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Abstract

Complex large-scale networked systems are incorporated in widespread structures in our

society. Prominent examples are the economic market, traffic systems, and the internet.

Moreover, they constitute the foundations of several important current and future ap-

plications. Examples are the Internet-of-Things, wireless sensor networks, supply-chain

management, cooperative robotics, and many more. The challenge involved with the emer-

gence of such systems is to understand their dynamics and to coordinate their components

toward achieving a desired global objective. In doing so, we consider three different so-

cial levels: First, the macroscopic level referring to the system as a whole; Second, the

mesoscopic level relating to the clusters of the components; Third, the microscopic level

relating to the individual components.

In the first part of this thesis, we focus on the setting of selfish learning agents from

the game-theoretic point of view. Assuming that the underlying game is aggregative,

we study the extent to which the lack of agents’ knowledge about the global change of

the populations’ state is acceptable for the population of learning agents so that it still

reaches the underlying equilibrium state - Wardrop equilibrium. Subsequently, we design

a decentralized pricing mechanism providing the agents incentives for resource sustain-

able behavior. Using tools from the variational analysis and martingale theory, we provide

mechanism parameter choices leading the population to the generalized variational equi-

librium of the underlying game with the coupled constraints. In doing so, our emphasis

is on the non-asymptotic guarantees.

In the second part of the thesis, we restrict our view to a single learning agent. Driven by

the aim to solve the problem of online learning with (resource) constraints, we introduce

a new aggregate constraint violation measure called h-CFit. This measure motivates us

to design an efficient online learning method minimizing the regret and having a tighter

constraint violation guarantee then state of the art.

In the third part of the thesis, we consider the problem of locally-cooperative con-

trol of a multi-agent system. At first, we concern with distributed optimization in a

networked system. Utilizing the theory of stochastic differential equations, we analyze

the continuous-time distributed subgradient algorithm by deriving a non-asymptotic high

probability and expectation bound for the distance of the average function value of the it-

erates of the agents providing suggestions of parameter choices leading to the algorithm’s

success. The rest of the last part of the thesis is devoted to the investigation of the

cluster behavior of the opinion of a population of informational biased communicating
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agents. We introduce the novel notion of substochastic complementation, which gives an

efficient way to part the network into clusters and allows us to quantify the degree of the

clusterness of the agents’ opinion.
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Zusammenfassung

Komplexe, im großen Maßstab vernetzte Systeme sind Bestandteil vieler Strukturen in un-

serer Gesellschaft. Prominente Beispiele von solchen Strukturen sind die Marktwirtschaft,

das Internet und die Verkehrssysteme. Ebenfalls, bilden solche Systeme die Grundlage

vieler gegenwärtiger und zukünftiger Anwendungen, die einen großen Einfluss auf unser

Leben haben, bzw. haben werden. Beispiele sind Internet der Dinge, drahtlose Sen-

sornetzwerke, Versorgungskettenmanagement, kooperative Roboter und vieles mehr. In

dieser Arbeit, beschäftigen wir uns mit zwei Herausforderungen, die mit solchen Sys-

teme auftreten: das Verstehen des zugrunde liegenden Dynamik und die Koordinierung

der Komponenten zu einem gewünschten globalen Zielzustand. Dabei betrachten wir

drei hierarchische Systemebenen: Die makroskopische Ebene, die das System als Ganzes

beschreibt; die mesoskopische Ebene, die die einzelnen Gruppen der Komponenten beschreibt;

die mikroskopische Ebene, die die individuelle Komponente in Detail betrachtet.

In dem ersten Teil dieser Arbeit konzentrieren wir uns auf die Konfiguration der lernen-

den Agenten aus spieltheoretischer Sicht. Mit der Annahme, dass das zugrundeliegende

Spiel aggregativ ist, untersuchen wir, in welchem Maße Agentenunwissenheit über globale

Veränderungen des Populationszustands erlaubt ist, sodass das System der Agenten das

Equilibrium des Spiels (Wardrop Equilibrium) dennoch erreicht. Nachfolgend entwerfen

wir für allgemeine Spiele einen dezentralisierten Preismechanismus, der den Agenten An-

reize für Ressourcen-nachhaltiges Verhalten gibt. Wir liefern Parameterwahlen, die die

Population zu dem generalisierten Nash Equilibrium des zugrundeliegenden Spiels mit

gekoppelten Beschränkungen führen. Dabei nutzen wir Werkzeuge der Variationsanalysis

und der Martingaltheorie. Unser Schwerpunkt liegt auf nicht-asymptotischen Garantien.

In dem zweiten Teil der Arbeit beschränken wir unsere Sicht auf einen einzelnen Agenten

und betrachten dabei das Problem dessen Lernens mit Nebenbedingungen. Dabei führen

wir ein neues Maß für seine aggregierten Verletzungen, genannt h-CFit, ein. Dieses Maß

erlaubt uns eine effiziente Methode für das Onlinelernen bereitzustellen. Die Methode

minimiert die Reue des Lernenden und bietet eine Garantie für Bedingungsverletzungen,

die präziser im Vergleich zu anderen aus der aktuellen Forschung ist.

Der dritte Teil dieser Arbeit ist dem Problem der lokal-kooperativen Steuerung eines

Mehragentensystems gewidmet. Als Erstes betrachten wir das Problem der verteilten

Optimierung in einem vernetzen System. Mithilfe der Theorie der stochastischen Dif-

ferenzialgleichungen analysieren wir eine stochastische Version der zeitkontinuierlichen

verteilten Subgradienten Methode und leiten eine nicht-asymptotische hoch wahrschein-
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liche Schranke sowie Erwartungsschranke für die Distanz zwischen dem Durchschnitts-

funktionswert des Agenten Iterierten und dem optimalen Funktionswert her. Die Schranke

liefert Empfehlungen von Parameterwahlen, die den Erfolg des Algorithmus garantieren.

In dem Rest dieses Teils untersuchen wir das Verhalten der Meinungsdynamiken einer

Population, die dem Einfluss von informationeller Voreingenommenheit unterliegt. Wir

führen den neuen Begriff der substochastischen Komplementation ein. Dieser Begriff stellt

einen effizienten Weg bereit, um das Netzwerk in Gruppen zu separieren. Außerdem er-

laubt dieser uns den Grad der Gruppenartigkeit der Agentenmeinungen zu messen.
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1. Introduction

Networked System in the Society and Technical Applications Large-scale interaction

or relation in the form of a network between different entities has become a characteristic

of several parts of our society. For instance, our economic market consists of enterprises

(suppliers, focal company, customer) networked by flows of products, services, informa-

tion, and financial means. Moreover, the mutual interference between the firms in the

form of external economies/diseconomies (see, e.g., [1]) gives rise to another interaction-

based structure. Another example is the relationship between political and social actors,

which can be modeled employing a network, providing several advantages for the corre-

sponding field of study (see, e.g. [2–4]. Also, the interaction-based view is indispensable

for a vast number of groundbreaking present and future technical applications. A few

examples are:

• The wireless sensor network offers low-cost efficient and robust solution for several

important monitoring tasks such as military target tracking and surveillance, natural

disaster relief, biomedical health monitoring, and seismic sensing (see, e.g., [5]).

• The network of cooperative aerial or ground robots provides solutions for several so-

cietal tasks, e.g., search and rescue operations in post-disaster environments, surveil-

lance, factory automation, and logistics (see, e.g., [6–10])

• The smart grid, i.e., the power network composed of autonomous communicating

intelligent nodes, is expected to improve the efficiency, reliability, and robustness of

power or energy grids (see, e.g., [11, 12]).

• Wireless network users compete for base station utilization and generate in this way

a network of Quality-of-Service externalities [13].

• The Internet-of-Things [14] shapes the interaction of a large number of heteroge-

neous and physically distributed sensing devices, communication technologies, and

required services, enabling promising future concepts such as the concept of the

smart city [15].

Modeling a Networked System as a Multi-Agent System – Cooperative vs. Non-

Cooperative All the systems mentioned above have the similarity that they consist of a

compound of subsystems or agents. Typically, those agents are autonomous in the sense

1
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that there is no direct intervention of superordinate bodies. Because if such instances

exist, then surely the tasks they have to fulfill are of high complexity due to the typical

number of subsystems. Moreover, by the scale reason, same as the latter, it is appropriate

to assume that the agents are not fully aware of the state of the whole complex system.

Besides this similarity, there is one principle difference between those multi-agent systems

leading to their categorization into cooperative and non-cooperative multi-agent systems.

The main feature of a cooperative multi-agent system is that the interaction between

agents is active, in the sense that they can communicate with each other. This feature

allows the agents to interchange local information to infer global unknowns. For instance,

in the wireless sensor network applications, each of the low-cost sensors can collect local

data such as temperature, illuminance, or sound/level, to monitor the environment (see,

e.g., [16]). The agents’ communication feature can also be used to fulfill a global objective,

such as done in the robotic network applications, where, e.g., drones swarm coordinate

with each other to perform a search and rescue mission [17].

In contrary to the cooperative systems, the agents in a non-cooperative multi-agent

system cannot interact directly via communication. So they are no able to self coordinate

toward a mutual goal. The interaction between agents in such systems is on the bene-

fit/cost level, in the sense that the action of an agent influences the benefit/cost structure

of other agents. For example, in the wireless network applications where the users aim to

optimize their transmission quality by adjusting the corresponding transmission power,

the transmit power allocation of a user affects the transmission quality of other users

because of transmission interference [13]. Another example of a non-cooperative multi-

agent-system is the system of competitive firms in the economic market: The firms aim to

optimize their earning by choosing their production output of a good while the production

output of good affects the price of the good and consequently the earning of all the firms.

Machine-Learning Paradigm in Multi-Agent Systems Machine learning enables a sys-

tem to deduce knowledge automatically. It designs a program/model for a given applica-

tion that fits the data. This paradigm goes beyond the traditional programming paradigm,

where programs are written to automate tasks specific to the corresponding application.

For this reason, machine learning is capable of making techniques in widespread real-

world applications efficient, flexible, resilient, and scalable. For instance, it has dramati-

cally improved the field of medical imaging and computer-aided diagnosis, facilitating the

healthcare sector (see, e.g., [18, 19]). Moreover, Search engines, which are indispensable

tools for daily life, extensively use machine learning for tasks such as query suggestions,

spell correction, web indexing, and page ranking [20,21]. Also, applications, where usually

multi-agent systems occur, take advantage of machine learning. For instance, the field of

communication looks forward to applying machine learning techniques for the design of

the future communication system, which is essential for the progress of other applications

such as vehicular technology [22]. The progress in the field of robotic is unimaginable

2
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without machine learning [23,24]. Furthermore, as we look forward occupy more aspects

of our lives with smart multi-agent technologies, ranging from home automation to au-

tonomous vehicles, ML techniques will become increasingly crucial by aid the systems in

decision making, analysis, and automation.

Challenges One of the main challenges related to multi-agent systems is to understand

their behavior for the sake of eliminating the possible drawbacks occurring in their opera-

tion. One aspect toward this direction is to investigate the robustness of the system against

possible error in the form of malicious agents’ behavior (e.g., fake news) or imperfectness

of the information obtained from the agents’ environment (e.g., other agents or adver-

sary nature). Another essential aspect is understanding the propagation of interaction

within the population of agents, whether cooperative or non-cooperative. Another main

challenge related to multi-agent systems is to design for a specific population-wide goal,

such as efficiency and sustainability of a system, a control rule leading the agents toward

the achievement of the goal. However, the control rule has to meet modern technologies’

requirements, such as low complexity, scalability, privacy-preserving, and efficiency of in-

formation usage. Also, an important aspect is to involve present promising paradigm into

consideration, such as the paradigm of machine learning.

Goal of this Thesis Our goal is to address above challenges with the following emphasize:

In the first part of the thesis, we focus on robustness analysis and control mechanism

design of non-cooperative learning agent systems; In the second part, on the design of an

efficient algorithm for a single agent; and in the third part, on efficient algorithm design

and structural analysis of cooperative systems.

1.1. Outline and Contributions

1.1.1. Part I: Resource Sustainable Robust Online Learning in Games

In the first part of this thesis, we study systems composed of non-cooperative strategic

online-learning agents. Our aim is twofold. First, we want to understand the extent to

which the feedback disturbance due to the lack of a global view is allowable, for that

such a system is still stable. Second, we want to design an incentive control mechanism

based on the state of the resources aiming to foster sustainable behavior in such systems

of selfish learning agents. The outline and our contributions in this part of the thesis are

explicitly stated in the following:

• In Chapter 3, we consider the class of games, called aggregative games, with the

feature that the payoff of each player can be expressed to depend on his action and

the aggregate of the population’s action. This class of games serves as a model for a

vast number of engineering fields, including signal processing and communications,

3
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such as communications, smart grid, and congestion control. We study the case,

where the agents are unaware of the change of the aggregate, and where additionally

they have only an estimate rather than the actual value of the aggregate. Our main

contribution in this chapter is a mild sufficient condition on the learning agent’s

estimate of the aggregate depending on the step size, such that the population

converges to the Wardrop equilibrium.

• Chapter 4 deals with general non-cooperative games, underlying coupled (resource)

constraints. We assume that the players are learning agents who have merely noisy

first-order utility feedback. This setting constitutes a model for widespread modern

large-scale applications where the action of instances impacts the increase of scarce

resources’ congestion. Motivated by the aim to establish sustainable behavior by

ensuring the fulfillment of the coupled constraints, and the aim to establish a stable

population state, we propose a novel decentralized pricing mechanism via augmen-

tation of the game’s Lagrangian. For polynomially decaying learning agents’ step

size/learning rates, we provide a theoretical guarantee for achieving the latter aims

by showing the almost sure convergence of the population’s dynamic to the corre-

sponding generalized Nash equilibrium. Also, investigate the finite-time quality of

the proposed algorithm by giving a non-asymptotic time decaying bound for the

amount of resource constraint violation and the distance between the population’s

state and the generalized equilibrium.

• In Chapter 5, we extend our contributions in Chapter 4 by introducing an additional

parameter in the proposed price mechanism reflecting the agents’ price sensitivity.

We show theoretically that, to a particular extent, the agents’ sensitization for the

prices results in sustainable behavior. We show this by providing a sub-linear bound

for the aggregate of the constraint violations. Furthermore, we show numerically

that over sensitization of the agents for prices results in a population’s behavior

contrary to resource sustainability.

• In Chapter 6, we turn our attention to the class of congestion games, which con-

stitutes a model for many resource allocation problems, such as network routing

problems and wireless channel allocation problems. Based on the assumption of

rational non-cooperative cost-oriented (and not feedback oriented) agents, we pro-

pose a novel resource-centric dynamic pricing, that offers the system participants

appropriate incentives to adhere to the resource constraints. We show theoretically

and numerically that the proposed pricing mechanism ensures the sub-linear decay

of the average violation of the capacity constraints. Also, we show that, although it

does not use specific information about the agents, our pricing mechanism does not

significantly affect the agents’ welfare and may even result in the latter’s improve-

ment.
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1.1.2. Part II Online Decision-Making with Emphasize on the

Noise-Robustness and Sustainable Behaviour

The second part of this thesis is devoted to the microscopic aspect of the multi-agent

systems and the study of online learning agent problems with constraints. Driven by the

drawback of state of the art algorithms, concentrating on establishing sub-linear growth

of the merely cumulative long-term constraint violations, we introduce a new tighter

performance measure called h-CFit. We propose a class of non-causal algorithms for

online-decision making, which guarantees, in slowly changing environments, sub-linear

growth of this quantity despite noisy first-order feedback. We demonstrate by numerical

experiments the performance gain of our method relative to state of art.

1.1.3. Part III: Distributed Coordination Algorithms

In contrast to the first part of this thesis, we study in the third part of this thesis, locally

cooperative multi-agent system where neighboring agents can exchange information. Our

main aim is to understand how perturbations in the form of noise and extrinsic opinion

influence, such as fake news, affect such systems’ global behavior. The specific outline

and the contributions of this part are as follows:

• In Chapter 8, we consider the problem of distributed optimization. For finding the

solution to this problem, we propose a novel variant of continuous-time distributed

gradient descent algorithm, where the gradient is subject to Gaussian noise contam-

ination. Our object of study is the influence of the underlying model parameters,

i.e., the function’s parameters and the connectivity of the agents, the parameters

of the dynamic, i.e., the step size/gradient weight and the communication strength

between the agents, and the volatility of the noise process, to the success of the

algorithm. Our main contribution is a bound quantifying the decay of the distance

between the agents’ objective value and the consensus optimum, both in expectation

and high probability.

• In Chapter 9, we study the impact of extrinsic influence in the form of informational

bias, e.g., fake news, to the population’s opinion. Our main aim is to formally show

that informational bias results in the establishment of mesoscopic stability, meaning

that the population’s opinion is cluster-dispersive. Toward this direction, we propose

the novel notion of substochastic complementation, which provides an efficient way

to approximate the population’s dynamic by cluster dynamics. Motivated by this

notion, we propose a novel measure for cluster-dispersion of opinion dynamic in the

face of the informational bias and analyze it for several limit cases of disturbances

by informational bias.
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1.3. Basic Notations and Notions

Numbers, Vectors, and Matrices For n P N0, rns (resp. rns0) denotes the set of

integers between 1 (resp. 0) and n. We use boldface to distinguish between vectors (or

sequence) and scalars and also between vector-valued and scalar valued functions. Upright

letters stand for functions and matrices. We write random variable by capital letter, but

capital upright letter stands for matrices. Given a vector/sequence x. xr denotes the

r-th member of x. We use the same notation for vector-valued function and random

vector/sequence. In case we have sequence of vectors Λ, we denote Λr
n as the r-th entry

of the n-th member. Inequalities with matrices is meant entrywise. We denote the vector

on RD with all entries equal to 1 by 1D. We denote the D ˆ D identity matrix by ID.

If the underlying dimension of the Euclidean space is clear, we sometimes write more

compactly 1 and I for 1D and ID.

Normed Space In this work, we always consider the usual Euclidean space RD. For a

convex subset A Ď RD, relintpAq denotes the relative interior of A, and if not otherwise

stated, }A} denotes the supremum of }x ´ y} over all x,y P A called the diameter of A
w.r.t. a norm } ¨ } on RD. The projection onto a closed convex subset A of RD is denoted

by ΠA. The dual norm of a norm } ¨ } on RD is denoted by } ¨ }˚. V˚ denotes the dual

space of the Euclidean normed space V “ pRD, } ¨ }q which is V˚ “ pRD, } ¨ }˚q.
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g : RD Ñ RD is said to be Lipschitz continuous on an a non-empty subset Z Ă pRD, }¨}q

with constant L ą 0 if }gpxq´gpzq}˚ ď L}x´z}, @x, z P Z. F is said to be monotone on

Z if xx1´x2,gpx1q ´ gpx2qy ď 0, for all x1,x2 P Z. If in the latter strict inequality hold

for x1 ‰ x2, then g is said to be strictly monotone. g is said to be c-strongly monotone

on Z if xx1 ´ x2,gpx1q ´ gpx2qy ď ´c}x1 ´ x2}
2, for all x1,x2 P Z.

Landau Notation Throughout this thesis, we often utilize the Landau asymptotic no-

tations such as O, o, Ω, Θ. To define those notations, let f, g : R Ñ R. We say that f

grows no faster than g asymptotically and write fptq “ Opgptqq (as tÑ 8) , if:

lim sup
tÑ8

fptq

gptq
ă 8,

i.e., there exists some positive constant c ą 0 such that |fptq| ă gptq for sufficiently large t.

Conversely, we say that f grows no slower than g asymptotically and write fptq “ Ωpgptqq

if:

gptq “ Opfptqq,

or equivalently, if:

lim sup
tÑ8

gptq

fptq
ă 8,

If we have both:

fptq “ Opgptqq and gptq “ Opfptqq,

we say that f grows as g we write fptq “ Θpgptqq. Finally, if:

lim sup
tÑ8

fptq

gptq
ď 0,

we write fptq “ opgptqq and we say that f is dominated by g. We sometimes also use the

Landau notation for Matrix-valued function, such as Aptq “ Opfptqq, where A : R Ñ

RD1ˆD2 and f : RÑ R. This means that }Aptq} “ Opfptqq, where } ¨ } denotes any matrix

norm. The same also holds for other Landau notations.
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2. Preliminaries

2.1. Online Learning

2.1.1. Generic Setting

The online learning [25] is an emerging paradigm aiming to solve the problem of sequential

decision making in an unknown and possibly adversarial environment. The setting is as

follows (see also Algorithm 2.1.1): Consider a time horizon T P N. At each time slot

t P rT s, the decision-maker takes an action xt from a prespecified set X . The environment

responds to the action xt of the decision-maker and charges the decision-maker the cost

ftpxtq, where ft is an apriori unknown loss function. Subsequently, the decision-maker

selects a new action xt`1 for the next stage t ` 1. In order to do that she might query

information about the present and/or the historical cost functions, such as the first-order

information, i.e., the gradient of the functions. We refer the way how the decision-maker

selects the future action in this context as online learning policy.

Algorithm 1 Generic Online Learning Process

Require: Action set X , time horizon T P N, loss/cost function ft : X Ñ R.
for t “ 0, 1, 2, . . . , T do

Take the action xt P X
Incur cost/loss ftpxtq
Update:

pxt, information about pfτ qτPrts0q ÞÑ xt`1 (2.1)

end for

The online learning method is ideally suited for application where the underlying prob-

lem is subject to unpredictable dynamic, such as dispatch of renewable energy having

intermittent and unpredictable nature, or network applications where the task to accom-

plish is subject to unpredictable human participation, or applications requiring flexibility

in handling heterogenity and scalability. Furthermore, applications requiring real-time

decision leverage from an online learning method since the given algorithm is usually

lightweight. For those reasons, online learning has become in the recent years a popular

method to solve several resource allocation and management problems in several engi-

neering fields such as economic dispatch in power systems [26, 27], data center schedul-

ing [28–30], electric vehicle charging [31, 32], video streaming [33], thermal control [34],

and fog computing in IoT [35–37].
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In online learning, the aim of the decision-maker is to minimize the so-called (cumula-

tive) regret defined as:

RT “ RT ppxτ qtPrT sq “
T
ÿ

t“0

ftpxtq ´ inf
xPX

T
ÿ

t“0

ftpxq.

In words the cumulative regret measures the sub-optimality of the cumulative loss of

the decision-maker with respect to the cumulative loss of the best action in hindsight.

More optimistic aim than regret minimization such as minimization of the present cost

function is in general in feasible, since in order to decide for the future action the decision-

maker only knows about the present cost function. One direction to achieve the aim of

regret minimization is by means of the so-called no-regret policy (see e.g. [38–40]). The

no-regret policy means in this context that during each round of the game, the agent

endeavors to choose an action such that the regret, i.e., the cumulative difference between

the instantaneous yields and the corresponding highest possible yields, grows slower than

the number of rounds and decays if averaged to zero as the game progresses. Specifically,

the no-regret policy comprises for any T P N methods to choose actions pxtqtPrT s according

to the procedure described in Algorithm 1 satisfying:

RT “ opT q.

In order to illustrate the concept of online learning, we provide in the following soma

examples:

Example 1 (Prediction with Expert Advice): The classical example of online paradigm

is the so-called prediction with expert advice. The setting is as follows. On each round

t, the learner chooses one advice given by N ą 0 experts. Thus xt P teiu
N
i“1 Ď RN where

teiu
N
i“1 denotes the usual orthonormal basis of RD, and where for every i P rDs:

xit “

$

&

%

1, if the learner chooses the advice of expert i,

0, Otherwise
.

Taking the advice of expert i, the learner incurs loss ypiqt and observes each losses obtained

by taking the advice of the experts. The latter can be described by the vector yt P RD. We

can finally adapt this procedure to Algorithm 1 by defining the cost function as follows:

ftpxq “ xyt,xy, x P RD

Example 2 (Prediction with Experts - Convexification via Randomization):

Working with the online setting of the prediction with expert advice (see Example Ex-

ample 1) is cumbersome since the action set is discrete and therefore the corresponding

problem is of combinatorial nature. In order to leverage from the mathematical analysis,
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we can modify the setting given in Example 1 as follows:

As the action set of the learner we take instead the simplex ∆ on RD, where for an

action xt P X “ ∆, xit denotes the probability that the learner i follows the advice of

expert i. After taking the action xt on the round t, the learner observes the cost yt P RD

and incurs the corresponding loss measured by the expectation:

ftpxtq “ xyt,xty.

In this setting both the action set and the loss functions are convex. Therefore, we can

leverage from the field of convex optimization having extensive literature.

Example 3: The next example comes from the signal processing application and con-

cerns with the problem of signal covariance optimization in multiple-input and multiple-

output (MIMO) wireless networks (see e.g. [41]). Here, we consider a multi-user MIMO

wireless network where a set of autonomous wireless devices rN s each equipped with mul-

tiple antennas seek to maximize their individual data rates. For a device k P rN s, its

Shannon achievable rate is given by:

CpQk, H̃kq “ log detpI` H̃kQkH̃
T
k q,

where Qk denotes the signal covariance matrix of device k, and H̃k denotes its effective

gain channel matrix (see e.g. [41] or [42]). In a realistic setting, H̃k changes over time.

Moreover, H̃k encompasses in particular the effects of the wireless channel such as noise,

path loss, and path diversity and depends on the transmit characteristics of all interfering

users. Therefore generally, the effective channel gain matrix cannot be known in advance.

This occurence suggest to tackle the problem of signal covariance optimization in MIMO

wireless networks by online learning paradigm. For this sake, one can define the action

set of the learner, i.e. the device k, as:

X “ tQ : trpQq ď Pmaxu ,

where Pmax ą 0 denotes the user’s maximum transmit power. Finally, one can set the

loss function of the learner by:

ftpQtq “ ´CpQt,Htq.

2.1.2. Online Gradient Descent

The straightforward approach for solving optimization problems in case that the first-order

information of the objective function is available is by the so-called (projected) gradient

descent method, where at each stage one takes a step in direction of the steepest descent

of the objective function, i.e. the gradient of the function, and if necessary, projects the
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Table 2.1.: Regret bound under L-lipschitz assumption

Assumptions Minimax Regret Worst case Bound

Convex loss function ΩpL
?
T q OpL

?
T q

Linear loss function ΩpL
?
T q OpL

?
T q

β-strongly convex Ωpβ´1L2 log T q Opβ´1L2 log T q

iterate to the problem’s feasible region. The seminal work [25] extends this method to

the online learning setting by defining the update as:

xn`1 “ ΠX pxn ´ γnvnq , (2.2)

where γn denotes the step size at stage n and where:

vn :“ ∇xnfnpxnq

Under certain condition on the underlying setting, the online gradient descent satisfies

the no-regret property. One basic example of such guarantee is the following:

Theorem 2.1: Suppose that X is convex and non-empty, and for any n P N, fn is convex

and L-Lipschitz. For a time horizon T P N, it holds:

RT ď L}X }2
?
T ,

if the step-size is chosen to be constant with:

γn “
}X }2
LT

So according to above Theorem, provided that the function is convex and Lipschitz, the

regret at the end of a time horizon increases slower than the length of the considered

time interval. By this reason one refers such bound also as worst-case bound. Further

assumption on the underlying loss leads to slower increase of the regret (see Table 2.1).

In general, the worst-case bound given in Theorem 2.1 cannot be improved (up to a

constant), since one can construct (see [43]) a sequence of loss functions, such that the

regret is not less than Op
?
T q:

RT ě
L}X }2
2
?

2

?
T .

The sort of bound given above is also called minimax bound because it provides an estimate

of the minimum value for a worst-case scenario. Another bounds for further subclasses of

loss function is provided in Table 2.1

Even though the order of the worst-case regret guarantee of OGD is tight, there is still
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some possibilities to improve it. For instance, the regret bound given in Theorem 2.1

depends on quantities, i.e. the diameter }X }2 and the Lipschitz constant L, measured by

means of the Euclidean norm, which is known to suffer from the curse of dimensionality.

In the modern application (such as big data applications) where the underlying problem

space has typically tremendeously high dimension such drawback might cause serious

problems.

2.1.3. Online Mirror Descent

One solution to avoid the curse of dimensionality when applying the descent method is

to move one’s cosideration beyond the classical Euclidean geometry. A systematic way to

exploit the geometry of the problem is by generalizing the projection step in the update

of the OGD. One possible way is by the so called mirror map defined as follows:

Definition 2.1 (Regularizer/Penalty and Mirror Map): Let Z be a compact con-

vex subset of a normed space pE, } ¨ }q, and K ą 0.

• We say ψ : Z Ñ R is a K-strongly convex regularizer (or penalty function) on Z,

if ψ is continuous and K-strongly convex on Z.

• The mirror map Φ : E˚ Ñ Z induced by ψ is defined by:

Φpyq :“ arg max
xPZ

txy, xy ´ψpxqu

.

The following example shows that the mirror map is indeed a generalization of the usual

Euclidean projection:

Example 4 (Euclidean projection): Let Z be compact convex subspace of a Eu-

clidean space. Clearly,

ψpxq “
}x}2

2

is a 1-strongly convex regularizer on Z. Short computation yields that the induced mirror

map is the Euclidean projection onto Z, i.e.:

Φpyq “ arg max
xPZ

}y ´ x}2.

Another interesting example of mirror maps which is also popular in the field of decision

making is the following:

Example 5 (Entropic regularization & Logit choice): The so called logit choice:

Φpyq “
exppyq

řD
l“1 exppylq

17
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is generated by the 1-strongly convex regularizer

ψpxq “
D
ÿ

k“1

xk logxk,

known as the Gibbs entropy or the negative Shannon’s entropy, on the probability simplex:

Z “ ∆ Ă pRD, } ¨ }1q.

Notice that in contrast to the Euclidean projection on the simplex (see e.g. [44]) the logit

choice has a closed form and therefore easier to implement.

Another non-standard examples of mirror maps are the following:

Example 6 (Fermi-Dirac Entropy): Suppose that:

Z “ r0, 1sn

is the unit cube. The Fermi-Dirac entropy:

ψpxq “
D
ÿ

k“1

pxk logxk ` p1´ xkq logp1´ xkq.

induces the mirror map:

Φpyq “

ˆ

exppykq

1` exppykq

˙

kPrns

called logistic map.

Example 7 (Matrix regularization): Let Z be the set of positive semidefinite ma-

trices X having the nuclear norm:

}X}1 :“ trp|X|q ď 1.

We consider Z as the subspace of the Euclidean space of symmetric matrices. The von-

Neumann entropy:

ψpXq “ trpX log Xq ` p1´ trXq logp1´ trXq

is a p1{2q-strongly convex regularizer on Z [45]. It induces the mirror map (for derivation

see e.g. [46]):

ΦpYq “ exppYq{p1` } exppYq}1q.

Having introduced the notion of mirror map, we can generalize the online gradient

18
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descent (2.2)as follows:

yt`1 “ yt ´ γtvt

xt`1 “ Φpyt`1q.

Above method is known as online mirror ascent, which is a canonical extension of the

mirror ascent algorithm [47]. Besides providing a richer model for the online decision-

making process by generalizing projected gradient descent, a well-known advantage of

mirror descent is that by appropriate choice of the mirror step the performance of the

corresponding algorithm might have a weaker influence on the dimension of the underlying

decision space (see e.g., [48]).

One of the basic worst-case guarantee for online mirror descent is the following:

Theorem 2.2: Suppose that the losses are L-Lipschitz. The online mirror descent in-

duced by a K-strongly convex regularizer satisfies:

RT ď 2L

c

maxX ψpxq ´minX ψpxq

2K
T, (2.3)

in case that the step size is chosen by:

γt “
1

L

c

2KpmaxX ψpxq ´minX ψpxqq

T

Notice that in the above guarantee, the strong convexity - and the Lipschitz constants

K and L need not be taken with respect to the Euclidean norm which can be crucial as

shown in the following:

Example 8: Suppose that f is differentiable and is 1-Lipschitz w.r.t. } ¨ }1, i.e.:

}∇fpxq}8 ď 1, @x P X .

Therefore, the inequality } ¨ }2 ď D} ¨ }8 implies that f is D-Lipschitz w.r.t. } ¨ }8. Thus by

using Euclidean norm instead of the maximum norm, we obtain additional dimensional

factor in our guarantee.

Now, we discuss in the following above result for several choices of mirror maps:

Example 9: Online Gradient Descent As we have discussed in Example 4, online gradi-

ent descent is simply the online mirror descent with the Euclidean norm (divided by 2)

as the 1-strongly convex regularizer. Since:

∆ψpX q “ max
xPX

}x}2 ´min
xPX

}x}2 ď }X }2,

we have from (2.2) the worst-case guarantee of order OpL
?
T q coinciding with the worst-

case guarantee given in Theorem 2.1 up to a multiplicative constant 2. This gap can be
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eliminated by using the ”centered” regularizer:

ψpxq “
}x´ xc}2

2
,

where xc is the center of the smallest Euclidean ball enclosing X .

Example 10 (Exponentially Weights Algorithm): Suppose that the underlying fea-

sible set is the simplex, and that f is differentiable and 1-Lipschitz w.r.t. } ¨ }8. Choosing

the Gibbs entropy as the 1-convex regularizer w.r.t. the } ¨ }1 and the logit choice as

the mirror map, the online mirror descent is also known as the exponentially weights

algorithm. It holds:

∆ψ “ logpDq,

leading to the worst-case regret bound (2.3) of order Op
a

logpDqT q. Using instead the

Euclidean norm ψpxq “ }x}2{2, it holds ∆ψ “ }∆}2 “
?

2. Moreover, Example 8 asserts

that L “ D. Thus we have the the worst-case regret bound (2.3) of order Op
a

logpDqT q

which is worst for high-dimensional problem.

The following Proposition which is a folklore in convex analysis gives some basic prop-

erties of the mirror map:

Proposition 2.3: Let ψ be a K-strongly convex regularizer on a compact convex subset

Z of a Euclidean normed space V inducing the mirror map Φ : V˚ Ñ Z, and let ψ˚ :

V˚ Ñ R, y ÞÑ maxxPZ txx, yy ´ψpxqu be the convex conjugate of ψ. Then:

1. x “ Φpyq if and only if y P Bψpxq. In particular impΦq “ dompBψq Ě relintpZq.

2. ψ˚ is differentiable on V˚ and ∇ψ˚pyq “ Φpyq.

3. Φ is p1{Kq-Lipschitz continuous.

4. ψ is 1{}Z}˚-strongly convex w.r.t. } ¨ }.

Proof: For a proof of 1)-3), see e.g. Theorem 23.5 in [49] and Theorem 12.60(b) in [50].

For the statement 4), notice that }∇ψ˚pyq}˚ “ }Φpyq}˚ ď }Z}˚ where the inequality

follows from the fact that Φ is a mapping to Z. Therefore ψ˚ is }Z}˚-strongly smooth

and Strong/smooth duality Theorem (see e.g. Theorem 3 in [45]) asserts the desired

statement.

As noticed in [51], a convex regularizer induces canonically the following notion of

”distance”:

Definition 2.2 (Fenchel Coupling [51]): Let ψ : X Ñ R be a penalty function on

X . Then the Fenchel coupling induced by ψ is defined as:

F : X ˆ E˚ Ñ R, pp, yq ÞÑ ψppq `ψ˚pyq ´ xy, py.
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Some useful properties of the Fenchel coupling is stated in the following (see [51]):

Proposition 2.4: Let F : be the Fenchel coupling induced by a K-strongly convex regu-

larizer of X . For p P X , y, y
1

P V˚, we have:

1. F “ pp, yq ě K
2
}Φpyq ´ p}2

2. F “ pp, y
1

q ď Fpp, yq ` xy
1

´ y,Φpyq ´ py ` 1
2K
}y
1

´ y}2˚

For a proof of those facts, see e.g. Theorem 23.5 in [49] and Theorem 12.60(b) in [50].

2.2. Game Theory

The concept of game theory is created to describe, analyze, and forecast system behavior

in such population models with information exchange constraints. It considers a set of

agents whose aim is, for rationality assumption, to maximize their own yield/payoff or

equivalently to minimize their loss by choosing appropriate actions. The feature of the

game-theoretical concept is that an agent’s yield depends not only on her action but

also on the action of others. Furthermore, game theory assumes that the agents are

non-cooperative in the sense that the strategy of one agent is not visible to the others.

One of the main goals of the game theory is to predict, in a repeated setting and for an

individual specific rational optimizing behavior of the agents, the long-term behavior of

the population [52,53]. The central sub-concept toward this direction is the so-called Nash

equilibrium [54], which denotes a stable state where no agent has an interest in deviating

from her strategy.

2.2.1. Basic Definitions

We consider throughout this part of thesis agents playing a (repeated). non-cooperative

game. During the non-cooperative game, every agent i P rN s chooses and applies an

action/strategy xpiq from a set Xi. This process results in joint action/strategy-profile:

x “ pxp1q, . . . ,xpNqq P X :“
N
ź

i“1

Xi P RD, where D :“
N
ÿ

i“1

Di.

In order to highlight the action of player i, we write:

x “ pxpiq,xp´iqq, where xp´iq “ pxpjqqj‰i P X´i :“
ź

j‰i

Xj.

Unless otherwise stated, we assume throughout this thesis the following:

Assumption 2.1: For all i P rN s, Xi is a non-empty compact convex subset of a finite

dimensional normed space pVi, } ¨ }iq – pRDi , } ¨ }iq.
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Working with the whole population, we usually consider the Euclidean normed space

V :“

˜

N
ź

i“1

RDi , } ¨ }

¸

,

where:

}x}2 :“
ÿ

i

}xpiq}2i .

Suppose that the population action at time t is xt P X . The payoff/reward agent i

received after xt is given by:

uipx
piq
t ,x

p´iq
t q,

where ui : X Ñ R is the utility function of the i. Throughout this paper, we mostly

assume the following regularity condition for the utility functions:

Assumption 2.2: For all i P rN s and xp´iq P X´i, uipp¨q,x
p´iqq is concave and v :“

pvp1q, . . . ,vpNqq is continuous where:

vpiqpxq :“ ∇xpiqupiqpxq, i P rN s.

A classical notion of equilibrium in games is the so-called Nash equilibrium:

Definition 2.3 (Nash Equilibrium): Let be ε ą 0. xN P X is said to be an ε-Nash

equilibrium of the game Γ if for every i P rN s:

uipxNq ě uipx
piq,x

p´iq
N q ´ ε, @xpiq P Xi (2.4)

If above inequality is fulfilled with ε “ 0, then we say x˚ is a Nash equilibrium.

So according to above definition, a Nash equilibrium describes the state in which no agent

can increase his payoff by unilaterally changing his strategy.

Online Learning in a Competitive Environment

Due to the non-cooperativity assumption, a single rational agent in a repeated non-

cooperative game faces the problem of sequential decision making in an unknown en-

vironment.

2.3. Game Theory and Variational Inequalities

This section aims to relate the concept of the Nash equilibrium of the NGCC to another

alternative concept, which is more suitable for algorithmic analysis. For this sake, we

introduce in the first part of this section the concept of variational inequality (VI), which

is known to be a powerful and unifying method to study equilibrium problems both in
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infinite - and finite dimensions [55]. We will further see that the solutions to this inequality

problem are Nash equilibriums. Furthermore, it is, in general, not comfortable working

with a set that has no product structure, such as the feasible set of NGCC Q. Thus in the

second part of this section, we consider a Karush-Kuhn-Tucker-system-based technique

to extend the corresponding VI to a VI on a set with a product structure (having possibly

higher dimension) such that the solution structure remains preserved. The results stated

in this chapter are known and can be found, for instance in [55].

Nash Equilibrium & Variational Inequality

The following concept is central to the analysis of first-order methods:

Definition 2.4 (Variational Inequality (VI)): Let Z be a subset of a Euclidean

normed space V, and suppose that g : Z Ñ V˚.

• A point x P Z is a solution of the variational inequality VIpZ,gq, if :

xx´ x,gpxqy ď 0, @x P Z.

• The set of solution of VIpZ,gq is denoted by SOLpZ,gq.

One helpful fact working with VI is that first-order methods tend to gain a drift toward

the solution of it. For instance consider the iterates (4.2) and x˚ P SOLpX ,vq. If v is

monotone (which is fulfilled by Assumption 2.2), then it follows that:

xXk ´ x˚,vpXkqy ď xXk ´ x˚,vpx˚qqy ď 0, (2.5)

where the last inequality follows from the definition of VI. Thus the first-order feedback

vpXkq for each time step k ` 1 forms an obtuse angle with the residual vector Xk ´ x˚,

and consequently, vpXkq provides a direction toward x˚.

There is no burden working with SOLpQ,vq instead with GNEpΓ q since, as asserted in

the following proposition, the solutions of VIpQ,vq is automatically a Nash equilibrium

of Γ :

Proposition 2.5: If Assumption 2.2 holds, then SOLpQ,vq Ď GNEpΓ q.

Proof: The fact that a Nash equilibrium xN is in SOLpX ,vq follows from the first order

condition of optimal point. That is since:

x
piq
N “ arg max

x
upxpiq,x

p´iq
N q,

we have:

x∇
x
piq
N

upxNq,x
piq
N ´ x

piq
y ě 0, @xpiq P Xi.
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If xN solves VIpX ,vq, then:

xvpxNq, x´ x
N
y ě 0, @x P X .

Let be i P rN s arbitrary. Setting xpjq “ x
pjq
N , for all j P ´i, we have:

xvpiqpxpiq,x´iN q,x
piq
´ x

piq
N y ě 0, @x P X

Since vpxNq “ ∇xpiqN uipxNq, ui is concave in the i-th coordinate, and Xi is convex and

non-empty, we have:

uipx
piq,x´iN q ď uipxNq ` xv

piq
pxpiq,x´iN q,x

piq
´ x

piq
N y ď uipxNq,

and consequently:

x´iN “ arg min
xpiqPXi

vpiqpxpiq,x´iN q

.

Remark 1: In the case where no coupling constraint is present, i.e., C “ X , the con-

verse of the above proposition holds. However, due to the coupling constraint, a Nash

equilibrium has not to be a solution of the variational inequality.

This remark and Proposition 2.5 motivate us to highlight the generalized Nash equilibrium

solving the corresponding variational inequality and call it as variational Nash equilibrium.

Another nice thing about VI is that under mild condition one can establish existence

of its solution:

Proposition 2.6: Let Z be a non-empty subset of a Euclidean normed space V and

g : Z Ñ V˚.

1. If that Z is compact and convex, and if g is continuous, then SOLpZ,gq ‰ H.

2. If SOLpZ,gq ‰ H and g is strictly monotone on Z, then SOLpZ,gq is a singleton.

Proof: Consider the mapping:

h : X Ñ X , x ÞÑ ΠX px´ gpxqq,

where ΠX denotes the projection onto X . Clearly, h is continuous on the non-empty

convex compact set X , and h maps X into X . Therefore by the Brouwer fixed point

theorem, it follows that there exists a point x P X s.t. x “ ψpxq. This means that

x “ ΠX px´ gpxqq and consequently we have as desired:

´xgpxq, y ´ xy “ xx´ gpxq ´ x, y ´ xy ď 0, @y P X
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The proof of the first statement is based on the connection between VI and the fixed point

of the Euclidean projection onto Z. The latter can be described by means of Brouwer

Fixed Point Theorem. The proof of second statement is closely related to the fact that if

g is stricly monotone and x P SOLpZ,gq, then:

xx´ x,gpxqy ď xx´ x,gpxy ď 0, @x P Z,x ‰ x (2.6)

with equality if and only if x “ x.

From here, it is immediate to infer the existence of a Nash equilibrium. Indeed if we set

g “ v and Z “ Q, then above proposition asserts the existence of a solution of VIpQ,vq
and correspondingly by Proposition 2.5 the existence of a Nash equilibrium of Γ :

Corollary 2.7: Suppose that the Assumption 2.2 holds. Then the NGCC Γ has a Nash

equilibrium.

2.4. Elements of Martingale Theory

In this work we assume that a probability space pΩ,Σ,Pq, and F :“ pFnqnPN0 a filtration

therein i.e. F is a monotonicaly increasing sequence in Σ, are given. For ease of notations,

we denote for each n P N0 the conditional expectation Er¨|Fns given Fn simply by Enr¨s.
Let pMnqn be a sequence of random variables taking values on a normed Euclidean space

pRD, } ¨ }q. We say:

• pMnqn is adapted if Mn is Fn-measureable

• pMnqn is predictable if Mn is Fn´1-measureable.

Definition 2.5 ((super-,sub-)martingale): We say pMnqn is a (resp. super-,sub-

)martingale if:

• pMnqn is adapted,

• pMnqn is square-integrable, i.e. Er}Mn}
2s ă 8, @n P N,

• It holds EnrMn`1s “Mn (resp. ď, ě, instead of “) for all n.

Given a martingale pMnqnPN. One usually normalizes it by considering the martingale

pMn ´ En´1rMnsqnPN. This gives rise to the following definition:

Definition 2.6 (Martingale difference sequence): Let pMnqnPN be a martingale.

We say pMnqnPN is a martingale difference sequence if for all n P N:

ErMn|Fn´1s “ 0 a.s.

One of the central result in the theory of martingales is the following result due to

Doob:

25



2. Preliminaries

Theorem 2.8 (Doob’s Martingale Convergence Theorem): Let pXnqnPN be a real-

valued super-martingale. If:

sup
nPN

E rrXns´s ă 8,

Then pXnqnPN converges a.s. to a RV with a finite expectation.

A consequence of above theorem which will be used in this work is the following:

Theorem 2.9 (Theorem 2.18. in [56]): Let:

Sn “
n
ÿ

k“1

Xk, n P N,

be a martingale, and pUnqnPN be a non-negative predictable process.

1. If :

p P r1, 2s,

then:
8
ÿ

k“1

Xk

Uk
converges a.s. on the set

#

8
ÿ

k“1

Ekr|Xk|
p
s

Up
k

ă 8

+

, (2.7)

and:

lim
nÑ8

Sn
Un
“ 0 a.s. on the set

#

lim
nÑ8

Un “ 8,
8
ÿ

k“1

Ekr|Xk|
p
s

Up
k

ă 8

+

.

2. If:

p ą 2,

then both of the convergence statements in (2.7) and (1) hold on the set:

#

8
ÿ

k“1

Ekr|Xk|
p
s

U
1` p

2
k

ă 8

+

,
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3. On the Convergence of Online

Mirror Descent for Aggregative

Games with Approximated

Aggregates

Abstract: In this chapter, we consider a class of continuous games called aggregative

games, in which the payoff of each player can be expressed to depend on his own action

and the aggregate of the population’s action. This class of games appears in a vast

number of engineering fields, among others signal processing and communications. We

study the case where every agent possesses no knowledge about the instantaneous change

of the aggregate, and where he has in addition merely an estimate rather than the actual

value of the aggregate. We give a mild sufficient condition on the agent’s estimate of

the aggregate depending on the step size, such that the corresponding mirror ascent

based algorithm, suited with the framework of no-regret online learning, converges to the

Wardrop equilibrium.

3.1. Introduction

Aggregative Games and Engineering Applications Competitive selfish agents appear

as a model in a vast number of applications such as signal processing and communications

(see e.g. [57]), smart grid [58–66], competitive markets [67], and congestion control for

networks [68]. The famous concept of non-cooperative continuous game theory enables

one to analyze such model. One class of games which we consider in this work is the class

of aggregative games [69–71]. The feature of this is that the behaviour of every agent

is influenced by both, his own strategy and a quantity which depends on the aggregate

action of the entire population. This is in particular reflected in the fact that the payoff

of every playing agent in such games can be written in the way such that it depends on

its own action and a function, called aggregate function, of the aggregate of the action

chosen by all players.

Aggregative games are capable of adressing large population problems where the be-

havior of each agent is not only affected by specific one-to-one effects. This sort of game
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has applications not only in economics, e.g. Cournot’s market model and Bertrand’s mar-

ket model (see e.g. [70]), but also in a large number of engineering applications such as

network traffic [68,72], wireless systems [73], electricity [74], and commodity markets [75].

Limits of Agent’s Macroscopic View In some applications, each agent has no knowl-

edge about how the aggregate instantaneously changes if he deviates from his strategy.

This is e.g. in the case where a large number of agents are present and therefore no

central instance is available, which collects and broadcasts the actual state of the whole

population. Moreover, factors such as the presence of malicious attackers, hardware de-

pendent disturbances, and agents’ lack of global view leads to the phenomenon that the

agents have only an estimate of the actual value of the aggregate. So in applications, the

only resource each agent might have in order to maximize its payoff is by observing the

instantaneous change of its utility function for a fixed estimated aggregate value.

Problem Statement and Our Contribution In this chapter, we are interested in the

population’s behavior of online learning non-cooperative agents using mirror ascent based

algorithm in order to optimize his own yield. We aim to answer the following question:

To what extent does the agent’s lack of macroscopic view influence the population’s

behaviour?

In order to attain the answer, we propose a novel model of agent’s dynamic described

by an online-mirror-ascent-based algorithm. In contrast to the commonly applied, the

proposed algorithm uses in each step a partial gradient on a fixed estimated aggregate

rather than the full gradient of the player’s utility function. We present a mild sufficient

condition on the aggregate estimates such that the population’s dynamic steers into an

equilibrium. In contrast to the usual notion of equilibrium in game theory, the Nash

equilibrium, we work with the concept of Wardrop equilibrium since first-order evolution

algorithms converging to the Nash equilibrium require full gradient information. In case

that the utility function possesses some regularity condition, Wardrop equilibrium can be

seen as an almost Nash equilibrium. The benefit of the result given in this work is that it

provides quantitative guidance to design/choose a signal processing method for the agents

such that the population converges to the game’s equilibrium.

Relation to Prior Work

A deterministic analysis of online mirror ascent algorithm generally for games with con-

tinuous action set was given in [76]. In contrast to this work we consider more specifically

aggregative games and assume that the agents have no complete information on the gra-

dient of their utility functions. Nevertheless, the main focus of [76] is the case where the

full gradient is disturbed by martingale noise.
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Closely related to our work is [77]. Similar to our setting, they assume that the agent

is uninformed about the full gradient and the actual value of the aggregate. However, in

contrast to our work, the considered action space is provided with Euclidean structure so

that the proposed algorithm is basically a projected gradient ascent. Nevertheless, the

aim of their work is more specific, viz. to design a distributed algorithm for estimation of

the aggregate which leads the projected gradient ascent to the Wardrop equilibrium. Our

result allows to extend their method to the non-Euclidean case by means of the mirror

ascent based algorithm.

The relation between Nash and Wardrop equilibrium has been extensively studied in

economics literature (see e.g. [78, 79]) and in engineering literature (see e.g. [80–82]).

Recent works on that aspect is given in [83, 84]. They differ from previous research by

additionally considering coupling constraints between the agents. However the projected

gradient method proposed to achieve the equilibrium relies on the existence of a centralized

unit.

3.2. Model Description and Basic Notions

As the basic setting, we consider a non-cooperative game Γ “ prN s,X , uq with X and u

given as in Section 2.2. u “ pu1, . . . , uNq played by a finite set of players rN s “ t1, . . . , Nu.

3.2.1. Aggregative Games

In this chapter, we are interested in the following specific class of games:

Definition 3.1 (Aggregative Games): The game Γ is said to be an aggregative game

if there exists a subset Y ‰ H of a finite dimensional normed space pṼ , } ¨ }Ṽq, functions

σ : X Ñ Y and gi : Xi ˆ Y Ñ R s.t.:

uipxq “ gipx
piq,σpxqq,

In order to illustrate the concept of aggregative game, we give in the following some

examples:

Example 11 (Mixed Extension of finite games): Let Γ̃ “ prN s,A, ũq be a finite

game. We consider the case that each player i can choose independent from other players

a mixed strategy xpiq from Ai, i.e. xpiq is an element of the probability simplex ∆pAiq
over Ai. The expected payoff is given by:

uipxq “
ÿ

α1PA1

¨ ¨ ¨
ÿ

αNPAN

ũipα1, . . . , αNqx
p1q
α1
¨ ¨ ¨xNαN .
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In case that ũi takes form:

ũipα1, . . . , αNq “ ũiipαiq ` ũ´ii pα´iq,

for a certain functions ũii and ũ´ii . It holds:

ũipxq “
ÿ

αiPAi

ũiipαiqx
piq
αi
`

ÿ

α´iPAi

ũ´ii pα´iq
ź

jP´i

xpjqαj .

The game Γ “ prN s, p∆pAiqqiPrNs, pciqiPrNsq is an aggregative game with:

gipx
piq,yq “

ÿ

αiPAi

ũiipαiqx
piq
αi
` y,

and the aggregator:

σpxq “
ÿ

α´iPAi

ũ´ii pα´iq
ź

jP´i

xpjqαj

where for every i P rN s, the utility function of the i-th agent can be written in the

form:

uipxq “ gipx
piq,σpxqq,

with σ : X Ñ Y and gi : X ˆ Y Ñ R, where Y ‰ H is a subset of a finite dimensional

normed space pṼ , } ¨ }Ṽq.

For sake of simplicity, we assume throughout this chapter the following:

Assumption 3.1: gi and σ are continuously differentiable.

The instantaneous change of the payoff of each player is determined by the gradient

operator:

GNash
“ pGNash

1 , . . . ,GNash
N q : X Ñ

N
ź

i“1

pV˚i , } ¨ }i,˚q, x ÞÑ ∇xpiqgipxpiq,σpxpiq,xp´iqqq

In order to compute GNash, each agent has to be able to anticipate the (instantaneous)

change of the aggregative function. So for our purpose, it is beneficial to consider the

operator:

GWard
“ pGWard

1 , . . . ,GWard
N q : X Ñ

N
ź

i“1

X ˚i ,

where:

GWard
i pxq “ G̃ipx

piq,σpxqq,

and G̃i : Xi ˆ Y Ñ X ˚i , pxpiq,yq ÞÑ ∇xpiqgipxpiq,yq.
(3.1)
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3.2.2. Dynamic Model

In this chapter we are interested in gradient-based evolution. However, the gradient is

in general an element of the dual space. So, in order to implement their actions based

on this information, an agent needs a mapping to project the iterate back to his strategy

set. A canonical way to do is by means of the mirror map given in the Definition 2.1.

Throughout this chapter, we assume the following:

Assumption 3.2: that each agent i P rN s possess a Ki-strongly convex regularizer ψi

which induces the mirror map Φi.

In order to emphasize the action of the whole population, we sometimes use the operator:

Φ : V˚ Ñ X , y ÞÑ pΦ1py
p1q
q, . . . ,ΦNpy

pNq
qq.

The iterate of the agents which we consider is specifically given in Algorithm 2. It is a

Algorithm 2 Online Mirror Ascent with Estimated Aggregation

Require: Step size sequence pγnqn, initial dual action Y
piq
0 P V˚i

for n “ 0, 1, 2, . . . do
for every player i P rN s do

Play Xpiq Ð ΦipY
piq
n q

Make an estimate σ̂
piq
n of the actual aggregate σpXnq

Observe G̃pX
piq
n , σ̂

piq
n q

Update Y
piq
n`1 Ð Y

piq
n ` γnG̃pXn, σ̂

piq
n q

end for
end for

modification of the online mirror ascent algorithm (see [76]) fulfilling the no-regret policy,

in which the iterate of agent i P rN s at the time n P N takes the form:

X
piq
n`1 “ ΦipY

piq
n`1q, Yn`1 “ Yn ` γnG

Nash
i pXnq. (3.2)

The difference between above algorithm and our algorithm lies in the gradient step: While

the gradient step in (3.2) involves the full gradient ∇xpiqgipxi,σpxqq, the gradient step

in algorithm 2 involves only the partial gradient ∇xpiqgipxi,yq|y“σ̂piqn evaluated at the

estimate aggregate.

Remark 2: One possible method to estimate the actual aggregate, in case that it is a

sum, is given in [77]. There, each agent distributedly estimates the population’s aggregate

by collecting the local neighbors’ state.
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3. On the Convergence of Online Mirror Ascent for Aggregative Games

3.3. Variational Description of Wardrop Equilibrium

3.3.1. Wardrop Equilibrium

A classical notion of equilibrium in games is the Nash equilibrium, which describes the

state in which no agent can increase his payoff by unilaterally changing his strategy (see

Definition 2.3). In the context of aggregative games, the inequality (2.4) specifies as:

gipx
piq
˚ ,σpx˚qq ě gipx

piq,σpxpiq,xp´iq˚ qq ´ ε.

The drawback of the concept of Nash equilibrium is that it requires that each agent

has fully knowledge of his contribution to the aggregate function, which is of course not

always the case. So, a reasonable replacement of this concept is the concept of Wardrop

equilibrium:

Definition 3.2 (Wardrop Equilibrium): x˚ P X is a Wardrop equilibrium of the

game Γ if for every i P rN s:

gipx
piq
˚ ,σpx˚qq ě gipx

piq,σpx˚qq, @xpiq P Xi. (3.3)

3.3.2. Existence Theorems for Wardrop Equilibria

For analysis purposes it is advantageous to relate the concept of Wardrop equilibrium to

the concept of variational inequality (see Definition 2.4). For that sake, we assume the

following:

Assumption 3.3: For all i P rN s:

1. uipp¨q,x
p´iqq is concave for all xp´iq P X´i

2. gipp¨q,yq is concave for all y P Y

The corresponding relation between those concepts yields from the first order optimality

condition for convex optimization.

Proposition 3.1: If for every i P rN s, gipp¨q,yq is concave for all y P Y. Then the set

of Wardrop equilibrium coincides with SOLpX ,GWardq

Proof: Suppose that xW is a Wardrop equilibrium. By definition, we have:

x
piq
W “ arg max

xpiqPXi
hipx

piq
q, (3.4)

where:

hi : Xi Ñ R, xpiq ÞÑ gipx
piq,σpxW qq.
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3.3. Variational Description of Wardrop Equilibrium

Furthermore, we have:

∇xpiqhipxpiqq “ ∇xpiqgipxpiq,σpxW qq “ G̃pxpiq,σpxW qq

So, the fact that xW P X is a Wardrop equilibrium implies xW is in SOLpX ,GNashq

follows from the first order condition of optimal point. That is (3.4) yields:

xGWard
i px

piq
W q,x

piq
´ x

piq
W y “ xG̃ipx

piq
W ,σpxW qq,x

piq
´ x

piq
W y ď 0, @xpiq P Xi. (3.5)

Summing above inequality over all i P rN s, we have that xW P SOLpX ,GWardq.

For the converse, suppose that xW solves VIpX ,GWardq, then:

xGWard
pxW q,x´ xW y ď 0, @x P X .

Let be i P rN s arbitrary. Setting xpjq “ x
pjq
W , for all j P ´i, we have:

xGWard
i pxW q,x

piq
´ x

piq
N y ď 0, @x P X . (3.6)

Now, since gipp¨q,σpxW qq is concave in the i-th coordinate, and Xi is convex and non-

empty, it follows that for any y P Y :

gipx
piq,yq ď gipx

piq
W ,yq ` x∇xpiqW gipx

piq
W ,yq

looooooomooooooon

“G̃ipx
piq
W ,yq

,xpiq ´ x
piq
W y.

Setting y “ σpxW q in above inequality, it yields:

gipx
piq,σpxW qq ď gipx

piq
W ,σpxW qq ` xG

Ward
i pxW q,x

piq
´ x

piq
W y ď gipx

piq
W ,σpxW qq, (3.7)

where the inequality follows from (3.6). Finally, (3.7) asserts that for any i P rN s:

x
piq
W P arg max

xpiqPXi
gipx

piq,σpxW qq,

and thus xW is a Wardrop equilibrium.

Specifically if the 1st (resp. 2nd) condition in Assumption 3.3 holds, then the set of Nash

(resp. Wardrop) equilibrium coincides with SOLpX ,GNashq (resp. SOLpX ,GWardq). Thus

to study the set of equilibrium, it is in our case sufficient to study the solution set of the

corresponding variational inequality.

Now, assume that the utility function satisfies the following additional property:

Assumption 3.4: For any i P rN s, the family of functions pG̃ipxi, p¨qqqxiPXi is equicon-
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3. On the Convergence of Online Mirror Ascent for Aggregative Games

tinuous, in the sense that:

@ε ą 0 : Dδ ą 0 : @xpiq P Xi : }G̃ipxi,yq ´ G̃ipxi, ỹq}i,˚ ă ε, if }y ´ ỹ}Vi ă δ.

We can derive the existence and uniqueness of the Wardrop equilibrium from Proposition

3.1 as follows:

Proposition 3.2: Suppose that the 2nd condition in Assumption 3.3 and Assumption

3.4 holds. Then Γ has a Wardrop equilibrium.

Proof: To show the first statement, we need to show that:

GWard is continuous. (3.8)

From this result, we have by Proposition 2.6 that SOLpX ,GWardq is non-empty and there-

fore by Proposition 3.1 also the set of Wardrop equilibrium. Toward this end, let be i P rN s

arbitrary. Moreover, we fix x P X . For any z P X :

}GWard
i pxq ´GWard

i pyq}i,˚ “ }G̃ipx
piq,σpxqq ´ G̃ipz

piq,σpzqq}i,˚

ď }G̃ipx
piq,σpxqq ´ G̃ipz

piq,σpxqq}i,˚ ` }G̃pz
piq,σpxqq ´ G̃ipz

piq,σpzqq}i,˚.
(3.9)

Now, let be ε ą 0 fixed. Since G̃ipp¨q,yq is continuous for any y P Y , we can find δ ą 0

such that:

}G̃ipx
piq,σpxqq ´ G̃ipz

piq,σpxqq}i,˚ ă
ε

2
, if

for any z P X satisfying:

}xi ´ zpiq}i ă δ.

By the equicontinuity property, we can find δ̃ such that for any zpiq P Xi:

}G̃pzpiq,σpxqq ´ G̃ipz
piq,yq}i,˚ ă

ε

2
,

whenever:

}σpxq ´ y}Ṽ ă δ̃.

Now, since σ is continuous, it follows that there exists δ0 ą 0 s.t.:

}σpxq ´ σpzq}Ṽ ă δ̃,

whenever:

}x´ z} ă δ0.

Combining all previous observations with (3.9), we obtain that:

}GWard
i pxq ´GWard

i pyq}i,˚ ă ε,
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3.3. Variational Description of Wardrop Equilibrium

whenever:

}x´ z} ă min tδ, δ0u ,

which shows (3.8).

At last we present the following relation between Nash equilibrium and Wardrop equi-

librium, which is an extension of Theorem 1 in [84]:

Proposition 3.3: Suppose that for all xi P Xi:

• gipx
i, p¨qq is Lg

i -Lipschitz continuous

• for all xp´iq P X´i, σpp¨q,xp´iqq is Lσi -Lipschitz continuous,

then it follows that a Wardrop equilibrium is a ε-Nash equilibrium with:

ε “ Lg
iL

σ
i |Xi| .

Proof: Let xW be a Wardrop equilibrium ΓN . It holds:

gipx
piq
W ,σpxW qq ď gipx

piq,σpxW qq, xpiq P Xi. (3.10)

Consequently, it yields:

gipx
piq
W ,σpxW qq ´ gipx

piq,σpxpiq,x´iW qq

“ gipx
piq
W ,σpxW qq ´ gipx

piq,σpxW qq ` gipx
piq,σpxW qq ´ gipx

piq,σpxpiq,x´iW qq

“ gipx
piq
W ,σpxW qq ´ gipx

piq,σpxpiq,x´iW qq ` gipx
piq,σpxW qq ´ gipx

piq,σpxW qq
loooooooooooooooooooomoooooooooooooooooooon

ď0 By (3.10)

ď gipx
piq,σpxW qq ´ gipx

piq,σpxpiq,x´iW qq.

Since uipx, p¨qq and σp¨,x´iq are continuous functions on compact sets Y and Xi, it is

Lipschitz. Therefore:

gipx
piq
W ,σpxW qq ´ gipx

piq,σpxpiq,x´iW qq ď Li}σpxW q ´ σpx
piq,x

p´iq
W q} ď LiL

σ
i }x

piq
´ x

piq
W }

ď LiL
σ
i |Xi|

Remark 3: In the particular case where the aggregate is the mean of the population’s

action, i.e.:

σpxq “

řN
i“1 σ̃px

piqq

N
, where σ̃ is Lipschitz continuous,

it yields from above prop. that a Wardrop equilibrium is a εN -Nash equilibrium, where

pεnqn is a decreasing sequence of non-negative numbers converging to 0.
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3. On the Convergence of Online Mirror Ascent for Aggregative Games

3.4. Convergence Analysis

In this section we investigate the convergence behaviour of Algorithm 1 to the solution

of the variational inequality VIpX ,GWardq. From the previous section it follows that if

the condition 2 in Assumption 3.3 is fulfilled, the latter coincides with the set of Wardrop

equilibria. To keep the argumentation short we assume throughout:

Assumption 3.5: GWard is strictly monotone.

This yields that (see Proposition 2.6):

the solution tx˚u :“ SOLpX ,GWard
q is unique.

We first measure the distance between the evolution of each agent and the equilibrium

naturally by means of the ”total” Fenchel coupling:

F : X ˆ
N
ź

i“1

V˚i , px,yq ÞÑ
N
ÿ

i“1

Fipxi,yiq,

where for any i P rN s, Fi is the Fenchel coupling (see Definition 2.2) corresponding to the

mirror map Φi.

By 1 in Proposition 2.4 it follows that convergence w.r.t. F implies the convergence

of the iterate w.r.t. the underlying norm } ¨ }. For the analysis, the following converse

property is advantageous:

Assumption 3.6: For any p P X and any sequence pYnqn in V˚, it holds:

ΦpYnq Ñ p ñ Fpp,Ynq Ñ 0.

In order to measure the variation of distances between subsequent iterates and the

equilibrium x˚, we apply the statement 1 in Proposition 2.4 and the definition of the

algorithm and obtain:

Fpx˚,Yn`1q ď Fpx˚,Ynq ` xYn`1 ´ Yn, Xn ´ x˚y `
1

2K
}Yn`1 ´ Yn}

2
˚

ď Fpx˚,Ynq ` γnωn `
γ2n

2Ki

ζn,

where:

ωn :“ xXn ´ x˚, G̃pXn, σ̂nqy, ζn :“ }G̃pXn, σ̂nq}
2
˚.

Borrowing the term from the literature of online learning, we define the total regret in

the n-th step w.r.t. x˚ by:

Regn “
n
ÿ

k“0

γkωk `
1

2K

n
ÿ

k“0

γ2kζk, where K :“ min
iPrNs

Ki.
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By the inequality:

Fpx˚,Yn`1q ´ Fpx˚,Y0q ď Regn

which results from telescoping the previous inequality, the meaning of this term becomes

obvious, i.e., to investigate the convergence behaviour of the algorithm, we need to analyze

the total regret.

In order to continue, we connect the total regret with the variational inequality VIpX .GWardq

by expanding:

ωn “ ξn ` ψn,

where:

ψk :“ xXk ´ x˚, G̃pXk, σ̂kq ´ G̃pXk,σpXkqqy,

ξk :“ xXk ´ x˚,G
Ward

pXkqy,

which leads to:

Regn “
n
ÿ

k“0

γkξk `
n
ÿ

k“0

γkψk `
1

2K

n
ÿ

k“0

γ2kζk.

The following Lemma shows that under usual conditions on the step size and certain

quality of the estimation of the aggregates, the population’s iterates recur to every neigh-

borhood of the solution of the variational inequality. This is clearly a necessary condition

for the convergence:

Lemma 3.4: Suppose that for all i P rN s and every xi P Xi, G̃ipx
piq, p¨qq is Lipschitz

continuous. Let pγnqn Ă R` be a non-increasing sequence satisfying:

8
ÿ

k“0

γk “ 8
8
ÿ

k“0

γ2k ă 8. (3.11)

Moreover, suppose that for all i P rN s:

8
ÿ

k“0

γk}σ̂
piq
k ´ σpXkq}Ṽ ă 8. (3.12)

Then:

1. pζnqn is uniformly bounded,

2.
ř8

k“0 γk |ψk| ă 8,

3. There exists a subsequence pXnkqk of pXnqn s.t. Xnk Ñ x˚ as k Ñ 8.

Proof: We show the 1st statement.. Let be i P rN s. Since G̃ipx
i, p¨qq is Lipschitz in the
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3. On the Convergence of Online Mirror Ascent for Aggregative Games

second argument, we have by additionally applying the triangle inequality:

}G̃ipX
piq
n , σ̂

piq
n q}˚ ď }G̃ipX

piq
n ,σpXnqq ´ G̃ipX

piq
n , σ̂

piq
n q}˚ ` }G̃ipX

piq
n ,σpXnqq}˚

ď Li}σpXnq ´ σ̂
piq
n }Ṽ ` }G̃ipX

piq
n ,σpXnqq}i,˚,

where Li ą 0 is a constant. Now, since G̃i and σ are continuous, and X is compact,

pG̃ipX
piq
n ,σpXnqqqn is uniformly bounded. So (3.12) and (3.11) implies:

pG̃ipX
piq
n , σ̂

piq
n qqn is uniformly bounded and therefore also pζnqn. (3.13)

The 2nd statement follows since:

|ψk| ď C
N
ÿ

i“1

}σpXkq ´ σ̂i,k}Ṽ

for a C ą 0. For the final statement, notice that:

Regn “ τn

ˆřn
k“0 γkξk
τn

`

řn
k“0 γkψk
τn

`
1

2K

řn
k“0 γ

2
kζk

τn

˙

, (3.14)

where:

τn :“
n
ÿ

k“0

γk.

Let be:

U an arbitrary neighborhood of x˚.

Suppose that w.l.o.g. : Xn R U for all n P N. Combining this with the fact that GWard is

strictly monotone (see Proposition 2.6), it follows that:

xGWard
pXnq,Xn ´ x˚y ď ´c, @n P N,

for a c ą 0. This yields:

Regn “ ´τn

ˆ

c´

řn
k“0 γkψk
τn

´
1

2K

řn
k“0 γ

2
kζk

τn

˙

.

The 1st (resp. 2nd) statement in this lemma and (3.11) gives that the 3rd (resp. 2nd)

summand in the previous equality converges to 0 as n goes to infinity. Finally, since
ř8

k“0 γk “ 8, we have:

Regn Ñ ´8.

This contradicts the fact that:

Fpx˚,Y0q is finite.

The desired convergence result is given in the following:
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Theorem 3.5: Suppose that the conditions given in Lemma 3.4 holds. Then pXnqn

converges to x˚.

Proof: First, assume that pFpx˚,Ynqqn converges. Combining this with 3rd statement

in Lemma 3.4 and Assumption 3.6 asserts, which give Fpx˚,Ynkq Ñ 0 as k Ñ 8, we

have pFpx˚,Ynqqn converges to zero and thus by Assumption 3.6 we obtain the desired

statement. We show now that previous assumption is true. Notice that by 3rd stmt in

Prop. 2.4, by 1st statement in Lemma 3.4, and by the fact that ξk ď 0 for all k, it holds

that there exists C̃ ą 0 s.t. for all n:

Fpx˚,Yn`1q ď Fpx˚,Ynq ` φn, (3.15)

where φn :“ γnψn`γ
2
nC̃. Define Zn :“ Fpx˚,Ynq´

řn´1
k“0 φk, for all n. It follows from (3.15)

by straightforward computation that pZnqn is a monotonically decreasing sequence, i.e.

Zn`1 ě Zn for all n. Moreover, by (3.11) and (3.12) we have that φk ě 0 and
ř8

k“0 φk ă 8

and thus pZnqn uniformly bounded below i.e. there exists c ą 0 s.t. Zn ě ´c for all n.

Both previous observations give that pZnqn converges and consequently since
ř8

k“0 φk

converges, we have as desired pFpx˚,Ynqqn converges.

3.5. Numerical Simulation

We consider a Cornout game model for spectrum access in cognitive radio network (see

e.g. [85]). The variable xi denotes the bandwidth rented by the secondary user (SU) i

which lies between 0 and 1 MHz, i.e. :

Xi “ r0, 1s MHz.

Denote the receiver signal-to-noise ratio (SNR) of the receiver by γ ą 0 and the threshold

of the bit error rate by BERtar. The utility function of SU i P rN s is given by:

uipxq “ Cxpiq ´
Npxpiqq2

2
´ τypσpxqqτ´1xpiq,

where:

σpxq “
N
ÿ

i“1

xpiq, C “ log2

ˆ

1`
1.5

lnp0.2{BERtarq

˙

,

and τ ą 1 and y ą 0 are some constants. We assume that the SUs apply Algorithm 2

with the mirror map:

Φpzq “
exppzq

1` exppzq

induced by the regularizer:

hpxq “ x lnpxq ` p1´ xq lnp1´ xq,
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Figure 3.1.: Game Dynamic for 5 SUs

the step size sequence

γn “
5

n` 1
,

and the approximate aggregates:

σ̂piqn “ σpXnq `
1

n` 1
.

We illustrate in Figure 3.1 the simulation for the case:

N “ 5, y “ 1, τ “ 2, γ “ 15.4dB,BERtar “ 10´4,

and the initial rented bandwidth of each SUs chosen i.i.d. from r0, 1s. In Figure 3.1 it

is apparent that the amount of bandwidth rented by the SUs converges to the Wardrop

equilibrium which matches to our theoretical findings. We also simulate the cases where

N ą 5 and observe the same effect, although high N implies slower convergence of the

algorithm to the Wardrop equilibrium.
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4. Coordinated Online Learning for

Multi-Agent Systems with Coupled

Constraints and Perturbed Utility

Observations

Abstract: Competitive non-cooperative online decision-making agents whose action im-

pacts increase congestion of scarce resources constitute a model for widespread modern

large-scale applications. To ensure sustainable resource behavior, we introduce a novel

method whose aim is to steer the agents toward a stable population state, fulfilling the

given coupled resource constraints. The proposed method comprises decentralized re-

source pricing via augmentation of the game’s Lagrangian based on the resource loads.

Assuming that the online learning agents have merely noisy first-order utility feedback,

we show that for polynomial decaying agents’ step size/learning rate, the population’s dy-

namic almost surely converges to generalized Nash equilibrium. A particular consequence

of the latter is the fulfillment of resource constraints in the asymptotic limit. Moreover, we

investigate the finite-time quality of the proposed algorithm by giving a non-asymptotic

time decaying bound for the expected amount of resource constraint violation.

4.1. Introduction

In a vast number of real-world applications (see also [86]) such as smart grid [58, 59, 61,

63–66], competitive markets [67], and network management [68], the view of the system

participants as competitive selfish rational agents has become popular and led to fruit-

ful discussions about system designs. Because of the emergence of several world-changing

technologies, such as IoT, 5G, and the smart industry, and induced with them – the emer-

gence of large-scale real-time systems, such view is becoming more and more important in

the future. The reason is that the high-complexity, stringent latency -, and high-flexibility

requirements in such systems, cause the communication and agreement between all their

participants to be hard to establish, and therefore also the degree of cooperativeness be-

tween the agents to immensely decrease. This reason founds the importance of game

theoretic modeling in the engineering.
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4. Coordinated Online Learning for Multi-Agent Systems with Coupled Constraints

Resource Constraints In widespread practical applications, the action of the agents

causes the utilization of specific limited resources. For example: in network applications,

the user’s (agents) choice of data transfer paths (strategy) increases the congestion of

specific links and routers (resources) with limited capacity; in electric mobility (see e.g.

[63]), the vehicles’ (agents) charge policy (strategy) increases the load of a grid, having

limited electrical power (resource), at certain times; in fog networking (see e.g. [35]), the

computation offloading choice (strategy) of a thing (agent) demands the computational

power of certain fog nodes (resource). An important issue which has to be dealt by a

system designer and - manager is the danger of resource overload due to agents’ egoistic

behavior, because the state of overutilization of resources can cause immense degradation

of the overall system performance (see e.g. the problem of congestion and congestion

collapse in networked system [87]) and negative environmental issues (e.g. caused by high

CO2 emissions of electrical energy driven resources). Another example of events justifying

the importance of the sustainability aspect in a system of egoistic optimizing agents is

the flash crash in US financial markets due to fully automated computerized trading (see

e.g. [88]).

Problem Description This work addresses the problem of how to control egoistic game-

playing online learning agents, such that in the long-term, population’s action converges to

a stable state fulfilling the resource constraints. A challenge associated with this issue is to

design a decentralized congestion control method that does not provide direct commands

to each agent by a centralized instance and that it demands as little information about

agents’ characteristics as possible. The reason is that the methods contrary to the latter

requirements would need, in case the number of agents is massive, exceptionally high

computational power for the processing of the obtained information and the generation of

the corresponding policies. Moreover, such methods would be inflexible for the possible

exit of - and the entrance of new agents and therefore unsuitable for modern systems such

as IoT.

Our Contributions Our main contribution is a novel method that solves the control

problem as mentioned earlier in case the population of (online learning) selfish agents

having disturbed first-order utility information. Its core is a resource pricing method

aiming both, to give incentives (rather than direct commands/control) to all agents for

acting sustainably, and to provide stability for the population’s state. Our pricing method

requires the current congestion state of the resources and not the specific characteristics of

the agents. Moreover, it is done by the resources themselves rather than by a centralized

instance.

Assuming for simplicity that the feedback noise is persistent.

• We give a sufficient condition on the agents’ step size and the amount of augmen-

tation such that the population iterate a.s. fulfills the resource constraints in the
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asymptotic limit. As a particular result it follows that if the agents’ step size γn is

of order Θpn´µq where µ P p1{2, 1s, the population iterate converges almost surely

to a (variational) Nash equilibrium of the corresponding game underlying coupled

resource constraints and consequently almost surely fulfillment of the resource con-

straints in the asymptotic limit.

• We provide a non-asymptotic bound for the expected violation of the resource con-

straints. In particular, we show that if the agents’ step size sequence is of order

γn “ Θpn´1{2q, the worst-case expected violation is of order Opln3{2
pnq{

?
nq.

• We are able to show that for a large class of decaying step size sequences of order

γn “ Θpn´µq where µ P p0, 1s, the ergodic average of the population’s iterate almost

surely fulfills the resource constraints in the asymptotic limit.

• We provide a non-asymptotic bound for the expected distance of the iterations’

ergodic average and the corresponding variational Nash equilibrium. In case that

the noise is persistent, we show that for a fixed time horizon n and a certain fixed

step size, bound of orderOpn´1{2q is achievable. Moreover, we show that expectation

bound of order OpG2 lnpnqn´1{2q is achievable if instead variable step-size of order

Opn´1q is used.

• Under the additional assumption that the occurring noise has a light tail, we are

even able to provide a high probability bound for the aforementioned distance. In

particular, we show that a bound of order ε is achieved with probability 1 ´ δ for

the time horizon n ě Oplnp2{δq{ε2qby a suitable choice of fixed step sizes.

The proposed method can be used by a system designer to develop agents control

algorithms, based on intrinsically motivated reinforcement learning, aiming to generate a

desirable collective behavior (in case that the latter coincides with the Nash equilibrium

of the considered coupled constrained game).

Relation to Prior Works

Learning in Games Our work is related to the works investigating the dynamic of learn-

ing agents in a competitive setting: Several works generate long-term results concerning

different agent’s types ranging from no-learning (e.g., greedy agents – best-response dy-

namic) to learning agents, such as the fictitious play, where the agents keep track only

of data of opponents play, the gradient play, where the agents learn from the first-order

feedback of their utility. For a comprehensive review of the literature on those topics, we

refer to [89]. Also, recent works analyze farsighted reinforcement learning agents (for a

recent survey, see [90]). Here, we focus on online learning agents applying the canonical

mirror descent algorithm [47, 48]. Therefore, the closest work to ours is [76] (along with
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4. Coordinated Online Learning for Multi-Agent Systems with Coupled Constraints

several extensions such as [91,92]). In contrast to [76], our aim is not to predict the long-

term outcome of a game with online learning agents, but rather to control competitive

online learning agents respective to coupled resource constraints. Therefore in our case,

the admissible set of population strategy profiles is not necessarily of product structure.

For this reason, we have to modify the decentralized algorithm given in [76] and make

use of coordinators to handle such inter-agent constraints. Moreover, in contrast to [76],

where continuous interpolation is used to show the convergence of the given discrete-time

algorithm, our technique relies directly on the martingale convergence theorem.

Generalized Nash equilibrium and Coupled Constraints As we consider a non-cooperative

game with coupled constraints, we mention in the following some related works on the

generalized Nash equilibrium. Usually of interest is the subclass of the variational Nash

equilibrium, defined as the solution of the well-known concept of the variational inequal-

ity [55]. Several characterizations of the Nash equilibrium of games with coupled (re-

source) constraints have been made in the works [55, 93–97] leveraging from the duality

theory and the theory of variational inequalities. Our work does not overlap with those

mentioned work as our emphasis is not on analyzing the generalized Nash equilibrium. In

general, a Nash equilibrium does not coincide with the population’s welfare and, there-

fore, not efficient. There is extensive literature (e.g., [98–100]) on quantifying the loss

of efficiency resulted from the population being in a Nash equilibrium. Relevant to our

work is the very recent analysis of the efficiency loss in a non-cooperative game with

coupled constraints [101]. [101] gives a hint that the variational Nash equilibrium might

be efficient, but the generalized Nash equilibrium might be arbitrarily inefficient. So a

method converging to a variational Nash equilibrium might not only support resource

sustainability but also increases the population’s welfare. In our numerical simulation,

we also observe this effect.

Nash Equilibrium Findings Our method is also suitable for the Nash equilibrium finding.

There is a large body of literature considering this problem. Reviewing them is beyond

the scope of this work. Thus we concentrate on those that consider a similar setting as

ours, i.e., the game with coupled constraints. Most of the existing works such as [84, 95,

102] follow this approach and proposes a primal-dual algorithm based on the fixed-point

methods for finding the solution of a variational inequality (see, e.g., Chapter 12 in [55]),

resulting in a Euclidean-projection based algorithm. In contrast to the method given in

the mentioned work, our method uses the mirror map, which constitutes a generalization

of the Euclidean projection. As already noticed in [48], the advantage of using a mirror

map other than Euclidean projection that the algorithm performance of the former might

have a weaker dependence on the underlying dimension of the decision space. Since we

use the mirror map, we are not able to use the usual convergence proof via a fixed-point

approach for the variational inequality. Furthermore, another essential difference between
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our algorithm and first-order algorithms for finding Nash equilibria of a game with coupled

constraints is that they mostly use constant step size, do not consider the possibility of

noise in the feedback information, and do not have a non-asymptotic guarantee of the

violation of the resource constraints.

Also worth mentioning are works that consider the payoff-based approach (see, e.g.,

[103,104] and the references therein), where each agent can only observe its obtained pay-

offs. Such an approach is important for some applications, e.g., [105,106]. In contrast, our

work assumes that the agents have each gradient observation of their utility. Nevertheless,

investigating a method for gradient feedback constitutes a cornerstone for a payoff-based

approach. So, we expect that from our work, one can generate a control-method via

pricing for resource sustainability for online learning payoff-based agents.

Resource Congestion Control At last, we mention that the problem of alleviation of

resource congestion can also be combined with other objectives such as the maximiza-

tion of the population’s welfare. Such a practice is common for instance in the field of

network/internet congestion control [107], see also e.g., [108] and the control theoretic

approach [109]. However, most of the algorithms for fulfilling such extended task requires

either high degree of control of the agents, or specific information about the agents (e.g.,

their utilities). In contrasts our method only assumes that the agents are online learner

and based of pricing instrument via resource congestion state. However, the cost we pay

is that we cannot guarantee (theoretically) performance gains other than the alleviation

of resource congestion. However, practically, we can see additional gain of population’s

wealth (see Section 4.8).

Chapter Organization

The structure of our work is as follows. In Section 4.2, we set up the multi-agent setting of

our consideration by introducing the underlying game and the notion of coupled (resource)

constraints. Assuming that the agents’ learning model in the repeated game setting is

the online mirror ascent, we propose in Section 4.3 a pricing algorithm aiming to lead the

agents to a stable resource sustainable state. The remaining sections are devoted to the

analysis of our proposed method:

• In Section 4.4, we show that our method can to ensure resource sustainability in the

asymptotic region by showing the convergence of the population’s iterate to a stable

set satisfying coupled constraints. Since the proof of our result is quite technical,

we part it into several Subsections, which one can skip at the first reading.

• In Section 4.5, we quantify to what extent our method can reduce the amount of

coupled constraint violations by deriving a time-decaying bound for the constraint

violation caused by the price-controlled online learning population.
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• In Section 4.6, we close the gap between parameter choices provided in Sections 4.4

and 4.5, and derive the convergence the ergodic average of the MDAL iterates to

the stable state of the interest.

• In Section 4.7 we quantify non-asymptotically the convergence behaviour of MDAL

by providing a bound for the distance of the iterate to the aforementioned variational

Nash equilibrium.

• The final section (Section 4.8) is devoted to practical simulations. Not only we

provide numerical support of our theoretical findings, but also we show that our

method might not be too conservative since it can also ensure the increase of the

population’s wealth. Furthermore, we compare our method with the states of the

art and show that it may outperform them.

4.2. Model Description and Preliminaries

The main objective of this section is twofold. First, to formalize the setting of competitive

agents by introducing the notion of a non-cooperative game. Second, to define the so-

called mirror map, which provides a model of how a selfish agent realizes her decision

from the first-order feedback.

4.2.1. Coupled Resource Constraints

For a certain number R ą 0 of resources, we model the relation between agents’ action

and resource utilization by a function g : RD Ñ RR. Throughout this paper, we assume

that the function g is subject to the following conditions

Assumption 4.1: For all r P rRs, gr : X Ñ R is convex and differentiable, and the

Jacobian matrix ∇g of g is continuous

One may interpret the term grpxq as the overload/congestion state of the resource r P rRs

caused by the population action x. Since from operational - and sustainability point of

view overload has to be kept low and even avoided, it is desired that the population

strategy is contained in:

Q :“ C X X ,

where:

C :“ tgpxq ď 0u

denotes the resource constraints. In order that this goal is feasible, we assume that C is

non-empty. The following regularity condition on Q is useful for later purposes:

Assumption 4.2 (Slater’s condition): There exists a point x˚ in relintpX q s.t.:

gpx˚q ă 0,
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where relintpX q denotes the relative interior of X .

The constraint x P C is also known as the coupled constraint. The reason is that the

compliance depends on the strategy, not only of a single agent but also of the whole

population. NG, which is also subject to coupled inequality constraints C, is also called

NG with coupled constraints (NGCC). The set of the feasible strategy of the player i given

a joint action xp´iq of other agents is denoted by Qpiqpxp´iqq :“ txpiq P Xi : gpxq ď 0u.

4.2.2. Generalized Nash Equilibrium (GNE)

One of the central concepts in game theory is the so-called Nash equilibrium, which de-

notes a feasible strategy profile at which no agent can improve his reward by unilaterally

deviating from his strategy. For general games possibly underlying besides coupled con-

straints, we formally define this notion as follows (see e.g. [93]):

Definition 4.1 (Generalized Nash Equilibrium (GNE)): Given a NGCC Γ and

a resource constraint C. x P Q is said to be a (generalized) Nash equilibrium of Γ with C
if for each i P rN s:

uipx
piq
˚ ,x

p´iq
˚ q ě uipx

piq,xp´iq˚ q, @xpiq P Qpxp´iq˚ q.

The set of all generalized Nash equilibrium of Γ is denoted by GNEpΓ q

4.3. Mirror Ascent with Augmented Lagrangian

Throughout this work, we assume that each agent i P rN s possesses a Ki-strongly convex

regularizer ψi that induces the mirror map Φi and the Fenchel coupling Fi. For the sake

of simplicity, we assume Ki “ K, for all i P rN s.In order to emphasize the action of the

whole population, we use the operator Φ : V Ñ X , y ÞÑ pΦ1py
p1qq, . . . ,ΦNpy

pNqqq and

the total Fenchel coupling F : X ˆ V˚ Ñ Rě0, px,yq Ñ
ř

i Fipxi, yiq. Proposition 2.4

implies that ”convergence” of the sequence pΦpYnqqn induces by pYnqn in the sense that

Fpp,Ynq Ñ 0 for an p P X implies convergence of pΦpYnqqn w.r.t. the underlying norm.

For later purposes, it is helpful to assume that the converse statement holds:

Assumption 4.3 (Reciprocity Condition): For any p P X and any sequence pYnqn

in V˚, it holds: ΦpYnq Ñ p ñ Fpp,Ynq Ñ 0.

The reciprocity condition is standard in the literature of mirror descent (see [110]).

The foundation of the algorithm proposed in this work is given by the following iterate

of the agent i P rN s:

X
piq
n`1 “ ΦipY

piq
n`1q, Y

piq
n`1 “ Y

piq
n ` γnv

piq
pXnq, (4.2)
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Algorithm 3 Mirror Ascent Augmented Resource Pricing (MAARP)

Require: Step size sequence pγnq, augmentation functions pθnq

Require: Initial dual action Y
piq
0 P V˚i , - dual variable Λ0 P RR

ě0

for n “ 0, 1, 2, . . . do
Population play Xn “ ΦpYnq
for every player i P rN s do

Observe the gradient utility feedback

v̂piqn :“ vpiqn pXnq `M
piq
n`1

Query the gradient load feedback:

∇
X
piq
n

grpXnq, r P rRs

Update the score vector

Y
piq
n`1 Ð Y piq

n ` γn

˜

v̂piqn ´

R
ÿ

r“1

Λr
n∇Xpiqn grpXnq

¸

end for
for every resource r P rRs do

Check its load grpXnq

Update the price:

Λr
n`1 Ð ΠRě0 pΛ

r
n ` γn rgrpXnq ´ r∇ΛnθnpΛnqsrsq (4.1)

Broadcast Λn`1 to all players.
end for

end for
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where Xn “ pX
piq
n qi. This algorithm is a canonical extension of the standard mirror

ascent algorithm within the framework of online learning [38] in which the learner sub-

sequently tries to optimize his apriori unknown time-variant regret/payoff-function using

some problem-specific feedback which is in our case the first-order information of his util-

ity function. For practical reasons, we assume that each agent i does not know the exact

gradient vpiq. We can model this aspect, by modifying (4.2) as follows:

X
piq
n`1 “ ΦipY

piq
n`1q, Y

piq
n`1 “ Y

piq
n ` γnv̂

piq
n , (4.3)

where:

v̂piqn “ vpiqpXnq `M
piq
n`1,

and pM
piq
n qnPN be a V˚i -valued F-martingale difference sequence (see Definition 2.6.).

Remark 4 (Justification of Martingale Noise model): This noise model is quite

general. For instance it clearly covers the case where pM
piq
n qn is an i.i.d. zero mean

square-integrable noise. Moreover it covers also noises with memory, such as e.g.:

M piq
n “ εpiqn ε

piq
n´1,

where pε
piq
n qn i.i.d. mean zero RV and F is the corresponding filtration (containing the

filtration) generated by the history of pε
piq
n q. Alternative way to define v̂

piq
n is by requiring:

Er}v̂piqn }2i,˚s ă 8 and Erv̂piqn |Fns “ vpiqpXnq.

In particular if F is the filtration generated by the history of the iterates. So latter

requirement Erv̂piqn |Fns “ vpiqpXnq means that given the history of the iterates until time

n, v̂
piq
n is an unbiased estimator of vpiqpXnq. The corresponding martingale difference

sequence is given by:

M
piq
n`1 “ Erv̂piqn |Fns ´ vpiqpXnq.

In order to handle the coupled resource constraints, we design a pricing mechanism

based on the augmented Lagrangian method (see e.g. [111]), which is done by the resources

themselves based on their congestion state. The corresponding method is given more in

detail in Algorithm 3. The population’s iterate given in Algorithm 3 can be shortly written

as:

Xn`1 “ ΦpYn`1q, Yn`1 “ Yn ` γn
`

v̂n ´ r∇gpXkqs
TΛk

˘

Λn`1 “ ΠRRě0
pΛn ` γn rgpXnq ´∇ΛnθnpΛnqsq

(4.4)

In this work we mainly consider the augmentation functions of the form:

θnpλq :“ αn}λ}
2
2{2, where αn ą 0. (4.5)
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Remark 5 (Decentralization Aspect): Suppose that coupled constraint is affine, i.e.

the function g is given as:

gpxq “ Ax´ b,

where:

A P RRˆ
řN
i“1Di and b P RR.

Moreover denote:

A :“ rA1, . . . ,AN s,

where for all i P rN s:

Ai P RRˆDi

is the matrix which is available only to the agent i. In this setting, the iterate of agent i

is given specifically by

X
piq
n`1 “ ΦipY

piq
n ` γnrv̂

piq
´AT

i Λnsq.

Therefore the iterate of each agent at all times n` 1 is decentralized in the sense that it

only requires local information available for each agent, such as first-order feedback v̂
piq
n

and the constraint matrix Ai, and the prices pΛr
nqrPrRs, set by the resources r P rRs.

Remark 6 (Differences between MAARP and Alg. 2 in [84]): Besides the fact

that the feedback in MAARP is noisy, a difference between MAARP and Algorithm 2 in

[84] is that MAARP uses Mirror Map while Algorithm 2 in [84] uses Euclidean projection.

As already discussed in Subsection 2.1.3, the mirror constitutes a generalization of the

Euclidean projection. Also discussed in Subsection 2.1.3, the use of a mirror map other

than the Euclidean projection might result in a weaker dependence of the algorithm

performance on the dimension of the strategy space (see Remark 12 and Section 4.8).

Another difference between MAARP and Algorithm 2 in [84] is that the price update in

Algorithm 2 in [84] requires two consecutive congestion states of a resource, i.e. grpXnq

and grpXn`1q, while MAARP requires only grpXnq. Moreover, in contrast to Algorithm

2 in [84], the price update Λr
n`1 of MAARP can be done parallelly with the population

update Xn since it does not depend on Xn`1.

4.4. Convergence Analysis of MAARP

In this section, we investigate the convergence of primal iterate of the MAARP to a

generalized Nash equilibrium of the game of our interest. The corresponding convergence

result implies in particular that our pricing method can ensure that the strategy of the non-

cooperative online learning agents’ is sustainable w.r.t. the coupled (resource) constraints.

In general, the generalized Nash equilibrium (GNE) is not unique. Therefore, we need to

specify the GNE of our interest: We introduce the notion of the so-called variational Nash

50



4.4. Convergence Analysis of MAARP

equilibrium of the NGCC Γ with the constraints C constituting a subclass of generalized

Nash equilibrium arises naturally with the dynamic structure of MDAL. This subclass

of generalized Nash equilibrium arises naturally with the first-order dynamic (w.r.t. v)

structure of MDAL as it is defined the solution SOLpQ,vq of the well-known variational

inequality VIpQ,vq (See Definition 2.4). To improve the reading flow, we defer the detailed

discussion on those aspects to the appendix.

In order to keep the argumentation short by avoiding the notion of convergence of a

sequence to a set, we consider the case where the solution of VIpQ,vq (and respectively

VIpX ˆ RR
ě0, ṽq) is unique. This property holds as asserted by Proposition 4.17 if v is

strictly monotone, which holds if the utility function strictly convex in the sense that:

upiqpp¨q,xp´iqq strictly convex @i P rN s, xp´iq P X´i

For the analysis in this section, we use the notations:

Mn :“ pM piq
n qi and σ2

n :“ Er}Mn}
2
˚s.

We have the following convergence statement for the iterate of MAARP:

Theorem 4.1: Suppose that the Assumption 4.3 holds. Moreover suppose that v is in

addition strictly monotone. Let the augmentation function θn is given by (4.5). If the

step size sequence pγnqn satisfies the properties:

8
ÿ

k“0

γk “ 8,
8
ÿ

k“0

γ2k ă 8 (4.6)

8
ÿ

k“0

γ2kσ
2
k`1 ă 8 (4.7)

and if pαnq and pγnq satisfy:
8
ÿ

k“0

γkαk ă 8 (4.8)

and for large enough k P N0:

γk

ˆ

α2
k `

C2
1

K

˙

´
αk
2
ď 0, (4.9)

then the primal iterate pXnq of MAARP converges to the unique variational Nash equi-

librium x˚ “ SOLpQ,vq.

Before we provide proof of the above statement, we give in the following some examples

of step size sequences that fulfill the assumptions of the above Theorem:

Remark 7: Assume that the noise is persistent, i.e. there exists σ ą 0 s.t. σk ď σ for
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all k P N. The condition (4.7) turns to:

8
ÿ

k“0

γ2k ă 8.

Consequently we can eliminate the redundant condition (4.7). (4.7) includes the possibil-

ities that:

γn “ Θpn´pq, p P p1{2, 1s,

but rules out the possibilities that:

γn “ Θpn´pq, p P r0, 1{2s.

Now, let be:

γn “
γ

pn` 1qp
, where γ ą 0 and p P p1{2, 1s arbitrary.

If we choose :

αn “ αγn, for an α ą 0,

then (4.8) is fulfilled. Moreover, we have:

γn

ˆ

α2
n `

C2
1

K

˙

´
αn
2
“ γn

„

α2γ2n `
C2

1

K
´
α

2



.

In case that:

α ą 2C2
1{K,

we can find c ą 0 such that:

γnpα
2
n `

C2
1

K
q ´

αn
2
ď γn

“

α2γ2n ´ c
‰

.

Since the R.H.S. of above inequality is negative for large n, (4.9) is fulfilled by the choice:

α ą 2
C2

1

K
.

Remark 8: An immediate application of the Fubini’s Theorem and the tower property

yields that the condition (4.7) implies the condition that:

8
ÿ

k“0

γ2kEkr}Mk`1}
2
˚s ă 8, a.s.

which is often used in the martingale analysis. To see the implication, notice that we have
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by Fubini’s Theorem and the tower property of the conditional expectation:

8 ą

8
ÿ

k“0

γ2kσ
2
k`1 “ E

«

8
ÿ

k“0

γ2kEkr}Mk`1}
2
˚s

ff

.

Since the infinite sum within the expectation is non-negative, we have the desired state-

ment.

In order to differentiate our approach to one of the nearest prior works, we give the

following remarks:

Remark 9 (Relation to Stochastic Approximation Theory): At first sight, one

may think that the dynamic (4.4) is an instance of the stochastic approximation algorithm

(see e.g. [112–114]) having the archetypical form:

Zn`1 “ Zn ` γn rhpZnq `Mn`1s , (4.10)

for a Lipschitz continuous vector field h. So, the question might arise whether one can

immediately obtain Theorem 4.1 using stochastic approximation theory, whose approach

(”ODE approach”) consists of considering (4.10) as a Cauchy-Euler approximation of the

ordinary differential equation (ODE) :

9Zt “ hpZtq.

However, taking a detailed look at (4.4), one can recognize that our proposed algorithm

differs from (4.10) by the non-linear mappings, i.e., Φ and ΠRRě0
, ensuring that the cor-

responding dynamic remains in the feasible sets. Moreover, in contrast to stochastic

approximation theory, we do not require any Lipschitz condition on the vector field v

needed, in order that the solution of the corresponding ODE uniquely exists. Even if

we require the Lipschitz continuity v, taking a similar ODE approach as done in the

stochastic approximation theory by defining the ODE approximation of (4.4) as:

Xt “ ΦpYtq, 9Yt “ vpXtq ´ r∇gpXtqs
TΛt

Λt “ ΠRRě0
pΓtq , 9Γt “ gpXtq ´∇ΛθtpΛtq.

would surely require intricate argumentation: Starting with showing that the solution

of above ODE uniquely exists – which is not immediately follows since a mirror map

is in general not invertible. Nevertheless, the work [76] investigating the dynamic 4.3

constituting the fundament of our proposed algorithm (4.4) follows the intricate ODE

approach by using techniques provided in [112]. We give a more detailed comment on this

aspect in Remark 10.

Besides, the requirements (4.6) and (4.7) which are the usual summability condition

in the stochastic approximation theory (see e.g. equation (2) in [113]) might lead some
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readers to think that Theorem 4.1 is an easy consequence of the stochastic approximation

theory. However, in order to derive the convergence result, we need to postulate additional

requirements: The requirement (4.8) that ensures the decreasing influence of the non-

equilibrium of the prices, and the requirement (4.9) that ensures that the price update

tracks the population dynamic.

Remark 10 (Relation to [76]): One may naively think that by defining a canonical

new game with a new player controlling the dual variable analogous to the process done

in Subsection 4.9.2, Theorem 4.1 is a simple assertion of Theorem 4.7 [76]. This claim is

not valid since Theorem 4.7 in [76] relies on the fact that the constraint set of each player

is compact and the constraint set RR
ě0 of the dual variable is unbounded. Furthermore,

again by the fact that the constraint of the dual variable is not compact, we cannot imitate

the approach done in [76] based on the theory provided in [112]. This hurdle motivates us

to search for another way (Lemma 4.5) to generate the convergence statement (Theorem

4.1) from the recurrence result (Lemma 4.4). Our approach (Lemma 4.5) is much simpler

than that given in [76] and can also be used to generate Theorem 4.7 in [76]. Another

difference of our work to [76] is our weaker noise assumption. In [76], it is assumed that

there exists σ ą 0 s.t. Enr}Mn`1}
2
˚s ď σ2 a.s. for all n P N0. Assuming (4.6), which

is also done in [76], and applying Fubini’s Theorem and the tower property, the latter

observation implies (4.7).

4.4.1. Bound for Primal-Dual Iterate

The first step to prove Theorem 4.1 is to investigate the distance between primal-dual

iterate of the MAARP to the solution of VIpX ˆRR
ě0, ṽq. As a distance function, we use:

F̃ppx,λq, pΦpyq, λ̃qq :“ Fpx,yq ` p}λ´ λ̃}22{2q

where x P X , y P RD and λ P RR. The following result gives a bound for:

Vnpzq :“ F̃pz,Znq ´ F̃pz,Z0q,

where:

z :“ px,λq P X ˆ RR
ě0 and Zn “ pXn,Λnq

Theorem 4.2: Let C1, C2, C3 ą 0 be constants s.t. for all x P X and λ P RR
ě0 it holds:

}∇gpxqTλ}˚ ď C1}λ}2, }vpxq}˚ ď C2, }gpxq}2 ď C3, (4.11)

and suppose that for all n, θn is continuously differentiable and Kn-strongly convex. For
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all z :“ px,λq P X ˆ RR
ě0, it holds:

Vnpzq ď
n´1
ÿ

k“0

γkηkpzq ` 2

ˆ

C2
2

K
`
C2

3

2

˙ n´1
ÿ

k“0

γ2k `
n´1
ÿ

k“0

γkΨkpΛk,λq ` Snpxq `
2

K
Rn (4.12)

where:

ηkpzq :“ xZk ´ z, ṽpZkqy,

Snpxq :“
n´1
ÿ

k“0

γkM̃kpxq, M̃kpxq :“ xXk ´ x,Mk`1y,

Rn :“
n´1
ÿ

k“0

γ2k}Mk`1}
2
˚,

(4.13)

ΨkpΛk,λq “ θkpλq ´
Kk

2
}Λk ´ λ}

2
2 `

„

γk

ˆ

}∇ΛkθkpΛkq}
2
2 `

C2
1

K
}Λk}

2
2

˙

´ θkpΛkq



Proof: First, define:

E p1qk pxq :“ Fpx,Ykq.

By inserting the iterate of the MAARP into the bound given in Proposition 2.4, we have:

E p1qk`1pxq ´ E
p1q
k pxq ď γkxXk ´ x,vpXkq ´ r∇gpXkqs

TΛky ` γkxXk ´ x,Mk`1y

`
γ2k
2K
}r∇gpXkqs

TΛk ` vpXkq `Mk`1}
2
˚

Triangle inequality, the inequality p
řK
i“1 aiq

2 ď K
řK
i“1 a

2
i , and the assumption (4.11),

gives:

}r∇gpXkqs
TΛk ` vpXkq `Mk`1}

2
˚ ď

`

}r∇gpXkqs
TΛk}˚ ` }vpXkq `Mk`1}˚

˘2

ď 2}r∇gpXkqs
TΛk}

2
˚ ` 2}vpXkq `Mk`1}

2
˚

ď 2 }r∇gpXkqs
TΛk}

2
˚

looooooooomooooooooon

ďC2
1 }Λ}

2
2

`2

¨

˚

˝

2 }vpXkq}
2
˚

loooomoooon

ďC2
2

`2}Mk`1}
2
˚

˛

‹

‚

(4.14)

Combining both computations, we have:

E p1qk`1pxq ´ E
p1q
k pxq ď γkxXk ´ x,vpXkq ´ r∇gpXkqs

TΛky

` γkM̃k`1 `
γ2k
K

`

C2
1}Λk}

2
2 ` 2pC2

2 ` }Mk`1}
2
˚q
˘

Summing above inequality over all k “ 0, . . . , n´1 and subsequent telescoping, we obtain
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the following upper bound for Vp1qn pxq:

Vp1qn pxq ď
n´1
ÿ

k“0

γk
“

xXk ´ x,vpXkq ´ r∇gpXkqs
TΛky

‰

`

n´1
ÿ

k“0

γ2kC
2
1

K
}Λk}

2
2 ` Snpxq `Rn `

2C2
2

K

n´1
ÿ

k“0

γ2k,

where:

Vp1qn pxq :“ Fpx,Ynq ´ Fpx,Y0q.

Now we want to bound:

Vp2qn pλq :“
}Λn ´ λ}

2
2 ´ }Λ0 ´ λ}

2
2

2
.

For that sake, we compute:

}Λk`1 ´ λ}
2
2 “ }ΠRRě0

pΛk ´ γk p∇ΛkθkpΛkq ´ gkpXkqqq ´ λ}
2
2 (4.15)

ď }Λk ´ λ´ γk p∇ΛkθkpΛkq ´ gkpXkqq }
2
2 (4.16)

“ }Λk ´ λ}
2
2 ´ 2γkxΛk ´ λ,´∇ΛkθkpΛkq ´ gkpXkqy ` γ

2
k}∇ΛkθkpΛkq ´ gkpXkq}

2
2

(4.17)

where (4.15) follows by setting the update (4.1), (4.16) from the non-expansive property

of the Euclidean projection, i.e.:

}Φpyq ´ x}2 ď }y ´ x}2, @x,y P RR,

and (4.17) from the identity:

}x` y}22 “ }x}
2
2 ` 2xx,yy ` }y}22.

By similar computation as in (4.14), we have:

}∇ΛkθkpΛkq ´ gkpXkq}
2
2 ď 2pC2

3 ` }∇ΛkθkpΛkq}
2
2q (4.18)

Combining (4.17) and (4.18), we obtain:

Vp2qn pλq ď
n´1
ÿ

k“0

γkxΛk ´ λ,gpXkqy ´

n´1
ÿ

k“0

γkxΛk ´ λ,∇ΛkθkpΛkqy

`

n´1
ÿ

k“0

γ2kpC
2
3 ` }∇ΛkθkpΛkq}

2
2q.
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Now, since θk is Kk-strongly convex for all k, we have:

xλ´Λk,∇ΛkθkpΛkqy ď θkpλq ´ θkpΛkq ´
Kk

2
}Λk ´ λ}

2
2,

and consequently:

Vp2qn pλq ď
n´1
ÿ

k“0

γkxΛk ´ λ,gpXkqy `

n´1
ÿ

k“0

γkrθkpλq ´ θkpΛkqs (4.19)

´

n´1
ÿ

k“0

γkKk

2
}Λk ´ λ}

2
2 `

n´1
ÿ

k“0

γ2kpC
2
3 ` }∇ΛkθkpΛkq}

2
2q. (4.20)

Combining the bounds for Vp1qn pxq and Vp2qn pλq, we obtain the desired bound for:

Vnpx,λq “ Vp1qn pxq ` Vp2qn pλq

Regarding the estimate given in Theorem 4.2, one possibility to gain control over Vn is to

eliminate the dependency of the upper bound (4.12) on Λk, k P rn´ 1s0. We accomplish

this goal by choosing the augmentation functions as in (4.5), each for all n P N0 a αn-

strongly convex augmentation function, yielding:

2ΨnpΛn,λq “ αn}λ}
2
2 ` βn}Λn}

2
2 ´ αk}Λn ´ λ}

2
2

βn
2

:“

„

γn

ˆ

α2
n `

C2
1

K

˙

´
αn
2



.
(4.21)

and subsequently ensuring βk ď 0 by appropriately choosing αk and γk (see (4.9)).

4.4.2. Control over Noise

In order to gain control over the disturbance due to the noise in the first-order feedback

represented by the sums Snpxq and Rn occurring in the upper bound (4.12), we apply

the Doob’s martingale convergence Theorem known in the literature of martingale theory

(see e.g., [56]):

Lemma 4.3: Suppose that pMnq is a square integrable RD-valued F-martingale difference

sequence and that (4.7) holds. Then for the partial sums Sn “ Snpxq and Rn “ Rnpxq,

n ě 0, given in (4.13), it holds:

1. pSnqn is a mean zero square integrable F-martingale and pRnqn is a non-negative

F-sub-martingale

2. There exists a square integrable real R.V. R8 and an integrable real RV s.t. pSnqn

converges a.s. and in L2 to S8 and pRnqn converges a.s. and in L1 to R8
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Proof: It holds since Mk is square integrable for all k:

Er|Rn|s “

n´1
ÿ

k“0

γ2kEr}Mk`1}
2
˚s ă 8.

Moreover by the triangle inequality and the Hölder’s inequality, it yields:

|Sn|
2
ď n

n´1
ÿ

k“0

γ2t

ˇ

ˇ

ˇ
M̃k

ˇ

ˇ

ˇ

2

ď n
n´1
ÿ

k“0

γ2k}Xk ´ x}
2
}Mk`1}

2
˚ ď TC2

XRn,

where CX ą 0 is a constant, whose existence is ensured by compactness of X . This

observation and the integrability of Rn give the square integrability of Sn.

Now, since }Mk`1}
2 is non-negative, it follows immediately that:

En´1 rRns ě Rn´1.

This observation and the apparent fact that pRnq is F-adapted give that pRnq is a sub-

martingale.

Next, we show that pSnq is a martingale. Since for all k P N0, Xk is a measureable

function of pMτ qτďk, it follows that pXnq is adapted to F. Consequently pSnqn is adapted

to F. Moreover the fact that Xn is Fn-measureable asserts:

EkrM̃ks “ xXk ´ x,Ek rMk`1sy “ 0. (4.22)

So, consequently we have as desired En rSn`1s “ Sn. It is immediate to see that this fact

and (4.22) assert that ErSns “ 0.

Now, we proof the statement 2). For k, k̃ P N0 with k ă k̃, we have by tower property,

by the fact that M̃k is Fk̃-measureable, and by (4.22):

ErM̃kM̃k̃s “ ErEk̃´1rM̃kM̃k̃ss “ ErM̃kEkrM̃k̃ss “ 0.

This asserts that:

Er|Sn|2s “
n´1
ÿ

k“0

γ2kEr|M̃k|
2
s `

ÿ

k‰k̃

γkγk̃ErM̃kM̃k̃s ď C2
X

n´1
ÿ

k“0

γ2kEr}Mk}
2
˚s.

Assumption (4.7) asserts that
ř8

k“0 γ
2
kEr}Mk`1}

2
˚s ă 8. So this observation and above

inequality assert that p|Sn|
2q is uniformly convergence. Therefore by martingale con-

vergence Theorem, we obtain the desired statement for p|Sn|
2q. The fact that pRnq is

uniformly integrable follows immediately from (4.7), and the desired statement is a direct

application of martingale convergence Theorem.
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4.4.3. Convergence Proof

To show the Theorem 4.1, we use the Proposition 4.16 given in the Appendix. This

proposition asserts that in order to show the convergence of the primal iterate to the

variational Nash equilibrium of the NGCC Γ with the constraints C, we can instead

investigate the convergence behavior of both the population - and the price iterate to

the solution of the extended variational inequality VIpX ˆ RR
ě0, ṽq where ṽ is the KKT

operator corresponding to VIpQ,vq given in (4.54). A detailed discussion on this aspect

is given in the Subsubsection 4.9.2 in the Appendix.

A first step toward this direction is to combine the results obtained in the preceding

subsections and show the recurrence of Zn around the solution of the variational inequality

VIpX ˆ RR
ě0, ṽq:

Lemma 4.4: Suppose that the Assumptions 3.3, 4.1, and 4.2 hold, and that v is strictly

monotone. Let the augmentation function θt is given by (4.5). If pγnqnPN0, pMnqnPN,

and pαnqnPN0 fulfill (4.7), (4.6), (4.8), and (4.9), then the primal-dual iterate pZnqn a.s.

recurs in all the neighbors (w.r.t. } ¨ }˚) of the unique variational Nash equilibrium z˚ P

SOLpXˆRR
ě0, ṽq of Γ , i.e. a.s. there exists a subsequence pZnkqk of pZnqn which converges

to z˚ w.r.t. } ¨ }˚.

Proof: Clearly since Xn P X for all n P N with X compact, the sequence pXnqnPN is non-

explosive, i.e. }Xn} ă 8 for all n P N. Moreover via standard Grönwall’s argumentation,

it follows that Λn is also non-explosive (see Subsection 4.9.3). Those facts assert that

we can assume without loss of generality that (4.9) holds for all k P N. Notice that by

Theorem 4.2, it follows that:

Vn “ Vnpz˚q ď τn

˜

řn´1
k“0 γkηk
τn

`
C̃1

řn´1
k“0 γ

2
k

τn
`

řn´1
k“0 γkΨk
τn

`
Sn `

2
K
Rn

τn

¸

(4.23)

where :

τn :“
n´1
ÿ

k“0

γk, Ψk :“ ΨkpΛk, λ˚q, ηk :“ ηkpz
˚
q, and C̃1 “ 2ppC2

2{Kq ` pC
2
3{2qq.

By our choice of the augmentation function and the condition (4.9), it follows that (see

(4.5)):

Ψk ď αk}λ˚}
2
2{2.

Setting this estimate into (4.23), it follows that:

Vn
τn
ď

řn´1
k“n0

γkηk

τn
`
C̃1

řn´1
k“n0

γ2k
τn

`
}λ˚}

2
2

řn´1
k“n0

γkαk

2τn
`
Sn `

2
K
Rn

τn
. (4.24)

Now, Lemma 4.3 asserts that both pSnqn and pRnqn converge a.s. and therefore a.s. there
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exists a constant A ą 0 s.t.:

Sn `
2

K
Rn ď A, @n.

This and (4.24) yield that:

Vn
τn
ď

řn´1
k“n0

γkηk

τn
`
C̃1

řn´1
k“n0

γ2k
τn

`
}λ˚}

2
2

řn´1
k“n0

γkαk

2τn
`
A

τn
. (4.25)

Let U be an arbitrary neighborhood of z˚ w.r.t. the norm on V ˆ RR. Suppose that

Zn R U for all sufficiently large n ě 0. W.l.o.g. we assume that Zn R U for all n ě 0.

Since v is strictly monotone and and therefore also ṽ strictly monotone, it follows from

(2.6) that we can find c ą 0 s.t.:

ηk ď ´c, @k ě 0.

This yields:

Vn ď τn

˜

´c` C̃1

řn´1
k“n0

γ2k
τn

`

řn´1
k“n0

γkαk

2τn
}λ˚}

2
2 `

A

τn

¸

. (4.26)

Now, (4.6) and (4.8) asserts that:

C̃1

řn´1
k“n0

γ2k
τn

`
}λ˚}

2
2

řn´1
k“n0

γkαk

2τn
`
A

τn
Ñ 0, as nÑ 8. (4.27)

Finally, since:

τn Ñ 8, as nÑ 8,

we have from (4.27) and (4.26) that:

Vn Ñ ´8, nÑ 8 a.s.,

which contradicts with the fact that:

Vn ě ´F̃pz˚,Z0q ą ´8.

Thus a.s. Zn P U for infinitely many n ě 0.

Remark 11: Taking a glance into the proof of Lemma 4.4, one notices that in case that

there is no noise, the requirements (4.6) and (4.8) in this lemma can be replaced by the

weaker requirements:

8
ÿ

k“0

γk “ 8,

řn
k“1 γ

2
k

řn
k“1 γk

Ñ 0,

řn
k“1 γkαk
řn
k“1 γk

Ñ 0, nÑ 8,

The final auxiliary step, we need for showing Theorem 4.1, is the following result in spirit

of Robbin-Siegmund’s Lemma (see e.g. Therom 1.3.12 in [115]):
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Lemma 4.5: Suppose that the Assumptions 3.3, 4.1, 4.2, and 4.3 hold, and that pγnqnPN0,

pMnqnPN, and pαnqnPN0 fulfill (4.7) (4.6), (4.8), and (4.9). Let z˚ be a variational Nash

equilibrium, i.e. solution of z˚ P VIpX ˆ RR
ě0, ṽq. Then a.s. pF̃pz˚,Znqqn converges to a

finite RV.

Proof: W.l.o.g. we can assume that (4.9) holds for all n. We have by (4.24):

F̃pz˚,Zn`1q ď F̃pz˚,Znq ` γnηn `
γnαn}λ˚}

2
2

2
` γ2nC̃1 ` γnM̃n ` γ

2
n}Mn`1}

2
˚. (4.28)

Now, since Zn is Fn measureable and ηn “ ηnpz
˚q ď 0 for all n (This follows from the

assumptions that z˚ is the solution of VIpX ˆRR
ě0, ṽq and that ṽ is monotone) and since

EnrM̃ns “ 0, we have by taking the expectation of (4.28) given Fn:

ErF̃pz˚,Zn`1q|Fns ď F̃pz˚,Znq ` ζn, (4.29)

where:

ζn :“
γnαn}λ˚}

2
2

2
` γ2nC̃1 ` γ

2
nEr}Mn`1}

2
˚|Fns.

Furthermore, notice that by the assumptions (4.6), (4.8), (4.7):

pζnqn is a non-negative F-adapted sequence satisfying
8
ÿ

k“0

Erζks ă 8 a.s. (4.30)

Indeed, this holds by the tower property of conditional expectation:

8
ÿ

k“0

E
“

γ2kEr}Mk`1}
2
˚s
‰

“

8
ÿ

k“0

E
“

γ2kEr}Mk`1}
2
˚s
‰

“

8
ÿ

k“0

γ2kσ
2
k,

by the Fubini’s Theorem and the tower property of conditional expectation.

Now, consider the sequence:

Yn :“ F̃pz˚,Znq ´

n´1
ÿ

k“0

ζk.

Clearly pYnq is F-adapted and integrable. The fact that pζnq is F-adapted (see (4.30))

gives:

EnrYn`1s “ EnrF̃pz˚,Zn`1qs ´ En

«

n
ÿ

k“0

ζk

ff

“ EnrF̃pz˚,Zn`1qs ´

n
ÿ

k“0

ζk.

So combining this and (4.29), we have:

EnrYn`1s ď F̃pz˚,Znq ` ζn ´
n
ÿ

k“0

ζk “ F̃pz˚,Znq ´

n´1
ÿ

k“0

ζk “ Yn,
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and thus we have that:

pYnq is a supermartingale. (4.31)

Moreover for all n ě 0 we have since F̃pz˚,Znq ě 0

ErYns ě ´E

«

n
ÿ

k“0

ζk

ff

“ ´

n
ÿ

k“0

E rζks ě ´
8
ÿ

k“0

E rζks ą ´8, @n P N,

and consequently:

sup
nPN

ErrYns´s ă 8. (4.32)

Both (4.31) and (4.32), and the Doob’s martingale convergence Theorem (Theorem 2.8)

yield the a.s. convergence of pYnq. Finally, since:

0 ď
8
ÿ

k“0

ζk ă 8 a.s.,

which is a consequence of
ř8

k“0 Erζks ă 8 (c.f. Remark 8) it follows that pF̃pz˚,Znqqn

converges a.s., as desired.

Proof (Proof of Theorem 4.1): Let ε ą 0 and z˚ the unique solution of VIpX ˆ
RR
ě0, ṽq. Lemma 4.4 asserts (a.s.) the existence of a subsequence pZnkqk of pZnqn satisfy-

ing:

Znk Ñ z˚, as k Ñ 8.

Consequently, by the reprocity condition we have that:

Fpz˚,Znkq Ñ 0, as k Ñ 8.

Furthermore, Lemma 4.5 asserts that pFpz˚,Znqqn converges a.s. to a finite random

variable and therefore we have:

pFpz˚,Znqqn is a.s. a Cauchy sequence.

Consequently, a.s., we can choose n0 large enough s.t. for all nk, n, ñ ě n0:

Fpz˚,Znkq ď ε{2 and Fpz˚,Zñq ď Fpz˚,Znq ` ε{2.

So for the latter event, we have for n, nk ě n0:

Fpz˚,Znq ď Fpz˚,Znkq ` ε{2 ď ε.

Thus a.s. Fpz˚,Znq Ñ 0 as n Ñ 8 and Proposition 2.4 asserts that pZnq converges a.s.

to z˚ “ px˚,λ˚q as nÑ 8. For the desired statement, notice finally that by Proposition
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4.17, x˚ is the unique variational Nash equilibrium.

4.5. Resource Constraint Violation Analysis

Theorem 4.1 asserts that in the long term and under suitable choices of algorithm param-

eters, the population iterate a.s. satisfies the coupled resource constraint. However, the

guarantee is purely asymptotic. So, we aim in this section to provide a non-asymptotic

guarantee for the decay of the amount of resource constraint violation of MAARP. To

make the corresponding result more accessible, we assume in this section for convenience

the following:

Assumption 4.4: For all n P N0, αn “ αγn for an α ą 0. The trackability condition

(4.9) holds for all n P N, which is in this context:

α2γ2n ´
α

2
`
C2

1

K
ď 0, @n P N0. (4.33)

The noise is persistent in the sense that there exists σ ą 0 s.t. σk ď σ for all k P N.

Vital for the derivation of a non-asymptotic guarantee is the following quantity:

CViorn :“

řn´1
k“0 γkgrpXkq
řn´1
k“0 γk

.

Since gr is convex for every r P rRs, it follows from Jensen’s inequality that CViorn is an

upper bound of the constraint violation on the resource r caused by the ergodic average

of the population iterate at time n´ 1, i.e.:

grpXnq ď CViorn, where Xn :“

řn´1
k“0 γkXk
řn´1
k“0 γk

(4.34)

We start with the following auxiliary statement, which asserts that one can deduce the

information about the load from the prices:

Lemma 4.6: Suppose that :

Λ0 “ 0.

For all r P rRs and n P N:

CViorn ď
}Λn}2 `

řn´1
k“0 γkαk}Λk}2

řn´1
k“0 γk

Proof: The definition of our price policy gives:

Λr
k`1 ě Λ

r
k ` γkgrpXkq ´ γkαkΛ

r
k.
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So by summing this inequality and subsequent telescoping, we have since Λ0 “ 0:

n´1
ÿ

k“0

γkgrpXkq ď Λ
r
n `

n´1
ÿ

k“0

γkαkΛ
r
k.

Now, this inequality and the fact that Λr
k ě 0 give:

Λr
k ď

g

f

f

e

R
ÿ

r“1

pΛr
kq

2 “ }Λk}2.

Therefore, we have as desired:

n´1
ÿ

k“0

γkgrpXkq ď }Λn}2 `

n´1
ÿ

k“0

γkαk}Λk}2.

Lemma 4.7: Suppose that:

Λ0 “ 0 and Y0 “ 0.

Then under Assumption 4.4, it holds:

Er}Λn}2s ď O

¨

˝p1` σq

g

f

f

e

n´1
ÿ

k“0

γ2k

˛

‚

Proof: By taking the expectation of (4.29), and subsequent summing and telescoping,

we can conclude that:

E
”

F̃pz˚,Znq

ı

ď F̃pz˚,Z0q `

řn´1
k“0 γkαk}λ˚}

2
2

2
`

n´1
ÿ

k“0

γ2kC̃1 `

n´1
ÿ

k“0

γ2kσ
2
k`1.

Consequently since Z0 “ 0:

E
„

}Λn ´ λ˚}
2

2



ď ∆ψ`
}λ˚}

2
2

2
`

řn´1
k“0 γkαk}λ˚}

2
2

2
`

n´1
ÿ

k“0

γ2kC̃1 `

n´1
ÿ

k“0

γ2kσ
2
k`1,

where:

∆ψ “
N
ÿ

i“1

„

max
xpiqPXi

ψipx
piq
q ´ min

xpiqPXi
ψipx

piq
q



. (4.35)

Thus by Jensen’s inequality and triangle inequality:

pEr}Λn}2s ´ }λ˚}2q
2
ď 2∆ψ` }λ˚}

2
2 `

n´1
ÿ

k“0

γkαk}λ˚}
2
2 ` 2

n´1
ÿ

k“0

γ2kC̃1 ` 2
n´1
ÿ

k“0

γ2kσ
2
k`1.

The desired statement follows from above since αk “ αγk and σk ď σ for all k.
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4.5. Resource Constraint Violation Analysis

If γk “ Θp1{
?
kq, we have Er}Λn}2s ď Opp1` σq

a

lnpnqq. Moreover, since:

n´1
ÿ

k“0

γkαkEr}Λk}2s ď α
n´1
ÿ

k“0

γ2kOp
a

lnpkqq ď Op
a

lnpnqq
n´1
ÿ

k“0

γ2k,

it holds:

ErCViorns ď Opln3{2
pnq{

?
nq.

This observation and (4.34) immediately give the following non-asymptotic result for the

violation of the coupled constraint:

Theorem 4.8: Suppose that

γk “ Θ

ˆ

1
?
k

˙

,

then for every r P rRs, we have the guarantee:

ErgrpXnqs ď O

˜

ln
3
2 pnq
?
n

¸

Remark 12: In the case where the mirror maps are different from the Euclidean projec-

tion, the bound in Theorem 4.8 might have weaker dimensional dependence. One reason

is that the quantity ∆ψ (see (4.35)), hidden in the O-notation in Theorem 4.8, might

have in this case weaker dimension dependence. Another reason is that in this case, the

constant σ might possesses similar behavior. To be more specific, consider the case where

for all i P rN s, Xi is a Di-dimensional simplex and the case where the noise is a sequence

of independent Gaussian normal vector in RD.

• In the case where for all i P rN s, } ¨ }i is the 2-norm dual to itself, ψi is the Euclidean

norm, and the mirror maps are Euclidean projections, it holds :

∆ψ “
N
ÿ

i“1

a

Di and σ2
“

N
ÿ

i“1

Di.

• In comparison, we have in case for all i P rN s, } ¨ }i is the 1-norm dual whose dual

is the 8-norm, ψi is the Gibbs entropy, and the mirror maps are logit choices, it

holds:

∆ψ “
N
ÿ

i“1

lnpDiq and σ2
ď

N
ÿ

i“1

p2p
a

lnpDiq ` lnpDiqq ` 1q,

where C ą 0 is an universal constant (for the latter see e.g. Example 2.7 in [116]).
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4.6. Convergence Analysis for Ergodic Average

Theorem 4.8 guarantees decaying coupled constraints violation in expectation for the

ergodic average of the population actions for step size γk and augmentation sequence αk

of order Θp1{
?
kq. In contrast, Theorem 4.1 does not ensure1 (see Remark 7) the a.s.

fulfillment of the ergodic average in the asymptotic regime for the step size sequences of

order Θp1{
?
kq. To close this theoretical gap, we show in this section the convergence of

the ergodic average for that class of step sizes. Our result in this direction is the following:

Theorem 4.9: Suppose that v is strictly monotone , and suppose that there exists σ ą 0

s.t. σk ď σ, for all k P N, and that:

8
ÿ

k“0

γk “ 8

řn´1
k“0 γ

2
k

řn´1
k“0 γk

Ñ 0 (4.36)

řn´1
k“0 γkαk
řn´1
k“0 γk

Ñ 0 (4.37)

8
ÿ

k“0

γ2k
´

řk
i“0 γi

¯2 ă 8. (4.38)

Then it holds limnÑ8Xn “ x˚

Before we provide the proof of above Theorem, let us first give a discussion about step

size and augmentation sequence fulfilling the requirement of the above Theorem:

Remark 13: Clearly, step size sequence of order γk “ Θp1{kpq, where p P p0, 1s fullfils

(4.36) and (4.38). Choosing αk “ αγk for an α ą 0, one sees that (4.37) is also fulfilled.

Lemma 4.10: Suppose that:

8
ÿ

k“0

γk “ 8
8
ÿ

k“0

γ2kσ
2
k

´

řk
i“0 γi

¯2 ă 8

Snpxq
řn´1
k“0 γk

Ñ 0 a.s. k Ñ 8

Proof: By the Cauchy-Schwarz inequality, by the assumption that X is compact, and by

similar argumentation as in Remark 8, it follows that a.s.:

8
ÿ

k“0

γ2kEk
„

ˇ

ˇ

ˇ
M̃k`1

ˇ

ˇ

ˇ

2


´

řk
i“0 γi

¯2 ă 8 a.s.

Since pSnpxqqn is a martingale (see Lemma 4.3), we have from Theorem 2.9 (specifically

statement (3.13)) the desired statement.

1The convergence of iterate implies the convergence of the ergodic average of the iterates
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Lemma 4.11: Suppose that σk ď σ, for all k, and that:

řn´1
k“0 γ

2
k

řn´1
k“0 γk

Ñ 0, nÑ 8. (4.39)

Then it holds:
Rn

řn´1
k“0 γk

Ñ 0, nÑ 8, a.s.

Proof: p}Mn}
2
˚qn is a submartingale with supkPN Er}Mn}

2
˚s ă 8. So, it follows from

Theorem 2.9 the a.s. convergence of p}Mk}
2
˚qn and thus a.s. the existence of A ą 0 s.t.

supnPN }Mn}
2
˚ ď A. Combining this with (4.39), the result follows.

Proof (Proof of Theorem 4.9): It holds:

xZn ´ z˚, ṽpz˚qy “

řn´1
k“0 γkxZk ´ z˚, ṽpz˚qy

řn´1
k“0 γk

ě

řn´1
k“0 γkηk
řn´1
k“0 γk

,

where the inequality follows from the monotonicity of ṽ. Thus it follows from (4.24) and

the fact that Vn ě F̃pZ0, z˚q:

xZn ´ z˚, ṽpz˚qy ě ´
F̃pZ0, z˚q

τn
´
C̃1

řn´1
k“0 γ

2
k

τn
`
}λ˚}

2
2

řn´1
k“n0

γkαk

2τn
`
Sn `

2
K
Rn

τn
.

Lemma 4.10 and 4.11 give:

pSn `
2

K
Rnq{τn Ñ 0 a.s

and consequently:

lim inf
nÑ8

xZn ´ z˚, ṽpz˚qy ě 0.

Combining this statement with the fact that a.s.:

lim sup
nÑ8

xZn ´ z˚, ṽpz˚qy ď 0,

which is implied by the fact that z˚ P SOLpX ˆ RR
ě0, ṽq, it follows that:

lim
nÑ8

xZn ´ z˚, ṽpz˚qy “ 0.

Since ṽ is strictly monotone, it follows that a.s. limnÑ8Zn “ z˚ as desired.

Remark 14 (Differences between Theorems 4.9 and 4.1): In contrast to Theo-

rem 4.1, the proof of Theorem 4.9 does not rely on the reciprocity condition for the

Fenchel coupling (Assumption 4.3). Furthermore, the requirement of Theorem 4.1 cannot

be changed to the requirement of Theorem 4.9 so that a.s. compliance of the coupled

resource constraints in the asymptotic limit also holds for step size sequences of order
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γk “ Θp1{kpq for all p P p0, 1s. The main reason is the Robbins-Siegmund argumentation

in the proof of Theorem 4.1 (see Lemma 4.5)

4.7. Non-Asymptotic Bounds for the Distance to

Variational Nash Equilibrium

The aim of this section is to investigate the convergence speed of noisy MDAL. In order to

keep the argumentation simple, we assume again that v is strictly monotone, and denote

the unique solution of VIpX ˆRM
ě0, ṽq by z˚. Moreover, we assume throughout that (4.8)

holds for all n ě 0. A sufficient condition for (4.8) is given in the following

Lemma 4.12: If we set pγnq non-decreasing and αn “ αγn with:

γ0 ď

?
K

?
32C1

and α ď
128C1

24K
(4.40)

then (4.8) holds for all n ě 0.

Proof: Let pγnq be a given non-increasing sequence in Rě0 and αn “ αγn, where α ą 0.

Similar computation as in Remark 7 gives that (4.8) holds for all n ě 0 if and only if:

2α2γ2n `
C2

1

K
´
α

2
ď 0, @n ě 0. (4.41)

Notice that in order (4.41) holds, it is necessary that:

γn ď

?
K

?
32C1

, @n ě 0. (4.42)

By the monotonicity of the step size sequence this holds if and only if this inequality holds

for n “ 0. Now, suppose that (4.42) holds. We have that (4.41) holds if and only if:

»

–

1
4
´

b

1
4
´ 8γ2n

C2
1

K

4γ2n

fi

fl

`

ď α ď

1
4
`

b

1
4
´ 8γ2n

C2
1

K

4γ2n
. (4.43)

Now, suppose that it holds:

γn ď

?
3K

C1

?
128

, @n ě 0. (4.44)

Again by monotonicity of the step size sequence, it is sufficient to require that (4.44) holds

for n “ 0. We have that (4.43) holds if and only if:

α ď

1
4
`

b

1
4
´ 8γ2n

C2
1

K

4γ2n
, @n ě 0. (4.45)

68



4.7. Non-Asymptotic Bounds for the Distance to Variational Nash Equilibrium

Since by (4.44) it follows that:

1

4
`

c

1

4
´ 8γ2n

C2
1

K
ě

1

2
,

we have by the monotonicity of the stepsize sequence, that the following condition is

sufficient for (4.45):

α ď
1

8γ20
. (4.46)

Clearly by (4.44) it is sufficient to assume the following in order that (4.46) holds:

α ď
128C1

24K
. (4.47)

4.7.1. Primal-Dual Gap

We define the so-called primal-dual equilibrium gap as follows:

Ξpzq :“ xz˚ ´ z, ṽpzqy.

The primal-dual equilibrium gap is suitable to measure the distance between a point in the

primal-dual space and the variationally Nash equilibrium. Indeed by strict monotonicity

of ṽ and the fact that z˚ P VIpX ˆ RM
ě0, ṽq. it holds:

Ξpzq ą 0, whenever px,λq “ z ‰ z˚.

Moreover in case that v is in addition cv-strongly monotone it follows by Proposition

4.15 that Ξ provides an estimate of the distance between the primal iterate of noisy MDAL

and variationally Nash equilibrium:

Ξpzq ě
cv
2
}x´ x˚}

2. (4.48)

Instead giving an estimate for the primal-dual equilibrium gap of the iterate of MDAL,

we give an estimate for the ergodic averages of the primal-dual equilibrium gap of noisy

MDAL:

Ξ
γ

n :“

řn´1
k“0 γkΞpZkq
řn´1
k“0 γk

,

If v is in addition cv-strongly monotone we can relate the ergodic averages with the dis-

tance between the primal iterate of MDAL and the unique variationally Nash equlibrium

of Γ . Indeed, by (4.48) and convexity of the squared norm it yields:

Ξ
γ

n ě
cv
2

řn´1
k“0 γk}Xk ´ x˚}

2

řn´1
k“0 γk

ě
cv
2

min

"

}X
γ

n ´ x˚}
2, min
kďn´1

}Xk ´ x˚}
2

*

,
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4. Coordinated Online Learning for Multi-Agent Systems with Coupled Constraints

where:

X
γ

n :“

řn´1
k“0 γkXk
řn´1
k“0 γk

denotes the ergodic average of the primal iterate of noisy MDAL.

4.7.2. Expectation and High Probability Bound

By Combining Theorem 4.2, the discussions made in (4.5) and Lemma 4.3, we immediately

obtain a bound for the expectation of Ξ
γ

n:

Theorem 4.13: Suppose that (4.8) is true for all n ě 0. Then it holds:

ErΞγks ď
F̃pz˚,Z0q ` C̃1

řn´1
k“0 γ

2
k `

řn´1
k“0 γkαk

}λ˚}22
2
` 2

K

řn´1
k“0 γ

2
kEr}ξk}2˚s

řn´1
k“0 γk

.

Proof: Since (4.8) is true for all n ě 0, it follows that:

Ξ
γ

k :“

řn´1
k“0 γkΞpZkq
řn´1
k“0 γk

ď
F̃ pz˚,Z0q ` C̃1

řn´1
k“0 γ

2
k `

řn´1
k“0 γkαk

}λ˚}22
2
` Sn ` p2{KqRn

řn´1
k“0 γk

.

(4.49)

Since pSnq is a mean zero martingale, we obtain the desired result by taking the expecta-

tion in above inequality.

Remark 15: Suppose that the noise is persistent in the sense that there exists G ą 0

s.t.

Er}ξk}2˚s ď G, @k P N.

From above theorem, it follows that in case that the time horizon n is fixed we can choose

constant step size and constant augmentation sequence depending on n, s.t.:

ErΞγns ď OpGn´
1
2 q.

Moreover for variable step size and augmentation sequence of order: Op1{nq, we can

achieve the bound:

ErΞγns ď OpG2 lnpnqn´
1
2 q.

The detailed explanation is defered to Appendix 4.10.

Let us now assume in addition that the martingale noise has light tail in the following

sense:

Assumption 4.5: For each n, }ξn`1}˚ is subgaussian given Fn, i.e. there exists σn ą 0

s.t.:

En´1
„

}ξn`1}
2
˚

σ2
n



ď 2 a.s.

This condition is in particular equivalent to the condition that the tail probability of

70



4.7. Non-Asymptotic Bounds for the Distance to Variational Nash Equilibrium

}ξn`1}˚ given Fn is dominated (up to an absolute constant) by the tail probability of a

normal random variable with variance σ2
n. For detailed treatment of this aspect, we refer

to [117].

With this additional structure of the noise, we can refine the bound given in Theorem

4.13 as follows:

Theorem 4.14: With probability 1´ δ, we have:

Ξ
γ

k ď
F̃ pz˚,Z0q ` C̃1

řn´1
k“0 γ

2
k `

řn´1
k“0 γkαk

}λ˚}22
2
` p2{KqCψ1

řn´1
k“0 γ

2
kσ

2
k

řn´1
k“0 γk

(4.50)

`

b

2 lnp2{δqCψ2C
2
X
řn´1
k“0 γ

2
kσ

2
k ` lnp2{δqCψ1 supkPrns σ

2
k´1

řn´1
k“0 γk

, (4.51)

where:

Cψ1 “ 4e1`p1{eq and Cψ2 “ 2{e

The proof of this theorem is quite technical. Thus we defer it to Subsection 4.9.4. One

can show that by Assumption 4.5, it follows that:

En´1r}ξn`1}2˚s À σ2
n. (4.52)

Thus the first part (4.50) of the upper bound given in Theorem 4.14 coincides (up to an

absolute constant) with the expectation bound given in Theorem 4.13. So the additional

price we pay for analyzing the probability instead of the expectation is given in the second

part (4.51).

Remark 16: Suppose that the noise is persistent in the sense that:

σk “ σ, @k.

From above Theorem, it follows that in case that the time horizon n is fixed choosing

constant step size and constant augmentation sequence depending on n yields with prob-

ability 1´ δ

Ξ
γ

k ď O
´

a

lnp2{δqσ2{n
¯

.

Moreover for variable step size and augmentation sequence of order Op1{nq, with proba-

bility 1´ δ we can achieve the bound:

Ξ
γ

n ď O
`

lnp2{δqσ2
plnpnq{

?
nq
˘

.

The detailed explanation is defered to Appendix 4.10
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4.8. Numerical Experiment

In this section, we numerically investigate the behavior of Algorithm 3 in case the under-

lying game model is quadratic. Quadratic game is a popular model in several applications

(see e.g. [76, 84, 102]) such as competitive markets, cognitive radio network, charging of

electric vehicles, and congestion control of road network. Our focus lies on the difference

of the sustainable resource behavior, between the population’s states and the their ergodic

averages, and between different choices of mirror map.

4.8.1. Setting

Exponential Weights Online Learning in Quadratic Game We consider N agents

whose task is to allocate a certain amount of tasks to R resources. The strategy space

of agent i corresponds to the simplex ∆ :“
!

xpiq P RR
ě0 :

řR
r“1 x

piq
k “ 1

)

. For a strategy

xpiq P ∆, x
piq
r stands for the proportion of tasks agent i assigns to resource r P rRs.

Moreover, we have, in this case, D “ R. The cost function of player i is quadratic and

given by

J piqpxpiq,xp´iqq “
1

2
xxpiq,Qxpiqy ` xCσpxq ` ci,xpiqy,

where σpxq “ 1
N

řN
i“1 x

piq where ci P RD, Q P RDˆD and C P RDˆD are positive semi-

definite, and either Q or C are positive definite. In order to apply our method, we set

upiqpxq “ ´J piqpxq. The corresponding gradient mapping is given by:

vpxq “ ´

„

pIN bQ`
1

N
1N1T

N b Cqx` c`
1

N
pIN b C

T
qx



where b denotes the Kronecker product between two matrices, and where 1N denotes a

vector in RN whose entries are one and IN denotes the identity matrix in RNˆN .

Game Parameter As mirror map of the agents, we use either the Euclidean projec-

tion onto the simplex or the logit choice. In order to avoid numerical overflow in the

implementation of the logit choice we use the log-sum trick. In the simulation, we set:

Q “ 2

b

Q̃TQ̃` ID,

where the entries of Q̃ is chosen independently normal distributed. Moreover we consider

the case where :

C “ 4ID and c “ 0.

We adapt as the model for resource constraints the affine constraints as described in

Remark 5 with:

A “ 4ID and b “ d1D,
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for different d ą 0. As the model for the stochastic feedback, we use:

the Gaussian vector with the covariance matrix σ2ID,

where either σ “ 0 or σ “ 5. Throughout the simulations, we choose the step size

sequence :

γn “
0.5

?
n` 1

and the augmentation sequence:

αn “ αγn with α “ 5.

We plot the corresponding resource average negative clipped constraints violation (RANCCV)

both of the ergodic average of the population’s dynamic, i.e.,
řR
r“1rgrpXnqs`{R, and of

the population’s dynamic, i.e.,
řR
r“1rgrpXnqs`{R.

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

2

Time n

ř

R r
“
1
rg
r
pX

n
qs
`
{
R

Logit choice, no regulation
Logit choice, regulated
Projection, no regulation
Projection, regulated

Figure 4.1.: RANCCV of the ergodic average of the population’s dynamic for D “ R “ 20,
N “ 50, d “ 10.5, and σ “ 0.

4.8.2. Evaluation

Price regulation vs. Anarchy - RANCCV We first evaluate the simulation results for

the case of no feedback noise, i.e., σ “ 0 (Figure 4.1–4.5), in the case of no feedback noise,

i.e., σ “ 0. As apparent from Figure 4.1, control of selfish agents is crucial for sustainable

resource behaviour, since the average of the negative clipped resource constraints violation
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Figure 4.2.: RANCCV of the ergodic average of the population’s dynamic for D “ R “ 50,
N “ 100, d “ 8.5, and σ “ 0.
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Figure 4.3.: RANCCV of the ergodic average of the population’s dynamic for D “ R “ 50,
N “ 100, d “ 8, and σ “ 0
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Figure 4.4.: Comparison of Time cumulative of average agents’ utilities for mirror ascent
dynamic with (MAARP) and without pricing regulation.
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Figure 4.5.: RANCCV of the population’s dynamic for D “ R “ 20, N “ 50, d “ 10.5,
and σ “ 0.
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in the pure anarchistic case (black dotted - and blue dash-dotted line) (4.2) is significantly

higher than the case where MAARP is applied (red - and brown dashed line). We observe

that better results yields if we use the logit choice (red line) instead of the usual Euclidean

projection (brown dashed line). This effect is more pronounced in a high strategy space

dimension than in the low one, cf. Figure 4.1 and Figures 4.2–4.3, which is aligned with

the discussion made in Remark 12.

Price regulation vs. Anarchy - Utilities Given the previous discussion, one may think

that the reduction of constraint violation comes with a reduction of the population’s

welfare. For this reason, we investigate the average of agents’ losses, i.e.
řN
i“1 J

piqpXnq{N ,

numerically . We plot the time-average2 of this quantity in Figure 4.4. There we observe

that MAARP, in contrast to the pure anarchistic case, not only promotes sustainable

behaviour but also reduces the average loss, and therefore improves the populations’

welfare. Furthermore, we see that the use of a mirror map other than Euclidean projection

also improves not only sustainable behavior but also the population’s welfare.

Ergodic average vs. Indeed Trajectory Figure 4.2 depicts the behavior of the indeed

population’s dynamic. Therein we can observe the tendency of the decaying amount of

violations of the resource constraints. However, the corresponding decay might be much

slower in comparison to decay of the ergodically time-averaged population’s dynamic (see

Figure 4.1).

Noise-Robustness of MAARP with Logit choice Now we evaluate the simulation re-

sults for the case of feedback noise with σ “ 5 (Figures 4.6 and 4.7) and 500 noisy samples

(i.i.d). One can see that using logit choice effects in average better results than using Eu-

clidean projection as forecasted by the discussion made in Remark 12. Moreover, one can

observe that the RANCCVC is more volatile in the case where the Euclidean projection

is used compared to the case where the mirror map is the logit choice. Comparing Figures

4.6 and 4.7, it is apparent that using the ergodic average yields significantly lower and

less volatile amount of resource constraint violations.

Comparison to the State of the Art At last, we give a comparison of our method

to some existing methods comparable to ours, i.e., the primal-dual method (see e.g. [55])

and the asymmetric projection (AP) (see e.g., Algorithm 2 [84]). The primal-dual method

can be seen as the MAARP without augmentation (i.e., α “ 0). Moreover, we give the

primal-dual method leverage by equipping it with the logit choice instead of the Euclidean

projection. We plot the corresponding RANCCVC in Figure 4.8. There, one can see

that the MARRP with logit choice (red line) outperforms the primal-dual method (yellow

2The reason that we plot the time-average instead of the quantity itself is to make the performance
distinction between MAARP with logit choice and with Euclidean projection clearer.
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4.8. Numerical Experiment

Figure 4.6.: RANCCV of the ergodic average of the population’s dynamic for D “ R “ 20,
N “ 50, d “ 10.5, σ “ 5, and sample size “ 500 . Red line corresponds to
the sample average of RANCCVC in the logit choice case and brown dashed
line resp. in the Euclidean case. Shaded areas are each corresponds to 25%-,
50%-, 75%-, and 90%-percentile.

Figure 4.7.: RANCCV of the population’s dynamic for D “ R “ 50, N “ 100, d “ 10.5,
σ “ 5, and sample size “ 500. Red line corresponds to the sample average
of RANCCVC in the logit choice case and brown dashed line resp. in the
Euclidean case. Shaded areas are each corresponds to 25%-, 50%-, 75%-, and
90%-percentile.
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dash-dotted), and the best result yields if one uses AP (purple dotted). However, the dual

variable update of AP requires, in contrast to MAARP, two consecutive congestion states

of the resources and can not be implemented parallelly with the population’s strategy

update (see Remark 6). Besides this fact, one can see from the plot of the average of

agents’ losses in Figure 4.9, that the excellent performance of RANCCVC of AP comes

with the increase of agents’ losses.
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Figure 4.8.: Comparison of RANCCVC of MAARP with state of the art.

4.9. Appendix

4.9.1. Monotonicity of the KKT Operator

Proposition 4.15: Suppose that gi is convex for all i P rN s. It holds:

xα1 ´ α2, ṽpα1q ´ ṽpα2qy ď xx1 ´ x2,vpx1q ´ vpx2qy, (4.53)
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Figure 4.9.: Comparison of the average agents’ losses of MAARP with state of the art.
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for all αi :“ pxi,λiq P X ˆ RM
ě0, i “ 1, 2. Consequently if v is (resp. strictly) monotone

then v is (resp. strictly) monotone. Moreover if v is c-strongly monotone, then :

xα1 ´ α2, ṽpα1q ´ ṽpα2qy ď ´
c

2
}x1 ´ x2}

2,

Proof: Straightforward computations yields:

xα1 ´ α2, ṽpα1q ´ ṽpα2qy “ xx1 ´ x2,vpx1q ´ vpx2qy

´ xx1 ´ x2, r∇gpx1qs
Tλ1 ´ r∇gpx2qs

Tλ2y ` xλ1 ´ λ2,gpx1q ´ gpx2qy.

Since gi is convex for all i P rM s, it holds:

xλ1 ´ λ2,gpx1q ´ gpx2qy “
ÿ

i

λ
piq
1 pgipx1q ´ gipx2qq ´

ÿ

i

λ
piq
2 pgipx1q ´ gipx2qq

ď
ÿ

i

λ
piq
1 xx1 ´ x2,∇gipx1qy ´

ÿ

i

λ
piq
2 xx1 ´ x2,∇gipx2qy

“ xx1 ´ x2, r∇gpx1qs
Tλ1 ´ r∇gpx2qs

Tλ2y

Combining all both computations, we obtain (4.53). Now, if ṽ is (resp. strictly) monotone,

then we have xx1 ´ x2,vpx1q ´ vpx2qy ď 0 (resp, ă 0). this observation and (4.53) gives

the last statement.

4.9.2. Nash Equilibrium & Variational Inequality

Decoupling the Coupled Constraints via of Lagrangian

In order to investigate VIpQ,vq, it is convenient to extend VIpQ,vq to VIpX ˆ RR
`, ṽq,

where ṽ : X ˆ RR
`,

ṽ : X ˆ RR
` Ñ RD`R, px,λq ÞÑ

“

vpxq ´ r∇gpxqsTλ,gpxq
‰T
. (4.54)

The advantage of this method is the decoupling of the constraint set. Specifically, employ-

ing this procedure, we only have to work with the constraint set X ˆ RR
ě0 with product

structure rather than with Q.

The following Proposition is toward that direction:

Proposition 4.16: Suppose that the Assumptions 3.3, 4.1 and 4.2 holds. Then the

following statements are equivalent:

1. x P Q is a solution of VIpQ,vq

2. There exists λ P RR
ě0 s.t. px,λq is a solution of VIpX ˆ RR

`, ṽq.

Proposition 4.16 tells us that in order to find a variational Nash equilibrium of Γ (in case

it exists), it is sufficient to find the solution of VIpXˆRR
`, ṽq. Moreover, if v is additionaly

80



4.9. Appendix

strictly monotone, we can strengthen the statement given in that proposition as follows:

Proposition 4.17: Suppose that Assumptions 3.3, 4.1 and 4.2 hold. If v is strictly

monotone, then there exists a unique solution x of VIpQ,vq and λ P RR
ě0 s.t. px,λq is a

unique solution of VIpX ˆ RR
ě0, ṽq.

Proof: Proposition 4.16 ensures the existence of such a pair px,λq. Moreover, since v

is strictly monotone, it follows from Proposition 4.15 that ṽ is strictly monotone. Conse-

quently Proposition 2.6 ensures the uniqueness of VIpX ˆ RR
ě0, ṽq

The idea of relating constrained convex optimization problem to unconstrained convex

optimization problem applies also to variational inequality. For this sake, we define the

notion of KKT system relative to the variational inequality VIpQ,vq by:

vpxq ´ λT∇gpxq “ 0

0 ď λ K gpxq ď 0

x P X .

(4.55)

This system is related to the KKT system:

∇fpxq ´∇gpxqTλ “ 0

0 ď λ K gpxq ď 0

x P D

(4.56)

which corresponds to the constrained optimization problem:

max
xPD

fpxq s.t. gpxq ď 0, (4.57)

where f : D Ñ R, and g : D Ñ RM continuously differentiable and D is a non-empty

subset of RD.

Proposition 4.18: Suppose that Slater’s condition holds. Then x solves VIpQ,vq if and

only if there exists λ s.t. px,λq solves the KKT system (4.55)

Proof: x solves VIpQ,vq if and only if:

xx,vpxqy ď xx,vpxqy, @x P Z.

In turn, the latter is equivalent with:

x P arg max
xPQ

xx,vpxqy.

The KKT system corresponds to above program is given by (4.55) (cf. (4.57)). Since

x ÞÑ xx, F pxqy is trivially convex on X , and the Slater’s constraint qualification is fulfilled,

then the desired statement follows since for constrained convex optimization problem the
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set of the solution of the KKT system coincides with the set of solutions of the optimization

problem.

In order to obtain Proposition 4.16 all we need is to get rid of the condition λKgpxq in

the KKT system for VI (see (4.55)). This is done in the following:

Proof (Proof of Proposition 4.16): Since there are no explicit inequality constraint

in X ˆ RM
ě0 then X ˆ RM

ě0 fulfills the slater’s CQ. It follows from Proposition 4.18 that

SOLpX ˆ RM
ě0, ṽq coincides with the solution of the KKT system:

vpxq ´∇gpxqλ “ 0

gpxq ` µ “ 0 (4.58)

0 ď µ K ´ λ ď 0 (4.59)

x P X λ P RM
ě0. (4.60)

Setting (4.58) into (4.59) we obtain that SOLpX ˆ RM
ě0, ṽq coincides with the solution of

KKT system:

vpxq ´∇gpxqλ “ 0

0 ď λ K gpxq ď 0

x P X . (4.61)

For the final step, notice that the solution of this KKT system is equivalent to SOLpQ,vq
since the Slater’s CQ for Q is fulfilled.

4.9.3. Non-explosiveness of the Iterate of MDAL

Since Xn P X and X is compact, it follows immediately that }Xn} ă 8. In order to

proof the non-explosiveness of the dual iterate of MAARP, we need the following known

result:

Proposition 4.19 (Discrete Gronwall’s Inequality): Let pynq, pfnq, and pgnq be

non-negative sequences. If for n ě 0 it holds:

yn ď fn `
ÿ

kăn

gkyk,

then:

yn ď fn `
ÿ

kăn

gkfk expp
ÿ

kăjăn

gjq
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In order to show the non-explosiveness of Λn, notice first that from (4.20), it follows that:

}Λn ´ λ}
2
2 ď }Λ0 ´ λ}

2
2 ` 2

n´1
ÿ

k“0

γkxΛk ´ λ,gpXkqy `

n´1
ÿ

k“0

γkαk}λ}
2
2

` 4
n´1
ÿ

k“0

γ2kpC
2
3 ` α

2
k}Λk}

2
2q.

Notice that:

}Λk}
2
2 ď 2p}Λk ´ λ}

2
2 ` }λ}

2
2q.

Moreover by Hölder’s inequality, Young’s inequality, and the fact that g is continuous and

X is compact, it holds:

xΛk ´ λ,gpXkqy ď }Λk ´ λ}2}gpXkq}2 ď
}Λk ´ λ}

2
2

2
`
}gpXkq}

2
2

2
ď
}Λk ´ λ}

2
2

2
`
C

2
,

for a constant C ą 0 independent of k. Combining all the results, it follows that:

}Λn ´ λ}
2
2 ď }Λ0 ´ λ}

2
2 `

n´1
ÿ

k“0

pγk ` 8γ2kα
2
kqp}Λk ´ λ}

2
2 ` Cq `

n´1
ÿ

k“0

pγkαk ` 8γ2kα
2
kq}λ}

2
2

` 4
n´1
ÿ

k“0

γ2kC
2
3 ,

and thus:

}Λn ´ λ}
2
2 ď

n´1
ÿ

k“0

pγkαk ` 8γ2kα
2
kqC̃ `

n´1
ÿ

k“0

pγk ` 8γ2kα
2
kq}Λk ´ λ}

2
2,

for a constant C̃ ą 0 independent of k. By setting:

yn “ }Λn ´ λ}
2
2, fn “

n´1
ÿ

k“0

pγkαk ` 8γ2kα
2
kqC̃, and gn “ γn ` 8γ2nα

2
n,

we have by Gronwall’s inequality as desired:

}Λn ´ λ}
2
2 ă 8.

4.9.4. Proof of Theorem 4.14

In order to show Proposition 4.21, we need to give a high probability bound for both sums

Sn and Rn under the light tail assumption of the summand (see Assumption 4.5).

In order to give a high probability bound for Sn, we introduce the following notion:

Definition 4.2 (Subgaussian Martingale): Let pMnq be a F-martingale. pMnq is

called subgaussian if the increments ∆Mn :“ Mn ´Mn´1 is subgaussian given Ft´1, i.e.
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for all n, there exists a constant C ą 0. s.t.:

En´1rexpp∆M2
n{C

2
qs ď 2.

The infimum of all C ą 0 s.t. above inequality holds is denoted by }∆Mn}ψ2,n´1. We

define the process:

xMyψ2

n :“
n
ÿ

k“1

}∆Mk}
2
ψ2,k´1

, n P N

It is immediate to see that pSnq with S0 “ 0 is a subgaussian martingale. For a subgaussian

martingale one can give a subgaussian concentration inequality:

Proposition 4.20 (Stochastic Exponential of Subgaussian Martingale): Let pMnq

be a subgaussian martingale. Then:

PpMn ´M0 ě ε, xMyψ2

n ď rq ď expp´
ε2

2Cψ2r
q, (4.62)

where Cψ2 “ 2{e is an absolute constant.

Proof: Define the process:

EpM,λqψ2
n :“ exppλpMn ´M0q ´ λ

2Cψ2 xMy
ψ2

n q, n P N0

It holds:

En´1rEpM,λqψ2
n s “ EpM,λqψ2

n´1 ¨ En´1rexppλpMn ´Mn´1q ´ λ
2Cψ2}Mn ´Mn´1}

2
ψ2,n
qs.

Since En´1rMn ´Mn´1s “ 0, it follows from the subgaussian property see e.g. [117]:

Et´1rexppMn ´Mn´1qs ď exppCψ2}Mn ´Mn´1}
2
ψ2,n´1

q,

Thus we obtain that EpM,λqψ2
n , n P N, is a supermartingale

Now consider the event:

An :“
!

Mn ´M0 ě ε, xMyψ2

n ď r
)

.
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Markov inequality asserts that for λ ě 0:

PpAnq ď E
„

exp

ˆ

λ

2
pMn ´M0q ´

λ

2
ε

˙

1An



ď E
„

b

EpM,λqψ2
n exp

ˆ

λ2

2
Cψ2 xMy

ψ2

n ´
λ

2
ε

˙

1An



ď E
„

b

EpM,λqψ2
n exp

ˆ

λ2

2
Cψ2r ´

λ

2
ε

˙

1An



,

where the last inequality follows since on An, xMyψ2

n is upper bounded by r. Cauchy-

Schwarz inequality and the fact that pEpM,λqψ2
n qn is a supermartingale, give:

PpAnq ď E
“

EpM,λqψ2
n

‰
1
2 E

“

exp
`

λ2Cψ2r ´ λε
˘

1An

‰
1
2 ď E

“

exp
`

λ2Cψ2r ´ λε
˘

1An

‰
1
2 .

Setting the optimal choice :

λ “
ε

2Cψ2

above, we have:

PpAnq ď exp

ˆ

´
ε2

4Cψ2r

˙

a

PpAnq.

By dividing both sides with
a

PpAnq, we obtain the desired statement

Definition 4.3 (Subexponential Submartingale): Let pMnq be a F-submartingale.

pMnq is called subexponential if the increments ∆Mn :“ Mn ´ Mn´1 is subexponential

given Ft´1, i.e. for all n, there exists a constant C ą 0. s.t.:

En´1rexpp|∆Mn| {Cqs ď 2.

The infimum of all C ą 0 s.t. above inequality holds is denoted by }∆Mn}ψ1,n´1. We

define the process:

xMyψ1

n :“
n
ÿ

k“1

}∆Mk}
2
ψ1,k´1

,

It is immediate to see that pRnq with R0 “ 0 is a subexponential submartingale. For a

subexponential submartingale one can give the following concentration inequality:

Proposition 4.21: Let pMnqn be a subexponential submartingale. If a.s. for all n ě 0

there exists cn ą 0 s.t.:

Cψ1}Mn ´Mn´1}ψ1,n´1 ď cn, (4.63)

It holds:

P

˜

n
ÿ

k“1

|Mk ´Mk´1| ě Cψ1 xMy
ψ1

n ` ε

¸

ď exp

˜

´
ε

Cψ1psupkPrns0 ckq

¸

, (4.64)
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where Cψ1 :“ 4e1`
1
e is an absolute constant.

Proof: Define the process:

Epλ,Mqψ1
n :“ expp

n
ÿ

k“1

λ |Mk ´Mk´1| ´ λCψ1 xMy
ψ1

n q, n ě 0,

and let be:

0 ď λ ď
1

Cψ1 supn cn
(4.65)

It holds:

En´1rEpM,λqψ1
n s “ EpM,λqψ1

n´1 ¨ En´1rexppλ |Mn ´Mn´1| ´ Cψ1λ}Mn ´Mn´1}ψ1,nqs.

By subexponential property [117], we have for λ satisfying (4.65):

Et´1rexppλ |Mt ´Mt´1| ´ λCψ1}Mt ´Mt´1}ψ1,tqs ď 1.

This shows that EpM,λqψ1
n is a supermartingale. Now by Markov’s inequality and mar-

tingale property of EpM,λqψ1
n , it holds:

Pp
n
ÿ

k“1

|Mk ´Mk´1| ě Cψ1 xMy
ψ1

n ` εq ď inf
λPr0,1{Cψ1 supn cnq

expp´λεq.

Setting the optimal λ we obtain (4.64).

Combaining both proposition, we obtain Theorem 4.21:

Proof (Proof of Theorem 4.14): We set S0 “ 0.

}∆Sn}ψ2,n´1 ď CXγn´1}}ξn}˚}ψ2,n´1 ď CXγn´1σn´1

Thus:

xSyψ2

n “

n
ÿ

k“1

}∆Sn}
2
ψ2,n´1

ď C2
X

n´1
ÿ

k“0

γ2kσ
2
k a.s.

By Proposition 4.20 it holds with probability at least 1´ δ:

Sn ď

g

f

f

e2 lnp1{δqCψ2C
2
X

n´1
ÿ

k“0

γ2kσ
2
k

It holds:

}∆Rn}ψ1,n´1 “ γ2n´1}}ξn}˚}ψ1,n´1 ď γ2n´1σ
2
n´1
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Proposition 4.21 asserts that with probability at least 1´ δ, we have:

Rn ď Cψ1

n´1
ÿ

k“0

γ2kσ
2
k ` lnp1{δqCψ1 sup

kPrns

σ2
k´1.

4.10. Choices of Step size and Augmentation Sequence

4.10.1. Detailed explanation of Remark 15

Set Y0 “ 0 and Λ0 “ 0, it follows that:

F̃ pz˚,Z0q ď

řN
i“1∆ψipXiq

N
`
}λ˚}

2
2

2
, where ∆ψipXiq :“ max

Xi
ψi ´min

Xi
ψi.

Let us denote:

∆ψpX q :“

řN
i“1∆ψipXiq

N

In case that we have constant step size γn “ γ Theorem 4.14 asserts:

ErΞγns ď

«

∆ψpX q
γn

` pC̃1 `
2G2

K
qγ

ff

`
}λ˚}

2
2

2

„

1

γn
` αγ



.

If we choose:

γ “

d

∆ψpX q
pC̃1 `

2G2

K
qn
,

for large enough n s.t. (4.40) holds, then:

ErΞγns ď
c

∆ψpX qpC̃1 `
2G2

K
q

2
?
n
`
}λ˚}

2
2

2
?
n

«

d

pC̃1 `
2G2

K
q

∆ψpX q
` α

d

∆ψpX q
pC̃1 `

2G2

K
q

ff

.

This shows that the complexity bound of order OpGn´1{2q is achievable for fixed stepsize

and fixed time horizon.

Now suppose that γn “ γ{pn` 1q, where γ ą 0 fulfills the inequality (4.40). It follows

from Theorem 4.14:

ErΞγns ď

«

∆ψpX q
γ

` pC̃1 `
2G2

K
qγ `

}λ˚}
2
2

2

„

1

γ
` αγ



ff

Opn´1{2 lnpnqq.

This shows that the complexity bound of order OpG2 lnpnqn´1{2q is achievable for variable

step size and augmentation sequence.
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4.10.2. Detailed explanation of Remark 16

If we choose Y0 “ 0 and Λ0 “ 0, it follows that:

F̃ pz˚,Z0q ď

řN
i“1∆ψipXiq

N
`
}λ˚}

2
2

2
, where ∆ψipXiq :“ max

Xi
ψi ´min

Xi
ψi.

Let us denote:

∆ψpX q :“

řN
i“1∆ψipXiq

N

It holds:

Ξ
γ

k ď

«

∆ψpX q ` lnp2{δqCψ1σ
2

γn
` pC̃1 ` σ

22Cψ1

K
qγ

ff

`
σCX

a

2 lnp2{δqCψ2
?
n

`
}λ˚}

2
2

2

„

1

γn
` αγ



.

So for a fixed n ě 0, if we choose:

γ “

g

f

f

e

∆ψpX q ` lnp2{δqCψ1σ
2

pC̃1 ` σ2 2Cψ1
K
qn

,

then with probability at least 1´ δ:

Ξ
γ

k ď 2

d

p∆ψpX q ` lnp2{δqCψ1σ
2qpC̃1 ` σ2 2Cψ1

K
q

n
`
σCX

a

2 lnp2{δqCψ2
?
n

`
}λ˚}

2
2

2
?
n

»

–

g

f

f

e

pC̃1 ` σ2 2Cψ1
K
q

∆ψpX q ` lnp2{δqCψ1σ
2
` α

g

f

f

e

∆ψpX q ` lnp2{δqCψ1σ
2

pC̃1 ` σ2 2Cψ1
K
q

fi

fl .

Thus with probability at least 1´ δ, we have the complexity bound:

Ξ
γ

k ď O

˜

c

lnp2{δqσ2

n

¸

.

Equivalently, to get the bound Ξ
γ

n ď ε with probability at least 1´ δ, we need:

n ě O
ˆ

lnp2{δqσ2

ε2

˙

Now suppose that γn “ γ{pn ` 1q, where γ ą 0 fulfills the inequality (4.40). Since in

this case
řn´1
k“0 γk À n´1{2 and

řn´1
k“0 γk À lnpnq, ot holds:

ErΞγns ď

«

∆ψpX q ` lnp2{δqCψ1σ
2

γ
` pC̃1 `

2σ2Cψ1

K
qγ `

σCX
a

2 lnp2{δqCψ2
?
n

`
}λ˚}

2
2

2

„

1

γ
` αγ



ff

¨O
ˆ

lnpnq
?
n

˙

.
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Thus with probability at least 1´ δ, we have the complexity bound:

Ξ
γ

n ď O
ˆ

lnp2{δqσ2 lnpnq
?
n

˙

.
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5. Impact of Agents’ Price Sensitivity

on the Resource Sustainable Pricing

5.1. Introduction

In this chapter, we continue the discussion made in the last chapter, where we have

designed an incentive-based control mechanism based on resource pricing aiming to foster

resource-sustainable behavior in a system of competitive online learning agents. There,

we have seen, by charging each agents additional cost for the amount of utilization of

resources with prices proportional to the capacity violation of the resources, can lead to

the decay of the average of the resources’ capacity violations.

This observation made in the last chapter enlightens the following role of the price:

It provides information about the degree of the scarcity of a resource, measured by the

amount of the violation of their capacity constraints. This role of the price is also known

in economic theory. One fundamental principle in this direction is the so-called scarcity

principle (see e.g. [118]), which explains the dynamic of the price of an economic good as

the result of a mismatch between supply and demand. This principle asserts in particular

that the price of a scarce good increases until the supply and demand reach an equilibrium.

So naively, one may think, that since the prices are linked to the actual congestion state

and are the only provider of amount of resource constraint violations, the agents should

give up their personal preferences and choose their decision according to the actual price

of the resources. Accordingly, the question which we ask in this chapter is the following:

If the learning agents would be more sensitive to the prices as to their own preferences,

does the resource-centric pricing lead to a more resource sustainable behaviour in a

competitive system?

In this chapter, we show that, to a certain degree, price sensitiveness can foster sustainable

behaviour. However, a high price sensitiveness can be in contrary to the goal of establish-

ing that behaviour. Intuitive reasoning of the latter claim is that high price sensitiveness

may cause herding behaviour in the utilization of the resources: the agents tend to use

resources which has the lowest price, equally given for all agents, and not the resources

which provide them the highest benefit.

This chapter is organized as follows:
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• In Section 5.2 we extend Algorithm 4 by introducing an additional parameter called

sensitivity parameter. With the sensitivity parameter, one can increases the impor-

tance of the price in the agents’ decision making. There, we also provide an informal

discussion about how this parameter influences the populations’ behaviour.

• Subsequently in Section 5.3, we provide for a certain sensitivity parameter choice a

guarantee for resource sustainable behaviour. Although the guarantee is comparable

to that for Algorithm 3, it is more convenient.

• Finally in Section 5.4 we provide some numerical simulations in order to support

both the informal discussions given in Section 5.2 and the theoretical guarantee

given in the Section 5.3.

5.2. Basic Setting and Price Mechanism

Non-Cooperative Game with Coupled Resource Constraints Here, we consider the

similar basic setting as in the previous chapter, i.e., the setting of non cooperative game

(See Section 2.2) with coupled constraints (See Subsection 4.2.1), with the difference that

we assume that the underlying coupled constraints are affine, i.e., we consider the function

g specified in Assumption 4.1 takes the form

gpxq “ Ax´ b,

where:

RRˆ
řN
i“1Di Q A :“ rA1, . . . ,AN s and b P RR,

with for any i P rN s:

Ai P RRˆDi

is the matrix which is available only to the agent i. This specification of the resource

constraints is for sake of simplicity of the arguments. However for the general setting,

one can straightforwardly extend the given arguments. Furthermore, we choose the affine

constraints to exploit the decentralization aspect discussed briefly in Remark 5.

Agents’ Model and Pricing Mechanism Same as in the previous chapter, we assume

that the agents are online learner applying the online mirror descent algorithm. In order

to give the agents incentives for sustainable use of resources, our advice is to charge

each agent additional cost for the amount of utilization of resources related to her action.

Specifically, consider a time slot t, agent i is obligate to pay Λ̃T
t AiX

piq
t`1 for a possible future

action X
piq
t`1 P Xi, where Λ̃t is a vector specifying the price of each resource at time t. So

at time t, the utility function of agent i becomes u
piq
t p¨q ` Λ̃

T
t Aip¨q, and correspondingly

92



5.2. Basic Setting and Price Mechanism

assuming that the price information is not noisy, the gradient update (4.3) turns to:

Y
piq
t`1 “ Y

piq
t ` γtpv̂

piq
t `AT

i Λ̃tq. (5.1)

The update of each entry of the price vector Λ̃t`1 is done by each of the resources sepa-

rately proportional to their own congestion state. The specific mechanism is provided in

Algorithm 4.

Algorithm 4

Require: Horizon length T ,

• For each t P rT ´ 1s0: agents’ learning rate γτ ą 0, resources’ learning rate
ζk P p0, 1q, price progressivity ηk ě 0, price sensitivity βk ě 0,

• Initialization: Score vectors Y
piq
0 P RDi , i P rN s, prices Λr

0 P Rě0, r P rRs.

//Mechanism

for t “ 1, 2, . . . , T do
Every agent i P rN s mutually play X

piq
t Ð ΦipY

piq
t q

//Decision making via Online Learning
for every player i P rN s do

Observe noisy gradient utility feedback (7.3) and update the score vector Y
piq
t`1 via

(5.1)
Query the prices Λ̃r

t from the resources r P rRs
end for
//Pricing
for every resource r P rRs do

Check the actual own congestion state: φφφrt “ φφφ
rpXtq “ rAXt ´ bsr

Update the price:

Λr
t`1 Ð rp1´ ηtqΛ

r
t ` ζtφφφ

r
t s` and Λ̃r

t`1 Ð βt ¨Λ
r
t`1

end for
end for

Pricing Parameters Choice – Gedankenexperiment The parameter βk specifies to

what extent the price of a resource should be considered in the decision-making process

of the agents. In order to understand the effect of this parameter to the population

dynamic, let us consider the extreme cases βk “ 0 and high βk ą 0. With βk “ 0,

the population dynamic described in Algorithm 4 turns to (4.3). As already discussed

in the previous chapter extensively, we cannot expect decaying resource congestion. An

intuitive reasoning for this occurance is that if βk “ 0, the corresponding population

dynamic potentially converges to the stable set of variational Nash Equilibrium of the

non-cooperative game, which generally does not satisfy the coupled constraints. Now, if

βk ą 0 is high, the agents tend to take the action with cheapest cost. Since the price of a

resource is proportional to its congestion state, all agents might at worst (e.g. in the case
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N “ D and Ai “ IN , where an action corresponds directly to resource utilization choice)

fully consume a single resource with the lowest congestion and cause therefore the latter’s

price and load to rise dramatically. Subsequently in the next time slot, they will all

mutually fully utilized another less congested and cheaper resource causing its price and

congestion to rise dramatically. This procedure will repeat, cause agents’ consumption

choice bounces at worst from a single resource to another one, and meanwhile violation

of resource capacity constraints. This gedankenexperiment asserts in particular that high

prices and thus high degree of control, in contrary to the intuition, does in general not

support sustainable behaviour. Rather, one should allow for the latter’s sake to a certain

degree egoistic behaviour of the agents.

The parameter ηk specifies the strength of the dependency of the price update on

the previous price. ηt “ 1 corresponds to the extreme case where the price update

only based on the actual congestion state φφφrt . We expect ηk “ 1 is not a good choice

since it ignores the price dynamic and correspondingly the agents’ consumption behaviour

implicitly described therein. A problem which might occur with the extreme case ηk “ 0

is the rapid increase of the prices causing the price update insensitive against changes in

the congestion state of the resources.

5.3. Non-asymptotic Guarantee of the Price Mechanism

In this section we provide a theoretical analysis of the price mechanism provided in Al-

gorithm 4. Our emphasize is on the degree of its contribution to the resource-aware

consumption behaviour of the agents, which we measured by the (time) average of the

norm of the clipped cumulative violation of constraints (ANCCVC):

ANCCVCt :“
E
”

}
“
řt´1
t“0pAXt ´ bq

‰

`
}2

ı

t
, t P N.

ANCCVC gives in particular an estimate for the time average congestion state of the

resource since:

ANCCVCt ě

t´1
ÿ

k“0

φφφrpXkq

t

for all r P rRs.

Throughout, C1, C2, C3 denote non-negative constants fulfilling for all x P X and λ P

RM
ě0:

}ATλ}˚ ď C1}λ}2, }vpxq}˚ ď C2, }gpxq}2 ď C3, (5.2)

which clearly exists by our assumptions on u and X . Our main result is the following:

Theorem 5.1: Given a horizon length n P N and learning rate γk ą 0, k P rn´ 1s0. Set
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the extrinsic price sensitivity of the agents and the resources’learning rate as:

βk “ 2 and ζk “ γk, @k P rt´ 1s0,

and suppose that for all k P rt ´ 1s0 the agents’ learning rate and the price progressivity

fulfills:

η2k ´
ηk
2
`

2γ2kC
2
1

K
ď 0, @k P rn´ 1s0 (Trackability Condition (TC)), (5.3)

Then it holds for Λ0 “ 0 and Y0 “ 0:

E

«

}r

n´1
ÿ

k“0

γkpAXk ´ bqs`}
2
2

ff

ď 2ηn

˜

∆ψ` C̃1

n´1
ÿ

k“0

γ2k

¸

`η2n

˜

}λ˚}
2
2 `

4

K

n
ÿ

k“1

γ2k´1Er}Mk}
2
˚s

¸

,

(5.4)

where:

ηt :“
t´1
ÿ

k“0

ηk ` 1, C̃1 :“ 2

ˆ

C2
2

K
` C2

3

˙

, ∆ψ “
N
ÿ

i“1

ˆ

max
Xi
ψi ´min

Xi
ψi

˙

, K :“ min
i
Ki,

and where λ˚ P RR
ě0 fulfills:

px˚,λq P SOLpX ˆ RR
ě0, ṽq, for an x˚ P X .

Remark 17: In contrast to the approach made in Chapter 4, the proof of this theorem

is based on the analysis of the dynamic of the energy function:

Etppx,λq, λ̃q :“ E p1qt ppx,λqq ` E
p2q
t pλ̃q,

where:

E p1qk ppx,λqq :“ Fpx,Ykq`
}Λk ´ λ}

2
2

2
, E p2qk pλ̃q :“

}Λk ´ λ̃}
2
2

2
, x P X , and λ, λ̃ P RR.

Moreover, to generate this result we do not analyze the dynamic of the price update.

Now, we are ready to give the proof of Theorem

Proof (Proof of Theorem 5.1): For all k P N and x P X , it holds for Vp1qn pxq :“

Fpx,Ytq ´ Fpx, Y0q:

Vp1qn pxq ď
n´1
ÿ

k“0

γkxXk ´ x,vpXkqy ´

n´1
ÿ

k“0

γkxXk ´ x, βkA
TΛky

`

n´1
ÿ

k“0

β2
kγ

2
kC

2
1

K
}Λk}

2
2 ` Snpxq `

2

K
Rn `

2C2
2

řn´1
k“0 γ

2
k

K
,
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where C1 and C2 are given in (5.2), and where:

Snpxq :“
n´1
ÿ

k“0

γkxXk ´ x,Mk`1y, Rn :“
n´1
ÿ

k“0

γ2k}Mk`1}
2
˚.

Now, we analyze the dynamic of the energy function }Λn´λ}
2
2{2. it holds for Vp2qt pλq :“

p}Λt ´ λ}
2
2 ´ }Λ0 ´ λ}

2
2q{2:

Vp2qt pλq ď
n´1
ÿ

k“0

ζkxΛk ´ λ,AXk ´ by `
n´1
ÿ

k“1

p2η2k ´ ηkq

2
}Λk}

2
2 ` }λ}

2
2

n´1
ÿ

k“0

ηk
2
` C2

3

n´1
ÿ

k“0

ζ2k .

(5.5)

Combining the previous bounds for Vp1qt pxq and Vp2qt pλq, it yields for z “ px,λq P

X ˆ RR
ě0:

Vtpzq ď ´
t´1
ÿ

k“0

γkΞkpzq `
t´1
ÿ

k“0

γkp1´ βkqxXτ ´ x,A
TΛky `

2C2
2

K

t´1
ÿ

k“1

γ2k ` C
2
3

t´1
ÿ

k“1

ζ2k

` }λ}22

t´1
ÿ

k“0

ηk
2
`

t´1
ÿ

k“0

ˆ

η2k ´
ηk
2
`
β2
kγ

2
kC

2
1

K

˙

}Λk}
2
2 ` Stpxq `

2

K
Rt

`

t´1
ÿ

k“0

pγk ´ ζkqxΛk ´ λ,AXk ´ by,

where Vtpzq “ Vp1qt pxq ` V
p2q
t pλq, and where:

Ξtpzq :“ xz ´Zt, ṽpZtqy.

By straightforward computation one can show that v monotone asserts ṽ is monotone.

Thus it holds:

Ξtpzq ě xz˚ ´Zt, ṽpz˚qy ě 0, @z˚ P SOLpX ˆ RR
ě0, ṽq.

This and the choice ζk “ γk yields for z˚ “ px˚,λ˚q P SOLpX ˆ RR
ě0, ṽq :

Vtpz˚q ď
t´1
ÿ

k“0

γkp1´ βkqxXk ´ x˚,A
TΛky `

2C2
2

K

t´1
ÿ

k“1

γ2k ` C
2
3

t´1
ÿ

k“1

ζ2k

` }λ˚}
2
2

t´1
ÿ

k“0

ηk
2
`

t´1
ÿ

k“0

ˆ

η2k ´
ηk
2
`
β2
kγ

2
kC

2
1

K

˙

}Λk}
2
2 ` Stpx˚q `

2

K
Rt

(5.6)

To eliminate the first summand in above bound, we continue:

96



5.3. Non-asymptotic Guarantee of the Price Mechanism

Lemma 5.2: It holds for all λ ě 0:

xΛk ´ λ,AXk ´ by ď xXk ´ x̃,A
TΛky ´ xλ,AXk ´ by,

where x̃ P Q arbitrary.

Proof (Proof of Lemma 5.2): we have for any x P X :

xΛk ´ λ,AXk ´ by “ xΛk,AXk ´ by ´ xλ,AXk ´ by

“ xΛk,AXk ´Axy ` xΛk,Ax´ by ´ xλ,AXk ´ by

“ xXk ´ x,A
TΛky ` xΛk,Ax´ by ´ xλ,AXk ´ by. (5.7)

Now, since Λk ě 0, it follows that xΛk,Ax̃ ´ by ď 0, for x̃ P Q. Therefore, if we set

x “ x̃ with x˚ P Q in (5.7), we have from previous observation the desired statement.

Setting this observation into (5.5) and setting the choice ζk “ γk, it yields for any x̃ P Q:

Vp2qt pλq ď
t´1
ÿ

k“0

γkxXk ´ x̃,A
TΛky ´

t´1
ÿ

k“0

γkxλ,AXk ´ by

`

t´1
ÿ

k“1

p2η2k ´ ηkq

2
}Λk}

2
2 ` }λ}

2
2

t´1
ÿ

k“0

ηk
2
` C2

3

t´1
ÿ

k“0

γ2k

For z˚ “ px˚,λ˚q λ˚ ě 0, and for λ̃ ě 0, it holds by combining above inequality (with

x̃ “ x˚) and (5.6):

Vtpz˚q ` Vp2qt pλ̃q ď ´

˜

xλ̃,
t´1
ÿ

k“0

γk pAXk ´ bqy ´
}λ̃}22

2

t´1
ÿ

k“0

ηk

¸

`

t´1
ÿ

k“0

γkp2´ βkqxXk ´ x,A
TΛky `

ˆ

2η2k ´ ηk `
β2
kγ

2
kC

2
1

K

˙ t´1
ÿ

k“0

}Λk}
2
2

` 2

ˆ

C2
2

K
` C2

3

˙ t´1
ÿ

k“0

γ2k ` }λ˚}
2
2

t´1
ÿ

k“0

ηk
2
` Stpx˚q `

2

K
Rt.

The second summand is eliminated by the choice βk “ 2 and the third summand by the

trackability condition. Thus it follows:

Vtpz˚q ` Vp2qt pλ̃q ď ´

˜

xλ̃,
t´1
ÿ

k“0

γk pAXk ´ bqy ´
}λ̃}22

2

t´1
ÿ

k“0

ηk

¸

` 2

ˆ

C2
2

K
` C2

3

˙ t´1
ÿ

k“0

γ2k

` }λ˚}
2
2

t´1
ÿ

k“0

ηk
2
` Stpx˚q `

2

K
Rt.

(5.8)
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Now, since Λ0 “ 0, one sees that Vp2qt pλ̃q ě ´}λ̃}22{2. Moreover since Λ0 “ 0 and

Y0 “ 0, we have Vtpz˚q ě ´∆ψpX q ´ p}λ˚}22{2q. Combining those observations with

(5.8), we obtain:

«

xλ̃,
t´1
ÿ

k“0

γkpAXk ´ bqy ´

řt´1
k“0 ηk ` 1

2
}λ̃}22

ff

ď∆ψpX q ` 2

ˆ

C2
2

K
` C2

3

˙ t´1
ÿ

k“1

γ2k

`
p
řt´1
k“0 ηk ` 1q

2
}λ˚}

2
2 ` Stpx˚q `

2

K
Rt.

(5.9)

Since:

sup
λ̃ě0

˜

xλ̃,
t´1
ÿ

k“0

γk pAXk ´ bqy ´

řt´1
k“0 ηk ` 1

2
}λ̃}22

¸

“
1

2p
řt´1
k“0 ηk ` 1q

›

›

›

›

›

«

t´1
ÿ

k“0

γk pAXk ´ bq

ff

`

›

›

›

›

›

2

2

Setting the optimizing λ̃ ě 0 into (5.9), taking the expectation of the resulted inequality,

and noticing that ErSnpx˚qs “ 0, since Snpx˚q is a martingale with ErS1px˚qs “ 0, we

obtain the desired statement with C̃2 ą 0 a constant satisfying }λ˚}
2
2

On Trackability Condition: In order that (5.3) is fulfilled at a time τ , it is necessary

that:

η2τ ´ pητ{2q ă 0.

Therefore, the requirement (5.3) demands that:

ητ ă 1{2.

This observation gives the advice to the resources not to be fully progressive in the price

determination , i.e. to avoid the parameter ητ « 1. By attempting to solve the quadratic

inequality (5.3) one can see that a necessary condition on γτ s.t. (5.3) holds at time τ is:

γτ ď

?
2K

C1

.

In this case, (5.3) is equivalent to:

1
2
´

b

1
4
´

8γ2τC
2
1

K

2
ď ητ ď

1
2
`

b

1
4
´

8γ2τC
2
1

K

2
.

This observation assert that for small γτ , one can choose ητ approximately in the interval

p0, 1{2q.

Remark 18: Suppose that γτ “ Cγτ
´p for a certain Cγ and p ą 0, and ητ “ Cητ

´q for

a certain Cη ą 0 and q ą 0. In order that TC holds, it is necessary that ητ decays with
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the same order like or slower than γ2τ . Therefore we have to require q P p0, 2ps.

Now we are ready to give several consequences of Theorem (5.1). For simplicity, we

assume that the noise is persistent, in the sense that Er}Mτ}
2
˚s ď σ2

˚, for all τ P N.

Constant Learning rate: Let us consider a finite time horizon T P N and βτ “ 2,

for all τ P rT ´ 1s0. Furthermore, let us consider the case where both, the learning rate

of the agents and the price progressivity are constant, i.e.:

γτ “ γ and ητ “ η, @τ P rT ´ 1s0.

Assuming that γ and η fulfills (5.3) holds, it follows from (5.4) and Jensen’s inequality:

E

«

}r

t´1
ÿ

τ“0

γτ pAXτ ´ bqs`}
2
2

ff

ď 2ηt

˜

∆ψ` C̃1

t´1
ÿ

τ“0

γ2τ

¸

`η2t

˜

}λ˚}
2
2 `

4

K

t
ÿ

τ“1

γ2τ´1Er}Mτ}
2
˚s

¸

,

(5.10)

ErANCCVCT s ď

d

2pηT ` 1q

γT 2

ˆ

∆ψ

γ
` C̃1γT

˙

`
pηT ` 1q2

γ2T 2
C̃2

2 `
pηT ` 1q2

T 2

4σ2
˚T

K
.

(5.11)

So, suppose that γ “ ΘpT´pq with p P r1{2, 1q. Setting η “ ΘpT´qq where q P p1{2, 2ps,

it yields:

ErANCCVCT s ď O
´

T p´
q`1
2 ` T p´q ` σ˚T

1
2
´q
¯

. (5.12)

In particular if p “ 1{2, we can choose q “ 1 and obtain a sub-linear bound for the

ANCCVC at time T of order Opp1` σ˚qT´
1
2 q.

Variable Parameters: If the agents are each willing to apply the ergodic average of

their historical strategies instead of their actual strategies, we can ensure the decay of

the violation of resource constraints with time in expectation. In order to show this, let

us consider the infinite time horizon T “ 8. We use Jensen’s inequality to obtain the

following bound from (5.4):

E

«

}r

t´1
ÿ

τ“0

γτ pAXτ ´ bqs`}2

ff

ď

g

f

f

e2ηt

˜

∆ψ` C̃1

t´1
ÿ

τ“0

γ2τ

¸

` η2t

˜

C̃2
2 `

4σ2
˚

K

t´1
ÿ

τ“0

γ2τ

¸

, @t P N

For the ergodic average X
γ

t “

řt´1
τ“0 γτXτ
řt´1
τ“0 γτ

of the population iterate, we have:

E
“

}rAX
γ

t ´ bs`}2
‰

ď

c

2ηt

´

∆ψ` C̃1

řt´1
τ“0 γ

2
τ

¯

` η2t

´

C̃2
2 `

4σ2
˚

K

řt´1
τ“0 γ

2
τ

¯

řt´1
τ“0 γt

,

Setting γt “ Θpt´1{2q and ηt “ Θpt´1q fulfilling trackability condition, it follows that the

decay of the congestion state is in the noiseless case of order Oplnptq{
?
tq and otherwise
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Opln3{2
ptq{

?
tq. Now let be γt “ Θpt´1q and ηt “ Θpt´2q, we have decay of order Opp1 `

σ˚q{ lnptqq.

5.4. Numerical Experiment

Exponential Weights Online Learning in Quadratic Game: We consider N agents

whose task is to allocate a certain amount of tasks to R resources. The strategy space

of agent i corresponds to the simplex ∆ :“
!

xpiq P RR
ě0 :

řR
r“1 x

piq
k “ 1

)

. For a strategy

xpiq P ∆, x
piq
r stands for the proportion of tasks agent i assigns to resource r P rRs.

The cost function of player i is quadratic and given by J piqpxpiq, xp´iqq “ 1
2
xxpiq, Qxpiqy `

xCσpxq ` ci, xpiqy, where σpxq “ 1
N

řN
i“1 x

piq

where ci P RD, Q P RDˆD and C P RDˆD are positive semi-definite, and either Q or

C are positive definite. In order to apply our method, we set upiqpxq “ ´J piqpxq. The

corresponding gradient mapping is given by

vpxq “ ´

„

pIN bQ`
1

N
1N1T

N b Cqx` c`
1

N
pIN b C

T
qx



,

where b denotes the Kronecker product between two matrices. For the mirror map of the

agents, we use the logit choice implemented by means of log-sum trick in order to avoid

numerical overflow.

Game Parameter: We consider N “ 20, D “ R “ 5, and T “ 500, and study the case

where parameters are fixed. We set Q “ 2

b

Q̃TQ̃ ` ID, where the entries of Q̃ is chosen

independently normal distributed. Moreover we consider the case where C “ 4ID, c “ 0.

For specific model of the stochastic feedback we use Gaussian vector with covariance

matrix σ2ID, where σ ą 0.

Evaluation:

Figure 5.2 shows that pure egoistic uncontrolled behaviour of the agents (β “ 0) may

lead to immense overuse of the resources, and that control of agents’ consumption via

price mechanism (β ą 0) can prevent this event. With price regularization (β ą 0),

we observe the tendency of oscillation in the agents’ dynamic, whereby the following

difference is observable: The choices β “ 1 and β “ 2 effect in stabilizing behaviour,

while β “ 3 and β “ 4 effect in chaotic behaviour. This observations are aligned with

the gedankenexperiment done in Section 5.2, one of whose conclusions is that high price

sensitivity might cause the agents’ utilization strategies to mutually bouncing between

single resources. Furthermore, Figure 5.2 confirms the optimality of the selection of

parameter choice β “ 2 given in Theorem 5.1, since it tends to have the lowest ANCCVC.

From Figure 5.1, we can observe that in the non-progressive case α “ 0 (η “ αγ2 “ 0),

the corresponding dynamic of ANCCVC resonates heavily and possess at the end of the

time-horizon (t “ 500) highest value (aside from α “ 50). This asserts the importance
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Figure 5.1.: Dynamic of ANCCVC of Algorithm 4 for different price sensitivities β with

γ “ 0.5{
?
T , α “ 10, and σ “ 5
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Figure 5.2.: Dynamic of ANCCVC of Algorithm 4 for different price progressivities η “

αγ2 with β “ 2, γ “ 0.5{
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T , and σ “ 5
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?
T

102



5.4. Numerical Experiment

of progressivity in the price determination and also justifies the importance of the TC

(5.3). The parameters α “ 1 and α “ 10 has the best behaviour in this experiment. We

see the tendency of decreasing oscillation with increasing price progressivity. However

by observing α “ 10 the overall performance at the end of the time horizon might be

worse for high η. This observation underlines the role of η as the parameter specifying

the decay rate of ANCCVC asserted by the bound (5.11). From Figure 5.3 the high

oscillatory chaotic behaviour of γ “ 1{
?
T and γ “ 10{

?
T is aligned with the TC (5.3)

which eliminate the possibility that for fixed η, γ can be arbitrarily high. Moreover the

plot for γ “ 0.05{
?
T shows that too small γ caused slow decay of the ANCCVC as

predicted by the bound (5.11).

Figure 5.4 shows that the noise power has no significant influence to the ANCCVC.

This observation is somehow forecasted by our theoretical results since the noise term in

the corresponding expectation bound decay with square roots of the time and the noise

is light-tailed.
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6. Resource-Aware Control via Pricing

for Congestion Game with

Finite-Time Guarantees

Abstract: Congestion game is a widely used model for modern networked applications.

A central issue in such applications is that the selfish behavior of the participants may

result in resource overloading and negative externalities for the system participants. In

this work, we propose a pricing mechanism that guarantees the sub-linear cumulative

violation of the resource load constraints, of square root order w.r.t. the time horizon.

The feature of our mechanism is that it is resource-centric in the sense that it depends on

the congestion state of the resources and not on specific states and characteristics of the

system participants. This feature makes our mechanism scalable, flexible, and privacy-

preserving. Moreover, we show by numerical simulations that our pricing mechanism has

no significant effect on the agents’ welfare and may even result in the improvement of the

latter, depending on the parameter choice.

6.1. Introduction

Modern networked systems such as IoT, smart grid, and cognitive radio are characterized

by optimizing users/devices which dynamically compete for utilization of resources, be it

network link, power supply, and wireless spectrum. A common trend in recent years is

that the number of users in such applications increases tremendously (see e.g. [119]). For

instance: Analysts predicts that more than 50 billion things are expected to be connected

over the internet by the end of 2020 [119]. Such rapid growth involves certainly a series

of challenges.

One of the main challenges facing the system managers is the congestion control of

the available resources. For without it, negative externalities in the form of immense

degradation of the quality of service of the resources might occur due to overload. For

instance, in wireless communication network applications, if the amount of traffic through

a router (resource) exceeds its capacity, buffer bloat occurs, resulting in inefficiency of the

system in the form of high latency and network throughput reduction, causing a negative

experience for all users. Moreover, sophisticated congestion control method is crucial

for making the electrical power driven technologies environment-friendly, Another trend
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visible in recent years is that power consumption due to technical applications constitutes

a non-negligible part of the global power consumption with the tendency of enormous

growth (see e.g., [120]).

The concept of the congestion game introduced in [121, 122] is a natural fundament

for developing a congestion control method. The corresponding model assumes non-

cooperative rational participants, whose strategy is an allocation policy over a collection

of the subset of resources and whose loss depends proportionally on the total load of the

utilized resources. The most prominent classical example of a congestion game is the

traffic routing model of Wardrop [123], where the arcs in a given network represent the

resources, the different origin-destination pairs specify the player, and the possible action

of a player is the allocation over the paths in the network between his origin-destination

pair.

Many congestion control methods are user-centric in the sense that they require observ-

ability of system participants’ actions and behaviors and provide specific instructions for

all of the system users. Such methods are not suitable for modern large-scale applications.

The reason is threefold: First, such methods often lack scalability and flexibility. Second,

the typically high number of participants in such applications makes the methods compu-

tationally infeasible. Third, due to growing users’ demands of sovereignty and privacy in

recent years, direct observation and influence of users’ acts by higher authority are highly

undesirable.

Our Contributions Based on the assumption of rational non-cooperative cost-oriented

agents, we propose resource-centric dynamic pricing that offers the system participants

appropriate incentives to adhere to the resource constraints jointly support sustainable

use of the resources. In this context, resource-centric means that the given method is

mainly based on the observation of the actual congestion of the resource and not on the

agents’ specific characteristics such as the set of their possible bundle choices and their

actual bundle choices. We show that the proposed pricing mechanism ensures that the

average violation of the capacity constraints decays at worst sub-linearly of order Opn´1{2q
w.r.t. the time-horizon n. Moreover, we provide numerical simulations in order to support

our theoretical findings. As a by-product of our practical investigations, we observe that,

although it does not use specific information about the agents, our pricing mechanism

does not effectuate the agents’ welfare, expressed by their average loss, significantly, and

may even result in improvement of the latter.

Relation to prior work The congestion game without resource constraints has been

investigated in several directions. Towards this aspect, the following approaches, which

consider the game to be played multiple times, are closely related to our work: Under

different black-box behavior of the individual agents, [124–126] study the convergence of

selfish choice toward the Nash equilibrium.
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One can trace back the idea of mitigating efficiency due to negative externalities by

pricing method to [1], whose main advice is to charge externalities-causing agents ad-

ditional costs and to reallocate the obtained compensation to the agents sustaining the

externalities in order that the population establishes an optimal social state. In contrast

to our work, the Pigouvian method requires that the price maker knows about the pref-

erences of every agent to determine the socially optimal state, which is infeasible in large

scale technical applications.

Several works introduce exciting approaches to game-theoretic pricing based congestion

control methods (to name a few: [68,84,127–129]. However, in contrast to our work, they

only provide an asymptotic guarantee by designing a population dynamic which converges

to the corresponding (designed) equilibrium fulfilling the capacity constraints (see e.g., the

concept of generalized Nash equilibrium [93]) of the problem-specific potential game [130].

Until now, there is no approach to design a congestion control method that possesses a

guarantee in the non-asymptotic regime. Specifically they are only able to guarantee

the preservation of the constraint in large time. In the literature, the cost function of

the agents consists, in contrast to our modeling, not only of congestion loss - and price-

dependent term but also of idiosyncratic payoff, which depends only on the action of a

single agent. However the given analysis in this paper can be extended straightforwardly

to this model.

6.2. Setting

6.2.1. Congestion Game with Resource Constraints

agents
...

agent(1)

agent(2)

agent(N)

.bundle

.score

.strategy

tP1,P2, ...u

pY
p1q
P1
, Y

p1q
P2
, ...q

pµ
p1q
P1
, µ
p1q
P2
, ...q

...

...

Figure 6.1.: Agent Structure

A congestion game consists of a finite set of agents/players rN s and a finite set R of

resources. To each agent i P rN s, there corresponds a collection Pi Ď 2R of resource

bundles. Her aim is to execute a certain amount mi ą 0 of tasks by utilizing the bundles

of resources from Pi. We describe the corresponding (utilization) action/strategy of agent
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i by a vector xpiq P Xi, where Xi is a scaled simplex on Pi, i.e.:

Xi :“

#

xpiq :“ px
piq
Pi qPiPPi P R

|Pi| :
ÿ

PiPPi

x
piq
Pi “ mi

+

.

For any Pi P Pi, x
piq
Pi corresponds to the amount of tasks agent i allocates to the bundle

Pi. Equivalently, we can describe the task allocation strategy of agent i by means of the

simplex

∆i :“

#

µpiq :“ pµ
piq
Pi qPiPPi P R

|Pi| :
ÿ

PiPPi

µ
piq
Pi “ 1

+

.

In this paper we describe the allocation strategy of agent i by means of the simplex ∆i

instead with Xi. We denote the set of population strategy by:

∆ “
N
ź

i“1

∆i.

Let µpiq P ∆i be an allocation action of agent i. The total load φ
piq
r pµpiqq of the resource

r P R caused by the allocation action µpiq P ∆i of agent i is given by:

φφφpiqr pµ
piq
q “

ÿ

PiPPi:rPPi

miµ
piq
Pi “ p

ĂMpiqµpiqqr,

where:
ĂMpiq

“ miMpiq and Mpiq
P R|R|ˆ|Pi|

is the adjacency matrix whose Pi-th column provides the information about all the re-

sources contained in the bundle Pi, i.e.:

rMpiq
sr,Pi “

$

&

%

1 r P Pi
0 else

.

Accordingly, the total load φφφrpxq of resource r caused by the population strategy µ P ∆

is given by:

φφφrpµq “
N
ÿ

i“1

φφφpiqr pµ
piq
q. (6.1)

We sometimes also use the notation φφφ :“ pφφφrqrPR. One can express (6.1) more compactly

by

φφφpµq “ ĂMµ, where ĂM “ rĂMp1q
| ¨ ¨ ¨ |ĂMpNq

s.

Additionally we consider the case where the load of resources r P R is desirable to not
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exceed the capacity Lr P Rą0, i.e.:

φφφrpµpkqq ´ Lr “: Γrpµq ď 0

Specifically, it is desired that the population strategy µ P ∆ satisfies µ P Q, where:

Q :“ tµ P ∆ : Γpµq ď 0u ,

with Γpµq :“ pΓrpµqqrPR a vector with positive entries.

To each resource r P R, we associate a function `r : Rě0 Ñ R which quantifies negative

externalities induced on the resource r due to load φφφrpµq. We refer to `r as the loss

function of the resource r. We assume throughout that the following properties holds:

Assumption 6.1: For all r P R, `r : Rě0 Ñ R is continuous, convex, and non-

decreasing.

Assumption 6.2 (Slater’s Condition): There exists µ̂ P ∆ s.t. Γpµ̂q ă 0.

The loss of a bundle Pi P Pi (for agent i) is correspondingly given by:

`
piq
Pi pµq “

ÿ

rPPi

`rpφφφrpµqq,

Throughout this work we use the notations `piq :“ p`
piq
Pi qPiPPi and ` :“ p`piqqiPrNs.

An example of congestion game is the following:

Example 12 (Network Routing Game): Given a directed Graph G “ pV , Eq with a

vertex set V and edge set E Ď V ˆ V . In a routing game, the task of agent i P rN s is

to transport a certain amount of commodity mi ą 0 from a starting point spiq P V to a

destination tpiq P V . To fulfill this task, agent i can use a prescribed collection Pi Ď 2E

of edges that connects spiq and tpiq. To every edge (resource) e P E there corresponds a

function ce (loss) that maps the total amount flow caused by the transport of commodities

on the edge e to a non-negative number determining the delay on e, and also a constant

`e ą 0 which prescribed the amount of flow admissible on edge e.

6.2.2. Performance Measures

Let be k P N and µpτq, τ P rks0, be a given sequence of population actions from initial

time until time slot k. To evaluate the population performance in the congestion game

we use the following criteria:

We measure the resource sustainability of the population sequential actions pµpτqqτPrks0
by the (norm) of the aggregated admissible flow violation defined by:

ACVpkq “

›

›

›

›

›

«

k´1
ÿ

τ“0

Γrpµpτqq

ff

`

›

›

›

›

›

2
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Additional to resource sustainability behavior, we investigate the loss incurred to the

population applying the resource allocation decisions pµpτqqτPrks0 in form of the aggregated

delay:

ADpkq “
k
ÿ

τ“0

ÿ

iPrNs

Dipτq,

where Dipτq denotes the delay experienced by agent i at time τ :

Dipτq “
ÿ

PiPPi

`
piq
Pi pµpτqqµ

piq
Pi pτq.

It should be noted, that resource sustainability and loss minimization do not need

to be coinciding objectives, but can display a trade-off behavior depending on model

parameters, i.e. they appear as conflicting objectives. Therefore it can happen, that

resource sustainability subsequently implies a disadvantaging of some agents.

6.3. Resource-Centric Pricing for Congestion Game

6.3.1. Population Dynamic via Score and Hedge strategy

update score(.)

update strategy(.)

agent(1)

...

agent(N)

Y pk ` 1q

µpk ` 1q

Xpkq

Agents: rN s

update load(.)

update delay(.)

get cost(.)

Σ

φrpµpkqq

`rpφrpkqq

ˆ̀pµpkqq

φrpµpkqq

ˆ̀pkq ` πpkq

Network

set price(.)

get price(.)

Resource: r P R

Λrpk ` 1q

Λrpkq

Algorithm 1 Algorithm 2

Figure 6.2.: Sketch of Algorithms 1 and 2

Throughout this work, we consider the congestion game, which is played multiply with

time horizon n P N. We give a brief description of our proposal of population dynamic in

congestion game in Algorithm 5.

There, at each round k P rns every agent i P rN s accumulates the cost of each resource

bundle available to him as to provide its score which reflects his bundle preference. The

corresponding actual cost of an available bundle consists of the actual noisy loss caused

by negative externalities and the price set exogenously by a regulator.

110



6.3. Resource-Centric Pricing for Congestion Game

Algorithm 5

Require: n P N, γ ą 0, Φi : RPi Ñ ∆i.
for every agent i P rN s do

Initialize the score vector Y
piq
0 Ð 0

end for
for time k “ 1, 2, . . . , n do

Population apply the allocation strategy:

Xpkq “ pmiµ
piq
pkqqiPrNs

for every agent i P rN s do
Receive the price vector pΛrpkqqrPR broadcasted by the regulator.
for all bundle of resource Pi P Pi do

Experience the disturbed cost:

ˆ̀piq
Pi pkq Ð `

piq
Pi pµpkqq `M

piq
Pi pk ` 1q

Compute the price per amount of task:

π
piq
Pi pkq “

ÿ

rPPi

Λrpkq

Update the score of bundle Pi:

Y
piq
Pi pk ` 1q Ð Y

piq
Pi pkq ´ γ

”

ˆ̀piq
Pi pkq ` π

piq
Pi pkq

ı

(6.2)

end for
Generate the allocation strategy:

µpiqpk ` 1q Ð Φpiq
pY piqpk ` 1qq

end for
end for
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The noise model we consider is quite general: pMnqnPN is a R
řN
i“1|Pi|-valued F-martingale

difference sequence. One reason that we model the loss as noisy is that the environment or

the imperfectness of agents’ sensing devices can cause imperfectness of agents’ feedback.

Another reason is that we can handle the case where the agents’ actions are not continuous

while their strategies are mixed states and thus the resource congestion only represents

an unbiased sample of the congestion specified by the mixed strategies (see [76]).

The parameter γ specifies the step size of the iterates of the agents and quantifies

the conservativeness of the agents. The mapping Φpiq serves to model how the ith agent

builds up his allocation strategy from the actual score of the bundles. In this work, we

investigate the case where it takes the following specific form:

pΦpiq
pypiqqqPi “

exppy
piq
Pi q

ř

P̂iPPi exppy
piq

P̂i
q
. (6.3)

Notice that it holds Φi ą 0. So every agent utilizes all possible bundles although some

might be underutilized. This diversification strategy ensures in particular that each agent

keeps track of the congestion state and therefore, the loss of all bundles.

Remark 19: Without altering the analysis given in this work, one can use more generally

the concept of mirror map (see Definition 2.1)

6.3.2. Pricing Algorithm

In order to encourage sustainable use of the resources, we proposed the pricing mechanism

for Algorithm 5 in Algorithm 6.

Algorithm 6

Require: n P N, β ą 0, α P p0, 1s
Initialize the price vector Λ0 Ð 0
for time k “ 1, 2, . . . , n do

for Regulator do
for r P R do

Check the actual load φφφr,k :“ φφφrpXpkqq of resource r caused by Algorithm 5
Update the price of resource r:

Λrpk ` 1q Ð rp1´ αqΛrpkq ` β pφφφr,k ´ Lrqs`

end for
end for

end for

In case that α “ 1, then the price update is based entirely on the actual congestion

of the resources. One can interpret The updating rule with this choice of the parameter

can be interpreted as clinging too much to actual congestion observation. If α ă 1 then

the actual price vector is considered in the price update. This parameter choice reflects
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the conservativeness of the regulator. Those observations lead us to call α the response

parameter.

Another reason to design the price as above is that by that way, one can track the

aggregate dynamic of the congestion state by observing the price:

Lemma 6.1: Suppose that Λ0 “ 0. For all r P rRs and k P N:

ACVpkq ď
}Λpkq}2 ` α

řk´1
τ“1 }Λpτq}2

β
(6.4)

The proof of this statement can be found in the appendix.

6.4. Performance Analysis

Throughout, C1, C2, C3,m˚ denote non-negative constants fulfilling for all µ P ∆ and

Λ P RR
ě0:

N
ÿ

i“1

mi}M
piq,TΛ}28 ď C2

1}Λ}
2
2,

N
ÿ

i“1

mi}`
piq
pµq}28 ď C2

2

}φφφpµq ´ L}2 ď C3, mi ď m˚, @i P rN s.

(6.5)

Our main result is the following:

Theorem 6.2: Let γ ą 0 be given, β “ γ, and α “ δγ2 with δ ą satisfying

pC2
1 ` γ

2δ2q ´
δ

2
ď 0. (6.6)

It holds:

E
„

}Λpnq ´ λ˚}
2
2

2



ď
∆ψ2

2
` p1` αnq

}λ˚}
2
2

2
`
C̃2

1

2
γ2n

` 2γ2m˚N
n
ÿ

k“1

Er}Mk}
2
8s

(6.7)

where rC2
1 :“ 2 pC2

2 ` 2C2
3q and ∆ψ2 “ 2m˚

řN
i“1 lnp|Pi|q

The poof of Theorem 6.2 is given in the appendix.

An immediate consequence of above result is the following (for proof see the appendix):

Corollary 6.3: Suppose that the conditions of Theorem 6.2 are fulfilled and that the

noise is persistent in the sense that there exists σ2 ą 0 s.t. Er}Mk}
2
8s ď

σ2

4m˚N
for all

k P N. It holds:

E r}Λpnq}2s ď∆ψ` p1`
a

p1` δγ2nqq}λ˚}2

` pC̃1 ` σqγ
?
n,

(6.8)
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where ∆ψ and C̃1 is given as in Theorem 6.2. Now, suppose that γ :“ c{
?
n: for a

constant c ą 0 and δ P p0, 1{γ2q s.t. (6.6) is fulfilled. It holds:

E rACVpnqs ď pδc`
1

c
qA
?
n, (6.9)

where A :“ ∆ψ` p1`
a

p1` δc2qq}λ˚}2 ` pC̃1 ` σqc.

6.5. Simulation

Game Setting: We consider the network routing problem given in Example 12 which

we specifies as follows: V consists of 15 nodes and E is built from a randomly generated

adjacency matrix (without self-loop) with independent entries, where each non-diagonal

is 1 with probability 0.5. Furthermore, we consider N “ 10 agents, each has the starting

point and the destination randomly uniformly chosen from V . Given the latter, each agent

i has randomly created bundles of maximal size |Pi| ď 10. We set the total resource

load mi “ 20, @i P rN s, and the admissible flow per resource Lr “ 14, @r P R. For

the cost per resource `r,k, we consider a quadratic polynomial of the form `r,kpφφφrpkqq “

a
prq
2 φφφrpkq

2` a
prq
1 φφφrpkq ` a

prq
0 , where the coefficients pa

prq
2 , a

prq
1 , a

prq
0 q for each resource r P R

are independently randomly uniformly chosen from r0, 0.1s.

Parameter Setting: We set the parameters required by Algorithms 1 and 2 as follows:

We consider the time horizon n “ 103, the agents’ learning rate γ “ 0.1
?
n “ 0.0032,

and the response parameter α “ 10´5. We are not only interested in the case β “ γ

analyzed in Section 6.4, but also in the case where the regulator is uncertain about the

agents’ learning rate, and therefore β differs significantly from γ by the factor 10: β “ 10γ

(β ą γ) and β “ 10´1γ (β ă γ).

Performance Evaluation: Fig. 6.3 (b) and (c) show that our pricing mechanism

reduces the aggregated capacity violation even if β ‰ γ. However, we observe that a

higher β may accelerate this process. Additionally, we see that our pricing method does

not yield significant discrimination of the agents, as the differences between the aggregated

delays for the different cases are marginal at worst (see Fig. 6.3 (a)). For the theoretically

analyzed case β “ γ, the agents experience, on average even less delay compared to the

case of no pricing. Furthermore, we note a trade-off behavior in the choice of β: In case

that β is high (β ą γ), the capacity violation is the lowest, but the experienced delay the

highest. This occurrence reflects the increasing dominance of the price regulation over the

agents’ personal interest to decrease the incurred delay. Another observation which we

make is that if β “ γ, some prices might at worst be constant for large times as predicted

in Corollary 6.3, indicating that even the population fulfills resource constraints, a control

mechanism is necessary to maintain this desired status quo.

Overly Strict Capacity Constraints: We also investigate the performance of our

method with stricter capacity constraints than before (Lr “ 11). We see that our method
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yields still an improvement of the capacity violation compared to the no pricing case (see

Fig. 6.5 (b) and (c)). However, this comes with a significant reduction of agents’ welfare

in the form of a higher AD (see Fig. 6.5 (a)). One may justify this effect as follows:

Taking a look at the pricing evolution (Fig. 6.4 (b)) of exemplary resources, we observe

a linear increase in prices dominating the personal preferences (ˆ̀piq
Pi in (6.2)) of the agents

in large times. Consequently, each of the affected agents decides for routes that have the

lower prices rather than those that incur her the lowest delay.

The enormous increase of prices shown in Fig. 6.5 (a) gives a hint that the minimizer

of the Rosenthal potential corresponding to the network routing game over Q does not

exists (c.f. the Proof of Theorem (6.2)) due to overly strict resource constraints. However,

one may able to show the sub-linearity of ACV however of order Opn1{4q.

Moreover, The increase in prices is in contrast to the case where the capacity constraints

are rather loose (Fig. 6.4 (b)). The latter observations give the following heuristic: In

case that one observes a linear increase of some prices, one may set a looser constraint so

that the reduction of the capacity violations does not come with a significant reduction

of the populations’ welfare.

6.6. Appendix

6.6.1. Proof of the main result

Proof (Proof of Theorem 6.2): The logit choice Φpiq given in (6.3) is a mirror map

(Definition 3.1 in [76]) induced by the negative Gibbs entropyψipµ
piqq “

ř

PiPPi µ
piq
Pi lnpµ

piq
Pi q

as regularizer on the simplex which is a compact convex subset. Let be Fmpµ,Y pkqq :“
řN
i“1miFipµ

piq, Y piqpkqq where Fi is the Fenchel coupling (Definition 4.2 in [76]) induced

by the negative Gibbs entropy as 1-strongly (w.r.t. } ¨ }8) convex regularizer on the

simplex ∆i.

By means of Fm, we can estimate the evolution of Algorithm 5 with the dynamic pricing

mechanism given in Algorithm 6 by means of Lyapunov’s type argumentation. Toward

this end, we use the usual bound for the one step difference of the Fenchel coupling (see

e.g. Proposition 4.3 (c) in [76]), insert the given iterate at time k ` 1 in the resulted

inequality, and apply triangle inequality, to obtain:

Fm
pµ,Y pk ` 1qq ´ Fm

pµ,Y pkqq ď ´γ
N
ÿ

i“1

mixµ
piq
pkq ´ µpiq, ˆ̀piqpkq ` πpiqpkqy

looooooooooooooooooooooomooooooooooooooooooooooon

“:(a)

`
γ2

2

N
ÿ

i“1

mi}
ˆ̀piqpkq ` πpiqpkq}28

loooooooooooooomoooooooooooooon

“:(b)

.

(6.10)
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By the triangle inequality and the definition of the constants given in Section 6.4, we can

estimate the summand (b) as follows:

(b){2 ď C2
1}Λpkq}

2
2 ` 2pC2

2 `

N
ÿ

i“1

mi}M
piq
k`1}

2
8q (6.11)

Now to estimate the summand (a), notice that we can write:

N
ÿ

i“1

mixµ
piq
pkq ´ µpiq, πpiqpkqy “ xµpkq ´ µ, ĂMTΛpkqy. (6.12)

Combining all the previous observations, we have by summing the resulting inequality

over all k “ 0, . . . , n ´ 1, and by subsequent telescoping, we obtain an upper bound for

the cumulative difference Vp1qn pµq :“ Fmpµ,Y pnqq ´ Fmpµ,Y p0qq:

Vp1qn pµq ď ´ γ
n´1
ÿ

k“0

N
ÿ

i“1

mixµ
piq
pkq ´ µpiq, `piqpµpkqqy

looooooooooooooooomooooooooooooooooon

“xµpiqpkq´µpiq,∇
µpiqpkq

Vpµpkqqy
looooooooooooooooooomooooooooooooooooooon

xµpkq´µ,vpµpkqqy

´γ
n´1
ÿ

k“0

xµpkq ´ µ, ĂMTΛpkqy

` γ2C2
1

n´1
ÿ

k“0

}Λpkq}22 ` γSn ` 2γ2Rn ` 2C2
2γ

2n

(6.13)

where:

Sn :“ ´
n´1
ÿ

k“0

xXpkq ´ x˚,Mpk ` 1qy, Rn :“ m˚N
n
ÿ

k“1

}M pkq}28,

and where vpµq :“ ∇Vpµq, where V denotes the Rosenthal potential:

V : ∆Ñ R, µ ÞÑ
ÿ

rPR

ż φφφrpµq

0

`rpuqdu, (6.14)

We now estimate the evolution of the price vector by providing a bound for Vp2qn pλq :“

p}Λpnq ´ λ}22 ´ }Λp0q ´ λ}
2
2q{2, where λ ě 0. By similar computations as before, and by

the elementary bound 2xλ´Λpkq,Λpkqy ď }λ}22 ´ }Λpkq}
2
2, we obtain:

Vp2qn pλq ď β
n´1
ÿ

k“0

xΛpkq ´ λ,φφφpµpkqq ´ Ly

`
α

2

n´1
ÿ

k“0

p}λ}22 ´ }Λpkq}
2
2q `

n´1
ÿ

k“0

pβ2C2
3 ` α

2
}Λpkq}22q.

(6.15)
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Combining the bounds (6.13) and (6.15), , it holds:

Vp1qn pµq ` Vp2qn pλq

ď ´γ
n´1
ÿ

k“0

xzpkq ´ z, ṽpzpkqqy

` pβ ´ γq
n´1
ÿ

k“0

xΛpkq ´ λ, ĂMµpkq ´ Ly

` pγ2C2
1 ´

α

2
` α2

q

n´1
ÿ

k“0

}Λpkq}22

`

ˆ

2C2
2γ

2
` C2

3β
2
`
α}λ}22

2

˙

n` γSn ` 2γ2Rn,

where:

zpkq :“ pµpkq,Λpkqq, z “ pµ,λq,

ṽpzpkqq “ r∇Vpµpkqq ` ĂMTΛpkq, L´ ĂMµpkqs.

setting β “ γ and α “ δγ2 with δ P p0, 1{γ2q fulfilling (6.6), we have:

Vp1qn pµq ` Vp2qn pλq

ď ´γ
n´1
ÿ

k“0

xzpkq ´ z, ṽpzpkqqy
looooooooooomooooooooooon

“:Υkpz,zpkqq

`

ˆ

p2C2
2 ` C

2
3qγ

2
`
α}λ}22

2

˙

n` γSn ` 2γ2Rn.

(6.16)

Notice that v is monotone since V is convex. Thus by Proposition 4.15, we have that ṽ

is also monotone implying:

Υkpz, zpkqq ě xzpkq ´ z, ṽpzqy.

Moreover, by the slater’s condition and KKT argumentations, we can find a Lagrangian

dual optimizer λ˚ P RR
ě0 corresponding to the minimizer µ˚ of V overQ :“ tµ P ∆ : Γpµq ď 0u.

It follows that pµ˚,λ˚q P SOLpX ˆ RR, ṽq, and consequently:

Υkpz˚, zpkqq ě xzpkq ´ z˚, ṽpz˚qy ě 0, z˚ “ pµ˚,λ˚q. (6.17)

Setting this observation into (6.16), we obtain:

Vp1qn pµ˚q ` Vp2qn pλ˚q

ď

ˆ

p2C2
2 ` C

2
3qγ

2
`
α}λ˚}

2
2

2

˙

n` γSn ` 2γ2Rn.
(6.18)

117



6. Resource-Aware Control via Pricing for Congestion Game with Finite-Time Guarantees

Now, since Y0 “ 0, we have:

Vp1qn pµ˚q ě ´
N
ÿ

i“1

mi

ˆ

max
∆i
ψi ´min

∆i
ψi

˙

ě ´m˚

N
ÿ

i“1

lnp|Pi|q,

and thus Vp1qn pµ˚q ě ´∆ψ2{2. Combining this observation with (6.18) and using Λ0 “ 0,

we obtain that:

}Λpnq ´ λ˚}
2
2

2

ď
∆ψ2

2
`
}Λp0q ´ λ˚}

2
2

2
looooooomooooooon

}λ˚}
2
2

2

`

ˆ

p2C2
2 ` C

2
3qγ

2
`
α}λ˚}

2
2

2

˙

n

` γSn ` 2γ2Rn

“
∆ψ2

2
` p1` αnq

}λ˚}
2
2

2
` p2C2

2 ` C
2
3qγ

2n

` γSn ` 2γ2Rn

(6.19)

Since Sn is a martingale with ErS1s “ 0, we have by taking the expectation (and noticing

ErSns “ 0), the desired result.

6.6.2. Proof of consequences of the main result

Proof (Proof of Corollary 6.3): Jensen’s and triangle inequality asserts that:

b

E r}Λpnq ´ λ˚}22s ě E r}Λpnq ´ λ˚}2s ě E r}Λpnq}2s ´ }λ˚}2

Applying this to (6.7) and by the persistence of the noise, we obtain (6.8).

For any k P rns, we have by Corollary 6.3:

E r}Λpkq}2s ď∆ψ` p1`
a

p1` δγ2nqq}λ˚}2

` pC̃1 ` σqγ
?
n.

Now, setting our choices of parameters into (6.8), it yields:

E r}Λpkq}2s ď∆ψ` p1`
a

p1` δc2qq}λ˚}2

` pC̃1 ` σqc “ A.
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Consequently:

α

β
E

«

n´1
ÿ

k“0

}Λpkq}2

ff

“
δc
?
n

n´1
ÿ

k“1

E r}Λpkq}2s

ď
δcpn´ 1q
?
n

A ď δcA
?
n.

(6.20)

Moreover, we have E r}Λpnq}2s {β ď A
?
n{c. Setting this observation and (6.20) into

(6.4), we have the remaining statement.
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Figure 6.3.: Performance for Lr “ 14
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Figure 6.4.: Pricing over time
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7. Robust Online Learning for Resource

Allocation - Beyond Euclidean

Projection and Dynamic Fit

Abstract: Online-learning literature has focused on designing algorithms that ensure

sub-linear growth of the cumulative long-term constraint violations. The drawback of

this guarantee is that strictly feasible actions may cancel out constraint violations on

other time slots. For this reason, we introduce a new performance measure called h-CFit,

whose particular instance is the cumulative positive part of the constraint violations. We

propose a class of non-causal algorithms for online-decision making, which guarantees, in

slowly changing environments, sub-linear growth of this quantity despite noisy first-order

feedback. Furthermore, we demonstrate by numerical experiments the performance gain

of our method relative to the state of art.

7.1. Introduction

Classical OL deal with problems with time-invariants constraints that has to be strictly

satisfied. Therefore, a projection operator is typically applied to the update. However, in

practical applications (see e.g. [30, 35–37]) one usually encounter additional time-variant

constraints. Moreover, the need for decentralization of the learner action in applications

can not be satisfied by simply using a centralized projection operator. For those reasons,

several works [30, 35, 111, 131, 132] propose projected primal-dual methods which ensure

sub-linear growth of the regret, i.e., the cumulative distance of the generated action to

the optimal ones, and the long-term fulfillment of the constraints in the sense that the

sum of the constraint violations grow sub-linearly. A problem relates to this long-term

guarantee is that it holds, despite substantial instantaneous constraint violations, as long

as the methods generate strictly feasible actions canceling the latter.

Our Contribution In this work, we introduce a new long-term constraint preservation

performance measure called h-CFit. The feature of this performance measure is that

h-CFit avoids cancellation effects between the summands, which might occur in the

simple cumulative constraint violation measure. We design a non-causal saddle-point
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method based on mirror descent aiming to ensure dynamic regret optimization and sub-

linear growth of h-CFit. In particular, we can guarantee dynamic regret bound of order

OpVTT
1{2q, where VT measures the variation of the optimizers of the underlying time-

varying problem, and h-CFit-bound of order OpT 3{4q. We show by numerical experiments

the performance gain of our method relative to state of the art and the advantage of using

a mirror map other than Euclidean projection.

Table 7.1.: An Overview of Related Works on Online Convex Optimization

References Long-Term Constraint Type Feedback Noise Regret Bound

[25] No No OpT 1{2q

[111,132,133]
řT
t“1 gpxtq No OpT 1{2q

[134]
řT
t“1 gtpxtq No OpT 1{2q

[131]
řT
t“1rgpxtqs

2
` No OpT 1{2q

This paper
řT
t“1 hpgtpXtqq, Martingale Opp1` σ2 ` VT qT

1{2q

References Regret Benchmark Type Constraint Violation Bound

[25] Static and Dynamic -
[111,132,133] Static OpT 3{4q resp. OpT 1{2q

[134] Static OpT 1{2q

[131] Static OpT 1{2q

This paper Dynamic OpT 3{4q

References Comments

[25] Mirror Map
[111,132,133] Mirror Map

[132,134] Requires Slater condition, Causal dual update, Euclidean projection
[131]

This paper Mirror Map

Relation to Prior Works In the absence of long-term constraints, [25] showed that the

standard method of online mirror descent achieves Op
?
T q regret bound (see also [38]),

which is known to be optimal [43]. However, their notion of regret, i.e., static regret,

corresponds to the difference of the losses between the online solution and the overall best

static solution in hindsight, which is weaker than ours.

The first work tackling the online problem with long-term constraints is [111]. This work

considers time-invariant constraint function and proposed an algorithm having Op
?
T q re-

gret bound, and OpT 3{4q cumulative constraint violation bound. As investigated by [133],

one can efficiently trade-off between those bound by allowing the step-size to be vari-
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able. By utilizing Slater’s condition, and allowing the dual update to depend causally

on the primal update, [132] provides an improved Op
?
T q bound for the cumulative con-

straint violation. [131] was able to provide Op
?
T q bound for tighter long-term constraint

preservation measure
řT
t“1rgpXtqs

2
`. However, this remarkable guarantee is achieved by

allowing the dual update to utilize causal information about the primal variable.

To the best of our knowledge, the first work considering the online problem with time-

varying constraints is [134]. Based on [132], they provide a (causal) primal-dual algorithm

ensuring that the static regret is of order Op
?
T q, and the cumulative constraint violation

of order Op
?
T q.

Until now, we only discuss works delivering static regret guarantees. The work [30]

proposed a projected gradient descent based algorithm for the online problem with time-

varying constraints aiming to optimize the regret against the dynamic comparator. Their

result relies on the assumption that two consecutive constraint functions are bounded by

the slack achieved by a fixed primal action uniformly over all constraint functions. Surely

both, the existence of the slack and the action, and the boundedness of the difference

consecutive constraint functions are difficult to guarantee. Despite this fact, their dynamic

regret bound is worse than ours (OpVTT
1{2q) since it is lower bounded by OpVTT

1{3q. The

cumulative constraint violations guarantee given [30] is of order OpT 2{3q, which is better

than ours (OpT 3{4q). However, our performance measure to this respect, i.e., h-CFit, is

stronger than that given in [30]. A clear plus-point of [30] is the application of the proposed

online algorithm to proactive network allocation. [35] proposed a novel adaptive algorithm

for the online problem with time-varying constraints with interesting applications to the

problem of computational offloading in IoT. The corresponding method possesses higher

computational complexity than ours since it requires the covariance of the gradient, root,

and inverse operation of a matrix. Despite of this fact, their dynamic regret guarantee

(OpT 7{8VT ) and long-term constraint preservation guarantee pOpmax
 

T 15{16, T 7{8
?
VT

(

qq

is worse than ours.

Basic Notions and Notations For a real vector a, ras` denotes the vector whose entries

are the non-negative part of the entries of a. The canonical projection onto a closed

convex subset A of an Euclidean space RD is denoted by ΠA, i.e.:

ΠApyq :“ arg min
xPA

}y ´ x}2.

For a subspace A of an Euclidean space RD, we denote the diameter of A by:

DA :“ sup
x,yPA

}x´ y}2

Let pX , }¨}q be a normed space andA,B Ď X . We denoteA´B :“ tx´ y : x P A, y P Bu,

and }A} :“ supxPA }x}. In this work we assume that a probability space pΩ,Σ,Pq and a
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filtration F :“ pFnqnPN0 therein are given.

7.2. Problem Formulation

We begin by stating the online learning problem in the classical setting:

Online Learning with Classical Aggregate constraint goal

At each time t, a learner decides for an option for action Xt from an apriori known

compact convex set X Ă RD, which we refer to as a feasible set. Subsequently, nature

chooses the loss function f
piq
t and charges the learner with loss ftpXtq. As already noticed

in prior works, it is advantageous from a practical point of view to take into account a

time-varying penalty function gt “ pg
r
t qrPrRs chosen by nature and revealed to the learner

at a time t. This function leads to a time-varying constraint gtpXtq ď 0. In an online

learning setting, one often assumes additionally that the learner can extract information

about ft and gt via access to the first-order oracle in order to choose the action for the time

step t`1. Although this assumption is sometimes not realistic, investigation respective to

this case is usually a stepping stone for designing methods in the bandit case, i.e., in the

case where the learner has only access to the immediate objective- and constraint value

(see e.g. Chapter 4 in [38] and [111]).

Given a time horizon T P N. The goal of the learner is to find a sequence pXtq
T
t“1 in

the feasible set X that minimizes the loss ftpXtq and simultaneously fulfills the constraint

gtpXtq ď 0. Since the learner cannot look into the future and therefore has to decide on

her next action utilizing the current information about the loss and penalty function, the

problem stated before is intractable. For this reason, one may consider a more realistic

goal of finding a sequence that minimizes the time-average loss:

T
ÿ

t“1

ftpXtq{T,

and that ensures the fulfillment of the constraint on average over time

T
ÿ

t“1

gtpXtq{T ď 0. (7.1)

Beyond Aggregate Constraint

One crucial issue about the latter goal concerning the constraint fulfillment (7.1) is that

it does not consider the possibility that the summands can cancel each other out: As

long as gtpXtq is negative and small enough for specific time slots t P rT s, large gtpXtq

for another time slots t P rT s is admissible for the goal
řT
t“1 gtpXtq{T ď 0. In order to
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resolute this issue, we propose a new online learning goal, that is:

min
pXtq

T
t“1ĂX

T
ÿ

t“1

ftpXtq s.t.
T
ÿ

t“1

hpgtpXtqq ď 0 (7.2)

for a monotonically increasing function h : R Ñ R. In case that h is also non-negative,

this function ensures that cancellation between summands cannot occur since they are all

non-negative and that the ordering between values of gt remains preserved.

An example of h is:

hp¨q “ r¨s`

. This choice leads to the constraint:

T
ÿ

t“1

rgtpxtqs`{T ď 0

, that is stronger than (7.1). Another example of h is:

hp¨q “ r¨sp`, p ą 1,

leading to the constraint:
T
ÿ

t“1

rgtpxtqs
p
`{T ď 0

. With increasing p, r¨sp` penalizes large values of gt with the cost of loosening the

sensitivity of the sum for small, non-negative values of gt.

Noisy First-order Feedback

As discussed in Subsection 7.2, the online learning setting assumes that first-order infor-

mation about the current loss function is available at each time slot. However, perfect

first-order feedback is, in general, hard to obtain. Thus, we include in our model the

possibility that the learner has only access to the noisy first-order oracle. Expressly, we

assume that at each time t and for a given action Xt P X , the learner can query an

estimate of v̂t of the (sub-)gradient ∇ftpXtq satisfying:

Er}v̂t}˚s ă 8 and Erv̂t|Fts “ ∇ftpXtq,

where Ft is an element of a filtration F :“ pFtqtPN0 on a probability space pΩ,Σ,Pq. The

canonical and commonly-used filtration in the literature is the filtration of the history of

the considered iterates. Equivalently, we can model the stochastic (sub-)gradient by

v̂t “ ∇fpXtq `Mt`1, (7.3)
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where pMtqtPN is a RD-valued F-martingale difference sequence, i.e. it is F-adapted, i.e.:

• Mt is Ft-measureable for all t P N

• its members are conditionally mean zero, in the sense that:

ErMt|Ft´1s “ 0, for all t P N.

7.2.1. Applications

In order to show the practical relevance of the the aspects discussed above (especially:

noisy feedback and other notion of aggregate constraint), we give in the following some

specific resource allocation examples.

Example 13 (Economic Dispatch): Consider a system with D producers (e.g. elec-

tric generator or data processing center) of a certain commodity (e.g. electrical power or

data processing unit). At each time slot t P N, the goal of economic dispatch is to decide

for each i P rDs the output X
piq
t of producer i causing costs c

piq
t pX

piq
t q such that

the total producing cost:
D
ÿ

i“1

c
piq
t pX

piq
t q,

remains low, and the extrinsic given

demand: dt

is balanced. A possible loss function to this regard is:

ft : RD
Ñ R, x ÞÑ

D
ÿ

i“1

c
piq
t px

piq
q ` ξ

˜

D
ÿ

i“1

xpiq ´ dt

¸2

,

where ξ ą 0

In solving the economic dispatch problem, one has to consider several constraints. For

instance, the output of each producer i P rDs can not exceed the value x
piq
max P Rě0 specified

e.g. technical restrictions of the producer. Since the violation of this constraint might not

be tolerable, Prior works settle the feasible set in the online learning problem formulation

as the box-type set

X “
 

x P RD : 0 ď xpiq ď xpiqmax, @i P rDs
(

.

This kind of feasible set is popular in applications (see e.g. [26,30]). Instead of considering

the constraint specified by technical restrictions of the producers, one may instead consider
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the constraint specified by total output production resulting in the feasible set:

X “

#

x P RD
ě0 :

D
ÿ

i“1

xpiq ď B

+

.

In the application of economic dispatch for electrical power, above feasible set corresponds

to power transmission restriction specified by the wireline capacity.

Another constraint which one may consider is that the total negative externality (e.g.

pollution)
řD
i“1E

iÑj
t px

piq
t q of a certain kind (e.g. substance) j P rN s should not exceed

a particular value Ej
max (e.g. specified by government regulator). In the previous sum,

EiÑj
t denotes a function specifying the negative externality of a certain kind j P rN s at

time slot t given a specific output of the producer i P rDs. This gives rise to the penalty

function:

gt : RD
Ñ RN , x ÞÑ

˜

D
ÿ

i“1

EiÑj
t pxpiqq ´ Ej

max

¸N

j“1

(7.4)

In the strict sense, it is absurd to think that inter-time compensation of negative external-

ities occurs. For instance, pollution causes damages irrespective of whether in the earlier

time emission constraint is strictly preserved. Rather, the system manager should ensure

that gtpXtq remains at each time step small. For this reason, the aim of preserving the

relaxed constraint given in (7.2) seems to be more plausible than the aim of preserving
řT
t“1 gtpXtq{T ď 0.

In order to see where disturbance of the gradient feedback might occur, let us assume

that the cost c
piq
t is quadratic, i.e.:

c
piq
t pxq “ a

piq
t x

2
` b

piq
t x,

where a
piq
t and b

piq
t are non-negative constants depending on the specific sort of producer.

For instance, if the considered commodity is the electrical power and the considered

producer is a steam turbine unit, the constants a
piq
t and b

piq
t depend on the current fuel

price, changing over time, and on the maintenance price, including labor price [135]. The

first-order information of the cost function can be given explicitly as∇ftpxq “ pa
piq
t x`b

piq
t qi.

In reality, one usually has only a disturbed observation of the prices a
piq
t and b

piq
t . For

instance, considered the previous instance, the disturbance is due to the uncertainty of

the estimate of the current fuel cost. We model this fact by defining the noisy feedback

as follows:

v̂
piq
t “ pa

piq
t ` M̃

piq,1
t`1 qXt ` b

piq
t ` M̃

piq,2
t`1 ,

where pM̃
piq,1
t qt and pM̃

piq,2
t qt are martingale w.r.t. a filtration containing the history of

pXtqt. It holds:

EtrM̃t`1Xts “ EtrM̃t`1sXt “ 0,
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and thus by defining:

M
piq
t`1 “ M̃

piq,1
t`1 Xt ` M̃

piq,2
t`1

it follows that v̂t “ ∇ftpXtq `Mt`1, where pMtq is a martingale. This formulation of v̂t

coincides with the model described in Subsection 7.2.

Example 14 (Trajectory Tracking): Consider a dynamical system:

Xt`1 “ AXt `But,

where Xt is the location of a robot and ut is the control action. Let Yt be the location of

the target at time slot t. The objective of trajectory tracking at time slot t is to choose

a control action ut s.t. the tracking error:

ftpXtq “
}Xt ´ Yt}

2
2

2

and

the smoothness measure: pβ{2q}Xt ´Xt´1}
2
2, where β ą 0,

is minimized. Possible constraint which one may consider is the energy constraint }ut}
2
2 ď

u2,max and extremum control value constraints umin ď u
piq
t ď umax. Considering a time

horizon T we may solve for a given initial states x0, the following online problem:

min
putqTt“1

T
ÿ

t“1

}Axt `But ´ yt`1}
2
2 `

β

2
}pA´ Iqxt `But}

2
2

s.t.
D
ÿ

i“1

pu
piq
t q

2
ď u2,max

u
piq
min ď u

piq
t ď upiqmax i P rDs.

(7.5)

Defining the loss function as:

ftpuq “ }Axt `Bu´ yt`1}
2
2 `

β

2
}pA´ Iqxt `Bu}22,

we obtain that the loss feedback is given by:

∇ftpuq “ 2BT
pAxt ´ yt`1q ` p2` βqB

TBu` β
“

BT
pA´ Iqxt

‰

.

A possible source of disturbance in the gradient feedback is the location yt`1 of the target

at time t ` 1. One may also consider the sparsity constraint }ut}1 ď u1,max instead of/in

addition to the energy constraint.

Example 15 (Energy Harvesting Communications): Suppose there are N com-

munication systems (CS) where the transmitters uses the power from B power sources

(PS) in order to transmit over a time-varying channel. For a bundle pX iÑj
t qi of power
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7.2. Problem Formulation

allocated by the power sources to CS j P rN s at time t, we assume the (ideal) transmit

rate of this CS obey the relationship:

rjt “ µjt log2

˜

1`

«

B
ÿ

i“1

aiÑjt X iÑj
t

ff

gjt

¸

,

where µjt denotes the bandwidth of the channel used by CS j, g
pjq
t denotes the instanta-

neous gain-to-noise ratio of the channel used by CS j, and aiÑjt P r0, 1s denotes the factor

of loss incurred by sending the amount of power from PS i to CS j. Let pit be the amount

of power harvested by the power source i P rBs. Suppose that the PS i P rBs possesses a

battery in order to store the excess energy for further use at the subsequent time t ` 1.

The state of PS i’s battery at time t` 1 is given by:

Qi
t`1 “ Qi

t ` p
i
t ´

N
ÿ

j“1

X iÑj
t ,

where negative Qi
t means that PS i needs at time t to import costly energy from external

sources which. So one constraint for the online strategy is Qi
t ě 0 @t P rT s which is

basically:

´

t
ÿ

τ“1

˜

pit ´
N
ÿ

j“1

X iÑj
t

¸

ď 0, @t P rT ´ 1s.

Another constraint which we may consider is the overcharging constraint i.e. the state of

the battery at time t has to be below a certain power treshhold:

´

˜

pit ´
N
ÿ

j“1

X iÑj
t

¸

ď Qmax, @t P rT ´ 1s.

The reason that one may see overcharging constraint as a long-term constraint is that

overcharging is admissible.

max
pxtqTt“1

T
ÿ

t“1

N
ÿ

i“1

B
piq
t log2

˜

1`

«

B
ÿ

j“1

ajÑit x
pjq
t

ff

g
piq
t

¸

N
ÿ

j“1

xiÑjt ď p
piq
t (Service Constraint)

p
piq
t ´

ÿ

j

aiÑjt x
piÑjq
t ě Qpjqmax (Overcharging constraint)

Example 16 (Online Network Resource Allocation): We consider the resource al-

location problem over a cloud network (see [30, 136]) represented by a directed graph

G “ pI, Eq, where I “ J Y K denotes the set of nodes containing data centers (DC) K
and mapping nodes (MN) J , and where E denotes the edge set containing all the links
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7. Robust Online Learning for Resource Allocation

between MN and DC.

At each time slot t every MN j P J receives a data processing request djt . At the same

time slot, each MN j may forwards the amount XjÑk
t to DC k P K. In the same time

slot, each DC can schedules workload of amount Xk
t for processing. We may model the

cost of applying a data allocation decision Xt “ ppX
iÑj
t qjPK,iPI , . . . , pX

IÑj
t qjPK, pX

j
t qjPKq

as follows:

ftpXtq “
ÿ

kPK
fkt pX

k
t q

loomoon

Power cost

`
ÿ

jPJ

ÿ

kPK
fjÑkt pXjÑk

t q
loooooomoooooon

Bandwidth Cost

` ξ1
ÿ

jPJ

˜

dit ´
ÿ

jPK
X iÑj

t

¸2

loooooooooomoooooooooon

Demand Service

`ξ2
ÿ

kPK

˜

Xk
t ´

ÿ

iPI
X iÑk

t

¸2

looooooooooomooooooooooon

Processing Service

.

Above cost structure contains the computational resources needed by a DC k P K in order

to process the amount Xk
t of tasks and the communication resources needed by MN j P J

in order to forward the amountXjÑk
t of tasks to the data center k. The difference between

above cost structure to the one given in the previous works [30, 136] is that the former

considers additionally the cost incurred by not forwarding the instantaneous demand to

the processing unit and the cost incurred by ignoring the current task queue.

which differs from the previous work. One may consider uploading limit:

ÿ

kPK
XjÑk

ď xkmax, @j,

where xkmax is a specific constant

7.2.2. Performance measure and Our Goal

In this work, we use the following performance measure, called dynamic regret (see [25]),

which is defined for a sequence of decisions X1, . . . ,Xt of the online learner as follows:

Regd
t :“

t
ÿ

τ“1

pfτ pXτ q ´ fτ px
˚
τ qq (Dynamic Regret),

where our benchmark is the sequence of the best dynamic solution x˚t :“ px˚τ qτPrts with:

x˚τ P arg min
xPX

fτ pxq s.t. gτ pxq ď 0, @τ P rts.

Throughout this work, we assume that the following regularity condition on the cost

function holds:

Assumption 7.1: • fτ is convex and subdifferentiable of X .

• For each τ P rts and for all x P X , we have a fix choice of subgradient ∇fτ pxq such
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7.3. Algorithm Design

that supxPX }∇fτ pxq}˚ ă 8.

In general Regd
t can be negative. This case occurs if for some τ P rts, Xτ is not feasible

w.r.t. to the constraint gτ pxq ď 0. However, we have the following lower bound by the

mean value Theorem:

Regd
t ě ´

t
ÿ

τ“1

sup
Xτ
}∇fτ}˚}xτ ´ x

˚
τ } ě ´DX

t
ÿ

τ“1

Lτ , (7.6)

where Lτ ą 0 is a constant fulfilling:

}∇fτ}˚ ď Lτ .

Related to the dynamic regret, is the following performance measure called dynamic

gap defined for xt :“ pxτ qτPrts Ă X as follows:

Gapd
t pxtq :“

t
ÿ

τ“1

xXτ ´ xτ ,∇fτ pXτ qy,

which we often use in our analysis. The reason is that besides:

Gapd
t px

˚
t q ě Regd

t , (7.7)

which follows from the convexity of fτ , for all τ P rT s, the gradients which constitute the

building blocks of PDOGA appears in its formulation.

Performance measure for the feasibility of the learner decision respective to the con-

straint gτ pxq ď 0, τ P rts, which we use in this work is the following:

h-CFitrt :“
t
ÿ

τ“1

hpgrpXtqq.

We assume that the following regularity condition on h-CFit:

Assumption 7.2: • For all r P rN s, g
prq
t is convex and (sub-)differentiable on Xt.

• h is monotonically increasing and sub-differentiable on R.

7.3. Algorithm Design

In this section, we provide a novel algorithm which we call generalized online mirror

saddle-point (GOMSP) whose aim is to generate online decisions minimizing the perfor-

mance measures introduced in Subsection 7.2.2. For convenience, we provide a summary

of our finding in Algorithm 7.
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7. Robust Online Learning for Resource Allocation

Algorithm 7 Generalized Online Mirror Saddle-Point (GOMSP) Method

Require: Time horizon T P N, learning rate γ ą 0, price sensitivity β ą 0, regularization
constant α ą 0.

Require: Initial score Y1 P RD, - primal iterate X1 “ ΦpY1q, - dual variable Λ1 P RR
ě0

for t “ 0, 1, 2, . . . , T do
Observe the noisy first-order feedback

v̂t :“ ∇ftpXtq `Mt`1

for r “ 1, . . . , R do
Query the first-order h-load feedback ∇ph ˝ grt qpXtq

end for
Update the score vector as in (7.8)
Update the dual variable:

Λt`1 “ ΠRRě0
rp1´ αγqΛt ` γhpgtpXtqqs

Update primal variable as in (7.9):
end for

7.3.1. Primal Variable Update - Mirror Descent

The basis of the primal update of GOMSP is the score vector which is generated from

the actual noisy first-order objective - and constraint feedback by the following rule:

Yt`1 “ Yt ´ γ

˜

v̂t `
N
ÿ

r“1

r∇ph ˝ grt qpXtqsΛ
prq
t

¸

. (7.8)

The variable Λ
prq
t is a Lagrange variable that corresponds to the r-th constraint, whose

update rule will be specified later.

To realize the primal updateXt`1 from the score vector Yt`1 at the time slot t`1, we use

the mirror map Φ (see Definition 2.1). Clearly, the mirror map is a generalization of the

usual Euclidean projection. An interesting example of mirror maps is the so-called logit

choice Φpyq “ exppyq{
řD
l“1 exppylq which is generated by the 1-strongly convex regularizer

ψpxq “
řD
k“1 xk log xk on the probability simplex ∆ Ă pRD, }¨}1q. Other instance of mirror

map worth to mentions is ΦpY q “ exppY q{p1 ` } exppY q}1q which is defined on the set

X of positive semidefinite matrices X having the nuclear norm }X}1 :“ trp|X|q ď 1. The

von-Neumann entropy ψpXq “ trpX logXq ` p1 ´ trXq logp1 ´ trXq is a p1{2q-strongly

convex regularizer on Z [45] (for derivation see e.g. [46]).

Having introduced the notion of the mirror map, we can define the primal update rule

given a score vector Yt`1 and a regularizer ψ as follows:

Xt`1 “ ΦpYt`1q. (7.9)
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In case that the chosen regularizer is the Euclidean norm, one can write:

Xt`1 “ ΠX

«

Xt ´ γ

˜

v̂t `
N
ÿ

r“1

r∇ph ˝ grt qpXtqsΛ
prq
t

¸ff

,

which is the update rule for the projected noisy gradient descent related to the online

Lagrangian:

Ltpx, λq “ ftpxq ` λ
Thpgtpxqqq, x P X , λ P RN

ě0. (7.10)

This Lagrangian corresponds to the optimization problem:

min
xPX

ftpxq s.t. hpgtpxqq ď 0.

This observation explains our motivation for defining the primal update as in (7.8) and

(7.9) in case the underlying projection operator is Euclidean.

The reason to use a ”projection” mapping, which is in our case the mirror map, more

general than Euclidean projection is that it yields a versatile method for the online

decision-making process. The mirror map allows us to adapt the first-order penalized

iterative method to the geometry of the underlying feasible set of the decision problem

and to leverage from the weaker dimension dependency of the algorithm performance.

This effect has been recognized earlier in connection with the simple gradient descent

method [47,48]: Using the logit choice instead of Euclidean projection for realizing itera-

tive simple first-order descent method for convex optimization problem on simplex yields a

convergence guarantee which depends logarithmically on the - instead of the square root

of the underlying dimension. Moreover, using a mirror map other than the Euclidean

projection might yield a better dimension dependency of the noise term in the resulted

bound since the noise influence is no longer measured by the Euclidean norm.

Another factor that is variable in the update rule of GOMSP is the function h. In

this regard, we provide for the convenience of the reader a particular form of (7.8) in the

following:

Example 17: The function h which we mainly have in mind is hp¨q “ r¨sp`. By choosing

the subgradient as follows:

∇ph ˝ grt qpxq “

$

&

%

p pgrt pxqq
p´1∇g

prq
t pxq if g

prq
t pxq ě 0

0 else,

we may write:

Yt`1 “ Yt ´ γ

˜

v̂t ` p
ÿ

rPAt

pgrt pXtqq
p´1∇grt pXtqΛ

prq
t

¸

,

where At “ tr P rRs : grt pxq ą 0u denotes the set of active constraints at time t.
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7.3.2. Dual variable update

The primary role of the dual variable Λt is to provide the primal variable information

about the actual amount of the constraint violation. One might draw the analogy between

this variable and the prices in markets whose role is to signal the participants to what

extent the corresponding resources are scarce. In particular, Λt has to reflect the actual

constraint violation state. Besides, another crucial requirement for the dual variable is

that it does not grow unboundedly. Otherwise, the constraint term in the primal update

overthrow the cost part and consequently the primal update concentrates on reducing the

amount of violation rather than minimizing the regret.

In hindsight of those aspects, we give the update rule the dual variable of GOMSP as

follows:

Λt`1 “ ΠRRě0
rp1´ αγqΛt ` γhpgtpXtqqs . (7.11)

In case that α “ 0, (7.11) turn to the simple dual gradient ascent corresponds to the

Lagrangian (7.10). The idea behind adding the regularization term αγΛt is to reduce the

growth of the dual variable by decaying the influence of previous constraint states: To see

this, notice that if h ě 0, we can omit the projection operator in the expression (7.11).

Consequently:

Λt`1 “ p1´ αγq
tΛ1 ` γ

t
ÿ

τ“1

p1´ αγqτ´thpgτ pXτ qq.

If Λ1 “ 0, we have:

Λt`1 “ γ
t
ÿ

τ“1

p1´ αγqt´τhpgτ pXτ qq.

Thus the influence of the τ -th constraint function term to the dual variable at time t` 1

decays with expp´τaq where a “ ´ lnp1 ´ αγq. This can be advantageous in the online

environment since gτ for different time-slots (with large distance) not necessarily correlate.

Another reason for defining (7.11) is that the resulted dual dynamic gives rise about

the cumulative constraint state in the following sense:

Lemma 7.1 (From Dual Dynamic to Constraint Violation): Suppose that Λ1 “

0. It holds:

h-CFitrt ď
}Λt`1}2

γ
` α

t
ÿ

τ“1

}Λτ}2

Proof: By (7.11), we have Λr
τ`1 ě Λ

r
τ ` γhpgrτ pXτ qq ´ αγΛ

r
τ . So summing, telescoping,

and the assumption Λ1 “ 0 give:

γ
t
ÿ

τ“1

hpgrτ pXτ qq ď Λ
r
t`1 ` αγ

t
ÿ

τ“1

Λr
τ (7.12)

By the fact that Λr
t ě 0, it holds Λr

t ď }Λt}2. Finally, the latter and (7.12) give the

desired inequality.
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7.4. Performance Analysis

To analyze the performance of the algorithm, we leverage from Lyapunov-type argumen-

tation. In doing that, we use as energy functions both, the distance between the iterate

Yt of the algorithm and the current constraint minimizer of the cost function and the

norm of the dual variable:

Etpxq “ Fpx,Ytq
looomooon

“:E1
t pxq

`
}Λt}2

2
loomoon

“:E2
t

,

where F denotes the Fenchel coupling (see Definition 2.2). This sort of Lyapunov function

is standard (see e.g. [25]) besides the fact that we use the Fenchel coupling as the primal

iterate distance function.

To analyze the performance of the proposed algorithm, we give in the following an

upper bound for the primal dynamic and dual dynamic.

7.4.1. Lyapunov Analysis

Primal Dynamic For convenience, we rewrite (7.8) as:

Yt`1 “ Yt ´ γ
´

v̂t ´ r∇ph ˝ gtqpXtqs
TΛt

¯

,

where:

r∇ph ˝ gtqpXtqs
T
“
“

∇ph ˝ g1t qpXtq, . . . ,∇ph ˝ gRt qpXtq
‰

The following result gives the upper bound of the one-step difference ∆E1t pxq :“ E1t`1pxq´
E1t pxq:

Lemma 7.2: For any x P X :

∆E1t pxq ď ´ γxXt ´ x,∇ftpXtqy

´ γxXt ´ x, r∇ph ˝ gtqpXtqs
TΛty

` γM̃t`1 `
γ2C2

1,ψ

K
}Λt}

2
2 `

2γ2

K
pC2

2,ψ ` }Mt`1}
2
˚q,

where C1,ψ, C2,ψ, are the smallest constants C1, C2 ą 0 satisfying for all λ P RR
ě0 and

x P X :

}r∇ph ˝ gtqpxqs
Tλ}˚ ď C1}λ}2 }∇ftpxq}˚ ď C2

Dual Dynamic The expression given in Lemma 7.2 possesses a dependency on the dual

variableΛt. So to continue, it stands clear to analyze the dynamic of this variable. Toward

this direction, we have the following result on the drift of the Lagrangian:
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Lemma 7.3: For x̃ P Qτ :

∆E p2qτ ďγxr∇ph ˝ gτ qpXτ qs
TΛτ ,Xτ ´ x̃y ´ pαγ ´ α

2γ2q}Λτ}
2
2 ` γ

2C2
3 ,

where C3 ą 0 is a constant satisfying:

}hpgpxqq}2 ď C3, @x P X . (7.13)

For ease of the readibility, we provide the proof of this Lemma in Appendix 7.7.1.

Primal-Dual Dynamic By combining previous auxiliary statements on the dynamic of

the primal - and dual variable, we obtain the following result:

Theorem 7.4: Suppose that:

α ´ γpα2
´
C2

1

K
q ě 0 (7.14)

For xt :“ pxτ qτPrts Ă X with xτ P Qτ for all τ P rts:

Gapd
t pxtq `

}Λt`1}
2
2

2γ
ď ´
Vtpxtq
γ

`
}Λ1}

2
2

2γ
` tγC2

ψ ` Stpxtq `
2γ

K
Rt,

where:

Stputq “
t
ÿ

τ“1

M̃τ`1puτ q, Rt “

t
ÿ

τ“1

}Mτ`1}
2
˚,

V1
t pxtq :“

t
ÿ

τ“1

∆E1τ pxτ q, C2
ψ :“

2C2
2,ψ

K
` C2

3,ψ,

Proof: From Lemma 7.2 and Lemma 7.3, we obtain for any x̃ P Qt:

∆E1t px̃q `∆E2t

ď ´γxXt ´ x̃,∇ftpXtqy ` γM̃t`1 `
2γ2

K
pC2

2 ` }Mt`1}
2
˚q

´γpα ´ γα2
´
γC2

1

K
q}Λt}

2
2

looooooooooooooomooooooooooooooon

“:e1

`γ2C2
3 .

The condition (7.14) help us to get rid of the expression e1, which involves the dual

variable. By summing the resulted inequality and since 2
řt
τ“1∆E2t “ }Λt`1}

2
2 ´ }Λ1}

2
2,

we obtain the desired statement.

By the relation (7.7), Gapd
t px

˚
t q gives rise to the dynamic regret. Moreover, Lemma 7.1

asserts that the Lagrangian variable contains the information about the cumulation of

the constraint violation. Thus we come closer to achieving the objective of providing
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performance guarantee for the proposed algorithm. As usual, the terms St and Rt due to

objective feedback noise can be handled by taking the expectation. So, the only term at

which a closer look should be taken is V1
t px

˚
t q.

Lower bound for Primal Energy Function In case that that the environment is not

adversary, i.e., fτ remains for all τ P rts the same, it holds by telescoping:

V1
t px

˚
t q “ Fpx˚,Yt`1q ´ Fpx˚,Y1q ě ´Fpx˚,Y1q,

where x˚ denotes the constrained minimizer of fτ . What we may do in the adversary case

is to interpolate V1
t px

˚
t q by the cumulative difference of the benchmark sequence xt. In

order to execute this procedure, we assume the following:

Assumption 7.3: The regularizer is nowhere steep in the sense that ψ is differentiable

on X .

Before we proceed, we first discuss this assumption in the following:

Remark 20: Suppose that X “

!

x P RD
ě0 :

řD
i“1 xi ď B

)

for a fixed constant B ą 0.

The Euclidean norm seen as a regularizer on X is clearly nowhere steep. In contrast to the

Euclidean norm, the entropy function ψpxq “
řD
i“1 xi lnpxiq as a regularizer is not nowhere

steep since the gradient of ψ grows unboundedly as the argument goes to the element of

X which possesses zero coordinates. However, we may instead use the smoothed entropy

ψεpxq “ ψpx`εq where ε ą 0 is a chosen constant. As we will discuss later This procedure

does not have any significant impact on the dynamic of our algorithm.

We first show that is the regularizer is nowhere steep then the Fenchel coupling is

Lipschitz in the first argument:

Lemma 7.5: Suppose that ψ is nowhere steep. Then for all x1, x2 P X and y P RD :

|Fψpx1, yq ´ Fψpx2, yq| ď 2Lψ}x1 ´ x2},

where Lψ ą 0 is given by:

Lψ :“ sup
xPX

}∇ψpxq}˚. (7.15)

Proof: By definition of F and the triangle inequality, we have:

|Fpx1, yq ´ Fpx2, yq| ď |ψpx1q ´ψpx2q| ` |xy,x1 ´ x2y|

Mean value Theorem and the nowhere-steepness of ψ asserts:

|ψpx1q ´ψpx2q| ď Lψ}x1 ´ x2}.

Now, since ψ is nowhere steep, it follows from Proposition 2.3 that Φ is surjective. So
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we can find a x P X s.t. x “ Φpyq and thus (again by Proposition 2.3) y “ ∇ψpxq.
Consequently we have by Hölder inequality:

|xy,x1 ´ x2y| ď }∇ψpxq}˚}x1 ´ x2} ď Lψ}x1 ´ x2}.

We are now ready to give a lower bound for V1
t :

Lemma 7.6: Suppose that ψ is nowhere steep. It holds:

Vp1qt pxtq ě ´Fpx1,Y1q ´ LψVψpxt`1q,

where Lψ is given in (7.15):

Vψpxt`1q :“
t
ÿ

τ“1

}x˚τ`1 ´ x
˚
τ }

Proof: Applying Lemma 7.5, we obtain:

∆E p1qτ pxτ q “ Fpxτ ,Yτ`1q ´ Fpxτ ,Yτ q

“ Fpxτ`1,Yτ`1q ´ Fpxτ ,Yτ q

` Fpxτ ,Yτ`1q ´ Fpxτ`1,Yτ`1q

ě Fpxτ`1,Yτ`1q ´ Fpxτ ,Yτ q ´ Lψ}xτ`1 ´ xτ}

Thus summing over τ P rts:

Vp1qt pxt`1q ě Fpxt`1,Yt`1q ´ Fpx1,Y1q ´ LψVtpxt`1q

ě ´Fpx1,Y1q ´ LψVtpxt`1q

7.4.2. Dynamic Regret bound

Theorem 7.7: Suppose that ψ is nowhere steep and that (7.14) is fulfilled. For ut :“

puτ qτPrts Ă X with uτ P Qτ for all τ P rts:

ErGapd
t pxtqs ď

Fpx1,Y1q

γ
` Lψ

Vpxtq
γ

`
}Λ1}

2
2

2γ
` tγC2

ψ `
2γ

K

t
ÿ

τ“1

σ2
t`1,

where:

C2
ψ :“

2C2
2,ψ

K
` C2

3,ψ,

and:

Er}Mτ}
2
˚s ď σ2

τ .

142



7.4. Performance Analysis

Proof: First notice that }Λt}2 ě 0. Combining this with (7.14), it holds:

Gapd
t pxtq ď

Fpx˚1 ,Y1q

γ
`
LψVt

γ
`
}Λ1}

2
2

2γ
` γtC2

ψ ` Stpxtq `
2γ

K
Rt. (7.16)

Now, one can check that Stpxtq, t P N is a martingale. Consequently:

ErStpxtqs “ ErxX1 ´ x1,M2ys “ ErxX1 ´ x1,ErM2|F1sys “ 0.

So taking the expectation over (7.16), we obtain the desired statement.

Corollary 7.8: Suppose that the requirements of Theorem 7.7 are fulfilled and suppose

that in addition Y1 “ 0 and Λ0 “ 0. Moreover suppose that the noise is persistent in the

sense that there exists σ ą 0 s.t. Er}Mτ}
2
˚s ď σ2 for all τ . With:

γ “ ΘpT´1{2q,

it holds:

ErRegd
t s ď rDpX ,ψq ` LψVtsOp

?
T q ` pC2

ψ `
σ2

K
qtOpT´1{2q

where:

DpX ,ψq “ sup
xPX

ψpxq ´ inf
xPX

ψpxq C2
ψ “ C2

2,ψ ` C
2
3,ψ

Proof: By the relation (7.7), it follows that the upper bound for the gap given By the

assumption Y1 “ 0, it holds:

Fpx1,Y1q “ ψpx1q ´ψ
˚
p0q “ ψpx1q ´ inf

xPX
ψpxq ď DpX ,ψq

Previous observations and the assumption Λ1 “ 0 and the asummption that the noise is

persistent yields:

ErRegd
t s ď

DpX ,ψq ` LψVt
γ

`

ˆ

C2
ψ `

2σ2

K

˙

tγ,

So from above result, we have that ErRegd
T s is of order Opp1 ` Vt ` σq

?
T q in case that

the online environment changes slowly in the sense that VT ď OpT pq where p ă 1{2, the

expected regret is sublinear.

7.4.3. Constraint Violation Analysis

Requirements:

}∇ftpxq}˚ ď Lf , @x P X , t (7.17)
č

τPrts

Qτ ‰ H.
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(7.17) asserts that for x P X :

´xXt ´ x,∇ftpXtqy ď }Xt ´ x}}BftpXtq}˚ ď DXLf

Theorem 7.9: For any x̃ P
Ş

τPrts tgτ ď 0u, it holds:

Er}Λt`1}
2
2s

2
ď γtDXLf ` F px̃,Y1q `

}Λ1}
2
2

2
` tγ2C2

ψ `
2γ2

řt
τ“1 σ

2
τ`1

K

Proof: We have for any xt Ă X :

´Gapd
t pxtq “ ´

t
ÿ

τ“1

xXτ ´ xτ ,∇fτ pXτ qy ď tDXLf ,

and for xt Ă X with xτ “ x̃ P X for all τ :

V1
t pxtq “ F px̃,Yt`1q ´ F px̃,Y1q ě ´F px̃,Y1q

Combining this with Theorem 7.4, it holds for xt Ă X with xτ “ x̃ P
Ş

τ Qτ for all τ :

Er}Λt`1}
2
2s

2
ď ´γErGapd

t pxtqs ` F px̃,Y1q `
}Λ1}

2
2

2
` tγ2C2

ψ `
2γ2

řt
τ“1 σ

2
τ`1

K
,

ď γtDXLf ` F px̃,Y1q `
}Λ1}

2
2

2
` tγ2C2

ψ `
2γ2

řt
τ“1 σ

2
τ`1

K

Corollary 7.10: Suppose that Y1 “ 0 and Λ1 “ 0. For γ “ ΘpT´1{2q and α “ ΘpT´1{2q

fulfilling (7.14), It holds:

h-CFitrt ď
a

DpX ,ψqOpT 1{2
q `

a

DXLfOpT 3{4
q ` pC2

ψ `
2σ2

K
q
1{2OpT 1{2

q

Proof: By the assumption Y1 “ 0, we have F px̃,Y1q ě DpX ,ψq. So, it holds:

Er}Λt`1}
2
2s

2
ď DXLf tOpT´1{2q `DpX ,ψq ` pC2

`
2σ2

K
qtOpT´1q

Consequently by Jensen’s inequality:

Er}Λt`1}2s ď
a

DpX ,ψq `
a

DXLf t
1{2OpT´1{4q ` pC2

ψ `
2σ2

K
q
1{2t1{2OpT´1{2q.

Consequently:

Er}Λt`1}2s

γ
ď
a

DXLf t
1{2OpT 1{4

q `
a

DpX ,ψqOpT 1{2
q ` pC2

ψ `
2σ2

K
q
1{2t1{2Op1q
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Now, we have:

α
t
ÿ

τ“1

Er}Λτ}2s ď
a

DpX ,ψqtOpT´1{2q `
a

DXLfOpt3{2qOpT´3{4q

` pC2
ψ `

2σ2

K
q
1{2Opt3{2qOpT´1q.

Consequently:

h-CFitrt ď
a

DpX ,ψq
”

Op
?
T q ` tOpT´1{2q

ı

`
a

DXLf

”?
tOpT 1{4

q `Opt3{2qOpT´3{4q
ı

` pC2
ψ `

2σ2

K
q
1{2

´?
tOp1q `Opt3{2qOpT´1q

¯

Since t ď T , the result follows.

7.5. Discussions on the parameters and constants

This section aims to show the possibility of improving GOMSP by adapting the mirror

map to the underlying feasible set. To this end, we compare the constants arising in the

performance guarantees given in the previous section, both if the Euclidean norm -, and

if the smoothed entropy serves as the regularizer. Throughout this section, we consider

the constraint set:

X “

#

x P RD
ě0 :

D
ÿ

i“1

xi ď B

+

, B ě 1

DpX ,ψq and DψX To compute DpX ,ψent
ε q, notice first that ψε is strictly convex and

therefore the minimizer of this function is an extreme point of X . Consequently, we have

for ε ď 1:

max
xPX

ψent
ε pxq “ B lnpBq.

Now, by KKT-argumentations, it yields for ε ě e´1:

min
xPX

ψent
ε pxq “ ´Dε lnpεq.

Combining both observations, we have:

DpX ,ψent
ε q “ B lnpBq `Dε lnpεq.

In contrast, we have:

DpX , } ¨ }22{2q “ B2.

So, using the smoothed entropy yields better dependency of DpX ,ψq on B (B lnpBq vs.

B2). However, DpX ,ψq has a linear dependency on the D which one fortunately can offset
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by choosing ε P re´1, 1q large enough. The constant DψX is irrelevant for our consideration,

since it is equal B for both choices of ψ.

Lψ and Sensitivity to Variation Elementary computation yields

Lψent
ε
“ max t|1` lnpεq| , |1` lnpB ` εq|u .

If ε P re´1, 1s, this quantity simplifies to:

Lψent
ε
“ 1` lnpB ` εq.

In contrast, we have:

L}¨}2 “ B.

We see that choosing ψ “ ψent
ε instead of ψ “ } ¨ }22{2 might yields an improvement of the

dependency of Lψ on B (lnpBq vs. B) and therefore an improvement of the dependency

of the GOMSP’s regret performance on the variation. However, as a different choice of

mirror map leads to a different norm measuring the variation, caution is required to this

regard: With the choice ψ “ ψent
ε we measure the variation by means of } ¨ }1, and with

the Euclidean norm as regularizer, we measure the variation by means of } ¨ }2 which is in

general smaller than } ¨ }1 (by at worst the factor
?
D). The discussion in this paragraph

is irrelevant for the h-CFit guarantee given in the previous section, since it is independent

of the path variation.

Constants related to loss function and penalty function Clearly, C3,ψ is equal in both

choices of the regularizer. Since }¨}8 ď }¨}2, C1,ψent
ε

might be smaller than C1,}¨}22{2
. Similar

argumentation yields that C1,ψent
ε

might be smaller C1,}¨}22{2
.

Strong Convexity and Noise It is immediate to see that:

K}¨}2 “ 1.

Moreover, by Proposition 2.3, we have:

Kψε “
1

B
.

So in case B ą 1, GOMSP with ψent
ε as the regularizer might suffer more from noise am-

plification than GOMSP with the Euclidean norm as regularizer. Our advice concerning

this issue is to normalize as far as possible the problem such that the restated problem

has B “ 1. Regarding the power σψ of the persistent noise itself, we can leverage from

choosing the smoothed entropy over the Euclidean norm as the regularizer of GOMSP.

To see this, consider, for instance, an i.i.d. noise pMtqt where the coordinates of Mt are
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independent standard Gaussian random variables. It holds that σ2
}¨}22{2

is of order D. In

contrast, σ2
ψent
ε

is of order lnpDq which is better.

7.6. Numerical Simulation

In order to verify our theoretical findings, we test GOMSP and present in this section the

result of our simulations. We first begin by stating the setting in our experiment.

7.6.1. Online Problem Setting

We test our method on a special case of the problem setting stated in Example 13 with

20 generators and 10 constraints, i.e.:

D “ 20 and R “ 10,

described in the following:

Feasible Set We consider the feasible set:

X “

#

x P RD :
D
ÿ

i“1

xi ď B

+

, with B “ 1.

The reason for choosing B “ 1 is to prevent possible noise amplification by using a

regularizer other than the Euclidean norm (see paragraph dq in Section 7.5). For other

setting where B ‰ 1 one may reformulate the online problem such that the resulted

feasible set has B “ 1.

Loss Function We consider the quadratic cost function:

c
piq
t px

piq
q “ a

piq
t px

piq
q
2
` b

piq
t x

piq,

where:

a
piq
t “ 0.5 sinpπt{50q ` 5` ãt,

with pãtq is an i.i.d. random sequence uniformly distributed in the interval r0, 0.5s, and

where b
piq
t “ 0.5 sinpπt{100q ` 6 ` b̃t, where pb̃tq is an i.i.d. random sequence uniformly

distributed in the interval r0, 0.2s. We set the demand service constant to be:

M “ 20.

Our model for the time-varying non-stationary demand is given as :

dt “ 0.1 cospπt{125q ` 0.7` d̃t,
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where pd̃tq is an i.i.d. random sequence uniformly distributed in the interval r0, 0.2s.

Constraints The constraints are described by the quadratic functions

EiÑj
t pxpiqq “ ciÑjpxpiqq2 ` eiÑjxpiq,

where ciÑj and eiÑj are independent uniformly distributed random variable on the unit

interval. We assume that the constraint thresholds are time-variant and non-stationary

of the form:

Emax,j
t “ 0.05 cospπt{50q ` 0.2` ẽt,

where pd̃tq is an i.i.d. random sequence uniformly distributed in the interval r0, 1s.

7.6.2. Algorithm setting and Benchmarks

All the method which we apply to the online learning problem receives a warm start

of the amount of 40 time-slots. Subsequently, we run the algorithms for T “ 500. We

test GOMSP on the online learning problem describe previously with both the smoothed

entropy with ε “ 0.5 and Euclidean norm as a regularizer, where we set the step size to be

γ “ 0.1{
?
T and the regularization parameter to be α “ 15γ. As choices of h we consider

h “ r¨s` and h “ r¨s2`.

Noisy Feedback To model the disturbance of the gradient feedback, we assume that

learner can only observe the cost coefficients pa
piq
t qi and pb

piq
t qi at time t up to a Gaussian

random disturbance. Specifically, we assume at time t that the learner sees pâitqi and pb̂itqi,

where:

â
piq
t “ a

piq
t ` M̃

piq,1
t`1 and b̂

piq
t “ a

piq
t ` M̃

piq,2
t`1 ,

with pM̃
piq,1
t qi,t (resp. pM̃

piq,2
t qi,t) is the sequence of i.i.d. mean zero Gaussian random

variable with standard deviation σa ą 0 (σb ą 0). Throughout our simulation, we set

σa “ 0.2 and σb “ 1.

MOSP We compare GOMSP with the modified online saddle-point (MOSP) introduced

in [30] with fixed primal and dual step size equal to

γ P t0.1, 0.07, 0.05u {
?
T .

In contrast to the works [30, 35], we simulate MOSP with imperfect gradient feedback

with the noise structure described in the previous paragraph. we The (noisy) update of
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this algorithm is given by:

Xt`1 “ ΠX

«

Xt ´ γ

˜

v̂t `
N
ÿ

r“1

r∇ph ˝ grt qpXtqsΛ
prq
t

¸ff

Λt`1 “ ΠRRě0
rp1´ αγqΛt ` γhpgtpXtqqs .

ODG Furthermore, we also compare GOMSP with the stochastic dual gradient (SDG)

method (see e.g., [30, 137,138]), which we modify as follows:

Xt`1 P arg min
xPX

f̂tpxq ` xΛt,gtpxqy

Λt`1 “ rΛt ` γgtpXtqs`,

where f̂t is the loss function with perturbed coefficients as described in Paragraph aq. This

modification is for the sake of fairness in the comparison since the original SDG method

requires non-causal knowledge and does not consider the possibilities of disturbance in

the feedback.

7.6.3. Simulation Result
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T
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D
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GOMSP (γ “ 0.1{
?
T , α “ 15γ, hp¨q “ r¨s`, ψ “ ψent

0.5 )

GOMSP (γ “ 0.1{
?
T , α “ 15γ, hp¨q “ r¨s2`, ψ “ ψent

0.5 )

ODG (γ “ 0.1{
?
T )

MOSP (γ “ 0.1{
?
T )

ODG (γ “ 0.07{
?
T )

ODG (γ “ 0.05{
?
T )

MOSP (γ “ 0.07{
?
T )

MOSP (γ “ 0.05{
?
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Figure 7.1.: Time-average Dynamic Regret (TADR) for GOSMP and benchmarks ODP
and MOSP with perturbed cost σa “ 0.2 and σb “ 1.
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Figure 7.2.: Time-average clipped constraint violation (TACCV) for GOSMP and bench-
marks ODP and MOSP with perturbed costs. For legend see Fig. 7.1.

Clipped Constraint Violation At first, we evaluate the Time average clipped constraint

violation (TACCV) of the different methods given by:

řt
t“1

řR
r“1rg

r
t pXtqs`

tR
.

We see that in case the step sizes of the methods coincide (γ “ 0.1), GOMSP with

smoothed entropy as the regularizer, independent of the choice of h, clearly outperform

ODG and MOSP. However, we see that h “ r¨s2` yields the best performance. Moreover,

even by reducing the step sizes of ODG and MOSP to γ “ 0.07{
?
T and γ “ 0.05{

?
T

the corresponding TACCV is still higher than that of GOMSP.

Dynamic Regret Now we examine the dynamic regret of the methods averaged over

time (TADR). We provide the plot of this quantity in Fig. 7.1. Our method clearly

outperform ODG w.r.t. to the performance measure TADR in the case where the step

sizes of MOSP and its benchmarks coincide (γ “ 0.1{
?
T ). However, running MOSP with

smaller step size (γ “ 0.05{
?
T ) it outperforms GOMSP with h “ r¨st. This occurence

can however be changed by choosing h “ r¨s2` since GOMSP possesses in this case the

lowest and even negative dynamic regret.
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Figure 7.3.: Time-average Queue Length (TAQL) for GOSMP and benchmarks ODP and
MOSP with perturbed cost σa “ 0.2 and σb “ 1. For legend see Fig. 7.1.

Queue Length In our experiment, we also examine the queue length pQtqt of GOMSP

and its benchmarks, which is given by

Qr
t`1 “ rQ

r
t ` grt pXtqs`,

with Qr
0 “ 0. This quantity is relevant for applications where the current constraint

violation can be compensated by previous actions that are strictly constraint fulfilling,

which occurs in systems having the ability to buffer (see e.g. [30]). Clearly, small TACCV

does not imply small queue length since the former implies that the constraint violations

remain small and the latter allows some substantial constraint violations of cost constraint

values strictly smaller than the allowed threshold. We plot the time-average queue length

(TAQL)
řR
r“1Q

r
t{tR in Figure 7.3. We see that MOSP with γ “ 0.1{

?
T yields the

lowest queue length. However, by observing its trajectory, this performance is caused

by the fact that the update of MOSP highly and rapidly oscillates between states which

strictly fulfilling the constraint and states violating the constraints. Such a behavior is

not tolerable in technical applications since it might incur an additional switching cost

(see e.g. [139]. Furthermore it is surprising in the face of the previous discussion on the

difference between TACCVC and TAQL that ignoring the MOSP with γ “ 0.1{
?
T , it is

possible that GOMSP may have the smallest TAQL.

Impact of Mirror Map Choice At last, we are interested in investigating to what extent

does the choice of the mirror map impacts the performance of GOSMP. Toward this end,

151



7. Robust Online Learning for Resource Allocation

Figure 7.4.: TADR for GOSMP. Brown line corresponds to the sample average of TACCV
in the smoothed entropy (ε “ 0.5) case and red line resp. in the Euclidean
case. Shaded areas are each corresponds to 25%-, 50%-, 75%-, and 90%-
percentile.

Figure 7.5.: TACCVC for GOSMP. Brown line corresponds to the sample average of TAC-
CVC in the smoothed entropy (ε “ 0.5) case and red line resp. in the Eu-
clidean case. Shaded areas are each corresponds to 25%-, 50%-, 75%-, and
90%-percentile.
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Figure 7.6.: Standard Deviation of GOSMP

we perform GOSMP with Euclidean projection and the smoothed entropy with ε “ 0.5

as regularizers. In both cases, we choose γ “ 0.1{
?
T , α “ 0.1{

?
T , and h “ r¨s`. We

simulate both instances of GOSMP with 200 gradient noise samples. Figure 7.4 depicts

the dynamic regret of our simulation. There the thick line corresponds to the sample

average of the trajectories, and the shaded line specifies the area where 25%, 50%, 75%,

and 90% of the samples are. A clear trend which we can observe is that the TADR of

GOSMP with smoothed entropy as regularizer is significantly lower than the TADR of

GOSMP with Euclidean projection as regularizer. We believe that this effect aligns with

the discussion made in paragraph cq in Section V. Moreover we observe that the TADR of

GOSMP with smoothed entropy as regularizer is more volatile than that of GOSMP with

Euclidean projection as regularizer. This observations confirms the hypothesis that using

a mirror map other than the Euclidean one results in more robust algorithm behavior.

We also observe similar trends in the resource-aware behavior of GOSMP (see Figure 7.5

and 7.6). However, the effect of noise reduction is less pronounced comparing to that of

TADR.

7.7. Appendix

7.7.1. Missing Proofs in Section 7.4

The proof of Lemma 7.2 is straightforward following [25]:
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Proof (Proof of Lemma 7.2): By inserting the primal iterate of the GOMSP into the

bound given in Proposition 2.4, by using triangle inequality, by the inequality p
řK
i“1 aiq

2 ď

K
řK
i“1 a

2
i , it is straightforward to obtain:

∆E1t pxq ď ´γxXt ´ x,∇ftpXtq ` r∇ph ˝ gtqpXtqs
TΛty

` γM̃t`1 `
1

K

`

γ2C2
1}Λk}

2
2 ` 2γ2pC2

2 ` }Mt`1}
2
˚q
˘

Our aim now is to proof Lemma 7.3. It is an immediate consequence of the following

auxiliary statements:

Lemma 7.11: It holds:

∆E2t ď γxΛt, hpgtpXtqqy ´ pαγ ´ α
2γ2q}Λt}

2
2 ` γ

2C2
3 ,

where C3 ą 0 is a constant satisfying (7.13).

Proof: It holds:

}Λτ`1}
2
2 “ }ΠRRě0

rp1´ αγqΛτ ` γhpgτ pXτ qqs }
2
2

ď }Λτ ` γhpgτ pXτ qq ´ αγΛτ}
2
2 “ }Λτ}

2

` 2
“

γxΛτ , hpgτ pXτ qqy ´ αγ}Λτ}
2
‰

` γ2}hpgτ pXτ qq ´ αΛτ}
2
2,

where the inequality follows from the usual property of the Euclidean projection operator.

Triangle inequality, the inequality pa`bq2 ď 2a`2b, and (7.13) give }hpgτ pXτ qq´αΛτ}
2
2 ď

2 pC2
3 ` α

2}Λτ}
2
2q. So combining all the derived inequalities, we obtain Lemma 7.3.

Lemma 7.12: Suppose that h is monotone and g is convex. Let be τ fixed. It holds for

any x̃ P Qτ :

xΛτ , hpgτ pXτ qqy ď xr∇ph ˝ gτ qpXτ qs
TΛτ ,Xτ ´ x̃y.

Proof: Let be x P X . Since h is monotone and gprq is convex for all r P rRs, it follows

that h ˝ gprq is convex. This and the fact that Λτ ě 0 for all τ gives:

xΛτ , hpgτ pXτ qqy ď xΛτ , hpgτ pxqqy ´ xΛτ , Bph ˝ gτ qpXτ qpx´Xτ qy

“ xΛτ , hpgτ pxqqy ` xrBph ˝ gτ qpXτ qs
TΛτ ,Xτ ´ xy

Since h is monotone, we have for x̃ P Qτ Ă X , hpgτ px̃qq ď 0. Consequently since Λτ ě 0,

it yields xΛτ , hpgτ px̃qqy ď 0. Combining all the computations, we obtain the desired

result.

Consequently by combining Lemmas 7.11 and 7.12 we obtain Lemma 7.3.
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8. Stochastic Dynamic of First-Order

Flocking-based Distributed

Optimization

Abstract: We study a continuous first-order distributed gradient descent with flocking

term of pure attracting force. We propose and analyze a stochastic variant in which

the gradient is contaminated by Gaussian noise. We provide a bound of the distance

between the objective value of the averaged iterate of each agents and the consensus

optimum both in expectation and in probability. We discuss the interaction between

the underlying apriori parameters (parameter of the functions and connectivity of the

agents) of the problem, the parameters of the dynamic (step size/gradient weight and

communication strength between the agents) and the volatility of the noise process.

8.1. Introduction

Problems of cooperative control in multi-agent systems have gained a lot of attention

over the recent years due to emergence of large scale networks. Some examples in which

such problem arised are smart grids [140], autonomous vehicle teams [141], processors

in machine learning scenarios [142], sensor systems [143], multi-robot system [144] and

cognitive networks [145,146].

In many problems corresponding to such system, A global objective needs to be achieved

by appropriate actions of agents. The difficulties arise by the fact that usually each

agents can only access local information. One may canonically solve such problem in

the centralized manner in the sense that for each time instance a central computing unit

collects the processed local data from each agent and then subsequently gives command

to all the agents based on it. However, this sort of system is sensitive to the failure of

the central unit. Moreover, the communication between each agents and the central unit

might be costly due to for instance the large distance between them. Another problem

which could arise in the centralized system is that the computation done by the central

unit might be infeasible for example due to the large number of participants in the system.
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Numerous problem in the aforementioned applications is related to the problem:

min
xPRD

1

N

N
ÿ

i“1

Vipxq. (8.1)

where Vi is for each i P rN s a convex function only observable by the i-th agent. The

specific task for each agent is to iterate the solution of (8.1) by means of the information

about the observables and the iterate of other agents. First-order methods play an im-

portant or even crucial role in solving such sort of problem since higher-order information

is often hard to obtain. For instance in large-scale machine learning applications this is

due to the high dimension of the feature space and the overwhelming size of a typical

data sets. Furthermore in many applications, one often has merely an inexact first-order

oracle either desired due to e.g. computational infeasibility (see mini-batch method in

machine learning), or measurement error, or adversarial attack. For instance in machine

learning application, computing the gradient of a function is expensive since in most cases

the corresponding function is the sum of large number of another functions. So instead of

computing the full gradient one chooses randomly some functions in the sum and compute

in that way an unbiased estimator of the full gradient. Another source of inexact random

first-order oracle is for instance measurement error and adversarial attack.

A way to solve (8.1) is by the following algorithm where the iterates Xpiq of i-th agent

is specified by:

dXpiq,t “ αt
“

´∇VipXpiq,tqdt` σtdBt

‰

(8.2)

´ γt
ÿ

j‰i

rAsi,jpXpiq,t ´Xpjq,tqdt , (8.3)

where pBtqtě0 denotes the Brownian motion. So for each time instance each agent call

the gradient oracle perturbed by the Gaussian noise with power σt P R`0 for the locally

observable function (see term (8.2)), collect the previous iterate of all neighboring agents,

compare it with his past own iterate (see term (8.3)), and subsequently combined all the

obtained information in order to update his own state. The algorithm (8.3) can be seen

as stochastic gradient descent with flocking term of pure linear attractive force [147].

In this work we interpret the stochastic integral occuring in above description in the

Itô’s sense so that the continuous-time algorithm (8.3) can be seen as the continuous-time

version of the discrete algorithm

Xpiq,t “ αkr´∇VipXpiq,kq ` σkξks ´ γk
ÿ

j‰i

rAsi,jpXpiq,k ´Xpjq,kq,

where ξ1, ξ2, . . . i.i.d. multivariate standard normal random variable. Thus the parameter

α can in some sense be seen as the parameter determines the step size of the algorithm

and γ as the parameter specifying the strength of communications between each agent.
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8.1. Introduction

Except in the applications where the continuous time method is admissible or even

necessary such as in control problem, optimization methods are inherently discrete. How-

ever, continuous-time method is often easier and more convenient to handle since there

are a huge literature on dynamical systems [148, 149] and control theory [150] providing

useful techniques ( [151, 152]). Moreover, it can provides heuristics for their design and

analysis. An excellent example is the mirror descent algorithm which is motivated in con-

tinuous time [153]. Furthermore, more recent works [154–159] gives more intuitive view

on Nesterov’s accelerated first-order method by seeing the discretization of a second-order

ordinary differential equations and based on that advices for the choices of the occuring

parameters.

Our Contributions

In this paper, we analyze the continuous-time stochastic algorithm (8.3) with more general

noise structure (see Remark 21). We investigate the role of the occuring parameters, viz.

the step size, communication strength, and the volatility of the noise for the success of the

algorithm. We quantify in Theorem 8.3 the consensus between the agents and provide in

Theorem 8.5 a bound for the distance of the average function value of the averaged iterate

of each agents to the optimum value in expectation under the convexity and boundedness

of gradient assumption. In case that in addition the corresponding objective function

is strongly convex, we are even able to quantify in Theorem 8.7 and Theorem 8.8 the

probability of the aforementioned bound.

Relation to Prior Work

The first work on discrete gradient descent distributed algorithm can be traced back to

the seminal works [160, 161]. Since then many extensions has been made. Among them,

approaches which are closely related to our work is given e.g. in [162, 163]. In [164],

the algorithm (8.3) without noise has been analyzed in a more general setting where the

flocking term is substituted by the gradient of a certain convex function different from

the objective. Under constant step size α, they derive conditions on the parameter β s.t.

the algorithm converges. In contrast to our work, their statement is more of asymptotic

nature.

Another alternative deterministic continuous algorithms which based on feedback con-

trol were provided and analyzed in e.g. [165, 166] for several cases of dynamic networks.

However in contrast to our analysis, they rely to the strong convexity of the objective.

For the case where the summands of the objective function in (8.1) coincides, similar

continuous stochastic algorithm as in (8.3) was already analyzed in [167, 168]. However

their aim is different to ours since the flocking based algorithm they proposed serves rather

as a tool to reduce the effect of noise modeled by the Brownian motion caused by the

inexact first-order oracle.
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8. Stochastic Dynamic of First-Order Flocking-based Distributed Optimization

To the best of our knowledge, there is until now no attempt to provide a non-asymptotic

probability bound for the distance between iterate and the optimal point, since the works

on (distributed) stochastic gradient descent either provide expectation bounds [167, 168]

or long term asymptotic concentration proof [?]

8.2. Preliminaries

Spectral Graph and Consensus Subspace

N P N denotes the number of agents. We model the information exchanging between

the agents by an undirected graph G “ pV , Eq without self-loop. The set of agents are

represented by the set of vertices V “ rN s and if agent i is able to interact with agent j

then ti, ju P E . The adjacency matrix of G is denoted by A and is defined as the matrix

for which rAsij “ 1 if ti, ju P E and rAsij “ 0 else. The Laplacian L associated to G is

defined as the matrix for which:

rLsij “

$

&

%

ř

krAsik if i “ j

´rAsij, if i ‰ j.

This matrix is known to be symmetric and positive semidefinite and hence its real eigen-

values can be ordered in the non-decreasing way 0 ď λ1pLq ď . . . ď λNpLq. It is known

that λ1pLq “ 0 with the eigenvector 1N whose elements are ones. We assume that the

graph is connected which gives λ2pLq ą 0. Moreover it holds λ2pLq ď N and inequality

occurs in the case that the graph is complete. For a detailed treatment of those aspects,

we refer to standard textbooks e.g. [169].

The space RN b RD denotes simply RND equipped with the scalar product:

xxx,yyy “
1

N

N
ÿ

i“1

@

xpiq,ypiq
D

,

and the induced norm:

|||x||| “ xxx,xyy.

Let be i P rN s. The operation p¨qpiq : RN bRD Ñ D used before is the operation of taking

the i-th D-dimensional vector out of x, explicitly:

xpiq :“ pxqpiq :“ px1`pi´1qD, . . . ,xiDq.

We define the consensus subspace as:

C :“
 

1N b x : x P RD
(

.
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It is easy to see that the family

t1N b ei,Du
D
i“1 ,

constitute an orthonormal basis for C, where ei,D, i P rN s denotes the canonical basis of

RD. Let be x P RD b RN . The barycenter xc of x is defined by the equation:

1N b x
c
“ PCx,

where:

PC :“ 1N1TN b ID{N

denotes the orthogonal projection onto C. xc can explicitly be written as:

xc “

řN
i“1 xpiq
N

.

We define the fluctuation xf between the vector x P RN bRD and its barycenter xc P RD

by:

xf :“ pIRNbRD ´PCqx “ x´ 1N b x
c

Denote ID P RDˆRD the identity matrix. We often consider the ”blown up” Laplacian

L b ID P RNˆN b RDˆD “ RND ˆ RND. This matrix is symmetric and its spectrum

coincides with the spectrum of L. Since the eigenspace corresponds to the zero eigenvalue

is C it holds by the Courant-Fischer formula (see e.g. 4.2.11 Theorem in [170]) that for

every x P CK with |||x||| “ 1:

xxx, pLb IDqxyy ě λ2pLq ą 0. (8.4)

Furthermore since C is the nullspace of L b ID and L b ID is symmetric, it holds by

previous observation that for every x P RN b RD, xxx, pLb INqxyy ě λ2pLq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇxf
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
. We

summarize those facts in the following Lemma:

Lemma 8.1: Consider the mapping Φ : RN b RD Ñ R given by:

Φpxq “
xx, pLb INqxy

2
. (8.5)

It holds:

1. Φ is a bilinear non-negative bounded functional with 2Φpxq ď λNpLq}x}
2.

2. For every z P C and x P RN b RD, xx, pLb INqpx´ zqy “ 2Φpx` zq “ 2Φpxq.

3. For every x P CK, λ2pLq}x}
2 ď 2Φpxq.

Proof: The fact that Φ is bilinear is obvious. The fact that Φ ě 0 follows from the fact

that L b IN is positive semidefinite. For the second property, notice that C “ N pΦq.
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8. Stochastic Dynamic of First-Order Flocking-based Distributed Optimization

Combining with the fact that L is symmetric and therefore also Lb IN , we have:

Φpx` zq

2
“ xpLb INqpx` zq, x` zy “ xpLb INqx, x` zy “ xx, pLb INqpx` zqy

“ xx, pLb INqxy “
Φpxq

2
,

where the The last property follows from (8.4).

Another easy but helpful observation is that for all x P RN b RD and y P RD:

}x´ 1b y}2NbD “ }x
f
}
2
NbD ` }1b x

c
´ 1b y}2NbD (8.6)

since CK Q xfK p1b xc ´ 1b yq P C. Notice that since Φ ě 0 and Φpxq “ Φpx´1N bx
cq

one may see Φ as a functional which measures the distance of a point x P RN bRD to the

consensus subspace.

Stochastic Analysis

In this work we assume throughout that filtered probability space pΩ,F ,F,Pq, with F “
pFtqtě0 a filtration on F , satisfying the usual condition. A stochastic process X on

R`0 ˆΩ is called F-adapted if Xt is Ft-measureable for every t ě 0. It is called continuous

if it is almost surely continuous. It is a martingale if it is integrable (w.r.t. P) and if

ErXs|Fts “Xt (a.s.) for all s ą t.

We denote pBtqtě0 a F-adapted ND-dimensional Brownian motion (see e.g. Definition

4.3 in [171]). The integral w.r.t. the Brownian motion is understood in the Itô’s sense.

Let Y be a vector-valued process. We denote xY yt the covariation process matrix with

rxY ytsi,j “ xYi, Yjyt denoting the quadratic covariation/sharp bracket1 between Yi and Yj.

For detailed treatment on those aspects we refer to e.g. [171,172].

8.3. Model Description

We define:

Vpxq “
N
ÿ

i“1

Vipxpiqq, x P RN
b RD.

If Vi, i P rN s is convex, we have that V is as sum of convex functions also convex. The

problem (8.1) can be written as an unconstrained problem on RN b RD as follows:

min
xPRNbRD

Ṽ pxq :“ min
xPRN

Vpxq ` Φpxq. (8.7)

1The quadratic variation between two scalar processes X and Y is defined as the accumulation of the
infinitesimal covariation between the increments of X and Y . For a formal definition see e.g. pp. 32
in [172]
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The gradient flow corresponding to the problem (8.7) has the dynamic:

9Xptq “ ´∇Ṽ pxtq “ ´∇Vpxtq ´ pLb INqXt.

In this work, we consider more generally the dynamic:

9Xptq “ αt r´∇Vpxtq ´ βtpLb INqXts , (8.8)

If not otherwise stated, we assume the following:

Assumption 8.1: The functions α : R`0 Ñ R`0 and β : R`0 Ñ R`0 are continuously

differentiable, and V has a Lipschitz gradient.

Notice that Cauchy-Lipschitz Theorem asserts in this case that (8.8) has a unique solution.

Now, let be:

σ : R`0 ˆ RN
b RD

ÞÑ RN
b RD

ˆ RN
b RD.

We may give the stochastic version of (8.8) as follows:

dXt “ αt p´∇VpXtqdt` σtpXtqdBtq ` αtβtpLb INqXt. (8.9)

For the sake of simplicity, we assume that the initial point X0 is deterministic. Through-

out, we assume the following:

Assumption 8.2: V has a Lipschitz continuous gradient and σ : R`0 ˆ RN b RD Ñ

RN b RD ˆ RN b RD, pt, xq ÞÑ σtpxq is Lipschitz continuous in x and continuous in t.

Under this condition, it holds (see e.g. Section 2.2 in [171]) that the solution Xt of (8.9)

is a unique continuous F-adapted process fulfilling:

E
„
ż t

0

}Xs}
2ds



ă 8, @t ě 0. (8.10)

Furthermore we define the mapping

Σ “ σ˚σ.

Remark 21: Aside from the fact that it is Gaussian, our noise model is quiet general

since we allow σ to be matrix-valued and therefore also both correlation between the

agents and correlation between the coordinates of each agents. Moreover, the volatility

matrix may in our case depend on the iterate Xt of the agents.
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8. Stochastic Dynamic of First-Order Flocking-based Distributed Optimization

8.4. Analysis of the Stochastic Dynamic

We begin first by estimating the stochastic dynamic of the kinetic energy |||Xt ´ x˚|||
2

where x˚ is the optimizer of V . In doing this we use the notation:

Epx,yq :“ |||x´ y|||2{2.

Lemma 8.2: Suppose that V is strongly convex with parameter KV ą 0. Then for the

solution Xt of (8.9) and for x˚ “ arg minV , it holds:

dEpxt,x˚q ď ´ αt
„

Vpxtq ´ Vpx˚q

N
`KV EpXt,x˚q



dt (8.11)

´ λ2pLqαtβt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Xf

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt (8.12)

` αtxxXt ´ x˚, σtpXtqdBtyy (8.13)

`
α2
t

2N
tr rΣtpXtqs dt, (8.14)

If V is merely convex, then above inequality holds for all x˚ P arg minV XC with KV “ 0.

Proof: Since:

∇yEpy,x˚q “ py ´ x˚q{N and ∇2
yEpy,x˚q “ I{N

we have by Itô formula (see e.g. 3.6 Theorem in [172]):

dEpXt,x˚q “ x∇XtEpXt, x
˚
q, dXty `

1

2
∇2
Xt
EpXt, x

˚
q : d xXyt

“ x∇XtEpXt, x
˚
q, dXty `

1

2

N
ÿ

i“1

∇2
Xpiq,t

}Xpiq,t ´ x
˚
piq}

2

2
: d

@

Xpiq
D

t

“ xxXt ´ x˚, dXtyy `
1

2N
tr pd xXytq

“ ´xxXt ´ x˚, αt r∇VpXtq ` βtpLb INqXtsyydt

` αtxxXt ´ x˚, σpXtqdBtyy `
α2
t

2N
tr pΣpXtqq dt.

Since x˚ P C, we have by Lemma 8.1:

xxXt ´ x˚, pLb INqXtyy ě λ2pLq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Xf

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Moreover since V is strongly convex and x˚ “ arg minV we have:

´xXt ´ x˚,∇VpXtqy ď ´VpXtq ´ Vpx˚q ´
KV
2
}Xt ´ x˚}

2.
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8.4. Analysis of the Stochastic Dynamic

Combining all above observations, we obtain the desired statement.

The term (8.11) corresponds to the drift of the iterate towards the optimum which is due

to gradient flow with respect to the potential V . The term (8.12) corresponds to the drift

of the iterate towards the consensus space which is due to the flocking term. In the case

that the objective is merely convex (8.12) and therefore the minimum is not unique, (8.12)

asserts that the flocking term guides the algorithm to the consensus. The impact of noise

is reflected in the two last terms: The Itô term (8.13) reflects the infinitesimal quadratic

deviation accumulated by noise throughout the time, the term (8.14) which reflects the

accumulation of the instantaneous noise over time.

Now, above Lemma implies a bound on the distance between the function value of the

averaged iterate and the optimum value and the consensus of the averaged iterate of each

agents:

Theorem 8.3: Suppose that V is strongly convex with parameter KV ą 0, and that

C X arg minV ‰ H. Moreover, suppose that:

σ2
˚,t :“ sup

x
tr pΣtpxqq ă 8, @t ě 0. (8.15)

Then for the solution Xt of (8.8) with constant β and for x˚ “ arg minV it holds:

VpX
α

t q ´ Vpx˚q

N
ď
E0px˚q
şt

0
αsds

`

şt

0
α2
sσ

2
˚,sds

2N
şt

0
αsds

`
Mt ´KV

şt

0
αsEpXs,x˚qds

şt

0
αsds

(8.16)

Ẽαt ď
E0px˚q

2βλ2pLq
şt

0
αtdt

`

şt

0
α2
sσ

2
˚,sds

4Nβλ2pLq
şt

0
αsds

`
Mt ´KV

şt

0
αsEpXs,x˚qds

2βλ2pLq
şt

0
αtdt

, (8.17)

where:

Ẽαt :“ EpXα

t ,1N bX
α,c

t q, E0px˚q :“ EpX0,x˚q,

and:

Mt :“

ż t

0

αsxxXs ´ x˚, σspXsqdBsyy

If V is merely convex, then above inequality holds for all x˚ P arg minV XC with KV “ 0.

Proof: Denote:

Et :“ EpXt,x˚q.

Since x˚ P C, we have by Lemma 8.1 Φ ě 0. Thus by Lemma 8.2 and (8.15):

dEt ď ´αt
„

VpXtq ´ Vpx˚q

N
`KV Et



dt`
α2
tσ

2
˚,t

2N
dt` dMt
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8. Stochastic Dynamic of First-Order Flocking-based Distributed Optimization

By integrating, multiplying both sides by 1{
şt

0
αsds, and by noticing that Et ě 0 it yields:

şt

0
αs
pVpXsq´Vpx˚qq

N
ds

şt

0
αsds

ď
EpX0,x˚q
şt

0
αsds

`

şt

0
α2
sσ

2
˚,s

2N
şt

0
αsds

`
Mt

şt

0
αsds

.

Applying Fubini’s Theorem and then Jensen’s inequality to the left side we obtain (8.16).

The proof of (8.17) is similar to before, the starting point is the following observation:

Since x˚ P arg minV it holds VpXtq ě Vpx˚q. Therefore by Lemma 8.2:

dEpXt,x˚q ď ´ αt rKV EpXt,x˚q ` 2λ2pLqβEpXt,1N bX
c
t qs

`
α2
tσ

2
˚,tdt

2N
` dMt.

In order to proceed, we need to handle which is the stochastic term Mt, which is done in

the next two subsections.

Expectation Bound

Theorem 8.4: Suppose that V is convex, and that C X arg minV ‰ H. Moreover, sup-

pose that (8.15) holds. Then for the solution Xt of (8.8), for all x˚ P C X arg min Vpxq,

and for all k P rN s, it holds:

E

«

VpX
α

t q ´minV

N

ff

ď
Ê0

şt

0
αsds

`

şt

0
α2
sσ

2
˚,sds

2N
şt

0
αsds

(8.18)

E
„

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
X
α,f

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2


ď
Ê0

βλ2pLq
şt

0
αtdt

`

şt

0
α2
sσ

2
˚,sds

2Nβλ2pLq
şt

0
αsds

, (8.19)

where Ê0 “ min tE0pxq : x P arg minV X Cu.

Proof: By (8.10) it follows that the Itô integral Mt is a martingale and therefore by the

tower property of the conditional expectation E rMts “ ErM0s “ 0. The final step consist

of taking the expectation over (8.16) and (8.17).

Combining both estimates given above we obtain:

Theorem 8.5: Suppose that the condition in Theorem 8.4 is fulfilled and Moreover, sup-

pose that there exists G ą 0 s.t.:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇Vp1N bX
α

pkq,tq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď G, @t ě 0, k P rN s a.s. (8.20)
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It holds:

Er
řN
l“1 VlpX

α

pkq,tq

N
´min

řN
l“1 Vl
N

s ď
Ê0

şt

0
αsds

`
Gp
?
N ` 1q

a

Ê0
a

2λ2pLqβ
b

şt

0
αsdt

`

şt

0
α2
sσ

2
˚,sds

2N
şt

0
αsds

`
G
?
N`1?
N

a

λ2pLqβ

g

f

f

e

şt

0
α2
sσ

2
˚,sds

şt

0
αsds

, @k P rN s (8.21)

Proof: Therefore by (8.16), we have a bound for ErVpXα

t q´Vpx˚qs. Thus it remains to

estimate ErVp1N bX
α

pkq,tq ´ VpX
α

t qs. To this end, we first compute:

E

«

Vp1N bX
α

pkq,tq ´ VpX
α

t q

N

ff

ď G E
“

}1N bX
α

pkq,t ´X
α

t }NbD
‰

The first inequality follows from the convexity of V and Cauchy-Schwarz inequality and

the requirement (8.20). The last inequality follows by the estimate:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ1N bX
α

pkq,t ´X
α

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď p
?
N ` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
X

α,f

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Combining this with (8.17) together with the martingale property of Mt, Jensen’s inequal-

ity, and the inequality
?
a` b ď

?
a`

?
b, for a, b ą 0, we obtain the desired statement.

Probability bound

In order to give a probability bound, we need first to the following statement:

Lemma 8.6: Suppose that V is smooth and that:

σ̃˚,t :“ sup
x
λmax pΣtpxqq ă 8

Let be β, δ ě 0 and x P RN b RD. With probability at least 1´ expp´βδq, it holds:

ż t

0

αsxxXs ´ x˚, σspXsqdBsyy ´
β

2N

ż t

0

α2
sσ̃

2
˚,s|||Xs ´ z|||

2ds ď δ

Proof: It holds:

d xMyt “
α2
t

N
|||ΣtpXtq rXt ´ zs|||

2dt.

Notice that M and xMy are continuous adapted processes (see Theorem 5.13 in [171]

and 5.3 Definition and 5.8 Theorem in [172]). Therefore for all n P N, τn defined as the

infimum of t ě 0 satisfying |Mt|`xMyt ě n is a stopping time (c.f. Theorem 3.2 in [171]),

i.e. tτn ď tu P Ft for all t ě 0. Moreover we have for every t ě 0, τn Ò t almost surely.
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Now, consider the Itô process:

Y
pnq
t “β

ż t^τn

0

xxαtσ
T
t pXtq rXs ´ zs , dBsyy ´

β2

2
xMyt^τn .

So, Itô formula (see e.g. 3.6 Theorem in [172]) asserts that:

d exppY
pnq
t q “ βY

pnq
t xxṼt^τn , dBt^τnyy.

Consequently since Y pnq and Ṽp¨q^τn is bounded we have from above that exppY pnqq is a

martingale. Therefore by Chebysheff inequality P
´

Y
pnq
t ě βδ

¯

ď expp´βδq. Letting n

goes to infinity, Fatou’s Lemma asserts that with probability at least 1 ´ expp´βδq we

have:
ż t

0

xxαtσ
T
t pXtq rXs ´ zs , dBsyy ´

β

2
xMyt ď δ

Finally, we obtain the desired statement by the elementary inequality:

}ΣpXtqy} ď sup
x
λmaxpΣpxqq}y}

which asserts that:

d xMyt ď
α2
t σ̃

2
˚,t

N
|||Xt ´ z|||

2dt.

Combining above result and Theorem 8.3 it yields:

Theorem 8.7: Suppose that V is strongly convex and that V fulfills (8.20). Suppose that

β is constant. If

KV ´ αtσ̃
2
˚,t ě 0, (8.22)

we have with probability at least :

1´ exp

ˆ

´δN

ż t

0

αsds

˙

it holds for all k P rN s:

1

N

N
ÿ

l“1

VlpX
α

plq,tq ´minV {N ď
E0px˚q
şt

0
αsds

`

şt

0
α2
sσ

2
˚,sds

2N
şt

0
αsds

` δ,

and:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
X

α,f

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
E0px˚q

βλ2pLq
şt

0
αsds

`

şt

0
α2
sσ

2
˚,sds

2Nβλ2pLq
şt

0
αsds

`
δ

βλ2pLq
, (8.23)

Proof: From Lemma 8.6 and (8.22) it holds:

Mt ´KV

ż t

0

αsEpXs,x˚qds ď

ż t

0

αspαsσ̃
2
˚,s ´KV qds` δ ď δ,
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with probability at least:

1´ expp´2Nδ

ż t

0

αsdsq

By combining this observation and Theorem 8.3, we obtain (8.7) and (8.23).

The following result follows from Theorem 8.7 by the similar computations as in the proof

of Theorem 8.5:

Theorem 8.8: Suppose that the condition in Theorem 8.7 and (8.20) is fulfilled. It holds

with probability at least 1´ exp
´

´δ2N
şt

0
αsds

¯

for all k P rN s:

1

N

N
ÿ

l“1

VlpX
α

pkq,tq ´minV {N ď
E0px˚q
şt

0
αsds

`
Gp
?
N ` 1q

a

βλ2pLq

a

E0px˚q
b

şt

0
αsds

`

şt

0
α2
sσ

2
˚,sds

2N
şt

0
αsds

`
G
?
N`1?
N

a

βλ2pLq

g

f

f

e

şt

0
α2
sσ

2
˚,sds

2
şt

0
αsds

` δ

«

Gp
?
N ` 1q

a

βλ2pLq
` δ

ff

8.5. Case Study: Persistent and Vanishing Noise

Suppose each agents has the same time-variant volatility σ : R`0 Ñ R`0 . In case that σ is

constant, the bound in Theorem 8.5 turns to:

Er
řN
l“1 VlpX

α

pkq,tq

N
´min

řN
l“1 Vl
N

s ď
Ê0

şt

0
αsds

`
C
a

Ê0
?

2
b

şt

0
αsds

`
Dσ2

şt

0
α2
sds

2N
şt

0
αsds

`
C
?
Dσ

b

şt

0
α2
sds

b

şt

0
αsds

, (8.24)

where C “ Gp
?
N ` 1q{

a

βλ2pLq. By appropriate choice of β ą 0, this constant can be

made arbitrarily small. In doing that, the connectivity of the network which is reflected

in the quantity λ2pLq provides help. Moreover, the bound increases at worst linearly with

D and if αt “ Op1{tq, we obtain convergence in expectation of order Op1{
a

logptqq. If

the function is strongly convex with KV ě αtσ
2 and if δ ą 0 small enough, we have with

probability 1´Op1{tδNq, that the bound (8.24) holds in probability with additional factor

of order Opδq. In case that the noise is vanishing, one may obtain a better bound. For

instance if Op1{tq and for constant step size, we have the decay in expectation of order

Op1{
?
tq and the corresponding bound hold with additional factor of order Opδq with

high probability 1´Opexpp´δNtqq.
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9. Mesoscopic Stability of the

Friedkin-Johnsen Opinion Dynamics

Abstract: In this chapter we consider the setting of communicating agents, which are

additionally subject to extrinsic influence in form of informational bias, e.g., fake news.

We study the impact of extrinsic influence in the form of informational bias, to the

population’s opinion. Our main aim is to formally show that informational bias results

in the establishment of mesoscopic stability, meaning that the population’s opinion is

cluster-dispersive. Toward this direction, we propose the novel notion of substochastic

complementation, which provides an efficient way to approximate the population’s dy-

namic by cluster dynamics. Motivated by this notion, we propose a novel measure for

cluster-dispersion of opinion dynamic in the face of the informational bias and analyze it

for several limit cases of disturbances by informational bias.

9.1. Introduction

Over the last of several decades, the study of networks has been an indispensable part

of many research disciplines, such as biology, physics, and social sciences. Recently, the

network-based view within the context of multi-agent systems has gained importance in

engineering research due to the emerging complex architectures and interconnectedness

in human-made systems, e.g., in IoT and sensor networks. Other factors which foster the

utilization of network-based view in engineering are the availability of big data, the grow-

ing presence of the internet, and the increasing demand for decentralization of systems.

The latter factor is founded by the fact that a decentralized system offers several potential

advantages over a centralized one, such as the improvement of security of the system, the

reduction of the expense of the necessary communication infrastructure, robustness of the

system concerning individual agents’ failure, and computational superiority in terms of

the speed and the problem size. Also, the research field of signal processing has taken

advantage of network-based perspective giving new insight and fostering the development

of novel tools (see e.g., [173–175], and the references therein).

Opinion Dynamic Model - DeGroot Model One of the central tasks in the study of net-

works is to characterize the opinion dynamic in a network. The basic model of opinion dy-

namic is the so-called DeGroot model [176]. According to the DeGroot model, each agent
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9. Mesoscopic Stability of the Friedkin-Johnsen Opinion Dynamics

updates her opinion by taking a convex combination of neighboring opinions.The central

result in the literature of the DeGroot model is that the opinion dynamic’s outcome is

related to the underlying network statistics. Specifically, the population’s opinion asymp-

totically reaches a consensus equal to the average of the population’s member respective

to the normalized eigenvector corresponding to the leading eigenvalue of the network’s

communication matrix. Thereby, the second leading eigenvalue of the network’s matrix

determines the convergence (see e.g. [176]). Although the DeGroot model is quite simple,

it is widely used: For instance, in the social sciences, empirical studies (e.g., [177–181])

show that the DeGroot model can capture the real-world opinion dynamics. In the engi-

neering literature, the DeGroot model serves as a method (see e.g., [182,183]), also known

as the gossiping algorithm, to coordinate a multi-agent system to a consensus state. Ex-

emplary signal processing applications of gossiping algorithms are distributed estimation,

source localization, and compression. For a more detailed discussion on this aspect, we re-

fer to e.g. [184], wherein also concise discussion on implementation issues is given, such as

the amount of energy consumed in the network for gossiping, effects of quantization, and

noise. In recent years, gossiping algorithms have been extended in several directions. One

such extension is given in [185], presenting a framework for the design and the analysis

of randomized gossip algorithms for average consensus in arbitrary connected networks,

where pairs of nodes are chosen randomly to exchange the data. Further investigations of

such randomized dynamic is given in [186–188]. Another extension worth to be mentioned

is the extension considering agents in the network forming their opinion in the Bayesian

manner [189–191]. Also, the DeGroot model serves serves as the basic of many distributed

consensus algorithms, see e.g., [192–196].

Informational Bias in the Opinion Dynamic – Friedkin-Johnsen Model One of the

drawbacks of the DeGroot model is that it only considers interpersonal influences between

the agents in the form of informational exchange. However, in practice, agents are ad-

ditionally subject to informational biases. An example of such an agent is the stubborn

agent clinging to specific fixed opinions, e.g., her initial opinion, or, more generally: past

opinions. Another example of informational bias is extrinsically given fake news. An

extension of the DeGroot model aligned with the aspects above is the Friedkin-Johnsen

model [197]. This model extends the DeGroot model by adding the possibility that the

agent’s opinion is built by additionally taking the average of the pooled opinions and an-

other specific fixed opinions. This averaging effect tends to dampen the opinion mixing.

Indeed a hint of this effect is the fact that the Friedkin-Johnsen dynamic converges gen-

erally no longer to a consensus. Instead, the limit is dictated by the given informational

bias [197]. The opinion limit can further be characterized by the hitting probabilities of

the canonical random walk on the underlying network and the voltage of the electrical

network induced by the underlying graph (see [198]). Furthermore, the Friedkin-Johnsen

model has an interesting interpretation in term of game theory, i.e., it can be seen as
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the result of a repeated best-response game where the agents/players aiming to minimize

both, the discrepancy with the neighbors’ opinion and the discrepancy with the intrinsic

belief in the form of informational bias (see e.g. [199]).

Problem Formulation In this work, we aim to give a contribution to the answer to the

following general question:

Question 1: How do the informational biases effects the opinion dynamic of a commu-

nicating population of agents?

Our particular concern is on the inter-agent communication dampening effect of informa-

tional biases preventing the mixing of agents’ opinions and, consequently, the diversity of

the population’s opinion. Our emphasis is on answering the following question:

Question 2: How can we quantify the impact of informational bias and communication

structure on the diversity of the opinion dynamic?

In answering this question, we choose the path of finding an effective method to un-

couple the opinion dynamic into smaller cluster dynamics, each running parallelly and

independently. In this direction, the problem we aim to solve is:

Question 3: How to approximate the opinion dynamic of the whole population by in-

tracluster opinion dynamic?

By providing such an approximation, we can provide the answer to Question 2 by defining

the approximation error as a measure of the inter-cluster diversity of the populations’

opinion.

Furthermore, such an approximation would provide another advantage; i.e., it allows

one to ease the handle tasks with large scale networks, which is a typical structure of

modern applications since working with the whole network is in genral computationally

intractable. An example of such tasks is predicting the outcome of Friedkin-Johnsen

opinion dynamic, requiring, if done with the whole large-scale network, the inverse of a

large matrix. Another example of such tasks is the placement of stubborn agents in order,

e.g., to determine the opinion of the networked population, or to ensure certain properties

such as polarization. This problem arises not only in social sciences but also in engineering

, e.g., within the context of the containment problem in mobile networks. [200]. Also, with

such an approximation, analysis related to the statistics of the networks would be relieved.

Contributions In this work we introduce the notion of the substochastic complementa-

tion of a matrix which is a generalization of the notion of the so-called stochastic comple-

mentation introduced in [201]. This allows us to provide an optimal approximation of the

opinion dynamic of informationally biased by intracluster opinion dynamic. Based on the

substochastic complementation, we provide a measure for clusterness of the opinion dy-

namic due to both the clusterness of the communication structure and the informational
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bias of the agents’ opinion. As our final result, we provide an asymptotic analysis of the

degree of clusterness of the opinion of certain population’s cluster

Relation to Prior Works The notion of the substochastic complementation of a stochas-

tic matrix is generalization of the notion of the stochastic complementation introduced

in [201]. The aforementioned work concerns with the problem of uncoupling an irreducible

Markov chain into several smaller independent chains. Moreover, the notion of stochastic

complementation allows a unified, clear, and simple description of the Simon-Ando theory

for nearly uncoupled systems developed in the seminal work [202].

9.2. Model description

9.2.1. Basic Notations and Notions

Some computations made in this work are based on the following well-known block matrix

inversion formula:

«

B11 B12

B21 B22

ff´1

“

«

B̃´1 ´B̃´1B12B
´1
22

´B´1
22 B21B̃

´1 B´1
22 `B´1

22 B21B̃
´1B12B

´1
22

ff

,

where:

B̃ :“ B11 ´B12B
´1
22 B21,

and B11, B12, B21, and B22 are matrices such that the expressions given above make

sense. In this work, we also make use the so-called Woodbury formula which is:

pA1 `A2A3A4q
´1
“ A´1

1 ´A´1
1 A2pA

´1
3 `A4A

´1
1 A2q

´1A4A
´1
1 ,

for matrices A1,A2,A3,A4 for which above expressions make sense. Let A P RMˆN and

I1 Ď rM s and I1 Ď rN s. We denote the matrix resulting by simultaneously eliminating

the row with indices I1 and the column with indices I2 by AI1I2 . Suppose that M “ N

and I1 “ I2 “ I Ď rN s. We denote AI1I2 simply by AI

Let A P RD1ˆD2 be a non-negative matrix. We say A (row-)stochastic if it holds

A1D2 “ 1D1 . If A1D2 ď 1D1 , then we say that A is substochastic. In case that there

exists an entry of the substochastic matrix A1D2 strictly smaller than 1, then A is called

a proper substochastic matrix.

Let A P RDˆD. We denote the spectral radius of A by ρpAq. We say A is Schur-stable

if the absolute value of all its eigenvalues is smaller than 1 or equivalently ρpAq ă 1. A

is said to be irreducible if for any i, j there exists m P N s.t. rAmsij ą 0

In this chapter, we often work with a directed graph, which is defined as the pair

G “ pV , Eq, where V is the set of nodes and E Ď V ˆ V is the set of edges. A G is said

to be strongly connected if there is a path from each vertex in the graph to every other
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vertex. To any matrix A P RNˆN with non-negative entries, we can associate a graph

GrAs “ prN s, ErAsq by setting pi, jq P ErAs if rAsij ą 0. We say The matrix A is said to

be adapted to graph G if GrAs Ď G. Let be i P rN s. We denote the set of neighbors of i

by:

N piq :“ tj P V : pi, jq P Eu .

The concept of irreducibility can also be related to the concept of connectedness of a

graph: A matrix A is irreducible if and only if GrAs is strongly connected.

9.2.2. Opinion Model: DeGroot Model

Let be N P N. We consider in this work a finite set of communicating agents rN s “

t1, . . . , Nu. The basic model model for opinion spreading in a network is the so-called

DeGroot opinion formation model. According to DeGroot model, the opinion of an agent

at each time step is formed by taking the average of her neighbors’ opinions. Formally,

the DeGroot model considers the opinion dynamic specified as follows:

Xipkq “
N
ÿ

j“1

aijXjpk ´ 1q, (9.1)

where Xjpkq denotes the opinion of agent j P rN s at time k P N0, and aij P Rě0 represent

the thrust agent i puts in agent j. To ensure the averaging aspect one assumes that:

ÿ

j

aij “ 1. (9.2)

In order to express (9.1) in a compact way, one can define the so-called trust/communication

matrix A P RNˆN with:

rAsij “ aij, @i, j P rN s.

This gives the following compact alternative formulation of (9.1):

Xpkq “ AXpk ´ 1q,

where Xpkq denotes the vector containing the opinion of all agents at time k. Align with

the assumption (9.2), we require that the trust matrix A is a stochastic matrix.

The assumption that A is a stochastic matrix relates the study of DeGroot opinion

dynamic to the study of markov chains and gives several interesting insight into the

mixing process of the opinions of the communicating agents. One of the central result

toward this direction is that under certain conditions on the trust matrix, the opinion

of the agents coincides and equal to the average of the agents’ initial opinion weighted

by the mode of A corresponding to the largest eigenvalue of A. We provide the specific

statement in the following (see also [176]):
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Proposition 9.1: Suppose that GrAs is strongly connected, then the dynamic (9.3) sat-

isfies:

lim
nÑ8

Xipnq “ β1D, for an β P R,

if and only if GrAs is aperiodic. Moreover:

β “ xπ,Xp0qy,

where π P ∆prN sq satisfies πTA “ πT.

9.2.3. Opinion Model: Friedkin-Johnson Model

A straightforward way to extend the DeGroot opinion model is by introducing opinion

bias in the opinions’ update as follows:

Xipkq “ γi

N
ÿ

j“1

aijXjpk ´ 1q ` λiξipkq, (9.3)

where ξipkq P R, γi P r0, 1s, and λi P r0, 1s. ξpkq models the opinion bias at time k

preventing the the opinion mixing between the agents. The constant γi specify to what

extent agent i is susceptible to her neighbors’ opinion, and the constant λi to what extent

the agent i clings to the informational bias. By this reason, we refer γi as the susceptibility

constant and λi as the bias constant. By averaging reason, we set:

λi “ 1´ γi.

An agent having the susceptability constant equal to zero, or equivalently, the bias con-

stant equal to one, is insensitive against the opinion of other agent. We refer to this sort

of agent as stubborn agent.

An example of informational bias is the initial opinion of the agent : Setting ξipkq “

Xip0q, we model agent i as an individual attaching to her initial opinion. This corresponds

to a stubborn agent unwilling to accept to a certain degree new information. Also, ξipkq

can stand for extrinsic information, such as fake news, or also be set as ξipkq “Xipk´1q,

in order to model the agent i as a stubborn agent clinging to the previous opinion.

Using the notation of the trust matrix A specified in the previous subsection and

defining the diagonal matrix Γ P RNˆN having the susceptibility constants as entries:

Γ “ diagpγ1, . . . , γNq,

and the diagonal matrix Λ P RNˆN having the bias constants as entries:

Λ “ diagpλ1, . . . , λNq,
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we can write the Friedkin-Johnsen dynamic (9.3) more compactly as:

Xpkq “ ΓAXpk ´ 1q `Λξpkq “ ΓAXpk ´ 1q ` pI´ Γqξpkq. (9.4)

Aiming to make the essential factors determining the agents’ opinion transparent, we can

iterate (9.4) and obtain:

Xpkq “ pΓAqkXp0q `
k
ÿ

l“1

pΓAqk´lpIN ´ Γqξplq. (9.5)

So, according to above equation, it follows that the opinion of the agents depends on the

initial opinion and the accumulation of the informational biases.

To further discuss the iterate (9.5) such as determining the asymptotic limit behavious

of (9.5), it is advantageous to consider a more general class of dynamics than (9.5). For

this sake, we define the class of affine dynamic by introducing the mapping:

St : RNˆN
ě0 ˆ RN

ˆ RN
Ñ RN0 ,

with StrB, u, x0sp0q “ x0, and:

StrB,u,x0spk ` 1q “ B StrB,u,x0spkq ` u. (9.6)

where B P RNˆN
ě0 . We refer (9.6) as the affine dynamic induced by the Matrix B and the

vector u with initial state x0. Now by iterating (9.6), it holds:

StrB,u,x0spkq “ Bkx0 `

k
ÿ

l“1

Bk´lu “ Bkx0 `

k´1
ÿ

l“0

Blu. (9.7)

This identity gives rise to the following characterization of the asymptotic limit of (9.6):

Proposition 9.2: Suppose that B is schur-stable. Then for any u and x0, it holds:

lim
kÑ8

StrB, u, x0spkq “ pI´Bq´1u

Proof: The fact that B is Schur-stable asserts that

ρpBq ă 1. (9.8)

By the reason that the spectral radius is submultiplicative, we have ρpBkq ď ρpBqk.

Combining both observations, we have that

pBqk Ñ 0 as k Ñ 8. (9.9)
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Now, (9.8) gives that pI´Bq is invertible, and therefore we have:

k
ÿ

l“1

Bk´l
“

k´1
ÿ

l“0

Bk kÑ8
ÝÝÝÑ pI´Bq´1. (9.10)

Applying (9.9) and (9.10) into the formula (9.7), we have as desired:

lim
kÑ8

StrB, u, x0spkq “
´

lim
kÑ8

Bkx0

¯

`

˜

lim
kÑ8

k
ÿ

l“1

Bk´lu

¸

“ pI´Bq´1u

Assuming that the weighted trust matrix ΓA is Schur-stable, we can provide by means

of the above proposition the asymptotic limit of the Friedkin-Johnsen dynamic as follows:

lim
kÑ8

Xpkq “ pI´ ΓAq´1pI´ Γqξ. (9.11)

One observation from above equation is that with increasing time, the influence of the ini-

tial opinion to the population’s opinion receeds, while the informational bias becomes the

determining factor of the population’s opinion. We can even specify the latter observation

by the following simple Lemma:

Lemma 9.3: Let B1 and B2 be square matrices with non-negative entries and suppose

that B1B2 is Schur-stable. Then:

1. If B2 is stochastic, then pI´B1B2q
´1pI´B1q is stochastic

2. If B2 is (resp. proper) substochastic, then pI ´ B1B2q
´1pI ´ B1q is (resp. proper)

substochastic.

Proof: We only show that B2 is substochastic implies that pI ´ B1B2q
´1pI ´ B1q is

substochastic. The remaining statements follows by similar arguments. Since B2 is sub-

stochastic and B1 is non-negative, we have B1B21 ď B11, and thus:

pI´B1B2q1 ě pI´B1q1.

Since pI´B1B2q
´1 is non-negative, it follows by multiplying both sides of above inequality

by this term:

1 ě pI´B1B2q
´1
pI´B1q1.

Thus the desired statement follows.

The fact that pI ´ ΓAq´1pI ´ Γq is stochastic, which is a consequence of above lemma,

asserts that the opinions of the agents each approach the average of the informational

biases ξ.
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9.2.4. On Schur-Stability of Friedkin-Johnsen Dynamics

One assumption needed in order to analyze the Friedkin-Johnsen Dynamic for large times

is the Schur-stability of the matrix ΓA, ensuring the limit (9.11). The aim of this subsec-

tion is to discuss some properties of Γ and A leading to the truth of the aforementioned

desired assumption.

One property which ensures the schur-stability of a matrix is the following:

Lemma 9.4: Let B be a N ˆN irreducible sub-stochastic matrix having at least one row

whose sum is strictly smaller than one. Then it is Schur-stable.

Proof: By the Perron-Frobenius Theorem for irreducible non-negative matrix, we can

find a strictly positive vector v summing to 1 satisfying:

vB “ ρpBqv.

Now let us define the row vector ε having entries:

εi “ p1´
ÿ

j

rBsijq{N ě 0,

and correspondingly the stochastic matrix:

B̂ “ B` ε1T.

Thus we have:

ρpBq “ ρpBq}v} “ }ρpBqv}1 “ }vB}1 “
ÿ

j

ÿ

i

virBsij “
ÿ

j

ÿ

i

viprBsij ` εi ´ εiq

“
ÿ

j

ÿ

i

prBsij ` εiqvi ´
ÿ

j

ÿ

i

εivi “ }B̂v}1 ´Nxv, εy “ 1´Nxv, εy ă 1,

where the last inequality follows from the fact that B has at least one row having sum

strictly smaller than one and therefore εi ą 0 for an i, and the fact that v have strictly

positive entries.

From above Lemma, we have that the matrix ΓA specifying the communication structure

is Schur-stable if it is irreducible and has a row with the sum strictly smaller than 1.

Intuitively, the latter condition means that at least an agent is subject to informational

bias, i.e. λi ą 0 or equivalently γi ă 1 for an i P rN s. The latter condition can be

assumed to be satisfied, since otherwise, there is no-need to work with the Friedkin-

Johnsen dynamic.

Now, in case that the agents are all not fully biased, or equivalently the agents still

communicate with each other, the irreducibility of ΓA is fully characterized by the irre-

ducibility of the communication matrix A. Specifically, we have the following statement:
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Lemma 9.5: Suppose that γi ą 0 for all i P rN s. Then ΓA is irreducible if and only if

A is irreducible.

γi ą 0, @i P rN s.

Proof: If Γ ą 0 then GpΓAq “ GpAq. So GpΓAq is strongly connected if and only if

GpAq is strongly connected. Since a matrix is irreducible if and only if its induced graph

is strongly connected, we have the desired result

So from above Lemma we have in particular that if all agents communicate with each

other and at least one agent is subject to informational bias, then ΓA is Schur-stable.

Now, suppose that not necessarily Γ ą 0. We have from Lemma 9.4 that ΓA is not

irreducible. Therefore, 9.4 is not applicable to provide a further sufficient condition on A

leading to the Schur-stability of ΓA. So the question is how to ensure the latter property

in face of the possibility of the existence of a stubborn agent. Toward this direction, we

have the following statement:

Lemma 9.6: Suppose that there exists i P rN s s.t. γi “ 0, and denote set of indices

i P rN s for which γi “ 0 by S. Then if ASc is irreducible and if:

there exists i P Sc and j P S s.t.: rAsij ą 0, (9.12)

then ΓA is Schur-stable.

Proof: By simultaneous row and column permutations we can transform ΓA into the

following matrix block upper triangular matrix:

B :“

«

ΓScASc B̃

0 0

ff

,

where B̃ is a certain matrix. Consequently it holds: ρpΓAq “ ρpΓScAScq. Now, by (9.12),

we have that at least a row of ΓScASc has the sum strictly smaller than 1. Consequently

we have by 9.4, ρpΓIcAIcq ă 1, as desired.

So, above Lemma asserts that in case stubborn agents exist in the system, as long as

the partial communication matrix of the non-stubborn agent is irreducible, and as long

as there is a non-stubborn agent influenced by the opinion of a stubborn agent, then the

corresponding Friedkin-Johnsen dynamic has a limit (9.11).

From previous discussions, we see that irreducibility might be a quiet cumbersome

assumption for the Schur-stability of ΓA. In the following we provide a weaker condition

for the ensurance of Schur-stability of ΓA known in the literature:

Lemma 9.7: Let B be a proper substochastic matrix. Suppose that any node in GrBs
has a path to a deficiency node i in GrBs, i.e. a node i satisfying

ř

jrBsij ă 1. Then B

is Schur-stable.
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Proof: The stated condition asserts that there exists k0 P N s.t. the rows of Bk0 is

strictly smaller then 1. Consequently for any n P N and r P N, we have:

Bk0`r1 “ Bk0Br1 ď Bk01 ă 1.

so for large enough n, we have Bn1 and consequently }Bn}
1{n
8 ă 1. Finally Gelfand’s

formula asserts that:

ρpBq “ lim
nÑ8

}Bn
}
1{n
8 ă 1,

as desired.

So, from above Lemma, it follows that in order that the Friedkin-Johnsen dynamic is

stable, it is enough all agents receive (indirectly and irrespective of finite time) the opinion

of an agent subject to informational bias.

Remark 22: Clearly, above Lemma implies Lemma 9.6 and Lemma 9.5. The reason we

state both lemmas earlier is since the literature often make use of irreducibility assump-

tion.

9.2.5. Applications of Friedkin-Johnsen Dynamics

In order to give a motivation for working with (9.6) we provide some applications of some

affine dynamics in the following:

Example 18 (PageRank Computation): In this application, the object of the study

is a network consisting of web pages. We represent this network by graph, where the set

of vertices correspond to the web pages and the edges correspond the links between the

pages.Specifically, for two web pages pi, jq P E , we set pi, jq P E , if page i has an outgoing

link to page j, or equivalently, if page j has an incoming link from page i. The aim of of

the PageRank algorithm is to provide a measure of relevance of each web page i P C by

assigning each page a value x˚i P r0, 1s, define as the solution of the equations:

Mx˚i “ x
˚
i and

n
ÿ

i“1

xi “ 1,

where:

M “ p1´ τqA`
τ

|V |
11T,

with τ P p0, 1q is a chosen constant, and A is defined as:

Aij :“

$

&

%

1
|N pjq| if k P N piq

0 otherwise
.

One can under certain condition show that the PageRank vector can be computed by the
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distributed iterate:

xpn` 1q “ Mxpnq “ p1´ τqAxpnq `
τ

|V |
11Txpnq.

Provided that xp0q is chosen s.t. 1Txp0q “ 1, it holds:

xpn` 1q “ p1´ τqAxpnq `
τ

|V |
1.

Above dynamic is of the form (9.6) with B “ p1´ τqA and u “ pτ{ |V |q1.

Example 19 (Randomized opinion model with informational bias): At time k “

0, each agent i P rN s starts with an initial opinion θip0q. For time k:

θipkq “

$

&

%

ř

j aijpkqYjpkq, w.p. γi

θip0q, w.p. 1´ γi
,

where Yjpkq, j, k, independent RVs with ErYjpkq|θjpk ´ 1qs “ θjpk ´ 1q. It holds:

Erθipkqs “ γi
ÿ

j

ai,jpkqErθjpk ´ 1qs ` p1´ γiqErθip0qs.

So the dynamic of the expectation of the agents’ opinion coincide with the Johnsen-

Friedkin model (9.3)

9.2.6. Cluster Structure

In this work, we are interested in the opinion dynamic of clustered agents. Specifically, we

consider the case where the population of agents can be segregated into M P N clusters

rM s, where each cluster i contains Ki P N agents with:

M
ÿ

i“1

Ki “ N.

By eventually reindexing the agents, we may write the given trust matrix as:

A “

»

—

—

–

A11 ¨ ¨ ¨ A1M

...
. . .

...

AM1 ¨ ¨ ¨ AMM

fi

ffi

ffi

fl

,

where Aii P RKiˆKi denotes the intra-cluster communication matrix within the cluster i

and Aij P RKiˆKj denotes the matrix which specifies how cluster j influenced cluster i.

In the case where the inter-cluster communications are negligible, i.e., where the entries

of Aij is small, we speak of clustered structure. Now given a cluster i P rM s. We denote
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the set of agents not in cluster i by rzis.

9.3. Uncoupling the opinion’s Dynamic

The aim of this section is to introduce the notion of substochastic complementation which

allows one to effectively uncouple the Friedkin-Johnsen dynamic in subdynamics each run

independently in the corresponding clusters. In order to make our approach transparent

we first recall the notion of stochastic complementation developed in the seminal work

[201]

9.3.1. Stochastic Complementation

In case that the population of agents possess a clustered structure, We define the stochastic

complementation of A by:

C :“

»

—

—

—

—

–

C1 0 ¨ ¨ ¨ 0

0 C2 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ CM

fi

ffi

ffi

ffi

ffi

fl

,

where:

Ci “ Aii `Ai:pI´Aziq
´1A:i,

with:

Ai: :“ rAi,1 ¨ ¨ ¨Ai,pi´1q Ai,pi`1q ¨ ¨ ¨Ai,M s P RKiˆN´Ki ,

and:

AT
:i :“ rAT

1,i ¨ ¨ ¨A
T
pi´1q,i AT

pi`1q,i ¨ ¨ ¨A
T
M,is P RKiˆpN´Kiq,

and Azi P RpN´KiqˆpN´Kiq is the matrix obtained by deleting the i-th row and column of

blocks. So above matrix describes the case where the opinion of an agent in clusters i exit

the latter, subsequently staying (for possibly infinite times), and going back to cluster i.

Several properties of of A transfer to its stochastic complementation (see [201]):

Lemma 9.8: Suppose that A is an irreducible stochastic matrix. Then C is well-defined.

Moreover, for any i, Ci is an irreducible stochastic matrix

It holds:

Ai:pI´Aziq
´1A:i “

8
ÿ

k“0

Ai:A
k
ziAi:.

The following statement is known:

Theorem 9.9: Let A P Rnˆn be an irreducible stochastic matrix partitioned into M2
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block matrices each of size K ˆK. It holds:

}A´C}8 ď 2 max
i
}Ai:}8

Since the original proof in [201] contains a slight error, we provide the proof of above

statement in the following:

Proof (Proof of Theorem 9.9): We compute:

}A´C}8 “ max
i
} rAi,1,Ai,2, . . . ,Aii ´Ci, . . . ,Ai,M s }8

“ max
i
}Ai,11K1 ` ¨ ¨ ¨ ` |Aii ´Ci|1Ki ` ¨ ¨ ¨ `Ai,M1KM }8

“ max
i
}
ÿ

j‰i

Aij1Kj ` |Aii ´Ci|1Ki}8

“ max
i
}Ai:1N´Ki ` |Aii ´Ci|1Ki}8,

where for a matrix B, |B| denotes the matrix whose entries are the absolute value of the

entries of B. Now we aim to compute:

|Aii ´Ci|1Ki “ Ai:pIN´Ki ´Aziq
´1A:i1Ki , (9.13)

where the equality follows from the fact that the entries of Ai:pIN´K ´ Aziq
´1A:i are

non-negative. To this end, observe that since A is stochastic:

Azi1N´K `A:i1K “ 1N´K .

Consequently:

A:i1Ki “ pIN´Ki ´Aziq1N´Ki ,

and thus:

pIN´Ki ´Aziq
´1A:i1Ki “ 1N´Ki .

Setting this into (9.13):

pAii ´Ciq1Ki “ ´Ai:1N´Ki .

Finally, we have as desired:

}A´C}8 “ max
i
}2Ai:1N´K}8 “ 2 max

i
}Ai:}8

Above bound leads to the following result:

Theorem 9.10: We have:

}An
´Cn

}8 ď nδ, where δ :“ 2 max
i
}Ai:}8,
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and consequently:

} StrA, 0, x0spkq ´ StrC, 0, x0spkq}8 ď nδ}Xp0q}8

Above Theorem gives a guarantee that for small times, the undisturbed opinion dynamic,

behaves as if the clusters were isolated, since it is similar to the benchmark dynamic

StrC, 0, x0s containing cluster-individual dynamics. Moreover, above Theorem supports

the intuition that in small times the opinion of each individual propagates first within

its cluster before reaching the whole network. However, one cannot expect that the

clusterness of the population’s opinion is true for large times, since otherwise the opinion

mixing property in asymptotic regime (Proposition 9.1) would be violated.

9.3.2. Substochastic Complementation

Now in case that Γ ‰ I, we not only have the communication matrix A as a factor

determining the opinion dynamic, but rather a mixture of the communication matrix

A and disturbance sequences ξpkq. So analyzing the corresponding opinion dynamic by

means of the stochastic complementation seems to be inappropriate since it only considers

the underlying structure of the network specified by A, while the extrinsic influence/bias,

specified by Γ remains ignored.

In order to overcome this drawback, we introduce the notion of substochastic comple-

mentation. For this sake, let us first define:

Γzi “ diagpΓ1, . . . ,Γi´1,Γi`1, . . . ,ΓMq P RpM´KiqˆpM´Kiqq,

We define the substochastic complementation of the tuple pA,Γq (or shorter: ΓA) w.r.t.

cluster i as:

C̃i “ ΓiAii ` ΓiAi:pI´ ΓziAziq
´1ΓziA:i.

In order that C̃i is well defined, we need to ensure that the Neumann series pI´ΓziAziq
´1

is well-defined. The latter holds if and only if ΓziAzi is Schur-stable. It is well-known

that the Schur-stability of ΓziAzi is ensured if ΓA is an irreducible proper substochastic

matrix. This is a consequence of the following Lemma (see e.g. [203]):

Lemma 9.11: Let B be a non-negative matrix. For any principle submatrix B̃ of B, we

have ρpB̃q ď ρpB̃q. If in addition B is irreducible and B̃ ‰ B, then ρpB̃q ă ρpB̃q

We can emphasize the cluster structure induced by the substochastic complementation
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by defining the block diagonal matrix:

C̃ :“

»

—

—

—

—

–

C̃1 0 ¨ ¨ ¨ 0

0 C̃2 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ C̃M

fi

ffi

ffi

ffi

ffi

fl

,

Several properties of ΓA transfer to its substochastic complementation:

Proposition 9.12: We have:

1. C̃i is substochastic

2. If ΓA is irreducible, then C̃i is irreducible

3. If there exists j P Ii s.t. γj “ 0, then C̃i is reducible

In order to show above properties, we need the following preliminary result:

Lemma 9.13: It holds:

rI´ ΓziAzis
´1ΓziA:i1 “ 1` rI´ ΓziAzis

´1
rΓzi ´ Is1

Proof: We have since A is stochastic:

ΓziA:i1` ΓziAzi1 “ Γzi1 “ 1` pΓzi ´ Iq1,

and thus:

ΓziA:i1 “ ´ΓziAzi1` 1` pΓzi ´ Iq1 “ pI´ ΓziAziq1` pΓzi ´ Iq1.

Multiplying both sides of the above identity by pI ´ ΓziAziq
´1, we obtain the desired

statement.

Now, we are ready to provide the proof of Proposition 9.12:

Proof (Proof of Proposition 9.12): We first show that C̃i is substochastic. We

have:

C̃i1 “ ΓipAii `Ai:pI´ ΓziAziq
´1ΓziA:iq1.

Clearly Aii1 ď 1. Moreover by Lemma 9.13, it follows:

Ai:pI´ ΓziAziq
´1ΓziA:i1 “ Ai:pI´ pI´ ΓziAziq

´1
pI´ Γiqq1 ď A:i1,

where the inequality follows from the fact that pI ´ ΓziAziq
´1pI ´ Γiq is non-negative.
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Setting both estimates into (58), we obtain:

C̃i1 ď ΓipAii1`Ai:1q “ Γi, (9.14)

where the last equality follows from stochasticity of A. Since Γi1 ď 1, we obtain the

desired fact that C̃i is substochastic.

Now we want to show that ΓA is irreducible implies that C̃i is irreducible. Toward

this end, let j, k P Ii, where Ii is the index set of agents in cluster i. We want to show

that rC̃m
i sjk ą 0 for an m P N. Since ΓA is irreducible, we know that there exists a path

from j to k in GpΓAq. First, suppose that there is a path from j to k in GpΓiAiiq, then

it follows that:

rΓiAiis
m
jk ą 0,

for an m P N. Consequently:

rC̃m
i sjk ě rpΓiAiiq

m
sjk ą 0.

Now suppose that there is no path from j to k in GpΓiAiiq. Irreducibility of A asserts

that there must be a path going through Ici . Specifically, we have a path:

j Ñ j
p1q
1 Ñ ¨ ¨ ¨ Ñ jp1qp1 Ñ q

p1q
1 Ñ ¨ ¨ ¨ Ñ qp1qr1 Ñ j

p2q
1 Ñ ¨ ¨ ¨ Ñ jp2qp2 Ñ q

p2q
1 Ñ ¨ ¨ ¨ Ñ qp2qr2

Ñ ¨ ¨ ¨ Ñ j
psq
1 Ñ ¨ ¨ ¨ Ñ jpsqps Ñ k,

where s P N, pj
p1q
b qbPrp1s, . . . , pj

psq
b qbPrpss are in Ii, and pq

p1q
b qbPrr1s, . . . , pq

ps´1q
b qbPrrs´1s are in

Ici . Denote B “ ΓA. This asserts that:

rBp1´1
ii Bi:B

r1´1
zi B:iB

p2´1
ii Bi:B

r2´1
zi B:i ¨ ¨ ¨B

ps´1
ii sjk ą 0.

Noticing that pI´Bziq
´1 “

ř8

h“0 Bh
zi, we have that:

Bp1´1
ii Bi:B

r1´1
zi B:iB

p2´1
ii Bi:B

r2´1
zi B:i ¨ ¨ ¨B

ps´1
ii

is a summand in C̃m
i for a certain m P N. Consequently, we have as desired:

rC̃m
i sjk ě rB

p1´1
ii Bi:B

r1´1
zi B:iB

p2´1
ii Bi:B

r2´1
zi B:i ¨ ¨ ¨B

ps´1
ii sjk ą 0.

In order to show the last statement, notice that C̃i “ ΓiB̃, for a matrix B. Therefore,

if there exists j P Ii s.t. γj “ 0, then it follows that the j-th row of C̃i is zero yielding

the desired statement.

We can provide an interpretation of the substochastic complement by means of the

following notion:

Definition 9.1 (Schur Complement): Suppose that B11, B12, B21, B22 are pˆp,pˆ
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q, q ˆ p, and q ˆ q matrices, and that B22 is invertible. Define:

B “

«

B11 B12

B21 B22

ff

.

Then the Schur complement of the block B22 in the matrix B is defined as the matrix:

B{B22 :“ B11 ´B12B
´1
22 B21

In order to relate the notion of the substochastic complementation with the notion of

Schur complement, we first define QiØ1 as the permutation matrix interchanging from

left the row of a matrix (resp. from right the column). It holds:

QiØ1ΓAQiØ1 “

«

ΓiAii ΓiAi:

ΓziA:i ΓziAzi

ff

.

Now, since:

I´QiØ1ΓAQiØ1 “

«

I´ ΓiAii ´Ai:

´A:i I´ ΓziAzi

ff

,

we have:

pI´C̃iq “ I´ΓiAii´ΓiAi:pI´ΓziAziq
´1ΓziA:i “ pI´QiØ1ΓAQiØ1q{pI´ΓziAziq. (9.15)

Therefore we have (up to a permutation):

pI´Substochastic Complement of pΓ,Aq q “ Schur Complement of I´ ΓziAzi in I´ ΓA.

This observation will be important for our later approaches.

9.4. Bounds for the Discrepancy of the Matrix

Approximation

In this section, we derive measures which quantify the error of the approximation of the

Friedkin-Johnsen dynamic by the dynamic induced by the substochastic complementation

and thus also the clusterness of the opinion dynamic. Throughout the remaining of this

work, we assume the following:

Assumption 9.1: ΓA is Schur-stable.

As we already discuss, this implies that the substochastic complementation exists and

also that the Friedkin-Johnsen dynamic has a limit. The latter is important for our

investigations of the behaviour of the Friedkin-Johnsen dynamic in large times done in

the end of this section.
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9.4.1. One Shot Bound

At first we aim to derive the following bound for the error of the approximation of the

weighted communication matrix by means of its stochastic complementation. Toward this

direction, notice first that by the block structure of C̃ and the definition of the infinite

norm of a matrix, we have:

}C̃´ ΓA}8 “ max
iPrMs

}

ˇ

ˇ

ˇ
C̃i ´ ΓiAii

ˇ

ˇ

ˇ
1` ΓiAi:1}8.

Let now i P rM s be arbitrary. We have:

ˇ

ˇ

ˇ
C̃i ´ ΓiAii

ˇ

ˇ

ˇ
“ ΓiAi:pI´ ΓziAziq

´1ΓziA:i,

and consequently:

}C̃´ ΓA}8 “ max
iPrMs

}ΓiAi:1` ΓiAi:pI´ ΓziAziq
´1ΓziA:i1}8. (9.16)

From this identity, we can induce a bound for }C̃n´ΓAn}. The main ingredient is the

following lemma:

Lemma 9.14: Given two sequences of D ˆ D real matrices pBpnqqnPN and pB̃pnqqnPN.

For any k P N, it holds:

Bp1 : kq ´ B̃p1 : kq “
k
ÿ

i“1

B̃pi` 1 : kqrBpiq ´ B̃piqsBp1 : i´ 1q, (9.17)

where for a sequence of D ˆD matrices pApnqqnPN, we denote:

Apk : lq “ ApkqApk ` 1q ¨ ¨ ¨Aplq, k ď l

Proof: Note that for k “ 1, the statement is true. So suppose that it is true for a k P N.

We have induction assumption:

k`1
ÿ

i“1

B̃pi` 1 : k ` 1qrBpiq ´ B̃piqsBp1 : i´ 1q

“ rBpk ` 1q ´ B̃pk ` 1qsBp1 : kq ` B̃pk ` 1q
k
ÿ

i“1

B̃pi` 1 : kqrBpiq ´ B̃piqsBp1 : i´ 1q

“ rBpk ` 1q ´ B̃pk ` 1qsBp1 : kq ` B̃pk ` 1qrBp1 : kq ´ B̃p1 : kqs

“ Bp1 : k ` 1q ´ B̃pk ` 1qBp1 : kq ` B̃pk ` 1qBp1 : kq ´ B̃p1 : k ` 1q

“ Bp1 : k ` 1q ´ B̃p1 : k ` 1q,

as desired.
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As a consequence of above Lemma, we have:

}C̃n
´ pΓAqn}8 “ }

n
ÿ

k“1

C̃n´k`1
pC̃´ ΓAqpΓAqk´1}8

ď

n
ÿ

k“1

}C̃n´k`1
}8}C̃´ ΓA}8}pΓAqk´1}8

ď

n
ÿ

k“1

}C̃´ ΓA}8 “ n}C̃´ ΓA}8.

(9.18)

The first inequality in above computation follows from the triangle inequality, the second

from the fact that ΓA and C̃ are substochastic.

Having now an estimate for }C̃n ´ pΓAqn}8 by (9.16), we can obtain the same for the

error of the cluster approximation of the Friedkin-Johnsen dynamic:

} StrΓA,Λξ, x0spnq ´ StrC̃,Λξ, x0spnq}8 “ }rpΓAqn ´ C̃n
sx0 ` r

n´1
ÿ

k“0

pΓAqkΛ´
n´1
ÿ

k“0

C̃kΛsξ}8

ď }pΓAqn ´ C̃n
}8}x0}8 ` }r

n´1
ÿ

k“0

pΓAqkΛ´
n´1
ÿ

k“0

C̃kΛs}8}ξ}8

ď }pΓAqn ´ C̃n
}8}x0}8 `

n´1
ÿ

k“0

}pΓAqk ´ C̃k
}8}Λ}8}ξ}8 ď nδ `

pn´ 1qn

2
δ}Λ}8}ξ}8,

(9.19)

where:

δ :“ max
iPrMs

}ΓiAi:1` ΓiAi:pI´ ΓziAziq
´1ΓziA:i1}8

Remark 23: Notice that above bound has a strong dependency on the time n (of order

Opn2q). However, by further computations, one can weaken this dependency. For instance,

one can tighten the estimate (9.18), by providing an upper bound for the power of matrices

}C̃n´k`1}8 }pΓAqk´1}8 better than one. For sufficiently large power, this is possible since

the matrices are (proper) substochastic.

At last, we want to show that C̃ gives a better approximation for ΓA than that induced

by stochastic complementation, i.e. ΓC. meaning that }C̃ ´ ΓA}8 is smaller than the

bound maxi }2ΓiAi:}8 for }ΓC ´ ΓA}8 obtained by analogous technique as used for

showing the Theorem 9.9. A consequence of Lemma 9.13 is:

ˇ

ˇ

ˇ
C̃i ´ ΓiAii

ˇ

ˇ

ˇ
1` ΓiAi:1 “ ΓiAi:

“

1` rI´ ΓziAzis
´1
rΓzi ´ Is

‰

1` ΓiAi:1

“ 2ΓiAi:1´ ΓiAi:rI´ ΓziAzis
´1
rI´ Γzis1,
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so that:

}C̃´ ΓA}8 “ max
i
}2ΓiAi: ´ ΓiAi:rI´ ΓziAzis

´1
rI´ Γzis}8

“ max
iPrNs

max
j

“

ΓiAi:

`

2I´ rI´ ΓziAzis
´1
rI´ Γzis

˘

1
‰

j
.

(9.20)

Now, since ΓiAi: ě 0, we have that:

ΓiAi:

`

2I´ rI´ ΓziAzis
´1
rI´ Γzis

˘

1 ď 2ΓiAi:1.

Implying that the given bound for }C̃ ´ ΓA}8 is smaller than the bound }2Ai:}8 for

}ΓC ´ ΓA}8 giving a hint that C̃ is a better benchmark than ΓC. Moreover, the fact

that rI´ ΓziAzis
´1rI´ Γzis1 ď 1 implies that

ΓiAi:

`

2I´ rI´ ΓziAzis
´1
rI´ Γzis

˘

1 ě ΓiAi:1.

So the maximal improvement we can obtain is the factor 2 which has a non-negligible

impact in the non-asymptotic analysis as done in (9.19).

9.4.2. Bound for infinite accumulation

The drawback of the analysis based on the one-shot bound (9.16) is that the corresponding

estimate may depends on the time. So it is not suited for forecasting the system behaviour

in large times. Motivated by the goal to eliminate this drawback, our aim in this section

is to analyze the quantity:

h :“
ˇ

ˇ

ˇ
pI´ ΓAq´1pI´ Γq ´ pI´ C̃q´1pI´ Γq

ˇ

ˇ

ˇ
1, (9.21)

Before we continue with our discussion, we need first to show that C̃i is Schur-stable:

Lemma 9.15: If ΓA is Schur-stable, then C̃i is also Schur-stable.

Proof: From (9.15) and the well-known formula specifying the determinant of a Schur

complement:

detpBq “ detpB{B̃q detpB̃q,

we have:

detpI´ΓAq “ detpQiØ1pI´ΓAqQiØ1q “ detpI´QiØ1ΓAQiØ1q “ detpC̃iq detpI´ΓziAziq,

(9.22)

where the first equality follows from the fact that the determinant is invariant of simul-

taneous row and column permutations. Now, we have that detpI ´ ΓAq ‰ 0 since ΓA

is Schur-stable. Moreover, by the inequality ρpΓziAziq ď ρpΓAq we have that ΓziAzi is

Schur-stable and consequently detpI ´ ΓziAziq ‰ 0. From (9.22), we can now infer that
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pI´ C̃iq and thus the desired statement.

Now, in order to see the meaning of h, notice first that by (9.7), it holds:

ˇ

ˇ

ˇ
StrΓA,Λξ,x0spnq ´ StrC̃,Λξ,x0spnq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

rpΓAqn ´ C̃n
sx0 ` r

n´1
ÿ

k“0

pΓAqkΛ´
n´1
ÿ

k“0

C̃kΛsξ

ˇ

ˇ

ˇ

ˇ

ˇ

Both ΓA and C̃ are Schur-stable, giving:

pΓAqn, C̃n nÑ8
ÝÝÝÑ,

n´1
ÿ

k“0

pΓAqk
nÑ8
ÝÝÝÑ pI´ ΓAq´1, and

n´1
ÿ

k“0

C̃k nÑ8
ÝÝÝÑ pI´ C̃q´1,

and consequently:

lim
nÑ8

ˇ

ˇ

ˇ
StrΓA,Λξ,x0spnq ´ StrC̃,Λξ,x0spnq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

”

pI´ ΓAq´1pI´ Γq ´ pI´ C̃q´1pI´ Γq
ı

ξ
ˇ

ˇ

ˇ
.

From above identity, it follows that h gives rise to the worst-case asymptotic error of the

approximation of the Friedkin-Johnsen dynamic (9.4) by means of the cluster-localized

dynamic StrC̃,Γξ,x0s, i.e., we have:

lim
nÑ8

ˇ

ˇ

ˇ
StrΓA,Λξ,x0spnq ´ StrC̃,Λξ,x0spnq

ˇ

ˇ

ˇ
ď h}ξ}8.

Our main result is the following:

Theorem 9.16: h has non-negative entries and can be uncoupled as follows

h “

»

—

—

–

h1

...

hM

fi

ffi

ffi

fl

,

where:

hi “ pI´ C̃iq
´1ΓiAi:pI´ ΓziAziq

´1
pI´ Γziq1 (9.23)

“ pI´ C̃iq
´1
pΓi ´ C̃iq1 (9.24)

“ 1´ pI´ C̃iq
´1
pI´ Γiq1 (9.25)

In order to show above result, we first need some auxiliary statements:

Lemma 9.17: The i-th block diagonal element of pI´ΓAq´1pI´Γq is pI´ C̃iq
´1pI´Γiq

and the off block-diagonal part of the i-th block-row is a block-column permutation of

pI´ C̃iq
´1ΓiAi:pI´ ΓziAziq

´1pI´ Γziq
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Proof: For ease of notation, we define B :“ ΓA. Analogous to A, we part B as:

B “

»

—

—

–

B1,1 ¨ ¨ ¨ B1,M

...
. . .

...

BM,1 ¨ ¨ ¨ BM,M

fi

ffi

ffi

fl

,

where Bij “ ΓiAij. Now we take a permutation matrix QiØ1 corresponding to the

interchange of the first and the i-th block rows (or also column). We have:

B̂piq :“ QiØ1BQiØ1 “

«

Bi,i Bi,:

B:,i Bzi

ff

. (9.26)

Moreover by setting B “ I in above identity, we have also:

QiØ1QiØ1 “ I. (9.27)

Now, (9.26) asserts:

I´ B̂piq
“

«

I´ B̂i,i ´B̂i,:

´B̂:,i I´ B̂zi

ff

.

Applying the formula of matrix inversion in block form and subsequently the identity:

pI´Bi,iq´p´B̂i,:qpI´ B̂ziq
´1
p´B̂:,iq “ I´pΓiAii`ΓiAi:pI´ΓziAziq

´1ΓziA:iq “ I´ C̃i,

we have:

pI´ B̂piq
q
´1
“

»

–

´

I´ C̃i

¯´1

´

´

I´ C̃i

¯´1

p´B̂i,:qpI´Bziq
´1

Y1 Y2

fi

fl

“

»

–

´

I´ C̃i

¯´1 ´

I´ C̃i

¯´1

ΓiAi:pI´ ΓziAziq
´1

Y1 Y2

fi

fl ,

where Y1 and Y2 are matrices which is not of our further interest. Multiplying with

I´ Γpiq, we obtain:

pI´ B̂piq
q
´1
pI´ Γpiqq “

«

pI´ C̃iq
´1pI´ Γiq Fpiq

Y1 Y2

ff

,

where:

Fpiq :“ pI´ C̃iq
´1ΓiAi:pI´ ΓziAziq

´1
pI´ Γziq

Now, we aim to transfer above result to pI´Bq´1pI´Γq. First step toward this end is
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to notice that the identity (9.27)gives:

QiØ1pI´ B̂piq
q
´1QiØ1 “

8
ÿ

k“0

QiØ1B̂
piq,kQiØ1 “

8
ÿ

k“0

QiØ1pQiØ1BQiØ1q
kQiØ1

“

8
ÿ

k“0

BQiØ1pQiØ1BQiØ1q
k´1QiØ1

“

8
ÿ

k“0

B2QiØ1pQiØ1BQiØ1q
k´2QiØ1

“ . . . “
8
ÿ

k“0

BkQiØ1QiØ1 “

8
ÿ

k“0

Bk
“ pI´Bq´1.

Consequently:

QiØ1pI´ B̂piq
q
´1
pI´ Γ̂piqqQiØ1 “ QiØ1pI´ B̂piq

q
´1
pI´QiØ1ΓQiØ1qQiØ1

“ QiØ1pI´ B̂piq
q
´1QiØ1pI´ ΓqQiØ1QiØ1

“ pI´Bq´1pI´ Γq.

(9.28)

So since QiØ1p¨qQiØ1 corresponds to the interchange of the first and i-th block rows of

p¨q, and the first and i-th block columns of p¨q, it follows from the identity (9.28), that

the i-th block row of pI´Bq´1pI´ Γq results by block column permutation of the block

row matrix
”

pI´ C̃iq
´1pI´ Γiq,F

piq
ı

where the i-th block column of the i-th block row

of pI´Bq´1pI´ Γq is pI´ C̃iq
´1pI´ Γiq.

Now, we continue to exploit 9.17 by giving the following further auxiliary statements

Lemma 9.18: We have the following statements:

1. pI´ ΓAq´1pI´ Γq ´ pI´ C̃q´1pI´ Γq ě 0

2.
”

pI´ ΓAq´1pI´ Γq ´ pI´ C̃q´1pI´ Γq
ı

piq:
1 “ pI ´ C̃iq

´1ΓiAi:pI ´ ΓziAziq
´1pI ´

Γziq1

Proof: Lemma 9.17 asserts that the block diagonal of pI´ ΓAq´1pI´ Γq coincides with

the block diagonal of pI´ C̃q´1pI´Γq. Since the latter matrix is a block diagonal matrix,

it follows that pI ´ ΓAq´1pI ´ Γq ´ pI ´ C̃q´1pI ´ Γq is a counter block diagonal matrix

having the block row permutation of Fpiq :“ pI´C̃iq
´1ΓiAi:pI´ΓziAziq

´1pI´Γziq, i P rM s

as off-diagonal entries. By the obvious fact that Fpiq ě 0 for any i P rM s, we obtain the

first statement.

Now, to proof the second statement, notice again by Lemma 9.17, that the off block

diagonal on the i-th block row of pI´ΓAq´1pI´Γq ´ pI´ C̃q´1pI´Γq is a block column

permutation of pI ´ C̃iq
´1ΓiAi:pI ´ ΓziAziq

´1pI ´ Γziq. Since pI ´ ΓAq´1pI ´ Γq ´ pI ´

C̃q´1pI ´ Γq is a counter block diagonal matrix (see last paragraph) and the operation

p¨q1 is invariant of column permutation of p¨q, the second statement follows.
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The expression on the R.H.S. of the identity given in above Lemma is cumbersome. By

this reason, we show the following:

Lemma 9.19:

pI´ C̃iq
´1ΓiAi:rI´ ΓziAzis

´1
rI´ Γzis1 “ pI´ C̃iq

´1
pΓi ´ C̃iq1.

Proof: We have from Lemma 9.13:

ΓiAi:rI´ ΓziAzis
´1
rI´ Γzis1

“ ΓiAi:1´ ΓiAi:rI´ ΓziAzis
´1
rI´ Γzis1

“ pΓi ´ ΓiAii ´ ΓiAi:rI´ ΓziAzis
´1ΓziA:iq1

“ pΓi ´ C̃iq1

Consequently:

pI´ C̃iq
´1ΓiAi:rI´ ΓziAzis

´1
rI´ Γzis1

“ pI´ C̃iq
´1
pΓi ´ C̃iq

Now, we are ready to give a proof of Theorem 9.16:

Proof (Proof of Theorem 9.16): Since row sum is invariant of column permutation,

(9.23) follows from Lemma 9.17. Now, setting the identity given in Lemma 9.19 into

(9.23), we obtain (9.24). Now to see the last remaining identity, notice that by the first

fact in Lemma 9.18, we have that h “
”

pI´ ΓAq´1pI´ Γq ´ pI´ C̃q´1pI´ Γq
ı

1. This

identity and Lemma 9.3 asserts:

h “ pI´ ΓAq´1pI´ Γq1´ pI´ C̃q´1pI´ Γq1 “ 1´ pI´ C̃q´1pI´ Γq1.

Since pI ´ C̃q´1pI ´ Γq is a block diagonal matrix with the matrices pI ´ C̃iq
´1pI ´ Γiq,

i P rN s, on the diagonals, we obtain the desired statement.

9.5. Limit Behaviour of the Mesoscopic Stability of

Opinion Dynamics in face of Informational Bias

Based on our findings, we aim to analyze to what extent does the informational bias

effects in clusterness of the population’s opinions. In doing so, we consider to limit cases:

• First, the case of almost stubborn agents, where the agents susceptibility constant

is almost 0, or equivalently, the bias constant is almost 1

• second, the case where the agents are subject to negligible amount of informational
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bias, i.e. the case where the agents susceptibility constant is almost 1, or equiva-

lently, the bias constant is almost 0.

The tool for this task is the measure h, which quantifies the worst-case asymptotic error

of the approximation of the opinion dynamic by means of the cluster-centric dynamic

formed by the substochastic complementation of the communication matrix.

9.5.1. Behaviour for Γi « 0

For a cluster i P rM s, we first investigate the behaviour of hi in case that all agents are

very much affected by informational bias. Our result is the following:

Proposition 9.20: It holds:

hi ď Op}Γi}q.

Proof: We first show:

hi ď }Γi}8 ` }I´ Γi}8}C̃i}8. (9.29)

From the identity (9.25), we have:

hi “ 1´ pI´ C̃iq
´1
pI´ Γiq1 “ 1´

8
ÿ

k“0

C̃k
i pI´ Γiq1.

Since pI´ Γiq and C̃k
i , for any k P N, are non-negative it yields:

8
ÿ

k“0

C̃k
i pI´ Γiq1 ě pI´ Γiq1` C̃ipI´ Γiq1.

Consequently it holds:

hi ď Γi1` C̃ipI´ Γiq1,

from which we have (9.29) by straightforward computations.

Now, in order to show this proposition, it remains to provide the estimation C̃i1 ď

Op}Γi}q. This is already done in (9.14), where we have seen that C̃i1 ď Γi1.

So from above result it follows that hi is small if the susceptibility constant of the agents

in cluster i is small irrespective of the degree of the perturbation of other agents by

informational bias. Furthermore, we are able to specify that the decrease of hi respective

to Γi is at worst linear. We can refine above results by providing the second-order term

of the decrease:

Theorem 9.21: It holds:

hi “ ΓiAi:pI´ ΓziAziq
´1
pI´ Γziq1`Op}Γi}

2
}Ai:}q.
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Proof: We have:

C̃i “ ΓiAii ` ΓiAi:pI´ ΓziAziq
´1ΓziA:i “ Op}Γi}q.

This observation gives:

pI´ C̃iq
´1
“ I`Op}C̃i}q “ I`Op}Γi}q. (9.30)

Finally we obtain the desired result:

hi “ pI´ C̃iq
´1ΓiAi:pI´ ΓziAziq

´1
pI´ Γziq1

“ rI`Op}Γi}qsΓiAi:pI´ ΓziAziq
´1
pI´ Γziq1

“ ΓiAi:pI´ ΓziAziq
´1
pI´ Γziq1`Op}Γi}

2
}Ai:}q

From Proposition 9.20, the question raises gives whether hi decreases with increasing

influence of the informational bias to the agents’ opinion. Intuitively, the answer should

be positive since, we expect that by the increasing bias, the amount of information ex-

change between the agents decreases. In the following, we provide a partial answer to this

question:

Proposition 9.22: Suppose that:

Γ “ γI, γ ą 0.

Then it holds that h is (entrywise) non-decreasing for γ P p0.0.5q

Proof: We have:

d

dγ
p1´ γq

´

I´ C̃ipγq
¯´1

“
d

dγ
p1´ γq

8
ÿ

n“0

C̃ipγq
k
“ ´

8
ÿ

k“0

C̃ipγq
k
` p1´ γq

8
ÿ

n“0

d

dγ
C̃ipγq

k

“

8
ÿ

n“0

„

p1´ γq
d

dγ
C̃ipγq

k
´ C̃ipγq

k



Now, for any n P N, it holds:

d

dγ
C̃ipγq

n
“

n
ÿ

k“1

C̃ipγq
k´1

„

d

dγ
C̃ipγq



C̃ipγq
n´k,

and:

C̃ipγq
n
“

n
ÿ

k“1

C̃ipγq
k´1 C̃ipγq

n
C̃ipγq

n´k.
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Consequently:

d

dγ
p1´ γq

´

I´ C̃ipγq
¯´1

“

8
ÿ

n“0

n
ÿ

k“1

C̃ipγq
k´1

„

p1´ γq
d

dγ
C̃ipγq ´

1

n
C̃ipγq



C̃ipγq
n´k.

Next, we have:

d

dγ
C̃ipγq “ Aii ` 2γAi:pI´ γAziq

´1A:i ` γ
2Ai:

d

dγ
pI´ γAziq

´1A:i,

and consequently:

γ
d

dγ
C̃ipγq “ C̃ipγq `Rpγq,

where:

Rpγq :“ γ2Ai:pI´ γAziq
´1A:i ` γ

3Ai:
d

dγ
pI´ γAziq

´1A.i:

Thus:

p1´ γq
d

dγ
C̃ipγq ´

1

n
C̃ipγq “

ˆ

1´ γ

γ
´

1

n

˙

C̃i `
1´ γ

γ
Rpγq.

If γ ď 0.5, then p1´ γq{γ ě 1. Consequently since C̃ipγq,Rpγq ě 0, we have:

p1´ γq
d

dγ
C̃ipγq ´

1

n
C̃ipγq “

ˆ

1´ γ

γ
´

1

n

˙

C̃i `
1´ γ

γ
Rpγq

ě

ˆ

1´ γ

γ
´ 1

˙

loooooomoooooon

ě0

C̃i `
1´ γ

γ
Rpγq ě

1´ γ

γ
Rpγq ě 0

This shows that I´ p1´ γqpI´ C̃pγqq´1 is (entrywise) monotonically increasing. Finally,

we obtain from (9.25) the desired statement.

As shown in Proposition 9.20, if the agents in a cluster i P rN s are very much influenced

by informational bias, then irrespective of how much out-cluster agents are influenced by

informational bias hi is small. Now, the following question arises: how does hi behaves if

the out-cluster agents are object to a high degree of perturbation by informational bias.

To answer this question, we first need the following identity which is a direct consequence

of the Woodbury identity:

Lemma 9.23: It holds:

pI´ C̃iq
´1
“ pI´ ΓiAiiq

´1

„

I` ΓiAi:

´

I´ C̃œ
i

¯´1

ΓziA:ipI´ ΓiAiiq
´1



, (9.31)

where:

C̃œ
i “ ΓziAzi ` ΓziA:ipI´ ΓiAiiq

´1ΓiAi:.

We continue by providing an estimate for C̃œ
i :
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Lemma 9.24:

pI´ C̃iq
´1
“ pI´ ΓiAiiq

´1
“

I` ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq
´1
‰

`Op}Γzi}2}A:i}q

Proof: We aim estimate pI´ C̃iq
´1 via the identity (9.31). First notice that:

pI´ C̃œ
i q
´1
“ I` C̃œ

i `Op}C̃œ
i }

2
q. (9.32)

Moreover:

C̃œ
i “ ΓziAzi ` ΓziA:ipI´ ΓiiAiiq

´1Ai: “ ΓziAzi `Op}Γzi}}A:i}q

“ ´Γzi ` ΓzipI´Aziq `Op}Γzi}}A:i}q ď ´Γzi `Op}Γzi}}I´Azi}q `Op}Γzi}}A:i}q

“ ´Γzi `Op}Γzi}}A:i}q,

and particularly:

C̃œ
i “ Op}Γzi}q.

Setting both previous estimates into (9.32) , it yields:

pI´ C̃œ
i q
´1
“ pI´ Γziq `Op}Γzi}}A:i}q `Op}Γzi}2q.

From above computation, we aim to provide an estimate for pI´ C̃iq
´1 having the repre-

sentation (9.31). Toward this direction, we estimate:

ΓiAi:

´

I´ C̃œ
i

¯´1

ΓziA:ipI´ ΓiAiiq
´1

“ ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq
´1
`Op}Γzi}}A:i}q

`

Op}Γzi}}A:i}q `Op}Γzi}2q
˘

“ ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq
´1
`Op}Γzi}2}A:i}q.

Consequently:

pI´ C̃iq
´1
“ pI´ ΓiAiiq

´1
“

I` ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq
´1
‰

`Op}Γzi}2}A:i}q

Now we can provide the answer of the question given in the beginning of this subsection:

Theorem 9.25: Let Γi, Aii be fix. It holds:

hipΓiq “ pI´ ΓiAiiq
´1ΓiAi:1

´ pI´ ΓiAiiq
´1ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq

´1
pI´ Γiq1

`Op}Γzi}2}A:i}q,

and:
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Proof: Now we have:

pΓi ´ C̃iq1 “ ΓiAi:

`

I´ pI´ ΓziAziq
´1ΓziA:i

˘

“ ΓiAi: `O
ˆ

}Γzi}}A:i}

1´ }Γzi}}Azi}

˙

,

and since }A:i}8 “ 1´ }Azi}8, we have:

pΓi ´ C̃iq1 “ ΓiAi:1`O
ˆ

}Γzi}}A:i}

1´ }Γzi} ` }A:i}

˙

ď ΓiAi:1`O
`

}Γzi}}A:i}
˘

.

Finally, we have by (9.23):

hpΓziq “ pI´ ΓiAiiq
´1

“

I` ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq
´1
‰

ΓiAi:1`Op}Γzi}}A:i}q

Above Theorem asserts in particular that if the out-cluster agents are almost fully biased,

then hi depends only on the structure and behaviour of cluster i. This is quite surprising,

since the main believe is that the opinion dynamic is determined by the most biased

agents.

We close this subsection by providing a summary of our results in Table 9.1.

Table 9.1.: An Overview of Asymptotic behaviour of hi

Asymptote Error Scale hi «

Γi Ñ 0 Op}Γi}q 0
Op}Γi}

2q ΓiAi:pI´ ΓziAziq
´1pI´ Γziq1

Γzi Ñ 0 Op}Γzi}q pI´ ΓiAiiq
´1ΓiAi:1

Op}Γzi}2q pI´ ΓiAiiq
´1ΓiAi:1

´pI´ ΓiAiiq
´1ΓiAi:pI´ ΓziqΓziA:ipI´ ΓiAiiq

´1pI´ Γiq1
Ai: Ñ 0 Op}A:i}q pI´ ΓiAiiq

´1ΓiAi:

Ai: Ñ 0 Op}Ai:}q 0

9.5.2. Behaviour for Γ « I

Now, we investigate the quantity h in case that the degree of influence of informational

bias is small in comparison to the opinion mixing.

We start with the case where for a given cluster i, either the in-cluster or out-cluster

agents are not biased by extrinsic information:

Lemma 9.26: If Γi “ I, then for any Γzi:

hi “ 1.
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Moreover if Γzi “ I, then for any Γi:

hi “ 0.

Proof: The first statement is shown by the following elementary computation:

hi “ pI´ C̃iq
´1
pΓi ´ C̃iq1 “ pI´ C̃iq

´1
pI´ C̃iq1 “ 1.

The second statement follows since:

C̃i1 “ ΓiAii1` ΓiAi:pI´ ΓziAziq
´1ΓziA:i1 “ ΓiAii1` ΓiAi:pI´Aziq

´1A:i1

“ ΓiAii1` ΓiAi:pI´Aziq
´1
pI´Aziq1 “ ΓiAii1` ΓiAi:1

“ ΓipAii `Aiiq1 “ Γi1,

which yields pΓi ´ C̃iq1 “ 0 and finally hi “ pI´ C̃iq
´1pΓi ´ C̃iq1 “ 0

So above Lemma asserts that if the in-cluster agents are not subject to informational

bias then for any negligible disturbance of the out-cluster agents by informational bias,

it holds that hi “ 1. In case that the out-cluster agent are not subject to informational

bias, we have a different situation: For any negligible disturbance of the in-cluster agents

by informational bias, it holds that hi “ 0.

Above observation gives the hint that the behaviour of hi in case that the agents are

subject to negligible disturbance of informational bias cannot be predicted in a uniform

way. The following proposition corfirms in some sense this guess by showing that the

behaviour of hi can in general be arbitrary:

Proposition 9.27: Suppose that there exists pi, pzi ą 0 s.t.:

Aii1 “ pi1 and Azi1 “ pzi1. (9.33)

For any α P r0, 1s, there exists a sequence pΓpnqqnPN converging to I, such that:

lim
nÑ8

}hipΓpnqq}8 “ α

The proof of above statement is based on the following auxiliary statement:

Lemma 9.28: Suppose that (9.33) holds. Then for Γ “ diagpγiI, γziIq:

hi “
1

1` ψpiq
, where ψpiq :“

γzi
1´γzi
γi

1´γi

1
γzi
´ pzi

1´ pi
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Proof: We have:

C̃i1 “
`

ΓiAii ` ΓiAi:pI´ ΓziAziq
´1ΓziA:i

˘

1 “
`

γiAii ` γiγziAi:pI´ γziAziq
´1A:i

˘

1

“ γipi1` qziγiγziAi:pI´ γziAziq
´11,

where qi :“ 1´ pi satisfying:

qi1 “ p1´ piq1 “ pI´Aiiq1 “ Ai:1,

and qzi :“ 1´ pzi satisfying:

qzi1 “ p1´ pziq1 “ pI´Aziq1 “ A:i1.

Now, we have:

pI´ γziAziq
´11 “

8
ÿ

k“0

γkziA
k
zi1 “

8
ÿ

k“0

γkzip
k
zi1 “

1

1´ γzipzi
1.

Setting above identity into (71), it holds:

C̃i1 “ γipi1` qziγiγziAi:pI´ γziAziq
´11 “ γipi1`

qziγiγzi
1´ γzipzi

Ai:1 “ γipi1`
qiqziγiγzi
1´ γzipzi

1

“

ˆ

γipi `
qiqziγiγzi
1´ γzipzi

˙

1.

Consequently, we have:

pI´ C̃iq
´11 “

8
ÿ

k“0

C̃k
i 1 “

8
ÿ

k“0

ˆ

γipi `
qiqziγiγzi
1´ γzipzi

˙k

1 “
1

1´
´

γipi `
qiqziγiγzi
1´γzipzi

¯1.

Now, we have:

´

Γi ´ C̃i

¯

1 “

ˆ

γi ´ γipi ´
qiqziγiγzi
1´ γzipzi

˙

1 “

ˆ

γiqi ´
qiqziγiγzi
1´ γzipzi

˙

1 “ γiqi

ˆ

1´
qziγzi

1´ γzipzi

˙

1
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Finally, we have:

hipγi, γziq “ pI´ C̃iq
´1
pΓi ´ C̃iq1 “

γiqi

´

1´
qziγzi

1´γzipzi

¯

1´
´

γipi `
qiqziγiγzi
1´γzipzi

¯1 “
γiqi

´

1´
qziγzi

1´γzipzi

¯

1´
´

γipi `
qiqziγiγzi
1´γzipzi

¯1

“

γiqi

´

1´
qziγzi

1´γzipzi

¯

1´ γip1´ qiq ´
qiqziγiγzi
1´γzipzi

1 “
γiqi

´

1´
qziγzi

1´γzipzi

¯

p1´ γiq ` γiqi

´

1´
qziγzi

1´γzipzi

¯1

“
1´

qziγzi
1´γzipzi

1´γi
γiqi

`

´

1´
qziγzi

1´γzipzi

¯1 “
1

1`
ψ
piq
i pγiq

ψ
piq
zi
pγziq

1,

(9.34)

where:

ψ
piq
i :“

1´ γi
γiqi

“
1´ γi

γip1´ piq
and ψ

piq
zi :“ 1´

qziγzi
1´ γzipzi

“
1´ γzi

1´ γzipzi
“

1´γzi
γzi

1
γzi
´ pzi

.

We obtain finally the desired result by noticing that
ψ
piq
i

ψ
piq
zi

“ ψpiq.

Now, we are ready to proof Proposition 9.27

Proof (Proof of Proposition 9.27): We only show the statement for i “ 1. The

desired result can be established from this case by permutation argument. Define:

β :“
1´ α

α
and β̃ “ β

1´ p1
1´ pz1

.

Let N P N be large enough such that:

β̃

N
ď 1.

We define:

Γpnq :“ diagpγ1pnqI, γz1pnqIq

with:

1´ γ1pnq :“
β̃

n
, n ě N, and 1´ γzipnq :“

1

n
, n P N.

We have limnÑ8 γ1pnq “ 1 and limnÑ8 γzipnq “ 1. Consequently:

lim
nÑ8

ψp1q “ β̃
1´ pz1
1´ p1

“ β.

This yields as desired:

lim
nÑ8

h1 “ lim
nÑ8

1

1` ψp1q
“

1

1` β
“ α.
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Nevertheless, we can specify the following:

Lemma 9.29: Suppose that A is irreducible. Let pΓpnqqn be a sequence converging to

the identity. Then the set of limit points of phipΓpnqqqn is contained in the set:

C :“ tα1 : α P r0, 1su .

Proof: Let hi be a limit point of phipΓpnqqqn, then there exists a subsequence phipΓpnkqqqk

of phipΓpnqqqn converging to hi.

Now, we have:

pI´ C̃ipΓpnkqqqhipΓpnkqq “ pI´ C̃ipΓpnkqqqpI´ C̃ipΓpnkqqq
´1
pΓpnkq ´ C̃ipΓpnkqqq1

“ pΓpnkq ´ C̃ipΓpnkqqq1.

Since C̃ipIq “ Ci, we obtain by letting k Ñ 8 on both sides of above identity

pI´Ciqhi “ lim
kÑ8

pI´ C̃iqhi “ lim
kÑ8

pΓpnkq ´ C̃ipΓpnkqqq1 “ pI´Ciq1 “ 0,

so that:

Cihi “ hi.

Since Ci is a irreducible stochastic matrix, which is a consequence of the irreducibility

assumption of A and Lemma 9.8, we have by Perron-Frobenius Theorem the desired

statement.

Above result says that in case the influence of informational bias to the agents is negligible,

the cluster centric approximation error remains the same. However, it does not specify

the corresponding quantity.

9.5.3. Detailed Investigation for Γ « I

Our aim in this subsection is to specify the behaviour of hi in case that Γ « I. In the

following we use the following notations. γ
piq
max (resp. γ

piq
min) denotes the largest (resp. the

smallest) susceptibility constant of the agents in cluster i. Furthermore, we denote the

largest (resp. the smallest) susceptibility constant of the agents out of cluster i by γ
pziq
max

(resp. γ
pziq
min). For a matrix B, }B}min denotes the row sum of B with the smallest absolute

value.

Define:

Gi :“ pI´ C̃iq
´1
pI´ Γiq. (9.35)

Notice that by (9.25), it holds:

hi “ 1´Gi1. (9.36)

Therefore, we can work with Gi instead of directly with hi. However, working with Gi
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is not handy since this terms involves the infinite sum of C̃i, which is itself an involved

term. By this reason, we decide to work with:

G´1
i “ pI´ Γiq

´1
pI´ C̃iq.

Our candidate for the limit matrix is the following rank one matrix:

Gi :“
1ηT

ci
,

where η P RKi and ci set later and are possibly dependent on Γ. From Woodbury-identity,

it follows:

pGi ´Giq
´1
“ G´1

i `
pG´1

i 1ηTi G´1
i q{ci

1´ pηTi G´1
i 1q{ci

,

and consequently:

pGi ´Giq
´11 “ G´1

i 1

˜

1`
di
ci

1´ di
ci

¸

, (9.37)

where:

di :“ ηTi G´1
i 1. (9.38)

Now, our strategy is to choose ηi and ci such that di{ci « 1 whenever Γ « I. Moreover,

G´1
i 1 is not small, the latter and (9.37) implies that pGi ´ Giq

´11 is unbounded as Γ

tends to I. Finally by the following lemma we can transfer this result to Gi´Gi yielding

Gi « Gi whenever Γ « I:

Lemma 9.30: Let B P RNˆN be a invertible matrix. Suppose that there exists c, d P R
s.t.:

c ď B´11 ď d,

then:
1

d
ď B1 ď

1

c
(9.39)

Proof: Since BB´1 “ I, we have by multiplying both sides with 1:

ÿ

j

rBsij
ÿ

k

rB´1
sjk “ 1, @i P rN s.

Consequently we have for all i P rN s:

1 “
ÿ

j

rBsijrB
´11sj ě c

ÿ

j

rBsij “ crB1si,

which gives the r.h.s. of the inequality (9.39). Now, by the similar computation we have
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the l.h.s. of the inequality (9.39):

1 “
ÿ

j

rBsijrB
´11sj ď d

ÿ

j

rBsij “ drB1si,

Specifically, if we have functions f̂ and f̌ depending on Γ, being unbounded as Γ « I, and

satisfying:

f̌ ď pGi ´Giq
´11 ď f̂,

then it follows that:

Gi1`
1

f̂
ď Gi1 ď Gi1`

1

f̌
,

and consequently:

hi ´
1

f̌
ď Gi1 ď hi ´

1

f̂
,

where:

hi “

ˆ

1´
ηT1

ci

˙

1 “

ˆ

1´
vpiq,TΓ´1i pI´ Γiq1

vTΓ´1pI´ Γq1

˙

1 “
vpziq,TΓ´1

zi pI´ Γziq1

vTΓ´1pI´ Γq1
1.

Our choice for ηi and ci is the following:

ηTi :“ vpiq,TΓ´1i pI´ Γiq and ci :“ vTΓ´1pI´ Γq1 (9.40)

where v is the Perron-Frobenius left eigenvector of A, i.e. the unique vector satisfying

vTA “ vT. By this choice, it yields the following:

Lemma 9.31: 1. G´1
i 1 “ 1` pI´ Γiq

´1ΓiAi:pI´ ΓziAziq
´1pI´ Γziq1

2. 1 ď G´1
i 1 ď 1`

1´γ
pziq
min

1´γ
piq
max

}Ai:pI´Aziq
´1}8

Proof: For the first statement, notice that:

pI´ C̃iq1 “ pI´ ΓiAii ´ ΓiAi:pI´ ΓziAziq
´1ΓziA:iq1

“ pI´ Γiq1` ΓiAi:pI´ pI´ ΓziAziq
´1ΓziA:iq1

“ pI´ Γiq1` ΓiAi:pI´ ΓziAziq
´1
pI´ Γziq1,

where the last inequality follows from Lemma 9.13. Finally, by multiplying above expres-

sion with pI´ Γiq
´1, we obtain the first statement.

Now, for the second statement, notice that pI ´ Γiq
´1ΓiAi:pI ´ ΓziAziq

´1pI ´ Γziq is

non-negative. Consequently we have the l.h.s. inequality in the second statement. For
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the r.h.s. inequality in the second stament, we compute:

pI´ Γiq
´1ΓiAi:pI´ ΓziAziq

´1
pI´ Γziq1 ď p1´ γ

pziq
minqpI´ Γiq

´1ΓiAi:pI´ ΓziAziq
´11

ď p1´ γ
pziq
minq}ΓiAi:pI´ ΓziAziq

´1
}8pI´ Γiq

´11

ď
1´ γ

pziq
min

1´ γ
piq
max

}ΓiAi:pI´ ΓziAziq
´1
}81.

Furthermore, it is easy to see that:

ΓiAi:pI´ ΓziAziq
´1
ď Ai:pI´Aziq

´11.

Combining both previous computations, we obtain the desired inequality.

With the identity in above lemma, we can write di given in (9.38) as follows:

di “ vpiq,TΓ´1i pI´ Γiq
“

1` pI´ Γiq
´1ΓiAi:pI´ ΓziAziq

´1
pI´ Γziq1

‰

“ vpiq,TΓ´1i pI´ Γiq1` vpiq,TΓ´1i Ai:pI´ ΓziAziq
´1
pI´ Γziq1.

(9.41)

The following identity of the second summand in above expression is of use for further

step:

Lemma 9.32: Let v be the Perron-Frobenius left eigenvector of A. Then it holds:

vpiq,TAi:rI´ΓziAzis
´1
rI´Γzis “ vpziq,TΓ´1

zi rI´Γzis´vpziq,TΓ´1
zi pI´ΓziqpI´ΓziAziq

´1
pI´Γziq

Proof: Let be η :“ Γ´1pI´ Γqv. We can write:

ηiØ1 :“ pQiØ1ηq
T
“ rηTi ,η

T
zis,

where ηT
zi “ Γ´1

zi pI ´ Γqvpziq, and where vpziq is the vector which is the result of deleting

vpiq entries from v. Furthermore, for ease of notations, we write B :“ pI´ Γq´1pI´ ΓAq

and:

BiØ1 :“ QiØ1pI´Γq´1pI´ΓAqQiØ1 “

«

pI´ Γiq
´1pI´ ΓiAiiq ´pI´ Γiq

´1ΓiAi:

´pI´ Γziq
´1ΓziA:i pI´ Γziq

´1pI´ ΓziAziq

ff

.

Now, we have:

ηTB “ vTΓ´1pI´ ΓAq “ vT
pΓ´1 ´Aq “ vT

pΓ´1 ´ Iq “ vTΓ´1pI´ Γq “ ηT,

that is η is the Perron eigenvector of the stochastic matrix B. From this fact and the fact
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that QiØ1QiØ1 “ I and QT
iØ1 “ QiØ1, we have:

ηTiØ1BiØ1 “ ηTQiØ1QiØpI´Γq´1pI´ΓAqQiØ1 “ ηTpI´Γq´1pI´ΓAqQiØ1 “ ηTQiØ1 “ ηTiØ1.

Above identity asserts that:

´ vpiq,TΓ´1i Ai: ` vpziq,TΓ´1
zi
pI´ ΓziAziq

“ ´vpiq,TΓ´1i pI´ ΓiqpI´ Γiq
´1ΓiAi: ` vpziq,TΓ´1

zi
pI´ ΓziAziq

“ ´ηTi pI´ Γiq
´1ΓiAi: ` η

T
zipI´ Γziq

´1
pI´ ΓziAziq

“ ηTzi “ vpziq,TΓ´1
zi pI´ Γziq.

(9.42)

Consequently:

vpiq,TΓ´1i Ai: “ vpziq,TΓ´1
zi
pI´ ΓziAziq ´ vpziq,TΓ´1

zi pI´ Γziq.

By multiplying both sides to the right by pI ´ ΓziAziq
´1pI ´ Γziq, we obtain the desired

statement.

In the following, we summarize our findings:

Lemma 9.33: Let v be the Perron-Frobenius eigenvector of A. Furthermore, Let Gi be

given as in (9.35) and Gi be a rank one matrix given as:

Gi :“
1vpiq,TΓ´1i pI´ Γiq

vTΓ´1pI´ Γq
.

Then we have:

pGi ´Giq
´11 “

vTΓ´1pI´ Γq1

vpziq,TΓ´1
zi pI´ ΓziqpI´ ΓziAziq

´1pI´ Γziq1
G´1
i 1,

Proof: (9.37) asserts that:

pGi ´Giq
´11 “ G´1

i 1

˜

1`
di
ci

1´ di
ci

¸

“ G´1
i 1

1

1´ di
ci

, (9.43)

where ci is given as in (9.40) and di is given as in (9.38) with ηi is given as in (9.40).

From (9.41) and Lemma 9.32, we obtain:

di
ci
“

vpiq,TΓ´1i pI´ Γiq1` vpiq,TAi:pI´ ΓziAziq
´1pI´ Γziq1

vTΓ´1pI´ Γq1

“
vpiq,TΓ´1i pI´ Γiq1` vpziq,TΓ´1

zi rI´ Γzis ´ vpziq,TΓ´1
zi pI´ ΓziqpI´ ΓziAziq

´1pI´ Γziq

vTΓ´1pI´ Γq1

“
vTΓ´1pI´ Γq1´ vpziq,TΓ´1

zi pI´ ΓziqpI´ ΓziAziq
´1pI´ Γziq

vTΓ´1pI´ Γq1
,
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and thus:
1

1´ di
ci

“
vTΓ´1pI´ Γq1

vpziq,TΓ´1
zi pI´ ΓziqpI´ ΓziAziq

´1pI´ Γziq
.

Setting this into (9.43), we obtain the desired identity.

We can further estimate the r.h.s. of the identity in above Lemma and provide the

following inequalities:

Lemma 9.34: Consider the setting given in Lemma 9.33.

Gi1 ď Gi1`
γ
piq
max}pI´ ΓziAziq

´1}8

γ
pziq
min

p1´ γ
pziq
minq

2

1´ γ
piq
max

(9.44)

Gi1 ě Gi1`
}pI´ ΓziAziq

´1}min

γ
pziq
max

ˆ

1`
1´γ

piq
min

1´γ
piq
max

}Ai:pI´Aziq
´1}8

˙

p1´ γ
pziq
maxq

2

ˆ

1´γ
piq
min

γ
piq
min

vpiq,T1`
1´γ

pziq
min

γ
pziq
min

vpziq,T1

˙

(9.45)

Proof: We first show the first inequality. Notice that:

vTΓ´1pI´ Γq1 “ vpiq,TΓ´1i pI´ Γiq1` vpziq,TΓ´1
zi pI´ Γziq1 ě vpiq,TΓ´1i pI´ Γiq1

ě
1´ γ

piq
max

γ
piq
max

vpiq,T1,

and that:

vpziq,TΓ´1
zi pI´ ΓziqpI´ ΓziAziq

´1
pI´ Γziq1 ď

p1´ γ
pziq
minq

2

γ
pziq
min

}pI´ ΓziAziq
´1
}8vpziq,T1.

Setting these estimations into the identity in Lemma 9.33, we obtain:

pGi ´Giq
´11 ě

γ
pziq
min

γ
piq
max}pI´ ΓziAziq

´1}8

vpiq,T1

vpziq,T1

1´ γ
piq
max

p1´ γ
pziq
maxq2

G´1
i 1

ě
γ
pziq
min

γ
piq
max}pI´ ΓziAziq

´1}8

vpiq,T1

vpziq,T1

1´ γ
piq
max

p1´ γ
pziq
maxq2

,

where the second inequality follows from Lemma 9.31. From here, we have by Lemma

9.30:

pGi ´Giq1 ď
γ
piq
max}pI´ ΓziAziq

´1}8

γ
pziq
min

vpziq,T1

vpiq,T1

p1´ γ
pziq
minq

2

1´ γ
piq
max

,

and thus (9.44) is shown.
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Now, we show (9.45). For this sake, we compute:

vTΓ´1pI´ Γq1 “ vpiq,TΓ´1i pI´ Γiq1` vpziq,TΓ´1
zi pI´ Γziq1

ď
1´ γ

piq
min

γ
piq
min

vpiq,T1`
1´ γ

pziq
min

γ
pziq
min

vpziq,T1,

and:

vpziq,TΓ´1
zi pI´ ΓziqpI´ ΓziAziq

´1
pI´ Γziq1 ě

p1´ γ
pziq
maxq

2

γ
pziq
max

}pI´ ΓziAziq
´1
}minv

pziq,T1

Setting these estimations into the identity in Lemma 9.33, we obtain:

pGi ´Giq
´11 ď

γ
pziq
max

}pI´ ΓziAziq
´1}min

ˆ

1´γ
piq
min

γ
piq
min

vpiq,T1`
1´γ

pziq
min

γ
pziq
min

vpziq,T1

˙

p1´ γ
pziq
maxq2

G´1
i 1

ď

γ
pziq
max

ˆ

1`
1´γ

pziq
min

1´γ
piq
max

}Ai:pI´Aziq
´1}8

˙

}pI´ ΓziAziq
´1}min

ˆ

1´γ
piq
min

γ
piq
min

vpiq,T1`
1´γ

pziq
min

γ
pziq
min

vpziq,T1

˙

p1´ γ
pziq
maxq2

,

where the second inequality follows from Lemma 9.31. Consequently, we have by Lemma

9.30:

pGi ´Giq1 ě
}pI´ ΓziAziq

´1}min

γ
pziq
max

ˆ

1`
1´γ

pziq
min

1´γ
piq
max

}Ai:pI´Aziq
´1}8

˙

p1´ γ
pziq
maxq

2

ˆ

1´γ
piq
min

γ
piq
min

vpiq,T1`
1´γ

pziq
min

γ
pziq
min

vpziq,T1

˙

Finally, by combining the relation (9.36) and above Lemma, we obtain the following

approximation statement for the measure hi of our interest:

Theorem 9.35: It holds:

hi ´ f̌pΓq ď hi ď hi ´ f̂pΓq,

where:

hi :“
vpziq,TΓ´1

zi pI´ Γziq1

vTΓ´1pI´ Γq1
1, (9.46)

with v denoting the Perron-Frobenius eigenvector of A, and where:

f̂pΓq “
}pI´ ΓziAziq

´1}min

γ
pziq
max

ˆ

1`
1´γ

piq
min

1´γ
piq
max

}Ai:pI´Aziq
´1}8

˙

p1´ γ
pziq
maxq

2

ˆ

1´γ
piq
min

γ
piq
min

vpiq,T1`
1´γ

pziq
min

γ
pziq
min

vpziq,T1

˙

f̌pΓq “
γ
piq
max}pI´ ΓziAziq

´1}8

γ
pziq
min

p1´ γ
pziq
minq

2

1´ γ
piq
max

.
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Now, we close the chapter by further discussing Theorem (9.35). Our interest is to see

for which susceptibility constants near 1 (or equivalently bias constant near 0) hi can be

approximated by hi given in (9.46). For this sake, we estimate the functions f̂ and f̌ given

in Theorem (9.35). We have obviously:

}pI´ ΓziAziq
´1
}min ě 1.

Consequently, if:

1´ γ
piq
min

1´ γ
piq
max

“ Ωp1q,

we have that:

f̂pΓq ě C1
p1´ γ

pziq
maxq

2

1´ γ
piq
min

,

for a constant C1 ą 0. Furthermore, it clearly holds:

f̌pΓq ď C2
p1´ γ

pziq
minq

2

1´ γ
piq
max

,

for a constant C2 ą 0. So from previous observations, we have for instance that if the

susceptibility constants of the agents in cluster i is of order Θp1 ´ εpq, where p ą 0, and

if the susceptibility constants of the agents out of cluster i is of order Θp1 ´ εqq, where

q ą p{2, then hi « hi with small error of order Θpε2q´pq.
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10. Summary, Conclusions, and

Outlook

10.1. Part I: Resource Sustainable Robust Online

Learning in Games

In the first part of this thesis, we considered systems of selfish learning agents. We used

the online learning paradigm and game theory to model their strategic interaction. Main

aspects of our interest in the first part of this thesis were:

• the effect of the lack of agents’ global view to the population’s outcome,

• the effect of uncertainty in the information/feedback obtained by the agents to the

system,

• and the sustainability of the population’s behaviour in face of selfishness of the

agents.

We were able to provide not only results of asymptotic nature, which is usual in the

literature of game theory and dynamical systems, but also results of non-asymptotic

nature. In the following we provide a more comprehensive summaries and conclusions of

the investigations made in the first part of the thesis. Also, we present at each of the

Subsections some interesting research directions for future works.

10.1.1. Chapter 3: On the Convergence of Online Mirror Descent

for Aggregative Games with Approximated Aggregates

In Chapter 3, we consider the setting of the aggregative games, which occurs in a vast

number of applications such as signal processing and cummunications, smart grid, com-

petitive markets and congestion control for networks. Assuming that the agents learn

in the online manner via first-order feedback, we propose a sufficient condition on the

degree of the uncertainties of the agents about the aggregate for the convergence of the

population’s dynamic to the Wardrop equilibrium. Not only for analyzing the dynamic

occuring in practical applications proposed in this work, our results can also of course be

used to find a Wardrop equilibrium of a given game.
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In order to illustrate the possible decay behaviour of the error between the aggregate

and its estimates implied by our main result, one may consider the case where:

γk “ O
ˆ

1

kα

˙

, with α ą
1

2
.

If:

}σ
piq
k ´ σpXkq}Ṽ “ O

ˆ

1

kβ

˙

, where β ą ´α ` 1,

then (3.12) is fulfilled. Moreover, by choosing the step size:

γk “ O
ˆ

1

k logpkq

˙

,

it is even possible to handle the slow decay:

}σ
piq
k ´ σpXkq}Ṽ “ O

ˆ

1

logpkq

˙

.

Those observations show in particular the role of the step size choice in handling the nega-

tive effect of the agents’ uncertainties about the value of the aggregate, to the convergence

behaviour.

Notice that the condition (3.12) leading to the convergence of our proposed algorithm

is a sufficient condition. So one may ask whether the given condition is necessary. What

we can say in the direction of the answer of this question, is that the condition (3.12) is

reasonable, since a necessary requirement for (3.12) to hold is that the aggregate and its

estimates coincides in the time limit. However, we think that one can replace (3.12) by

the weaker condition:

lim
nÑ8

řn
k“0 γk}σ̂

piq
k ´ σpXkq}Ṽ ă 8
řn
k“0 γk

“ 0.

One assumption we made in this work is that the step size sequences of the agents

coincide which is quiet restrictive. So in the future work, we aim to handle the case where

the step size sequences of the agents differ.

Since we basically work with the gradient operator of the utility function and the

corresponding variational inequality, attentive readers would notice that the notion of

concavity can be replaced by the notion of pseudo-concavity. Moreover, if the notion of

monotonicity is replaced by the notion of strong monotonicity, we believe that the the

convergence rate can be specified. This line of work will also be exploited in the future.

If the aggregate is the mean of agents’ actions, one can by means of our technique and

the aggregate estimation technique given in [77] give a distributed online mirror ascent

algorithm to achieve a Wardrop equilibrium. Beside providing a more detailed analysis

of this aspect, we plan in the future work to handle aggregates other than the mean
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aggregate.

10.1.2. Chapter 4: Coordinated Online Learning for Multi-Agent

Systems with Coupled Constraints and Perturbed Utility

Observations

In Chapter 4, we considered the setting of general games with the feature of constraints

coupled among the agents. This sort of constraints arise in different practical applications

such as those where the agents are competing on the utilization of limited resources. We

have proposed a novel decentralized pricing method that aims to encourage resource

sustainable behavior in a population of selfish online learning agents having noisy first-

order feedback by leading them toward a generalized Nash equilibrium of the game with

corresponding coupled constraints.

The given results are based on the assumption that the utility functions and the con-

straint violation functions are continuously differentiable and that the utility function is

strictly convex. However, it is straightforward to generalize the results in order to handle

(not-necessarily continuously differentiable) convex function by replacing the gradients

with subgradients, and by involving, besides, the notion of convergence to a set (see [76]).

The latter is necessary since the set of variational Nash equilibrium SOLpQ,vq in the

convex utility case is in general not a singleton. The simplification made in this work is

only for the sake of readability.

In the case that the martingale noise is persistent, the method gives a.s. convergence of

the population’s state to the generalized Nash equilibrium and consequently a.s. compli-

ance of the resource constraints in the asymptotic limit for the rich class of polynomially

decaying step-size policies of order γn “ Θpn´bq where b P p0, 1s. However, we were only

able to give this guarantee for the ergodic average of the population iterates. For the in-

deed population’s iterate, we only could show the a.s. convergence for b P p1{2, 1s. Thus

the case b P p0, 1{2s remains open.

In case where γn “ Θpn´1{2q, we were able to provide in the persistent noise case a

non-asymptotic decaying expectation bound of order Opln3{2
pnq{

?
nq for the amount of

resource constraints violations caused by the ergodic average of the population’s iterates.

This decay rate matches, up to the ln-factor, with the fundamental limit of the convergence

speed described by the lower complexity bound for black-box subgradient methods (see

Theorem 3.2.1 in [204]). Thus we expect that our result is optimal.

Another interesting occurrence we observed, both in the theoretical and numerical

investigations, is that the choice of mirror map might have an impact on the dimensional

dependence of the quality of MAARP. This effect is rarely considered in the literature

of the Nash equilibrium finding since it mostly uses the Euclidean projection as the

mapping which realizes the first-order update in the feasible strategy set (to name a

few: [84, 104,205]). In future work, we aim to exploit this aspect further.
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We also provided a non-asymptotic expectation - and high probability bound for the

distance between the ergodic average of the primal-dual equilibrium gap of the noisy

MDAL and the variationally nash equilibrium. An implication of this result is that if the

noise is persistent with ”power” σ2, a bound of order Opσ{
?
nq for fixed time horizon

and constant step size and a bound of order Opσ2plnpnq{
?
nqq for variable stepsize is

achievable.

10.1.3. Chapter 5: Impact of Agents’ Price Sensitivity on the

Resource Sustainable Pricing

In the Chapter 5 we extended the algorithm given in Chapter 4 by introducing an ad-

ditional parameter β specifying extrinsically the price sensitivity of the agents. The

discussions tantalized by this procedure provides an interesting insight into the answer

of the question of how much amount of control do a non-cooperative system needed in

order that a specific population’s goal is achieved. Our overall answer is that, to a certain

degree, sensitizing the agents regarding to the control variable, can encourage the selfish

agents working toward a mutual goal. However, sacrificing agents selfishness by a high

degree of control can be in contrary to the desired global goal.

If β “ 1, then the algorithm introduced in Chapter 5 is basically the MAARP given

in Chapter 4. We have shown that β “ 2, meaning that the weight of the price in

agents’ decision strategy is two times usual one, then the corresponding pricing mechanism

foster the resource sustainable behaviour. This is shown by the non-asymptotic bound

we provide in Chapter 5. Although the bound is comparable to the given in Chapter 4

respective to the order, it is more convenient than the bound given in Chapter 4.

By numerical experiments, we are able to show that the choice β “ 2 is superior to the

pricing mechanism given in Chapter 4, indication that the bound given in this chapter

can be improved. In this work we plan to exploit this aspect theoretically. Also we have

shown by simulations that if the sensitivity parameter is too high, i.e. higher than 2,

then the performance of the corresponding mechanism become worst, giving the hint that

excessive control by prices can be in opposite to the desired goal. It remains to show the

latter theoretically. We plan to do the latter in the future work.

10.1.4. Chapter 6: Resource-Aware Control via Pricing for

Congestion Game with Finite-Time Guarantees

Assuming that the agents are choosing their action based on the average historical cost of

the resource bundles and the logit choice rule, we introduce in this work a resource-centric

pricing mechanism which allows a non-asymptotic guarantee of the sub-linear growth of

the expected aggregated violation of the resource constraints of order Op
?
nq. In case that

the resource contraints are not overly strict, we observe numerically that the resource
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sustainability delivered by our method, does not come with significant discrimination

of the agents. For the general case, trade-off effect between resource sustainability and

population’s welfare might occur. In the future, we plan to explain this aspects formally.

10.2. Part III: Distributed Coordination Algorithms

In the last part of this thesis, we concerned again with the setting of multiple agents. In

contrast to the first part of this thesis, we assume that the agents has the ability to locally

communicate. Main aspects of our interest:

• the efficiency of the continuous-time distributed gradient method in face of gradient

noise,

• and the impact of informational bias to the opinion formation.

In the following we provide a summary and conclusion of the results of our findings:

10.2.1. Chapter 8: Stochastic Dynamic of First-Order

Flocking-based Distributed Optimization

In Chapter 8, we have analyzed a continuous-time stochastic distributed gradient descent

implementation which based on flocking with pure repulsion type and whose gradient

noise is Gaussian.

We have estimated the error between the corresponding proposal solution of each agents

and the indeed optimizer both in expectation and also in probability. The corresponding

bounds reflects both roles of the step size/gradient weight α acting antagonistically, as the

parameter dictating the convergence rate and as the parameter reducing the effect of the

accumulated deviation caused by noise (cf. (8.21)). We notice that the communication

strength β and the network structure λ2pLq reduces the negative influence of dimension

and number of agents to the cohesiveness of the iterate of each agents which has in turn

positive influence to the correctness of the proposal solution of each agents. Another factor

which robustifies the algorithm is the strong convexity of the function, which together with

the step size is able to annihilate the influence of instantaneous noise (cf. condition (8.22)).

We have discussed the trade-off between the parameters by considering cases where the

noise is persistent and/or vanishing.

We believe that under certain condition on the step size and noise volatility, the con-

dition (8.20) of boundedness of the gradient on the average path of the solution of (8.9)

is unnecessary to state. We aim to investigate this aspect in the future work. Another

direction for the future work is to extend the algorithm and analysis to the mirror descent

and Nesterov’s acceleration case.
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10.2.2. Chapter 9: Mesoscopic Stability of the Friedkin-Johnsen

Opinion Dynamics

In Chapter 9, we have provided an analysis of mixing property of the opinion dynamic

of a population of agents in face of disturbance by informational bias. We have observed

that the latter factor can cause the clusterness of the opinion of the population of agents.

We have introduced the notion of substochastic complementation giving an efficient

approximation of the opinion dynamic by cluster-independent dynamic. Based on this

notion, we have provided a novel measure for the degree of the cluster-dispersion of the

opinions caused by the informational bias. Also, we have analyzed the opinion behavior

for several limit cases of informational bias influence. Our conclusions is as follows:

• In case that the opinion of in-cluster agents almost determined by informational

bias, the dynamic of the in-cluster agents is almost uncoupled of the other agents

irrespective of the out-cluster agents’ behavior. In contrast, if the out-cluster agents

are under a great influence of informational bias, the degree of the uncoupling of

the cluster dynamic depends on the own structure of the cluster.

• In case that the influence of informational bias is negligible, the degree of clusterness

of the opinion dynamic can be arbitrarily. However, it can be approximated by the

quantity depending on the susceptibility constant and the eigenvector corresponds

to the eigenvalue with the largest absolute value.

Notice that one can also make advantage from this approximation by using it instead

of the whole network for further tasks such as e.g. further analysis network statistics,

since working with whole network is in some cases, e.g., in the case that the network is

of large-scale, complicated. Also this kind of approximation gives a more detailed and

concise view of the network. For instance, it allows one to find agents, which are (Katz-

Bonacich) central in the corresponding cluster, instead of only one agent central in the

whole network [206, 207]. In the future work, we aim to exploit this aspects more in

detail.
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