounded and surjective if and only if tVeKλ u is a frame for H.

2. Let tVeKλ u be a frame for H, and let W be a bounded left inverse of V�. Then tWeKλ u is a dual

frame of tVeKλ u.

3. Suppose additionally that K and H are isometric isomorphic to each other. V is bijective if and

only if tVeKλ u is a Riesz basis for H.
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2. Bases and frames

4. Let tVeKλ u is Riesz basis for H. Then tV�,�1eKλ u is a dual Riesz basis of tVeKλ u.

Proof. For the right implication of the statement 1.: From the assumption that V is bounded, it follows

that V� : H Ñ K is uniquely determined, and that they possess the same norm. In particular, V� is

also bounded. Furthermore, since V is assumed to be surjective, it is elementary to show that V� is an

injective map from H onto the closed set RpV�q. So, by the open mapping theorem, it follows that V�

is bounded below. So, collecting the previous observations, it yields, that there exist A,B ¡ 0 s.t.:

A‖x‖2 ¤ ‖V�x‖2 ¤ B‖x‖2, @x P H. (2.3)

Let x P H and y P K be the image of x under V�. By means of the orthonormal basis teKλ uλ for K, one

can write the expansion of y as follows: y � °λxy, eKλ yeKλ . By computation, the previous expansion can

be written as: y � °λxx, φλyeKλ , where φλ :� VeKλ , @λ. So by the Parseval identity:

‖y‖2 � ‖V�x‖2 �
¸
λ

|xx, φλy|2. (2.4)

Finally, setting this equality to (2.3), it is shown that tφλuλ is a frame for H with frame bounds A, B.

For the left implication of the first equivalence: Suppose that tVeKλ uλ is a frame for H. It follows that¸
λ

|xx,VeKλ y|2 � ‖x‖2, @x P H. (2.5)

In particular, there exists a finite B ¡ 0, s.t. for all x P H, it holds that
°
λ|xx,VeKλ y|2 ¤ B‖x‖2, @λ P Λ.

Applying previous observation, and taking care the fact that teKλ uλ is an ONB for K, it follows by some

elementary computations 1 , that the functional y ÞÑ |xx,VyyH| is continuous for all @x P H. Hence

V� : KÑ H exists. Finally, by rewriting (2.5), it yields:¸
λ

|xx,VeKΛy|2 �
¸
λ

|xV�x, eKΛy|2 � ‖V�x‖ � ‖x‖2, @x P H,

where the second equality follows from Parseval’s Theorem. Hence, tVeKλ uλ is a frame for H.

Clearly, the left inverse W : K Ñ H of V� is linear, bounded, and surjective. Let x P H be arbitrary.

The image of x under V� can be written as the orthonormal expansion: V�x � °xx, φ̃λyeKλ , where

φ̃λ :� VeKλ . Applying W to the previous expansion, it yields: x � WV�x � °xx, φ̃λyφλ, which shows

the desired statement.

For the second statement: Let K and H be isometric isomorphic to each other by the operator T :

K Ñ H. Define the operator V
1

:� V � T� : H Ñ H, where V : K Ñ H is an operator. If V is bounded

and bijective, it follows immediately that V
1

, which is composition of bounded and bijective operators, is

also bounded and bijective. Conversely, by noticing that V � V
1 � T, and arguments analogously to the

previous observation, it follows that if V is bounded and bijective, so also V
1

is bounded and bijective.

Summarily V is bounded and bijective if and only if V
1

is bounded and bijective. From the fact that

for all λ P Λ, VeKλ � pV1 � TqeKλ , that an orthonormal basis is preserved by isometric isomorphism the

equivalence is shown.

Now, let tVeKλ uλ be a Riesz basis. Then V is a bounded bijective operator. By noticing that V� is

1Let y P K. Expand: y �
°
λPΛ cλe

K
λ for a unique tcλu P l

2. @x P H, it follows:

|xx,Vyy|2 ¤
¸

λPΛ

|cλ|2|xx,VeKΛ y|
2 ¤ B‖x‖2

¸

λPΛ

|cλ|2 ¤ B
1
‖x‖2,

where B,B
1

are finite non-negative scalars. The second inequality follows from the linearity of V, from some properties
of inner product, from some elementary inequalities, from the fact |a| � |a|, and the third inequality follows from the
fact

°
λ|xx,VeKΛ y|

2 ¤ B‖x‖2 with B ¡ 0 is a finite scalar, and finally the fourth inequality follows from the assumption
that tcλu P l

2.
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2.2. Some Classes of Generating systems in Hilbert spaces

bijective and bounded, and accordingly its left inverse pV�q�1 (which is also its right inverse) is unique

and bounded, and finally by computations analouge to the proof of of the second statement, the fourth

statement follows. Since V and V� have the same norm, it clearly follows that the frame bounds of the

Riesz basis tVeKλ uλ coincides with the bounds of the operators V and V�.

We call the frame tφλuλPΛ for a Hilbert space H, whose members are each the image of an orthohormal

basis teλuλPΛ under a bounded surjective operator V : KÑ H, the frame generated by V.

Remark 2.13. Given an operator V : K Ñ H. Suppose that V is bounded and surjective, and that

the inequality (2.3) concerning to the adjoint operator V� holds with 0   A,B   8, or equivalently the

operator norm of V� is bounded above (resp. below) by
?
B (resp. A). From the second equality in

(2.5), it follows immediately that the upper (resp. lower) frame bounds of the frame generated by V is

B (resp. A).

For such a class of frame, it is not hard to give the corresponding dual frame:

Lemma 2.14. Let tφλuλPΛ be a frame generated by V : K Ñ H. Then the dual frame tφ̃λuλPΛ of

tφλuλPΛ is generated by the operator Ṽ : KÑ H, which has the form:

Ṽ � ṼMP �WPkerpVq � ṼMP �WpIdH�V�ṼMP q, (2.6)

where ṼMP : K Ñ H denotes the Moore-Penrose pseudoinverse of V�, i.e. ṼMP :� pVV�q�1V, and

W : KÑ H is any bounded operator.
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3. Fourier analysis on LCA groups

This chapter is devoted to the Fourier analysis on LCA groups. We first give some introduction to

this class of groups. We shall introduce the notion of dual group and the notion of Haar measure, both

constitute fundamentals for the Fourier transform of square-integrable functions on LCA groups. For self-

containedness, the topological structure of the dual group of an LCA group shall be discussed intensively.

In particular, this aims to show, that by an appropriate choice of the topology (compact-open topology)

of the dual group, which is in some sense conformable with the Fourier transform, the dual group of an

LCA group is also an LCA group.

For later purposes, we will also see that the dual group of a quotient group G{H, where G is an LCA

group, and H ¤ G is a closed subgroup, and that the dual group of a closed subgroup of an LCA group can

be identified (in topological group theoretic sense) with a more convenient group, called the annihilator.

The important statement due to Pontryagin and van Kampen, which states, to say roughly, that the dual

group of a dual group of an LCA group can be seen as the LCA group itself, shall also be established in

this chapter.

If not otherwise stated, all the considered groups are, for ease of notations, written multiplicatively.

Usually, the identity of a group G is emphasized by the subscript: 1G . Recall that, since we consider

mostly topological groups, homomorphism (resp. monomorphism, isomorphism, epimorphism, embed-

ding) has to be understand as topological group homomorphism (resp. - monomorphism, - isomorphism,

- epimorphism, - embedding). Otherwise the adjective ”algebraic” (resp. ”topological”) shall be added.

To avoid trivialities, all subsets (also compact - and open -) are, if not otherwise stated, considered as

non-empty

The statements and its corresponding proof found in this chapter are adopted up to some modifications

from [42], [51], [24], and [25].

3.1. Basic notions

We begin by introducing the definition of locally compact Abelian groups:

Definition 3.1 (LCA-groups). A locally compact abelian (or shortly: LCA) group is a locally compact

topological group, which is abelian/commutative as a group.

Recall that Hausdorff property is already contained in the definition of topological groups, and hence

also in the definition of LCA groups. It is straightforward to see that the following elementary spaces are

LCA groups:

Examples 3.1.

• The additive group pR,�q equipped with the natural topology.

• The additive group pZ,�q equipped with the discrete topology.

• The multiplicative group pT, �q equipped with the relative topology induced by the natural topology

on R, and the additive group pR{Z,�q equipped with the quotient topology induced by the natural

topology on R. It is known that both LCA groups are isomorphic (by the isomorphism R{Z Q rxs ÞÑ
e2πix P T) to each other. So they both can be seen as identical.
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3. Fourier analysis on LCA groups

• The finite group Z{kZ, where k P Z equipped with the discrete topology.

To an LCA group G, there corresponds a unique set of functions, each maps G structure-preservative

and continuously to the multiplicative group of the 1-dimensional torus:

Definition 3.2 (Characters). Let G be an LCA group. A function γ mapping from G to the multi-

plicative LCA group T is said to be a character of G if γ is a (continuous) homomorphism.

With suitable operations, the set of characters of G forms an Abelian group:

Definition 3.3 ((Pontryagin) Dual Group). Let the set of all characters G^ of G be equipped with

the multiplication between γ1, γ2 P G^, given by the pointwise multiplication:

pγ1γ2qpxq :� γ1pxqγ2pxq, @x P G,

the inverse of γ P G^, which is given by the complex conjugation: γ�1 :� γ, and the identity, which is

the characteristic function on T, i.e. 1G^ :� χT. Then G^ is called the (Pontryagin) dual group of G.

It is immediate to see that the dual group of an LCA group is an Abelian group. Furthermore, it is

obvious that from the definition of the characters and the corresponding operations between them, the

following holds:

• γp1Gq � 1G^pxq � 1T, for all γ P G^, and x P G.

• γpx�1q � γ�1pxq � pγpxqq�1 � γpxq, @γ P Γ, x P G.

In the following, examples of dual groups of some LCA groups are given:

Examples 3.2.

• Consider the additive group R, equipped with its natural topology. It can easily be shown, that

the dual group of R consists of the mappings: γyp�q :� e2πiyp�q, for y P R.

• The dual group pR{Zq^ consists of the mappings: γyp�q :� e2πiyp�q, for y P Z.

• Z^ consists of the mappings γyp�q :� e2πiyp�q, y P R{Z.

• The dual group of the finite cyclic group ZN � Z{NZ consists of the mappings γyp�q :� e2πi
yp�q
N ,

y P ZN .

It is desirable to give the dual group a topology such that it becomes an LCA group. In the following

section, we give the notion of the so called compact-open topology, which exactly meets this desired

requirement.

3.2. Topological Structure of Dual Groups

Let G be an LCA group. The dual group G^ is equipped with the topology induced by the sub-base

consisting of the open (by definition) sets of the form:

WpK,Uq :� tγ P G^ : γpKq � Uu, K � G compact, U � T open, K, U � H. (3.1)

This topology on G^ is called the compact-open topology. Clearly, this topology can also be applied to

any subset of the set of mappings between G and T, or even between any two topological spaces X and

Y . In particular, we shall later also apply this topology to the set of homomorphism between G and T,
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3.2. Topological Structure of Dual Groups

i.e. HompG,Tq. Notice that, since finite subsets are compact, the compact-open topology is finer than

the pointwise convergence topology, or equivalently the product topology, given in (A.2).

It is more convenient for some of our purposes, to describe the compact-open topology on G^ al-

ternatively as follows. Given a character γ0 P G^, the neighborhood base of γ0 consists of the open

sets:

W
1pγ0,K, εq :� tγ P G^ : |γ0pxq � γpxq|   ε, @x P Ku, K � G compact, K � H, ε ¡ 0. (3.2)

Before we show the fact that the dual group G^ of an LCA group G is also an LCA group, presumed

that G^ is equipped with the compact-open topology, we first show in the following lemma that by this

setting, pG becomes a (Hausdorff) topological Abelian group.

Lemma 3.3. Let G be an LCA group. The dual group G^ endowed by compact-open topology is a

topological Abelian group.

Proof. The fact that G^ is an Abelian group, is easy to show, and was already mentioned. It is not

hard to see that by this choice of topology, G^ becomes a Hausdorff space. Indeed, let γ, γ
1 P G^, where

γ � γ
1

. Now, take x P G s.t. γpxq � γ
1pxq. Since T is Hausdorff, we can choose an open neighborhood

U � T of γpxq, and U
1 � T of γ

1pxq, s.t. U X U
1 � H. Clearly, Wptxu, Uq and Wptxu, U 1q is contained

in the compact-open topology of G^, since txu is obviously compact. Finally, it is not hard to see that

they are both disjoint, which shows that G is Hausdorff.

Now, we show that the multiplication G^�G^ Ñ G^ is continuous. Let γ, γ
1 P G^. Take a basic open

set Wpγγ1 ,K, εq around γγ
1

, where K � G a non-empty compact subset, and ε ¡ 0. We choose the open

setW 1pγ,K, ε{2q�W 1pγ1 ,K, ε{2q around pγ, γ1q in G^�G^. We shall show that the multiplication maps

W 1pγ,K, ε{2q �W 1pγ1 ,K, ε{2q into W 1pγγ1 ,K, εq. So, let ψ PW 1pγ,K, ε{2q, and ψ
1 P W 1pγ1 ,K, ε{2q. By

triangle inequality, we obtain:

|ψpxqψ1pxq � γpxqγ1pxq| � |pψpxq � γpxqqψ1pxq � pγ1pxq � ψ
1pxqqγpxq|

¤ |ψpxq � γpxq|� |γ1pxq � ψ
1pxq|   ε

2
� ε

2
� ε,

for all x P G. So, the multiplication is continuous at pγ, γ1q. Finally, since γ and γ
1

is chosen arbitrarily,

it follows the multiplication is continuous on G^ � G^.

It remains now to show that the inversion is continuous. Let γ P G^, and take a non-empty compact

K � G, and ε ¡ 0. Then W 1pγ,K, εq is an open neighborhood of γ, contained in the neighborhood base

of γ. For ψ PW 1pγ,K, εq, we compute:

|ψ�1pxq � γ�1pxq| � |ψpxq � γpxq
ψpxqγpxq | � |ψpxq � γpxq|   ε,

for all x P G, which shows that W 1pγ,K, εq is mapped by the inversion to W 1pγ�1,K, εq, which shows

that the inversion is continuous at γ. Noticing that γ is chosen arbitrarily, the desired statement is

established.

Since we now know that G^ equipped with compact-open topology is a topological group, it is obviously

enough to turn our attention to the neighborhood base of the identity in G^, since all topological properties

and continuity of a map (provided that the target of the map is also a topological group) can be shown

only by considering this collection of subsets (prop. C.8, prop. C.7). In particular we shall consider the

following neighborhood base of the identity formed by the open sets of the form:

WpK,Uq :� tγ P G^ : γpKq � Uu,
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3. Fourier analysis on LCA groups

where K � G is a non-empty compact subset, and U � T a neighborhood of the identity 1 in T.

In the following, we will see, by observing the topological structure of the neighborhood of the identity

in the dual group, that this group is indeed an LCA group. But first, we need an auxiliary statement

concerning to the structure of the set of homomorphisms between G and T. Recall that TG denotes the

set of mappings between G and T equipped with the product topology, or equivalently, the pointwise

convergence topology.

Lemma 3.4. Let G be an LCA group. The set of homomorphic functions between G and T is compact

in TG equipped with product topology.

Proof. We already know that TG equipped with the product topology is by Tychonov’s theorem compact.

Hence, to show the compactness of HompG,Tq in TG , it suffices to establish the closeness of HompG,Tq
in TG . So by some computations:

HompG,Tq �
£
h,gPG

tγ P TG : γph� gq � γphqfpgqu �
£
x,yPG

tγ P TG : prh�gpγq � prhpγqprgpγqu

�
£
h,gPG

tγ P TG : ppr�1
h�g � pprhprgqqpγq � 1Gu,

where 1G denotes the constant function, mapping whole G to the identity of T, and prhprg denotes

the mapping pprhprgqpfq � prhpfqprgpfq. Notice that prhprg can be seen as the composition of the

mapping TG Q f ÞÑ pprhpfq,prgpfqq P T and the multiplication in T. Since all projections from product

of topological spaces equipped with product topology are continuous, multiplication in T is continuous,

and composition of continuous functions yields a continuous function, it follows that prhprg : TG Ñ T is

continuous. Notice that the subset A of T, for which pr�1
h�gpAq � 1G holds, is the singleton t1u, which

is clearly closed. The fact that the preimage of the closed set pr�1
h�gpAq under the continuous mapping

prhprg is closed shows that the set tγ P TG : ppr�1
h�g � pprhprgqqpγq � 1Gu, for all x, y P G, is closed. So

basically, HompG,Tq is arbitrary intersection of closed sets, and hence closed w.r.t. the topology on TG .

Since TG is compact, it follows immediately that HompG,Tq is compact in TG .

By means of the topological structure of HompG,Tq in TG , the local compactness of the dual group of

an LCA group can be established. In the following theorem, we shall give a sketch of the proof of this

property. For ease of notations, we denote HompG,Tq by G�.

Theorem 3.5. Let G be an LCA group. Then G^, equipped with compact-open topology, is also an

LCA group

Sketch of Proof. Define for k P N, Λk :� ppp� 1
3k ,

1
3k qq, where p : RÑ T is the composition of the canonical

quotient mapping between R and R{Z, and the canonical topological group isomorphism between R{Z and

T. It can be shown that tΛkukPN is a neighborhood base of 0R, w.r.t. the natural topology. Notice that by

definition of quotient topology, and from the fact that R{Z is homeomorphic to T by the corresponding

homeomorphism, it follows that tppΛkqukPN is a neighborhood base of the identity 1T of T. The following

technical statement can be established:

@k P N : x P Λk ô x, x2, . . . , xk P Λ1. (3.3)

From above statement, one can imply the fact that a homomorphism between G and T is continuous if

and only if the preimage of Λ1 under this homomorphism is a neighborhood of 1G , or equivalently:

WG�pU,Λ1q �WG^pU,Λ1q, @U neighborhood of 1G . (3.4)

To proof this statement, let γ P G�. Suppose that γ�1pΛ1q is a neighborhood of 1G . From the definition of

neighborhoods, it follows that there exists an open set U � Λ1 containing 1G . From elementary property
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3.2. Topological Structure of Dual Groups

of topological groups, it follows that there exists a neighborhood V of 1G s.t. V k � U . Fix such a k P N.

From the homomorphic property of γ, it holds that for l P rks, pγpxqql P Λ1, @x P V . By (3.3), it follows

that γpxq P Λk, @x P V , and hence γpV q � Λk, for each k P N. Since tΛkukPN forms a neighborhood

base of 1T, it holds that γ is continuous at 1G , and hence on whole G. Finally, the statement (3.4) is

shown. So now we have seen, that it is unnecessary to make a difference between the sets WG�pU, V 1q
and WG^pU, V 1q, for each neighborhood U of 1G , and each subset V

1

of Λ1. This sets shall simply be

denoted by WpU, V 1q.
Now, we show that the following statement holds:

@K � G compact, C � T closed : WG�pK,Cq compact, (3.5)

where the compactness and closeness is w.r.t. the topology of G� induced from TG . It is not hard to show

that WG�pK,Cq �
�
xPKppr�1

x pCq X G�q, where prx denotes the canonical projection from topological

product space. Since ppr�1
x pCqXG�q is closed in G�, (notice that preimage of closed set under continuous

function is closed and from lemma 3.4 G� is closed), it follows immediately that WG�pK,Cq is closed in

G�, and hence compact, since G� is compact by lemma 3.4. So the statement is established.

Now we come to our actual purpose to sketch the proof of the local compactness of the dual group.

Since we have seen that G^ is a (Hausdorff) topological group, it remains to show that there exists a

compact neighborhood of 1G^ . We claim that W1 :� WG^pU,Λ4q is compact w.r.t. the compact open

topology, for each U neighborhood of 1G . Notice that since Λ4 � Λ1,WG^pU,Λ4q �WG�pU,Λ4q by (3.3).

Hence, we can apply (3.5), and imply thatW1 is compact w.r.t. to the topology of G�. It remains now to

show that the subspace topology (call τ^) onW1 inherited from G^ coincides with the subspace topology

(call τ�) on W1 inherited from G�. Since τ^ is finer than τ� (follows from the fact that compact-open

topology is finer than pointwise convergence topology), it is enough to show that τ� � τ^, which is fairly

easy to show.

In case that some informations about the topological structure of the considered LCA group is available,

one can make a guess about the topological structure of its dual group, as shown in the following:

Theorem 3.6. Let G be a LCA group. Then the following holds:

(a) If G is compact, then G^ is discrete.

(b) If G is discrete, then G^ is compact.

Proof. Let G be compact. Consider the neighborhood WpG, Uq, with U is an open set sufficiently small

in T s.t. no non-trivial subgroup of T contained therein, of the identity 1G^ . For any γ P WpG, Uq,
since γ is a homomorphism, γpGq is a subgroup of T, but only the trivial subgroup is contained in U .

Hence it must hold: γ � 1G , WpG, Uq � t1G^u, and correspondingly 1G^ is discrete, which shows the

first statement.

For the proof of the second statement: let G be discrete. It is clear that every function mapping from

discrete space to any topological space is continuous. So G^ coincides with the set HompG,Tq, which is

a subset of TG . In lemma 3.4, we have already seen that HompG,Tq, and hence G^ is compact w.r.t. to

the topology of TG . It now remains to show that the topology on HompG,Tq induced from TG coincides

with the compact-open topology. Recall that the subsets
�
xPF pr�1

x pUq, where F � G finite, and U � T
open, constitute a base for the product topology on TG . By easy reformulations:

p
£
xPF

pr�1
x pUqq XHompG,Tq � tγ P HompG,Tq : prxpγq P U, @x P F u

� tγ P HompG,Tq : γpxq P U, @x P F u �WpF,Uq,
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3. Fourier analysis on LCA groups

which shows that the base of the topology on HompG,Tq induced from TG conincides with the base of

the compact open topology on HompG,Tq. Hence HompG,Tq � G^ is compact w.r.t. the compact open

topology.

Given a finite product of LCA groups, one can easily compute the dual of this LCA group, provided

that the dual of each LCA group in this finite collection is known, as done in the following theorem:

Theorem 3.7. Let tGiuiPrns be a finite collection of LCA groups. Then the dual group of the product

of tGiuiPrns can be identified with the product of the dual groups t pGiuiPrns, by the identification:

pG1 � � � � � Gnq^ Q γ1 � � � γn ÐÑ pγ1, . . . , γnq P G^1 � � � � � G^n

Proof. It is sufficient to give the proof for the case n � 2. The desired statement can then be easily

shown by induction.

Now, let G � G1 � G2. Define the mapping φ : G^1 � G^2 Ñ pG1 � G2q^, by φpγ1, γ2qpx1, x2q :�
γ1px1qγ2px2q, px1, x2q P G1 � G2. By computations, It is not hard to see that φ is an algebraic homo-

morphism. By elementary reformulations of kerφ, one immediately observes that kerφ contains only the

cartesian product of the identity in G1 and G2, and hence φ is injective.

Surjectivity of φ is easy to show: Take γ P pG1 � G2q^. One can of course decompose γ for all x1 P G1

and x2 P G2 into γpx1, x2q � γpx1, 1G2
qγp1G1

, x2q, where 1G1
P G1 and 1G2

P G2 are identities. Now define

γ1px1q :� γpx1, 1G1
q, @x1 P G1, and also γ2px2q :� γp1G1

, x2q, @x2 P G2. It is elementary to see that γ1

and γ2 are indeed characters on G1 and G2, respectively.

Now, we show that φ is continuous. Let WpK,Uq be a basic open neighborhood of the identity in

H �: pG1 � G2q^, where K � G1 � G2 is compact, and U � T open neighborhood of the identity in

T. The canonical projections φ1 : G1 � G2 Ñ G1 and φ2 : G1 � G2 Ñ G2 are clearly continuous. The

sets φ1pKq and φ2pKq are hence compact in G1 and G2 respectively, since they are each an image of a

compact set under continuous mapping. Choose a neighborhood V of the identity 1 in T s.t. V 2 � U ,

and notice that WG^1 pK,V q �WG^2 pK,V qq is a (open) neighborhood of the identity in G^1 � G^2 . By

detailed observations, one can see that by our choice of V , φpWG^1 pK,V q�WG^2 pK,V qq �WpK,Uq, and

accordingly φ is continuous.

Finally, we show now that φ is open. Let WG^1 pK1, U1q be an open neighborhood of the identity

1G^1 P G^1 , and WG^2 pK2, U2q be an open neighborhood of the identity 1G^2 P G^2 , where K1 � G1,

K2 � G2 are compact, and U1, U2 � T are open neighborhoods of the identity 1 P T. Observe that

K :� pK1 Yt1G1
uq� pK2 Yt1G2

uq is compact in G1q�G2, and U :� U1 XU2 is an open neighborhood of 1

in T. We now claim that: WpK,Uq � φpWG^1 pK1, U1q �WG^2 pK2, U2qq. Let γ PWpK,Uq. We can write

γ as the image of the characters γ1 :� γpp�q, 1G2
q and γ2 :� γp1G1

, p�qq on G1 and G2 respectively, under

the mapping φ, which shows that the claim holds true. Hence, φ is open.

This concept is illustrated by the following examples concerning to elementary LCA groups:

Examples 3.8. Consider the finite product of the euclidean space RN , where N P N. We already know

that the dual group of R consists the mappings γyp�q � e2πiyp�q, for y P R, and can be identified with

R. So, the group pRN q^ consists of the elements pγy1
, . . . , γyN q, where γyk :� e2πiykp�q, and yk P R,

@k P rN s. By thm. 3.7, the dual group pRN q^ of RN consists of the mappings γω �
±
kPrNs γωk , where

ω � pω1, . . . , ωN q P RN . By this reason, pRN q^ can be identified with RN . One can proceed in the same

way to find out the dual group of pR{ZqN , the dual group of ZN , the dual group of pZnqN , and the dual

group of the product of finite mixtures of R, R{Z, Z, and Z{kZ, respectively.
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3.3. Separating Property of Dual Groups

A fundamental property of the dual group G^ of an LCA group G is that it constitute a so-called separating

set of G. For self-containedness, we give the notion of separating sets in the following definition:

Definition 3.4 (Separating set). Let X, Y be two sets. The set of functions S � MappX,Y q is said

to be separating set of X or to separate the points of X if:

@x, x1 P X, x � x
1

: Df P S : fpxq � fpx1q.

Since a character of an LCA group G is a homomorphism between topological groups, to proof that G^

is a separating set of G, it obviously suffices to show that for x P Gzt1Gu, there exists a γ P G^, s.t.

γpxq � 1T. In particular, the separating property of the dual group of an non-trivial LCA group ensures

that the dual group of an LCA group is also non-trivial.

In case that G is compact, the desired property of its dual group is relatively easy to see:

Lemma 3.9 (Peter-Weyl’s Theorem). Let G be an LCA group. If G is compact, then G^ separates

the points of G

Consequently, one can show the following useful characterization:

Lemma 3.10. Let G be a compact LCA group, and H be a subgroup of the dual group G^. If H

separates points of G, then H � G^.

Proof. For proof, see e.g. Corollary 1 in [42]

The following statement says roughly that the the characters of a compact subgroup of an LCA group G
are inherited from the dual group of G:

Corollary 3.11. Let G be an LCA group, and K � G compact. Then for every γ P K^, there exists an

γ̃ P G^ s.t. γ̃|K � γ

Proof. Define the subset A of K^, by A :� tγ P K^ : Dγ̃ P G^ s.t. γ̃|K � γu. Since G^ separates points

of G (thm. 3.14), it follows immediately that A separates points of K. Finally, lemma 3.10 asserts that

A � K^.

In case that G is discrete, one obtains the following slightly weaker form of lemma 3.10

Lemma 3.12. Let G be discrete LCA group. If H is a subgroup of G^ which separates points of G, then

H is dense in G^.

Proof. See e.g. Prop. 32 in [42].

Before we proof the separating property of the dual group of a general LCA groups, we need first the

following lemma:

Lemma 3.13. Let H be a subgroup of an Abelian group G, and D is an divisible Abelian group. Given

a mapping φ : H Ñ D. If φ is a homomorphism, then φ can be extended to a homomorphism between G
and D, i.e.: there exists a homomorphism φ̃ : G Ñ D s.t. φ̃

���
D
� φ.

Furthermore, if in addition the following holds:

• G and D are topological groups,

• H is a subgroup of G carrying the subspace topology,

• φ is continuous,
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then φ̃ is a continuous homomorphism between G and D.

Proof. We proof the first statement by ”induction”. Let x R H, define the subgroup H0 of H by

H0 :� txnh : h P H, n P Zu. We differ two cases:

(i) If @n P N, xn R H (suspiciously, x�n, n P N, are also not cantained in H), then define a function

φ0 : H0 Ñ D, which ”annihilate” the txn : n P Zu by φ0pxnhq � φphq, @n P Zzt0u. One can easily

check that φ is well-defined, a homomorphism, and φ0|H � φ.

(ii) Assume1 that for some n P Nzt1u, xn P H. Take the least k P N, k ¥ 2, s.t. xk P H. Clearly

φpxkq � d, where d P D. Since D is divisible, there exists a P D s.t. ak � d. So now we can define

φ0 : H0 Ñ D, with φ0pxnhq � φphqan, @n P Z. So one immediately see that φ0 fulfilled the desired

statement.

One may continue iteratively for l � 1, 2, . . . to define φl : Hl Ñ D, where Hl � xHl�1 Y xy, where

x R Hl�1, as analogue to above approach to define φl. One can easily check that the set of tuple

tpHl, φlqulPN forms a chain, with order: pHi, φiq ¤ pHj , φjq :ô Hi ¤ Hj and φj |Hi � φi. By Zorn’s

lemma, a ”maximal” tuple exists. In particular this tuple must be pH8, φ8q, where H8 � G, and

correspondingly φ8 � φ̃.

For the second statement: Let be in addition G and D topological groups, H a subgroup of G carrying

the subspace topology (notice that open subgroups of an LCA group is automatically closed), and φ

continuous. Consider the extension φ̃ of φ to G. Obviously, φ̃ must be continuous, since its restriction φ

to the closed subset H is continuous.

Now, we are able to show the separation property of the dual group of a general LCA group:

Theorem 3.14. Let G be an LCA group. Then G^ separates the points of G.

Proof. Take x P G, not equal the identity, and a compact neighborhood V of the identity. From (C.4),

it follows that H :� xV Y tx, x�1uy is an open compactly generated subgroup of G. From theorem 3.16,

it follows that there exists K ¤ H, with K topologically isomorphic to Zn for some n P N0, s.t. H{K is

compact s.t. pV Ytx, x�1uqXK ��. Let q be the canonical quotient map between H and H{K. Clearly

by this construction, qpxq � 1H{K .

Applying lemma 3.9 to the compact abelian group H{K, it follows that there exists a continuous

homomorphism φ : H{A Ñ T s.t. φpqpxqq � 1T. Now, notice that φ � q, as a composition of continuous

homomorphism, is a continuous homomorphism from H to T. By noticing that T is divisible, and by

applying lemma 3.13, it follows that φ � q can be extended to a continuous homomorphism γ : G Ñ T.

Since φ � qpxq � 1T, it clearly holds also γpxq � 1T, which gives the desired statement.

In the next section, we concern ourselves with structure of LCA groups. We shall see that almost all

LCA groups can be ”seen” as a product of ”familiar” groups, which may make the analysis on this class

of groups easier.

3.4. Structure Theorems of LCA groups

First, we start with the following fundamental, but not trivial, statement due to Weil. A group ßG is

said to be cyclic group if it is generated by single element, i.e. G � xxy, for some x P G.

Lemma 3.15 (Weil’s Lemma). Let G be an LCA group. If G has a dense cyclic group, then G is either

compact or discrete.

1e.g. in the case G � Z additive , H � 2Z, x � 3, it holds 2x � 6 P 2Z
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Proof. See e.g. Thm. 2.3.2 in [51]

By means of Weil’s Lemma, one can ensure the existence of a subgroup of an LCA group, provided

that the LCA group is compactly generated, called uniform lattice, which we shall intensively consider

later. Recall that an LCA group is said to be compactly generated, if it is algebraically generated by a

compact subset.

Theorem 3.16. Let G be a compactly generated LCA group. Then G has a subgroup Λ which is

topological group isomorphic to Zn, for some n P N0 s.t. G{Λ is compact.

Proof. Let G be an LCA group written multiplicatively, and let G be representable as G � �iPN V i,
where V is a compact neighborhood of the identity 0 of G. As a multiplication of 2 compact sets, V 2

is compact. Hence, it follows that there exist finitely many g1, . . . , gm P G s.t. the finite collection of

subsets tpgiV quiPrms covers V 2, i.e. V 2 � �mi�1pgiV q.
Let Λ :� xg1, . . . , gmy be the subgroup generated by tgiuiPrms. We claim that:

G � V Λ. (3.6)

To show this claim, notice that V i � V Λ for i P t1, 2u, since Λ contains the identity and hence V 1 � V �,

and since, as it has been shown, V 2 � �mi�1pgiV q � V �Λ. By induction and previous observations, one

can immediately see that Vn � V H, for all n P N, and therefore this claim holds.

Write Λ �±iPrms Λi, where Λi :� xgiy, i P rms. From lemma 3.15, it follows that for all i P rns, either

Λi � Z or Λi is compact.

Suppose that Λi is compact @i P rns. Then, as a multiplication of finite number of compact sets tΛiu,
Λ is compact. Notice that it holds G � V Λ, and G is compact, since V and Λ are compact. So the

proposition is true with n � 0.

Suppose now that there exists some I � rms s.t. Λi � Z, @i P I. Write G � Ṽ Λ
1

, where Ṽ :�
V
±
iPrnszI Λi, and Λ

1

:� ±iPI Λi. Obviously, Ṽ is compact, and Λ
1 � Zl, for an l P N, which shows the

desired statement.

Furthermore, above statement can be sharpened in the way, that if a compact subset V algebraically

generated G, that the uniform lattice Λ can be chosen s.t. V X Λ � H (see e.g. Lemma 2.4.2 in [51]).

The following Thm. states, in some sense, that each compactly generated group can be reduced to

an ”elementary” LCA group. Formally, an elementary LCA group G is defined as an LCA group, which

isomorphic to RN � ZM � TN
1

� F , for some F is a finite discrete abelian group, and N,M,N
1 P N0.

Theorem 3.17. Let G be an LCA group. If G is compactly generated, then it has a compact subgroup

K s.t. G{K is isomorphic to an elementary group.

Proof. See e.g. Proposition 34. [42]

Of ancilliary interests to us, in case that there is no additional information on the considered group,

one can roughly guess its structure:

Theorem 3.18 (First Structure Theorem). Let G be an LCA group. Then there exist a n P N0 and

an LCA group H s.t. G is isomorphic to RN �H, where H contains an open compact subgroup K.

Proof. See e.g. Thm. 2.4.1 in [51]

We shall later by some reasons, restrict ourselves to LCA groups, which are algebraically generated by

compact subsets. In this case, one can give a relatively good hint on its structure:

Theorem 3.19 (Second Structure Theorem). Let G be a compactly generated LCA group. Then

there exist n,m P N0 and a compact group K s.t. G is topological group isomorphic to Rn � Zm �K.
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We say two topological groups G and G 1 is said to be locally identifiable, or more formally: locally

isomorphic, if there exists an open neighborhood U � G and U
1 � G 1 of the identity, and a homeomorphism

φ : U Ñ U
1

s.t. φpxyq � φpxqφpyq, for each x, y P U s.t. xy P U , and φpx̃�1q � φpx̃q�1, for each x̃ P U
s.t. x̃�1 P U . In the following definition, a class of LCA groups which consists of LCA groups, which acts

locally like euclidean spaces is given:

Definition 3.5 (LCA group of Lie Type). Let G be an LCA group. G is said to be of Lie type, if G
is locally isomorphic to Rn, for some n P N0.

As the name asserts, LCA group of Lie type has a connection to the so-called Lie group, which is defined

roughly as a group, which is a differentiable manifold, and whose group operations are compatible with

its smooth structure. The theory of Lie groups has broad applications in various areas of mathematics

and physics. The discussion on this connection, can be found on p. 96 in [9]. A relatively good hint on

the structure of LCA groups of Lie type can be given:

Theorem 3.20 (Third Structure Theorem). Let G be an LCA group of Lie type. Then G is home-

omorphic to Rk � Tl �D, for some k, l P N0 and discrete abelian group D.

The following corollary is an easy application of Thm. 3.19 and Thm. 3.20, which states that compactly

generated LCA groups and LCA groups of Lie type are dual to each other:

Corollary 3.21. Let G be an LCA group. G is compactly generated if and only if G^ is an LCA group

of Lie type.

Proof. ”ñ”: Let G be compactly generated. Then, by thm. 3.19, G is isomorphic to Rn � Zm �K, for

some n,m P N0, and K a compact LCA group. Applying thm. 3.7, and since Rn � Zn, Zm � Tm, and

K � D, for a discrete LCA group D (thm. 3.6), it follows that G^ � Zn�Tm�D. This shows by Thm.

3.20 that G^ is an LCA group of Lie type.

”ð”: Let G be of Lie type. Then G � Rk � Tl �D, for some k, l P N0, and a discrete abelian group

D. Hence by thm. 3.19 and thm. 3.6, G^^ is topological group isomorphic to Rk � Zl � K, for a

compact LCA group K. We borrow the result which shall be given later (thm 3.33), which says that G
is isomorphic to G^^, to conclude the desired statement.

3.5. ”Dualizing” Topological Group Homomorphism and Exact

Sequences

For convenient, we first give the following notion related to a subgroup:

Definition 3.6 (Annihilator). Let G be an LCA group, and H ¤ G. The annihilator of H in G^ is

defined as the set:

AG^pHq :� tγ P G^ : γpxq � 1, @x P Hu.

Analogously, given a subgroup H̃ of the dual group G^ we define the annihilator of H̃ in G as:

AGpH̃q :� tx P G : γpxq � 1, @γ P H̃u.

We can give the following immediate but fundamental characterization of elements of an annihilator in a

dual group:

Lemma 3.22. Let H be a subgroup of an LCA group G. For each γ P AG^pHq, it holds for x P G:

γpxhq � γpxq, @h P H, (3.7)
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i.e. γ is H-periodic. Furthermore, there exists some γ̃ P pG{Hq^, s.t. γ � γ̃ � q, where q : G Ñ G{H
denotes the canonical quotient homomorphism.

Proof. Take a γ P AG^pHq, and let x P G. Since characters are homomorphism, and by the definition of

annihilator, one obtains immediately: γpxhq � γpxqγphq � γpxq, @h P H, which shows the first statement.

Furthermore, since γ is constant on each cosets of H in G, it follows that there exists a homomorphism

γ̃ : G{H Ñ C, for which γ � γ̃ �q. Since γ is continuous, and q is open, it must hold that γ̃ is continuous,

which shows the second statement.

Given a continuous homomorphism between LCA groups f : G Ñ G̃. One can define a mapping

canonical to f which assign a character on G̃ to a character on G as follows:

f^pγq � γ � f, @γ P G̃^. (3.8)

We give in the following lemma some properties of this canonical mapping, in particular that of the

canonical quotient mapping, which is useful for our later approach:

Lemma 3.23. Let G and G̃ be LCA groups, and f : G Ñ G̃ be a continuous homomorphism. Then the

following statements holds:

(a) f^ is a continuous homomorphism between G̃^ to G^.

(b) If f is surjective, then f^ is injective.

(c) If f is surjective, s.t. for each compact subset K̃ of G̃, there exists a compact subset K of G s.t. K̃

is the image of K under f , then f^ is an embedding. So, f^ : G̃^ Ñ f^pG̃^q is a topological group

isomorphism.

(d) Let G̃ � G{H, where H ¤ G is a closed subgroup. If f is a quotient map, then f^ is an embedding.

Again, f^ : pG{Hq^ Ñ f^ppG{Hq^q is a topological group isomorphism.

(e) If f is injective and open, then f^ is surjective.

(f) If f is a topological group isomorphism, then f^ is also a topological group isomorphism.

Proof. (a): It is straightforward to show that @γ P G̃^, f^pγq is a character on G, and that f^ preserves

the group operation. So hence one obtains that f^ is a homomorphism. It is obvious that f^ is a

homomorphism. To proof the continuity of f^, it clearly suffices to show the continuity of f^ at the

identity 1G̃^ of G̃^. Let K � G̃ be compact. Take the neighborhood W of the identity 1G̃^ , where W is

of the form WpfpKq, Uq, with U is an open neighborhood of the identity in T. Since f is continuous, it

follows immediately that fpKq is compact. Finally, observe that f^pW q � WG^pK,Uq. So, we obtain

the statement (a).

(b): Now, let f be surjective, and assume that f^pγ1q � f^pγ2q for some γ1, γ2 P G̃^. By reformulation,

it follows: pγ1 � fqpxq � pγ2 � fqpxq, @x P G. Since f is surjective, previous equality is equivalent to

γ1px1q � γ2px1q, @x1 P G̃, which shows that γ1 � γ2. Hence, f^ is injective, and the statement (b) is

shown.

(c): let f fulfilled the required properties. From (b), we already know that f^ is injective. So, it remains

to show that f^ is an open map, or equivalently, the image of each element of the open neighborhood

base of identity in G̃ is an element of open neighborhood base of the identity of G^ relative to ranpfq.
Take a compact subset K̃ � G̃, and the corresponding compact subset K � G, s.t. K̃ � fpKq, and take

a neighborhood U of the identity in T. WG̃^pK̃, Uq is clearly an element of the neighborhood base of

the identity in G̃^ w.r.t. the compact open topology. Take γ P WG̃^pK̃, Uq. Since f^pγq � γ � f , and

K̃ � fpKq, it follows immediately that f^pγqpKq � γpK̃q � U . Hence f^pγq P WG^pK,Uq, and since
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f^ is injective, we obtain as desired: f^pWG̃^pK̃, Uqq � ranpf^q XWG^pK,Uq. Finally the remaining

statement follows from (a)

(d): notice that from the statement (b) in proposition (C.10), and from the surjectivity of quotient map,

the condition required in statement (c) is fulfilled. So, one obtains immediately the desired statement.

(e): See f as the continuous (algebraic) isomorphism f : G Ñ fpGq. Furthermore, notice that fpGq ¤ G̃.

Clearly, f�1 : fpGq Ñ G is also an (algebraic) isomorphism but not necessarily continuous. For a γ P G^,

define the algebraic homomorphism γ̃ : fpGq Ñ T by γ̃ :� γ � f�1, which is again not necessarily

continuous. Lemma 3.13 asserts that γ̃ can be extended to a (not necessarily continuous) homomorphism

ξ between G̃ and T. In other words, γ � ξ � f , where f is seen as f : G Ñ G̃. Furthermore, since f is

open, and γ is continuous, it follows that ξ is also continuous. Summarized, for each γ P G^, there exists

a ξ P G̃^ s.t. γ � ξ � f � f^pξq, as desired.

Statement (f) should be obvious, else, (f) follows from (b), (e), (c).

Acoordingly, some statements concerning to the ”dual” of the inclusion mapping and another statement

concerning to the ”dual” of quotient mapping can be made:

Lemma 3.24. Let G be an LCA group, and H ¤ G. Furthermore, let inc : H Ñ G and q : G Ñ G{H be

canonical inclusion, and canonical quotient mapping, respectively. Then the following holds:

(a) ran q^ � ker i^ � AG^pHq. In particular, pG{H^q^ is topological group isomorphic to AG^pHq by

q^.

(b) If H is compact, then inc^ is open and surjective.

Proof. (a): It is not hard to see that:

inc^ � q^ � pq � incq^. (3.9)

Indeed, let γ P pG{Hq^. By some elementary computations: pinc^ � q^qpγq � inc^pγ � qq � γ � q �
inc, which shows the claim. Furthermore, Notice that since ranpincq � H and kerpqq � H, it follows

immediately that ranppq�incq^q � t1pG{Hq^u, and correspondingly from (3.9), ranpinc^ �q^q � t1pG{Hq^u.
From the latter, it follows: inc^pγq � t1H^u, @γ P ranpq^q, which shows that ranpq^q � kerpinc^q.
Now, Notice that kerpinc^q :� tγ P G^ : γpxq � 1T,@x P Hu � AG^pHq. So, from lemma 3.22, it

follows that for a γ P kerpinc^q, there exists a γ̃ P pG{Hq^, for which γ � γ̃ � q � q^pγ̃q, which

shows that kerpinc^q � ranpq^q. Summarily, we have ranpq^q � kerpinc^q � AG^pHq. Finally, The

statement (d) in lemma 3.23 asserts that q^ is topological group isomorphism between pG{Hq^ and

q^ppG{Hq^q � AG^pHq.
(b): To show that inc^ is surjective, it is clear, that we have to show: for each γ P K^, there exists

γ̃ P G^ s.t. γ � inc^pγ̃q � γ̃|K . Corollary 3.11 provides the required statement. By noticing that H^ is

discrete, since H is compact, and from the fact that every function mapping to a discrete space is open,

it follows immediately that inc^ is open.

Now, we are able to give a generalization of previous idea:

Lemma 3.25. Let G and G1 be LCA groups, and f : G Ñ G1 be an open continuous homomorphism.

Then the following holds:

(a) Let G be compact. If f is injective, then f^ is an open and surjective.

(b) If f is surjective, then f^ is an embedding. Furthermore, ranpf^q � ranpq^q.

Proof. (a): If f is injective, then it can obviously be written as f � inc �f̃ , where f̃ � f : G Ñ fpGq, and

inc : fpGq Ñ G1 the canonical inclusion mapping. Notice that f^ � f̃^ � inc^. Now, let G1 be compact,
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Applying item (b) in lemma 3.24, one immediately see that f^ is the composition of two surjective and

open mapping (f̃ is a isomorphism), and hence also surjective and open.

(b): By the assumption on f , it follows that f is ”quotient-like”, i.e. f � f̃ �q, where q : G Ñ G{ ker f ,

and f̃ : G{ ker f Ñ G1 are canonical quotient homomorphism, and - top. group isomorphism, respectively.

From item (a) in 3.24, it follows that q^ is an embedding of topological groups, and from (f) in lemma 3.23,

f̃^ is a top. group isomorphism. Hence, f^ � q^�f̃^ is a top. group embedding, and ranpf^q � ranpq^q.
For convenient, more insight to the connection of different structures, and in order to be able to use a

fundamental lemma in category theory for later purposes, we use the following term, which is adjusted

to the theory of LCA groups, called short exact sequence. Let G, G1, and G2 be LCA groups, which we

write as usual multiplicatively, and let f1 : G1 Ñ G2, and f2 : G2 Ñ G3 are continuous homomorphism.

Consider the following, called short sequence:

t1u Ñ G1
f1ÝÑ G2

f2ÝÑ G3 Ñ t1u. (3.10)

Above short sequence is said to be exact if f1 is injective, f2 is surjective, and ran f1 � ker f2. For purposes

of the analysis of topological groups, it is helpful to consider a stronger form of exact sequences. We say

that the exact sequence (3.10) is proper, if f1 and f2 are proper, or in a more convenient term, are open.

If (3.10) is a proper exact sequence, one can immediately conclude that f1 is a monomorphism between

topological groups, or equivalently, f1 : G1 Ñ f1pG1q is a topological group isomorphism. Furthermore,

in this case, one can also conclude, that the canonical continuous homomorphism f̃2 : G2{ ker f2 Ñ G3 is

a topological group isomorphism.

For convenient, we apply previous language in the following:

Examples 3.26. Let G be an LCA group, and H ¤ G closed. That inc and q are continuous ho-

momorphism is clear. Furthermore, one see immediately, that inc is injective, q is surjective, and

ran inc � ker q � H. So, the fact that the sequence is exact is clear. Notice that the inclusion -

and quotient mapping are always open. Summarily, the following sequence is proper exact:

t1u Ñ H
incÝÝÑ G qÝÑ G{H Ñ t1u.

Corollary 3.27. Let G, G1, and G2 be LCA groups. If the following short sequence is proper exact:

t1u Ñ G1
f1ÝÑ G f2ÝÑ G2 Ñ t1u, (3.11)

, then the ”dual” short sequence:

t1u Ñ G^2
f^2ÝÝÑ G f^1ÝÝÑ G^1 Ñ t1u, (3.12)

is also exact, with f^2 an embedding.

Furthermore, if in addition G1 is compact, then 3.12 is proper exact.

Proof. We already see that f^1 and f^2 are continuous homomorphism. From the proof of lemma 3.25, it

follows that kerpf^1 q � kerpinc^q, and ranpf^2 q � ranpq^q, where inc : f1pG1q Ñ G the canonical inclusion,

and q : G Ñ G{ ker f2 the canonical quotient mapping. Furthermore, from exactness assumption of

(3.11), it follows that f1pG1q � ker f2. Hence, by lemma 3.24, it follows that ker inc^ � ranpq^q, and

correspondingly, ran f^2 � ker f^1 . So it remains now to show that f^1 is injective, and f^2 is surjective.

Item (b) in 3.25, and item (e) in lemma 3.23 provide the desired statement

For the case that G1 is compact, apply Lemma 3.25, to conclude that f^2 is open.

In the next section we consider with the so-called Pontryagin duality. Roughly speaking, this principle

says that the dual of the dual group of an LCA group is simply the LCA group itself.
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3.6. Pontryagin Duality

Consider an LCA group G. Recall that, with G^^, it is meant the set of all continuous homomorphism

from G^ to T. Consider the map αG , which assigns each x P G a character (not yet shown) on G^ by

αGpxqpγq � γpxq, @γ P G^. In this section, we will see that αG is a natural identification, i.e. a topological

group isomorphism, between G and G^^.

It is not hard to establish the fact, that αG is a continuous homomorphism between G and G^, as done

in the following lemma:

Lemma 3.28. Let G be an LCA group, then the mapping αG is a continuous homomorphism between

G and G^^.

Proof. It is straightforward to see that for x P G, αGpxq is a homomorphism from G^ to T:

αGpxqpγγ
1q � pγγ1qpxq � γpxqγ1pxq � αGpxqpγq � αGpxqpγ

1q, @γ, γ1 P G^.

Now, we show that for x P G, αGpxq is continuous in G^, and accordingly a character for G^. Since G^ is

an LCA group, it suffices to show that αGpxq is continuous at the identity 1G^ . For a neighborhood U of

the identity 1 in T, choose the neighborhood Wptxu, Uq of 1G^ , and notice that αGpxqpWptxu, Uqq � U ,

which shows the continuity of αGpxq at 1G^ .

It is not hard to see that αG is a homomorphism. Indeed, for x, y P γ: αGpxyqpγq � γpxyq � γpxqγpyq �
αGpxqpγq � αGpyqpγq, @γ P G^.

It remains to show that αG is continuous. Since G^^ is an LCA group, we only need to show that αG is

continuous at the identity 1G of G. Let WG^^pKG^ , Uq be an open basic neighborhood of αGp1Gq � 1G^ ,

where KG^ � G^ is compact and non-empty, and U is an open neighborhood of 1T. Now, we construct

an open neighborhood V of 1G s.t. αGpV q �WG^^pKG^ , Uq as follows:

Take a relatively compact open neighborhood AG of 1G , and an open symmetric neighborhood B of

1T s.t. B2 � U . Clearly by this choice, WG^pAG , Bq is an neighborhood of 1G^ , and this set is in

particular open in G^. Since KG^ is compact in G^, it follows immediately that KG^ can be covered by

finitely many open sets in G^. So, there exists finitely many collection of characters γ1, . . . , γn on G^,

s.t. KG^ �
�
iPrns γiWG^pAG , Bq. Notice that by the continuity of characters at the identity of G, there

exists for each i P rns, Vi � G, s.t. γipViq � B, and Vi � U . So we define the desired set V � G as

V :� U X V1 X . . .X Vn, which is clearly open. Notice that, since V � Vi, @i P rns, it follows immediately

that γipV q � B, @i P rns.
Let be γ P KG^ . From the finite covering property of KG^ by open sets γiWG^pAG , Bq, i P rns, it

follows that there exists i0 P rns, s.t. γ P γi0WG^pAG , Bq. In particular, γ can be written as γ � γi0ξ,

for some ξ P WG^pAG , Bq. So for all x P V , it follows γpxq � γi0pxqξpxq P B � B � V . Hence, @x P V
αGpxqpγq � γpxq P V , @γ P KG^ , and equivalently αGpV q �WG^^pKG^ , Uq as desired.

From the discussions made in previous section, one can be sure that the following property of the

natural mapping αG holds:

Corollary 3.29. Let G be an LCA group. Then the natural mapping αG is a monomorphism between

G and G^^. Furthermore, αGpGq is a separating set of G^.

Proof. For the first statement: We already know from lemma 3.28 that αG is a homomorphism. So,

it remains to show that αG is injective. From the separation property of G^ (thm. 3.14), it follows

that for each x P G, there exists always a character γ on G s.t. γpxq � 1T. Hence the kernel of αG ,

kerpαGq � tx P G : γpxq � 1T, @γ P G^u, contains only 1G , which shows that αG is injective.

For the second statement. From separating property of G^. For x P G, αGpxqpγq � γpxq
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For products of LCA groups, we have the following statement

Lemma 3.30. Let tGjujPrNs be a finite collection of LCA groups, and tαGjujPrNs be the corresponding

collection of natural mapping. Denote the product of tGjujPrNs by G. Suppose that for each j P rN s, Gj
is identifiable with G^j

^ by the corresponding natural mapping αGj . Then G is identifiable with G^^.

Proof. Apply thm. 3.7 2 times , to obtain an isomorphism G^^ and
±
j G^j

^. Construct by tαGjuj the

mapping φ :
±
j Gj Ñ

±
j G^j

^. It is not hard to see, that since each αGj , j P rN s is an isomorphism, it

follows that the product of isomorphic mapping φ is also an isomorphism. Hence the statement holds.

It needs some efforts to establish the fact that the mapping α is surjective and open. The fact that G
is either compact or elementary is fairly easy to show:

Lemma 3.31. Let G be an LCA group. If G is either discrete, or compact, or elementary, then αG is a

topological group isomorphism

Sketch of Proof. From corollary 3.29, we already know that αG is a continuous injective homomorphism.

So, it remains to show that αG is surjective and open.

If G is discrete, then G^ is obviously compact. We already know that αGpG^q separates points of G^.

Furthermore, αGpG^q ¤ G, is compact, as it is an image of a compact set under continuous mapping. So,

from lemma 3.10, it follows immediately that αGpGq � G^^. Furthermore, since G^^ is discrete, and any

mapping to a discrete space is open, αG is open, as desired.

If G is compact, it follows immediately that G^ is discrete. Notice that αGpGq separates points of

G^. Hence αGpGq is dense in G^^ by corollary 3.12. Furthermore, αGpG^q ¤ G, is compact, as it is an

image of a compact set under continuous mapping. In particular, αGpGq is closed in G^^, and hence

αGpGq � αGpGq � G^^. From the fact that G is compact, and by Open Mapping Theorem of topological

groups, it follows that αG is open.

Now, in case that G is elementary, from lemma 3.30 and above discussions. It is sufficient to show that

αR is open and surjective, which is a fairly easy task.

Now, we are able to sketch the proof of Pontryagin-van Kampen duality for the case that G is compactly

generated:

Lemma 3.32. Let G be a compactly generated LCA group. Then the map αG : G Ñ G^^ is an

isomorphism.

Sketch of Proof. By thm. 3.17, we already see that G possessess a compact subgroup K s.t. G{K is

topological group isomorphic to Rn � Zm � Tl �D, where n,m, l P N0, and D a finite discrete abelian

group. Furthermore, we have a proper exact sequence:

t1u Ñ K
incÝÝÑ G qÝÑ G{K Ñ t1u,

where inc is inclusion mapping, and q is the canonical quotient mapping. Hence, applying corollary 3.27

to previous exact sequence, it yields that the following sequence is also proper exact:

t1u Ñ pG{Kq^ q^ÝÝÑ G^ inc^ÝÝÝÑ K^ Ñ t1u.

Subsequently, applying again corollary 3.27 to above proper exact short sequence, it follows that the

following short sequence is also exact2:

t1u Ñ K^^ inc^^ÝÝÝÝÑ G^^ q^^ÝÝÝÑ pG{Kq^^ Ñ t1u,
2But not necessarily proper. However, this suffices for our purpose. By different technique, one can show that the resulted

exact sequence is also proper see e.g. Prop. 36 and Thm. 22 in [42]
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Now consider the following diagram:

t1u K G G{K t1u

t1u K^^ G^^ pG{Kq^^ t1u

inc q

inc^^ q^^
αK αG αG{K

It is not hard to verify that above diagram commutes, i.e. inc^^�αK � αG � inc, and q^^�αG � αG{K �q.

Furthermore, lemma 3.31 asserts that αK and αG{K are topological group isomorphism, and in particular

bijective (or algebraic isomorphism). Since the horizontal sequences are exact, and αK and αG{K are

algebraic isomorphism, it follows from Five-Lemma of category theory (with category of Abelian groups),

that αG is also bijective. Since we have seen that α is continuous and G is compactly generated, it follows

from Open Mapping Theorem of topological groups, that αG is open. So the statement is obtained.

Since we shall later concentrate ourself to compactly generated LCA groups, it is not necessary to show

the Pontryagin-van Kampen duality for general LCA groups. But, for sake of completeness, we state it

in the following:

Theorem 3.33 (Pontryagin-van Kampen Duality Theorem). Let G be an LCA group. Then αG

is a topological group isomorphism of G onto
ˆ̂G.

Proof. Since we have shown the Pontryagin-van Kampen duality for compactly generated group, it is not

a long way to show the general case. For detailed explanation, see e.g. Theorem 23 in [42].

Examples 3.34. Consider the additive LCA group R. We already know that the dual group of R is

homeomorphic to real by the identification pp�q, γyq � e2πip�qy Ø y, y P R.

3.7. Dual Goups of Subgroups and Quotient Groups - Consequences

of Pontryagin-van Kampen Duality

From the discussions made previously, we can infer the following characterization of annihilators:

Lemma 3.35. Let G be an LCA group, and B ¤ G a subgroup. Then AG^pBq is a closed subgroup of

G^.

Proof. Notice the following reformulations of the annihilator of B in pG:

A pGpBq �
£
xPB

tγ P G^ : γpxq � 1u �
£
xPB

kerpαGpxqq,

where αG is the natural identification between G and G^^. Clearly, for all x PM , kerpαGpxqq is a closed

subgroup of G^, and arbitrary intersection of closed sets is closed. Hence, AG^pBq is closed.

Another important facts relating to annihilators, dual group of a quotient group, and the dual group

of a subgroup, is summarized in the following theorem:

Theorem 3.36. Let G be an LCA group, and let H be a closed subgroup of G, then the following holds:

(a) pG{Hq^ is topological group isomorphic to AG^pHq by the identification AG^pHq Q γ ÞÑ γ̃pP G{Hq^,

where γ̃prxsq � γpxq, @x P G.

(b) AGpAG^pHqq � H.
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(c) AG^^pHq can be identified with AGpHq by the identification AG^^pHq Q ξx Ø x P AGpKq, where

ξx :� αGpxq.

(d) H^ is topological group isomorphic to Ĝ{AG^pHq.

Proof. Statement (a) was already given implicitly in item (a) in 3.24

To proof (b), we first claim that:

@x P GzH : Dγ P AG^pHq : γpxq � 1T. (3.13)

Consider the topological isomorphism φ : pG{Hq^ Ñ AG^pHq given in (a). Since G{H is locally compact,

it follows immediately from the separating property of LCA groups, that for x P G{H, x � 1G{H ,

there exists a character γ̃ on G{H for which γ̃pxq � 1T holds, and clearly this holds on coset xH of x,

i.e. γ̃pxHq � 1T. So we define ρ � φpγ̃q P AG^pHq. Hence the claim holds. This claim shows that

AGpAG^pHqq is non-empty. Accordingly from its definition, it holds AGpAG^pHqq � H.

(c) Take an ξ P AG^^pHq. From Pontryagin duality, it follows that there exists a unique x P G s.t.

αGpxq � ξ. Furthermore, the identification is of group theoretic - and topological nature. We write ξx to

emphasize the connection between ξ and x. Such x fulfills αGpxq � γpxq, for all γ P H. Hence, x P AGpHq
as desired.

For (d): By (a), pĜ{AG^pHqq^ is topological group isomorphic to AG^^pAG^pHqq. Furthermore, it

follows from (c) that AG^^pAG^pHqq can be identified with AGpAG^pHqq. Finally, from (b), we know

that AGpAG^pHqq � H. Hence pĜ{AG^pHqq^ is topological group isomorphic to H, as desired.

To express in a more convenient way, the statement (a) in above theorem says that characters on G{H
can be seen as the characters on G, which which are equal to 1T on H. This property force the considered

characters to be H-periodic.

3.8. Haar measure and Haar integral on LCA Group

We begin by defining a specific concept of measure on a topological group, which constitute the corner-

stone for the Fourier analysis on abstract groups. But first we recall the notion of radon measure: Let

pX ,Bq be a Borel measureable space, and given there a measure µ. µ is said to be Borel measure , if to

each x P X , there exists a measureable open neighborhood U of x, s.t. µpUq   8. From this definition it

follows immediately that compact sets are of finite measures. A measure µ is called inner regular, if any

Borel set B can be approximated from inside in measure arbitrarily well by means of compact subsets,

i.e. @B P B, @ε, DK P B, K � B compact, s.t. µpBzKq   ε. The measure µ is called outer regular if

any Borel set B can be approximated from outside in measure arbitrarily well by means of open sets, i.e.

@B P B, @ε ¡ 0, DU P B, B � U open, s.t. µpUzBq   ε. A Borel measure is called a Radon measure if

it is inner - and outer regular.

Now we are ready to define the Haar measure in an appropriate way:

Definition 3.7 (Haar measure). Let G be a topological group, and pG,Bq be a Borel measureable

space. A Haar measure µ on G is defined as a non-zero Radon measure on G, which is translation

invariant, i.e. µpgAq � µpAq, @g P G, and A P B.

As we shall see soon, the translation-invariance property Haar measures is indispensable for our approach.

By the following Theorem due to A. Haar, J. v. Neumann, and A. Weil, one can indeed be sure that such

a measure in a Locally compact groups exists, and hence also in LCA group, and that such a measure is

given uniquely up to a positive constant:
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Theorem 3.37. Let G be an LCA group. Then there is a (left) Haar measure on G, which is unique up

to a multiplication by a positive constant.

Although the proof of above Theorem is not constructive, one can explicitly give in most cases a cor-

responding Haar measure. Some examples of Haar measures on LCA groups are given in the following:

Examples 3.38.

• On RN , the Borel-Lebesgue measure is addition invariant, hence a Haar measure.

• On any countable LCA group, the counting measure is a Haar measure.

• Consider the quotient group R{Z. On this group, we can construct a Haar measure µR{Z induced

from the Borel-Lebesgue measure µR on R as follows: Let A :� r0, 1q be a measureable representa-

tion of R{Z (we shall later call this set fundamental domain), i.e. each coset in R{Z can be written

uniquely as rxs, where x P A and let µA be a Borel measure on A induced from the Haar measure

on R. So we can define for B � R{Z, µR{ZpBq � µRpBXAq. One can easily check that this measure

is indeed a Haar measure.

In some cases, to emphasize the fact that µ is a Haar measure on a LCA group G, it is convenient to

write µG instead of µ.

The following property of a Haar measure can be easily proven:

Proposition 3.39. Let G be a LCA-group, and µ a Haar measure on G. Then it holds:

• G is discrete if and only if µGpteuq ¡ 0

• G is compact if and only if µpGq   8

If G is compact, it is customary from Thm. 3.37 and above proposition to consider the unique Haar

measure normalized s.t. µpGq � 1. We shall refer this as normalized Haar measure on G. Let G be

discrete, and fix a Haar measure µG . It follows from above proposition that the identity possessess a

positive measure, and from translation-invariance of Haar measure, it follows that each element of G
possessess the same measure as the identity. It is convenient to consider the Haar measure on G, for

which each element of G is assigned the measure 1, or equivalently for which µGpteuq � 1. We refer this

convention as counting measure on G.

On account of the translation invariance of Haar measure, the orthogonality of the characters on

compact LCA groups w.r.t. the inner product induced by the Haar measure can be easily established:

Lemma 3.40. Let G be a compact LCA group. Then the elements of the dual group Ĝ fulfill the following

relation: »
G

px, γqpx, γ1qdµGpxq � µGpGqδγ,γ1 , (3.14)

for all γ, γ
1 P Ĝ.

Proof. Since Ĝ is a group, it is sufficient to prove above equality for γ P Ĝ and γ
1 � 0. The desired

statement can be obtained by corresponding translation. For γ is also 0, the equality follows immediately.

Let γ � 0. Clearly, there exist some x0 P G s.t. px0, γq � 1. By computations:»
G

px, γqdµGpxq � px0,Gq
»
G

px� x0, γqdµGpxq � px0, γq
»
G

px, γqdµGpxq,

where the second inequality follows from translation-invariance of Haar measure. So from above compu-

tation, it yields that
³
G
px, γqdµGpxq � 0.

38



3.9. Fourier Transform

To ensures that the characters on a compact group constitute an orthonormal set, it seems likely to

choose the Haar measure µG , s.t. µGpGq � 1. We shall see soon, by means of the Fourier transform , that

the characters form even an orthonormal basis for compact LCA group.

The following formula, due to Weil, gives rise about the connection between Haar measure of an LCA

group G, and the Haar measure of the quotient group G{K, where K is a closed subgroup of G:

Theorem 3.41 (Weil’s Formula). Let G be an LCA group, K ¤ G be a closed subgroup. For f P
L1pGq, the following holds:

(a) For a.e. x P G, the function k ÞÑ fpxkq is µK-measureable and belongs to L1pKq. The function

x ÞÑ ³
K
fpxkqdµKpkq depends only on the coset rxs � xK, i.e. it is constant on rxs. So it can be

considered as a function F : G{K Ñ C, rxs ÞÑ ³
K
fpxkqdµKpkq.

(b) F is µG{K-measureable and F P L1pG{Kq. Furthermore, the Haar measures µG , µK , and µG{K can

be chosen s.t.: »
G

fpxqdµGpxq �
»

G{K

»
K

fpxkqdµKpkqdµG{Kprxsq. (3.15)

By means of the Haar measure, which constitute an abstraction of Borel-Lebesgue measure in RN , it

is now possible to define the Fourier transform of suitable functions on LCA-groups, as shall be done in

the next section.

3.9. Fourier Transform

Definition 3.8 (Fourier Transform). Let G be a LCA group, and let be f P L1pGq. The Fourier

transform of f is defined as the map f̂ :

f̂pγq �
»
G
fpxqγpxqdµGpxq, γ P Γ,

mapping from G to C.

It is obvious, that the requirement f P L1pGq is sufficient for the integrability of fγ� over whole G,

that the following inequality holds: |f̂pγq| ¤ ³G |fpxq|dµGpxq, @γ P G^ and hence the finiteness of f̂ on

almost every points of G^. Furthermore, one can write the Fourier transform by means of a mapping

F : L1pGq Ñ FL1pGq, f ÞÑ Ff � f̂ , whose linearity is obvious. As we have seen, the Fourier transform

of an L1-function is bounded, so it is convenient to equip FL1pGq with the supremum norm. By this

setting, the following norm inequality holds:

‖f̂‖L8pG^q ¤ ‖f‖L1pGq, (3.16)

which shows that the Fourier transform is a norm-decreasing mapping from L1pGq to FL1pGq.
Involving an appropriate element of the space CcpGq (notice that this space is dense in L1pGq), one can

easily show that for each f P L1pGq, that f̂ is (uniformly) continuous on G^, in the sense that for each

ε ¡ 0, there exists a compact subset K � G and an open neighborhood U of 1T (which is a ”ball” of

positive radius around 1T w.r.t. the modulus), s.t. for all γ�1
1 γ2 PWpK,Uq (which is the neighborhood of

”zero” 1G^), it holds: |f̂pγ1q � f̂pγ2q|   ε. To see this, let f P L1pGq, with f non-zero almost everywhere

(in case that f � 0 a.e. on G, it clearly follows f̂ � 0 a.e. on G^), and let ε ¡ 0 be given. Now, take an

g P CcpGq, with ‖g‖L1 � 0 s.t. ‖f � g‖   ε{3. Consider the neighborhood W 1p1G^ ,K, ε{‖g‖L1q of 1G^ ,

where K � supppgq. For γ1, γ2 P G^ with γ�1
1 γ2, one can compute:

|f̂pγ1q � f̂pγ2q| ¤ |f̂pγ1q � ĝpγ1q|� |ĝpγ1q � ĝpγ2q|� |f̂pγ2q � ĝpγ2q|. (3.17)
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3. Fourier analysis on LCA groups

The first - and the third summand are, by the choice of g and by the fact that characters are of modulus

1, is less than ε{3. For the second summand, one can compute:

|ĝpγ1q � ĝpγ2q| ¤
»
G

|gpxq||γ�1
2 pxq||γ�1

1 γ2pxq � 1|dµGpxq  
»
K

|gpxq||γ�1
1 γ2pxq � 1|dµGpxq

  ‖g‖L1

ε

‖g‖L1

� ε

3
.

So, the desired statement holds.

Furthermore, one can show that the Fourier transform of an absolut-integrable function f on G vanish

at infinity3, in the following sense:

Definition 3.9. Let X be a Hausdorff topological space, and f : X Ñ C be a function. f is said to

vanish at infinity if for all ε ¡ 0, there exists K � Kpεq � X compact, s.t. |fpxq|   ε, for every point

x P X zK. The set of all functions on X vanishing at infinity is denoted by C0pXq. Furthermore, it is

convenient to give C0pXq the supremum norm ‖f‖8 :� supxPX |fpxq|, which makes C0pX q complete.

Since f̂ is continuous on G^ and the image of compact sets under continuous function is clearly compact, to

show that f̂ vanishes at infinity, it is sufficient to show that for each ε ¡ 0, the set tγ P G^ : |f̂pγq| ¥ εu
is compact in G^. One might making use of continuity of the translation map (which is not hard to

establish), and Ascoli’s Theorem to show this fact.

So it is now convenient to see the Fourier transform as the mapping F : L1pGq Ñ C0pGq. Furthermore,

it is immediate to see that F is linear and bounded. Hence one can see the Fourier transform as a

bounded operator between L1pGq into C0pGq.
By some computations involving Fubini Theorem and the translation-invariance of the Haar measure,

one obtains immediately the following equality:

Fpf � gq �zf � g � f � g, for f, g P L1pGq. (3.18)

Consider the set FpL1pGqq of all Fourier transform of functions in L1pGq. By means of Stone-Weierstrass

theorem, we shall in the following show that FpL1pGqq is dense in C0pG^q, hence F can be continuously

extendeded to a bounded surjective operator between L1pGq and C0pGq. In particular, we need to show

that FpL1pGqq is closed under involution (which is in this case the usual complex conjugation inherited

from C0pG^q) and a separating subalgebra of C0pG^q (equipped with usual pointwise algebraic operations

and the supremum norm). It is not hard to see that FpL1pGqq is a subalgebra of C0pG^q (This follows

from 3.18 and the fact that L1pGq equipped with the convolution is an algebra). The fact that FpL1pGqq
is closed under complex conjugation follows from the fact that L1pGq is closed under the involution

fp�q� � fp�p�qq. That FpL1pGqq separates points of G^ is easy to see. Indeed, since F is linear, one

has only to ensure that @γ P G^ not equal the characteristic function on T, there exist an f P L1pGq s.t.

f̂pγq � 0. The fact, that the Fourier transform is an surjective operator between L1pGq and C0pG^q can

be seen as an abstract form of Riemann-Lebesgue-Lemma.

From the translation invariance of the Haar measure, it follows immediately:

For f P L1pGq, and x0 P G : {fpp�q � x0qpγq � px0, γqf̂pγq, γ P pG, (3.19)

3This formal definition of functions vanishing at infinity is motivated by the following observation: Consider the Alexandrov
compactification of the Hausdorff space X , i.e. X8 :� X Yt8u, where 8 denotes the point which is not contained in X ,
e.g. the infinity. It is natural to give X8 the topology, whose open set U is either an open set in X , or 8 P U and X zU
is compact in X . Recall that compact subsets of X is closed. Continuous functions on X can be seen as the restriction
of continuous functions on X8. By this reason, one can identify C0pX q with the space of all continuous functions f on
X , for which fp8q � 0.
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3.9. Fourier Transform

and from the basic properties of characters:

For f P L1pGq, and γ0 P pG : {px, γ0qfpxq � pfpp�q � γ0q. (3.20)

The equality in (3.20) is simply an abstract form of the signal modulation in RN .

Now, we summarized the discussions done previously in the following theorem:

Theorem 3.42. Let G be an LCA group. Then the following holds:

(a) F : L1pGq Ñ C0pGq is a bounded surjective operator.

(b) For f P L1pGq, x0 P G and γ0 P pG, it holds {fpp�q � x0qpγq � px0, γqf̂pγq, for γ P pG, and {px, γ0qfpxq �pfpp�q � γ0q.

We shall see soon that Fourier transform is a unitary equivalence between L2pGq and L2pG^q.
There exists a connection between Fourier transform and positive-definite functions. In the following,

we give for convenient the notion of positive-definite functions on LCA groups:

Definition 3.10. Let G be an LCA group written additively, and φ : G Ñ C. φ is said to be positive-

definite if: ¸
m,nPrNs

cncmφxn�xm ¥ 0,

where N P N, ck P C, and xk P G, for all k P rN s.

In particular, one have a relatively good guess of the shape of such class of functions:

Lemma 3.43. Let φ : G Ñ C be a positive definite function on an LCA group written additively. Then

the following holds:

(a) φ is hermitian on G, i.e. φp�xq � φpxq, @x P G.

(b) |φpxq| ¤ φp0Gq, @x P G, in particular φp0Gq ¥ 0 and φ is a bounded function

(c) |φpxq � φpyq|2 ¤ 2φp0q<pφp0Gq � φpx� yqq, @x, y P G.

The corresponding connection between such type of functions and the Fourier transform is given by the

following theorem:

Theorem 3.44 (Bochner’s Theorem). Let G be an LCA group. Given a continuous function φ : G Ñ
C. Then the following statements are equivalent:

(a) φ is positive-definite

(b) there exists a non-negative bounded regular complex valued measure µ on G s.t. φ can be represented

by:

φpxq �
»
G^

γpxqdµpxq, x P G.

Given h P L1pG^q. The inverse Fourier transform of h can be defined as:

ȟpxq :�
»
Ĝ

hpγqpx, γqdµĜpγq. (3.21)

The following characterization of inverse Fourier transform can be easily established:

Lemma 3.45. The inverse Fourier transform F�1 is a bounded surjective operator between L1pG^q and

C0pGq.
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Proof. Let h P L1pG^q. Let F̃ be the Fourier transformation mapping from functions on G^ to functions

on G^^. The image of h under F̃ is correspondingly:

h̃pξq :� pF̃hqpξq �
»
G^

hpγqξpγqdµG^pγq, ξ P G^^.

By Pontryagin-van Kampen duality, we can identify elements of G^^ with an element of G by the natural

mapping αG . Hence ξ̃ can be seen as a function on G:

h̃pxq :� h̃pαGpxqq �
»
G^

hpγqαGpxqpγqdµG^pγq �
»
G^

hpγqγxdµG^pγq,

for all x P G. So, F̃ is basically V � F�1, where V denotes the reflection mapping, i.e. Vf � fp�p�qq, for

f P L1pGq. It can be easily seen that V is an isometric isomorphism. Hence F̃ is a mapping from L1pGq
to C0pGq.

By some efforts, one may be able to establish the following theorem:

Theorem 3.46 (Fourier Inversion Formula). Let G be an LCA group, and let a Haar measure µG

be chosen. For f P L1pGq, s.t. f̂ P L1pGq, one can adjust the Haar measure µG^ on G^ s.t. the following

formula holds:

fpxq �
»
G^

f̂pγqγpxqdµG^pγq � ˆ̂
fp�xq, x P G.

In case that the inversion formula holds, the Fourier transform as an operator from L1pGqXL2pGq can

be extended to a unitary operator mapping between L2pGq onto L2pĜq, where L2pĜq denotes the Hilbert

space containing equivalence classes (modulo µĜ-null sets) of square-integrable complex functions on Γ.

Furthermore, in this case the Parseval formula holds, i.e. xf, gy � xf̂ , ĝy @f, g P L2pGq, as a consequence

of the mentioned unitarity of F : L2pGq Ñ L2pĜq:

Theorem 3.47 (Plancherel Theorem). Let G be an LCA group, and µG a Haar measure on G. Then

there exists a unique Haar measure on pG, s.t. for all f P L1pGq X L2pGq it holds:

‖f‖L2pGq � ‖f‖L2p pGq.

Furthermore, Fourier transform can be extended to a unitary operator mapping between L2pGq to L2ppGq.
For further approaches, we shall use the Fourier transform as unitary equivalence between L2pGq and

L2pG^q. In particular, we need the following characterization of the Fourier transform on compact

abelian groups:

Corollary 3.48. Let G be a compact abelian groups s.t. its dual is countable, and choose the Haar

measure on G as the normalized one. Then G^ is an orthonormal basis for L2pΩq

The following proposition is of particular nature for the existence of orthonormal basis for functions in

L2pGq, where G is compact.

Proposition 3.49. Let G be an LCA group. G is compact and metrizable (in particular, second count-

able) if and only if G^ is countable.

Proof. ”ñ”:Let G be compact and metrizable. Then it follows that G^ is compactly generated. So write

G^ � �nPNKn, where Kn � G^ is compact, @n P N. Furthermore, G^ is discrete since G is compact

(thm. 3.6). Hence, each Kn, n P N, must be finite. Finally, noticing that countable union of finite sets

is countable, the desired statement is shown.
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3.9. Fourier Transform

”ð”: For converse, let G^ be countable. By the Pontryagin-van Kampen duality theorem, G can be

identified with G^^. Hence, G is compact, since G^^ is compact (this follows from countability, and in

particular discreteness, of G^)
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4. Orthonormal Bases of Exponentials and the

Sampling Problem

An abstraction of the notion band-limited finite-energy signal shall be given in the following definition:

Definition 4.1 (Paley-Wiener Spaces). Let G be an LCA group, Ω � G^ be a measureable subset,

and f : G Ñ C be a measureable function. Assume that f is square-integrable, i.e. f P L2pΩq. f is said

to be band-limited to Ω � G^, if supppf̂q � Ω. The set of such functions band-limited to Ω, equipped

with the inner product structure inherited from L2pGq, is called Paley-Wiener space, and is denoted by

PW2
Ω.

One can immediately see that the space of band-limited function on RN is just a special case of this

definition. From the fact that L2pΩq as a closed subspace of L2pG^q, and by definition F�1pL2pΩqq �
PW2

Ω, it follows immediately that Lemma 2.2 asserts that F�1 : L2pΩq Ñ PW2
Ω is again a unitary

equivalence.

For the phase retrieval problem, which shall be treated later, it is convenient to consider a slight

modification of Paley-Wiener spaces:

Definition 4.2. Let G be an LCA group, and Ω̃ � G be a measureable subset. The Paley-Wiener space
˜PW2

Ω consists of measureable and square-integrable functions f on G^, whose inverse Fourier transform

is supported in Ω.

Again by the similar argumentation for the unitarity of F�1 : L2pΩq Ñ PW2
Ω, it follows that F : L2pΩ̃q Ñ

˜PW2

Ω̃ is a unitary operator.

In particular, we shall study the sampling behaviour of PW2
Ω by studying the natural orthonormal

basis of L2pΩq, which is formed by the collection of functions on Ω � G^ inherited from a quotient

group G^{Λ, where Λ is a (necessary for our approach: discrete countable) subgroup of G. In particular,

Ω and G^{Λ should possess the following relation: Ω is a relatively compact measureable subset of

G^ which (”almostly” in Lebesgue sense) contitute a representation of each coset of G^{H. Once the

orthonormal basis for L2pΩq is established, the sampling and reconstruction formula follows immediately

from the orthonormal expansion of the Fourier transform of each function in L2pΩq and the inverse Fourier

transform of this expression. This fact is justified by the bases -, and correlation preserving property of

the inverse Fourier transform as a unitary equivalence between L2pΩq and PW2
Ω. Furthermore, it shall

be shown the approximation f̃ of a function f P L2pGq resulted from this process is a continuous function

on G, and is equal to f in Lebesgue sense, i.e. f̃ � f a.e. on G. From the practical point of view,

this is clearly not a serious problem, since real-world signals (in particular, those which appears in the

application of electrical engineering) are continuous. The approaches made in this chapter follows from

[31].

In this chapter, we write, if not otherwise stated, all the LCA groups additively, and the identity of

an LCA group G will be denoted by 0G . For convenient, the dual group G^ of an LCA group is written

multiplicatively, and the identity is denoted by 1G^ . In the following section, we familiarize ourselves

with the notion of uniform lattices in an LCA groups, which constitute a fundamental for our approach.
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4.1. Lattices on LCA group

We first give the definition of the uniform lattice in the following definition:

Definition 4.3 ((Admissible) Uniform Lattice). Let G be an LCA group. Λ � G is said to be a

uniform lattice on G, if Λ is a discrete subgroup of G, and G{Λ is compact. We say, a uniform lattice is

admissible1 if it is countable, and its annihilator is also countable.

For a uniform lattice Λ, one can immediately give a characterization of its annihilator:

Lemma 4.1. Let G be an LCA group, and Λ a uniform lattice. Then AG^pΛq is also a uniform lattice

in G^

Proof. Clearly, AG^pΛq is discrete. pG^{AG^pΛqq^ is discrete, since this LCA group is topological group

isomorphic to Λ. Since pG^{AG^pΛqq^ is discrete, it follows immediately that pG^{AG^pΛqq^^ is compact.

Finally by Pontryagin-van Kampen duality, it follows that G^{AG^pΛq is compact, and accordingly the

desired statement hold.

Further, in case that the considered LCA group is in some sense ”ordinary”, there is no need to restrict

the class of considered uniform lattice, since:

Lemma 4.2. Let G be a second-countable LCA group, and Λ a uniform lattice in G. Then the following

statements hold:

(a) Λ is countable.

(b) The annihilator AG^pΛq of Λ in G^ is countable.

Sketch of Proof. (a):As a discrete subset of a second-countable LCA group, Λ is automatically countable.

(b):We already know that AG^pΛq is discrete. Furthermore, the second countability assumption on G
implies that G^ is second-countable. Hence, as a subset of G^, AG^pΛq is countable. From the fact that

G^ is second-countable ,since G is countable, it follows immediately that AG^pΛq is countable.

The following notions are indispensable for our later aproaches:

Definition 4.4. Let G be an LCA group, and K � G a closed subgroup. A (Borel) measureable set

Ω � G is said to be a (measureable) transversal of G{K, if Ω is the set of representatives (transversal)

of G{K, i.e. #ppx � Kq X Ωq � 1. To each (measureable) transversal, there corresponds a mapping

ς : G{K Ñ Ω, rxs ÞÑ px � Hq X Ω, which sends each coset to the corresponding representative in the

fundamental domain. Furthermore, ς is called the cross-section map.

For convenient, we call measureable transversal simply transversal. For easeness, let Ω be a transversal

of the quotient group G{K, then we say also Ω is a fundamental domain of K. The following obvious

statements are alternative characterizations of transversals:

Proposition 4.3. Let G be an LCA group, and K ¤ G a closed subgroup. Given a measureable subset

Ω � G. Then the following statements are equivalent

(a) Ω is a measureable transversal of the quotient group of K.

(b) The canonical quotient mapping q : G Ñ G{K restricted to Ω, i.e. q|Ω, is bijective.

(c) G � Ω�K and ΩX pΩ� kq � H, @k P Kzt0Ku.
1In the sense, that the uniform lattice is admissible for our purpose, to establish an orthonormal basis for the Lebesgue

space L2pG{Λq on the quotient group G{Λ, where G is an LCA group, and Λ a uniform lattice
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The existence of a ”good-natured” fundamental domain is ensured by the following lemma:

Lemma 4.4. Let G be an LCA group and Λ is a uniform lattice. Then there exists a relatively compact

transversal for G{Λ.

The existence of a measureable representation of G{Λ was first ensured in Thm. 1 in [12], and the

existence of a relatively compact transversal in Lemma 2 in [30].

Since integrals is involved in our approach, and integrals can not ”see” measure zero sets, it seems

likely to slacken/generalize the definition of fundamental domain in the following way:

Definition 4.5. Let G be an LCA group, and Λ ¤ G be a uniform lattice. A measureable subset Ω � G
is said to be an almost transversal of G{Λ, if Ω differs to a fundamental domain of Λ in a µG-null set. We

say also Ω is an almost fundamental domain of Λ.

Equivalently, one can define an almost fundamental domain Ω of a uniform lattice Λ in an LCA group

as follows: almost every x P G can be written uniquely as x � d � λ, where d P Ω and λ P Λ. This

equivalent definition is justified by the definition of almost fundamental domain, translation invariance

of the Haar measure, closeness of measureble subset under countable intersection and union, and the

countable additivity of measures. As we seen previously, the notion of almost measureable transversal is

closely related with the notion of the so-called K-tiling subset of G. We define this term as follows:

Definition 4.6. Let G be an LCA group and K P N. Given a measureable subset Ω � G and a countable

subset Λ � G. Ω is said to K-tile G by (translation set) Λ if:¸
λPΛ

χΩpx� λq � K, a.e. x P G.

If above condition is fulfilled, then Ω is said to be K-tiling subset of RN by Λ. In case that K � 1, one

can simply say: Ω tiles RN with Λ, and write: Ω� Λ � G.

By means of above notion, one can translate an algebraic notion (Fundamental domain) to a more

”descriptive” notion (Tiling set).

4.2. Lattice and Measure equivalent sets - Fundamental Domains

In the following section we concern ourselves with two notions of equivalents between fundamental do-

mains of an admissible uniform lattice. Firstly, the notion of partition equivalent of fundamental domains

of a lattice, and secondly, the notion of measure equivalent of fundamental domains of a lattice.

4.2.1. Fundamental domains - lattice equivalent sets

We first give in the following, the notion of lattice equivalent sets:

Definition 4.7 (Λ-equivalent set). Let G be an LCA group, and let Λ ¤ G be a discrete countable

subgroup. Given two subsets A and B of G. A and B is said to be Λ-equivalent, if there exists two

measureable countable partitions tAnunPI and tBnunPI of A and B respectively, and a labelling tλnunPI
of the elements of Λ by I, s.t. An � λn � Bn, @n P I. We write A �Λ B.

One can show that fundamental domains of a lattice can be seen as equivalent in the following sense:

Lemma 4.5. Let G be an LCA group, and Λ be a discrete countable subgroup of G. Given a transversal

Ω of G{Λ. Then a subset Ω̃ � G is also a transversal of G{Λ, if and only if Ω̃ �Λ Ω.
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Proof. Let tλnunPN be a labelling of Λ.

”ñ” We write Ω̃n :� pΩ� λnq X Ω̃, @n P N. Notice that tΩ̃nunPN forms a measureable partition of Ω̃,

since Ω is a transversal of G{Λ. In return, define Ωn � pΩ̃� λnq X Ω, @n P N. Notice that again since Ω̃

is a transversal of G{Λ, it follows immediately that tΩnunPN forms a measureable partition of Ω. By the

definition of both partitions, it follows immediately that Ωn � λn � Ω̃n, @n P N. Hence the statement

holds.

”ð” Now, suppose that there exists a measureable partitions tΩnunPN of Ω, and tΩ̃nunPN of Ω̃, s.t.

Ωn � λn � Ω̃n. Let x P G be arbitrary. Since Ω is a transversal of G{Λ, it follows that there exists a

unique representation of x by an ω P Ω and λm, for exactly a m P N, s.t. x � ω � λm. Since tΩnun
forms a partition of Ω, it follows that there exists exactly a n P N, s.t. ω P Ωn. From the Λ-equivalence

of Ω and Ω̃, one can imply that x can be written as x � ω̃ � λm̃, where ω̃ :� ω � λn P Ω̃n unique, and

λm̃ :� λm � λn. Now suppose that there exists another m̃
1 P N s.t. x � ω̃ � λm̃1 holds. We can write

x � ω � λn � λm̃1 . So, it must hold λn � λm̃1 � λm, and hence λm̃1 � λm � λn � λm̃. So each x P G has

a unique representation by means Ω̃ and Λ, and correspondingly Ω̃ is a transversal for G{Λ.

Since Fundamental domains of a lattice can be seen as ”partitions” equivalent, it stands clear that the

following mapping is defined canonically:

Definition 4.8. Let G be an LCA group, and Λ a discrete countable subgroup of G. Let two fundamental

domains Ω, and Ω
1

be given. The mapping τΩÑΩ1 : Ω Ñ Ω
1

, x ÞÑ px�Λq XΩ
1

, is called cross-transversal

mapping.

Since Ω and Ω
1

are fundamental domains of Λ, it follows immediately that px � Λq X Ω
1

contains only

a singleton tx � λu, for a λ P Λ. Furthermore for such an x P Ω and the corresponding λ P Λ, we set

τΩÑΩ1 pxq � x�λ. Hence τΩÑΩ1 is appropriately defined. Furthermore, since subgroups are closed under

taking inverse, τΩÑΩ1 can also alternatively be written as τΩÑΩ1 pxq � px � λq X Ω
1

. It is obvious that

τΩÑΩ1 is bijective, and that its inverse is given by τ�1
ΩÑΩ1 � τΩ1ÑΩ.

By lemma 4.5, τΩÑΩ1 can be specified as follows: Since Ω �Λ Ω
1

, there exists a countable measureable

partition tΩnunPI of Ω, a countable measureable partition tΩ1

nunPI of Ω
1

, and an indexing tλnunPI by

Λ, s.t. Ωn � λn � Ω
1

n, for all n P I. So for the mapping τΩÑΩ1 , it holds: τΩÑΩ1 pxq � x � λn P Ω
1

n, for

x P Ωn, n P I. Clearly, its inverse is correspondingly τΩÑΩ1 px1q � x
1 � λn P Ω

1

n, for x
1 P Ω

1

.

By the following easy statement and corresponding geometric restriction of the considered fundamental

domains, one can ”specify” lemma 4.5 as follows:

Lemma 4.6. Let G be an LCA group, K, K̃ be compact subsets of G, and Λ be a countable subgroup

of G. Define the set:

Λ
1

:� tλ P Λ : pλ�Kq X K̃ � Hu.

Then Λ
1

is finite.

Proof. notice that Λ
1 � Λ X pK̃ � Kq. From the fact that finite sum of compact sets is compact, and

intersection of compact subset with countable set yields a finite set, Λ
1

is finite.

As desired, we obtain the following statement, which is an immediate consequence of the proof of lemma

4.5, and above statement:

Lemma 4.7. Let G be an LCA group, and Λ be a discrete countable subgroup of G. Given a relatively

compact transversal Ω of G{Λ. Then a subset Ω̃ � G is also a relatively compact transversal of G{Λ, if

and only if there exists a finite subset Λ̃ of Λ, s.t. Ω �Λ̃ Ω̃.

Let Ω and Ω
1

be relatively compact fundamental domains of a discrete subgroup Λ of Ω. Let tΩnunPrMs
and tΩ1

nunPrMs be the finite measureable partitions of Ω and Ω
1

, and tλnunPrMs be the finite subset of Λ,
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which are asserted by lemma 4.7. Obviously, the cross-transversal mapping can in this case be written

as τΩÑΩ1 pxq � x� λn P Ω
1

n, for x P Ωn, where n P rM s.
In the next subsection, we shall show that all relatively compact fundamental domains of a certain

countable lattice possesses the same measure. In particular, it will be shown, that by this observation,

one can give a canonical unitary operator, mapping between signal spaces, each defined on one of those

fundamental domains.

4.2.2. Fundamental domains - measure equivalent sets

Recall that cross-section map ς : G{Λ Ñ Ω corresponding to a uniform lattice Λ in an LCA group G and

a relatively compact fundamental domain Ω of Λ is defined as the mapping rxs ÞÑ px � Λq X Ω. The

following lemma gives a useful property of ς:

Lemma 4.8. Let G be an LCA group, Λ be a countable uniform lattice in G, and Ω a relatively compact

fundamental domain of Λ. Furthermore, fix the Haar measures µΛ s.t. µΛ is a counting measure, µG{Λ
s.t. µG{ΛpG{Kq � 1. By the previous choices of µΛ and µG{Λ, fix µG s.t. the Weil’s formula holds. The

measure on Ω is chosen s.t. it is as usual the subspace measure inherited from µG . Then the cross-section

map ς : G{Λ Ñ Ω is a bijective measure-preserving mapping. Furthermore, its inverse ς�1 : Ω Ñ G{Λ,

xÑ rxs is measureable.

Proof. Measureability of ς should be clear. Now, take a measureable subset E � Ω. Clearly µGpEq ¤
µGpΩq   8. By means of the Weil’s formula, and the required choice of Haar measures, we obtain:

µΩpEq � µGpEq �
»
G

χEpxqdµGpxq �
»

G{Λ

¸
λPΛ

χEpx� λqdµG{Λpx� Λq

�
»

G{Λ

χς�1pEqprxsqdµG{Λprxsq � µG{Λpς�1pEqq.

Hence ς is a measure preserving map between G{Λ and Ω.

That ς�1 given in the lemma is indeed the inverse of ς is obvious. Since ς�1 is the restriction of

a continuous mapping (that is the canonical quotient mapping q : G Ñ G{Λ), and the restriction of

a continuous mapping is always continuous, it follows immediately that ς�1 is continuous and hence

measureable. So the desired statement holds.

For the cross-transversal map τΩÑΩ1 between two fundamental domains, we get also a similar result:

Lemma 4.9. Let G be an LCA group, Λ be a countable uniform lattice in G, and Ω be a relatively

compact fundamental domain of Λ. Given another relatively compact fundamental domain Ω
1

of Λ,

and consider the cross-transversal map τΩÑΩ1 between Ω and Ω
1

. Then τΩÑΩ1 is a measure-preserving

mapping between Ω and Ω
1

.

Proof. It is not hard to see that τΩÑΩ1 : Ω Ñ Ω
1

, x ÞÑ px� Λq X Ω
1

is measureable. Indeed, let E � Ω
1

.

It clearly holds τ�1
ΩÑΩ1 pEq � pE�ΛqXΩ. Since E�Λ, as it is a countable union of measureable sets, is a

measureable subset of G, it follows immediately by definition, that pE � Λq XΩ is measureable w.r.t. Ω.

Measure preservation property can be shown by computations. For E � Ω
1

:

µΩ1 pEq � µGpEq � µGpG X Eq � µGp
¤
λPΛ

pΩ� λq X Eq � µGp
¤
λPΛ

rpE � λq X Ωs � λq

� µGpτ�1
ΩÑΩ1 pEq � λq � µGpτ�1

ΩÑΩ1 pEqq
� µΩpτ�1

ΩÑΩ1 pEqq.
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As an easy implication of above lemma, one obtains that relatively compact fundamental domains of a

uniform lattice has the same measure.

Noticing the fact that cross-section map is a measure preserving map, one immediately obtains the

following useful characterization of the Koopman operator related to that map:

Lemma 4.10. Let G be an LCA group, Λ be a countable uniform lattice in G. Let Ω be a relatively

compact fundamental domain of G{Λ and ς : G{Λ Ñ G denotes the cross-section map. Define the mapping

Uςpfq � f � ς. Then Uς is an isometric isomorphism between L2pΩq and L2pG{Λq. Furthermore, the

inverse of Uς , which is an isometric isomorphism between L2pG{Λq and L2pΩq, is given by U�1
ς f � f̃ ,

where f̃pxq � fprxsq, for all x P Ω.

Proof. To establish the statements, prop. B.5 asserts that it is sufficient to show that ς is a measure-

preserving bijective mapping, whose inverse is measureable. Those statements was already shown in

lemma 4.8.

To say in a more convenient way, the inverse mapping U�1
ς can be seen as the restriction of an Λ-

periodic function, square-integrable on an relatively compact fundamental domain of G{Λ, to the relatively

compact fundamental domain Ω of G{Λ. Furthermore, the cross-transversal mapping also induces a

unitary composition operator:

Lemma 4.11. Let G be an LCA group, and Λ be a countable uniform lattice in G. Further, given two

fundamental domains Ω and Ω
1

of Λ. Then the composition operator Uτ
ΩÑΩ

1 p�q :� p�q�τΩÑΩ1 is a unitary

equivalence between L2pΩ1q and L2pΩq. The corresponding adjoint is given by U�
τ
ΩÑΩ

1
� Uτ

Ω
1
ÑΩ

.

In the next section, we shall induce an orthonormal basis for L2pΩq from L2pG{Λq by means of Uς .

4.3. Orthonormal Sampling of Functions in PW2
Ω

By previous discussions, it is advantageous to use the following conventions for the Haar measures of the

considered LCA groups:

Conventions 4.12. Let G be an LCA group, Λ a countable uniform lattice, and Ω a fundamental domain

of Λ. If not otherwise stated, we fix from now on the Haar measures µΛ s.t. µΛ is a counting measure,

µG{Λ s.t. µG{ΛpG{Kq � 1. Furthermore, by the previous choices of µΛ and µG{Λ, we fix µG s.t. the Weil’s

formula holds. The measure on Ω is as usual the subspace measure inherited from µG .

Recall that if those conventions are followed, then one can be sure that the following holds:

• AG^pΛq forms an ONB for L2pG{Λq (Corollary 3.48)

• The cross section map ς : G{Λ Ñ Ω is a bijective measure preserving mapping (lemma 4.8).

• The composition operator Uς is a unitary equivalence between L2pΩq and L2pG{Λq (lemma 4.10).

The quintessence of this section lays in the following lemma:

Lemma 4.13. Let G be an LCA group, Λ be an admissible uniform lattice in G, and Ω be a relatively

compact fundamental domain of Λ. Then the set:

tγ χΩ : γ P AG^pΛqu (4.1)

forms an orthonormal basis for L2pΩq.
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Proof. We first show the statement for the case that Ω is a fundamental domain of Λ. By definition of

uniform lattice, it follows that G{Λ is compact. Hence, by corollary 3.48, the characters of G{Λ forms an

orthonormal basis for L2pG{Λq. Theorem 3.36 asserts that the characters of G{Λ can be identified with

those which annihilate Λ, i.e. the set tξγ : γ P ΛKu, where ξγprxsq :� γpxq, @x P G.

Consider the inverse composition operator Uς , induced by the cross-section map ς. We already see

in lemma 4.10, that U�1
ς is an unitary operator. In particular Uς is a linear homeomorphism. Hence

from lemma 2.8, Uςξγ � γ χΩ, γ P ΛK forms also an orthonormal basis for L2pΩq. So the statement is

established for Ω is a fundamental domain.

By noticing that the Lebesgue integral is invariant toward changes in null sets, one obtains the following

simple modification of above lemma:

Corollary 4.14. Let G be an LCA group, Λ be an admissible uniform lattice in G, and Ω be a relatively

compact almost fundamental domain of Λ, or equivalently a tiling set of G by Λ. Then the set:

tγ χΩ : γ P AG^pΛqu (4.2)

forms an orthonormal basis for L2pΩq.

Proof. By the definition of almost fundamental domains, it follows that there exists a fundamental domain

Ω
1

of Λ which differs with Ω in a null set, hence L2pΩq is isometric isomorph to L2pΩ1q, e.g. by restriction,

or continuous extension. Accordingly, the corresponding ONB in L2pΩ1q as given in lemma 4.13 can be

restricted or continuous extended, s.t. they forms an ONB for L2pΩq. As annihilators are defined over

G, the desired statement follows.

For later purposes, we may generalize above lemma to the direct sum of a collection of such Lebesgue

spaces as follows:

Lemma 4.15. Let Λ be an admissible uniform lattice in an LCA group G. Let D be a (also possible:

almost) fundamental domain for Λ. An orthonormal basis for the direct sum of Hilbert spaces L2pDq`M
is tepmqγ : m P rM s, γ P AGpΛqu, where e

pmq
γ :� δδδmγχD.

Proof. This follow immediately from lemma 4.13 and lemma 2.8.

Remark 4.16. Of course, by the similar argument as given in the proof of 4.17, and by the fact that

the direct product of unitary operator is again a unitary operator, the requirement that D is a relatively

compact fundamental domain of Λ in lemma 4.15 can be replaced by the requirement that D is a tiling

subset of G by Λ.

The following lemma, which is basically a modified version of lemma 4.13 may be helpful to established

the sampling theorem for LCA groups:

Lemma 4.17. Let G be an LCA group, and given an admissible uniform lattice Λ̃ in G^. Given a

relatively compact fundamental domain Ω̃ of Λ̃. Choose the Haar measures µG^ , µΛ, µG{Λ, and the

measure on Ω̃, by conventions 4.12. Then the following holds:

tαGpλqχΩ : λ P AGpΛqu

forms an orthonormal basis for L2pΩq.

Proof. By statement (a) in thm. 3.36, the characters ξ̃ on G^{Λ is induced uniquely by an element

ξ : G^ Ñ T of AG^^pΛq, s.t. ξ̃prγsq � ξpγq, @γ P G^. In turn, by item (c) in lemma 3.36, each

ξ P AG^^pΛq can be identified with a λ P AGpΛq by the natural mapping αG , i.e. ξ � αGpλq. So, the dual
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group of G^{Λ can be identified with AGpΛq, with the identification AGpΛq Q λ Ø ξ̃ P pG^{Λq, where

ξ̃prγsq � αGpλqpγq, @γ P G^. Finally, from lemma 4.13, it follows that tαGpλqχΩ : λ P AGpΛqu forms an

orthonormal basis for L2pΩq.

From corr. 4.14, it follows that one can also substitute the requirement that Ω is a fundamental domain

of Λ by the requirement that Ω tiles G^ by Λ.

To construct an orthonormal basis for PW2
Ω, we first establish an orthonormal basis for the frequency

space of PW2
Ω, i.e. L2pΩq. In particular, we need an admissible uniform lattice Λ, which fractionizes (up

to a null set) the frequency domain G^ into copies of Ω shifted by elements of Λ. So, it is necessary to

restrict our consideration from general LCA groups to compactly generated LCA groups, since in this

class of groups, the existence of a uniform lattice is ensured. Thm. 3.16 asserts that the condition that

G^ is compactly generated topological group is sufficient for the existence of a countable uniform lattice.

As we shall see in the following lemma, this restriction has no serious affect to our consideration:

Lemma 4.18. Let G be an LCA group, Ω � G^ relatively compact. Generate the open subgroup H of

G^ by Ω, i.e. H :� �kPN kΩ. Then there exists a compact subgroup K of G (e.g. K � AGpHq) s.t. every

f P PWΩ is K-periodic.

Proof. Take an open relatively compact set V � G^, which contains Ω. Define H � �kPN kV . Notice

that H is an open subgroup of G^, and G{H is discrete. By the latter statement, it follows that pG^{Hq^
is compact. Now define K :� AGpHq. For f P PW2

Ω, x P G, and k P K, we compute:

fpx� kq �
»
Ω

f̂pγqγpx� kqdµG^pγq �
»
Ω

f̂pγqγpxqγpkqdµG^pγq �
»
Ω

f̂pγqγpxqdµG^pγq � fpxq,

where the first equality follows from the inversion theorem and band-limitedness of f , the second from

the fact that characters are homomorphism, and the third from the fact that k is the annihilator of Ω,

which shows the desired statement. The fact that K is open, follows from the following observation:

From item (a) in thm. 3.36, it follows that AG^^pHq � pG^{Hq^. Furthermore, from item (c) in prop.

C.9, we know that G^{H is discrete, since H is open, and accordingly, pG^{Hq^ is compact, since the

dual of a discrete set is compact. Pontryagin-van Kampen duality give the remaining hint.

According to this lemma, all square-integrable signals, band-limited to a relatively compact subset Ω of

G^ lives essentially in L2pG{Kq, i.e. it is K-periodic. So, the engineer’s task is to guess the possible band

limit K of the signal of interests,

Now, we are ready to give the desired sampling Theorem for signals in PW2
Ω:

Theorem 4.19 (Kluvanek [31]). Let G be an LCA group. Given an f P PW2
Ω, where Ω � G^ is a

relatively compact measureable subset. Assume that there exists an admissible uniform lattice Λ in G^

(e.g. in case G^ is second-countable/metrizable), for which Ω is a fundamental domain. Further, choose

the Haar measures µG^ , µΛ, µG{Λ, and the measure on Ω̃, by conventions 4.12, and subsequently, choose

µG s.t. the Fourier inversion formula holds. Then:

f̃ �
¸
λPΛK

fpλqφpp�q � λq, a.e. x P G,

where φp�q � |χΩp�q, defines a continuous function in L2pGq and it holds:

fpxq � f̃pxq a.e. x P G.

Proof. From lemma 4.17, we know that tαGpλqχΩ : λ P AGpΛqu forms an orthonormal basis for L2pΩq.
We already know that the inverse of the Fourier transform is a unitary equivalence between L2pΩq seen
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as a closed subspace of L2pG^q and PW2
Ω, and in particular, it preserves orthonormal bases. Hence

t|χωp� � λquλPAGpΛq form an ONB for PW2
Ω, since |χωp� � λq is the image of αGpλqχΩ under the inverse

Fourier transform. Furthermore, given f̂ P L2pΩq, and let f̂ � °λPAGpΛq cλαGpλqχΩ be the corresponding

orthonormal expansion of f̂ , where cλ � xf̂ , αGpλqyL2pΩq. It follows immediately that f has the expansion:

f �
¸

λPAGpΛq

cλ|χωp� � λq, (4.3)

where the equality is to understand as a.e. and the convergence has to be understand in the PW2
Ω-sense,

hence in the L2pGq-sense. Now we need to show that tcλuλPAGpΛq are the samples of f taken at points of

Λ. Indeed, by computations for each λ P AGpΛq:

xf̂ , αGpλqχΩyL2pΩq �
»
Ω

f̂pγqγpλqχΩpγqdµG^pγq �
»
G^

f̂pγqγpλqdµG^pγq � fp�λq,

where the second inequality follows from the fact that f̂ is supported in Ω, and the third from the definition

of the inverse Fourier transform. Setting this result to the expansion of f , and by the permutation of the

sum, and noticing that ONB is an unconditional basis, one obtains that:

f �
¸

λPAGpΛq
fpλq|χωp� � λq,

in L2-sense

Since f̂ is contained in L2pΩq, it follows that f̂ is also contained in L1pΩq, and accordingly in L1pG^q.
Hence the inverse Fourier transform of f̂ yields an f̃ P C0pGq. By continuity of the inverse Fourier

transform and the convergence of the basis expansion of f̂ in L1pG^q-norm2, it follows that:

f̃ �
¸

λPAGpΛq

cλ|χωp� � λq, (4.4)

where the convergence is w.r.t. the supremum norm (notice that the supremum norm in C0 is related to

sup and not just essentially supremum), and accordingly is uniform. Clearly f � f̃ a.e. on G.

Of ancilliary interests, one can give a hint about the shape of the kernel φ used in the orthonormal

sampling expansions for PW2
Ω:

Proposition 4.20. Let G be an LCA group, and Λ̃ be an admissible uniform lattice in G^, for which a

relatively compact measureable subset Ω � G^ is a fundamental domain. Let φ : G Ñ C be a function

on an LCA group be given by the expression:

φpxq �
»
Ω

γpxqdµG^pγq, x P G. (4.5)

Then φ is defined everywhere on G. In particular, it is a continuous function vanish at infinity, positive-

definite, belongs to L2pGq, and its L2pGq-norm is equal to 1. Furthermore, the values of φ on AGpΛq can

be given by:

φpλq �
$&%1, if λ � 0G

0, if λ P AGpΛqzt0Gu
. (4.6)

Proof. The fact that φ is defined everywhere on G, that φ P C0pGq, and that it is an element of L2pGq
with norm 1, is mentioned implicitly in the proof of Thm. 4.19. As a direct implication of Bochner’s

2convergence in L2pΩq-norm ñ convergence in L1pΩq-norm ñ convergence in L1pG^^q-norm
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4. Orthonormal Bases of Exponentials and the Sampling Problem

Theorem, φ is positive-definite. By considering an alternative description of φ:

φpxq �
»
Ω

αGpxqdµG^pγq, x P G,

and since tαGpλqχΩ : @λ P AGpΛqu forms an ONB for L2pΩq, (4.6) holds.

Remark 4.21. From the positive-definiteness of φ, φ fulfills the property given in 3.43. The property

given in 3.43 and the property (4.6) remind one of the sinc-kernel which occurs in the WKS-formula.

The following alternative version of above Thm. may also be helpful for later approach:

Corollary 4.22 (Kluvanek’s Sampling Formula for frequency sampling). Let G be a compactly

generated LCA group, Ω � G be a relatively compact subset. Assume that there exists an admissible

lattice Λ in G, for which Ω is a fundamental domain. Follow the conventions 4.12, and fix µG^ s.t. the

Fourier inversion formula holds. Then each f P ˜PWΩ is equal a.e. to a function f̃ P C0pG^q, which is

given by:

f̃ �
¸

λPAG^ pΛq
fpλqφpp�qλ�1q,

where φ � FpχΩq.

Proof. Similar to the proof of Thm. 4.19, consider the ONB tλχΩ : λ P AG^u of L2pΩq. Expanding f̌ by

means of that ONB, and by computing the inner product between f and each λχΩ, for all λ P AG^ , one

obtains the series:

f̌ �
¸

λPAG^pΛqpΛq
fpλq λp�q, (4.7)

where the convergence is in L2pΩq-sense, L1pΩq-sense, and accordingly in L1pGq-sense. Fourier trans-

forming above expression, one obtains immediately the desired statements by similar arguments given in

the proof of Thm. 4.19.

4.4. Orthonormal Sampling in Euclidean Spaces by Regular Lattices

To visualize the idea introduced previously in the previous section, we shall apply in this section Thm.

4.19 to finite-energy band-limited functions defined on the euclidean spaces. First, it is necessary to

classify uniform lattices in Euclidean spaces:

4.4.1. Uniform Lattices in RN - (Full-Rank) Lattices

It is clear that RN equipped with the natural topology is second countable (observe that for a x P RN ,

tB 1
n
pxqunPN forms a countable neighborhood base of x). Recall that any subspace with corresponding

subspace topology of a second countable space is again second countable, and any discrete second count-

able space is countable. Hence it follows immediately that any discrete subgroup of RN is countable,

thus it is unnecessary to make a distinction between discrete - and countable subgroup.

Obviously, a discrete subgroups Λ of RN are exactly those subgroups which can be generated minimally

by finite elements of RN , i.e. Λ can be written by Λ � xa1, . . . , aky, for finite K, and a1, . . . , aK P RN .

Let be the rank of a subgroup is defined as the smallest cardinality of the generating set. The following

proposition sheds light on the structure of uniform lattices in the euclidean space RN :

Lemma 4.23. Given a discrete subgroup Λ of RN . Λ is a uniform lattice, if and only if Λ is of full-rank.
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Proof. ”ð”: Let Λ be generated by N linearly independent vectors a1, . . . , aN P RN , and let A be the

non-singular N � N real matrix, whose columns are exactly the generator of Λ, i.e. A :� ra1, . . . , aN s.
Consider the mapping fA�1 : RN Ñ RN , x ÞÑ A�1x. It is obvious that fA�1 is a topological group

isomorphism between RN and RN . From the fact that quotient groups are invariant under topological

isomorphism (corr. C.12), we obtain: RN{Λ � fA�1pRN q{fA�1pΛq � RN{ZN . Since RN{ZN � pR{ZqN ,

and clearly pR{ZqN � TN , it follows immediately that RN{Λ is topological group isomorphic to TN , and

hence compact.

”ñ”: We proof this implication by contradiction. Suppose that Λ is generated by M   N linearly

independent vectors a1, . . . , aM in RN . Take an x P RNz spanta1, . . . , aMu. Consider the restriction

q|spantxu : spantxu Ñ RN{Λ, of the canonical quotient mapping q : RN Ñ RN{λ. Now, we aim to show

that q|spantxu is injective. Let 0RN {Λ be the identity in RN{λ. Clearly, q|spantxu
�1p0RN {λq � ΛX spantxu.

Since x is, by choice, not contained in spanta1, . . . , aMu, Λ X spantxu contains only the singleton t0u.
Hence, q|spantxu is injective. It is not hard to show that q|spantxupspantxuq is not compact in RN{Λ, and

by this reason, RN{Λ can not be compact.

In literatures, such discrete subgroup is called (full-rank) lattice in RN . Such a subgroup Λ can also

be written as Λ � AZN , where A P RN�N is a non-singular matrix. We call such a matrix A basis of Λ,

and say Λ is generated by A. Let takukPrNs be the column vector of A, in some cases, we use the term:

takukPrNs is a basis for Λ, and Λ is generated by takukPrNs.
Notice that basis of a lattice is not necessarily unique. Recall that a unimodular matrix U P RN�N is

defined as a matrix with integer entries, whose determinant has the modulus �1. It is not hard to show,

that the following relationship between two bases A and B of a uniform lattice Λ hold: A � BU , where U

is unimodular. Let Λ be a lattice which is generated by A. One can denote ΛA instead of Λ to emphasize

the generating system associated with this lattice (or equivalently Λpa1, . . . , aN q, where a1, . . . , aN are

the column vectors of A ).

To a lattice ΛA, one associates a parallepiped ΦpΛAq of RN , which is defined as ΦΛA :� Ar0, 1qn,

called fundamental parallepiped. We write also ΦpAq, and Φpa1, . . . , aN q. It is obvious that ΦpAq is a

relatively compact measureable transversal of RN{Λ. Furthermore, subsets of RN , which are Λ-equivalent

to ΦpAq are clearly relatively compact measureable transversal of RN{Λ. It can easily be shown that

the volume of ΦpAq is connected with the matrix A, in the sense that mpΦpAqq � |detA|. We have

seen in lemma 4.8, that all relatively compact fundamental domains coincides in measure. Hence, all

relatively compact fundamental domains of Λ have the measure |detA|. To visualize the concept of lattices

and Fundamental parallepiped, two examples of lattices in the planar domain R2 with corresponding

fundamental parallepipeds are depicted in fig. 4.1.

4.4.2. Annihilator of Uniform Lattices in RN - Dual Lattices

Recall that the dual group of RN can be identified with RN by the identification pRN q^ Q γω � e2πix�,ωy Ø
ω, i.e. the characters of RN are exactly the exponential functions of the form e2πixω,�y, indexed by ω P RN .

Given a uniform lattice Λ in RN . Obviously, the annihilator of the uniform lattice Λ in pRN q^ can be

identified with the subset tλ1 P RN : xλ1 , λy P Z, @λ P Λu of RN , since the restriction of a topological

group isomorphism to a subgroup is also a topological group isomorphism to its image. This set plays an

important role in the lattice theory in euclidean spaces:

Definition 4.9 (Dual Lattice). Let Λ be a full-rank lattice. The set ΛK corresponding to Λ, which is

defined as:

tx P RN : xx, λy P Z, @λ P Λu, (4.8)

is called dual lattice of Λ.
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ΦΛa1

a2

(a) (b)

b1
b2

ΦΛ1

Figure 4.1.: Two examples of a lattice in R2: (a) Lattice Λ with basis ta1, a2u and fundamental domain
ΦΛ, (b) Lattice Λ

1

with basis tb1, b2u and fundamental domain ΦΛ1

Define for a set X � RN , we denote: EpXq :� te2πixp�q : x P Xu. So the relationship between the

annihilator ApRN q^pΛq and the dual lattice ΛK, can now be described by the equality ApRN q^pΛq � EpΛKq.
The dual lattice of a full-rank lattice Λ � RN can easily be computed, in case that the generator of Λ

is given. Let A P RN�N be a generator of Λ. We already show in lemma 4.1 that the annihilator of Λ

is a uniform lattice in G^. So it follows from the fact annihilators and dual lattices are identifiable, and

pRN q^ and RN are identifiable, that the dual lattice ΛK is also a uniform lattice in RN . By lemma 4.23,

λK is generated by a non-singular matrix. Furthermore, it is immediate to see that ΛK is unique, since

AG^pΛq is by definition unique. Accordingly, different representations of ΛK by different non-singular

matrices differs only in a unimodular matrix. One can easily convince oneself that the lattice, which is

generated by the non-singular matrix B � pATq�1 fulfills (4.8). By this reason, we can state the following

lemma:

Lemma 4.24. Let Λ be a lattice in RN , generated by a non-singular matrix A P RN�N . Then the

annihilator of Λ can be identified with the lattice of the form ΛK � pATq�1UZN , where U P RN�N is a

unimodular matrix.

a2
a1

b2

b1

(a) (b)

Figure 4.2.: (a) an example of a lattice and (b) its corresponding dual lattice
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4.4. Orthonormal Sampling in Euclidean Spaces by Regular Lattices

Figure 4.3.: Two different ways to tile R2

4.4.3. Shape of Fundamental Domains of Uniform Lattices in RN

We first gives the terms which is used by Fuglede in his work. A discrete subset Λ of RN is said to be a

spectrum for Ω if EpΛq is an ONB for L2pΩq. Let Λ be a spectrum, in case that Λ is in addition, then we

say Λ is a lattice spectrum. A domain in RN , which possessess a spectrum is called spectral set. Fuglede

conjectured in his work [15], that a domain Ω in Rn admits a spectrum if and only if it is possible to

tile RN by a family of translates (i.e. a discrete set in RN ) of Ω. He proved the conjecture under the

restriction that the tiling set is a lattice in RN :

Theorem 4.25 (Fuglede). Let Ω � RN be measureable, Λ a lattice, and Λ� its dual. Ω tiles RN with

translation set Λ if and only if Λ� is a spectrum for Ω

This is exactly a special case of lemma 4.13.

Recently, some facts about the geometrical structure of connected sets admitting a spectrum have been

proved. Of course, the restrictions holds also for domains of our interests, i.e. domains which admits a

lattice spectrum.

• A ball is not a spectral set in any dimension ¡ 1 [26]. The case in 2 dimension was already shown

by Fuglede

• A non-symmetric convex body does not admit a spectrum [32]

• A symmetric convex body in RN , n ¥ 2, whose boundary is smooth, is not a spectral set [27]

• A set in R2 admits a spectrum if and only if it is quadrilateral or hexagon [28].

Without giving any comments, we state in the following the structure of lattice tiling sets in general

RN :

Theorem 4.26. Let Ω � RN be a non-empty compact convex subset. Then Ω tiles RN by a lattice if

and only if:

(a) Ω is a convex polytope.

(b) Ω is centrally symmetric.

(c) Each facet of Ω is centrally symmetric.

(d) Each belt of Ω consists of 4 o 6 facets.

For detailed treatment of above Thm. see e.g. Thm. 32.2 in [20].
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4.4.4. Reconstruction formula for Band-Limited Signals in RN

Let Λ be a uniform lattice in the frequency domain pRN q^ � RN (we write anyway pRN q^, even if

we mean RN ), and Ω � pRN q^ be a relatively compact fundamental domain of this lattice. The Haar

measure on pRN q^{Λ is chosen by identifying each elements of RN{Λ with elements of Ω in the usual

manner, i.e. RN{Λ Q rxs Ø x P Ω and subsequently by taking the normalized Haar measure on Ω, i.e.:

µpRN q^{ΛprEsq �
1

mpΩqmpEq, @rEs measureable subset of pRN q^{Λ, (4.9)

where m denotes the usual Lebesgue-Borel measure in RN . µΛ is chosen as the counting measure. The

corresponding Haar measure µpRN q^ is chosen as m, normalized by mpΩq. One can immediately convince

oneselves that by this choices, the Weil’s formula holds. Now it remains tho choose µRN s.t. the Fourier

inversion formula holds. The only choice isclearly: µRN p�q � mpΩqmp�q.
Once we have fixed the Haar measures, we can apply the Kluvanek’s sampling Thm. (thm. 4.19) to

the Euclidean space:

Corollary 4.27 (WKS-Formula in RN). Let Λ be a uniform lattice in the frequency domain pRN q^ �
RN , and Ω � pRN q^ be a relatively compact almost fundamental domain of Λ. Each f P pPW2

ΩXCpRN qq
can be reconstructed by the formula:

f �
¸
λPΛK

fpλqφpp�q � λq, (4.10)

where φ is given by:

φpxq :� 1

mpΩq
»
RN

e2πixωdmpωq, x P RN ,

For the approach made in the next chapter we need an alternative version of above formula. But

first, we need to take another choice of the Haar measures. Let Λ be a uniform lattice in RN , and

Ω � RN be a relatively compact fundamental domain of Λ. The Haar measure on RN{Λ is chosen as

similar as (4.9). The Haar measure on Λ is simply the counting measure. The Haar measure on G is

chosen µRN � mp�q{mpΩq. Clearly Weil’s formula is fulfilled. Furthermore, an appropriate choice of Haar

measure of pRN q^ is µpRN q^ � mpΩqmp�q. By those choices of Haar measures, and by applying corollary

4.22, we obtain the following alternative version:

Corollary 4.28. Let Λ be a uniform lattice in RN , and Ω̃ � RN be a relatively compact almost funda-

mental domain of Λ. Each f P ˜PWΩ̃ can be reconstructed by the formula:

f �
¸
λPΛK

fpλqφpp�q � λq, (4.11)

where φ is given by:

φpωq :� 1

mpΩq
»
RN

e�2πixωdmpxq, ω P RN ,
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on R2 by Structured Modulations

The problem of recovering a signal from the magnitude of its Fourier transform, which is also called

phase retrieval, emerges in several applications, e.g. in diffraction imaging applications such as X-ray

crystallography, astronomical imaging or speech processing. The phase retrieval problem originates from

the physical nature of sensors: since sensors can only record the intensity of the incoming signal, which

is generally available in the form of complex valued function, its phase is lost. The phase of a signal is in

general independent from its amplitude.

Some approaches to overcome this disbenefit, which adress to finite dimensional signal, have been

made. For example, one can use prior knowledge of the signal, such as band-limitation, causality, or

certain sufficient conditions on the z-transform of the signal, to recover the signal from its magnitude

[21, 50]. In the case of non-availability of preceding - or availability of little preceding knowledge of the

object of interest, one can proceed several measurements on this object by slightly different conditions,

such as distorted-object method [59], aperture-plane modulation method [11, 63], or fractional Fourier

transform method [29]. The signal can be recovered from different measurements by performing iterative

alternating projection algorithms. Although, the convergence of this approach strongly depends on

specific signal constraint. An analytical frame theoretical solution of finite dimensional phase retrieval

problem was delivered by Balan et al. [2, 3]. It will later be stated explicitly in a short manner, since it

provide a foundation for the approach made in this work.

It is natural to ask, how to handle the phase retrieval problem for infinite dimensional signal: What is

the minimal sampling rate which leads to a perfect reconstruction of a signal from the infinite samples of

its magnitude, and how such a sampling and reconstruction scheme, which achieves that corresponding

rate, should be. It was shown in [53] that one may sufficiently take the samples of the magnitude of

a real-valued signal at twice of the Nyquist rate. Unfortunately, this approach can not be extended to

complex valued signals. Moreover, results from frame theoretical approach for the phase retrieval problem

in finite dimension delivered in [2, 3] indicate that oversampling alone may not be sufficient to guarantee

a perfect reconstruction of the signal of interest. There, particular choice of measurement vectors was

the key to enabling signal recovery.

A first attempt on phase retrieval of complex-valued L2-signals of 1 variable with finite support was

made in [60, 48]. There, it was shown, that perfect recovery is guaranteed, if amplitude measurements

taken by specific setting at four times the Nyquist rate is given. It provides a reconstruction algorithm,

which includes the ideas introduced in [2], and which is inspired by the structured modulation measure-

ments frequently used in optics [7, 11, 59]. A corresponding simulation for finite dimensional signal is

available in [48].

The present chapter provides an extension of previous method to signals with finite energy on R2.

Analogue to the case of one variable, the suggested recovery procedure involves three main steps: first,

modulation of the signal by a bank of mask functions of appropriate choice and subsequent sampling

of the intensity of the modulated signals in the Fourier domain, and second, recovery of the samples

of the signal of interest from the samples of its modulated version and subsequent interpolation of the

signal. The latter step presupposes blocks containing finite number of intensity samples of the signal of

interest, which resulted by applying finite dimensional phase recovery algorithm, introduced in [2, 3], to
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the samples of the modulated versions of the signal. By ensuring overlapping between subsequent blocks,

the unimodular factors in all blocks are matched. So, finally, the well-known interpolation theorem and

the inverse Fourier transform can be used to recover the planar domain signal.

By a particular application, it will be shown that for band-limited signals on planar domain (up to

some exceptions), and by appropriate specific choice of the sampling lattice, that 8 times the Nyquist

rate, instead of the expected 16 times the Nyquist rate, is sufficient to ensure perfect recovery of the

signal.

Before we go into detail, we first give in the following section an auxiliary result on phase retrieval of

signals on finite sets which is due to [2, 3].

5.1. Finite Dimensional Phase Retrieval

Finite-dimensional phase retrieval problem can be expressed as follows: Given a finite set of measurements

tcmumPrMs of a finite dimensional signal x P CM . Reconstruct x from the available information in form of

tcmumPrMs, where tcmumPrMs is given as the square modulus of the inner product of x with appropriately

chosen ensemble of vectors tamumPrMs in CN , i.e. cm � |xam, xy|2, m P rM s.
As we will see soon an appropriate choice of measurements vectors is the so called maximal 2-uniform

M{K-tight frame, which is defined in the following

Definition 5.1 (Maximal 2-uniform M{K-tight frame). A set of vectors tapmquMm�1 in CK is said

to be a 2-uniform A-tight frame for CK if there exist A,B ¡ 0 s.t.:

A‖x‖22 ¤
M̧

m�1

|xx, apmqy|2 ¤ B‖x‖22 @x P CK (A-tight frame),

with A � B, and if for all j � k:

|xaj , aky| � c (2-uniform A-tight frame),

and the number of vectors M � K2 (maximal 2-uniform M{K-tight frame).

The following Thm. ensures the restorability of finite-dimensional signals from the modulus of its

measurements:

Theorem 5.1 (Balan, Bodemann, Casazza, Edidin). Let tapmquMm�1 � CK be a 2-uniform M{K
tight frame, and Qy :� yy�, y P CK . For any x P CK :

Qx � KpK � 1q
M

M̧

m�1

cpmqQapmq � cpmq Id,

where cpmq � |xapmq, xy|2, m � 1, 2, ...,M and Id denotes the identity in CK�K .

Constructions of 2-uniform M{K-tight frames with M � K2 vectors for different dimensions K can be

found in [62]. Later, we shall use the construction for dimension K � 4 given in that work.

Pedarsani et. al. gives in [45] an algorithm which provides a reconstruction of vectors in CN by only

3N measurements, which is considerably lesser than the number of measurements provided from Thm.

5.1. However, the behaviour of the algorithm under presence of noise, given in [45] might be worser than

the algorithm given in Thm. 5.1.
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Figure 5.1.: A typical setup of a phase retrieval problem in optics.

5.2. Measurement by structured modulation

We follow the measurement setup introduced in e.g. [60], which is inspired by the method in optics. The

corresponding setup is sketched in Fig. 5.1 and the corresponding signal flow diagram is depicted in Fig.

5.2.

In this measurement setup, the object, which one aims to investigate, is illuminated by coherent light

source. By this process, one obtains a diffraction pattern, which contains needed informations about

the object, which appears in the far-field. The occuring diffraction pattern corresponds to the Fourier

transform of our signal of interests. If the light source is a light beam, and the object is a crystal, the

inverse Fourier transform of the diffraction pattern contains the information about the electron density.

For convenient, we consider especially square-integrable signal (call h) which is supported on the

rectangle E :� r�T1{2, T1{2s � r�T2{2, T2{2s, with T1, T2 ¡ 0 a real constant, i.e. h P L2pQT1,T2
q. We

shall see later, that by some simple modifications, the algorithm introduced here can also be applied to

signals which is supported on other appropriate subsets of RN . Beforehand, we mention that this subset

can not be of arbitrary shape.

We add for each M measurement steps a spatial light modulator directly behind the object, resulting

the modified signals ypmq,m P rM s. Each of M spatial light modulator has the form:

ppmqptq �
Ķ

k�1

α
pmq
k e�ixλk,xy, t P R2, m P rM s,

for some constants α
pmq
k P C, k P rKs, and some collection tλkuk of vectors in R2. Both shall be fixed

soon. The resulted modified signal ypmq,m P rM s are each simply the multiplication of h with ppmq. The

lens conduces to project the far field to close range. The signals which reaches the detector is, as we

already mention, basically the Fourier transform of ypmq, m P rM s. By straightforward calculation, one

gets the following expression of the latter:

ŷpmqptq �
Ķ

k�1

α
pmq
k ĥpz � λkq. (5.1)

As we already know, the detector can only record the squared modulus of each signal ŷpmq. By Two-

dimensional uniform sampling the signal recorded by the detector by some rate 1{β1β2, β1, β2 ¡ 0, we

obtain for each m P rM s and n P Z2 the following:

cpmqn � |ŷpmqpnd βq|2 � |
k�Ķ

k�1

α
pmq
k ĥpnd β � λkq|2,

where d denotes the pointwise multiplication: n d β � pn1β1, n2β2q. The corresponding rate and re-

spectively the uniform sampling pattern shall be fixed soon. For each m P rM s and n P Z2, to give an
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h P L2pEq
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| � |2 � F
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�
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pβ1, β2q

c
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c
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K°
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α
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K°
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α
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c
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α
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2
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2
s n P Z nd β � pn1β1, n2β2q

T

Figure 5.2.: Signal flow description of the measurement by structured modulation method.

alternative description of c
pmq
n , we define the vectors:

αααpmq :�

����
α
pmq
1

...

α
pMq
K

���
, and ĥ̂ĥhn :�

����
ĥpλpnq1 q

...

ĥpλpnqK q

���
:�

����
ĥpnd β � λ1q

...

ĥpnd β � λKq

���
.
Accordingly, we have the following alternative description of c

pmq
n

cpmqn � |xĥn,αααpmqy|2, n P Z2,

By this reformulation of c
pmq
n , it stands clear, that for each measurement n P Z2, we can apply finite-

dimensional phase retrieval given in Thm. 5.1 to reconstruct ĥ̂ĥhn from tcpmqn um, provided that tαααpmqum
forms a 2-uniform M{K-tight frame, which we now of course require. Specifically, one can compute for

each n P Z2 the following matrix:

Qĥ̂ĥhn �
KpK � 1q

M

M̧

m�1

cpmqQapmq � cpmq Id . (5.2)

Hence, for each n P Z2 we get a block of measurements ĥ̂ĥhn from tcpmqn um multiplied by a constant phase θn,

i.e. ĥ̂ĥhne
iθn , which resulted from the decomposition of the matrix Qĥ̂ĥhn into ĥ̂ĥhne

iθnpĥ̂ĥhneiθnq�. Generally,

tθnunPZ2 mutually differs. By a slight modification of the previous mentioned method, and by phase

propagation analogue to the 1 variable case as described in [60, 48], we can determine each tθnu s.t. they

are equally. In the following, we introduce the corresponding method.

Let n P Z2 be arbitrary. We already know that by formula (5.2), the rank-1 matrix Qĥ̂ĥhn can be

determined. Further, suppose that we know the phase φn,j of an entry of ĥ̂ĥhn, i.e. φn,j � argprĥ̂ĥhnsiq, for

a i P rM s. Then the whole vector ĥ̂ĥhn can be determined by:

ĥpnd β � λkq �
b
rQĥ̂ĥhnsk,ke

ipφn,jq�argprQ
ĥ̂ĥhn

sj,kq, k � j. (5.3)
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h P L2pEq
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tcpmqn uMm�1, n P Z2

Finite

Dimensional

Phase

Retrieval

tĥneiθnunPZ2

αpmq �

�
�����

α
pmq
1

α
pmq
2

...

α
pMq
K

�
����


ĥn �

�
�����

ĥprnd βs � λ1q

ĥprnd βs � λ2q
...

ĥprnd βs � λ1q

�
����

�

�
�����

ĥpλ
p1q
n q

ĥpλ
p2q
n q
...

ĥpλ
pKq
n q

�
����


Simple
Reordering

Phase
Propagation

tĥpλ̃quλ̃PΓ

Interpolation in PW 2
E

ĥ

h

F�1

Figure 5.3.: Recovery of h from the intensity measurements

Now, for each n P Z2, define the set Λn as the set, which contains the entries of ĥ̂ĥhn (So, it stands clear to

see Λn also as a block of measurements). Now, for each n � pn1, n2q P Z2, we define another set related

to the collection of blocks tΛnun:

Λ
p1q
pn1,n2q :� Λpn1,n2q X Λpn1�1,k2q, and Λ

p2q
pn1,n2q :� Λpn1,n2q X Λpn1,k2�1q. (5.4)

To say in a sloppy way, Λ
p1q
pn1,n2q and Λ

p2q
pn1,n2q are sets, which contain the overlapping points of subsequent

blocks. To ensure that Λ
p1q
pn1,n2q and Λ

p2q
pn1,n2q are non-empty, we require that for all n � pn1, n2q P Z2, the

following holds:

Λpn1,n2q X Λpk1,k2q � H, k1 P tn1, n1 � 1u, k2 P tn2, n2 � 1u, k1 � k2. (5.5)

Furthermore, we require that Λ
p1q
pn1,n2q and Λ

p2q
pn1,n2q contain a non-zero element (we shall see the reason

for this requirement soon). Now, for an ”initial” block Λn, n P Z2, assume that we know Λpn1,n2q. Now

we aim to find out Λpn1�1,n2q, s.t. its phase φpn1�1,n2q coincide with φn (the subsequent approach should

also be applied to the block Λpn1,n2�1q, respectively). Suppose that we have already find out Λpn1,n2q
by the knowledge of the ”real” phase of an element of this set and by applying (5.3). Take a non-zero1

element from the non-empty set Λ
p1q
pn1,n2q, which is rĥ̂ĥhpn1, n2qsj , for a j P rKs. Accordingly, we have phase

knowledge of a non-zero entry of ĥ̂ĥhpn1, n2q. So, we can reconstruct ĥ̂ĥhpn1, n2q by (5.3). So starting from a

certain ”initial” block, where the knowledge of the phase is available, one may apply above method until

all the desired points (which is denoted later by Γ) are obtained.

Next, we unite and simply reorder the samples which resulted from previous processes. Accordingly

we obtain the samples tĥpλquλPΓ up to an overall constant phase θ, where Γ is defined as the overall

sampling points:

Γ :�
¤
nPZ2

λλλn,

where λλλn � tλpnqm uKm�1.

Since h P L2pEq and accordingly ĥ P ˜PW2

E , we can interpolate ĥ from its samples taken in the points

Γ by corollary 4.28, provided that Γ is a lattice, whose (almost) fundamental domain is E. Finally,

inverse Fourier transforming ĥ yields h up to a constant phase. A summary of the algorithm, given in

this section, is given in fig. 5.2

1Notice that otherwise this method would no be applicable
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5. Application: Phaseless Recovery of Signals on R2 by Structured Modulations

5.3. Example

First, we choose the sampling points as follows:

Tx
2

-
Tx
2

Ty
2

-
Ty
2

Ty

E

Spatial Domain Frequency Domain

a2

a1

E tiles R2 by translation set Λ

Λ � AZ2, A � ra1, a2s
a1 � rTx, Ty2 s a2 � r0, Tys

Tx

-Ty

-Tx

Λ� �: Γ spectrum of L2pEq
Λ� � BZ2, B � rb1, b2s, B � A�T

b1 � r 1
Tx
, 0sT b2 � r� 1

2Tx
, 1
Ty
sT

1
Tx

2
Tx

1
Ty
π
Tx

Γ

Figure 5.4.: Constructing a spectrum for E

We copy the area E, wherein the signal h is supported on, and shift the copies of E by translation set

Λ :� AZ2, where

A :�
�
Tx 0
Ty
2 Ty

�
.

Obviously, E tiles R2 by this way, or equivalently, E is an almost fundamental domain of Λ. Corollary 4.28

asserts that the dual lattice of Λ is the desired sampling points (the corresponding reconstruction formula

can also be found in that corollary). We denote the dual lattice of Λ by Γ. By simple computation, we

obtain Γ � BZ2, where

B � A�T �
�

1
Tx

� 1
2Tx

0 1
Ty

�
.

Consequently, the interpolation formula of the fourier transform ĥ of h P L2pEq, given in corr 4.28, which

is in PW2
E can be written explicitly as:

ĥpξq �
¸

n1,n2PZ
ĥp 1

Tx
n1 � 1

2Tx
n2,

1

Ty
q

� sincpTx
2
rξ1 � p 1

Tx
n1 � 1

2Tx
n2qsq � sincpTy

2
rξ2 � 1

Ty
n2sq,

We choose the corresponding 4 modulation coefficients as follows:

λ1 �
�

0

0

�
, λ2 �

�
1{2Tx
1{Ty

�
, λ3 �

�
1{Tx

0

�
, λ4 �

�
1{Tx
�1{Ty

�
.

As depicted above, we can see that subsequently blocks containing shifted versions of tλku4k�1 have each

one overlapping and the union of the blocks is exactly Γ. As we have seen in the main part, the signals

which can be reconstructed are those, whose Fourier transform is non-zero at all of those overlapping

64



5.3. Example

points.

4π
Ty

2π
Tx

ĥp0,0qe
iθ

ĥp0,1qe
iθ

ĥp0,2qe
iθ

ĥp0,1qe
iθ ĥp0,2qe

iθ

λ1

λ2

λ3

λ4

λ1 �
�

0
0



λ2 �

�
π{Tx
2π{Ty



λ3 �

�
2π{Tx

0



λ4 �

�
2π{Tx
�2π{Ty




Γ

Figure 5.5.: Approximating Γ by tλλλnunPZ2

Now, we need to determine a 2-uniform M{K tight frame for C4. We may construct this particular

generating system by the following way (see [62]):

• First, We define the 4� 4 matrices U and V :

U :�

������
1 0 0 0

0 e
2πi
4 0 0

0 0 e
4πi
4 0

0 0 0 e
6πi
4

�����
, V :�

������
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

�����

• Let ρ � e

iπ
4 . We define the vectors ψ1a and ψ1b:

ψ1a :� 1?
6

������
ρ� 1

i

ρ� 1

i

�����
, ψ1b :� 1?
2

������
0

1

0

�1

�����

• Let X :� 1

2

b
3� 3?

5
and Y :� 1

2

b
1� 3?

5
.We define ψk:

ψk � Xψ1a � ρkY ψ1b, k � 1, 3, 5, 7

• We choose k � 1, 3, 5, 7 arbitrary. We obtain the family of vectors D4,k :� tV cUdψk : c, d P Z4u,
which is a maximal 2-uniform M{K-tight frame for C4

So, a possible choice of tαααpmqu4m�1 is D4,k with k P t1, 3, 5, 7u chosen arbitrarily. By this special choice

of interpolation points and mask, we obtain the overall sampling rate 8 times the 2-dimensional Nyquist-

rate TxTy (Notice that the factor 2π is not existing here, by our choice of the Fourier transform), which is

lower than the expected rate of 16 times the 2-dimensional Nyquist-rate. This can be seen if we consider

the signal flow diagram of this specific sampling scheme: it contains 16 signal branches with each sample

taken by the rate
TxTy

2 . The corresponding signal
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6. A Class of Weighted Frames of Exponentials

and Sampling of Multiband Signal

For convenient, we begin by introducing some notions and by giving some conventions used throughout

this chapter. Given a quadratic matrix H P CN�N . We denote by λminpHq (resp. λmaxpHq) the smallest

(resp. the biggest) eigenvalue of the matrix H. Let H P CM�N , as similar, we define σminpHq (resp.

σmaxpHq) as the smallest (resp. biggest) singular value of H. Given a collection of subsets tDnunPI of

a measureable space D. We say tDnunPI is a measureable partition of D, if each set in that collection

is measureable, the sets are mutually disjoint, and their union is D. Let x, y P R, we denote x �
y, if there exists positive constants A,B, s.t. Ay ¤ x ¤ By. The first term given in the following

definition constitutes the ”bands” of the signal of our interests. Besides, we formalize also therein the

term ”periodization”:

Definition 6.1 (K-Fundamental Domain, Periodization). Let Λ be a uniform lattice in an LCA

group. A subset B of G is said to be a K-fundamental domain of Λ, if B is a union of K mutually disjoint

fundamental domains, i.e. B :� �kPrKs Ωk, where Ωk is a fundamental domain for Λ, @k P rKs, and

Ωk X Ωl � H, if k � l.

Let D be a fundamental domain of Λ, and B be a K-fundamental domain of Λ. For an h P L2pDq, we

define the periodization p�qB of h w.r.t. the countable uniform lattice Λ to B by:

hB :�
¸
λPΛ

hp� � λq. (6.1)

Throughout this chapter, it always holds N,M,K P N, and M ¥ K.

Let B be a K-fundamental domains of an admissible uniform lattice Λ in an LCA group G. In this

chapter, we concern ourselves with construction of a class of frames for the Hilbert space L2pBq. More

specific, let tφpmqumPrMs be a collection of functions (whose restriction to B is) measureable on B, and D

be a fundamental domain of Λ. The frame for L2pBq, which we aim to construct in this chapter, is the

collection, consists of the functions φpmqλ, m P rM s, λ P AG^pΛq.
For easiness in later approaches, we introduce the following notations:

Notations 1. Let Λ be an admissible uniform lattice in an LCA group, and let Λ̃ be an admissible

uniform lattice in G^. We denote the annihilator of Λ in G^ by ΛK
G^ instead of AG^ . In case that it

is clear from context, we denote ΛK
G simply by ΛK. We denote the annihilator of Λ̃ � G^ in G^^ by

Λ̃K
G^^ instead of AG^^pΛq, and the annihilator of Λ̃ � G^ in G by Λ̃K

G . Again, in case that it is clear

from context, we write the annihilator of Λ̃ in G^^ or in G simply by Λ̃K. Further, Λ̃K shall mostly be

interpreted as Λ̃K
G .

To emphasize the analogy to the Fourier Basis in Euclidean spaces, we write for an admissible uniform

lattice Λ � G: eλ :� λp�q, @λ P ΛK. Let D be a relatively compact fundamental domain of Λ. As we

already know, teλuλ forms an ONB for L2pG{Λq, and teλχDuλ forms an ONB for L2pDq, where D is a

relatively compact fundamental domain of Λ (Of course, the preceeding statements are true if conventions

4.12 are followed, which we do1 throughout this chapter, if not otherwise stated) Sometimes, we shall

slackly write teλuλ instead of teλχDuλ.

1This shall be mention explicitly soon.

67



6. A Class of Weighted Frames of Exponentials and Sampling of Multiband Signal

Let Λ̃ be an admissible uniform lattice in G^, and D̃ a relatively compact fundamental domain of Λ.

We write eλ :� αGpλqp�q, @λ P Λ̃K
G . Clearly teλuλ forms an ONB for L2pG^{Λ̃q, and teλχD̃uλ is an ONB

for L2pD̃q, for a relatively compact fundamental domain D of Λ, if µG^ , µΛ̃, µG^{Λ̃, and the measure on

D̃ are chosen according to conventions 4.12. Correspondingly, the Haar measure on G is chosen s.t. the

Fourier inversion formula holds. If there is no danger for confusions, we write teλuλ instead of teλχD̃uλ .

Choose a ”nice”2 fundamental domain D of Λ. In this chapter, it shall particularly be shown, that the

condition on the collection of functions tφpmqumPM , s.t. tφpmqeλ : m P rM s, λ P ΛKu forms a frame for

L2pBq, is closely related to the following matrix which varies on a chosen fundamental domain D of Λ:

Φpxq �

����
φp1qpx� λ1pxqq . . . φpMqpx� λ1pxqq

...
. . .

...

φp1qpx� λKpxqq . . . φpMqpx� λKpxqq

���
, x P D, (6.2)

where each λkp�q, k P rKs, is a mapping from D to Λ. We further call Φ simply the varying matrix formed

by tφpmqumPM . Notice, that each λkp�q, k P rKs can vary arbitrarily on each points of D, which may

complicate the analysis on G. Furthermore, for measure theoretical reason, we have to require that Φp�q
is measureable, in the sense, that each functions in its entry is measureable. Explicitly, let Ω � G, and

p, q P N, and given a varying matrix H : Ω Ñ Cp�q, which has the form:

Hp�q �

����
hp1,1qp�q . . . hp1,qqpp�qq

...
. . .

...

hpp,1qp�q . . . hpp,qqp�q

���
,
where hpk,lq, for each k P rps and l P rqs, is a function hpk,lq : Ω Ñ C. We say H is measureable, if for

each k P rps and l P rqs, hpk,lq : Ω Ñ C is measureable. To emphasize the fact that Φ is generated by

tφpmqumPrMs, we write simply Φφ.

Now, we get back to our discussion. Once we have specified the collection of mapping tλkp�qukPrKs,
and required B and D to be relatively compact, we shall later see that each λkp�q basically varies only

finitely times on D. To avoid repetitions, we commit ourselves to the following notations:

Notations 2. If not otherwise stated, Λ stands for an admissible uniform lattice in an LCA group G.

To Λ, we assign a ”basis” fundamental domain D, and a K-fundamental domain B (which is the domain

of the function space, for which we want to find a frame). The Haar measures on G, Λ, and D are chosen

by conventions 4.12, and the measure on B is simply the subspace measure inherited from G.

When deriving sampling formula for multi-banded functions, the following notations shall be used: As

similar, Λ̃ stands for an admissible uniform lattice in the dual group G^ of an LCA group G. To Λ̃, we

assign a ”basis” fundamental domain D̃, and a K-fundamental domain B̃. When we consider this case,

we shall choose the Haar measures on G^, Λ̃, D̃ by conventions 4.12. Furthermore the measure on B̃ is

chosen as subspace measure inherited from G^. The measure on G is chosen as usual s.t. the Fourier

inversion formula holds.

As an analogy to the well-known Euclidean case, we call a square-integrable signal f multi-banded,

if its Fourier transform is supported on the union of subsets of its frequency domain. In this work, we

restrict ourselves to multi-banded signals, whose bands are contained in a finite union of relatively compact

fundamental domains of some admissible lattices in G^. Now, let Λ̃ be an admissible uniform lattice in G^,

and given a collection of functions tgpmqumPrMs each in L2pB̃q. Suppose that tgpmqeλ : m P rM s, λ P Λ̃K
G u3

2As we shall see later, the fundamental domain D constitutes a ”basis” domain for our analysis. So, it stands clear to
choose a ”primitive” D, e.g. in case G � RN , a fundamental parallepiped of Λ is a good choice for D

3we take the annihilator of Λ in G, since the annihilator of Λ in G^^ can be identified with previously mentioned by
Pontryagin-van Kampen duality
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forms a frame for L2pB̃q. The frame4 tgpmqe�λu for L2pB̃q is closely connected to the sampling process

of multi-banded functions on LCA groups, as we shall see in the following discussion:

For a multi-banded signal f P PW2
B̃, One can easily compute the coefficients of the frame expansion of

its spectrum f̂ P L2pB̃q, w.r.t. tgpmqe�λu as follows:

c
pmq
λ � xf̂ , gpmqe�λyL2pB̃q �

»
B̃

f̂pγqgpmqpγqαGpλqdµG^pγq

�
»
G^

f̂pγqgpmqpγqαGpλqdµG^pγq �
»
G^

f̂pγqgpmq γpλqdµG^pγq

� pf � ǧpmqqpλq, for m P rM s, λ P ΛK
G , (6.3)

where the third equality follows from the fact that f̂ is supported in B̃. Let5 tφ̃m,λ : m P rM s, λ P Λ̃Ku
be a dual frame6 (e.g. the canonical dual frame) of tgpmqe�λum,λ. It is clear, that f̂ can be expanded as

follows:

f̂ �
¸

mPrMs
λPΛ̃K

c
pmq
λ φm,λ �

¸
m,λ

pf � ǧpmqqpλqφ̃m,λ.

Finally by inverse Fourier transforming7 above expression, one obtains the following expansion:

f �
¸

mPrMs
λPΛ̃K

pf � ǧpmqqpλq F�1tχB̃φ̃m,λu,

where the convergence is in L2-sense, and correspondingly, the equality in a.e.-sense. Besides, it will be

shown, that the function, which is resulted by this process is continuous and vanish at infinity.

So, above computations, proposes a sampling and reconstruction scheme for multi-banded multi-

dimensional square integrable function (for illustration see fig. 6.1):

• Obtain the samples tcpmqλ uλPΛ̃K for each m P rM s by filtering the signal f by the linear filter with

the frequency response gpmq, and subsequently, sample the resulted signal on the points Λ̃K in G.

(see fig. 6.1).

• Reconstruct the signal f from the samples of its preprocessed version tcpmqλ um,λ, by the formula

f � °n,λ cpmqλ ρm,λ, where ρm,λ :� F�1tφ̃m,λu, for each m P rM s, λ P Λ̃K.

Before we give the desired sufficient and necesary conditions on the collection of functions tφpmqum,

s.t. tφpmqeλu forms a frame for L2pBq, we first give some auxiliary statements in the following section:

6.1. Auxiliary Statements

The following lemma constitutes a step to establish an isometric isomorphism between L2pDq`K and

L2pBq. Notice that, as B is a K-fundamental domain of a countable uniform lattice Λ in G, B is the union

of a mutually disjoint collection tΩkukPrKs of fundamental domains for Λ. Specifically in the following

lemma, we want to part the ”reference” fundamental domain D possibly into finite collection tDnunPI
of subsets, s.t. each Ωk, k P rKs, is basically the union of the translated versions of each tDnunPI . This

construction is possible, since, as we have seen, fundamental domains constitute lattice equivalent sets.

4Notice that a frame is an unconditional basis, so the permutation of its elements yields also a frame
5we write φm,λ instead of φ

pmq
λ , since we do not know whether φm,λ can be written as hpmqeλ, for a function hpmq

measureable on B̃.
6In some cases, it is not easy to compute the dual frame of a frame
7Notice that linear homeomorphisms preserve frame, inverse Fourier transformation is a linear homeomorphism, and PWΩ

is a closed subspace of L2pGq
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6. A Class of Weighted Frames of Exponentials and Sampling of Multiband Signal

gp1q

gpMq

λ P Λ̃K

λ P Λ̃K

f P PW 2
B

!
c
p1q
λ

)
λPΛ̃K

!
c
pMq
λ

)
λPΛ̃K

Linear filters
(Frequency response)

Figure 6.1.: Sampling device of multi-band multi-dimensional square-integrable signal induced by the
frame tgpmqeλum,λ for L2pBq

Lemma 6.1. Let D be a relatively compact fundamental domain of a countable uniform lattice Λ in

an LCA group G. Given a finite collection tΩkukPrKs of relatively compact fundamental domain of Λ.

Then there exists a finite measureable partition tDnunPI of D, s.t. for each k P rKs there exists a finite

measureable partition tΩpnq
k unPI of Ωk and a finite sequence tλpkqn unPI of Λ fulfilling:

Dn � λpjqn � Ω
pnq
j , @n P I.

Proof. For each k P rKs, part D into mutually disjoint measureable subsets w.r.t. Ωk as suggested by

lemma 4.7 into finite collection of mutually disjoint measureable subsets tDpkq
n unPIpkq , and associate to

each member D
pkq
n of this partition the corresponding lattice element λ

pkq
n P Λ.

For each k P rKs, define the set of tuples J pkq :� tpDpkq
n , λ

pkq
n qunPIpkq to emphasize the connection

between D
pkq
n and λ

pkq
n .

Now, we define another the set of tuples J as follows:

J :�
$&%pX,Γq : X �

£
kPrKs

Dpkq, Γ � tλpkqukPrKs, where pDpkq, λpkqq P J pkq, @k P rKs
,.- .

In other words, an element pX, tλpkqukPrKsq of J consists of a subset X of D, and the corresponding lattice

sequence tλpkqukPrKs, for which X � λpkq � Ωk. Renumerate (the index k of each λpkq over rKs remains

unchanged) J as follows: J �: tpDn, tλpkqn ukPrKsqunPI . It is not hard to see that |I| ¤ 2
°
kPrKs|I

pKq|.

Hence the partition tDnunPI of D is finite. Clearly, each Dn in tDnunPI is measureable, since each of

them resulted from finite intersection of measureable sets. By more detailed observations on the definition

of J , one immediately obtains the statement.

We call the partition of D given in above lemma as the partition of D w.r.t. tΩkuk. For later approaches, it

is advantageous to call this partition the partition of D w.r.t. B, where B � �k Ωk. Given a fundamental

domain D of a countable lattice Λ, and K-collection of mutually disjoint fundamental domains tΩkukPrKs
of Λ (whose union is clearly a K-fundamental domain of Λ). By means of lemma 6.1, one is able to

reduce the behaviour of each cross-transversals mappings tτDÑΩkukPrKs to a ”common denominator”, in

the sense that: on D, particularly on each Dn, n P Ĩ, each τDÑΩk , k P rKs can be written sectionwise as

pkp�q � p�q � λ
pkq
n .

To make the construction given in the proof of lemma 6.1 more comprehensible, we give in the following

an elementary example:

Examples 6.2. Consider the additive LCA group R. Let the uniform lattice Λ � Z be given. Let be

D � r0, 1q, Ω1 � r1.34, 2.34q, and Ω2 � r6.72, 7.72q be given. Clearly, D, Ω1, and Ω2 are fundamental
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domains of Λ. The corresponding the collection tuples J k, k P t1, 2u, consisting of a partition of D and

a subset of Λ, is given as follows:

• J 1 � tpr0, 0.34q, 2q, pr0.34, 1q, 1qu,

• J 2 � tpr0, 0.72q, 7q, pr0.72, 1q, 6qu.

Hence the collection of tuples J consists of:

J � tpr0, 0.34q, t2, 7uq, pr0.34, 0.72q, t1, 7uq, pr0.72, 1q, t1, 6uqu.

The following easy lemma gives a connection between the norm of an operator, whose is simply a

pointwise matrix-vector multiplication of its input with a varying matrix Gp�q, and the norm of the

gramian matrix corresponding to G:

Lemma 6.3. Let D � G be a measureable subset of an LCA group. Given a mapping8 H : D Ñ CK�M

measureable9 on D. Suppose that there exist a countable measureable partition tDnunPI of D containing

subsets of positive measure. Let V : L2pDq`M Ñ L2pDq`K be a mapping which is given by x ÞÑ Hx.

Then the following statements hold:

(a) V is bounded and surjective if and only if there exist constants A,B ¡ 0 s.t. @n P I:

A Id ¤ HpxqHpxq� ¤ B Id, a.e. x P Dn. (6.4)

(b) Furthermore, let K � M . V is bounded and bijective if and only if there exist constants A,B ¡ 0

s.t. @n P I:

A Id ¤ Hpxq�Hpxq ¤ B Id, a.e. x P Dn. (6.5)

Proof. The linearity of V is obvious. One can easily convince oneself that the adjoint of V is given

formally by V� : L2pDq`K Ñ L2pDq`M , f ÞÑ H�f . Clearly, to show that V is a bounded surjective

operator it is sufficient and necessary to show that ‖V�f‖ � ‖f‖, @f P L2pDq`K . Compute the norm of

the image of an f P L2pDq`K under V� as follows:

‖V�f‖2 �
»
D

xHpxqHpxq�fpxq, fpxqyCK dµGpxq

�
¸
nPI

»
Dn

xHpxqHpxq�fpxq, fpxqyCK dµGpxq. (6.6)

The second equality follows from the fact that tDnunPI is mutually disjoint, and its union is D. Notice,

that xHpxqHpxq�fpωq, fpxqy is measureable10 and that each Dn are assumed to be measureable.

For the left implication of (a), assume that (6.4) holds. It is not hard to see11that by this assumption,

‖V�f‖2 � ‖f‖2.

For the right implication of (a): assume first that the right inequality in (6.4) does not hold, i.e. there ex-

ist a measureable subset B � D with positive measure and an f̃ P L2pDq`K s.t. xHpxqHpxq�f̃pxq, f̃pxqy �
8, @x P B. Since B is measureable and B is contained in some Dn (the part of B in those Dn is clearly

measureable), it follows immediately that
³
Dn
xHpxqHpxq�f̃pxq, f̃pxqydω � 8 on those Dn. Hence, also

8One can imagine this as a K �M complex matrix which vary over D.
9i.e. each entry of this matrix is specified by a measureable function on D

10Notice that xHpxqHpxq�fpxq, fpxqy is principally sum of functions, which are each multiplication of measureable functions,
and hence measureable.

11According to measure theory: Let B be a measure space with measure µ. For f , f̃ : B Ñ R quasiintegrable (i.e. the
integral of the real part logical-or of the imaginary part of f (resp. f̃) over B is bounded), B measureable subset of RN ,
and f ¤ f̃ almost everywhere on D, it follows that

³
B fdµ ¤

³
B f̃dµ.
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‖V�f̃‖2 � 8. Now suppose that the left inequality in (6.4) does not hold, i.e. there exist a measureable

subset Ũ � D with positive measure, and a function f
1 P L2pDq`K not identical zero almost everywhere

on Ũ s.t. xHpxqHpxq�f
1pxq, f 1pxqy � 0, @ω P Ũ . Now, consider the trivial extension f̃ of f

1
���
Ũ

to D. Clearly,

it holds that f̃ P L2pDq`K , and finally it follows that ‖V�f̃‖ � 0. So summarized, one can reason that

‖V�f‖2 � ‖f‖2 if and only if:

xHpxqHpxq�fpxq, fpxqy � xfpxq, fpxqy, @ a.e. x P Dn, @n P I,

which corresponds to (a).

Now let M � K. Clearly V is bounded and bijective if and only if ‖Vf‖ � ‖f‖, @f P L2pDq`K . By

computations and argumentations similar to the first part of the proof, one obtains the second statement.

Remark 6.4. Consider the finite measureable partition tDnunPI of D w.r.t. B � �k Ωk as given in

lemma 6.1. Notice that the case may occur, in which some Dn, n P I, are of measure zero. Since

Lebesgue integral ”ignores” zero sets, we can clearly throw out those part in (6.6). Hence, when applying

lemma 6.3, we can assume w.l.o.g. that the partition of D w.r.t. B contains only subsets of D of positive

measure.

Remark 6.5. Fix an x P D. It is not hard to see, that since the image of each f P L2pDq`K lies in CK ,

the inequality:

Ax‖aaa‖CM ¤ xHpxqHpxq�aaa,aaayCK ¤ Bx‖aaa‖CM , aaa P CM , (6.7)

is equivalent with the following condition concerning to elements of L2pDq`K , for fixed x P D:

Ax‖fpxq‖CM ¤ xHpxqHpxq�fpxq, fpxqyCK ¤ Bx‖fpxq‖CM , f P L2pDq`K , (6.8)

with Ax and Bx are (possibly infinite) non-negative constants. It is obvious that the constants Ax and

Bx fulfilling (6.7) can be given explicitly as:

Ax � λminpHpxqHpxq�q � pσminpHpxqqq2, and Bx � λmaxpHpxqHpxq�q � pσminpHpxqqq2. (6.9)

By the equivalence between (6.8) and (6.7), and by taking the smallest possible value of Ax and the

biggest possible value of Bx, over x P D, we obtain the constants:

A � min
nPI

ess inf
xPDn

λminpHpxqHpxq�q, B � max
nPI

ess sup
xPDn

λmaxpHpxqHpxq�q, (6.10)

for which, @n P I: A Id ¤ HpxqHpxq� ¤ B Id, on a.e. x P Dn. Furthermore, it is not hard12 to see that

by the choices of A and B as given in (6.10), the inequalities given in (6.4) is tight, in the sense that

there exists signals f , for which the lower (resp.) bound is achieved.

So, it is now obvious that the right (resp. left) inequality in (6.5) is fulfilled if B   8 (resp. A ¡ 0),

or equivalently, the matrix Hpxq contains finite entries (resp. Hpxq has full-rank), for a.e. x P Dn, n P I,

and consequently for a.e. x P D.

Let the constants A (resp. B), given in (6.10) is non-zero (resp. finite). The upper - and lower bound

of the norm of the operator V� is related to the constants A and B. Indeed, setting the inequality (6.5)

in (6.6), one obtains:

A‖f‖2 ¤ ‖V�f‖2 ¤ B‖f‖2, @f P L2pDq`K . (6.11)

Hence the operator norm of V� is lower (resp. upper) bounded by
?
A (resp.

?
B), or equivalently by the

essential minimum (resp. maximum) of the smallest (resp. biggest) singular value of Hpxq over x P D.

12Let D̃ be a subset of D of positive measure, s.t. λminpHpxqHpxq
�q � A. For f � χD P L2pDq, the lower bound is

achieved. By the similar way, one can show that the upper bound is tight
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Remark 6.6. Now, let M � K. By noticing that the eigenvalues of Hpxq�Hpxq is simply the square

of the modulus the eigenvalues of Hpxq, and by similar argumentation as in remark 6.5, we obtain the

constants: ?
A � min

nPI
ess inf
xPDn

|λminpHpxqq|,
?
B � max

nPI
ess sup
xPDn

|λmaxpHpxqq|, (6.12)

for which A Id ¤ Hpxq�Hpxq ¤ B Id, on a.e. x P Dn, n P I, holds. Furthermore, the operator norm of V,

and accordingly, the operator norm of V� is lower (resp. upper) bounded by A (resp. B).

6.2. Multiple Fundamental Domains and induced isometric

isomorphism

This section is devoted to established an isometric isomorphism between L2pBq and L2pDq`K , where

D is a ”nice” fundamental domain of a uniform lattice Λ, and B a K-fundamental domain of Λ, which

is by definition the union of the collection of mutually disjoint fundamental domains tΩkukPrKs. The

corresponding isometric isomorphism is basically the direct sum of the Koopman operators UτDÑΩk
:

L2pΩkq Ñ L2pDq, f ÞÑ f � τDÑΩk , k P rKs. It is clear that since tΩkukPrKs are mutually disjoint,

tL2pΩkqukPrKs, each seen as a closed subspace of L2pBq, are mutually orthogonal. Hence L2pBq is isometric

isomorphic to
À

kPrKs L
2pΩkq.

In the following, the corresponding lemma is given:

Lemma 6.7. Let G be an LCA group. Given a countable uniform lattice Λ in G. Furthermore, Let D be

a fundamental domain of Λ, and B be a union of the mutually disjoint fundamental domains tΩkukPrKs
of Λ. Given the mapping:

T f :�

����
f � τDÑΩ1

...

f � τDÑΩK

���
, for f P L2pBq. (6.13)

Then T is a unitary equivalence between L2pBq, and L2pDq`K . Furthermore, the inverse of T is given

explicitly by by:

L2pDq`K Q f̃ ÞÑ
¸
kPrKs

f̃k � τΩkÑD P L2pBq. (6.14)

Proof. By the discussion made in the beginning of this section, we already know that L2pBq is isometric

isomorphic to `kPrKsL2pΩkq by the canonical isometric isomorphism (call Ψ):

L2pBq Q f ÞÑ pfχΩ1
, . . . , fχΩK q P L2pDq`K .

Hence, to show that T is an isometric isomorphism, it is sufficient to show that `kPrKsL2pΩkq is isomet-

ric isomorphic to L2pDq`K by the direct sum of operators `kPrKsUτDÑΩk
. Indeed, since each UτDÑΩk

is unitary, one obtains immediately the statement. We already know, that for each k P rKs, the ad-

joint/inverse of UτDÑΩk
is exactly UτΩkÑD . Accordingly, the adjoint/inverse of `kPrKsUτDÑΩk

is the

direct sum of operators `kPrKsUτΩkÑD . Thence pT q� � pr`kPrKsUτDÑΩk
s �Ψq� � pΨ� � r`kPrKsUτΩkÑD sq,

as desired.

The following lemma gives a ”specification” of the isometric isomorphism T given in (6.14) under some

constraints on D and B:

Lemma 6.8. Let B � G be a relatively compact K-Fundamental domain of a countable uniform lattice

Λ, and D be a relatively compact fundamental domain of Λ. Then there exist a finite almost partition

tDnunPI of D, s.t. to each Dn, n P I, there correspond a finite sequence tλpkqn ukPrKs of elements of Λ
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s.t. the image of a function f P L2pDq`K under the mapping T , which is given in (6.14), can be written

sectionwise as:

pT fqpxq �

����
fpx� λ

p1q
n q

...

fpx� λ
pKq
n q

���
, x P Dn, @n P I. (6.15)

Furthermore, the inverse of T can in this case be given by:

L2pDq`K Q f̃ ÞÑ
¸
nPI

¸
kPrKs

pf̃kχDnqp� � λpkqn q P L2pBq. (6.16)

Proof. Since B is a K-fundamental domain, it follows by definition, that B is the union of K mutually

disjoint collection tΩkukPrKs of fundamental domains of Λ. Since B is assumed to be relatively compact, it

follows immediately that each Ωk, k P rKs, has to be relatively compact. Consider the finite measureable

partition tDnunPI of D as suggested in lemma 6.1, and assign to each n P I, the corresponding sequence

tλpkqn unPI of elements of Λ. Let f P L2pDq`K . It is now obvious, that for each k P rKs, f � τDÑΩk can be

written sectionwise for each Dn, n P I as fpx�λpkqn q, x P Dn (see the discussion about cross-transversals

in the end of the subsection 4.2.1). Hence (6.15) holds. Furthermore, (6.16) is obvious to see.

The following example helps to understand above concept:

Examples 6.9. Consider the case given in examples 6.2. There we have:

D1 � r0, 0.34q, D2 � r0.34, 0.72q, and D3 � r0.72, 1q.

To D1, there corresponds lattice elements tλp1q1 , λ
p2q
1 u � t2, 7u, to D2, tλp1q2 , λ

p2q
2 u � t1, 7u, and to D3,

tλp1q3 , λ
p2q
3 u � t1, 6u. Hence for f P L2pBq, f can be written sectionwise as:

pT fqpxq �
�
fpx� 2q
fpx� 7q

�
, x P r0, 0.34q, pT fqpxq �

�
fpx� 1q
fpx� 7q

�
, x P r0.34, 0.72q,

pT fqpxq �
�
fpx� 1q
fpx� 6q

�
, x P r0.72, 1q.

6.3. Main result

Let tφpmqumPrMs be a collection of functions measureable on B. We define formally the mapping Ṽ :

L2pDq`M Ñ L2pBq by:

f ÞÑ
¸

mPrMs
φpmqfBm. (6.17)

The mapping Ṽ gives information about the generating property of the sequence tφpmqeλ : m P rM s, λ P
ΛKu as obvious from the following computations of the image of the ONB in L2pDq`K as given in lemma

4.15:

Ṽe
pmq
λ � φpmqχB

¸
λPΛ

χDeλp� � λq � φpmqχBeλ, m P rM s, λ P ΛK, (6.18)

where the last equality follows from the fact that eλ is Λ periodic. Hence, each elements of the collection

tφpmqeλχBum,λ mentioned in the beginning of this chapter is simply the image of an element of the

orthonormal basis for L2pDq`K under Ṽ. If we are able to show that Ṽ is bounded and surjective

(resp. bijective), then we can conclude that tφpmqeλχBum,λ is a frame (resp. Riesz basis) for L2pBq. The

following theorem gives the corresponding necessary and sufficient condition on the collection of functions

tφpmqumPrMs:
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Theorem 6.10. Let Λ be an admissible uniform lattice in an LCA group G, and D be a relatively

compact fundamental domain of Λ, and B be a relatively compact K-fundamental domain of Λ. Given a

collection of functions tφpmqumPrMs on G, whose restriction to B is measureable.

Then, there exist a finite measureable partition tDnunPI , where I is a finite index set, of D s.t. for

each Dn there the corresponds a collection of elements tλpkqn ukPrKs of Λ s.t. the matrix Φ generated by

tφpmqum given in (6.2) can be written sectionwise on each tDnunPI as:

Φpωq :�

����
φp1qpx� λ

pnq
1 q . . . φpMqpx� λ

pnq
1 q

...
. . .

...

φp1qpx� λ
pnq
K q . . . φpMqpx� λ

pnq
K q

���
, a.e. ω P Dn, n P I. (6.19)

Furthermore, the following equivalences hold true:

1. tφpmqeλum,λ is a frame for L2pBq if and only if there exist constants A,B ¡ 0 s.t. for all n P I, it

holds:

A Id ¤ ΦpxqΦ�pxq ¤ B Id, a.e. x P Dn, (6.20)

2. Let M � K, tφpmqeλum,λ is a Riesz basis for L2pBq, if and only if there exist constants A,B ¡ 0

s.t. for all n P I:

A Id ¤ Φ�pxqΦpxq ¤ B Id a.e. x P Dn. (6.21)

Proof. Consider the isometric isomorphism T given in lemma 6.7. By lemma 6.8, there exist a measureable

finite partition tDnunPI of D and to each Dn a lattice sequence tλpkqn ukPrKs s.t. T can be written

sectionwise as:

pT fqpγq � pfpx� λp1qn q, . . . , fpx� λpKqn qq, x P Dn, n P I. (6.22)

It is not hard to see13 that for any h P L2pDq, and any λ P Λ: hBp� � λq � h. So, we can compute the

image of any f P L2pDq`M under T � Ṽ, as follows:

ppT � Ṽqfqpxq �

����
Vfpx� λ

p1q
n q

...

Vfpx� λ
pKq
n q

���
�
�������
°

kPrMs
φpkqpx� λ

p1q
n qfkpγq

...°
kPrMs

φpkqpx� λ
pKq
n qfkpγq

������


�

����
φp1qpx� λ

pnq
1 q . . . φpMqpx� λ

pnq
1 q

...
. . .

...

φp1qpx� λ
pnq
K q . . . φpMqpx� λ

pnq
K q

���

����
f1pxq

...

fM pxq

���
,
where x P Dn, and n P I. So the operator V :� T � Ṽ is simply a matrix multiplication by Φ, which

is defined sectionwise as written in (6.19). From lemma 6.3, it follows that V is bounded and surjective

(resp. bijective in case K �M) if and only if ΦpxqΦpxq� � Id (resp. Φpxq � Id, in case K �M), for a.e.

x P Dn and for all n P I. From lemma 2.3, we know that V is bounded and surjective (resp. bijective)

if and only if Ṽ is bounded and surjective (resp. bijective). Finally, from lemma 2.12, it follows that Ṽ

is bounded and surjective (resp. bijective) if and only if tṼe
pmq
λ um,λ is a frame (resp. Riesz basis) for

L2pBq, where tepmqλ uλ,m is the ONB of the direct sum of Hilbert space L2pDq`K as asserted from lemma

4.15.

We have already seen in (6.18) that the image of each tepmqλ um,λ under Ṽ are exactly tφpmqeλum,λ.

Hence, the first (resp. second) equivalence is shown.

13Follows from uniqueness of each lattice element and from the fact that D is a fundamental domain of Λ.
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Notations 3. For further approaches, the construction of the varying matrix given in (6.19) is worth

noting: Given a fundamental domain D and a K-fundamental domain B � of an admissible uniform

lattice Λ in G. Further, given a collection of functions tφpmqumPrMs, each measureable on B. Let tDnunPI
be a finite measureable partition of D w.r.t. B, as given in lemma 6.1. Further, assign to each Dn, n P I,

the corresponding sequence tλpkqn ukPrKs from Λ.

Define Φ : D Ñ CK�M sectionwise as follows:

Φpxq :�

����
φp1qpx� λ

pnq
1 q . . . φpMqpx� λ

pnq
1 q

...
. . .

...

φp1qpx� λ
pnq
K q . . . φpMqpx� λ

pnq
K q

���
, x P Dn, n P I.

Then, we say Φ is the varying matrix on D generated by tφpmqum. In case that clarity is necessary, we

write ΦDφ . Notice that in this case, it is not necessary to mention B, since it is implicitly14 given by

tφpmqum.

Remark 6.11. As follows from remark 6.5, the finite upper bound conditions (6.20) and (6.21) is surely

ensured by choosing the collection of functions tφpmqumPrMs s.t. they are each additionally essentially

bounded on B, i.e. φpmq P L8pBq. Consider the varying matrix given in (6.19). Possible choices of the

upper bound B and the lower bound A the condition (6.20) (resp. (6.21)) can now be given (see remark

6.5) as follows:

A � min
nPI

ess inf
ωPDn

λminpΦpxqΦpxq�q, B � max
nPI

ess sup
ωPDn

λmaxpΦpxqΦpxq�q, (6.23)

and for condition (6.21), simply set Φpxq�Φpxq instead of ΦpxqΦpxq� in (6.23). Of course, (6.23) can also

be given alternatively by means of singular values of Φp�q. Notice that the constants A and B given in

(6.23) are tight bounds for the inequality (6.4), since, as we have seen in the proof of lemma 6.3, there

exists a function f (resp. f̃)

Let K �M , as we have seen in remark 6.5, a possible choice of the bounds in (6.21) is:

?
A � inf

nPI
ess inf
xPDn

|λminpΦpxqq|,
?
B � sup

nPI
ess sup
xPDn

|λmaxpΦpxqq|.

Remark 6.12. We have seen in remark 2.13 that the frame bounds of the frame generated by the

operator Ṽ is related to the bounds of the operator norms of the adjoint operator Ṽ�. From remark

6.12, we already see that A (resp. B) given in (6.23) is the square of the lower (resp. upper) bound of

‖Ṽ‖�. Hence from remark 2.13, A (resp B) is the lower (resp. upper) bound of the frame tφpmqeλ : m P
rM s, λ P ΛKu.

Suppose that we have a collection of functions tφpmqumPrMs s.t. the condition (6.20) is fulfilled (call the

exception set on each Dn, n P I, by En). By lemma 2.14, we can explicitly give a dual frame of the frame

tφpmqeλum,λ for L2pBq generated by Ṽ. Indeed, it follows from lemma 2.14, the canonical dual frame of

tφpmqeλum,λ is generated by the Moore-Penrose pseudoinverse of Ṽ�, i.e. the operator pṼṼ�q�1Ṽ. Recall

that Ṽ � T �V, where V is the operator corresponding to the varying matrix Gp�q. So we obtain:

pṼṼ�q�1Ṽ � pT �VV�T q�1T �V. (6.24)

The mapping VV� : L2pDq`K Ñ L2pDq`K is given sectionwise by:

ppVV�qfqpxq � ΦpxqΦpxq�fpxq, x P Dn, n P I, (6.25)

14B is the domain of each φpmq
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where f P L2pDq`K . Since ΦpxqΦpxq� is essentially invertible on each Dn, n P I, we can explicitly gives

the inverse of VV� essentially sectionwise as follows:

ppVV�q�1fqpxq � pΦpxqΦpxq�q�1fpxq, x P DnzEn, n P I, (6.26)

and the behaviour of ppVV�q�1fqpxq, on each En, n P I, can be arbitrarily chosen. Hence, we can

continue the computation given in (6.24) as follows:

pṼṼ�q�1Ṽ � T �pVV�q�1V, (6.27)

where pVV�q�1 is given essentially as in (6.26).

By now, we know that the canonical dual frame of tφpmqeλum,λ consists of the image of the functions

φ̃φφm,λ, m P rM s and λ P ΛK, on L2pDq`K under the isometric isomorphism T � : L2pDq`K Ñ L2pBq,
defined essentially as:

φ̃φφm,λ :� pΦpxqΦpxq�q�1Φpxqepmqλ pxq, x P DnzEn, n P I, (6.28)

where λ (resp. n) goes over ΛK (resp. rM s). By defining the varying matrix:

pΦ�q:pxq :� pΦpxqΦpxq�q�1Φpxq, x P DnzEn, n P I, (6.29)

where the subscript p�q: reminds us to the Penrose-Moore pseudoinverse of the matrix p�q , we in the

following shall see an alternative reformulation of the dual frame. For each m P rM s Since e
pmq
λ is zero

on each entries, except on the mth-entry, it yields: rφ̃φφm,λsk � rpΦ�q:sk,meλ. Hence, it yields by some

elementary computations:

T �φ̃φφm,λ � eλT �ϕϕϕpmq, (6.30)

where rϕϕϕpmqsk :� rpΦ�q:sk,m, k P rKs. Accordingly, we can denote the dual frame by φ̃
pmq
λ instead of

φm,λ

In the following thm., we summarize the discussions made above. Furthermore, we give the corre-

sponding reconstruction formula for functions in L2pBq.
Theorem 6.13. Let D be a relatively compact fundamental domain of an admissible uniform lattice Λ

in an LCA group G, and B be a relatively compact K-fundamental domain of Λ. Further, assume that

tφpmqλ : m P rM s, λ P Λu is a frame for L2pBq, where φ
pmq
λ :� φpmqeλ, @m,λ. For m P rM s, let φ̃pmq be

defined as: φ̃pmqpxq :� pT �ϕϕϕpmqq, where kth entries, k P rKs of ϕϕϕpmq is given sectionwise by:

rϕϕϕpmqpxqsk � rpΦ�pxqq:sk,m, x P DnzEn, n P I, (6.31)

with Φ is the varying matrix generated by tφpmqum, as given in (6.19), and where for each n P I, En

denotes the null subset of Dn, on which Φp�qΦp�q� is not invertible. Then the canonical dual frame of

tφpmqeλu is exactly the collection consisting of φ̃
pmq
λ � eλT �ϕϕϕpmq, λ P ΛK, m P rM s where T � is the

adjoint of T as given in (6.16).

Furthermore, each f P L2pBq can be expanded by the series:

f �
¸

mPrMs
λPΛ

xf, φpmqλ yφ̃pmqλ �
¸

mPrMs
λPΛ

xf, φ̃pmqλ yφpmqλ , (6.32)

where the convergence is in L2-norm.

Remark 6.14. Let M � K, and suppose that tφpmqeλum,λ is a Riesz basis for L2pBq. Then, it follows

that for each n P I, the quadratic varying matrices Φpxq generated by tφpmqum, and Φpxq� are invertible

77



6. A Class of Weighted Frames of Exponentials and Sampling of Multiband Signal

a.e. on x P Dn. Consequently, (6.31) reduces to the function defined sectionwise for each n P I by:

rϕϕϕpmqpxqsk � rpΦ�pxqq�1sk,m, a.e.x P Dn, n P I, (6.33)

Furthermore, tφ̃pmqeλum,λ, as given in thm. 6.13 with ϕϕϕpmq as given above, is the unique dual of the

Riesz basis tφpmqeλum,λ. Of course, the reconstruction formula (6.32) holds in this case.

We close this section by the following remark:

Remark 6.15. Let Ω be a K-tiling subset of G by Λ, whose definition is given in def. 4.6. One can

easily show that Ω can be written as the union of mutually disjoint subsets tΩkukPrKs and R, where Ωk is

a almost fundamental domain of Λ, for each k P rKs, and R is a set of measure zero in G. So, Ω differs to

a K-fundamental domain B by a zero set, which asserts that there exists a unitary equivalence between

L2pΩq and L2pBq (call Ψ : L2pΩq Ñ L2pBq). By thm. 6.10, we may established a frame tφpmqeλuλ,m for

L2pBq. By lemma 2.11, a frame for L2pΩq can be given by tΨ�pφpmqeλqum,λ.

6.4. Sampling and reconstruction of multi-banded signal with

preprocessing

Since we have established sufficient and necessary condition on a collection of functions tφpmqumPrMs
measureable on B s.t. tφpmqeλ : m P rM s, λ P ΛKu forms a frame for L2pBq, and since we have given

the corresponding canonical dual frame of tφpmqeλum,λ, it is not a far step to give a sampling and recon-

struction scheme of multi-banded finite-energy signals. The following theorem gives the corresponding

modification for our purpose

Theorem 6.16 (Sampling and Reconstruction with preprocessing). Let G be an LCA group.

Given an admissible uniform lattice Λ̃ in G^. Let D̃ � G^ be a relatively compact fundamental do-

main of Λ, and B̃ be a relatively compact K-fundamental domain of Λ̃ in G^. Given a collection of

functions, whose frequency response is given by the collection of functions tgpmqumPrMs measureable on

B̃. Forms by this collection the varying matrix Φgp�q on D as given in notations 3.

Suppose that the condition given in (6.20) concerning to Φgp�q is fulfilled, or equivalently that tgpmqeλu
forms a frame for L2pB̃q. Then, each functions f P PW2

Ω, can be reconstructed by the samples tcpmqλ um,λ
of f , preprocessed by the linear filters tǧpmqumPrMs taken at each points of ΛK, i.e. c

pmq
λ :� pf � ǧpmqqpλq,

m P rM s, λ P ΛK, by the formula:

f �
¸

mPrMs
λPΛK

c
pmq
λ F�1tχB̃φ̃

pmqup� � λq, (6.34)

where φ̃pmq :� ϕϕϕpmq, @m P rM s, and each entry of ϕϕϕpmq is essentially defined sectionwise on finite

measureable partitions tD̃nunPI of D̃ w.r.t. B̃ by:

rϕϕϕpmqpγqsk � rpΦ�
g pγqq:sk,m, a.e.γ P Dn, n P I. (6.35)

Proof. Let tgpmqeλum,λ be a frame for L2pB̃q. To show that this hold, thm. 6.10 asserts, that it is

necessary and sufficient to show that the condition in (6.20) concerning to Φgp�q is fulfilled. Furthermore,

tgpmqe�λum,λ is also a frame for L2pB̃q. Now, for each f P PW2
B̃, by means of thm. 6.13, and by noticing

that frame is an unconditional basis, one can express f̂ by the frame expansion:

f̂ �
¸

mPrMs
λPΛK

c
pmq
λ e�λT �ϕϕϕpmq, (6.36)
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where ϕϕϕpmq is given in (6.35), and c
pmq
λ :� xf̂ , ĝpmqe�λy, @ m P rM s, and λ P ΛK. Furthermore, the

convergence is in L2pB̃q sense, and accordingly in L2pG^q. By inverse Fourier transforming the expression,

and by noticing that each c
pmq
λ , m P rM s, λ P ΛK, corresponds to the pointwise value of f � gpmq on each

λ, one gets the desired statements.

Remark 6.17. As similar as the discussion given in remark 6.14, in case M � K, and tgpmqeλum,λ is a

Riesz basis for L2pBq, ϕϕϕpmq, m P rKs reduces to (6.33). Furthermore, the reconstruction formula (6.34)

holds also with the corresponding dual Riesz basis.

Remark 6.18. By the similar argumentations made in Thm. 4.19, the right hand side on (6.34) gives a

continuous function on G, which vanishes at infinity. Furthermore, if the signal f of interests is continuous,

one gets an equality instead of a.e. equality.

In the following, we shall give a different way to see the reconstruction formula given in 6.34. Suppose

that tgpmqeλum,λ, and accordingly tgpmqe�λum,λ, forms a frame for L2pB̃q. Given a sequence c
pmq
λ :�

pf � ǧpmqqpλq, m P rM s, λ P ΛK, which consists of the samples of a signal f P L2pBq filtered by the linear

filters with frequency response gpmq. Recall that each tcpmqλ um,λ is exactly the correlation of f̂ with the

frame element elements φ
pmq
λ :� Ṽe

pmq
�λ � gpmqe�λ. Hence by computations:

c
pmq
λ � xf̂ , φpmqλ y � xf̂ , Ṽepmqλ y � xṼ�f̂ , epmqλ y.

So, from the samples tcpmqλ um,λ, we can reconstruct Ṽ�f̂ by the orthonormal expansion:

h :� Ṽ�f̂ �
¸

mPrMs
λPΛK

c
pmq
λ e

pmq
λ .

Each mth-entry of h can be seen as an analogy to the discrete-time Fourier transform of the sequence

tcpmqλ u, which is frequently used in applications of electrical engineering. Since by definition, Ṽ� � V�T , it

is obvious that basically to reconstruct f̂ , we have to find f̃ for which h � V�f̃ holds. Once f̃ is obtained,

f̂ can be reconstructed from f̃ by computing f̂ � T �f̃ . It is not hard to see, that since tgpmqeλum,λ is

assumed to form a frame for L2pBq and accordingly V� is left-invertible with inverse pVV�q�1V. Hence,

as we have seen previously, the task to solve h � Vf̃ , reduces to the task of computing:

f̃pγq � pΦpγqΦ�pγqq�1Φpγqh, a.e. γ P D̃n, @n P I. (6.37)

Let K �M , and assume that tgpmqeλu forms a Riesz basis for L2pBq. It follows immediately that Φpγq,
and accordingly Φpγq� is essentially invertible for a.e. γ P D̃n, n P I. Hence, f̃ in (6.37) can be computed

more simple by:

f̃pγq � pΦ�pγqq�1h, a.e. γ P D̃n, @n P I. (6.38)

Though, it might be possibly hard to compute above expression, since one might have to compute

pΦpγqΦ�pγqq�1 (resp. pΦpγq�q�1) for uncountably many points in D̃. In the next chapter, we will

see that by a particular choice of the collection tgpmqum, the expression (6.37) (resp. (6.38)) can be

considerably simplified.

6.5. Robustness of the Sampling Scheme under presence of noise

Nevertheless, for a particular choice of linear filters tǧpmqum, one can gives a characterization of robustness

of the sampling and reconstruction system under the presence of noise. Suppose that φ
pmq
λ :� gpmqeλ, m P

rM s, λ P ΛK
G forms a frame for L2pBq, and let 8 ¡ A ¡ 0 (resp. 8 ¡ B ¡ 0) be the corresponding lower
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(resp. upper) frame bound. Denote the analysis operator corresponds to tφpmqλ um,λ by C : L2pBq Ñ l2,

f ÞÑ txf, φpmqλ yum,λ. In this context, as we have already seen, C can be seen as the operator, which assigns

each f P L2pBq uniquely a sequence in L2pBq. Since A and B are frame bounds of tφpmqλ um,λ, it follows

immediately that
?
A and

?
B are upper - and lower bound of the operator norm of C, respectively.

Finiteness of B, and positiveness of A, seen as bounds of the operator norm of C implies that there exists

an inverse C�1 : l2 Ñ L2pBq, which is simply the synthesis operator corresponding to the dual frame

of tφpmqλ um,λ. It is not hard to show that the upper - and lower bound of the operator norm of C�1 is

related to the upper - and lower bound of the norm of C by:

1?
B
¤ ‖C�1‖ ¤ 1?

A
. (6.39)

Now, given f P PW2
B. Let c :� tcpmqλ um,λ :� Cf be the corresponding samples, assume that this

samples is corrupted additively by the noise ν :� tνpmqλ um,λ, where ν is a sequence in l2. We denote the

signal-to-noise ratio by SNR :� ‖c‖2{‖ν‖2. We define specifically the corrupted sequences c̃ :� c̃
pmq
λ and

the erronous signal f̃ by:

c̃
pmq
λ :� c

pmq
λ � ν

pmq
λ , m P rM s, λ P ΛK, and f̃ :� C�1tc̃pmqλ um,λ. (6.40)

So, it is not hard to compute the corresponding ”relative square error”:

‖f̃ � f̂‖2

‖f̂‖2
� ‖C

�1c̃� C�1c‖2

‖f̂‖2
� ‖C

�1ν‖2

‖Cc‖2
¤ ‖C

�1‖2‖ν‖2

‖C‖2‖c‖2
¤ B

A

1

SNR
. (6.41)

It is obvious that from basic property of inverse fourier transform, that above bound gives also an upper

bound of the error ‖f � F�1f̃‖2{‖f‖2. Furthermore, by more detailed observation, one can see that

above bounds is tight, in the sense that there exists signals f P L2pBq, and noise sequence ν P l2, s.t. the

equality holds.
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7. Application: Multicoset Sampling on LCA

Groups of Multiband Signal

In this chapter, we show some possible choices of the collection of functions tφpmqumPrMs on a K-

fundamental domain B of Λ, which simplify in some sense, the analysis on the varying matrix on D

generated by tφpmqum, as given in (6.19). For convenient and for better understanding, we concern in

this chapter simply Euclidean spaces RN , instead of general LCA groups. The results introduced in this

chapter might also be abstracted to general LCA groups by some simple modifications. For easeness, we

use the following notations

exp�q :� epxx, �yq :� e2πixx,p�qy. (7.1)

If not otherwise stated, we follow the notations given in notations 1. As we know, since pRN q^
is identifiable with RN (by the usual identification), we see both LCA groups as equal. Accordingly,

the notation pRN q^ stands rather for the frequency domain, than the set of characters of RN . Since

pRN q^ � RN , it does not make sense to differ between Λ and Λ̃ (resp. D and D̃, B and B̃). As usual,

we part the ”reference” fundamental domain D w.r.t B into the finite collection of measureable subsets

tDnunPI as suggested by lemma 6.1, and assign to each Dn, n P I, the corresponding sequence tλpkqn ukPrKs
from Λ. Furthermore, we can assume w.l.o.g. (see remark 6.4) that tDnunPI contains only sets of positive

measure in RN .

In this chapter, we mainly concern ourselves with the following two choices of tφpmqum:

(a) φpmq � eapmq , where apmq P RN , @m P rM s.

(b) φpmq � ψpp�q � βpmqq, where ψ is a function in L2pRN q, and βm P RN , @m P rM s.

We shall show , that the first choice is related to the so-called multi-coset sampling, and the second choice

is related roughly to the so-called gabor sampling. We first begin by considering the choice φpmq � eapmq ,

m P RN .

7.1. Frames of Exponentials and Multi-Coset Sampling

Given a collection of vectors a :� tapmqumPrMs in RN . To avoid trivialities, we assume that the elements

of that collection differs pairwise. It is not hard to see that by the choices gpmq � eapmq , @m P rM s, the

varying matrix Φ on D generated by tφpmqum (see. notations 3) can be written as Φ � EU, where E is

defined sectionwise, i.e. on each Dn, n P I by:

Epxq :�

����
epxap1q, λpnq1 yq . . . epxapMq, λpnq1 yq

...
. . .

...

epxap1q, λpnqK yq . . . epxapMq, λpnqK yq

���
, (7.2)
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7. Application: Multicoset Sampling on LCA Groups of Multiband Signal

and U is a unitary diagonal matrix, given on whole D by:

Upxq :�

����
epxap1q, xyq . . . 0

...
. . .

...

0 . . . epxapMq, xyq

���
, x P Dn. (7.3)

In other words, Φ can be dissamble into a varying matrix E, which is sectionwise constant, and another

varying matrix U, which is easy to handle, since it is diagonal, unitary, and defined on whole D (and not

just sectionwise). So, by computations, the varying matrix ΦΦ� simplified to:

ΦpxqΦpxq� � EpxqUpxqUpxq�Epxq� � EpxqEpxq�, x P Dn, @n P I.

Since E is constant on each n P I, it stands clear to denote Epnq :� Epxq, x P Dn, for all n P I. So, to

check whether Φ fulfills the condition (6.20), it is enough to compute the singular values of all matrices

in the finite collection tEpnqunPI , which is a fairly easy task since I is finite.

The computation of the canonical dual frame simplifies also by our choice of tφpmqu: Suppose that

tφpmqλ um,λ :� teapmqeλum,λ forms a frame for L2pBq. By some computations, one can see that the

canonical dual frame of tφpmqλ um,λ is exactly the collection functions φ̃
pmq
λ � eλT �ξξξpmq, m P rM s, where:

rξξξpmqpxqsk :� rpEpnq,�q:sm,keampxq, x P Dn, n P I. (7.4)

Especially, in the case M � K, the entries of ξξξpmq, m P rM s, is given sectionwise by

rξξξpmqpxqsk :� rpEpnqq:sm,keapmqpxq, x P Dn, n P I. (7.5)

Analogously, for the case M � K. For some choices of a, to see whether teapmqeλum,λ forms a Riesz basis

for L2pBq, remark 6.11 asserts, that one basically has to compute the modulus of the possible eigenvalue

of the varying matrix Φ. In particular one simply has to compute the (modulus of the) eigenvalues of

each matrices in the finite collection tEpnqunPI , since Φ can be written as Φ � EU , where E is a matrix

varying only sectionwise, and U is a unitary varying matrix, and from the fact that unitary matrices

preserves the modulus of eigenvalues, one simply has to compute the eigenvalues of the matrix in the

finite collection tEpnqunPI . Furthermore, one has even the following remarkable result:

Theorem 7.1. Let Λ � RN be a lattice, and D be a relatively compact fundamental domain of Λ. Then,

for a.e. ap1q, . . . , apKq P D the set

teapmq�λ : λ P ΛK, m P rKsu (7.6)

is a Riesz basis for L2pΩq for any relatively compact K-fundamental domain B P RN

Proof. The only thing, which has to be checked, is that no eigenvalue of each matrix in the collection

tEpnqunPI is zero, or equivalently, that each matrix in those collection is invertible. Define the trigono-

metric polynomial for x1, . . . , xK P RN , and λn P RN , @k P rKs:

pptxkukPrKs, tλkukPrKsq :�
¸
σPSK

sgnpσq
K¹
k�1

epxxσpkq, λσpkqyq, (7.7)

where SK denotes the permutation group of rKs, σ the corresponding permutation, and sgn the signature

of a permutation. Notice that pptapmqumPrKs, tλpnqm umPrKsq is the determinant of E on Dn, n P I. Now,

define the set of trigonometric polynomials:

PK :� tdptxmu, tλmuq : λm P Λ, m P rKsu. (7.8)
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Obviously, PK is countable since Λ is countable. Notice that since tλmumPrKs goes through Λ, PK
contains characteristic polynomials associated to other matrices E

1

corresponding to any K-fundamental

domain of Λ. So appropriate choices of the set tapmqumPrKs are exactly those, which fulfills:

dpap1q, � � � , apKqq � 0, @d P PK . (7.9)

Since the zeros of a trigonometric polynomial is of measure zero, PK is a countable set, and countable

union of measure zero sets yields again a measure zero set, it follows that a.e. pap1q, . . . , apKqq P RN�K (call

the exception set of measure zero R � RN�K) is a ”good” choice. Fix a fundamental domain D of Λ. Then

for any generic taku � RK fulfilling (7.9), there exist unique tdku � D̃ s.t. teapmq�λuk,λ � tedpmq�λum,λ.

So one can restrict the search for appropriate generic takuk from RN to D̃ (the exception set is also of

measure zero since it is the intersection of R and a measureable subset DK).

Above thm. was mentioned in [33]. A general form of above thm. is given in [1].

Remark 7.2. To find an ”admissible” sampling cosets tΛ � apmqumPrKs for functions f P PW2
B, where

B is any relatively compact fundamental domain of Λ, thm. 7.1 asserts to choose the each elements of

the collection tapmqumPrKs by uniform distribution on a ”nice” fundamental domain D. However, even

if a.e. vector a1, . . . , aK P D yields an admissible sampling cosets, the frame bounds concerning to the

Riesz basis teλ�apmquλ,m may be very bad, as asserted in [58].

Now suppose that teapmqeλum,λ forms a Riesz Basis for L2pBq. The corresponding dual Riesz basis can

explicitly be given by: φ̃
pmq
λ :� eλtT �ξξξpmqu, λ P ΛK, and m P rM s, where the entries of ξξξpmq, m P rM s, is

given sectionwise by rξξξpmqpxqsk :� rpE�,pnqq�1sm,keapmqpxq, x P Dn, n P I.

In the following, we shall show the connection between above class of frame, and the sampling problem.

Let teapmq�λum,λ be a frame for L2pBq. Given a signal f P PW2
Ω. By some simple computations, it yields

that xf̂ , eapmq�λyL2pBq � fpλ� apmqq, for each λ P ΛK, and m P rM s. Hence, the frame expansion of f , as

given in 6.34, can explicitly be computed by:

f �
¸
λPΛK

mPrKs

fpλ� amq 1

mpDq pF
�1
RNχBT �tξξξpmquqp� � λq, (7.10)

where ξξξpmq, m P rM s is given as in (7.4) and in case M � K, is given as in (7.5), and F�1
RN denotes

the usual inverse Fourier transform, i.e. F�1
RN f �

³
RN fpωqepxω, p�qyq. Above sampling scheme is called

multi-coset sampling, since the samples of the signal are taken on M -cosets of the subgroup ΛK, i.e.

ΛK � apmq, m P rM s. The corresponding illustration of the sampling device is given in fig. 7.1

λ P ΛK � ap1q

λ P ΛK � apMq

f P PW 2
B

!
c
p1q
λ

)
λPΛK

!
c
pMq
λ

)
λPΛK

Figure 7.1.: Sampling device for multi-band multi-dimensional square-integrable signals induced by the
frame teapmqeλuλ,m.

For practical purposes (e.g.: [13], [61], [39], [40]), it is advantageous to consider the following type of

B:
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Notations 4. Let Λ be a lattice in RN , and D a relatively compact fundamental domain of Λ. we say

B � RN is K-generated by the ”elementar cell” D, if B � �kPrKsD � λk, where tλkukPrKs is a finite

collection of mutually distinguish elements of Λ.

For the K-fundamental domain B of Λ, which is K-generated by a fundamental domain D, i.e. B ��
kPrKsD � λk, for some mutually distinguish λk, k P rKs, the partition of D w.r.t. B contains only D,

and the corresponding sequence of Λ is exactly tλkukPrKs. Correspondingly, the isometric isomorphism

between L2pBq and L2pDq`K given in lemma 6.8 simplified to pT fq � pfpp�q�λ1q, . . . , fpp�q�λKqq. The

varying matrix E given in (7.2) is constant over D. Each of its entry has the form rEsk,m � epxam, λkyq. So

for such a K-fundamental domain, it is fairly easy to check whether teak�λuk,λ forms a frame for L2pBq,
for chosen tamumPrMs, and to give the corresponding dual frame, which is necessary to establish the

sampling and reconstruction formula given in (7.10). Furtermore, it is obvious to see that the alternative

reconstruction method suggested at the end of section 6.4 reduces to a simple linear algebraic problem.

Let K �M , for this class of K-fundamental domain, it is not hard to give an explicit choice of multi-coset

sampling points:

Corollary 7.3. Given a lattice Λ in pRN q^, and a fundamental domain D of Λ. Further, let B be a

subset of RN , K-generated by D. Then there exists a particular choice of a1, . . . , aK P pRN q^ � RN s.t.

tΛK � amumPrMs are ”admissible”1 sample points for each functions in PW2
B.

Proof. Assume w.l.o.g. K ¡ 1.We only need to choose tapmqumPrMs s.t. the matrix E, with entries

rEsk,m :� epxamyq, is invertible, or equivalently, its determinant is non-zero. Determine a0 P RN , s.t.

νl � νl1 , for each l, l
1 P rKs, where νk :� xa0, λky, k P rKs. It is not hard to see that such choice is

possible. Define νmax :� maxt|ν1|, . . . , |νK |u. Let now tamumPrMs be given by:

am :� pm� 1q
νmaxK

a0, @m P rKs.

Notice that, |xa2, λky|   1{2K   1{2. By computations, it yields that the matrix E can be given as:

rEsk,m � e2πi
νk
νmax

m�1
K , k,m P t1, . . . ,Ku.

Notice that E is a Vandermonde matrix, whose determinant is given by:

det E �
¹

1¤l l1¤K
ep νl1
νmax

1

K
q � ep νl

νmax

1

K
q (7.11)

Since we have ensured that νl � νl1 , @l, l
1 P rKs, l � l

1

, and |νk||xa2, λky|   1{2, for each k P rKs,
and since ep�q is 1-periodic, and hence its value is determined uniquely in the interval r�1{2, 1{2q, above

expression can not be zero.

7.2. Gabor Systems

Another choice of the function tφpmqumPrMs is given by some shifts of a function ψ P L2pRN q to B, i.e.:

φpmq � ψp� � βpmqq, m P rM s,

where βpmq, m P rM s properly chosen constants, s.t. the varying matrix Φ onD generated by tφpmqumPrMs,
fulfills the conditions given in thm. 6.10.

1Admissible means here, that eam�λ, m P rKs, λ P ΛK forms a Riesz basis for L2pBq.
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7.2. Gabor Systems

The corresponding sampling scheme can be given as follows: Let tφpmqeλum,λ be a frame for L2pBq,
by a corresponding choice of ψ P L2pBq, and βpmq P RN , and given a function f P PW2

B. If we require

additionally that βpmq P ΛK, for each m P rM s, we can compute the corresponding correlation between f̂

and φpmqe�λ for m P rM s and λ P ΛK conveniently as follows:

c
pmq
λ � xf̂ , φpmqe�λyL2pBq �

»
pRN q^

f̂pωqψpω � βpmqqeλpωqdµpRN q^pωq

�
»

pRN q^
f̂pω � βpmqqψpωqeλpω � βpmqqdµpRN q^pωq �

»
pRN q^

f̂pω � βpmqqψpωqeλpωqdµpRN q^pωq

� ppfe�βpmqq � ψ̌qpλq,

where the third equality follows from the translation invariance of Haar measure, and the fourth equality

follows from the fact that eλ, λ P ΛK is Λ-periodic. The illustration of the proposed sampling scheme is

illustrated in fig. 7.2. This sampling scheme may roughly be seen as the Gabor system for PW2
B with

the window function ψ (see e.g. [18]).

ψ

ψ

λ P ΛK

λ P ΛK

f P PW 2
B

!
c
p1q
λ

)
λPΛK

!
c
pMq
λ

)
λPΛK

e�βp1q

e�βpMq

Figure 7.2.: Sampling device for multi-band multi-dimensional square-integrable signal induced by the
frame tψp� � βpmqqeλuλ,m.

In the case that B is a K-generated by D, to choose such a function is fairly easy task: Let M � K,

B � YkPrKsD � λk. One can choose ψ, s.t. ψ is supported in D and ψ is non-zero a.e. on D, and

the coefficients tβpmqumPrKs can be chosen, s.t. βpmq :� λm. In this case, one immediately sees that

the varying matrix Φ on D generated by tφpmqumPrMs reduces to a diagonal matrix, whose diagonal is

rΨsm,m � φpmq, m P rKs. If ψ is in addition an ideal lowpass filter, the proposed sampling scheme is

basically a classical bandpass sampling.

Moreover, it is unnecessary to require ψ to have its support in D. It is sufficient to require ψ to have

its biggest value on some subset of D, and sufficiently rapid decay, s.t. the varying matrix Φ is diagonal

dominant a.e. on D. In this case, Gershgorin’s Thm. ensures that for a.e. ω P D, no eigenvalue of Φpωq
is zero, and accordingly Φ is a.e. invertible.
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8. Summary, Discussions and Outlooks

The theory of locally compact Abelian groups provides a unifying approach to describe objects, which

is of practical and theoretical relevance in communication engineering. Those included, in particular,

the signals on a finite group of the form Z{kZ, which is rather known as array signals, for some k P N,

the signals on the countable group Z, which is rather known as discrete-time signals, and the signals on

additive group R, which is rather known as continuous-time signal. Furthermore, the theory of locally

compact Abelian groups provides a ”language”, with which many other objects, one may face in electrical

engineering, can also be handled. Those contain for example the signal on the product of the ”elementary”

LCA group.

By means of canonical sampling method for Paley-Wiener spaces, structured modulation, and finite-

dimensional phase retrieval, we have shown that 2-D phase retrieval of infinite dimensional signals is

possible, up to a certain exceptions. One may show that that exception is meagre in the considered

Paley-Wiener space (as similar as it has been shown in [60, 48]). For a specific rectangular band-limit,

we have shown that it is sufficient to have the rate 8-times the 2-D Nyquist rate. By choosing another

choice of finite-dimensional phase retrieval e.g. [45], one may obtain a lower rate. It remains still an open

problem, to determine the lowest possible rate one could achieve.

In this thesis, we have also concern ourselves with the so-called frames of exponentials weighted by

a collection of functions. By some elementary approach, we have derived a necessary and sufficient

conditions on the corresponding collection of functions, s.t. it forms a frame. In particular, it has been

shown that the necessary and sufficient conditions is related to a varying matrix whose entry is determined

by those collection of functions. We have shown, that this class of frame is related to the multi-channel

sampling of finite-energy signals involving preprocessors on each of the channel. An appropriate formula

has been given, with which the corresponding signal can be reconstructed from the samples obtained by

the mentioned process. By the lack of the information on the structure, for general LCA group, the term,

with which the sampling rate/density can be described, is not easy to handle, for detailed information,

we refer to [19]. We have also shown an alternative way to reconstruct the signal, which leads to a linear

algebraic problem. The latter has the potential to be applied to the problem of blind spectrum sensing,

e.g. [13], [61], [39], [40].

Some examples in the Euclidean space RN related to the previous frame construction has been given.

In particular, those comprises the multi-coset sampling, and Gabor system. The corresponding sampling

density (or following Landau’s denotation: uniform density1) can be given: Since we have M sampling

branches and each of the branches is sampled have the same sampling points ΛK, the corresponding

sampling density Ds of the considered system is simply M times the density D of the lattice ΛK (for the

notion of lattice density, see [20]), which is in turn related to the Lebesgue measure of any2 of relatively

compact fundamental domain of its dual lattice Λ (e.g. take the measure of our ”reference” fundamental

domain D). Hence it yields: Ds � MDpΛq � MmpDq. In case that M � K, Ds coincides with the

Lebesgue measure of the support B (which is the union of K mutually disjoint fundamental domains of

Λ) of the signal of our interests, and accordingly optimal in Landau’s sense.

For future works, one may apply above sampling scheme to the problem of blind spectrum sensing,

1We do not need to differ between upper- and lower uniform density, since in our case, it can be shown that both quantity
coincides

2We have already shown that the measures of every relatively compact fundamental domain coincide
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8. Summary, Discussions and Outlooks

e.g. [13], [61], [39], [40] and also to the problem of phase retrieval. Furthermore, it is interesting to see

how the proposed sampling scheme behaves for a bigger signal class e.g. see [5], [4]. Although, one may

expect a negative answer, [41] may indicate that the multi-channel structure may be of advantage.
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A. Topology

The following appendix, gives some basics on the field of topology. We shall give the results needed for

our main approaches in a brief way. For detailed treatment, we refer to e.g. [6].

Given a set X . Let PpX q denotes the power set of X . In the following, we begin by introducing the

notion of topology:

Definition A.1 (Topological space, relative topology). Let X be a set, and let τ � PpX q be a

family of subsets of X . τ is called a topology on X , if H P X and τ is closed under finite intersections

and arbitrary union. Elements of τ are called open sets and their complement respectively closed sets.

Furthermore, pX , τq is called topological space.

Let A � X. The relative topology τA of A induced by pX, τq is defined as the intersection of elements

of τ with A.

If it is clear from the context, a topological space pX , τq is written simply as X . Obviously, a subset of a

topological space equipped with relative topology is itself a topological space. If not otherwise stated, X
and Y are commited in the following to be a topological spaces.

Examples A.1. The notion of metric spaces is assumed to be known. Let pX , dq be a metric space. One

can canonically induce a topology as follows: Define the so-called open ball around x P X with radius

ε ¡ 0 by Bεpxq :� ty P X : dpx, yq   εu. The metrik d defines the topology τd by O P τd ô @x P ODε ¡
0 : Bεpxq � O, in other words, a subset is open if for each element of this subset there exist an open ball

with sufficiently small radius around this element s.t. this open ball is contained in this subset. We call

the topology on RN induced by the euclidean metric as natural topology of RN

In some cases, it is advantageous to describe a topology by means of smaller family of subsets:

Definition A.2 (Base of a topology). Let pX , τq be a topological space. B � τ is called base (or

basis) for topology τ , if every O P τ can be represented by union of elements of B.

A base B of a topology τ of a topological space X gives a fully description of τ , in the sense that a

subset O of X is contained in τ if and only if O can be represented as disjoint union of elements of B, or

equivalently: @x P O, DB P B, s.t. x P B � O. So given just a base of a topology, one can decide, which

subset of the considered set is contained in the topology (this justifies the idea behind the term ”base”).

We shall also sometimes say τ is the topology induced by the base B. In particular, the natural topology

of RN has the following countable base: B :� tB1{mpxq : x P Q,m P Nu. Given a collection of subsets B
of a set X . The following theorem gives conditions on B s.t. one can surely reconstruct a topology on X ,

for which B is a base:

Theorem A.2. Let X be a set, and B � PpX q a collection of subsets. Assume that B fulfills the

following conditions:

(a) B covers X , i.e. X � �BPB B,

(b) if B1, B2 P X , and x P B1 XB2, there exists B3 P B, s.t. x P B3 � B1 XB2.

We define the interior -, boundary -, and closure of a subset in a topological space as follows:
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A. Topology

Definition A.3 (Interior -, Boundary -, and Closure of a subset). Let X be a topological space,

and A � X . The largest open set contained in A is called the interior of A and denoted by A�. The

smallest closed set containing A is called the closure of A and denoted by A. The boundary of A, denoted

by BA, is defined as BA :� AXAc.

”Nearness” is a qualitative notion in topology, which may be described by means of the following term:

Definition A.4 (Neighborhoods). Let N � X be open. N is called neighborhood of x P X if x lies

in the interior of N , specifically:

DO � X open : x P O � N.

The set of all neighborhood (or shortly: neighborhood system) of x P X is denoted by Nx.

So one can say in a sloppy way, that some elements of a topological space X is ”near” to an element x,

if they are contained in some neighborhoods of X .

By means of the neighborhood system, one can formalize the term ”isolatedness” of a point, and

accordingly the term ”discreteness” of a topological space:

Definition A.5 (Isolated Point and Discrete Topological Space). Let X be a topological space.

A point x P X is said to be isolated, if there exists a neighborhood of x, which is only the singleton txu.
A topological space is said to be discrete, if each of its points is isolated.

For an x P X , one can describe the neighborhood system of by smaller collection of neighborhoods of

x, called neighborhood base:

Definition A.6 (Neighborhood Base). Let pX , τq be a topological space, and Nx is the neighborhood

system of x P X . A subcollection Bx � Nx is called neighborhood base of x, if for every Nx P Nx, there

corresponds a Bx P Bx s.t.: x P Bx � Nx.

Again, a neighborhood base for a point x P X costitutes a generating system for a neighborhood system

of x P X , in the sense that one can decide by means of B, whether a subset of the considered topological

space is a neighborhood of x. Let τ be a topology on a set X . We give in the following the connection

between base for τ and neighborhood base for x P X :

• Let B be a base for τ , and Ux be a neighborhood of x P X , which is w.l.o.g. open (otherwise take

an open Ox s.t. x P Ox � Ux). Since Ux is open and B is a base, there clearly exists a subcollection

of B whose union is Ux. Obviously, there exists an element of this subcollection, say Bx, with the

property: x P Bx � Ux, which asserts that Bx is an element of a (not yet specified) neighborhood

base of x. For each Ux, form the collection Bx containing Bx. It is not hard to see that Bx is indeed

a neighborhood base of x.

• Given a neighborhood base Bx for every x P X . Given a subcollection B � τ , fulfilling Bx � B,

@x P X . For an open subset O of X , notice that by the definition of neighborhood base, for each

x P O, there exists Bx P Bx s.t. x P Bx � O. So, one can write each open set O as O � �xPO Bx,

which shows that every open sets is a union of elements of B. Hence B is a base for τ .

By the same way as done to ”reconstruct” the topology by means of its base, one can ”reconstruct”

the neighborhood system of a point by means of its neighborhood base. Given for each x P X a collection

of subsets Bx. The following theorem gives conditions on each Bx, x P X , s.t. one can give (or more

conveniently: ”reconstruct”) a topology for which Bx is a neighborhood base of x P X :

Theorem A.3. Let X be a set. Given for each x P X a collection of subsets Bx for which the following

conditions holds:
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• Bx � H, and B P Bx ñ x P B � X ,

• B1, B2 P Bx ñ DB3 P Bx, s.t. x P B3 � B1 XB2

• B P Bx ñ DA � X s.t.:

– x P A � B,

– @y P A : DBy P By : y P By � A.

Define τ :� tO � X : @x P O, DB P Bx s.t. x P B � Ou. Then τ is a topology on X , for which, for all

x P X , Bx is a neighborhood base for x.

As we will see later, if the considered space is a topological group, one can describe the topological

property of the underlying space efficiently by means of the neighborhood system of the identity, and

more efficiently by means of a neighborhood base of the identity.

The following classes of topological space is indispensable for analytic purposes:

Definition A.7 (Hausdorff -, First Countable -, and Second Countable Space). Let X be a topo-

logical space. X is said to be a Hausdorff (topological) space, if @x, y P X there exists a neighborhood

Nx of x and a neighborhood Ny of y s.t. Nx XNy � H. X is said to be a first (resp. second) countable

space, if X (resp. any points of X ) possessess a countable (resp. neighborhood) base.

Proposition A.4. Let X be a discrete topological space. Then X is countable, if and only if X is second

countable.

Definition A.8 (Compact set, σ-Compact set, locally compact space). Let A � X . A is said to

be compact if every family of open sets in X , whose union contains A has a finite subfamily, whose union

contains A. A � X is said to be σ-compact, if it can be written as a countable union of compact sets X
is said to be locally compact, if every point of X has a compact neighborhood.

Definition A.9 (Continuous map). Let f : X Ñ Y be a map. f is said to be continuous at x P X if

for every neighborhood Nfpxq of fpxq, there exists a neighborhood N
1

x of x s.t. fpN 1

xq � Nfpxq. f is said

to be continuous on X if f is continuous at all x P X .

Given a continuous mapping f : X Ñ X 1

, and let A � X . It is not hard to show that the restriction

of f to A, i.e. the map f |A, is continuous (of course, provided that A is equipped with the subspace

topology). Several equivalent definitions of continuous map is summarized in the following proposition:

Proposition A.5. Let pX , τX q, pY, τYq be topological spaces, and f : X Ñ Y a mapping. For x P X ,

let Nx be a neighborhood system of x, Bx be a neighborhood base of x, N 1

fx
be a neighborhood system

of fpxq, and B1fpxq be a neighborhood base of fpxq. Then the following are equivalent:

1. f is continuous at x

2. @N P N 1

fpxq : f�1pNq P Nx
3. @N P N 1

fpxq : DM P Nx : M � f�1pNq

4. @B P B1fpxq : f�1pBq P Nx
5. @B P B1fpxq : DM P Nx : fpMq � B

In particular we shall often use, without mentioning, the equivalence (a)ô(d) for our study on the

topological structure of the dual group of an LCA group. Indeed it is easy to see that this equivalence holds

true: Suppose that statement (d) holds true. By definition of the neighborhood base, any neighborhood

N of fpxq contains an element B of the neighborhood base of fpxq, and from (d) it follows that there

exists a neighborhood M of x s.t. fpMq � B � N , which shows the desired statement.
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Definition A.10 (Open - and Closed Map). Let f : X Ñ Y be a mapping between topological

spaces. f is said to be an open (closed) map, if the image of all open (closed) sets in X is open (closed)

in Y, respectively.

Definition A.11 (Homeomorphism). A mapping f : X Ñ Y is said to be a homeomorphism. If f

is continuous, bijective, and its inverse is also continuous. X and Y are homeomorphic, if there exist a

homeomorphism between them.

Homeomorphism can alternatively defined as an bijective continuous open map, since openness and

bijectivity of a mapping is equivalent to the continuity of its inverse. Let X and Y be in addition vector

spaces. A mapping f : X Ñ Y is said to be a linear homeomorphism if f is a homeorphism and linear

map. It is clear, that f�1 is linear. Homeomorphism can also be equivalently described by means of the

openness property:

Lemma A.6. Let f : X Ñ Y be a mapping between topological spaces. f is a homeomorphism if and

only if f is bijective, continuous, and open.

Definition A.12 (Connectivity). A � X is called connected if it can not be written as union of two

disjoint sets, which are open in the relative topology.

Definition A.13 (Discrete Set). Let X be a topological set. A subset S is called discrete, if every

x P S has a neighborhood N s.t. S XN � txu. Every element of S is called isolated point.

Definition A.14 (Product topology). Let tXiuiPI be a family of topological spaces. The cartesian

product of tXiuiPI can be equipped by the topology given by the base:

B :� t
¹
iPI

Oi : Oi � Xi open @i P I, DJ � I finite with Ui � X i @i P IzJu, (A.1)

called the product topology.

Furthermore, we call the tuple consisting of cartesian product of topological spaces and the corresponding

Given the cartesian product of topological spaces
±
iPI Xi, equipped with the product topology. We

denote for j P I the j-th projection map as prj :
±
iPI Xi Ñ Xj . One can show that by this choice of

topology, prj is continuous for all j P I.

The most important result on product topologies is the following:

Theorem A.7 (Tychonoff Theorem). Let tXiuiPI be a family of compact topological spaces, then

the cartesian product of tXiuiPI equipped with the product topology is a compact topological space.

By means of the product topology, one can induce a topology on the set of functions mapping between

an arbitrary set and a topological space. Let MappX,X q denotes the set of functions mapping from an

arbitrary set X to a topological space X . Clearly, one can see MappX,X q as the cartesian power XX .

Since X is a topological space, one can equip XX , and respectively MappX,X q with the product topology,

which is induced by the base containing sets of functions of the form:

tf P XX : fpxq P Ux, @x P F u, F � X finite, and Ux � X open, @x P F. (A.2)

Notice the equivalence of above expression with (A.1). This topology on function space is also called

pointwise convergence topology. Let X be in addition compact. It follows immediately from Tychonoff

theorem, that XX , and respectively MappX,X q, equipped with the product topology is compact.
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Definition A.15 (Quotient topology). Let X be a topological space, � an equivalence relation on

X . Given X { � the set of equivalence classes in X . Then the canonical mapping p : X Ñ X { �, x ÞÑ rxs
is called the quotient mapping. The family of subsets:

τ� :� tO � X { �: p�1pOq open in X u,

defines a topology in X { �. The tuple pX { �, τ�q is called quotient (topological) space.

The following theorem gives in some sense a clear description of continuous mapping:

Theorem A.8. Let X and Y be topological spaces, X { � be a quotient space with the canonical mapping

p. For a mapping f̃ : X { �Ñ Y , it holds: f̃ is continuous (w.r.t. the quotient topology) if and only if

f :� f̃ � p : X Ñ Y is continuous.

Above theorem shall not be hard to proof.

Definition A.16. Let X be a topological space. Then:

• X is said to be first-countable, if there exists a countable base for the topology

• X is said to be second-countable, if there exists a countable neighborhood base for each point x P X

• X is said to be metrizable, if there exists a metric d, s.t. the topology is induced by d.

Urysohn discovers the connection between second-countability and metrizability of a regular space: Every

Hausdorff space, which is regular and second-countable, is metrizable.
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B. MeasureTheory

In this appendix, we recall briefly, the basics of measure theory and Lebesgue integral. For a more

detailed treatment, we refer to e.g. [14] and [10].

B.1. Basic Notions

We begin by introducing the system of subsets which constitutes the foundation of measure theory. Let

X be a set and Σ � PpX q an subcollection of subsets of X . Σ is said to be a σ-algebra of X if Σ fulfills

the following properties:

1. H P Σ.

2. E P Σ ñ Ec P Σ.

3. Σ is closed under countable union, i.e.: E1, E2, ... P Σ ñ �8
n�1En P Σ.

The tuple pX ,Σq containing a set X � H and a σ-algebra Σ of X is called measureable space. The

following properties of σ-algebra are direct consequences of its definition:

• σ-algebra is closed under countable intersections

• σ-algebra is closed under set difference.

Given a measureable space pX ,Σq, and a subset E � X. Then the collection of subsets of E, Σ|E :�
tA X E : A P Σu, is called the σ-algebra of subset E of T . With Σ|E , pE, Σ|Eq becomes a measureable

space in its own right. If not otherwise stated, we shall equip in this work every subset with the canonical

measureable space structure inherited from their corresponding superset.

In many cases, it is impossible to write the σ-algebra of a corresponding space explicitly. However, it is

sufficient to give the information about the structure of the σ-algebra by means of its so-called generator.

From a given collection of subsets G of X , one can generate a σ-algebra as follows:

σpΣq � XtA P PpT q : A � T, A σ-algebrau. (B.1)

σpGq denotes the σ-algebra generated by a collection of subsets G. G is called the generator of σpGq.
Notice that arbitrary intersection of σ-algebras of a set X gives a σ-algebra of X , which implies that

σpGq is indeed a σ-algebra, and the generator of a σ-algebra is properly defined. Given a σ-algebra Σ of

a measure space X , generated by G � PpX q, i.e. Σ :� σpGq. It can be shown that the σ-algebra Σ|A of

a subset A � X can be generated by G|A :� tE XA : E P Gu.
In case that the considered space is topological, one can canonically generate the corresponding σ-

algebra as follows: Let pX , τq be a topological space. A σ-algebra Σ of X is called Borel σ-algebra, if

Σ :� σpτq. If A P Σ is open/closed w.r.t. the topology, then A is said to be Borel open/closed subset,

respectively. Sets, which are measureable w.r.t. the Borel σ-Algebra, are exactly those, which can be

represented as countable union of open sets, or as countable intersection of open sets. We will denote the

Borel σ-algebra by B. When it is required, we emphasize the fact that B is generated by topology τ by

the notation Bpτq. In case that X possesses some additional topological structures, Borel σ-algebra of

X has also some alternative descriptions:

95



B. MeasureTheory

• If X is a metric space, Borel σ-algebra of X can be alternatively generated by the system of closed

sets in X .

• If X is a Hausdorff space, and there exists a countable sequence of compact sets tKnu s.t. X �
YnKn, i.e. X is compactly generated, then Borel σ-algebra of X can be generated by the system

of compact subsets of X .

• If X is a metric space possessing a countable basis, Borel σ-algebra of X can be generated by that

basis.

If not otherwise stated, when considering topological spaces, we shall mostly equip those spaces with the

corresponding Borel σ-algebra.

We are now ready to define measures properly as follows: Let pX,Σq be a measureable set. A measure

on X is defined as a function µ : Σ Ñ R fulfilling the following properties:

• µ ¥ 0

• µpHq � 0

• for pairwise disjoint countable families of sets tEku contained in Σ, it holds: µpYkEkq �
°
k µpEkq.

The triple pX,Σ, µq is called measure space. µ is called non-zero if µpAq � 0, @A P Σ.

For each subset of a measureable space, one can canonically construct a measureable space: Let

pX,Σ, µq be a measure space, A � X a subset. pA, Σ|A , µAq is a measure space in its own right, where

Σ|A denotes the σ-algebra on the subset A, and µA denotes the restriction of µ to A, which is defined as:

µApEq :� µpAX Eq, E P Σ.

Furthermore, without mentioning, we equip the subset of a measure space with the canonical measure

space structure inherited from its superset.

Especially, for Borel σ-algebra, the following classes of measures is desired to be given:

Definition B.1 (Regular Measure). Let pX ,B, µq be a Borel measure space. Then, µ is said to be

regular, if µ fulfills the following conditions:

1. K � X compact ñ µpKq   8.

2. A P B ñ µpAq � inftµpUq : A � U, U openu.

3. U � X open ñ µpUq � suptµpKq : K � U, K compactu.

The second property in above definition is also called outer regularity, and the third inner regularity.

Regular measure is, to say in a sloppy way, a measure for which the measure every measureable sets

can be approximated from outer by open measurable sets and from inner by compact measureable sets.

Furthermore, the following measure is canonical to a Borel measureable space:

Definition B.2 (Borel measure). Let pX ,Bq be a measure space, where B is a Borel σ-algebra. A

non-zero measure µ is said to be a Borel measure, if all the Borel subset is µ-measureable, and µpAq   8,

for all compact A � X .

Some examples of measures which is of importance for us is given in the following:

• Let A P PpX q, where X is a countable set. µ which fullfills µpAq � #A if #A   8 and µpAq � 8
else, is a measure on X. Furthermore, µ is called counting measure.

96



B.2. Null Sets and Almost Everywhere Properties

• Lebesgue-Borel measure in RN , which assigns each element of Borel set in RN the corresponding

volume.

Let pX,Σq and pX 1

,Σ
1q be measureable spaces. A function f : X Ñ Y is said to be measureable,

if: @E P Σ
1

: f�1pEq P Σ. Notice that the measurability of a function depends only on the regarded

σ-algebras. So it is unnecessary to define measures in order to check that property. Rather, it is sufficient

to check the measurability of a function by observing the preimage of the sets generating the σ-algebra

of the target space of that function, i.e. a function f mapping between measureable spaces pX,Σq and

pX 1

,Σ
1q, whose generator of its σ-algebra Σ

1

is G, is measureable if and only if:

f�1pGq P Σ, @G P G.

As an easy implication of above equivalent description of measureable functions, all continuous functions

mapping between topological spaces, each is equipped with its corresponding Borel σ-algebra, are mea-

sureable. Furthermore it is not hard to see that (finite) composition of measureable functions yields again

a measureable function.

B.2. Null Sets and Almost Everywhere Properties

As we shall soon see, the following type of set in a measure space is ”negligible” in Lebesgue’s sense:

Definition B.3 (Null-set, Full measure set). Let pX ,Σ, µq be a measure space. Then A P Σ is said

to be a (µ-)null set, or set of measure zero w.r.t. µ, if µpAq � 0. A set F P Σ is said to be of full measure

if its complement is a null set.

We shall say simply null set, instead of µ-null set. In most cases, no confusion will be arised by this

convention.

To avoid some troubles, it is convenient to extend a measure space in the following way:

Definition B.4 (Complete measure space). A measure space pX ,Σ, µq is said to be complete, if

every subsets of µ-null set is contained in Σ and of measure zero. If pX ,Σ, µq is complete, then µ is said

to be complete.

To make this concept more comprehensible, consider the measure space R2, equipped with the usual

Borel σ-algebra, and the Lebesgue-Borel measure. Given a set A which is not measureable in R, e.g.

the Vitali set. The set A � t0u is not measureable w.r.t. to this measure space on R2, even though it

is evident that this set has to be of measure zero, since R2 � t0u is of measure zero. So, it stands clear

to ”extend” the σ-algebra, s.t. it contains A � t0u, and ”assign” this set the measure zero. Given any

measure space. It can be completed in the unique way by the following procedure:

Proposition B.1. Let pX ,A, µq be a measure space, and N the system of all subsets of µ-null sets.

Define:

• Ã :� tAYN : A P A, N P Nu

• µ̃ : ÃÑ R, µ̃pAYNq :� µpAq, for A P A, N P N.

Then Ã is a σ-algebra, µ̃ well-defined, and pX , Ã, µ̃q is a complete measure space.

The Lebesgue measure in RN can be seen as the unique extension of the Lebesgue-Borel measure in RN .

The integral w.r.t. a measure µ turns out to be insensible to changes on the µ-null set, provided that the

function is measureable. So, for purposes of measure theory, it is convenient to use the following term:
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Definition B.5 (Almost everywhere property). Let E be any reasonable property for elements of

a measure space pX,Σ, µq. E is said to hold (µ-)almost everywhere (abbreviated µ-a.e.) if there exists a

pµ�q zero set N P Σ s.t. E holds for all x P N c.

Some examples of the applications of almost everywhere property, which is used throughout this thesis,

is given in the following:

• For functions f, g : X Ñ Y , It holds that f � g a.e. on X if and only if there exist a zero set N s.t.

f |Nc � g|Nc .

• A function f : X Ñ F is a.e. bounded if and only if there exists a positive scalar α ¥ 0 and set N

of measure zero with |f |Nc | ¤ α.

Proposition B.2. Let pX,Σ, µq be a complete measure space, and f, g : X Ñ R be functions, which

agree pointwise almost everywhere on X. If f is measurable, then g is also measureable.

B.3. Lebesgue Integral

Let pX ,Σ, µq be a measure space. Consider a function f : X Ñ C. The idea behind the Lebesgue integral

is to compute the integral of f by approximating it with the integral of in some sense ”simple” functions.

In the following, we shall illustrate the corresponding method more explicitly:

Call a function ϕ : X Ñ C simple, if it is a finite linear combinations of characteristic functions of

measureable subsets of X , i.e. ϕ � °n αnχn, where tαnun is a finite collection of elements of C, and

tEnun is a finite collection of measureable subsets of X . The integral of such a simple function can

easily be defined by:
³
X φpxqdµ �

°
n αnµpEnq. The right side of the equality is defined, but may be

equal to 8. Furthermore, one can show that for another representation of φ, the integral of φ remains

equal, which shows that the integral definition is appropriate. For a measureable, non-negative function

f : X Ñ R one can show that there exists a monotone (increasing) sequence of simple functions tφnunPN
converging pontwise to f . By the monotonicity of tφnunPN, it follows that t³X φndµunPN is also monotone,

and converges in r0,8s. Thus, it stands clear to define the integral of such a non-negative function f by:»
X
fdµ :� lim

nÑ8

»
X
φndµ. (B.2)

Furthermore, for another monotone sequence of simple functions tφ̃nunPN converging pointwise to f , the

limits of the integral of the elements of that sequence coincide with above definition of the integral of

f , which asserts that above definition makes sense. Now, we can say that a non-negative function is

measureable, if its so-defined integral is finite. By analogue way, one can define integrability for general

measureable function: A function f : X Ñ Ĉ is said to be (µ-)integrable (over X ) if f is measureable and

if all of the four integrals: »
X

p<fq�dµ,

»
X

p=fq�dµ,

are finite, where each of the above four integrals over non-negative functions is defined as in (B.2). So,

the following expression:»
X

fdµ �
»
X

p<fq�dµ�
»
X

p<fq�dµ� i

»
X

p=fq�dµ� i

»
X

p=fq�dµ,

means the (µ-) integral of f over X or the Lebesgue integral of f over X . The properties of Lebesgue

integral can be looked up in standard textbooks, e.g. [14] and [10].
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B.4. Main features of Lebesgue spaces

Let pX ,Σ, µq be a measure space. For 0   p ¤ 8, we define the set Lp :� Lppµq :� LppX ,Σ, µq as the set

of measureable functions f : X Ñ C for which the expression
³
X |fpxq|pdµpxq is finite, i.e for which |f |p

is µ-integrable. It is convenient to associate the functional ‖�‖Lp : Lp Ñ R�, f ÞÑ ³X |fpxq|pdµpxq, with

Lp, 0   p ¤ 8. In case p � 8, L8 denotes the set of all measureable functions f : X Ñ C for which the

associated functional ‖f‖L8 :� ess sup
xPX

|fpxq| is finite, i.e. L8 consists of functions, which are bounded

almost everywhere. It is obvious that equipping Lp with the usual scalar multiplication and addition,

Lp, @0   p ¤ 8 becomes a vector space.

Some technical issues is needed to be concerned, when dealing with Lebesgue spaces: Notice that, for

each 0   p ¤ 8, ‖�‖Lp constitute just a semi-norm on Lp (‖f‖Lp � 0 for f � 0 a.e. ), and furthermore,

Lp equipped with ‖�‖Lp , cannot fulfill the Hausdorff separation axiom, since Lebesgue integral ignores

null sets (functions which differs almost everywhere is not distinguishable by the topology induced from

‖�‖Lp). To overcome those unwished properties, one may consider the quotient Lp � Lp{N Instead of

Lp, where N denotes the set of measureable functions f : X Ñ C, which are f � 0 µ-almost everywhere.

In other words, Lp consists of equivalence classes of functions, in which the elements differ on sets of

measure zero. Equipping Lp with canonical quotient vector space structure induced from Lp, and with

the norm ‖rf s‖Lp :� ‖f‖Lp , one can show that Lp becomes a Banach space, for all 1 ¤ p ¤ 8, and in

particular L2 is a Hilbert space (Riesz-Fischer Thm. asserts that Lp is complete, for each 1 ¤ p ¤ 8,

and one obtains immediately the same result for Lp, 1 ¤ p ¤ 8). Let Ω be a locally compact Hausdorff

space, and let Ω be equipped with Radon measure. It is well-known that the space of continuous function

with compact support CcpΩq is dense in LppΩq, for each 1 ¤ p ¤ 8.

Given a measure space X , and a measureable subset Ω � X . Let f : Ω Ñ C be given. A trivial

extension of f to X is defined as the function f̃ : X Ñ C, for which it holds: f̃
���
Ω
� f , and f̃pxq � 0, a.e.

x P X zΩ. Let 0   p ¤ 8. Furthermore, LppΩq can be seen as a subspace of the vector space LppXq, if

each function f P LppΩq is trivially extended to X . Furthermore, by this view, LppΩq is closed in LppΩq.
We shall use this issues throughout the thesis without mentioning. Now, consider again the Lebesgue

space L2pX q, and let L2pΩq, and L2pΩ1q be closed subspace of L2pX q. If Ω and Ω
1

are disjoint, then

obviously, L2pΩq and L2pΩ1q are orthogonal subspaces of L2pX q (w.r.t. x�, �yL2pX q). In addition, if the

union Ω and Ω
1

coincides with X , then L2pX q is isometric isomorph with the direct sum L2pΩq
Let Ω and Ω

1

be measureable subsets of X , which differs only in null set. There is an obvious isometric

isomorphism between L2pΩq and L2pΩ1q, viz. f ÞÑ f |Ω1 if Ω
1 � Ω, and f ÞÑ f̃ , where f̃ is any extension

of f , if Ω � Ω
1

.

B.5. Measure invariant mapping and induced Isometric Isomorphism

Definition B.6. Let pX ,Σ, µq and pX 1

,Σ
1

, µ
1q be measureable spaces. A measureable mapping φ : X Ñ

X 1

is said to be measure-preserving if:

@E P Σ
1

: µpφ�1pEqq � µ
1pEq.

If φ is invertible, and its inverse φ�1 is a measure-preserving mapping, then φ is called invertible measure-

preserving mapping.

It is not hard to see that the following holds true:

Proposition B.3. Let pX ,Σ, µq and pX 1

,Σ
1

, µ
1q be measure spaces. Then the following are equivalent:

(a) φ : X Ñ X 1

is a measure-preserving mapping.
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(b) For any f P L1pX 1q, it holds: »
X 1

fdµ
1 �
»
X

f � φdµ

Proof. The implication ”(b)ñ(a)”, is easy to show by setting f � χA, for any measureable subset A of

X 1

, and noticing that χA � φ � χφ�1pAq.
”(a)ñ(b)”: It follows immediately from the definition of measure preserving mapping, that (b) holds

for all characteristic function of the form χA, for A P Σ
1

. By some simple computation, the result holds

also for simple functions. Now we show the implication for any f P L1pX q. Since f can be decomposed

into real - and imaginary part, and in turn both parts can each be decomposed into positive and negative

part, it is sufficient to show the result for integrable non-negative function f ¥ 0, f P L1pX 1q. Let

tununPN be an monotone sequence of simple functions on X 1

which converges pointwise to f . Then it can

be shown that tun � φunPN is also an increasing sequence of simple function on X and that it converges

pointwise to the non-negative integrable function f � φ P L1pX 1q. Hence:»
X 1

fdµ � lim
nÑ8

»
X 1

fndµ � lim
nÑ8

»
X

fn � φdµ �
»
X

f � φdµ,

where the first - and the third equality follows from Monotone Convergence Theorem, and the second

inequality follows from the fact that the implication ”(a)ñ(b)” holds for any simple functions.

Proposition B.4. Let pX ,Σ, µq and pX 1

,Σ
1

, µ
1q be measure spaces. Given a measure-preserving map-

ping φ : X Ñ X 1

. For 1 ¤ p   8, define the mapping Uφ by:

Uφpfq :� f � φ, f P LppX 1q.

Then Uφ is an injective isometry from LppX 1q onto a closed subspace of LppXq.

Proof. Let 1 ¤ p   8. Given a function f P LppX 1q. Then |f |p defines a function on L1pX 1q, hence from

prop. B.3, the following holds: »
X 1

|f |pdµ
1 �
»
X

|f |p � φdµ �
»
X

|f � φ|pdµ, (B.3)

which shows that Uφf � f�φ is an element of LppX q. Since linearity of Uφ is obvious, we can conclude that

Uφ is an operator between LppX 1q and LppX q. Furthermore, (B.3) shows also that Uφ is an isometry, and

hence a bounded operator of norm 1. In addition, the norm equivalence between Uφf , for all f P LppX q
implies immediately that Uφ is injective (the inequality ‖f‖ ¤ c‖Uφf‖ is fulfilled with c � 1) and has

closed range (Bounded operators have always closed range).

To ensure that the Koopman operator related to a measure-preserving mapping is isometric isomorphic,

one has the following sufficient condition:

Proposition B.5. Let pX ,Σ, µq and pX 1

,Σ
1

, µ
1q be measure spaces. Given a measure-preserving map-

ping φ : X Ñ X 1

. If φ is bijective, and its inverse φ�1 is measureable, then Uφ is a unitary equivalence

between L2pX 1q and L2pX q. Furthermore, the inverse is given by U�
φ � Uφ�1 .

Proof. One may simply modify Thm. 2.8 in [55] to our setting, and subsequently see that above statement

is an implication of that.
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C.1. Basics on Group Theory

In the following, we recall some group theoretical basics indispensable for the main approach.

Definition C.1 ((Abelian) group). Let G be a set, and � : G � G Ñ G be an operation on G. We say

pG, �q is a group if � fulfills the following properties:

• (Associativity) @x, y, z P G: px � yq � z � x � py � zq

• (Existence of a neutral element): De P G: e � a � a � a � e

• (Existence of inverse): @a P G : Da1 P G: a � a1 � e � a
1 � a.

Furthermore, if � is in addition commutative, i.e.:

@x, y P G : x � y � y � x,

then pG, �q is called abelian.

The neutral element is also called identity or unit. If it is clear from the context, pG, �q is written simply G.

We say a group is a multiplicative/additive, if the corresponding operation is a multiplication/addition.

We say G is a group w.r.t. the operation � defined on G, if pG, �q is a group. We say G is written mul-

tiplicatively/additively if the corresponding operation is written multiplicatively/additively, respectively.

The unit in a group G written multiplicatively or additively is sometimes denoted by 1 or 0, respectively.

If necessary, the unit of a group G is emphasized by the subscript G. Unless otherwise stated, all the

groups occuring in this section are written multiplicatively. For an element g of a group G, the notation

gn, for n P N, stands commonly for the multiplication of n-copies of g, also called n-power of g, for

�n P N, the multiplication of n-copies of g�1, and especially for n � 0, gn is equal to the identity of G.

Furthermore, the rule gmgn � gm�n, for m,n P Z, holds. Analogously, the n-power of an element g of

an additive group G, denoted by ng, can be established.

For a finite sequences of groups, one can define the following group structure, suitable for the cartesian

product structure:

Definition C.2 ((Outer) Direct Product). Let tGnunPrNs be a finite sequence of groups, each written

multiplicatively, where en is the identity of Gn, for each n P rN s. The cartesian product of those groups

is defined by:

G :�
¹
nPrNs

Gn :� G1 � � � � � GN :� tpa1, . . . , aN q : an P Gn, @n P rN su.

G equipped with the composition written multiplicatively:

pa1, . . . , aN qpb1, . . . , bN q :� pa1b1, . . . , aNbN q,

the inversion:

pa1, . . . , aN q�1 :� pa�1
1 , . . . , a�1

N q,
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forms a group called (outer) direct product of tGnuPrNs, where the corresponding identity is pe1, . . . , eN q

It is not hard to see that a direct product of groups is indeed a group.

In a group G, there may be a subset of G, which is itself a group w.r.t. the operation on G restricted

to that subset:

Definition C.3 (Subgroup). Let pG, �Gq be a group, U � G, and �U the restriction of �G to U � U .

pU, �U q is said to be a subgroup of pG, �Gq (written U ¤ G), if pU, �U q fulfills the group axioms. Let now

G be written multiplicatively. One can define alternatively, U ¤ G if:

• @x, y P U : xy P U

• @x P U : x�1 P U

• @x, y P U : xy�1 P U

It is obvious that the neutral element of U coincides with that of G. Given a subset X � G. With X,

one can associate the following subgroup:

xXy :�
£

X�U¤G
U, (C.1)

which is called the subgroup generated by X. One could also say: xXy is generated by X. If a group is

generated by a finite subset, then this group is called finitely generated. A group is called cyclic if it is

generated by a set of 1 element. A subgroup of a group G which is generated by non-empty X � G can

be alternatively described as finite products of elements of X YX�1:

xXy � t
¹
kPrns

xk : n P N, xk P X YX�1, @ku. (C.2)

In case G is abelian, the subgroup of G, which is generated by finite subset tanu of G can alternatively

be written by:

xtanuy � t
¹
n

aνnn : νn P Z, @nu. (C.3)

Furthermore, it is not hard to see that indeed:

xtanuy �
¹
n

xany. (C.4)

A subgroup H of a group G is said to be normal if it commutes with all elements of G, i.e. gH � Hg,

@g P G.

Later, we shall often use the following notations:

Notations 5. Let pG, �q be a group, A,B � G, n P N0. We define:

• A �B :� ta � b : a P A, b P Bu

• A0 :� teu

• A�1 :� ta�1 : a P Au

• An�1 :� An �A

• A�n :� pAnq�1
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Let G1 and G2 be groups, both written multiplicatively. φ : G1 Ñ G2 is said to be a (group) homomor-

phism if @g, h P G1 :

φpghq � φpgqφphq.

A (group) isomorphism is defined as a bijective group homomorphism, a (group) monomorphism as an

injective group homomorphism, and a (group) epimorphism as a surjective group homomorphism. Some

important properties of homomorphisms are summarized in the following lemma:

Lemma C.1. Let φ : G1 Ñ G2 be a homomorphism between two groups. Then the following holds:

• Homomorphisms maps the identity to identity, i.e. φpe1q � e2, where e1 is the identity in G1, and

e2 in G2.

• The image of a power under homomorphisms is again a power, in the sense that @g P G1, n P
Z : φpgnq � φpgqn.

• The image of a subgroup undera homomorphism is again a subgroup, i.e. H ¤ G1 ñ φpHq ¤ G2.

• The preimage of a subgroup under homomorphisms is again a subgroup, i.e. H ¤ G2 ñ φ�1pHq ¤
G1.

The kernel of a group homomorphism φ : G1 Ñ G2 is defined as the set:

kerpφq :� th P G1 : φphq :� e2u.

From above lemma, one gets immediately that kerpφq ¤ G1. A group homomorphism is said to be a

(group) isomorphism if it is bijective.

Each U ¤ G of abelian G induces the following set:

Definition C.4 ((left) Coset). Let U ¤ G. Then, for x, y P G, x � y :ô xU � yU defines an

equivalence relation on G. For x P G, we define the set of equivalence class rxs :� xU of x P G w.r.t. �
as the coset of U w.r.t. x.

The right coset can be defined analogously, by taking the multiplication by elements of G from the right

side. If there is a possibility for confusion, we write rxsU instead of rxs. Since we will later consider mostly

Abelian groups, it is unnecessary to make a distinction between left and right cosets. All the preceding

statements respective for general groups will be declared for the left operation, if not otherwise stated,

the ”right” version of the preceeding definition is to be analogously defined and the ”right” version of

the preceeding statements holds also .

The following property of cosets can be easily shown:

Lemma C.2. For U ¤ G and elements a, b P G, it holds:

• aU � U ô a P U

• aU � bU ô a�1b P U

• aU X bU � Hô aU � bU

Clearly, a cosets aU , a P G, of a subgroup U , gives a partition of the group G in the way, s.t.: G � �aPG aU ,

where 2 cosets is either disjunct or equal. This suggests the following definition:

Definition C.5. Let U ¤ G. The quotient group G{U is defined as:

G{U :� trxs : x P Gu,

equipped with the multiplication pxU, yUq ÞÑ pxUqpyUq � xyU .
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In other words, a quotient group is the set of all equivalence classes of elements of G w.r.t. a subgroup

U . It is obvious, that G{U with the operation: pxU, yUq ÞÑ pxUqpyUq � xyU is indeed a group. For

some cases, it is convenient to define a representation system, in form of a subset D � G called (left)

transversal, for the cosets in a quotient group G{U , in the sense that @rxs P G{U : #pD X rxsq � 1. The

mapping which send each element of a group G to its equivalence class in G{U , where U ¤ G, is called

canonical homomorphism.

If not otherwise stated, G and H, each written multiplicatively, stand in the following for groups.

C.2. Topological groups

As usual, the elements of a topology are defined as open sets. For ease of notations, most of the considered

groups are written multiplicatively. If not otherwise stated, the results introduced in this section hold also

for the other side of the operation. A notion which connects topological - and group idea is introduced

in the following definition:

Definition C.6 (Topological Group). Let G be a group written multiplicatively, which is also a topo-

logical space. G is said to be a topological group, if the multiplication G � G Ñ G, px, yq ÞÑ xy, and the

inversion G Ñ G, x ÞÑ x�1 is continuous.

A set U in a topological group is said to be symmetric, if U � U�1. The following lemma gives some

elementary properties of topological groups:

Lemma C.3. Let G be a topological group, with identity e. Then the following statements hold:

(a) For any g P G, the left - and the right translation by g are homeomorphism. Also the inversion is a

homeomorphism.

(b) The neighborhoods of any point in G is fully described by the neighborhoods of the identity, i.e.

U � G is a neighborhood of g P G if and only if g�1U is a neighborhood of e.

(c) All neighborhoods of the identity is closed under inversion, i.e. if U is a neighborhood of e then U�1

is a neighborhood of e. Furthermore, every neighborhood U of the identity contains a symmetric

neighborhood of the identity, viz. U X U�1

(d) Given a neighborhood U of the identity e. Then there exists a neighborhood V of e s.t. V 2 � U

(e) If A,B � G are compact, then AB is compact.

(f) If A � G is open and B is arbitrary, then AB is also open.

(g) If A � G is closed and K � G is compact, then AK is closed.

the statements (a), (b), and (c) in above lemma are immediate consequences of continuity of the multi-

plication and inversion of elements of a topological group. The proof of statement (d) can be found e.g.

in (4.5) Theorem in [24]. The proof of statements (e), (f), and (g) can be found e.g. in (4.4) Theorem

in [24]. From statement (e) and by induction, one can easily see that compact subsets of a topological

group is closed under finite multiplication. From statement (f) and by induction, one gets also that open

subsets are closed under finite multiplication. It is easy to see that the statement (d) can be generalized

as follows: For each neighborhood U of the identity, and k P N, there exists an neighborhood V of the

identity s.t. V k � U . Furthermore, from (c) and the definition of neighborhood, one can assume V , if

required, to be open, symmetric, (logical-)or compact.

Given a symmetric neighborhood of the identity of a topological group. One can construct a subgroup

of this topological group as follows:
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Proposition C.4. Let U be a symmetric neighborhood of the identity e of a topological group G. Then

H � �nPN V n is an open (and hence also closed) subgroup of G

Proof. Let n,m P N, and U a symmetric neighborhood of e. For x P Un and y P Um, it clearly holds

xy P Un�m, and also x�1 P Un, since U is symmetric. Hence H is a subgroup of G. To show that H is

open, take an arbitrary h P H. h is contained in Un, for some n P N. For the neighborhood hU of U ,

we obtain: hU � Un�1 �. So, for each h P H, there exist a neighborhood, e.g. hU , contained in H, and

correspondingly H is open. From prop. H is also closed.

We give in the following the notions of mapping between topological groups:

Definition C.7 (Continuous Homomorphism and Topological Group Isomorphism). Let G1 and

G2 be topological groups. A map f : G1 Ñ G2 is said to be a continuous homomorphism (or topological

group homomorphism), if it is a group homomorphism and continuous. An injective (resp. surjective)

topological group homomorphism is called a topological group monomorphism (resp. epimorphism). If

f is both, a group isomorphism, and a homeomorphism, then it is said to be a topological group isomor-

phism. f is said to be a topological group embedding, if f is a topological group isomorphism between

the domain - and the range of f .

In most cases, when considering mapping between topological groups, we shall say simply write homo-

morphism (resp. isomorphism, monomorphism, embedding) instead of topological group homomorphism

(resp. - isomorphism, monomorphism, embedding). Notice the difference of this terms with the group the-

oretic - and topological terms of the same name. When speaking about topological groups, we shall further

call the latter terms as algebraic homomorphism (resp. - isomorphism, - monomorphism, -epimorphism),

and topological embedding.

By the fact that the restriction of continuous mapping (in particular the group operation) is itself

continuous w.r.t. the relative topology, one obtains immediately the following statement:

Proposition C.5. Let G be a topological group, and H be a subgroup of G. Equipped with the topology

relative to G, H becomes itself a topological group.

If not otherwise stated, we shall always equip subgroup of a topological group with the subspace topol-

ogy. A subgroup H of a topological group G equipped with the subspace topology inherited from G is

automatically closed in G:

Proposition C.6. Let G be a topological group, and H a subgroup of G. If H is open, then H is also

closed.

Proof. Let txiuiPI be a (right) transversal of H in G. By openness assumption of H, it follows immediately

that each tHxiuiPI is open. Clearly for a i0 P I, Hxi0 � H. Hence, one can write G as the disjoint union

G � H
�
iPJ Hxi, where J :� Izti0u. So, in G, H is complement of an open set, and therefore closed.

The following proposition asserts that a topological group possessess a ”good-natured” structure, since

its topological informations can be induced from the topological structure of the neighborhoods of the

identity, and since continuity of a homomorphism can be induced from the its continuity at the identity.

Proposition C.7. Let G1 and G2 be topological groups, and let φ : G1 Ñ G2 be a group homomorphism.

Then the following holds:

(a) Let x P G1 (In particular x � e1, where e1 is the identity of G1), tgU : g P G1, U P NG1
upxq, where

NG1
pxq denotes the set of all neighborhoods x in G1, is exactly the topology of G1

(b) φ is continuous if and only if φ is continuous at any point in G1, in particular at the identity of G1.
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Specifically, one obtains the following characterizations of the structure of a topological group induced

from its local property:

Proposition C.8. Let G be a topological group. Then the following holds:

• G is locally compact if and only if there is one point of G possessing a neighborhood base of compact

sets.

• G is locally (path) connected if and only if there is one point of G possessing a neighborhood base

of open, (path) connected sets.

• G is locally euclidean if and only if there is one point of G with a neighbourhood homeomorphic to

an open subset of RN .

• G is discrete if and only if there is one point of G which is isolated.

The following proposition gives among others the behaviour of a topological group under quotient:

Proposition C.9. Let N be a normal subgroup of a topological group G. Equipping the quotient group

the quotient topology induced by the canonical quotient homomorphism q : G Ñ G{N , then the following

holds:

(a) G{N becomes a topological group, and q is under this circumstances continuous and open.

(b) G{N is discrete, if and only if N is open.

(c) If N is in addition compact, then q is also a closed map.

Now, let G1 be an another topological group, and f : G{N Ñ G1 be an algebraic homomorphism. Then

f is continuous, if and only if f � q : G Ñ G1 is continuous.

In particular, we shall always equip quotients of topological groups of the form G{N , where N is normal,

and shall always see G{N as a topological group. The following proposition, asserts in some sense the

invariant of locally compactness under quotient:

Proposition C.10. Let G be a locally compact group, H ¤ G a closed normal subgroup of G, and

q : G Ñ G{H the canonical projection. Then the following statements holds:

(a) G{H is locally compact

(b) For a compact subset B � G{H there exist always a compact subset K � G{H, s.t. ppKq � C.

The following proposition is due to Frobenius, which constitute an analogy to the useful First Isomor-

phism Theorem of group theory:

Proposition C.11. Let G and G̃ be topological groups, and let f : G Ñ G̃ be an epimorphism. Consider

the canonical homomorphism q : G Ñ G{ ker f , then the unique homomorphism f̃ : G{ ker f Ñ G̃, for

which f � f̃ � q holds, is a continuous algebraic isomorphism. Furthermore, f1 is an (topological group)

isomorphism, if and only if f is open.

In contrast to the First Isomorphism Theorem, found in group theory, openness requirement on f is

necessary to ”factorize” f through quotient. Above proposition can easily shown by involving basic

properties of open maps and quotient of topological groups. The following easy application of above

proposition might be helpful for later approaches. In particular, it say roughly that quotient of topological

groups are invariant under topological group isomorphism:
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Corollary C.12. Let G and G1 be topological groups, and f : G Ñ G1 an isomorphism between them.

For each normal subgroup N ¤ G, fpGq{fpNq � G1{fpNq is top. group isomorphic to G{N .

Proof. It can easily be shown that fpNq is a normal subgroup of G1. Accordingly, the canonical quotient

algebraic homomorphism q : G1 Ñ G1{fpNq is continuous, surjective and open by prop. C.9. As a

composition of two continuous, surjective and open algebraic homomorphism, f̃ :� q � f fulfills also the

properties. Furthermore, it holds ker f̃ � ker q � N . Hence, by prop. C.11, the desired statement holds.

Lemma C.13. Let be G a locally compact group. If G is compactly generated, then there exists a

relatively compact neighborhood of the identity which generates G.

It can be shown, that the product of arbitrary number of topological groups equipped with suitable

topology is also a topological group:

Proposition C.14. Let tGiuiPI be a family of topological groups. The product G :�±iPI Gi, equipped

with the product topology, is also a topological groups.

Considering product of topological groups, we shall always equip it with product topology, and see it as

a topological group.
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