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Zusammenfassung

Die vorliegende Dissertation bearbeitet das Problem des Designs von Software der Biẗubertragungs-

schicht f̈ur auf einer homogenen Mehrkern-Prozessorarchitektur basierende Kommunikationsempfänger.

Dies beinhaltet die Auswahl von Komponentenalgorithmen sowie eines Berechnungs-Schedules, unter

Beachtung von M̈oglichkeiten der iterativen Verarbeitung und Parallelisierung. Die Arbeit verfolgt ei-

nen Ansatz zur automatischen suchbasierten Optimierung unter Ausnutzungder speziellen Problem-

struktur. Das Kriterium der Empfängeroptimierung ist dabei flexibel und kann als Utility-Funktion der

Performanz-Parameter̈Ubertragungsmodus, Signal-zu-Störverḧaltnis, Bitfehlerrate, Komplexität, Ver-

zögerung sowie Durchsatz angegeben werden. Die Arbeit beginnt mit einer Betrachtung von Standard-

empf̈angerarchitektur und -algorithmen für Turbo-kodierte MIMO-OFDMAÜbertragung. Danach wird

in Abhängigkeit des̈Ubertragungsmodus die generische Empfängerarchitektur aus bedingten Unabhän-

gigkeiten derÜbertragungsvariablen hergeleitet. Die Zerlegung in Empfängerkomponenten folgt aus der

mathematischen Problemstruktur der stochastischen Inferenz. Zur praktischen Implementierung werden

approximative Algorithmen zur Realisierung der verschiedenen Empfängerkomponenten betrachtet. Bei

iterativer Verarbeitung wird jeweils Information aus den anderen Empfängerkomponenten als a priori

Wissen verwendet. Die Zusammensetzung eines kompletten Empfängers aus Komponenten wird formal

beschrieben und im Hinblick auf die Performanz-Parameter untersucht. Eine Möglichkeit der schnel-

len Pr̈adiktion wird aufgezeigt, wobei eine Monte-Carlo Simulation des gesamten Empfängers nicht

nötig ist. Darauf aufbauend folgt die automatische Suche im Empfänger-Entwurfsraum mittels Graphen-

algorithmen. Im Vergleich zur Standardempfängerarchitektur erm̈oglichen die optimierten Empfänger

einen Empfang bei signifikant geringerem SNR bzw. eine Komplexitätsreduktion im niedrigen SNR Be-

reich. Weiter wird die Wechselwirkung zwischen der Leistungsfähigkeit der physikalischen Schicht und

der Ressourcenzuteilung betrachtet und eine Empfängerbewertung auf Netzwerkschicht in Abhängigkeit

von Protokollkriterien erm̈oglicht. Abschliessend wird beispielhaft die Implementierung eines SDR Test-

betts beschrieben, wobei Testbett-Parameter zur Veranschaulichung des Optimierungsverfahrens genutzt

werden. Die vorliegende Arbeit basiert auf den auf Seite191folgende aufgelisteten Publikationen.
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Abstract

The dissertation at hand deals with the problem of designing physical layersoftware for communica-

tion receivers based on a homogeneous multicore architecture. This comprises the choice of component

algorithms and computation schedule, considering iterative processing andpossibilities for paralleliza-

tion. The approach which is used is an automatic search-based optimization exploiting the special prob-

lem structure. The criterion for receiver optimization is flexible and can be specified as utility function of

the performance parameters transmission mode, signal to noise ratio, bit error rate, complexity, delay and

throughput. The dissertation begins with a review of the standard receiver architecture and standard re-

ceiver algorithms for Turbo coded MIMO-OFDMA transmission. Then the generic receiver architecture

is derived from conditional independencies of transmission variables, independence on the transmission

mode. The receiver split-up into components follows the mathematical problem structure of stochastic

inference. For practical implementation, approximative algorithms to implement thereceiver compo-

nents are treated in detail. In iterative processing, information from the other components is used as a

priori knowledge. The composition of a complete receiver is formally specified and analysed regarding

the performance parameters. A method for fast prediction is derived, which does not need Monte-Carlo

simulation of the complete receiver. Based on this, automatic search in the receiver design space using

graph algorithms is described. Compared to the standard architecture, the optimized receivers enable

reception at significantly lower SNR or complexity reduction in the low SNR range respectively. The in-

terrelation between performance of the physical layer and ressource allocation is looked at, and receiver

evaluation on network layer in dependence on protocol criteria is enabled. Concluding, example imple-

menation in an SDR testbed is described, where testbed parameters are usedto illustrate the optimization

method. The document at hand is based on the publications listed on page191and the following.
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Chapter 1

Introduction

1.1 Aims and Structure of the Text

This work has two aims: first, to find the optimal software design and implementationof a software

defined radio (SDR) physical layer, and second, to develop a realtime demonstrator for novel mobile

radio systems.

Conditions for the first aim (software design and implementation) are a givenset of transmission

parameters and performance requirements for the receiver. The software can run on a fixed number of

homogeneous processor cores with given instruction set.

Since the receiver’s function of reconstructing a transmitted packet from distortion by the radio channel

is a mathematical problem, chapter2 looks into the structure of this mathematical problem to explore the

possibilities for the software design. The generic receiver structure is derived, from which any specific

receiver structure can be generated by parameter choice. The generic structure is a breakdown of receiver

functionality into components. Each component solves a mathematical problem, but computation of the

correct solution is far too complex.

To find ways to make the components computable with a limited number of instructions and without

degrading their accuracy too much, chapter3 looks into approximative algorithms to implement the

components. Different algorithms can be found, showing a tradeoff between the number of instructions

and accuracy for each component: with respect to the complete receiver, Pareto efficient component

implementations can be found.

To yield a complete receiver, component implementations are combined in chapter 4. Since there are

different component implementations available, can be done in many ways. And according to the generic

receiver structure, the receiver’s components can be recomputed withupdated input from neighbouring

1



2 Chapter 1. Introduction

components, if the overall accuracy is not yet sufficient. Further, sometimes several components can be

computed at the same time if multiple processing elements (processor cores) areavailable.

To enable a quick comparison of different receiver candidates, chapter5 deals with fast determination

of a receiver’s performance parameters. A method is derived to quicklypredict the accuracy of the

concatenated processing without actually executing it. Other predicted performance parameters are the

sum number of instructions necessary to reconstruct a packet and the necessary processing time.

Chapter6 searches the optimal software as selection of component algorithms, computation order and

mapping to processor elements. This combinatorial problem is represented as a tree, and the search

uses tree traversal with branch and bound, where the search target may e.g. be minimal sum number of

instructions, minimal packet processing time or maximum throughput under BERand SNR constraints.

One conditions for the second aim of the work (development of realtime demonstrator) is to min-

imize development effort: the testbed intention is to demonstrate functionality, not to be prototype for

a commercial product. Another condition is to meet the performance requirement of executing modern

signal processing and coding for 20MHz 2x2 MIMO.

The demonstrator needs higher layer protocol functionality, which is dealtwith in chapter7.

The demonstrator follows the SDR approach and is described in detail in chapter8.

There are several relations between the two aims of the work. The demonstrator hardware is used as

example target for the automatic optimization method, i.e. parameters like the demonstrator instruction

set are used in the chapters3 to 6. Relations between physical layer optimization and medium access

control criteria are described in chapter7.

1.2 Turbo-Coded MIMO-OFDMA Transmission

Modern radio communication systems which face multipath propagation normally use OFDM trans-

mission – e.g. the standards 3GPP LTE, mobile WiMax, DVB-T(2) and WLAN 802.11a/g/n. It is often

combined with multiple antenna signal processing schemes (MIMO) to enhancespectral efficiency. One

driving reason for this is the possibility of low-complexity equalization, which can be performed inde-

pendently per subcarrier (also for MIMO). Modern systems further employ strong channel codes like

parallel concatenated convolutional codes (Turbo codes) or LDPC codes – both of which are fit for iter-

ative decoding.

A block diagram of a transmitter for Turbo-coded MIMO-OFDMA transmission is shown in Fig.

1.1- An information wordu is Turbo encoded with the desired code rate (puncturing, rate matching, e.g.
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Figure 1.1: MIMO-OFDM transmitter using Turbo code.

[CNB+08]) into code wordb. After the QAM modulation mapper, it becomes the vector of complex

symbolsx in the frequency domain. The diagram depicts joint encoding of different data streams (over

different transmit antennas), which is possible for single-user MIMO (SU-MIMO). For MU-MIMO,

joint encoding of all data streams to one terminal is also possible. The other case would be separate

encoding of each MIMO data stream (e.g. in LTE). After mapping the baseband symbols to subcarriers

and antennas, IFFTs are performed for the symbol vectors of each transmit antenna independently, before

cyclic prefices (CP) are added to guard against multipath propagation by creating periodicity for receiver

FFT processing.

1.3 3D WSSUS Channel Model

Channel variations over time are classified as large scale fading on the onehand and small-scale

fading on the other. Large scale fading means changes which occur over distances much larger than

one wavelength, especially path loss and shadowing (e.g. by buildings). Small scale fading describes

the effect of superposition of incident wave fronts taking into account their phase differences – small

scale thus means the effects in the distance order of one wavelength. An incident wave front at the

receive antenna positionp can be described by path delayτ, direction of arrivalΩ = {φ, θ}, and Doppler

frequency shiftν. For antenna arrays at transmitter and receiver, the antenna element positions are

denoted with the vectorspT andpR. The spreading function for propagation with discrete numberK of

Figure 1.2: Channel spreading functions according to [Gal07].
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rays only can therefore be written as [Fle00, Gal07]:

h(τ, ν,Ω) =
K∑

k=1

αk · δ(τ − τk) · δ(ν − νk) · δ(Ω −Ωk) (1.1)

A transmit signals(t) is received at receiver positionp as [Gal07]:

x(t, p) =
∫

R

∫

R

∫

S2
h(τ, ν,Ω)s(t − τ)e−( jkΩT p)ej2πνtdΩdτdν (1.2)

This description was obtained in [Fle00] as generalization from the Bello system equations [Bel63] by

Fourier transform along the spatial dimension at the receiver side. In [Gal07] the model is extended

again to include also the spatial dimension at the transmitter (direction of departure DOD, and direction

of arrival DOA). The spreading function then becomesh(τ, ν,ΩT ,ΩR). The 3-dimensional selectivity is

represented byh( f , t, p) (frequency-selective, time-selective and antenna-selective fading). The extended

system equations and their Fourier transform relationships are illustrated inFig. 1.2(if the diagram would

include DOD and DOA separately, it would be 4-dimensional and include 16 equations [Gal07]). For

transformation along the angular domain (2D transform, azimuth and elevation),the distance vectors are

normalized with the wavelengthλ to q = p
λ , yielding a ’modified’ Fourier transform [Gal07]:

h(τ, ν, p) =
∫

S2
h(τ, ν,Ω)e− j 2π

λ Ω
T pdΩ (1.3)

h(τ, ν,Ω) =
1
λ

∫

R3
h(τ, ν, p)ej 2π

λ Ω
T pdp (1.4)

The multidimensional channel autocorrelation in this form is given as (frequency-time-space correlation

function [Fle00, Gal07]):

R(∆ f ,∆t,∆qT ,∆qR) = E[h( f , t,qT ,qR) ·h∗( f + ∆ f , t + ∆t,qT + ∆qT ,qR+ ∆qR)] (1.5)

The autocorrelation function in frequency domain only is [Gal07]:

ρ(∆ f ) =
∫

R

∫

S2
R(∆ f , ν,∆qT ,ΩR)|∆qT=0 dΩRdν (1.6)
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The autocorrelation in time domain is

ρ(∆t) =
∫

R

∫

S2
R(τ,∆t,∆qT ,ΩR)|∆qT=0 dΩRdτ (1.7)

and the autocorrelation in spatial domain:

ρ(∆qt) =
∫

R

∫

S2
R(τ, ν,∆qt,∆qR)|∆qR=0 dνdτ (1.8)

According to the Wiener-Khinchin theorem, the power spectral density of awide-sense-stationary ran-

dom process is the Fourier transform of the corresponding autocorrelation function. The power delay

profile is therefore [Gal07]:

P(τ) =
∫

R

∫

S2
R(τ, ν,∆qT ,ΩR)|∆qT=0 dΩdν = E[|h(τ)|2] (1.9)

The power Doppler profile is:

P(ν) =
∫

R

∫

S2
R(τ, ν,∆qT ,ΩR)|∆qT=0 dΩdτ = E[|h(ν)|2] (1.10)

And the power angular profile:

P(ΩR) =
∫

R

∫

R

R(τ, ν,∆qT ,ΩR)|∆qT=0 dτdν = E[|h(ΩR)|2] (1.11)

The physical radio channel is sampled by the digital communication system: in space it is sampled at the

antenna positions, withNT transmit andNR receive antennas. It is sampled in time with period∆t at a

number of sampling frequencies with distance∆F. The sampled channel at timetn and frequencyFk (on

the sampling grid) is denoted as matrix:

H(tn, Fk) ∈ CNR×NT (1.12)

In the following the base band channel model is used for convenience. Channel correlation is especially

relevant for channel estimation in chapter3 and scheduling and link adaptation in chapter7.
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Figure 1.3: Standard receiver architecture for downlink (compare [MIJ08]).

1.4 Standard Receiver Architecture

In this section the standard receiver architectures for MIMO-OFDMA downlink and uplink are

shortly reviewed and their differences are highlighted.

1.4.1 Downlink

A block diagram of the downlink receiver (terminal receiver) is shown inFig. 1.3. In the following,

the main signal processing functions are described.

Coarse synchronisation: A mobile receiver needs to synchronize its time, frequency and (to a lesser

extend) sampling clock to the transmitter. Carrier frequency offset (CFO) is caused by oscillator mis-

match and relative movement, and is for OFDM divided into integer CFO (integernumber of subcarrier

distances) and fractional CFO. Initial information about time and frequency offset compared to the base

station is obtained by correlation using knowledge about a synchronisationpreamble which is contained

in the downlink signal. In the obtained correlation profile, the existence and position of a preamble is

determined by peak-to-average detection using thresholding.

Timing offset Preamble detection uses either cross-correlation with the known preamble sequence

or (with less complexity) autocorrelation of the received values exploiting adequate structure of the

sequence. A 2-fold periodic preamble in time domain with periodL is autocorrelated in [SC97]:

P(d) =
L−1∑

m=0

(r∗d+mrd+m+L) (1.13)
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Computation can be implemented as moving sum. For a constant channel, sample pairs of the two

preamble halves add up with the same phase (phase increase between two symbol halves). The energy

(used for thresholding later) is computed [SC97]:

R(d) =
L−1∑

m=0

|rd+m+L|2 (1.14)

And the correlation profile yielded as:

M(d) =
|P(d)|2
R(d)2

(1.15)

The threshold value is a tradeoff between preamble miss probability and false detection probability,

which both depend on SNR. If several receive antennas are available, maximum ratio combining (MRC)

can be employed to benefit from receive diversity. In a similar scheme [SBB95], autocorrelation has been

applied to the OFDM cyclic prefix – which finds the start of OFDM symbols, nota frame start marked

by a preamble.

Fractional frequency offset After timing detection using the peak-to-average threshold, the angle

of the peak

Φ̂ = angle{P(d̂)} (1.16)

gives the estimation of fractional CFO [SC97]:

∆̂ f =
Φ̂

πT
(1.17)

This fractional CFO is then compensated by multiplication with a complex oscillation.

Integer frequency offset [SC97] uses a second preamble OFDM symbol, which compared to the

first one is differentionaly modulated with sequencevk. The integer CFO (shift of 2g positions) can be

determined again by correlation:

ĝ = argmax
g

|∑k∈X x∗1,k+2gv∗kx2,k+2g|2

2(
∑

k∈X |x2,k|2)2
(1.18)

wherex2,k is the modulation symbol on subcarrierk in the second preamble OFDM symbolx2. The

integer CFO is then also compensated.
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Figure 1.4: Downlink frequency synchonization accuracy.

Transmit diversity for synchronization preambles To also exploit transmit diversity in case

of MIMO, [SZ03] uses a cyclically shifted Zadoff-Chu sequence per transmit antenna. Perfect cross-

correlation is maintained for a shift larger than CIR. With preamble periodNp, the shift can beNp/NT ,

for NT transmit antennas. Joint correlation at the receiver for CFO estimation is [SZ03]:

λ(m) =
m+Np−1∑

k=m

rH(k)r(k+ Np) (1.19)

Time and Frequency Offset Precompensation CFO causes inter-carrier interference (ICI) due to

receiver FFT processing (subcarriers loose orthogonality). Time offset causes phase rotation after re-

ceiver FFT and possibly inter-symbol interference (ISI, if outside CP). To avoid both effects, estimated

time and frequency offset are precompensated before receiver FFT [SFFM01]. Time offset is compen-

sated by selecting the start of the FFT symbol vector, frequency offset is compensated by multiplication

with complex oscillation. The two precompensation parameters are fed initially by coarse synchronisa-

tion, later by fine synchronisation.

Channel estimation: Channel estimation is normally enabled by transmission of pilot symbols which

are known to the receiver, so that the channel is sampled at the pilot positions. The receiver needs to

reconstruct the channel at the positions of (unknown) data symbols from the received pilot values, which

are corrupted by noise. The Wiener filter [Wie49] is the optimal noise reduction filter for a noisy signal

(in the minimum mean square error sense) if autocorrelation and noise variance are known. It is used
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for one-dimensional signals like speech as well as multidimensional signals likeimages (2D) and video

(3D) [Woo06]. The combination of Wiener filtering and interpolation to solve the channel estimation

problem is known as Wiener Interpolation Filter and has been described for OFDM channel estimation

in [HKR97]. It is normally applied to the time-variant channel transfer function. Afterremoving cyclic

prefix and performingN-point FFT, the signal in frequency domain is given as

Y[n, k] = X[n, k]H[n, k] + Z[n, k] (1.20)

whereY[n, k] is the received symbol on subcarriern in OFDM symbolk. As initial step (least squares

method), the receiver obtains noisy samples of the time-variant channel transfer function at the locations

of the known pilot symbols:

H̃p[n, k] =
Yp[n, k]

Xp[n, k]
= Hp[n, k] +

Zp[n, k]

Xp[n, k]
(1.21)

Noise suppression filtering based on the initial least squares estimates can be written as

Ĥp[n, k] =
∑

n0,k0

c∗[n, k]H̃p[n− n0, k− k0] (1.22)

wherec[n, k] are filter coefficients. The estimation Mean Square Error

MS E(c) = E{Ĥp[n, k] − Hp[n, k]} (1.23)

becomes minimal for the coefficients satisfying the Wiener-Hopf-Equation (follows from principle of

orthogonality [Hay01, HKR97]):

c[n, k]|opt = (R[n, k] +
I

S NR
)−1r[n, k] (1.24)

where r[n, k] is the crosscorrelation between the channel transfer valueH[n, k] at the position to be

computed and the pilots within filter range (values written as vector).R[n, k] is the autocorrelation

(values written as matrix) betweenH[n, k] at all the pilots within filter range. The OFDM channel

transfer function’s 2D correlation functionrH(∆t,∆ f ) = E{H(t1, f 1)H∗(t2, f 2)} can be separated into

time and frequency parts:

rH(∆t,∆ f ) = rH(∆t)rH(∆ f ) (1.25)
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Receivers use either a (less complex) static Wiener filter or an adaptive Wiener filter. For a static Wiener

filter the autocorrelation is assumed to be known apriori and normally predefined according to ’worst-

case’ assumptions (like maximum delay spread and maximum Doppler spread).This means assuming

less correlation between pilots than there will be typically, and the approach isreferred to as ’robust’

filter design – robust against filter mismatch [SHFS04]. Static ’robust’ filtering normally assumes a uni-

form multidimensional power density spectrum (for MIMO-OFDM with the dimensions delay spread,

Doppler spread and angular spread [SHFS04, Aue09]). From the power spectrum assumption, the chan-

nel autocorrelation follows by IFFT [OS09]. For the uniform spectrum case the correlation in time

direction becomes:

rH,uni f (∆t) = sinc(2π fD∆t) (1.26)

with sinc(x) = sin(x)/x, and fD being the maximum Doppler shift.∆t = ∆kts(L + N) with ts being the

sampling period andts(L + N) one OFDM symbol duration. The correlation in frequency direction:

rH,uni f (∆ f ) = sinc(πTm∆ f )ej2πτshi f t∆ f (1.27)

with Tm = Lts as the maximum delay,τshi f t = Tm/2, ∆ f = ∆F∆l with ∆F being the subcarrier dis-

tance. With the distances [∆k ∆l] from pilots inside filter range, the coefficients can be computed from

(1.25) and (1.24). SNR estimation can be done by singular value decomposition based subspace meth-

ods (projection onto noise subspace, normally static filter) [ESB+98], or with IFFT from CFR – signal

and noise variance are then contained in the CIR area of an OFDM symbol, and outside only noise

variance [JL07]. To enable channel estimation for MIMO, pilot positions are exclusive per transmit an-

tenna (other transmit antennas do not transmit on these positions, zero symbol). The described Wiener

interpolation filtering can then be performed without crosstalk per transmit-receive antenna pair. E.g.

[LI10b] illustrates filter performance simulatively by measuring channel estimation meansquare error

for different channel autocorrelation and noise parameters. The assumed underlying channel model is

the ’urban macro’ type from [3GP06]. The gain of increasing filter size is illustrated in Fig.1.5a, where

the resulting MSE is shown over channel SNR. Fig.1.5bshows a comparison of a 2D filter with with

different filter types, namely a 1D filter in frequency direction and a cascaded2x 1D filter (separable,

applied first in frequency direction and then in time direction). All three filtersuse the same amount of

pilots for Wiener filtering. The effect of degrading accuracy with increasing terminal velocitiy (different

max. Doppler shift) is illustrated in Fig.1.5c.
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Figure 1.5: Channel estimation accuracy.

Fine synchronisation, tracking: Based on channel estimation, time and frequency offsets can be re-

estimated with higher accuracy and fed back to pre-compensation before the FFT.

CFO is described as time domain multiplication with the complex oscillationej 2π∆φn
N , where the

phase increases∆φ for neighbouring samples. Here it is assumed that the frequency dispersive channel

is constant for two neighbouring OFDM symbols. A received symbol in time domain (nth sample inmth

OFDM symbol) is:

ym,n =
1
N

{ N−1∑

k=0

Xm,kHke
2π kn

N

}
·ej 2π∆φn

N︸  ︷︷  ︸
CFO

+nn (1.28)

whereXm,k is the transmit symbol on thekth subcarrier. After FFT the received symbol on thelth

subcarrier is:

Ym,l =
1
N

N−1∑

n=0

{ N−1∑

n=0

Xm,kHke
j2π kn

N

}
·ej 2π∆φn

N ·e− j2π ln
N + Nm,l (1.29)
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With the approximationej 2π∆φn
N ≈ 1+ j 2π∆φn

N , this can be rewritten as [AW02]:

Ym,l ≈ HlXm,l
1
N

N−1∑

n=0

(1+ j
2π∆φn

N
)

︸                    ︷︷                    ︸
≈ejψ, common phase error

+
1
N

N−1∑

k=0,k,l

HkXm,k

N−1∑

n=0

(1+ j
2π∆φn

N
)e− j2π (l−k)n

N

︸                                                    ︷︷                                                    ︸
intercarrier interference

+Nm,l (1.30)

i.e. the received symbols undergo a common phase error (same for all subcarriers) and intercarrier

interference. Since the channel is estimated including the common phase error, CFO and ’clean’ channel

are not separable in one OFDM symbol. But between neighbouring OFDM symbols it is:

E(Ĥm.l − Ĥm−1,l) = ej2π∆φ (1.31)

The CFO can thus be estimated by maximum ratio combining over subcarriers (and receive antennas if

several are available):

∆φ̂ =
1
2π
∠

N−1∑

l=0

Ĥm.kĤ∗m−1,l (1.32)

Results for a sequence of OFDM symbols can be filtered. Accuracy increase from inital coarse CFO

synchronization to CFO tracking is illustrated in Fig.1.4b. Precompensating CFO before receiver FFT

avoids it causing ICI.

Delay: Time offset is tracked to fully use the CP against delay spread, and to avoid possible filter

(phase) mismatch of a static Wiener channel estimation filter. Timing offsets, as long as not exceeding

the CP, cause only a circular shift of the samples of an OFDM symbol in the time domain. According to

the Fourier transform shift theorem

F (yn−m) = Yk ·e
−2π j

N km (1.33)

this means a phase rotation which linearly grows over subcarriers. To estimate the time offset, either a

regression over the phase of the channel samples can be performed [MIJ08] – which is biased by the

channel’s own CIR (decreasing phase over subcarriers). Or preferably it can be estimated using an IFFT

transform from CFR to CIR, followed by a sliding window search for the CPposition which contains

maximum CIR energy [SFFM01].

MIMO symbol demapping, LLR generation After channel estimation, the MIMO streams are sep-

arated according to the MMSE criterion, to enable per-stream demapping. With noise varianceσ2, the
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MMSE receiver filter matrix for separation of the streams is given by:

Gbias= (HHH + σ2I )−1HH

The unbiased version isGunb = SGbias, whereS is the diagonal matrix which removes the bias introduced

by the MMSE criterion [Zim07]:

S = diag
( 1
(GbiasH)1,1

, . . . ,
1

(GbiasH)NT ,NT

)

The equalized symbol vector is:

x̂ = Gunby

The receiver then computes a log-likelihood ratio (LLR) for each transmit bit c:

L(c) = ln
P(c = +1)
P(c = −1)

(1.34)

For ease of notation (and implementation), a bitc can take the values±1 instead of 1 and 0. The LLR for

transmit antennai and bit positionj is (under assumption of Gaussian noise and Max-Log approximation

per stream):

L(ci, j) = −
1

2σ2
eq

(
min

xi∈X1
j=1

|x̂i − xi |2− min
xi∈X1

j=−1

|x̂i − xi |2
)

whereσ2
eq is the noise variance on the stream after filtering.xi ∈ X1

j=1 means the set of symbols where

the bit whose LLR is to be computed has the value 1,X1
j=−1 is the complement set. The applied max-log

approximation considers only the Euclidean distances to the closest two symbolcandidates (with positive

and negative bit, respectively). For separable modulation sets (like usede.g. in LTE), implementation

reduces to independent one-dimensional table lookups for inphase andquadrature bits.

Channel decoder: After de-ratematching (depuncturing and de-interleaving), the Turbo decoder is run.

A Turbo decoder consists of two constitutional decoders (fitting to the two encoders), and Turbo inter-

leaver and Turbo de-interleaver. The constitutional soft-input soft-output convolutional decoders use the

BCJR algorithm [BCJR74]. Normally systematic constitutional codes are used, so that the two decoders

only need to exchange extrinsic information for the information bits (and not also the parity bits). A

block diagram of the Turbo decoder is shown in Fig.1.6. The constitutional codes can be identical (like

e.g. the 8-state decoders in LTE [3GP09]). As example of a pseudo-random Turbo interleaver, quadratic
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Figure 1.6: Turbo decoder structure (compare [LC04]).

polynomial permutation (QPP) is used in LTE [Nim08]. Normally 3-11 Turbo decoder iterations are run,

accuracy of the LLR signs improves over iterations. The information bits areobtained by quantizing the

information bit LLRs to their sign.

1.4.2 Uplink

The structure of an uplink OFDMA receiver is illustrated in Fig.1.7.

Coarse synchronization: Random Access ChannelFor entering the system by non-synchronized

transmission, a random access channel (RACH) is used (its position in time and frequency is broadcast

in the downlink). To guard against a long round-trip delay, the RACH is muchlonger in time than one

OFDM symbol (which is only guarded against delay spread, not round-trip delay). To allow for reduced-

complexity computation of correlation using FFT-based fast (cyclic) correlation, a RACH preamble con-

tains an own (extra long, for round-trip delay) cyclic prefix. RACH and RACH preamble are illustrated

in Fig. 1.8. Detection of RACH preambles is done on the time domain sample stream before OFDM

cyclic prefix removal and the receiver FFTs. A large FFT (fitting the preamble sequence length) of the

time domain samples in the RACH window is computed, followed by elementwise multiplicationwith

Figure 1.7: Standard receiver architecture for uplink (compare [ZI09]).
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Figure 1.8: Uplink random access channel (RACH).
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Figure 1.9: Peak-to-average threshold for preamble detection [ZI09].

the stored FFT of a preamble [DPSB07]. The resulting vector is IFFT transformed, followed by peak

to average detection (comparison to a threshold value) [WHZ06]. If a peak is detected, the round-trip

delay estimate is given by the peak position and phase. The peak-to-average threshold value should both

avoid preamble misses and false detections in the receiver operating SNR region (illustrated in Fig.1.9a

and1.9b). After detection of an initial ranging preamble, the base station protocol stack instructs the

terminal to adjust its clock to compensate the round-trip delay (timing advance) –since the base station

is/has reference time and frequency.

Channel estimation uses Wiener filtering like in the downlink; pilots are transmitted in the resources

allocated to a terminal. To provide uplink channel knowledge to the base station also on other subbands,

the base station can command transmission of a sounding signal. The Wiener filter is applicable also to

the sounding signal. The error vector magnitude (average squared distance of symbols from their ideal
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Figure 1.10: Influence of velocity, synchronization offsets and transmission bandwidth.

locations in the complex plane) after equalization is illustrated in Fig.1.10afor different noise levels and

velocities (Jakes Doppler Spectrum). Uncoded bit error rates without CFO and with two different CFOs

(two terminals) and compensation are illustrated in Fig.1.10bfor different bandwidths.

MIMO demapping and Turbo Decoding use the same algorithms as described for the downlink. Fig.

1.11aillustrates resulting bit error rates (BER) after turbo decoding for different modulation levels for

small packet size and different terminal velocities [ZI09]. Fig. 1.11billustrates frame error rates (FER)

for intermediate packet size.

Differences to downlink processing In OFDMA uplink, transmission of a terminal is non-continuous.

Considering the transmission gaps (in time and frequency), tracking of time and frequency offsets can

still be applied [IZK08]. Since the remaining offsets are individual per terminal, receiver-based pre-
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Figure 1.11: BER and PER for different modulation and velocity.
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compensation before FFT is not possible (and also not wanted, since the BS is reference). After receiving

a timing advance instruction, the terminal sets a timer to switch it to ’unsynchronized’ mode – uplink

transmission then requires transmission of a new RACH preamble. The BS cancommand an adjustment

of timing advance with a certain granularity and reset the terminal’s synchronization timer [3GP07].

Similar to timing advance there would also be the possibility to command a frequency advance with

certain granularity (to reduce ICI).

1.5 Noise, Interference and Countermeasures

Noise can be countered by increasing packet size and using a strong code (apart from increasing

transmission power). The difference between thermal noise and interference is that interference is struc-

tured: it has non-Dirac shaped autocorrelation and also has code structure.

Interference Randomization A (pseudo-)randomization is used by interfering transmitters to avoid

interference with same structure. The receiver treats interference as noise. The decoder effects coding

gain for input with the adequate structure – and an effect of interference randomization is to avoid apply-

ing this gain also to interference. Current cellular systems use interference randomization in the form of

terminal-specific scrambling (LTE) or (pseudo-)randomized OFDM subcarrier mapping (Wimax). Fig.

1.12shows an example (assuming same constant channel and QPSK modulation),where randomization

enables communication at negative SIR.
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Figure 1.12: Interference randomization [ipa10a].

Interference Suppression The receiver treats (white) noise and interference together as coloured

noise, and applies filtering to improve SINR. This approach needs an estimateof both noise and interfer-

ence statistics (or their joint statistics). An example is MIMO stream separation with known interference

directions and powers (sometimes called ’interference rejection combining’).

Interference Coordination and Interference Alignment A signalling protocol is used to avoid or

reduce interference. One example is LTE, where cell edge users fromneighbouring cells are scheduled in

different subbands, and the schedulers semi-statically negotiate subband transmit power levels [3GP10b].

A generalization from this would be multi-cell scheduling. Another example is cognitive radio using

spectrum sensing. The aim is to only transmit when not causing (too much) interference. The ’full-

blown’ case is Interference Alignment [CJ08], where all transmitters have full channel state information

and jointly precode to orthogonalize signal subspace and interference subspace at all receivers.

Interference Cancellation The approach is to decode and subtract interference at the receiver. Inter-

ference is treated as separate signal. Interference cancellation at the transmitter according to dirty paper

coding [Cos83] needs channel state information (which renders it somewhat unpractical). Interference

cancellation at the receiver needs channel estimation also for the interfence channel, and knowledge
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Figure 1.13: Interference cancellation [ipa10b].

about the interference signal structure. An example is again MIMO detection – successive detection of

separately encoded MIMO streams. The principle can also be applied to successive detection of different

transmission systems using overlapping channel ressources. An implementation obstacle is that the in-

terference reduces the available ADC dynamics. An illustration of interference cancellation in the LLR

domain is given by Fig.1.13. A special case of interference cancellation is the concept of antenna can-

cellation [CJS+10], which can be described as echo cancellation in the analog domain (before LNA and

ADC) to allow for full-duplex transmission/reception at the same frequency — using multiple transmit

antennas whose waves cancel out at receive antenna positions.

Joint signal and interference detection While interference cancellation uses successive detection,

this more complex approach detects using the joint model of signal and interference. Examples are

MIMO maximum likelihood detection, or the concept of multi-cell joint detection (sometimes called

’coordinated multi-point’).
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1.6 Software Defined Radio Baseband Hardware Model

There are different definitions of ’Software Defined Radio’. A common one is that baseband modula-

tion and demodulation are performed in software. Recent multicore processors for baseband processing

in the terminal are the EVM (embedded vector processor [BHM+05]), the MUSIC chip [Ram07] and the

Sandbridge processor [GIM+06]. For high-end terminals an SDR implementation offers a cost advantage

due to smaller (cheaper) silicon area: in case of many functions which are not all needed at the same time,

only a small increase in code memory is necessary [Ram07]. Recent multicore DSPs for base station base

band processing are TCI6488 [Tex07] (C64x+ cores) and MSC8144 [Fre07] (Starcores). Channel decod-

ing is always coprocessor accelerated, also possibly FFT processing. Some related multicore examples

from high performance computing are the Cell processor [KDH+05], Tilera [Til09], Larrabee [SCS+08]

and Tesla [NVI07]. Physical layer processing in the testbed (chapter8) is implemented on the Cell. The

main topics of this thesis are receiver algorithms, their optimization and softwareimplementation. Hard-

ware criteria like area and power consumption are not considered. A homogeneous multicore processor

architecture is assumed, allowing to flexibly distribute (or dynamically allocate) computational power

between receiver functions.

1.7 Search Based Software Engineering

Search based software engineering means the approach of applying search algorithms for optimiza-

tion to software engineering problems. It has been applied to problems in software testing, requirements

analysis, software design, software development and software maintenance. A list of example applica-

tions is given in [Har07].

[KWA+09] describes a design flow for co-design of hardware and software for SDR. [WDS10] also

relates to the problem of joint design of hardware and software for embedded systems, and formulates it

as two coupled optimization problems (’hardware knapsack problem’ and ’software knapsack problem’;

the hardware solution must provide sufficient ressources for the software solution). After partitioning of

system functionality into hardware and software, different configuration options remain both in hardware

(e.g. clock speed) and in software (e.g. image resolution), which are to bejointly optimized.

The document at hand deals with communication receivers whose functionality is mainly realized

in software. The desired result is an optimization of the software implementation of receiver algorithms

(software part of the two coupled problems), in dependence on the underlying hardware (instruction set

etc.). The mathematical problem structure and signal processing and decoding algorithms of commu-
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nication receivers offer a wide tradeoff between accuracy, complexity and processing delay. Software

complexity can be measured as processor cycles on target processor core(s). The special communication

receiver problem structure allows to quantify accuracy using an information theoretic measure (namely

mutual information), even for intermediate processing results. The communication receiver software

design problem therefore proves especially suited for search based optimization.





Chapter 2

Generic Receiver Architecture

In this chapter, stochastic inference frameworks are shortly treated, namely (loopy) Bayesian belief

propagation, Kullback-Leibler (KL) divergence minimization and Bethe free energy. The corresponding

graphical models are shortly reviewed, especially factor graphs. The joint probability density function

of receiver random variables is factorized exploiting conditional independencies between variables, and

the resulting generic receiver structure is illustrated as graphical model for single-user and multi-user

reception and concatenated channel codes. This chapter is a breakdown of the receiver into components

(and their connections) which perform a posteriori probability (APP) computation on variable subsets,

to iteratively approximate the joint a posteriori probability. The components themselves are described in

detailed in chapter3.

Stochastic inference and the related graphical models (illustrating conditional dependence and in-

dependence of variables) are described in [Pea88, Bea03]. Bayesian belief propagation is derived in

[Pea88] as propagation of local ’beliefs’, which corresponds to sequential updating of probability dis-

tributions according to Bayes’ theorem. It has originally only been intendedfor graphs without loops,

i.e. trees [Pea88]. Propagation of any initially known probability densities (’evidence’) through the

tree computes the correct a posteriori probabilities. The algorithm is generalized as ’summary propaga-

tion’; the sum-product algorithm and corresponding factor graph modelfor illustration are described in

[KFL01]. Bayesian belief propagation yields the correct joint a posteriori probability density function

when the variable dependency structure is a tree (no loops) — for arbitrary topology it can be used as

approximation [Pea88, Mac04] (iterative approximation, as local beliefs then propagate in loops). Loopy

belief propagation is also discussed in [JN02, RU08], its convergence for graphs is discussed in [WF01].

While Belief propagation works on directed graphs, the Bethe free energy inference works on undirected

graphs (Markov random fields). Different stochastic inference frameworks are described and compared

23
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in [YFW01, YFW05, Min05, AS06]. The relation between free energy and belief propagation is de-

scribed in [YFW01], the correspondence of iterative maximization of a posteriori probabilitiesversus

minimization of KL divergence is given in [AS06].

Inference frameworks have been applied to understand as well as to generate algorithms for receivers.

In [MMC98] it is shown that the standard Turbo decoding algorithm is an instance of loopy Belief

propagation. Factor graphs have been applied to (iterative) receivers including symbol demapping in

[WS01, Wym07]. KL divergence minimization has been used for CDMA reception in [HLR+08] and for

OFDM reception in [MKF+09]. The Bethe free energy approach has been applied to iterative receivers

in [LL09].

2.1 Bayesian Inference

Bayesian inference for trees A Bayesian network is a directed acyclic graph (DAG), where random

variables are represented as nodes. Conditional independencies between nodes are given by the d-

separation property of the DAG [Bis06]. Probabilistic inference is done by local message-passing in

the tree (i.e. only between neighbouring nodes). To avoid counting information twice during inference,

the aposteriori probability of each variable is split into two parts: the ’causal’ supportπ (for ’probability’)

and the ’diagnostic’ supportλ (for ’likelihood’). The ’belief’ (aposteriori probability) of a variableb is

computed as:

BEL(b) = αλ(b)π(b),

where the ’causal’ supportπ(b) is the probability density of the variableb, conditioned on the evidence

e+ in the graph propagated to the node through its parents:

π(b) = P(b|e+).

The ’diagnostic’ supportλ(b) is the probability of the evidencee− propagated to nodeb through its

children, conditioned onb:

λ(b) = P(e−|b)

α always denotes a constant to normalize a probability density. Incoming messages from several children

a1 . . .aJ are combined as:

λ(b) =
J∏

j=1

λa j (b)
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The combination of incoming messages from several parentsd1 . . .dK is [Pea88]:

π(b) =
∑

d1,...,dK

P(b|d1, . . . ,dK)
K∏

i=1

πb(di)

The message sent to parentdk is computed as [Pea88]:

λb(dk) = α
∑

b

λ(b)
∑

di : i,k

P(b|d1, . . . ,dK)
∏

n,k

πb(dn)

The message sent to childa j is:

πa j (b) = α
BEL(b)
λa j (b)

Each node only has to ’know’ its probability conditioned to that of its immediate parents.

For graphs (with loops) For exact marginalization, the graph can be transformed into a tree using the

junction tree algorithm [LS88], where cycles are eliminated by clustering them into single nodes. An

example would be to implement a Turbo decoder by applying the Viterbi algorithmto the supertrellis

(which hugely increases complexity).

A low-complexity approximation alternative is to just apply belief propagation to the graph (loopy

belief propagation, LBP) [Mac04]. For the case of more than two factor nodes (more than one cycle),

the sequence of factor node updates (local message propagation) may influence convergence behaviour.

2.2 Factorizing Joint Probability Density Function

MIMO transmission at time instancet over the channel matrixH( j,t) of the jth OFDM subcarrier is

denoted as

y( j,t) = H( j,t) · x( j,t)(b( j,t)) + n( j,t). (2.1)

We assume that the channel does not have memory, which can also be considered as subcarrier model in

MIMO-OFDM transmission.b( j,t) is a vector of transmit bits as part of the complete codewordb, x( j,t)

is the corresponding vector of modulated symbols. The complete set of received symbol values of the

message (all time instances) is denotedy. The transmitter uses Turbo coding, so that the code wordb

consists of the information bitsu, parity bitsc1 of the first constituent encoder and parity bitsc2 of the

second constituent encoder. For a single bit of the bit vectorb at positioni it is written bi . Fig. 1.1 on

page3 illustrates the encoding and modulation signal flow at the transmitter.
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Figure 2.1: Factor graph of joint probability density. Variable nodes are circles, factor nodes are squares.
’Evidence’y is shaded. All variable nodes are vectors,H(t) are matrices [ipa10c]

Maximum receiver accuracy would be reached if computing the maximum likelihood solution on

codeword basis:

û = arg max
u
P(u|y)

As this is practically infeasible, the practical approach is an iterative local approximation of the informa-

tion bit APPs with subsequent binary quantization. The joint probability density can be factorized:

P(u, y) =
(∏

j,t

fDem(b( j,t), y( j,t),H( j,t))
)
· fDec1(u, c1) · fDec2(u, c2) · fCE(y, x) ·

(∏

j,t

fMap(b( j,t))
)

which corresponds to a demapper for each different time instance, the two constituent decoders, a soft

symbol mapper for each time instance and channel estimation (for all symbol positions of the code word).

The received vectorsy are ’evidence’. The factorization is illustrated in Fig.2.1 (using a factor graph

notation similar to [Bis06]). The factor graph for multi-user MIMO (MU-MIMO) is illustrated in Fig.

2.2for two users: demapping is performed jointly, decoding separately.
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Figure 2.2: MU-MIMO: joint MIMO demapping, separate decoding. [ipa10c]

2.3 Receiver Components

This section describes the update offactor nodesandvariable nodesfrom the generic receiver archi-

tecture (Fig.2.1) and specifies the messages passed between them.

Factor nodes perform APP computation for the neighbouring variable nodes. APP computation is

an improvement over likelihood computation, if a priori information is available (apart from the non-

informative prior). Expressed in terms of the maxima of the respective densities, maximum a posteriori

(MAP) is at least as accurate as maximum likelihood (ML). To avoid prematurequantization, the com-

plete densities are to be computed and exchanged. For complexity reduction inimplementation, densi-

tites are normally represented by one or a few parameters, e.g. mean APP ormax. APP (Dirac), or mean

and variance (Gaussian) etc. For bit variables, a complete probability density can be expressed in one

number as LLR.

After the last node update, parameter estimates are then obtained by quantization: taking the mean

value of the APP or its maximum (block MAP instead of symbol MAP).

MIMO Demapper Digital transmission has a discrete modulation alphabet, thei possible MIMO vec-

tors are denotedxQi. Although not necessary in general, for implementation the estimated density ofa

channel sample is assumed to be a Dirac distribution (i.e. quantized to one value). The demapper for
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time instancet and subcarrierj then computes and outputs for each bitbi of the codeword fragmentb( j,t):

P(bi) =
∑

xQi

P(bi |xQi,H( j,t), y( j,t))P(xQi) =
∑

xQi

P(bi |xQi,H( j,t), y( j,t))
∏
P(bi) (2.2)

The bit density is conditioned on all valid modulation vectors, where a priori probability information

about the modulation vectors (from a priori bit probabilities) is used. The non-informative prior would

be the uniform distribution. There areMn possible transmit vectors when transmitting with modulation

constellation sizeM onn antennas (n log2 M bits inb( j,t)).

Constituent Decoder The decoder uses a priori codeword probabilities (from a priori bit probabilities)

and conditions on all valid codewordsv from the codebookV. Decoder 1 computes and outputs for each

bit bi of u andc1:

P(bi) =
∑

v∈V
P(bi |v)P(v) =

∑

v∈V
P(bi |v)

∏
P(bi)

There are 2K valid codewords for a transmission withK information bits, whereK is the length ofu.

The computation can be reformulated as summation over states of the code trellis and efficiently imple-

mented using the BCJR algorithm [BCJR74]. Decoder 2 makes a corresponding computation involving

a summation over the valid codewords of constituent code 2.

Soft Mapper The soft mapper computes the probability density of a transmit symbol (vector) from bit

probabilities. Conditioning is therefore on all possible bit combinations of the length corresponding to

one symbol (vector).

P(x) =
∑

b

P(x|b)P(b) (2.3)

For pilot positions soft mapping is not needed, pilot symbols have a priori known Dirac distributions.

Channel Estimator The channel estimator estimates the probability density of channel samplesH( j,t),

using received values within a surrounding estimation area – e.g. coveringthe complete area where the

codeword is transmitted – and also uses probabilities for transmit symbols within this area:

P(H( j,t)|YA) =
∫

XA
P(H( j,t))|YA,XA)P(XA) (2.4)

whereA is the estimation area including neighbouring symbols from position (j.t). YA andXA are the

random vectors of transmit symbolsx and received valuesy insideA. The integral is used in the formula

to cope for the general case where the densities of transmit symbols are not modelled as Dirac distributed
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by the receiver. The model for the conditional probability normally uses channel autocorrelationR and

noise varianceσ2
N, so that noise reduction Wiener filtering [Li00] can be performed.

Variable nodes For illustration of variable node update processing, Fig.2.3 is used, which depicts

message passing of LLR vectors for iterative demapping-decoding. An LLR L(c) is equivalent to the

probability distribution of the corresponding bitc:

L(c) = ln
P(c = +1)
P(c = −1)

, (2.5)

The inverse relations between LLR and the probability of the bit being positive or negative are:

P(c = ±1) =
e±L(c)/2

e+L(c)/2 + e−L(c)/2
. (2.6)

The nodes of vector variablesc1 andc2 have links to two factor nodes and simply forward messages,

e.g. L(dec1)
a (c1) = L(det)

e (c1) . Nodeu has links to three factor nodes and therefore computes an outgoing

message as (elementwise) multiplication of the incoming messages from the respective two other links.

In the log-APP domain the multiplication is an addition:L(det)
a (u) = L(dec1)

e (u) + L(dec2)
e (u). When the

iterative update of nodes is to be stopped, the decoded message is obtainedas binary quantization of

Lp(u) = L(det)
e (u) + L(dec1)

e (u) + L(dec2)
e (u).
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Figure 2.3: Message flow for iterative
demapping-decoding consisting of LLRs
[IB10].

Scheduling Factor Computation The order of node updates is arbitrary (although it does not make

sense to update a node when there is no new message on an incident link - theoutput would remain

the same). One possibility is to iteratively update all variable nodes at once and then all factor nodes

at once, but for practical implementation a reduction of computational effort is wanted. The normal



30 Chapter 2. Generic Receiver Architecture

MIMO receiver processing scheme for Turbo coded transmission is yielded as special case with following

schedule: first update all demappers once and the variable nodes; theniteratively update decoder 1,u,

decoder 2, andu. For iterative demapping-decoding, demapper updates can be mixed into theschedule.

It is also possible to update e.g. only a subset of the demappers (not all time instances).



Chapter 3

Component Algorithms Performing

Approximate APP Computation

This chapter discusses details of the receiver components (factor nodes of chapter2), with a focus on

complexity-reduced approximative APP computation. Several algorithms aredescribed and compared

to characterize the accuracy/complexity tradeoff of each component. A second focus lies on accuracy

improvement with growing a priori information.

3.1 Channel Estimator

The algorithms in this section are based on Wiener filtering. Compared to the standard approach (Sec.

1.4) there are two differences: filtering is adaptive to changing channel statistics, and channel estimation

is soft data-aided. For a non-informative prior of data symbols, channel estimation complexity can be

considerably reduced – therefore section3.1.2describes ML channel estimation for the first iteration,

and section3.1.3describes the APP version for later updates.

3.1.1 Channel Statistics Estimation and Tracking

For adaptive Wiener noise suppression filtering both in ML and APP channel estimation, channel

and noise covariances need to be estimated and tracked. The channel statistics are estimated here from

pilot positions. In this formulation, channel and noise statistics parameters are not updated by Bayesian

inference (it is of course possible to extend the estimation to also use data positions). The adaptive

filtering is based on parametric tracking of multidimensional correlation of the MIMO-OFDM channel

transfer function and SNR (in uplink per user). Initialization assumes minimum (’worst-case’) pilot

31
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correlation (robust filtering as in1.4).

Parametric multidimensional PSD tracking Motivation for adaptive filtering is to exploit as much

correlation between pilots as possible. This means that the channel autocorrelation is to be estimated

and tracked. Fig.3.1illustrates differences between available time direction correlation for different user

velocities, assuming 2.1 GHz carrier frequency and maximum velocity of 400 km/h (worst case, e.g.

high-speed train).

Channel correlation can be estimated directly or using the power spectral density (Sec.1.3). Here

the latter approach is chosen. In uplink, there are also remaining uncomponsated synchronization errors

(per-user time and frequency offsets), which in difference to the downlink cannot be precompensated by

the receiver before FFT. [JL07] uses a 2-parametric PSD model, assuming Gauss spectra for delay spread

and Doppler spread. Adding the two synchronization offsets, here a 4-parametric PSD model is tracked.

[YA08] points out that synchronization errors may bias spreading estimation, which is a motivation to

estimate these parameters jointly or at least independently. The 2D model (forOFDM) is illustrated

in Fig. 3.2, assuming uniform spectra. The width of the window in Fig.3.2 indicates delay spread,

the height indicates Doppler spread and the location of the pointC shows time and frequency offset

(shifting the spectrum). The number of parameters to describe the PSD can of course be increased (e.g.

using distribution moments), which increases necessary estimation effort. There is a tradeoff between

estimation accuracy and estimation time, which is essential for tracking a time-varying spectrum.

A block diagram of the resulting (multi-user) uplink adaptive channel estimation is shown in Fig.3.3.

For complexity reduction, synchroniation offset compensation (by phase rotations) and noise reduction

filtering are separated, which allows for pre-compensation of a small set of filter kernels (the filtering

approach is detailled in Sec.3.1.2and3.1.3).

Figure 3.1: Time direction channel autocor-
relation for different velocities [KID10].
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Figure 3.2: 4-parametric model of 2D power
spectral density, assuming uniform distribution
[KID10].
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statistics tracking and adap-
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tering [KID10].

Delay and delay spread estimation There are different approaches for delay and delay spread estima-

tion, e.g. [MZB00, YLCC00, AJ04, WKP01]. Here, the begin and end of delay spread are determined

by thresholding in an estimate of the power delay profile [KID10]. Beginning with the LS channel es-

timation samples, windowing in frequency direction is applied to avoid leakage byFourier transform

from frequency domain to delay domain. The PDP estimate is averaged using asliding window in time

direction over several OFDM symbols.

Frequency offset and Doppler spread estimation References for Doppler spread estimation include

[YA08, SL03, JL07]. The time-direction estimation window should be longer than the channel coherence

time. Analogeous to delay and delay spread estimation, frequency offset and Doppler spread could be

estimated by thresholding in the power Doppler profile. Here, the direct approach using the (absolute

value of) time-direction autocorrelation (using LS channel estimation samples)is taken. [SL03] searches

for the first zero crossing, [JL07] for the minimum extreme value. To also yield a result in the case of

Gaussian correlation shape (Gaussian spectrum), here the 10% crossing has been chosen. Frequency

offset estimation uses the maximum ratio combing formula as in Sec.1.4(Eq. 1.32).
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MIMO correlation estimation Either parameters of power angular spread are tracked (power angular

spectrum, would fit nicely into the picture of multidimensional PSD tracking), or directly the correlation

between elements of the MIMO matrix are estimated.

SNR Estimation SNR is estimated as in [JL07] from the power delay profile, with the assumption that

signal energy is contained within a delay equal to cyclic prefix length, and noise energy is spread over

the complete OFDM symbol duration.

Illustration Tracking of time-varying OFDM channel statistics is illustrated in Fig.3.4. Simulation

parameters are 20 MHz bandwidth, 1200 used subcarriers of FFT length2048, with subcarrier spacing

15 kHz. A 2D rectangular pilot grid with 4 resource elements spacing between pilots is assumed. Ob-

servation window length is 70 ms, only for Fig.3.4ea smaller window of 10 ms is used. Fig.3.4dand

Fig. 3.4eillustrate the tradeoff between estimation variance for slowly varying channels (long window

performs better) and filter adaptation delay for fast varying parameters (small window performs better).



3.1. Channel Estimator 35

0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

 

Time (sec)

D
el

ay
 S

pr
ea

d 
(µ

 s
ec

)

Actual
Estimated

(a) Delay spread tracking.
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(b) Delay tracking.
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(c) Doppler spread tracking (non-causal window, large pro-
cessing delay).
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(d) Carrier frequeny offset tracking (non-causal window,
large processing delay).
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(e) CFO tracking with reduced window length.

Figure 3.4: Channel statistics parameter tracking [KID10].
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3.1.2 Approximate ML for First Iteration

This subsection describes a complexity-reduced shift-invariant implementation of the Wiener inter-

polation filter. Computational complexity of the implementation can be considerably reduced by exploit-

ing two properties: first, multidimensional Wiener filtering is in general non-separable, while upsampling

for interpolation is separable if the sample structure is a lattice - so it is beneficial to separate the two

steps [LI10b]. Second, Wiener filtering can be implemented using spectral shaping of parially overlap-

ping multidimensional blocks (fast convolution, overlap-add or overlap-save method) [LI10b]. Accuracy

and complexity are scalable by choice of Wiener filter kernel size.

In many cases, filtering can be implemented as convolution. For sampled signals, this depends on

the sampling grid (which for channel estimation is the pilot grid). [MS83] showed that convolution of

a (multidimensional) sampled signal is possible if the sample grid is a lattice, i.e. if then-dimensional

sample grid is spanned byn basis vectors. In particular, there are lattices corresponding to nonrectangular

sampling. For computationally efficient computation of convolution, fast algorithms based on Fourier

transform can be applied. Fast linear convolution can be implemented basedon block-wise Fourier

transforms (circular convolution) using the ’overlap-save’ or ’overlap-add’ method [OS09].

Figure 3.5: Example pilot lattice. To es-
timate an area ofSx × Sy values, noise
reduction filtering is applied only on the
Px × Py pilots, and upsampling afterwards
[LI10b].
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Published implementations of the Wiener Interpolation Filter jointly perform noise reduction and in-

terpolation and are based on matrix multiplication [HKR97, ESB+98, SJ06]. [HKR97] searches for each

data symbol position for then closest pilot locations based on Euclidean distance or a weighted distance

measure (to selectn pilots with large correlation values). The filter coefficients are not position inde-

pendent (they differ depending on data symbol position). The estimator is hence shift-variant[HKR97].

For complexity reduction, the numbern of pilots involved in filtering can be chosen small. For static
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filtering, coefficients can be precomputed (to avoid correlation matrix inversion). Also, the 2D estimator

can be approximated by a concatenation of two 1D filters [HKR97] (this entails accuracy loss because

while the channel autocorrelation function is separable according to modelassumptions, the resulting fil-

ter is not). [ESB+98] considers 1D filtering (in frequency direction) and achieves complexity reduction

(with accuracy loss) by ’Optimal Low Rank’ filtering (OLR-MMSE), which isa dimension reduction by

projection of pilot values onto a subspace found by singular value decomposition (SVD), before filtering

is performed by matrix multiplication. For static filtering, the SVD can be precomputed. [SJ06] applies

1D Wiener Interpolation filtering (frequency direction) by matrix multiplication in a block-based way to

reduce complexity (with accuracy loss): the matrix for one small block is precomputed (static filtering),

and to reduce edge distortion the blocks of pilots overlap.
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Figure 3.6: 2D convolution filter ker-
nel magnitude for filter size 21× 21,
maximum Doppler shift 200Hz and
20dB SNR, urban macro channel model
[3GP06]. High Doppler spread means
little channel correlation in time direc-
tion [LI10b].
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Figure 3.7: Illustration of 2D application of
overlap-save method [LI10b].

Noise reduction filtering on pilots by 2D fast convolution

Here, noise reduction filtering and interpolation are separated and performed sequentially. Since the

sample grid is assumed to be a lattice, multidimensional Wiener filtering only on pilot samples becomes
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shift-invariant and can be implemented by convolution (compare Fig.3.5). Fast linear convolution

by overlap-save (or overlap-add) method is applied, which is based on ablock-wise application of the

circular convolution theorem [OS09]:

b[n] ∗ c[n] = F −1{F (b[n]) · F (c[n])} (3.1)

For computation of linear convolution by this method, zero-padding is used to guard against the overlap

error compared to cyclic convolution. Two-dimensional application of the overlap-save method is illus-

trated in Fig.3.7. Magnitude of a 2D complex Wiener filter kernel is illustrated in Fig.3.6. For static

filtering, the multidimensional FFT of the filter kernel can be precomputed. Adaptive filtering can be

implemented by precomputing a set of filter kernels and adaptively choosing one of them.

Upsampling interpolation

In a second step, multidimensional upsampling interpolation is performed. This operation is sep-

arable [Woo06], so it can be performed sequentially for each dimension. Implementation consists of

upsampling (zero stuffing) followed by 1D lowpass filtering, where again fast convolution and a precom-

puted FFT of the filter kernel are used. Upsampling is:

Hup(n) =



H( n
Lup

) whenLup dividesn

0 else
(3.2)

For an upsampling factor ofLup (in Fig. 3.5Lup is 4), the cutoff frequency of the lowpass filter isπ/Lup.

Complexity

Complexity of the proposed implementation for two dimensions is compared with an implementation

following [HKR97, SJ06], where a precomputed filter matrix is used (static filter or adaptive selection of

one of several precomputed filters). Block-wise filtering is assumed, where the channel coefficients are

estimated for a block ofSx × Sy symbols, which containsPx × Py pilots. Compared are the number of

complex multiplications necessary per estimated sample, because in signal processors additions tied to

multiplications are most often computed ’for free’ by means ofmultiply-accumulateinstructions.

The normal implementation is a linear mapping (matrix multiplication) of the block’s pilot values

onto all symbols of the block. Following [SJ06], the mapping includes a few pilots from neighbouring

blocks, to avoid poor accuracy at the edges. Thus, the effective 2D blocks overlap at the edges: instead
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of using only thePx × Py pilots, the matrix is a mapping fromPo
x × Po

y pilots onto theSx × Sy symbols

and therefore needs

Cnormal
WIF = Po

xPo
y (3.3)

multiplications per estimated sample.

The proposed implementation filters on blocks of pilot symbols with the same block size Po
x × Po

y

(including overlap, but not including data positions). Multidimensional Fourier transformation is sepa-

rable [Woo06]. For a block area (with overlap) including 2m×2k pilots, the 2D-FFT of the block’s pilots

needsPo
yPo

xlog2Po
x + Po

xPo
ylog2Po

y multiplications (Cooley-Tukey implementation [CT65]). If the block

dimensions are not chosen as power-of-2 values, the prime factor FFT can be applied [Goo58]. The FFT

of the filter kernel is assumed to be precomputed, where zeros were stuffed at the edges to fill the block

size and to avoid wrap-around. After transformation,Po
xPo

y multiplications are needed in Fourier domain.

IFFT needs the same number of multiplications as FFT, so for pilot filtering complexity there is in sum:

Cfilter =
2
(
Po

yPo
xlog2Po

x + Po
xPo

ylog2Po
y

)
+ Po

xPo
y

SxSy
(3.4)

Upsampling interpolation by zero stuffing and lowpass filtering is performed sequentially for the dimen-

sions. The lowpass can be implemented by 1D fast convolution. Depending on the size of the lowpass

filter kernel, the overlap can be different than for previous Wiener filtering. It is assumed that an area of

Pu
x×Pu

y pilots (including overlap for convolution) is interpolated to a resolution ofSu
x×Su

y samples (also

including overlap), first in y-direction with

Cupsample−y =
2Pu

xS
u
y log2 Su

y + Pu
xS

u
y

SxSy
(3.5)

multiplications, then in x-direction with

Cupsample−x =
2SySu

x log 2Su
x + SySu

x

SxSy
(3.6)

multiplications. For the proposed Wiener interpolation filter implementation the multiplications per out-

put sample are yielded as:

Cproposed
WIF = Cfilter +Cupsample−y +Cupsample−x (3.7)

Using the same pilot grid as in Sec.3.1.2(2D rectangular, 4 resource elements pilot spacing), a com-
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parison of the complexity of normal and proposed implementation for different filter sizes is shown in

Fig. 3.8. Due to the different complexity growth orders, the gain of the proposed implementation quickly

grows with larger filter size. A breakdown of the complexity of the proposedimplementation into the

three contributing parts from Eq. (3.7) is shown in Fig.3.9 for different filter sizes. In the presented

example, the complexity of the proposed WIF implementation in mainly determined by upsampling in-

terpolation. This is due to the fact that an upsampling interpolation filter suited for general-purpose signal

processors is chosen. In case of hardware acceleration by a specialized co-processor, further complexity

reduction is possible by using a different lowpass filter. With a cascaded-integrator-comb (CIC) filter,

upsampling interpolation is possible without any multiplications, only using additions[OS09].

Figure 3.8: Complexity comparison for the
example pilot grid (Fig.3.5). The proposed
implementation reduces absolute complexity
as well as complexity growth order with re-
spect to filter size [LI10b].
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The choice of block length in time direction needs to consider channel estimationdelay (for both

the normal and the proposed implementation). A combination of the proposed implementation with the

matrix multiplication based one is also possible: edge blocks where there are nopilots from neighbouring

blocks available, could be estimated using a precomputed matrix (at the edges of frequency band or at

the edges of resource allocations in frequency direction for OFDMA uplink). The limitation of filter

kernel size can employ an appropriately smooth windowing function (e.g. Hamming window [OS09]).

The filter kernel size can be chosen adaptive to delay spread and Doppler spread (adaptive filtering, e.g.

rectangular but non-quadratic filter kernel).

Fig. 3.10illustrates the channel estimation MSE versus SNR curves for perfect adaptive LMMSE fil-

tering (perfect parameter tracking), adaptation with some mismatch (errors inparameter tracking and dif-

ferences between actual and modelled spectrum assumptions), robust filtering (assumed Doppler spread

of 700 Hz) and least squares channel estimation.

In [Aue09] the spatial correlation is exploited for improved noise reduction by 3D Wiener filtering

(robust static filtering).
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Fig. 3.11illustrates the maximum achievable channel estimation gain exploiting MIMO correlation.

For full correlation (in the figure assumed for time, frequency and space), doubling the number of pilots

covered by the filter are (into any of the directions) reduces the MSE by 3dB.
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Figure 3.9: Complexity of the
proposed implementation in the
example is mainly determined by
upsampling interpolation. Further
complexity scaling is possible by
choice of the 1D lowpass filter
[LI10b].
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Figure 3.10: MSE comparison [KID10].

3.1.3 Approximate APP: Soft Data-Aided Channel estimation

APP channel estimation also uses data positions for improved estimation accuracy (also called ’semi-

blind’ estimation). Data symbols are uncertain at the receiver, their probabilities are obtained from bit

LLRs by a soft mapper. This subsection describes two APP channel estimation algorithms, which differ

in the density model of uncertain data symbols. The first subsubsection describes an algorithm suited for

OFDM APP channel estimation, which uses a Gaussian transmit symbol pdf model and includes ’soft

symbol noise’ into a Wiener noise reduction filter. The second subsubsection describes an algorithm

suited for MIMO-OFDM APP channel estimation, which also includes (MIMO-) interference. The

algorithm uses discrete pdf models for data symbols and for interfering symbols. Gaussian parameters
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Figure 3.11: 3D ML channel estimation
[Li10a].
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(first two moments) of channel sample pdf estimates are then derived to enable Wiener noise reduction

filtering.

Many references deal with APP channel estimation. Soft data aided channel tracking with a Kalman

filter is described in [SK08]. APP channel estimation with a joint Wiener noise reduction filter for

pilot and data positions is performed in [SJS03] and [SDU06], where they assume the same noise and

correlation between samples, independent of whether the samples are on data or pilot positions. Usage of

the expectation-maximization (EM) algorithm for channel estimation is considered in [ONSS08] for an

uncoded system. EM-based joint channel estimation and detection in a formulation as Gaussian message

passing is described for single-carrier transmission in [GH11]. Iterative blind channel estimation and

detection based on EM for CDMA is employed in [WMK08]. Joint channel estimation and detection for

OFDM with the space-alternating generalized EM (SAGE) algorithm and discrete cosine transform based

dimension reduction is proposed in [PSP10]. A variational Bayesian SAGE algorithm with sparsity prior

distributions is used in [SF11] to estimate the number of relevant multipath channel components and

their parameters. Semi-blind channel estimation for MIMO-OFDM with a weightedlinear prediction

based blind criterion in the least squares (LS) approach is described in [WZS08]. Channel estimation

with the EM algorithm is performed in [KB06] separately for pilot and data positions, and the estimates

are combined afterwards. In [ORP05], probability based grouping of symbols and interpolation based on

discrete Fourier transform is proposed. Thresholding of a-priori probabilities is proposed in [KBH06] to

only use ’reliable’ symbol positions, which can be seen as list-based processing.
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Figure 3.12: Application of itera-
tive channel estimation in iterative
receiver [LI ].

APP Estimation for OFDMA: Gaussian Densitiy Model

In this subsubsection, the model used in [SJS03] and [SDU06] is extended to account for per-symbol

noise enhancement due to uncertainty about transmit data symbols. From thesoft mapper, normally only

the mean of the transmit symbol density is used as ’soft symbol’:

XS(m,n) = E[X(m,n)] =
∫

X
P(X(m,n))dX , (3.8)

where an integral is used for the general case instead of a sum, to leave open the transmit symbol density

modelP(X(m,n)) at this point. APP channel estimation in the general formulation computes

P(H(m,n)|YA) =
∫

XA
P(H(m,n)|YA,XA)P(XA)dXA , (3.9)

whereA is an area around (m,n), including neighbouring symbols.YA andXA contain the random

variablesX(i, j) andY(k, l), with i, j andk, l insideA. The frame for a channel estimation algorithm is

defined by choosing the density modelsP(XA) andP(H(m,n)|YA,XA).

Standard approach to APP channel estimation As standard algorithm it is referred to the work

[SJS03] and [SDU06]. Initial LS estimation on data positions is performed usingXS(m,n) as transmit

symbol hypothesis:

HLS(m,n) =
Y(m,n)
XS(m,n)

=
X(m,n)H(m,n)

XS(m,n)
+

N(m,n)
XS(m,n)

(3.10)

Joint filtering of theHLS on pilot and data positions is:

Ĥ(m,n) =
∑

k,l ∈A
C∗(k, l)HLS(m+ k,n+ l) (3.11)
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When written as a vectorc = vec(C), the filter coefficients can be computed as [HKR97]

c = (RA + σ2
NI)−1rA , (3.12)

whererA is the autocorrelation vector of the channel transfer function between thepositionH(m,n) to

be filtered and the positionsH(m+ k,n+ l) in filter rangeA. RA is the autocorrelation matrix of channel

transfer function valuesH(m+k,n+l) in filter range (noise and channel transfer function are uncorrelated).

While the enumeration order of vec(· ) for elements ofA is arbitrary in Eq. (3.12), the same enumeration

order needs to be applied forc, RA and rA. Accuracy of this algorithm is clearly suboptimal, because

for data positions the noise variance is underestimated, or correspondingly the normalized correlation is

overestimated. Data positions are given too much weight.

Practical infeasibility of using exact transmit symbol densities In this section, the exact transmit

symbol density model is used and filtering with position-dependent coefficients is applied.P(XA) in Eq.

(3.9) follows a discrete distribution for digital systems, which use e.g. quadrature amplidude modulation

(QAM). The modulation set is denoted asQ, and its elements asxQ(i), i = 1, . . . ,NQ. For pilots, the

receiver is completely sure about the symbol value, i.e., the distribution is a shifted Dirac function. For

a data position, the distribution is a weighted sum of Dirac impulses at modulation set positionsxQ. The

integral in Eq. (3.9) can therefore be replaced by a sum.XA denotes one realisation of the transmit

symbol random variables inA. With independent transmit data symbols, the probability of one such

realisation isP(XA) =
∏

k,l∈A P(XA(m+ k,n+ l)). For givenXA, the mean conditional probability of a

channel position to estimate can be determined as:

E[H(m,n)|YA,XA] =
∑

k,l ∈A
C̃∗(m,n, k, l,XA)HLS(m+ k,n+ l,XA(m+ k,n+ l)) (3.13)

The filter coefficients as well as the unfiltered channel estimates depend on the assumed realisationXA

of transmit symbols. The filter has to be applied for each possible realisation of XA, and the results have

to be weighted with the realisation probability, yielding the mean APP for this channel position:

E[H(m,n)|YA] =
∑

XA∈XA

E[H(m,n)|YA,XA] ·P(XA) , (3.14)

whereXA is the set of allXA with non-zero probability. For a filter area withNA positions,NNA
Q fil-

ters would be applied for one channel position to estimate, which clearly is too complex for practical
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Computation Type and Number of operations

HLS 1 CDIV
filter matrix:

add covariances NA RADD
inversion 1

2N3
A +

1
2N2

A RMAC
multiply r , HLS NA RMAC, NA CMAC

XS (only for proposed APP) 4 LU, 4 RMAC, 4 CMAC
σ2

S (only for proposed APP) 1 CMAC, 1 RADD
σ2

Ne f f
(only for proposed APP) 1 RDIV, 2 RMAC, 1 RADD, 1 CMAC

Table 3.1: Complexity per position to estimate, using QPSK and filter area withNA entries.

implementation.
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Figure 3.13: Expected noise increase
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Proposed model and algorithm While [SJS03] and [SDU06] modelP(X(m,n)) as Dirac function at

position XS(m,n), here a Gaussian model with meanXS(m,n) and varianceσ2
S(m,n) is used. Both
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XS(m,n) andσ2
S(m,n) are computed by the soft mapper from a-priori bit probabilitiesbX(m,n):

XS(m,n) = E[X(m,n)] =
NQ∑

i=1

xQ(i) ·P(X(m,n) = xQ(i)) (3.15)

σ2
S(m,n) = V[X(m,n)] =

NQ∑

i=1

|xQ(i) − XS(m,n)|2P(X(m,n) = xQ(i)) (3.16)

For 4-QAM it isσ2
S(m,n) = 1− |XS(m,n)|2. Without any a-priori information, the mean soft symbol is

zero and the soft symbol variance is one. Effective noise variance of least squares channel estimates on

data positions is higher than on pilot positions. Soft symbol ’noise’ is denoted asNS:

X(m,n) = XS(m,n) + NS(m,n) (3.17)

With the channel transfer on one OFDM subcarrierY(m,n) = H(m,n) ·X(m,n)+N(m,n), for the channel

estimates before filtering it is:

HLS(m,n) =
Y(m,n)
XS(m,n)

= H(m,n)
XS(m,n)
XS(m,n)

+ H(m,n)
NS(m,n)
XS(m,n)

+
N(m,n)
XS(m,n)

= H(m,n) + Ne f f(m,n) (3.18)

HLS(m,n) is an unbiased estimate, i.e.E[HLS(m,n)] = H(m,n). The effective noise variance before

filtering is:

σ2
Ne f f

(m,n) = V[HLS(m,n)] = V[Ne f f(m,n)] =
σ2

N

|XS(m,n)|2 +
σ2

S(m,n)

|XS(m,n)|2 |H(m,n)|2

≈
σ2

N

|XS(m,n)|2 +
σ2

S(m,n)

|XS(m,n)|2 |HLS(m,n)|2 (3.19)

The effective noise variance depends on soft symbol magnitude, soft symbol variance and (approxi-

mately) the unfiltered channel estimate, and is therefore position-dependent. Computation of the position-

dependent filter coefficients is

c(m,n) = (RA + diag(σ2
A,Ne f f

(m,n)))−1rA , (3.20)

where diag(σ2
A,Ne f f

(m,n)) is the diagonal matrix containing the effective noise variance vectorσ2
A,Ne f f

(m,n)

of the positions in filter areaA.
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Illustrations This paragraph illustrates effects of data symbol uncertainty and channel noise. Ef-

fective noise variance is illustrated in Fig.3.13. The figure shows the ratio of the expected effective

noise variance and channel noise variance only, in dependence on soft symbol magnitude. The figure

contains simulation results as well as predictions according to Eq. (3.19) for different channel SNR val-

ues. The assumption of the standard APP model is also shown. While the standard model underestimates

variance of channel estimates on data positions, the proposed model overestimates it. For very reliable

soft symbols (magnitude close to 1, almost like pilots), the models converge. The reduction factorβ of

normalized correlation of LS estimates compared to that of the channel is considered:

β(m1,n1,m2,n2) =
E[HLS(m1,n1)H∗LS(m2,n2)]/PHLS

E[H(m1,n1)H∗(m2,n2)]/PH
, (3.21)

wherePH is the average channel power. Apart from channel noise, the normalized correlation between

HLS(m1,n1) and HLS(m2,n2) also depends on the magnitude of the two soft symbolsXs(m1,n1) and

Xs(m2,n2), their soft symbol variances and the magnitudes of the noise-free channel samples them-

selves. Reduction with channel noise is illustrated in Fig.3.14for varying SNR and different a-priori

MI values. Simulations use the common 1-parametric conditional Gaussian distribution assumption for

a-priori LLRs from [ten01].

Estimation Accuracy Filter performance is evaluated simulatively by measuring channel estimation

mean square error (MSE) for different values of channel noise and a-priori MI. Parameters of OFDM

transmission are FFT length 2048, of which 1200 subcarriers are used,and 15kHz subcarrier distance

(20MHz bandwidth). For the simulations, a rectangular filter areaA of 13×13 symbols is used, including

3× 3 pilots, and AWGN channel. Fig.3.15aand Fig.3.15bcompare the MSE over SNR for WIF (using

only pilots), the standard method and the proposed algorithm. As upper bound, also the hypothetical

OFDM system where only pilots are transmitted (highest possible pilot density,no data symbols) is

included, corresponding to MI= 1. While the standard APP algorithm outperforms the WIF only for

high a-priori MI and low channel SNR, accuracy of the proposed algorithm is always equal to or better

than the WIF. Due to the higher ’pilot’ density, the hypothetical ’full MI’ system compared to the WIF

achieves an accuracy which is 10 log132

32 = 13dB better for this example filter area, pilot grid and channel

correlation. Fig.3.15dshows the MSE of the different algorithms in dependence on a-priori MI. Here

again it is evident that the standard APP algorithm needs a threshold a-priori MI to offer an improvement

over the less complex WIF. The proposed algorithm outperforms the WIF even at very low a-priori MI,

and shows better accuracy than the standard APP algorithm for the completeparameter range. Only for
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(a) Channel estimation accuracy with MI= 0.5 over varying
channel SNR.
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(b) Channel estimation accuracy with MI= 0.9 over varying
channel SNR.
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(c) Channel estimation accuracy with SNR= 5dB over vary-
ing a priori MI.
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(d) Channel estimation accuracy with SNR= 25dB over vary-
ing a priori MI.

Figure 3.15: APP channel estimation accuracy [LI ].

very high a-priori MI, the two APP algorithms converge to the same solution and accuracy (’full MI’).

Complexity The complexity of the proposed method is compared to that of the 2-dimensionalWIF.

It is not compare to the standard APP method, as that is more complex and oftenless accurate than the

WIF. If the channel is to be estimated for a small filter area within a larger resource allocation used for

transmission, the WIF could be implemented with 2D fast convolution and separate upsampling [LI10b].

But on the boundaries of the resources allocated for transmission, convolution would introduce distortion.

Therefore the complexity is compared to that of the general, i.e. shift-variant WIF implementation as

in [HKR97]. Complexity is measured by the type and amount of elementary operations necessary to

compute one filter output sample. The complexity break-down is listed in Tab.3.2 for a filter area

using NA positions, which may be pilots and/or data symbols. Listed are real-valued and complex-

valued multiply-accumulate instructions (RMAC and CMAC), divisions (RDIV,CDIV), table look-ups

(LU) and additions (RADD). Tab.3.2 assumes that matrix inversion is performed using the Bauer-

Reinsch algorithm [BR70]. Any search effort for the positions to include in the WIF is neglected in the
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(a) Mutual information of LLRs after decoder for different
number of iterations.

−1 −0.5 0 0.5 1 1.5 2 2.5

10
−2

10
−1

SNR in dB

B
E

R

 

 

 1. iteration
 2. iteration
10. iteration

(b) Bit error rate after decoder for different number of itera-
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Figure 3.16: Application example in iterative receiver [LI ].

comparison. Both for the WIF and for the proposed APP method, complexity and accuracy can be scaled

by chosing the size of the filter area. The WIF can be seen as the special case of APP where only pilots

are used. For data positions the APP method needs an extra effort which consists of the soft mapper

and computation of effective noise variance. For both estimators, the complexity is mainly defined by

the matrix inversion. Considering e.g. a 4× 4 filter area (NA = 16 entries), filtering requires only 2%

more operations if all entries are data symbols compared to when all 16 entriesare pilots (counting 4

real-valued operations for a complex one). Rather than distinguishing between pilot positions and data

positions, the used number of filter coefficients can be seen as limiting factor for channel estimation

accuracy. The filter should use the positions with most normalized correlationbetween their LS channel

estimates. Depending on pilot distance and channel fading behaviour, they may be only pilot or also data

positions.

Application Example in Iterative Receiver The proposed estimation is evaluated in an example iter-

ative receiver setup, together with the (weak) 8-state convolutional channel code with encoder transfer

function G(D) = [1; 1+D2+D3

1+D+D3 ], as depicted in Fig.3.12. MI and bit error rate are evaluated after the

channel decoder in dependence on channel SNR, for different number of iterations. Improvements over

iterations are shown in Fig3.16aand Fig.3.16b. In this example, a channel estimation improvement of

around 10dB translates into a system improvement of around 1dB in terms of MI and BER. For higher

channel SNR only one iteration is enough to exploit the APP channel estimation, while for very low SNR

the improvement needs several iterations. In the SNR range of interest, asymptotic accuracy is achieved

with 10 iterations.
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APP Estimation for MIMO-OFDMA: Discrete Density Model

APP channel estimation for MIMO-OFDM needs an accurate stochastic model in order to offer an

improvement over the WIF. In addition to channel choise, data positions undergo MIMO stream interfer-

ence and effective noise due to uncertainty about the transmit symbols. While for OFDM transmission

good results can be obtained with a Gaussian density model for uncertain transmit symbols, this approach

does not work for MIMO-OFDM. With a data symbol also in the denominator, the resulting distribution

would contain a complicated Gaussian ratio distribution. A ratio distribution of independent Gaussian

variables with zero mean e.g. would be a Cauchy distribution, i.e. not have anexpectancy nor a variance.

Notation The notation for this subsubsection is as follows: transmit and receive antennas are enumer-

ated as vector and matrix indices, while subcarriers and time are enumerated inbrackets. For brevity,

indices or brackets are sometimes omitted. The equation then holds independently for any index or

bracket value. E.g. for 2x2 MIMO it is written:


Y1

Y2

 =


H11 H12

H21 H22




X1

X2

 +


N1

N2

 , (3.22)

for any one time instance and subcarrier.

Algorithm The soft mapper computes

P(X(m,n)) =
∑

bX(m,n)∈{0,1}log2(M)

P(X(m,n)|bX(m,n))P(bX(m,n)) , (3.23)

whereM is the modulation alphabet size andbX(m,n) are the bits from the codewordb that were mapped

to symbolX(m,n). LLRs are converted to probabilites according toP(b = ±1) = 1
1+e∓L(b) .

The first algorithm iteration computes the standard WIF, because there is yet no a-priori information

available. The remaining noise after WIF is [HKR97]:

σ2
WIF = σ

2
n

(
1− rT

A(RA + σ2
NI)−1rA

)
(3.24)

In a later iteration after channel decoding, the LLRs are first mapped to transmit symbol distributions

according to Eq. (3.23). Then LS channel estimation is performed on data positions, and expectancy

and variance of channel samples at data positions are derived for laternoise reduction filtering. A data
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transmit symbolX j is nonzero, so the MIMO transmission equation can be solved for channelsamples:

Hi j =
Yi − Ni −

∑
k=1..NT ;k, j HikXk

X j
(3.25)

The expectancy is:

E[Hi j ] = E
[ Yi

X j

]
−

∑

k=1..NT ;k, j

EHik [Hik] ·EX j ,Xk

[Xk

X j

]
(3.26)

The variance is approximated with the total variance formula:

V[Hi j ] ≈ EX

[
V[Hi j |X]

]
+ VX

[
E[Hi j |X]

]
(3.27)

To illustrate, this is solved forH11 in 2x2 MIMO with QPSK modulation:

H11 =
Y1 − H12X2 − N1

X1
(3.28)

With the expectancy

E[H11] = EX1

[Y1

X1

]
− EH12[H12] ·EX1,X2

[X2

X1

]
(3.29)

For QPSK the variance is yielded:

V[H11] ≈ EX1,X2

[
V[H11|X1,X2]

]
+ V
[
EX1,X2[H11|X1,X2]

]

= V[H12] + σ
2
N + VX1,X2

[Y1

X1
− E[H12] ·

X2

X1

]
(3.30)

The two unknown values in this equation can be approximated with values fromthe WIF asE[H12] ≈

ĤWIF andV[H12] ≈ σ2
WIF, or alternatively with values from the last iteration. Then a 2D position-

dependent Wiener filter is applied jointly for all positions in filter area, i.e. forpilot and data posi-

tions. The filter is applied independently per transmit-receive antenna pair.Computation of the position-

dependent filter coefficients is

c(m,n) = (RA + diag(σ2
A(m,n)))−1rA , (3.31)

where diag(σ2
A(m,n)) is the diagonal matrix containing the vector of variancesV[Hi, j ](m,n) of the posi-

tions in filter areaA.
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Figure 3.17: MIMO-OFDM APP
channel estimation accuracy in de-
pendence on a-priori MI.
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LS
WIF
discrete APP model
scaled discrete APP model

Computation WIF 3x3 pilots APP 15x15 symbols

Symbol probabilities - 8
E[h] 1 25
V[h] - 76
scaling - 20
filter

inverse 18 1800
coefficients 9 225
apply 3 15

∑
31 2169

Table 3.2: Complexity of APP MIMO-OFDM channel estimation: number of multiplications per position
to estimate for 2x2 QPSK.

Accuracy Fig. 3.17shows the MSE in dependence on a-priori MI for different estimators in the fol-

lowing transmission scenario. The scenario is 2x2 MIMO-OFDM transmission with QPSK modulation

over a flat channel with full crosstalk,H =


1 1

1 1

 , at 5dB SNR. A rectangular pilot grid with pilot

distance 5 is used, and the grid is offset between the transmit antennas. At the subcarrier and time where

one antenna transmits a pilot, the other one does not transmit. Fig.3.17shows that the discrete APP

model outperforms the WIF only for a-priori MI of more than 0.75. This bad accuracy at low a-priori MI

is attributed to the following model mismatch. While the Wiener noise reduction filter assumes Gaussian

densities, here there are actually mixture Gaussians. On the other hand the APP formulas include the

WIF as special case for using only pilot positions, so it should be possibleto combine the two curves

for best accuracy. The heuristic solution is to scale down the weight of data positions for low a-priori

MI, which is indicated by small absolute value of the expectany of the transmit data symbol. In this

way, more variance is counted for uncertain data positions, in order to account for neglected higher order
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distribution moments. Instead of Eq. (3.30), the scaled version is used:

Ṽ[H11] =
V[H12] + VX1,X2

[
Y1
X1
− E[H12] · X2

X1

]

|E[X1]|12
+

σ2
N

|E[X1]|6 (3.32)

The resulting curve has the same accuracy as the WIF for low a-priori MI, and has better accuracy for

a-priori MI ≥ 0.4.

Complexity Complexity of the scaled APP algorithm is compared to that of the WIF, in the same

scenario of Fig.3.17. Complexity is measured as the number of multiplications necessary for one filter

output sample. The APP algorithm needs extra computation to map LLRs to symbolprobabilities and to

compute the variance of LS estimates. A break-down is shown in Tab.3.2. In this scenario, the number

of multiplications increases by a factor of 70 when applying the APP algorithm instead of the WIF. On

the other hand the table shows that this increase is mainly due to more filter coefficients, whose number

increases from a 32x32 WIF matrix to a 152x152 APP matrix.

Notes Both estimation accuracy and complexity increase considerably. They can be scaled by choosing

the size of the filter area. To reduce complexity, it is also an option to not include data symbols with

small LLR magnitudes into the filtering. This is comparable to the list-based approach in [KBH06],

with the difference that all used symbols are still adequately weighted. Apart from single- and multi-

user MIMO, the presented algorithm is also applicable to coordinated multi-point (CoMP) transmission

(distributed MIMO; interference also on pilots). For maximum filter accuracyit seems possible to extend

the algorithm to 3D filter areas, to also exploit MIMO correlation for noise reduction.

3.1.4 Accuracy Increase with A Priori Information

Accuracy of APP channel estimation increases with growing a priori information from that of the

WIF to that of the case where only pilots would be transmitted. The proposed algorithm thus extends

the receiver accuracy/complexity tradeoff: it means higher complexity due to position-dependent filter

coefficients, but offers an improvement for high-accuracy receivers. Better channel estimation accuracy

can be exploited for reception at lower SNR, for higher modulation or for reduction of pilot overhead. In

practical implementation it may be beneficial to use the Wiener interpolation filter in the first iteration:

it is less complex with the same accuracy, as long as there is no a priori information.
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3.2 MIMO Demapper

In classical non-iterative MIMO demapping, a soft-output MIMO demapper computes likelihoods

of the transmit bits being 1 or 0, given the received symbol vector. In iterative MIMO demapping-

decoding, detection accuracy is improved by exploiting apriori information about bit probabilities from

the decoder [HtB03]. Transmit bits are viewed as random variables and the optimum demapper performs

Bayesian updating of transmit bit probabilities to compute the aposteriori probabilities (APP). The iter-

ative demapping-decoding setup (’Turbo receiver’ [Hag02]) is illustrated in Fig.3.18. The ’maximum

likelihood (ML) MIMO detector’ [PGNB04] is the special case of APP demapping for hard decision

(binary output) for no a priori information.

Figure 3.18: Setup for iterative MIMO
demapping-decoding [IKB09].

The optimal APP MIMO demapper as well as its Max-Log approximation (using ’only’ the closest

two candidate symbol vectors for LLR generation) are NP-hard problems[ABSS97]. This can be seen

as reason why a large ’MIMO demapper zoo’ of different algorithms has been developed.

Since the demapper outputs soft information, its accuracy cannot be adequately measured by bit error

rates (as a bit is only the sign of an LLR). The adequate measure for demapper accuracy is the mutual

information (MI) between the correct transmit bits and LLRs:

I (C, L) = I (L,C) =
∑

l∈L

∑

c∈C
P(l, c) ln

P(l, c)
Pl(l) ·Pc(c)

, (3.33)

whereP(l, c) is the joint distribution of transmit bitsc and receiver LLRsl, andPc(c) andPl(l) are the

marginal distributions. MI is a value between 0 and 1, where 1 means complete information (correct

detection, a posteriori LLRs). In simulations, MI can be computed using histograms or (with better

accuracy) Kernel density estimation [Mod89, Par62].

Many of the proposed MIMO demappers have partial algorithms in common. Togive an overview,

common partial algorithms are shown in Fig.3.19. They are divided into preprocessing algorithms and

Log-APP generation algorithms. These components can be freely combinedto yield a specific MIMO

demapper. Subsection3.2.1shortly describes the purposes of the preprocessing algorithms, subsection

3.2.2those of the Log-APP generation methods, and subsection3.2.3presents some interesting complete

demappers as composition of the parts. The algorithms in this chapter assume that the (elements of the)
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channel matricesH are input as Dirac distributions (quantized to numbers, MAP channel estimation) to

the demapper.

Figure 3.19: MIMO demap-
per ’tool box’.

3.2.1 Preprocessing Transformations

Stream Separation

Stream separation (by matrix multiplication of the received vector) enables separate LLR generation

(per-stream demapping).

(Poly-)Diagonalization One way of stream separation is to diagonalize H by multiplication with its

inverse (zero-forcing, ZF). A negative side-effect is that the receiver AWGN also undergoes the ma-

trix multiplication and in case of badly conditionned matrix is largely enhanced. A generalization is

poly-diagonalization (remaining nonzero elements not only on main diagonal, less noise enhancement).

In [YL08] this approach is combined with tail-biting trellis decoding to yield a (hard output) MIMO

demapper.

Minimize MSE Stream separation according to the MMSE criterion is analog to ZF, but minimizes

the remaining MSE also considering noise enhancement. This reduction of theMSE introduces bias.

The ’unbiased MMSE’ [Zim07] removes the introduced bias afterwards per-stream (as described in Sec.

1.4).

QR decomposition

QR-decomposing the channel matrix enables list-based Log-APP generation by tree search algo-

rithms (breadth first, depth first or informed search) [YKGI03]. QR-decomposition can be also applied
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to the extended channel matrix (regularized with noise covariance matrix) – taking channel noise into

account but introducing the MMSE bias [ZF06a].

Choleski decomposition

Same as QR decomposingH, Choleski decomposition ofHHH enables tree search algorithms [dJW02].

Row/column permutation

For sequential algorithms like list candidate search, the result depends onthe row/column order of

H. Early errors and their propagation can be reduced by first sorting according to the vector norm (best

channel vector first).

Lattice Reduction

Problematic for stream separation are ill-conditioned channel matrices (noise enhancement). Lattice

reduction tries to circumvent this problem by changing the basis vectors to yield an almost orthogonal

base. The receiver AWGN does not undergo a linear transformation. This approach spends some effort

for finding an adequate basis, normally according to the LLL algorithm [LLL82, W0̈5].

3.2.2 Log-APP Ratio Generation

The three approaches considered here are correct APP demapping,demapping using the Max-Log

approximation and list-based LLR generation. These methods can be appliedjointly for all streams or

(with reduced complexity) separately after stream separation.

Correct APP demapping

In correct APP demapping, all possible transmit vectorsx contribute to the metric. Such a demapper

computes [Hag02]:

L(c|y) = ln
P(c = +1|y)
P(c = −1|y)

= ln
∑

x∈X+1 P(y|x)P(x)∑
x∈X−1 P(y|x)P(x)

(3.34)

whereX+ means the set of all possible transmit vectorsx where the bit whose LLR is to be computed

has the value+1. This computation uses apriori information (from the decoder) in the formof theP(x) to

compute the aposteriori LLR. In iterative processing only the extrinsic information is forwarded, which
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can be obtained from the aposteriori LLR by simple subtraction [HtB03]:

ln
P(ci = +1|y)
P(ci = −1|y)

= ln

∑
x∈X+1

i
P(y|x)

NT NB∏
n=1

P(cn)

∑
x∈X−1

i
P(y|x)

NT NB∏
n=1
P(cn)

= ln

∑
x∈X+1

i
P(y|x)

∏
n,i
P(cn)

∑
x∈X−1

i
P(y|x)

∏
n,i
P(cn)

+ ln
P(ci = +1)
P(ci = −1)

Lp(ci)︸︷︷︸
aposteriori information

= Le(ci)︸︷︷︸
extrinsic information

+ La(ci)︸︷︷︸
apriori information

(3.35)

where the LLR is computed for bitci , and there areNT transmit antennas andNB bits per symbol.

Max-Log APP demapping

For practical implementation, the max-log approximation is often used in the demapper as well as in

the decoder (max-log-BCJR) [RVH95]:

ln
∑

an ≈ max(ln(an)) (3.36)

Result is that only two candidate vectors (and the apriori LLRs) contributeto an LLR, which reduces

computational effort spent on computing the LLR. On the other hand, searching for each of the two

Max-Log hypothesis vectors is still NP-hard [ABSS97, AEVZ02]. A further complexity reduction is

often achieved by using a separable modulation set, meaning that real and imaginary components can be

independently demapped (e.g. in LTE [3GP10b], compare Sec.1.4). Applying the Max-Log approxi-

mation to the APP detector yields [RVH95, RBO04]:

Lp(ci) ≈ max
x∈X+i

(
ln(P(y|x)) +

∑

n

min(cnLa(cn); 0)
)

−max
x∈X−i

(
ln(P(y|x)) +

∑

n

min(cnLa(cn); 0)
)

(3.37)

The max-log approximation is also applied to the mapping from LLR to probability, e.g.:

ln(P(c = −1)) = ln
1

1+ eL
= ln 1− ln(e0 + eL) ≈ 0−max(L; 0) (3.38)

This approximation is illustrated in Fig.3.20. Many decoder implementations use a ’softmax’ function

by table lookup to soften the break in the approximation [Vog02]. Considering the noise to be Gaussian,



58 Chapter 3. Component Algorithms Performing Approximate APP Computation

the (Max-Log approximated) extrinsic LLR is:

Le(ci) ≈ max
x∈X+i

(
− 1

2σ2
||y − Hx(c)||2 +

∑

n,i

min(cnLa(cn); 0)
)

−max
x∈X−i

(
− 1

2σ2
||y − Hx(c)||2 +

∑

n,i

min(cnLa(cn); 0)
)

(3.39)

Figure 3.20: Exact and Max-Log
approximated relation between LLR
and bit probabilities [IKB09].
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List-based generation

List based LLR generation searches for candidate vectors for the Max-Log approximation. Complex-

ity is reduced compared to the Max-Log solution by not visiting all possible transmit vectors (not com-

puting all metrics). An ordered search strategy (as opposed to random methods) in terms of graph algo-

rithms is normally enabled by the preprocessing step of QR decomposing the channel matrix (or Choleski

decomposition). Graph search algorithms are depth first, breadth first and informed search (special enu-

meration, best partial metric first) and may be combined with branch and bound(pruning the search tree).

A number of found candidates with good metric is added to the list from which theLLRs are generated.

An example of depth first search with branch and bound is the ’sphere decoder’ [VB99, WG04]. Special

enumerations are the Fincke-Pohst [FP85] and Schnorr-Euchner [SE94] enumerations. Adaptations of

the sphere decoder to use a priori probabilities are described in [SB10, LLN+09, WBA+10]. An exam-

ple of breadth first search (using a priori information) for theM best candidates is the ’M-algorithm’

[JA71, RBO04], and with a variable candidate number the ’T-algorithm’ [Sim90]. Unbiasing regular-

ized tree search (MMSE criterion) is described in [ZF06b]. An approximation for further complexity

reduction in breadth-first search is ’modulation set partitioning’ [dJW02], which converts the tree into

a narrower but deeper one. If one searches only for one candidatevector, the demapper is reduced to

hard output (closest point search in lattice [AEVZ02]). Soft output needs the Max-Log hypothesis vector

and counter-hypothesis vector per bit (for this bit being positive and negative respectively). The reduced

search has two effects: first, not always the best hypothesis vectors are in the list, which leads to reduced

accuracy compared to the Max-Log solution. Second, a hypothesis vector for a certain bit value may be

missing. For a missing hypothesis, two approaches have been proposed:’clipping’ the LLR to a pre-
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defined value with correct sign [HtB03], or preferably using as hypothesis also partial vector candidates

whose subtrees have been pruned (hierarchical or per-level LLR generation) [WM04].

3.2.3 Demapper Synthesis

In this subsection, four example MIMO demapper algorithms are described as composition from the

partial algorithms.

Joint Max-Log APP demapping

For all possible transmit vectors the metric

µ(c) =
−1
2σ2
||y − Hx(c)||2 + 1

2
La(c)Tc (3.40)

has to be computed. According to Eq. (3.39), to generateLe(ci), the vector with best metric fromX+i
andX−i has to be found. The LLR is then their difference. Implementation aims at reusing intermediate

results from metric computation and searches.

MMSE stream separation with per-stream Max-Log demapping

This is the least complex algorithm which serves as ’baseline’ and has already been described in

Sec. 1.4. Here a lower level algorithm for implementation is described [KI08]. It is based on the

Greville algorithm and needs not more multiply-accumulate (MAC) operations than the ZF solution

(using Greville). The Greville algorithm can be used to compute the ZF matrix (Moore-Penrose pseudo

inverseH†) with an iteration over thek columns ofH:

~pH
k =

~hH
k (I − Hk−1H†k−1)

‖~hH
k (I − Hk−1H†k−1)‖2

(3.41)

H†k =



~hH
1

~hH
1
~h1

if k = 1

H†k−1(I − ~hk~p

H
k )

~pH
k

 else
(3.42)

assuming that~p , ~0. Hk−1 consists of colums~h1 .. ~hk−1. The MMSE matrix differs from the ZF one by

an additive diagonal matrixD for noise regularization [ABI03] before inversion. The Greville algorithm
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can be modified to account for this by [KI08]:

~pH
k =

~hH
k (I − Hk−1Gk−1)

‖~hH
k (I − Hk−1Gk−1)‖2 + d2

k + ‖Dk−1Gk−1~hk‖2
(3.43)

Gk =



~hH
1

~hH
1
~h1+d2

1

if k = 1

Gk−1(I − ~hk~p

H
k )

~pH
k

 else
(3.44)

Where only the denominator of~pH
k differs from the original Greville algorithm in Eq. (3.41). The first

good property of this algorithm is its low complexity. Rewriting (3.43) for better reuse of intermediate

results gives

~pH
k =

~hH
k (I − Hk−1Gk−1)

‖~hH
k (I − Hk−1Gk−1)‖2 + d2

k + ‖Dk−1Gk−1~hk‖2

=
~hH

k − (Gk−1~hk)HHH
k−1

d2
k +
(~hH

k − (Gk−1~hk)HHH
k−1

)~h
.

Based on this, pseudo-code of the algorithm is given in Alg.1, the GNU Octave [Eat07] implementation

is also reproduced. The algorithm obviously requiresmreciprocal calculations. The remaining arithmetic

Figure 3.21: GNU Octave implementation of modified Greville algorithm [KI08]

1 f unc t i on G = m g r e v i l l e (H,D)
2 n = rows (H) ; m = columns (H) ;
3 G = zeros (m, n ) ;
4
5 a = D( 1 , 1 ) ˆ 2 + norm (H ( : , 1 ) ) ˆ 2 ;
6 G( 1 , : ) = ( 1 / a ) ∗ H( : , 1 ) ’ ;
7 f o r k = 2 :m
8 v = G( 1 : k−1 , : )∗H( : , k ) ;
9 G( k , : ) = H( : , k ) ’ − v ’ ∗H( : , 1 : k−1) ’ ;

10 a = D( k , k ) ˆ 2 + r e a l (G( k , : )∗H( : , k ) ) ;
11 G( k , : ) = ( 1 / a ) ∗ G( k , : ) ;
12 G( 1 : k−1 , : ) = G( 1 : k−1 , : ) − v∗G( k , : ) ;
13 endfor
14 end

operations are counted in terms of real-valued MAC operations, to be consistent with execution units

available on current DSP and FPGA architectures. Conjugation operations are not counted as they are

folded into MAC operations with a change of sign (i.e. negative multiply-and-accumulate). For algorithm

lines 1–2 4n MAC operations are counted. For the loop body in lines 4–8 the number of MAC operations
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Algorithm 1 Pseudo-code for modified Greville algorithm [KI08].

1: a← D2
1,1 + ‖H{1..n},{1}‖2

2: G{1},{1..n} ← a−1 ·HH
{1..n},{1}

3: for k = 2 tom do
4: ~v← G{1..k−1},{1..n}H{1..n},{k}
5: G{k},{1..n} ← HH

{1..n}{k} − ~vHHH
{1..n},{1..k−1}

6: a← D2
k,k + real

(
G{k},{1..n}H{1..n},{k}

)

7: G{k},{1..n} ← a−1G{k},{1..n}
8: G{1..k−1},{1..n} ← G{1..k−1},{1..n} − ~vG{k},{1..n}
9: end for

Operation Formula Count

saxpy with real-

valued scalar

~z ← α~x + ~y (α ∈

R)

m

complex saxpy ~z← α~x+ ~y m2 −m

real-valued dot

product

~z← real(~xH~y+ ~v) m

complex dot prod-

uct

~z← ~xH~y+ ~v 1
2m2 − 1

2m

scalar reciprocal β← α−1 (α ∈ R) m

Table 3.3: Operation counts on a vector pro-
cessor handling length-n operations.

is a function of the counter variablek:

12 (k− 1) n+ 4n .

With
∑m

k=1 k = m2

2 +
m
2 the expression for the total number of MAC operations becomes:

6n m2 − 2n m .

The second good property of the algorithm are its fixed-length loops. Algorithm 1 utilizes only

matrix-vector and vector-vector operations for which at least one dimension of the involved matrices

resp. vectors isn. It is thus possible to express the algorithm in terms of length-n vector operations (see

Alg. 2). Table3.3 lists the number of length-n vector operations required to implement the algorithm.

The complexity is compared to the two best performing algorithms for calculation of the MMSE

equalizer matrix documented in [KSI07]:
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Algorithm 2 Reformulation of Alg.1 that exposes fixed-length loops.

1: a← D2
1,1 + HH

{1..n},{1} ·H{1..n},{1}
2: G{1},{1..n} ← a−1 ·HH

{1..n},{1}
3: for k = 2 tom do
4: for j = 1 tok− 1 do
5: v j ← G{ j},{1..n} ·H{1..n},{k}
6: end for
7: G{k},{1..n} ← HH

{1..n}{k}
8: for j = 1 tok− 1 do
9: G{k},{1..n} ← G{k},{1..n} − v j ·HH

{1..n},{ j}
10: end for
11: a← D2

k,k + real
(
G{k},{1..n} ·H{1..n},{k}

)

12: G{k},{1..n} ← a−1 ·G{k},{1..n}
13: for j = 1 tok− 1 do
14: G{ j},{1..n} ← G{ j},{1..n} − v j ·G{k},{1..n}
15: end for
16: end for

Table 3.4: Comparison of total number
of MAC-operations required to obtain
GMMS E [K0̈7].

Algorithm real-valued MAC operations

Cholesky based 4m2 n− 2m n+ 8m3

3 − 2m
3

QR-decomposition based 6m2 n− 2m n+ 4m3

3 +m2 − m
3

modified Greville 6m2 n− 2m n

– Cholesky factorization followed by forward-backward substitution, i.e

LL H = (HHH + D2)

LL HG = HH ,

– QR-decomposition of the extended matrixH, followed by backward-substitution

H =


H

D

 =


Q1

Q2

R

RG = QH
1 ,

Comparison of the MAC operation counts is given in table3.4. Assumingm = n, the comparison is

illustrated in Fig.3.22.

Application of the stream separation matrix needsm·n MACs. The last step is then LLR genera-

tion per stream using the Max-Log approximation. Assuming a separable modulation set, this can be

implemented using independent (one-dimensional) table look-up operations (LU), 1 LU per LLR.
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Figure 3.22: Relative number of operations
required for computingGMMS E for H ∈
Cn×n [KI08].

QRD-M tree search with a priori information and clipping Max-Log dema pping

The M-demapper also evaluates Eq. (3.40) - not for all possible transmit vectors, but for a greedily

chosen subset. To enable tree search detection (illustrated in Fig.3.23), the channel matrix is QR

decomposed. Because of the resulting triangular matrix, detection can be done sequentially for the

transmit antennas (where one transmit antenna corresponds to one tree level) [RBO04]. The M-algorithm

prunes the search tree at each level and follows only the M best nodes tothe next level. By choosing

M, the accuracy and complexity of the algorithm can be scaled. The squared distance of the mapped

received vectory′ from modulation symbol vectorx(c) at the receiver is:

||y′ −QHHx(c)||2 (3.45)

with

y′ = QHy and QHH = R

The tree search metric is as in Eq. (3.40):

µ(x) = − 1
2σ2
||y′ − Rx(c′)||2 + 1

2
LA(c′)Tc′

!
= max (3.46)

with the only difference that the dimensions ofy′ andR are equal to the actual tree search level and the

corresponding number of leading bits fromc is used asc′. For MU-MIMO, different modulation levels

for different users (i.e. transmit antennas) are possible on the same resources: the search tree becomes a

mixed tree. In this case implementation uses different demapper functions (one function per tree level) –

function calls are computationally cheap if applied for several subcarriers at once (cf. chapter8).

To reduce complexity of the tree search for higher QAM modulation levels, set partitioning [dJW02,
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Figure 3.23: QRD-M search tree for BPSK,
M = 3 and 4 transmit antennas [IKWB09].

Lai08, HKMS04] can be applied, which reduces the search tree to a 4-ary QPSK tree (withtwo/three

times the depth when using 16QAM or 64QAM respectively) and leads to roughly constant computa-

tional effort per bit for all modulation levels. Set partitioning with the LTE modulation sets is illustrated

in Fig. 3.24: the first two bits of a 16QAM symbol are the closest QPSK symbol, the first four bits of

64QAM are the closest 16QAM symbol. This modulation set is also separable.

Figure 3.24: Set partitioning
with separable modulation set
[IKWB09].
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In the clipping QRD-M demapper version, LLRs are generated from the candidate list of M leaf

nodesobtained by the tree search. The subset of candidate leaf nodes with positive bit at positioni is
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denotedX+1
i, leaf. The extrinsic LLR is:

LE(ci) =



max
x∈X+1

i, leaf

µ(x) − max
x∈X−1

i, leaf

µ(x) for X+1
i, leaf,X−1

i, leaf , ∅

µclip/σ
2 if X−1

i, leaf = ∅

−µclip/σ
2 else

(3.47)

If the list contains only candidates with the same bit value for one LLR, the LLRis clipped to±µclip/σ
2.

An iteration of the tree search with actualized a priori information from the decoder only leads to a better

result if the search gives a different candidate list. Algorithm accuracy in terms of BER for different

values of parameterM in comparison to MMSE and ZF equalization are indicated in Fig.3.25for QPSK

transmission over a 4x4 MIMO channel with uncorrelated Rayleigh fading.As stated before, BER is

not a reliable measure for accuracy of soft-output demapping, as it evaluates only the signs of LLRs. MI

with transmit bits of hard versus soft output may differ by several dB.

Figure 3.25: QRD-M MIMO demap-
ping BER for 4x4 QPSK [WKI].

Hybrid unbiased MMSE / Subspace-Max-Log-APP

This demapper employs ’partial marginalization’, described in [LJ08]. It scales in accuracy and

complexity between unbiased MMSE with per-stream Max-Log demapping andjoint Max-Log APP

demapping.

Unbiased MMSE demapping gives reliability information about bits (in form of LLRs) at low com-

plexity. Fig. 3.26 illustrates the uncoded error rates in 4x4 16QAM transmission (uncorr. Rayleigh

fading) for the subset of then LLRs with largest magnitude. For the SNR range of interest, the error rate

e.g. of the 4 LLRs with largest magnitude (per MIMO vector) is far lower thanthat of maximum likeli-



66 Chapter 3. Component Algorithms Performing Approximate APP Computation

hood (ML) detection of all bits. The idea is to reduce the candidate search space for the Max-Log-APP

solution to a fixed predefined size, based on reliability: then bit positions with largest LLR magnitude

are assumed as correct, and the remaining subspace of size 2NTk−n is ’most likely’ to contain the ML so-

lution and Max-Log-APP counter-hypotheses (NT transmit antennas andk bit per transmit antenna, gives

a sum ofNTk LLRs to generate). For this remaining (smaller) ’unreliable’ subspace, joint Max-Log-APP

postprocessing can be performed.

Figure 3.26: Partial BER of linear
MIMO detection for n bit positions
with largest LLR magnitude [IKB10]. 10 15 20 25 30
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The demapping algorithm consists of three steps. The first step is to perform unbiased MMSE demap-

ping as described in Sec.1.4.

In the second step then LLRs with largest magnitude|L(ci, j)| are selected as ’reliable’, wheren is a

predefined constant. The bit values are the signs of the LLRs. The remaining NTk − n bit positions are

the ’unreliable’ subspace.

In the third and last step the algorithm computes the joint Max-Log-APP solutionfor the ’unreliable’

candidate subspace. Since this subspace is relatively small, binary enumeration of the candidates can be

performed. For each bit position, the subspace always contains hypothesis and counter-hypothesis vec-

tors, so that clipping operations like in the list sphere decoder [HtB03] are not necessary. The extrinsic

(Max-Log) LLR for the ’unreliable’ bit positions are computed accordingto Eq.3.39on page58 (using

a priori LLRs from the decoder). The LLR vector which the detector outputs consists ofn values gen-

erated by linear detection andNTk − n values generated by subspace-Max-Log-APP computation. For

iterative detection-decoding only step 3 needs to be repeated after running the decoder. A pseudo-code

formulation of the algorithm is given in Alg.3.

Now it is illustrated that the accuracy in terms of error rates and mutual information varies between

that of unbiased MMSE and Max-Log-APP. Both are included in the algorithm as special cases for

n = NTk and n = 0 respectively. Simulation assumes 16QAM transmission over 4x4 uncorrelated
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Rayleigh fading, and perfect channel estimation at the receiver. Uncoded error rates are shown for

differentn in Fig. 3.28a. The detector curve forn = 0 is denoted ML, since Max-Log-APP without

apriori information and with hard output (bits instead of LLRs) reduces to searching the most likely

candidate bit vector. Postprocessing for a small subspace of four bit positions (16 candidate vectors)

already results in more than 1dB improvement for the practically interesting uncoded BER range around

10−1. To assess the accuracy of soft-output demappers, mutual information (MI) is a more suitable

measure than uncoded BER. MI in dependence on SNR is shown in Fig.3.28b. By this measure, Max-

Log processing only brings gains for SNR larger than 10dB in this scenario. For enhanced demapper

accuracy also at low SNR, iterative demapping-decoding can be applied.Demapper accuracy for this

case is illustrated in form of an EXIT chart in Fig.3.28c. While the linear detector does not benefit from

apriori information, the presented algorithm increasingly exploits it with decreasing parametern.

Algorithm 3 Subspace-Max-Log by enumeration [IKB10]

x̂ = Gunby {MMSE stream separation}
for all tx-antennasdo

for all bit-positionsdo {bits of this antenna}
Le(c j) = ( min

xi∈X1
+

∆ − min
xi∈X1

−
∆) {max-log per stream}

end for
end for
selectn positions of largest|L(ci)| {’reliable’}
for all c (sub) ∈ 2NTk−n do {’unreliable’ subspace}

metric(x(c)) = −1
2σ2 ||y − Hx||2 + 1

2La(c)Tc
end for
for i = 1 to NTk− n do {’unreliable’ bit positions}

max p = max
c(sub) |c j=+1

(metric(x(c)))

max m= max
c(sub) |c j=−1

(metric(x(c)))

Le(c j) = max p−max m− La(c j)
end for
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Figure 3.27: Complexity scales
exponentially with parametern
[IKB10].



68 Chapter 3. Component Algorithms Performing Approximate APP Computation

10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

SNR [dB]

B
E

R
4x4 16QAM, uncorr. Rayleigh

 

 
n=0 (ML)
n=16 (MMSE)
n=12
n=8
n=4
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Figure 3.28: Hybrid uMMSE/ subspace Max-Log-APP demapper [IKB10].

Algorithm complexity: the number of elementary real-valued computational operations for different

n is illustrated in Fig.3.27. Operations likeMultiply-AccumulateandCompare-Selectare counted as the

same unit. For hardware independence the possibility of reuse of intermediate results (’infinite’ memory)

and cost-freeLoad/Storeoperations are assumed. The figure shows that complexity scales exponentially

with n (apart from MMSE preprocessing), which is due to the problem being NPhard.

3.2.4 Accuracy Increase with A Priori Information

If instead of MIMO transmission a SIMO system is used (one transmit antennaand several receive

antennas), the optimal receiver exploits the receive diversity by using maximum ratio combining (MRC):

the symbols received on each antenna are combined by weighting them according to signal amplitude

[GLMZ07]. Here it is shown that with growing apriori information the accuracy of both the MIMO APP

detector and its max-log-APP approximation increase up to that of SIMO MRC,when transmitting with

the same energy per symbol [IKB09]. And even better: SIMO MRC accuracy for a (possibly shifted)

BPSK modulation. This quantifies the maximum benefit of a priori information forMIMO detection and
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can serve as an upper bound for demapper accuracy in iterative MIMOdemapping-decoding. This is

not a statement about the accuracy of iterative demapping-decoding, thisstatement is about demapper

accuracy in dependence on the amount of available a priori information.
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Figure 3.29: If all but one bits in
a QAM symbol vector are fixed (or
known at the receiver), this corresponds
to a shifted and scaled BPSK modula-
tion [IKB09].

APP demapping with large a priori information The APP extrinsic LLR is (subsection3.2.3):

Le(ci) = ln

∑
x∈X+1

i
P(y|x)

∏
n,i
P(cn)

∑
x∈X−1

i
P(y|x)

∏
n,i
P(cn)

(3.48)

For no apriori information about a bitn, P(cn) is:

P(cn = +1) = P(cn = −1) = 1/2, (3.49)

while for the limit of full apriori knowledge it is either

P(cn = +1) = 1 and P(cn = −1) = 0 (3.50)

or vice versa.

In this limit case, the symbol vector candidates are ’filtered’ by theP(cn) = 0, so that in the nominator

and denominator of eq. (3.48) only the candidate vector with

∏

n,i

P(cn) =
∏

n,i

1 = 1

remains. The extrinsic LLR then yields

Le(ci) = −
1

2σ2

(
||y − Hx+||2 − ||y − Hx−||2

)
(3.51)
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where all bits exceptci are chosen according to the a priori information. Assume that the bitci is

transmitted on antennak. The vector hypothesesx+ andx− then differ in exactly thek-th component.

With the vectorxI of symbols which both hypotheses have in common

xI = (x+1, . . . , x+k−1,0, x+k+1, x+nT x
)T

= (x−1, . . . , x−k−1,0, x−k+1, x−nT x
)T

it is substituted

yS IMO = y − Hx I (3.52)

and obtained:

Le(ci) = −
1

2σ2

(
||yS IMO− hkx+k ||2 − ||yS IMO− hkx−k ||2

)

The symbols transmitted on all other antennas were given by a priori information, so that this known

interference cancelled out and the MIMO problem has become a SIMO problem. The transmit symbol

hypotheses (complex numbers)x+k andx−k for antennak differ in only one bit, i.e. one direction in the

complex plane. This modulation can be regarded as a shifted BPSK:

x+k = xM + ∆, x−k = xM − ∆ (3.53)

wherexM is the middle point between the two symbol hypotheses and 2· |∆| is their distance. This shifted

BPSK modulation is illustrated in Fig.3.29. It is substituted

yS IMO,BPS K= yS IMO− hkxM (3.54)

and the LLR becomes [IKB09]:

Le(ci) = − 1
2σ2

(
||yS IMO,BPS K+ hk∆||2

−||yS IMO,BPS K− hk∆||2
)

= − 4
2σ2
ℜ{yH

S IMO,BPS Khk∆} (3.55)

Max-Log-APP demapping with large a priori information In this paragraph it is shown that for large

a priori information, only one bit of one transmit antenna remains unknown –the rest is cancelled by

the Max-Log-APP detector [IKB09]. It is assumed that theLa(cn) are correct and have a ’large enough’



3.2. MIMO Demapper 71

magnitude, so that they and not the Euclidean metric term decide about the candidate vector selection.

This is certainly fulfilled if:

|La(cn)| > max
x1∈X+n ,x2∈X−n

∣∣∣∣
1

2σ2
||y − Hx1||2 − ||y − Hx2||2

∣∣∣∣

i.e. the absolue value ofLa(cn) is larger than the maximum possible contribution of bitn to the Euclidean

distance part of the metric, so that the Max-Log bit hypothesis is chosen according to the a priori LLR.

For the computation of one LLR, all other bits in both Max-Log transmit vector hypothesesx+ andx−

are then chosen according to the a priori LLRs, so that the a priori LLRscancel out [IKB09]:

Le(ci) = −
1

2σ2

(
||y − Hx+||2 − ||y − Hx−||2

)
(3.56)

This is the same equation as for APP detection with full a priori information (eq.(3.51)).

Maximum Ratio Combining Now it is assumed that the transmitter has one antenna, and that the

receiver uses its multiple antennas for maximum ratio combining (which is the SNR-optimal diversity

combining method [GLMZ07]). The channel vector is denotedh and the system model becomes:

yMRC = hx+ n (3.57)

The weighting of the symbols received on the different antennas is done according to signal ampli-

tude: the weight vector for the received symbols isw = hH. The equalized symbol after combining is

[GLMZ07]:

x̂ =
hHyMRC

hHh
= x+

hHn
hHh

(3.58)

The resulting noise power is:

σ2
MRC = E{|h

Hn
hHh
|2} = E{|h

HnnHh|}
||h||4

=
hHE{nnH}h
||h||4 =

σ2

||h||2

As modulation set a (possibly shifted) BPSK modulation with the two possible symbol valuesx1 andx0

is assumed. Soft demodulation yields the LLR:

L = − 1

2σ2
MRC

ln
P(x̂|x1)
P(x̂|x0)

(3.59)
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The two symbol candidates can again be written as

x1 = xM + ∆, x0 = xM − ∆ (3.60)

where for normal BPSKxM would be zero (Fig.3.29).

The LLR becomes

L = −||h||
2

2σ2

{
|x̂− (xM + ∆)|2 − |x̂− ( xM − ∆)|2

}

= −||h||
2

2σ2
4ℜ
{
∆(xM − x̂)

}

To subtract the modulation set center it is substituted

x̂BPS K= x̂− xM (3.61)

and obtained

L =
||h||2
2σ2

4ℜ
{
∆x̂BPS K

}
(3.62)

Equivalence The MRC channel vectorh can be seen as one column of the MIMO channel matrix, e.g.

thek-th: h = hk. It is noted that with same energy per symbol:

|yH
S IMO,BPS Kh| = ||h||2|x̂BPS K|

This means that with the same average transmit power per data stream, the MRC solution for (shifted)

BPSK transmission in a SIMO system is equivalent to the Max-Log-APP solution and the APP solution

for MIMO transmission (provided sufficient a priori information). For each LLR to compute in the

MIMO system, a maximum ratio combiner remains after cancellation of the known signals.

Simulative illustration For simulation, uncorr. Rayleigh fading is assumed. It is looked at a 4x4 and

1x4 system, for different amounts of a priori information and channel SNR.

EXIT-Chart based To measure demapper accuracy in dependence on a priori information, the

a priori LLRs generated in the common way [ten01]: the transmit bitsc (±1 values) are perturbed by

additive White Gaussian Noise and scaled according to noise variance, yielding theLa. The chosen noise

variance determines the mutual informationI (La; c) of the apriori LLRsLa with the transmit bitsc. MI
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is measured using Eq. (3.33) on page54. Extrinsic information transfer (EXIT) charts for 4x4 QPSK

transmission and Max-Log-APP demapping are shown for differentES/N0 in Fig. 3.30. With increasing

I (La; c), demapping accuracy measured asI (Le; c) increases up to the value for SIMO MRC with shifted

BPSK modulation (denoted SBPSK, as illustrated in Fig.3.29).
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Figure 3.30: With an increasing
amount of a priori information, max-
log-APP MIMO detector accuracy for
QPSK increases up to SIMO MRC
accuracy for (shifted and scaled) BPSK
modulation [IKB09].

Varying ES/N0 To illustrate the maximum possible demapper accuracy gain through a priori in-

formation in this scenario, Fig.3.31shows the accuracy of 4x4 QPSK max-log-APP without a priori

information and 1x4 SBPSK MRC detection in dependence onES/N0. The distance between the two

curves is roughly 2dB.
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Figure 3.31: The difference between
MIMO max-log-APP accuracy without
apriori information and max-log-APP
accuracy for large apriori information
is roughly 2dB for 4x4 QPSK transmis-
sion. For channelES/N0 of -1dB and -
5dB the transition from the lower curve
to the upper curve is shown in Fig.3.30
[IKB09].

Some Comments The maximum accuracy of a demapper in iterative MIMO demapping-decoding

was quantified to be that of SIMO BPSK transmission with maximum ratio combining detection. This

equivalence holds if the average transmit power per antenna is equal. Itdoes not hold if the transmitter’s

sum power is constrained, since then the power per data stream would be reduced to 1/n when usingn

transmit antennas. If demapper and decoder would be considered jointly as one large processing block
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implementing an ML receiver on message basis, there would be no such thing as extrinsic information.

The notion of extrinsic information only comes into play when performing iterative local processing in

different blocks. If full a priori information would be available for the demapper, there would be no

need to run it, as the message would already be known. The motivation is to have a converging iterative

process. The decoder exploits diversity which is provided by the channel and contained in the LLRs. The

potential gain in demapper accuracy using apriori information (difference between MIMO max-log-APP

and SIMO BPSK MRC) increases with higher number of antennas and larger modulation size. From a

demapper point of view, n-PSK modulation could be a good idea. When a flipped bit in a symbol means

the opposite position on the unit circle, the Max-Log-APP demapper reaches SIMO BPSK accuracy for

large a priori information: the two symbol hypotheses for one bit would have maximum distance in the

complex plane, and no energy would be wasted by a shifted modulation set center.

3.3 Constituent Decoder

Correct computation of bit APPs for a convolutional code is done by the BCJR algorithm [BCJR74].

Suboptimal approximations include the already mentioned Max-Log approximation (Max-Log-BCJR),

soft-ouput M and T algorithm [LC04]. Operation counts per LLR of Max-Log BCJR decoding and

Turbo (de-)interleaving are shown in Tab.3.5, assuming LTE parameters (8-state decoder and quadratic

permutation polynomial interleaving). Elementary operations areAdd-Compare-Select, Add, Compare-

SelectandLoad/Store.

Convergence behaviour of Turbo decoding is normally illustrated using EXIT charts [ten01]. An

EXIT chart for LTE parameters [3GP09] is shown in Fig.3.32.

There is one difference in iterative demapping decoding compared to Turbo decoding: whilethe

constituent decoder in a Turbo decoder only has to reconstruct LLRs for information bits, this now has

to be done also for parity bits – a demapper iteration uses both information and parity bit a priori LLRs.

This difference is due to the serial concatenation of MIMO modulation mapper and channel encoder in

difference to the parallel concatenation of the constitutional encoders (compare chapter2).

With growing a priori information the decoder’s accuracy increases up tothat when only one bit of

the codeword is uncertain.
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Function Operations

8-state BCJR decoder

Compute Metrics (fw+bw) 16 ACS/uncLLR

Paths 16 Add/uncLLR

LLR generation 14 CS/uncLLR, 1 Sub/uncLLR

QPP interleaver

get target index 1 Read/LLR

get source llr 1 Read/LLR

write target llr 1 Write/LLR

Table 3.5: Turbo decoder complexity
for LTE parameters using Max-Log-
BCJR.
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Figure 3.32: EXIT chart for turbo de-
coder with LTE parameters.





Chapter 4

Receiver Description Language

To describe node update schedules, where different algorithms for each update are possible, a de-

scription language is introduced in this chapter. The chapter starts with the notation of the receiver

architecture (Sec.4.1) and of the component algorithms (Sec.4.2). For serial processing on one pro-

cessing element, the language has a regular grammar (Sec.4.3) and can thus be parsed by a finite state

automaton. A receiver then corresponds to a path through this finite state automaton. The description

of parallel schedules (parallelization using several processing elements) is described in Sec.4.4. While

the purpose of this chapter is instantiation and connection of receiver APPcomponents, an automatic

mapping from such a receiver description to prediction of the performance parameters is described in

chapter5.

4.1 Receiver Architecture Notation: Directed Bipartite Graph

A factor graphF is given by the sets of its vertices (nodes) and directed edgesF = {V,E}, with

the property that the graph is bipartite: the set of nodes consists of two disjoint subsets, where every

edge is between nodes belonging to different sets. For the factor graph describing the generic receiver

architecture (compare Fig.2.1on page26), the first node subset are the factor nodes:

V1 = {ce, dem, dec1, dec2, map} (4.1)

The node abbreviations used here are listed in table4.1 together with the corresponding factor node and

the factor node type. The second subset are the variable nodes:

V2 = {u, c1, c2, y,H, x}. (4.2)

77
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Factor node Type Abbreviation

Channel estimation channel estimation ce

MIMO demapper demapping dem

Constituent decoder 1decoding dec1

Constituent decoder 2decoding dec2

Soft Mapper mapping map

Table 4.1: Naming factor nodes .

The complete set of nodes is:

V = V1 ∪ V2 (4.3)

The general set of edgesE ⊆ V × V with the bipartite graph property is

E = E1 ∪ E2 ; with E1 ⊆ V1 × V2 , E2 ⊆ V2 × V1 (4.4)

where the adjacency matrix can be described as:

M =


0 M1

M2 0

 (4.5)

In the receiver graph case from Fig.2.1on page26 the edges are:

E = {(u,dem), (u,map), (u,dec1), (u,dec2), (dem,u), (dec1,u), (dec2,u), (c1,dem),

(c1,map), (c1,dec1)(dem, c1), (dec1, c1), (c2,dem), (c2,map), (c2,dec2),

(dem, c2), (dec2, c2), (y, ce), (y,dem), (H,dem), (ce,H), (x, ce), (map, x)} (4.6)

4.2 Component Algorithm Notation

After naming the factor nodes, now the mapping of an algorithm to a node is described. The exem-

plarily considered algorithms are listed in table4.2, together with algorithm type and abbreviation. The

set of algorithm abbreviations is

A = {wif, snd, ummse, hummse-ml(m=m), maxlog, bcjr} (4.7)
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Algorithm Type Section Abbreviation

Wiener interpolation filter channel estimation 3.1.2 wif

2nd order model CE channel estimation 3.1.3 snd

unbiased MMSE demapping 3.2.3 ummse

Max-Log-APP demapping 3.2.3 maxlog

hybrid uMMSE/Max-Log-APP,
mLLRs linear

demapping 3.2.3 hummse-ml(m=m)

BCJR decoding 3.3 bcjr

Table 4.2: Naming component algorithms.

To map an algorithm to a factor node, the abbreviations of node and algorithmare concatenated. Algo-

rithm and factor node must have the same type (e.g. the BCJR algorithm is not applicable for channel

estimation).

The set of valid algorithm mappings to factor nodes is the alphabetΣ (set of symbols) of the receiver

description language:

Σ =
{
(v a) | v ∈ V1, a ∈ A, factor nodev and algorithma have same type

}
(4.8)

Examples:

– ce wif: channel estimation using Wiener interpolation filter.

– dem hummse-ml(m=8): MIMO demapping using the hybrid unbiased MMSE/ subspace Max-

Log-APP algorithm with parameterm= 8.

– dec2 bcjr: constituent decoder 2 implementing the BCJR algorithm.

4.3 Serial Computation Schedule Notation: Regular Expression

A schedule is a valid word from the regular receiver description languageL. The language can be

defined by a starting set of valid words and ’construction rules’ [HU79].

Starting set:

– L(∅): ’empty’ receiver is inL.

– ∀
s∈Σ
L(s) = s: only one factor node update

Construction rules:

– ∀
s,t∈Σ
L(s|t) = L(s) ∪ L(t): alternative

– L(st) = {αβ | α ∈ L(s) ∧ β ∈ L(t)}: sequence
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– L(b∗) =
⋃
i≥0
Li(b): repetition

– L(b+) =
⋃
i≥1
Li(b): nonzero repetition (at least once)

A receiver design space (search space) is a subsetR ⊆ L and can be given as regular expression.

Examples:

– Rex-1 = (ce wif dem ummse)(dec1 bcjr dec2 bcjr)+ describes a ’normal’ linear receiver with

turbo decoder (at least one turbo decoder iteration).

– Rex-2 = (ce wif)(dem ummse|dem maxlog|dec1 bcjr|dec2 bcjr)∗ describes a receiver with pos-

sibly iterative demapping – decoding allowing free concatenation of four demapping/decoding

components.

4.4 Parallel Schedule Notation: Parallelization on Factor Node Level

In order to balance computation effort and communication effort, parallelization using several PEs

is done on a factor node level. There are strong data dependencies inside one factor, while updates of

different factors can be independently computed in parallel with only input/output values as possible data

dependencies. So one factor update is computed SIMD parallel on one PE, while different factors are

possibly updated in parallel on different PEs.

The demapper consists of different factors for each time instance and subcarrier (compare Fig.2.1

on page26), so that the factor updates of a demapper update can be perfectly parallelized with several

PEs.

Parallel schedules can therefore be characterized by the mappings of factor updates (with the respec-

tive algorithms) to PEs. This can be seen as a list of decisions at a certain times– about which factors to

update with which algorithms on how many PEs. A new decision is always done when a factor update

is completed. Such a decision list does not follow a regular grammar (like the special case of serial

schedules, i.e. for 1 PE does), it needs variables to parse the language.

A synchronous data flow (SDF) graph as used in [KWA+09, LM87] can be generated from the de-

cision list. Fig. 4.3 shows the SDF corresponding to the decision list according to Fig.4.1. The SDF

carries less information since it does not contain the PE mappings.

There is an influence of parallel schedules on receiver accuracy prediction as described in chapter

5: factor update start times and durations have to be considered. A factor collects its input at start time,

message updates are output after the update duration. A receiver accuracy prediction (chapter5) consists

of time-sequential look-ups with start and end events (generated from thedecision list describing the



4.4. Parallel Schedule Notation: Parallelization on Factor Node Level 81

Figure 4.1: Illustration
of parallel schedule
from Fig. 6.1.

Figure 4.2: Factor states.

schedule).
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Figure 4.3: Syn-
chronous data flow
graph of the parallel
schedule example from
Fig. 6.1,4.1.



Chapter 5

Receiver Performance Prediction

This chapter deals with the determination of performance parameters for a concrete receiver given a

certain transmission mode and channel distribution, where the receiver maybe given in a specification

according to chapter4. The relevant hardware parameters are the number of processing elements and the

instruction set architecture (ISA). The performance parameters derived in this chapter are the receiver’s

complexity (Sec.5.1), delay (Sec.5.2), throughput (Sec.5.3) and accuracy (BER in dependence on

SNR, Sec.5.4). Complexity considers the time complexity of receiver algorithms with the specifictarget

ISA. Data space complexity or program length complexity are not considered, i.e. memory is assumed

to be large enough for the considered algorithms. Data move operations areoften free if the target has

independent load/store and arithmetic pipelines and DMA controllers. The fast performance prediction

described in this chapter is the basis for automatic receiver optimization in chapter6.

5.1 Complexity

Algorithm complexity can be considered either hardware independent or hardware dependent. A

hardware independent measure is the amount and type of necessary elementary operations. A hardware

dependent measure also compares the effort for different types of elementary operations. For hardware

dependent complexity, either an implementation can be benchmarked (achieved complexity of imple-

mentation), or a theoretical upper limit (assuming optimal implementation, optimal processor utiliza-

tion) can be used. Here, hardware-independent counts of elementaryoperations (theoretical upper limit)

are used as a first step, which are then mapped to ’complexity’ using an example processor core (with

specific SIMD width using certain number formats). This processor core isalso used in the testbed de-

scribed in chapter8, which allows for comparison of optimal and achieved processor utilization.The

83
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hardware-dependent measure is ’cycles/bit’, which is independent of clock speed and packet length.

’Retargeting’ of the complexity measure is of course possible for different instruction sets and different

processor cores.

Hardware-independent algorithm complexity measure The counted elementary operations areMultiply-

Accumulate(MAC), table Look-Up(LU), Add-Compare-Select(ACS),Compare-Select(CS) andRead-

/Write (RW). MACs are used in linear algebra operations for signal processing, especially in channel

estimation and MIMO demapping. LUs are used in the demapper’s LLR generation. Decoding uses

ACS for trellis traversal and CS for LLR reconstruction in Max-Log BCJRcomputation. RW operations

are used especially in interleavers.

Hardware-dependent measure, theoretical clock cycles on Cell SPU To enable comparison and

joint optimization, the different operations have to be expressed in a common metric. For this hardware

dependent mapping, theoretically achievable clock cycles on the target hardware under the assumption

of full utilization of processor resources are counted. By using this theoretical upper limit, the measure

is hardware-dependent, but independent from the actual implementation code quality (different from

using benchmark results as complexity measure). Usage of different number formats for different com-

ponents is of course possible: fixed point or floating point numbers, with certain number of bits. Here,

the Cell processor SPU is chosen as example target hardware due to its general-purpose signal process-

ing architecture and high performance. It is used in the SDR testbed described in chapter8 which gives

implementation benchmarks and also discusses how close an actual implementationwith reasonable pro-

gramming effort (C-language using vector intrinsics) can reach the theoretical cyclecount. The numbers

of elementary operations per cycle on the SPU using SIMD parallel implementation are given in table

5.1. The numbers in the table are a consequence of SIMD processing with 128bit width, where signal

processing operations (like MAC) are performed on 32bit (single-precision) float numbers and decoding

uses 16bit integer representation for LLRs. Load/store operations can be done in parallel to arithmetic

operations (different processor pipelines) for all blocks except the turbo (de-)interleaver, where they

have to be counted explicitly. Retargeting the complexity measure for a different architecture would use

a different table.

Complexity of a (parallel) factor update schedule A schedule consists of a number of factor updates

with certain algorithms. The schedule may include only sequential updates, oralso updates of different

factors in parallel on different processor elements (PEs). A schedule withNa factor updates has the
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Operation SPU Cycles

real-valued Multiply-Accumulate (MAC, 32bit float) 0.25
Select (conditional move, 32bit float) 0.25
table look-up (LU, demapper) 1
Add-Compare-Select (decoder, 16bit) 0.5
Compare-Select (decoder LLR gen., 16bit) 1
Add (decoder, 16bit) 0.125
QPP read (turbo interleaver) 1
QPP write (turbo interleaver) 1

Table 5.1: Mapping hardware-independent algorithm complexity to joint complexity metric for example
target hardware.

complexity

C =
Na∑

i=1

c(ai) (5.1)

wherec(ai) is the number of cycles per LLR of the factor update numberi (with algorithma), i.e. the

complexity of the schedule is the sum of the complexities of the contained factor updates. Processor idle

times (at the beginning or end of the schedule or inbetween) to not contributeto the complexity measure.

5.2 Processing Delay

Delay measures the processing time of a packet, which is e.g. relevant to avoid expiring of protocol

timers (like HARQ ACK/NACK). As for complexity, the unit is [cycles/LLR], to be independent of

clock speed and packet length. If one processor element works exclusively on a packet (serial processing

schedule), the processing delay is equal to the complexity. If more than onePE is available, the PEs

can work concurrently on different packets – with the same complexity (per packet). In order to reduce

delay (possibly at the expense of increased complexity), several processor elements can work on the

same packet in parallel (parallel processing schedule). The delay is

d = max
i
{tend(ai)} − min

i
{tstart(ai)} (5.2)

with start timeststart and end timestend of the factor updates.

5.3 Throughput

The throughput of a receiver can be determined from the computation schedule, the available number

of PEs and the clock speed. For repeated execution of a parallel schedule for different packets, pipelining
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at schedule level may be possible: depending on the schedule, idle times of some PEs at the beginning

and end of the schedule can be used for execution of the neighbouring schedule instance. The pipeline

speedup is denotedSpipe. Pipelining may especially be possible if the number of available PEs is larger

than the number used by the schedule. If the number of available PEs is an integer multiple of the

number of PEs used by the schedule, then the schedule can even be run with several instances in parallel

(on different packets). This includes concurrent application of a serial schedule to different packets.

Although this would rather be parallelization of schedules than pipelining, the speedup is nevertheless

counted inSpipe. The throughput is

T P= Spipe · fclock/d (5.3)

with clock speedfclock and delayd. The unit of throughput is [bit/s].

5.4 Accuracy: BER and MI in dependence on SNR

The usage of iterative processing naturally leads to the question of convergence. Since a wireless re-

ceiver has to work in a variety of scenarios, convergence has to be quantified for a probability distribution

of the multidimensional radio channel. The question of convergence of receiver processing for a channel

distribution necessitates a stochastic analysis. The last chapters illustrated avast design space for iter-

ative receiver algorithms. An interesting objective is to search for the Pareto-efficient [Par] algorithms

which determine the accuracy/complexity tradeoff— this comprises removing all Pareto-inefficient algo-

rithm candidates and algorithm combinations. Monte Carlo simulation of complete receiver processing

of any iterative processing scheme is too slow for the large design space.In contrast to ’slow’ link-level

simulation, a ’faster’ convergence prediction method is needed.

Extrinsic information transfer charts (EXIT charts) are widely used for predicting and illustrating

convergence of iterative decoding of concatenated codes [ten01, BRG05]. The model underlying the

chart assumes that the log-likelihood ratios (LLRs) of the transmit bit valuesare distributed after the

symbol demapper according to BPSK transmission over an AWGN channel –resulting in a 1-parametric

conditional Gaussian distribution (conditioned on the transmit bit value).

EXIT charts have also been used to model convergence of iterative MIMO detection-decoding. In

[YW05] they are applied to optimize irregular repeat accumulate codes for MIMO transmission and it-

erative receiver processing. An optimization of Turbo coded space-timeblock code transmission based

on EXIT charts is presented in [UYLW09]. [HSM05] uses EXIT charts to analyse and optimize MIMO

transmission with low-density parity-check codes. EXIT charts have also been used to optimize activa-
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tion order of demapper, decoder and channel estimator in iterative receivers in [BRG05, YKJ10].

On the other hand, in [Fu05] it is argued that even if the input of a log-APP decoder follows a

1-parametric Gaussian distribution, the output needs to be described by twoparameters (mean and vari-

ance) to adequately represent the dynamics of Turbo decoding. [RHV07] presents an analytic model of

the MIMO MMSE interference cancelling demapper in terms of the transfer ofmeans and variances of

the demapper input to those of the output.

This chapter elaborates on the applicability of the stochastic decoding analysis methods. Following

[Fu05, RHV07], a two-parametric chart based prediction method is used. Prediction offset compensation

is used to account for higher order distribution moments. The prediction methodis verified to yield ac-

ceptable prediction accuracy for different receiver computation schedules for the case of iterative MIMO

detection-decoding with Turbo codes [IB10].

5.4.1 Parametric Tracking of LLR Density Evolution

For illustration it is referred to the iterative demapping-decoding setup shown in Fig. 2.3on 29. For

this case with three nodes, the order of factor node updates is arbitrary (which was pointed out in the

context of iterative decoding of arbitrarily concatenated codes in [BMDP98, BRG05]). The joint APP

approximation is given by:

Lp(ui) = L(det)
e (ui) + L(dec1)

e (ui) + L(dec2)
e (ui) (5.4)

The aim is to predict convergence of iterative receiver processing for any schedule. The approach is to

track the conditional LLR distributions corresponding to the messages in Fig.2.3 for all node updates.

Receiver accuracy is then given by the mutual information (MI) between the Lp(u) and the transmit bits

u.

To evaluate the accuracy of the presented prediction method for concretedemapper/decoder schemes,

the following common algorithms are picked: the constituent decoders performlog-APP decoding ac-

cording to the BCJR algorithm [BCJR74], the MIMO demapper uses max-log-APP detection [HtB03].

For the exemplary channel distribution, uncorr. Rayleigh fading for each time instancet, and noise vari-

anceσ2
N is assumed. Three different schedules are arbitrarily picked, for which the prediction accuracy

is assessed:

– schedule 1: ’normal’ receiver with Turbo decoder. First the demapper is updated once, then the

constituent decoders are run alternatingly.
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– schedule 2: the demapper is run first, and then again always after fourTurbo decoder iterations

(eight constituent decoder updates).

– schedule 3: ’round-robin’ schedule. Demapper, decoder 1 and decoder 2 are run periodically in

this order (demapper update after each Turbo decoder iteration).

For simulation, 4x4 QPSK transmission and channel coding with the 3GPP LTE Turbo code (rate 1/3) is

assumed.

Shortcomings of 1-parametric model EXIT charts [ten01, BRG05] are based on a 1-parametric con-

ditional Gaussian distribution model of LLRs. This model is derived from theassumption of BPSK

transmission over an AWGN channel:

y = x(b) + n (5.5)

Under this assumption the extrinsic LLRs generated by the demapper follow a (conditional) Gaussian

distribution with the special property that the (conditional) absolute expectancy value is half of the (con-

ditional) variance [ten01]:
∣∣∣∣E
(
L(det)

e (b)
∣∣∣∣b
)∣∣∣∣ =

1
2
V
(
L(det)

e (b)
∣∣∣∣b
)

(5.6)

An LLR distribution is therefore completely described by one parameter, e.g.by the standard deviation

σ. As consequence, there is a bidirectional mappingJ : σ 7→ I between this parameter and the mutual

information carried by this distribution (MI of LLRs with the transmit bits, Eq. (3.33)). This mapping

is the basis of EXIT charts [ten01]. EXIT charts assume that the 1-parametric distribution property is

sustained after a BCJR decoder. The parameter transferI (La) 7→ I (Le) is tabularised in a tableT, its

graph is the EXIT curve. To track LLR density evolution for convergence prediction,I (Le) can be looked

up from this table for knownI (La) for information bits and code bits:

Ie(b) = T(Ia(u), Ia(c)) (5.7)

The 1-parametric property (Eq. (5.6)) is also sustained for summation of LLRs, since mean and variance

of the sum distribution are the sum of the means and variances, respectively. The MI of the LLR sum

can therefore be determined by usingJ−1 and adding the variances [ten01]:

Isum(u) = J
(√∑

i

J−1(I (i)
e (u))2

)
(5.8)

To see why this model is not adequate in the scenario at hand, EXIT chartsare applied to predict
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Figure 5.1: Bijective mapping between stan-
dard deviation and MI for the 1-parametric
Gaussian model underlying EXIT charts (after
[ten01]).

convergence of schedule 1 (’normal’ receiver, no iterative demapping) for channel SNR of 1dB. The pre-

diction of MI after each factor node update is shown in Fig.5.2. The figure also shows the measured MI,

which is obtained by Monte Carlo simulation of the complete receiver processing and non-parametric

conditional LLR distribution estimation after each factor update number. While EXIT charts predict

convergence after 8 node updates, measurement shows a saturation atMI of 0.53. An EXIT chart pre-

diction for 0dB channel SNR predicts saturation at higher MI than 0.53. The prediction error in this case

is therefore larger than 1dB, which is so large that it renders the prediction method useless.
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Figure 5.2: For the Rayleigh fading MIMO chan-
nel, EXIT chart based prediction produces a large
error; in this case (4x4 QPSK, max-log-APP
demapper) the prediction error corresponds to
more than 1dB channel SNR. Simulation uses
maximum LTE packet length of 6144 information
bits [IB10].

The misprediction is explained by the actual LLR distribution after the demapper(max-log-APP

demapping, uncorr. Rayleigh fading), which is shown in Fig.5.3. While it does resemble a conditional

Gaussian distribution, Eq. (5.6) is clearly violated: the mean value is not half the variance. Fig.5.3also

shows a conditional Gaussian distribution with the same MI which satisfies Eq. (5.6) (mean and variance

are different from the measured distribution). This is the curve which EXIT chartprediction assumes for

this MI value, and it is the reason for the wrong prediction trend. The problem is not that the demapper

or decoder EXIT curves would be wrong: histogram based measurement of the extrinsic MI as in [ten01]

is indeed correct. The problematic 1-parametric fitting occurs when the output LLRs become input for

the next factor node, because the EXIT curves are computed with 1-parametric input distributions.
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Figure 5.3: LLR conditional proba-
bility density function for 4x4 QPSK
MIMO transmission with uncorre-
lated Rayleigh fading and max-log-
APP demapping. The corresponding
conditional density according to the
1-parametric Gaussian model is also
shown: both densities have the same MI
with the transmit bits [IB10].
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5.4.2 2-Parametric Gaussian Model and Offset Compensation

It is noted that while EXIT charts track the MI value corresponding to an LLR distribution, they

could equivalently track a different parameter describing the 1-parametric Gaussian distribution, e.g. the

standard deviation [Fu05].

Until now the conclusion has been drawn that the 1-parametric Gaussian model where the expectancy

µ is half the varianceσ2 (Eq. (5.6)) is not adequate in the scenario at hand. But it could still be the case

that another 1-parametric model, maybe with a nonlinear relation betweenµ andσ2, can be used. To test

this, Monte Carlo simulation of the complete receiver processing is run according to schedule 3 (’round

robin’), andµ andσ of the LLR distributions are measured after each factor update number. Looking at

the value pairs ofµ andσ, the result is that a 1-parametric description does not work. The evolutionof

mean and variance of the information bit a posteriori LLRs is shown in Fig.5.4. Since a high mean value

at low variance implies high mutual information, the MI growth through processing can be qualitatively

observed.

Figure 5.4: The progress of iterative processing
can be observed in this example: large mean value
and small standard deviation means that the condi-
tional LLR distribution has high mutual informa-
tion with the transmit bits. Every third factor up-
date in this schedule is the MIMO demapper, for
which the chart shows no increase of LLR mean
value but a small reduction of standard deviation,
corresponding to interstream interference reduc-
tion.
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Therefore one parameter is added to the model and in accordance with [Fu05, RHV07] it is assumed

that the LLRs are conditionally Gaussian distributed with arbitrary meanµ and standard deviationσ,

leaving out Eq. (5.6). Table look-ups for the extrinsic information transfer of decoders or demapper now

have more dimensions: based on mean and standard deviation of the input distributions, the mean and

standard deviation of the extrinsic output distribution are looked up. A decoder look-up becomes:

(µe(b), σe(b)) = T
(
(µa(u), σa(u)); (µa(c), σa(c))

)
(5.9)

The MIMO demapper look-up in the scenario at hand has six input values (three input vectors with two

parameters each, compare Fig.2.3, page29).

The mapping from distribution parameters (µ, σ) to MI (function J) now has one dimension more.

MI of the Gaussian distribution is only determined by the ratioq = µ/σ of mean value and standard

deviation, the corresponding bit error rate (for a posteriori LLRs) is given by the tail probability [Fu05]:

BER= Q(q) (5.10)

Therefore as coordinates for the 2-dimensional mapping function, mean valueµ, quotientq = µ/σ, and

MI are used:

J : (µ,
µ

σ
) 7→ I (5.11)

The function is illustrated in Fig.5.5. The figure also shows the curve for the 1-parametric case, embed-

ded as special case in the MI surface.
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Figure 5.5: Mapping LLR distribution parameters
to mutual information. The mutual information is
determined by the ratioq of mean value and stan-
dard deviation. ’Full’ MI corresponding to BER
smaller 10−4 is achieved forq > 3.7. The 1-
parametric model is included as special case and
shown as curve in the MI surface [IB10].

A BER smaller than 10−4 corresponds toq > 3.7. Fig. 5.5 therefore also shows the parameter range

which has to be covered by the look-up tables. Since there are infinitely manyGaussian distributions

with sameq, the functionJ is no longer invertible. Due to this, the distributions are tracked for iterative
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decoding using only their Gaussian parametersµ andσ, the mapping to MI (or BER) is only necessary

when the iterations are stopped. For a sum of LLRs it is now instead of Eq. (5.8):

µ(sum)(u) =
∑

i

µ(i)(u)

σ(sum)(u) =

√∑

i

(σ(i))2 (5.12)

i.e. the sum is still (conditionally) Gaussian distributed.

Figure 5.6: Mutual information of a posteriori
LLRs during iterative decoding (factor updates)
according to Fig.2.3, and MI prediction. Node
update number 1 is the demapper, then the con-
stituent decoders are iteratively updated.
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Compensating MI Offset for Higher Order LLR Distribution Moments

Prediction accuracy of the 2-parametric model is illustrated in Fig.5.6. As expected, the more

flexible 2-parametric model reproduces the actual MI evolution trend and yields better accuracy – but

beginning from the first demapping, the prediction has an MI offset compared to the measured MI. This

offset can be explained by the fact that the MIMO demapper LLRs do not exactly follow a Gaussian

distribution: not all cumulants of the distribution for order larger than 2 are zero. This is illustrated

in Fig. 5.7. The figure shows the LLR distribution from the MIMO example as well as the Gaussian

distribution which has the same mean and variance. The measured LLR distribution shows a nonzero

skewness, it is not symmetric. MI of the assumed Gaussian distribution is smaller, causing the initial

prediction offset. The assumed Gaussian distribution can either have the same mean and variance as the

real distribution, or the same MI - but not both.

For a consistent concatenation of table look-ups the demapper table is determined using the Gaussian

distribution with same mean and variance as the real one. To compensate the inital MI loss, it is also

computed at table generation time. For one channel SNR value, the demappertable now is a mapping
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Figure 5.7: LLR probability density for positive
transmit bits from the example (as in Fig.5.3)
and the corresponding 2-parametric Gaussian den-
sity. The two densities have same mean and vari-
ance, but different MI (LLRs: 0.39; Gauss: 0.34)
[IB10].

from 6 input dimensions to 3 output dimensions (compare Fig.2.3):

(µe(b), σe(b), Ioffset) = T
(
(µa(u), σa(u)); (µa(c1), σa(c1)); (µa(c2), σa(c2))

)
(5.13)

Adding channel SNR as input dimension makes the demapper table input 7-dimensional. For the pre-

sented prediction results, the input LLR distributions are sampled with 8 points per dimension (0≤ µ ≤

15, 0 ≤ q ≤ 5), resulting in 260000 entries in the demapper table per channel SNR value. Using the

fact that the roles ofu, c1 andc2 are interchangeable for the demapper, only 46000 table entries have to

be computed. The table for a constituent decoder was already describedearlier in this chapter (4 input

dimensions to 2 output dimensions). Since the two constituent decoders are identical for the LTE Turbo

code used in the scenario at hand, they are both described by the same table. For table look-ups, lin-

ear interpolation between neighbouring sample points is used. The demapperlook-up table depends on

channel SNR, a constituent decoder table is independent of this.

The predicted Gaussian parameters (µp, σp) of the distribution of the a posteriori LLRsLp(u) are

then mapped to MI by table look-up (functionJ), and theIoffsetvalue returned by the last demapper table

look-up forL(det)
e (b) is added:

Ipredict= J(µp,
µp

σp
) + Ioffset (5.14)

5.4.3 Mutual Information Prediction Accuracy for Di fferent Schedules

MI prediction accuracy is verified by comparison with MI measurement, for the three example re-

ceiver processing schedules. ’Prediction’ uses the described concatenation of table look-ups, where the

concatenation order of look-ups from the two tables is determined by the schedule. ’Measurement’ per-

forms Monte Carlo simulation of the complete receiver and measures MI using non-parametric estima-

tion of the joint distribution of a posteriori LLRs and transmit bits according to Eq. (3.33), independently

for each schedule.
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The results of prediction and measurement are shown in Fig.5.8. Schedule 1 (’normal’ receiver) does

not converge for this low SNR level, which is now correctly predicted. TheMI of a posteriori LLRs sat-

urates after around 7 factor computations (6 constituent decoder updates) at 0.53. Schedule 2 converges

after around 40 factor computations (including 5 demapper updates and 35constituent decoder updates).

A demapper update only brings a small MI improvement in itself, but afterwards decoder updates gain

more again. Schedule 3 (’round-robin’) converges already with around 25 factor computations.

Figure 5.8: Verifying MI prediction accu-
racy: predicted and measured MI for the
three different schedules (packet length 6144
information bits) [IB10].
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All periodic schedules which include the same factors converge to the same MI limit value [BRG05],

since they completely use the same information sources. The maximum MI value which can be reached

by the extrinsic MIMO demapper outputL(det)
e is that of SIMO maximum ratio combining for (shifted)

BPSK modulation [IKB09]: if the demapper a priori LLRsL(det)
a have full MI (implying that the receiver

algorithm has already converged), for each LLR to compute all transmit bitsof the MIMO vector are

known except one, meaning that only two symbol constellation points remain.

The MI prediction curves in Fig.5.8 do show small deviations from the also shown measurement

curves, which are due to higher order cumulants (order higher than 2) of LLR distributions and finite

granularity of the look-up tables.

5.4.4 Verifying BER and Threshold Prediction

Prediction of the APP LLR distribution includes bit error rate (BER) prediction according to Eq.

(5.10). To verify BER and SNR threshold prediction, this mapping from the LLR distribution to BER

is applied for the two models and compared with measurement for very long packets. For the proposed

method it is:

BER= Q(
µp

σp
), (5.15)
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while for EXIT chart based prediction this reduces to one parameter:

BER= Q(

√
µp

2
) (5.16)

Prediction and measurement for varying SNR (for a fixed schedule) areevaluated with focus on the SNR

threshold required for a target BER like e.g. 10−4. Fig. 5.9 illustrates results for the ’normal’ schedule

with 21 factor updates. As implied by MI prediction (Fig.5.2), EXIT charts predict the threshold for this

schedule more than 1.5dB too small, while the proposed method predicts it 0.1dB too high. For BER

prediction, no compensation is applied to the MI offset, as this would affect the complete BER curve and

not only the BER threshold. MI offset causes the SNR threshold to be predicted too high.
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Figure 5.9: Predicted and measured bit er-
ror rate for one example schedule, using
very long packets (106 bits). The curves
for smaller packet length (6144 information
bits) differ only insignificantly [IB10].

To sum up, EXIT charts in the normal way as applied to AWGN channels are not applicable to some

practically relevant scenarios with fading MIMO channels. How well the underlying 1-parametric model

fits the demapper LLR distribution depends on the demapper algorithm, modulation and MIMO fading

distribution. This may explain why the presented results [IB10] seem to differ from e.g. [HSM05], where

a ’good match’ was found between simulation and EXIT chart based prediction in a different scenario.

The 2-parameter extension improves prediction accuracy by better fitting to the real LLR distribution.

Together with offset compensation for higher order distribution moments it achieves satisfactory MI pre-

diction accuracy. For non-Gaussian distributions a systematic error remains (higher order moments), so

that prediction accuracy is less accurate than for AWGN channels. Prediction accuracy for other channel

models – especially intersymbol interference (ISI) channels – has not been investigated. The proposed

method is however applicable to MIMO-OFDM, as OFDM converts an ISI channel into a set of individ-

ually flat fading channels. The higher dimensionality of the extended chartscauses the charts to be less

illustrative. Complexity of look-up table computation increases due to the higher dimensionality. On the

other hand, computational effort is reduced again a bit by the parametric density estimation: estimating
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mean and variance is faster than estimating MI (with non-parametric density estimation like histograms

or kernel methods). This could also be used for computation of normal EXIT charts, as it is also con-

sistent with the 1-parametric model. In principle, the prediction accuracy canbe improved by increasing

the number of parameters used to describe LLR distributions: look-up tablescould be extended to in-

clude higher order moments. This is limited in practice by the time necessary to compute the tables,

the advantage of fast prediction compared to slow link-level simulation would erode. The presented pre-

diction method serves as a basis for receiver optimization at receiver design time (choice of algorithms

and processing schedule) in chapter6. Comparing all receivers for the described scenario (three factor

nodes) which have a schedule length of exactly 20 factor node updates (106 different receivers) may

well be too much for link-level simulation based comparison. Using the presented method, all of them

can be compared after generating only two look-up tables. Comparison of different factor computation

algorithms (especially demapper algorithm alternatives) can be done by changing the respective factor

look-up table. A criterion for optimization can be the sum computational cost for reaching the target MI

(corresponding to a required packet error rate) at a certain SNR. The prediction accuracy of the proposed

method is sufficient to reduce the receiver design space to a few interesting algorithm candidates, which

can then be verified by more time-consuming link-level simulation.



Chapter 6

Automatic Receiver Optimization

Several publications deal with the problem of optimizing the node activation order in an iterative

receiver (or more generally in a graphical model). It can be distinguished between a statistical optimiza-

tion (pre-determining the best activation order at design time for a PDF of received vectors) and between

a run-time optimization (determining the best activation order for one concretereceived vector). For a

statistical activation order optimization of demapper, decoder and channelestimator, [BRG05, YKJ10]

use EXIT charts. [EMK06] describes a greedy approximation which orders the nodes to update by the

difference in output message magnitude compared to their last update. It can beused both for design-time

and for run-time optimization. For statistical optimization, the greedy ordering can also be applied to MI

increase or to attainment of an objective function (e.g. including complexity) instead of message magni-

tude. The greedy activation ordering from [EMK06] has been applied to iterative demapping-decoding

in [ZLNA10].

This chapter deals with joint optimization of component algorithm selection and activation order at

design-time. It is therefore based on the generic receiver architectureand receiver description language

described in chapter2 and chapter4, the component algorithm alternatives discussed in chapter3 and the

fast performance prediction method from chapter5. The aim of finding the ’best’ receiver with respect

to a certain optimization criterion, where the receiver components are selected from the large body of

published algorithms, faces several difficulties. While the structure of a receiver is clear and follows

from the interrelations of transmission variables, the optimization lies in the selection and concatenation

of component algorithms. For each receiver component, a whole ’algorithm zoo’ is available, containing

algorithm candidates which are Pareto-optimal [Par] regarding an accuracy/complexity tradeoff. Attain-

ment of receiver ’optimality’ further requires evaluation of a component inthe complete receiver: while

receiver complexity is the sum of component complexities, there is no such simple relation for the ac-
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curacy. For optimization of iterative receivers, usage of different component algorithms in each iteration

is possible. The criterion for receiver optimality can be chosen as utility value— a combination of re-

ceiver operational SNR, complexity, packet processing delay, throughput and number of processor cores.

Operational SNR can be determined using the method from chapter5 as that SNR level (for assumed

channel distribution), where BER or MI cross a threshold. The receiver description language from chap-

ter 4 allows enumeration of the design space (using branch and bound graph search), where for each

receiver candidate its utility (according to the chosen criterion) can be quickly assessed. Automatic re-

ceiver optimization is illustrated in an example scenario, where the optimized receivers show both an

extended operational SNR range compared to the standard receiver architecture, as well as significantly

reduced complexity compared to iterative processing according to round-robin iteration scheduling using

the same algorithm components. Further, minimum processing delay in dependence on the number of

parallel processing elements is discussed, as well as the relation between complexity and delay when

parallelizing on the factor level.

6.1 Optimization Criteria

The task is an optimal distribution of computational power to a number of homogeneous multipro-

cessor cores (compare SDR baseband hardware model from Sec.1.6), where the number of cores as well

as the update schedule and component algorithm for each factor update are flexible. For given transmis-

sion mode (modulation, MIMO scheme and code rate) and channel characteristics, receiver processing

quality can be described by the performance parameters from chapter5. The general optimization tar-

get function is a utility function from these performance parameters. This utilityfunction may contain

constraints like e.g. maximum delay. In the 5-dimensional (target SNR, complexity, processing delay,

number of processor cores and throughput) Pareto-optimal receiveralgorithm utility space, the following

optimization criteria could be chosen (among any other weighted combinations):

1. Minimum complexity for fixed operational SNR. Which receiver satisfies the operational require-

ments with minimum computational effort? The answer may be interesting as complexity is related

to power consumption.

2. Minimum operational SNR. Given a fixed hardware with certain computational power, what are

the achievable operating conditions (and with which algorithms can this be reached)?

3. Minimum delay for fixed operational SNR. How far can the processing delay be reduced by paral-

lelizing node updates using multiple processor cores?
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6.2 5D Pareto Efficiency: Searching in the Decision Tree

All schedules can be seen as different paths in a decision tree. One node in this tree is a decision at

a certain time – about which factors to update with which algorithms on how many PEs. A new decision

is always done when a factor update is completed. The decisions of one decision path in the tree are

therefore ordered by increasing decision times.

Part of the decision tree for 6 PEs is illustrated in Fig.6.1. One path in the tree (one parallel schedule)

is highlighted as example with red nodes. The schedule is described by the listof corresponding decisions

(written next to the nodes).

Figure 6.1: An example
decision tree for 6 PEs.
For each decision the
start cycle/LLR, fac-
tors to update and cor-
responding algorithms
with PE mapping are
noted. One decision
path (parallel schedule)
is highlighted with red
decision nodes.

All possible decisions which are children of a node in the decision tree can be enumerated. A factor

can be updated if it received at least one new input message, and if this factor is not currently active being

updated. The output of a factor update enables activation of other factors according to the factor graph

and their current state (like process scheduling in a non-preemptive operating system, compare Fig.4.2).

All parallel schedules can be enumerated by tree traversal.

The Pareto efficient receivers differ in the five dimensions operational SNR, complexity, delay, num-

ber of processing elements and throughput. Search for the ’best’ receiver or Pareto efficient receiver sets

is implemented by level-order traversal of the decision tree (using a list of decision paths) with branch

and bound. For each pair of operational SNR and number of PEs, a search tree is opened. Node expan-

sion needs to enumerate combinations of ready factors, which can be donein a binary way as illstrated

in Tab. 6.1. Then the Cartesian product of candidate algorithms is needed, which canimplement the

different factors to activate. A Cartesian product implementation is shown in Fig.6.2.

Adding a decision to a decision path can not decrease delay or complexity, so that branch and bound

can be used conveniently with a utility measure (one target function as measure) or in a search for Pareto

efficient receivers (several measures at once).
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No. Factor 1 Factor 2 Factor 3 No. Factors

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 2
4 1 0 0 1
5 1 0 1 2
6 1 1 0 2
7 1 1 1 3

Table 6.1: Enumeration of combinations of three factors which can be activated (having new input and
not being currently active).

Figure 6.2: Matlab implementation of Cartesian product.

1 f unc t i on p = C a r t e s i a n P r o d u c t ( l i s t v e c t o r )
2 k = l eng th ( l i s t v e c t o r ) ; % number o f d imens ions
3 f o r i =1: k
4 num elem ( i ) = l eng th ( l i s t v e c t o r { i } ) ;
5 end
6 num cp elem = prod ( num elem ) ;
7 f o r i =1: k
8 num elem res td im = prod ( num elem ( i+1: k ) ) ;
9 c o l = kron ( l i s t v e c t o r { i } , ones( num elem res td im , 1 ) ) ;

10 r e p e t i t i o n s = num cp elem / l eng th ( c o l ) ;
11 cp ( : , i ) = kron ( ones( r e p e t i t i o n s , 1 ) , c o l ) ;
12 end
13 end

6.3 Example Search Results

This section illustrates the automatic receiver optimization for Cell SPU as targethardware by giving

an exemplary optimization of iterative demapping-decoding for 4x4 QPSK, assuming perfect channel

estimation. Resulting block complexities (in cycles/LLR) are illustrated in Fig.6.3afor uMMSE and

Max-Log demapper, and for decoder 1 and decoder 2 using the BCJR algorithm. The decoder 2 block

is a bit more complex then decoder 1 because Turbo interleaver and Turbodeinterleaver are counted

as belonging to this block. For the Max-Log demapper’s complexity, independent computation of all

candidate vector metrics is assumed (no usage of intermediate partial metrics).

6.3.1 Operational SNR versus Receiver Complexity

Minimum receiver complexity is achieved with a serial computation schedule. Considered are con-

catenations of the four processing blocks illustrated in Fig.6.3a. For each SNR the objective is to find the

cheapest (least complex) schedule which achieves convergence, defined here asMI > 0.99 (equivalently

the BER for convergence can be defined, termed ’just acceptable error rate’ in [LAMC11] in the context

of channel adaptive MIMO demapper switching). The following three receiver spaces are considered:
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– Rnormal= (dem ummse)(dec1 bcjr dec2 bcjr)∗

’Normal’ receiver with Turbo decoder. The number of Turbo decoderiterations is variable.

– Rround-robin= (dem maxlog dec1 bcjr dec2 bcjr)∗

Iterative MIMO demapping-decoding using the Max-Log demapper and a round-robin schedule.

– Riterative-1= (dem ummse | dem maxlog | dec1 bcjr |

dec2 bcjr)∗

All possible concatenations of the four blocks are used as input to the optimization.

The receiver spaceRiterative-1 is illustrated in Fig. 6.3b in form of a state transition graph (finite state

machine) containing the processing blocks as states.

The optimization consists of predicting performance for each receiver visited in the search tree. For

the search spaceRiterative-1, the branch-and-bound costs can be initialized with the results fromRround-robin:

if there is a converging receiver for this SNR, then there is a convergingreceiver with round-robin sched-

ule ([BRG05] – although it is probably not the optimal receiver according to the chosencriterion).

Optimization results are shown in Fig.6.3c:

– standard receivers according toRnormal are computationally inexpensive, but do not work at very

low SNR. In this scenario (4x4 QPSK, Rayleigh fading, rate 1/3), the necessary number of Turbo

decoder iterations increases from 1 iteration at 5dB to 10 iterations at 2.1 dB.

– Rround-robin extends the operational SNR by 1 dB to the low SNR regime, although at largely

increasing computational cost.

– optimization amongRiterative-1 reduces the necessary cost compared toRround-robin by a factor of

2 with the same operational SNRs. At the same complexity the operational SNR is reduced by

around 0.5 dB. The standard receiver architectureRnormal is included as special case and is result

of the optimization for the high SNR regime.

The Pareto-optimal receivers lie on what seems like a hyperbola in the operational SNR/ complexity

diagram. Receivers inside the hyperbola are suboptimal, dominated by the Pareto-optimal ones. Which

receiver from the hyperbola is the optimal one depends on the chosen criterion. To the lower SNR region

(left in the diagram), the hyperbola is limited by channel capacity (if arbitraryprocessing is allowed) and

transmitter characteristics. The hyperbola may be improved (to the lower left of the diagram) by improv-

ing one of the contained APP computation components (towards better accuracy of APP approximation

or towards complexity reduction). The optimization process itself does not have to change to include

new algorithm developments.
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The number of factor node updates of the found ’optimal’ receivers in theexample is 3 for 5dB, 47 for

Rround-robinat 1.1 dB and 56 forRiterative-1at 1.1 dB.Riterative-1contains 456 > 1033 receivers of schedule

length exactly 56. These numbers clearly show the necessity of an optimizationapproach based on fast

performance prediction, as it would have been unfeasible to obtain resultsfor the presented optimization

problem by Monte-Carlo simulation of the receivers. Receiver design spaces further grow exponentially

if more algorithm alternatives are considered and if the optimization approachis extended to also include

iterative channel estimation algorithms.
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(a) Computational effort of the considered signal processing and decoding
blocks on Cell SPU.

(b) Example search graph and finite state automaton for example receiver
design (sub-)space with serial schedule. Can be seen as ’folded’ decision tree
for 1 PE. Each state can be an end state.
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Figure 6.3: Automatic receiver optimization example [IB11].
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6.3.2 Processing Delay versus Number of Processing Elements

An example search is run to find the receiver with minimum delay in dependenceon the number of

available PEs, for 3dB target SNR. The optimum serial schedule (1 PE) found is:

dem ummse (dec1 bcjr dec2 bcjr)2 dec1 bcjr

i.e. linear demapping followed by 5 constituent decoder updates, with a sum delay of 78.5cycles/LLR.

The minimum delays for different number of PEs are shown in Fig.6.4. The solutions follow the same

processing as the serial schedule, only the demappers are parallelized using the available PEs. This can

be explained with the comparably high target SNR (compare Fig.6.3c). Max-Log demapping in this

case can not replace one of the five decoder updates, and parallel decoder updates can not replace the last

decoder update. The minimum delay in this case therefore follows Amdahl’s law:

T(NPE) =
Tpar

NPE
+ Tser (6.1)

whereTpar is the part which can be parallelized (demapping) andTser is the serial computation part

(decoding). The asymptote in Fig.6.4 lies at Tser = 70.75cycles/LLR. More complicated parallel

schedules like in Fig.4.1are only relevant for low SNR.
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Figure 6.4: Minimum delay in dependence
on number of processing elements, for 3dB
target SNR.

6.3.3 Receiver Complexity versus Processing Delay

For the same 3dB example the tradeoff between complexity and delay is illustrated in Fig.6.5. For

this high SNR case, only one receiver is Pareto efficient, resulting in the rectangular Pareto efficiency

curves in Fig.6.5. With variable number of PEs, the delay can be reduced according to Amdahl’s law by

parallelizing the demappers — at the same receiver complexity, resulting in a horizontal Pareto efficiency
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curve.

Figure 6.5: Complexity and delay of Pareto
efficient receivers for different number of
PEs, for 3dB.
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Notes for extensions Apart from applying the presented approach for comparing and optimizingre-

ceivers including different component algorithms not covered by the examples, four main extensions are

possible:

– multiple transmitter or multi-codeword: optimization for this case is also possible (compare Fig.

2.2on page27 from chapter2). The determination of the optimal receiver processing sequence is

analogous to the single user/ single codeword case, with the following differences:

– different SNRs per user/ transmitter are allowed, leading to different (input) receive value den-

sities.

– some blocks jointly process signals of the different transmitters or codewords (like MU-MIMO

demapping), some blocks separately (like decoding).

– BER is determined per transmitter/ receiver pair.

– including channel estimation: The optimization can also be extended to include possibly itera-

tive channel estimation. The assumption of Gaussian densities (mean, variance) can not only be

applied to model conditional LLR densities, but also to model baseband symbol densities (com-

plex Gaussian densities). Input to the channel estimation prediction are the receive value density

P(y), the soft transmit symbol densityP(x) and of course the channel statistics (R, σ2
N). The re-

sulting densityP(H) (represented as channel estimation MSE under the assumption of bias-free

estimation) is also parameterized as input in the demapper table – which adds onemore dimension

there.

– faster tree search for very wide decision trees: considering a large number of candidate algorithms,
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many PEs and low SNR (requiring many updates), the tree becomes too large tosearch for the

optimal solution. In this case suboptimal search strategies like e.g. the M-algorithm can be applied.

The problem of too large search spaces and the application of heuristic search strategies is common

for search based software design [Har07].

– PEs with limited local store:For static instantiation, the local store implies a limit for the sum

code size of factor update algorithms run by a PE. This constraint can be taken care of during

tree search. The other possibility is dynamic instantiation – with the effect of additional delays

between ’factor task’ switches.





Chapter 7

Medium Access Control Aspects

Main task of the medium access control layer is scheduling. Input to the base station’s scheduler

includes uplink bandwidth requests, downlink buffer filling levels and channel quality information. Up-

link channel information is obtained by channel sounding schemes commanded by the base station, and

by channel estimation in the resources where a terminal transmits. Downlink channel information is

obtained by a terminal by channel estimation, and fed back to the base station over a control channel.

Scheduling output is the resource allocation to users, and choice of transmission parameters.

When several users share radio resources, the achievable rates become a multi-dimensional region.

Scheduling should clearly select a point on the surface of this region (Pareto-efficient allocation) – but the

decision which point to select is to a certain degree arbitrary. Section7.1 describes scheduling criteria,

which are based on different sets of plausible arguments and single out a point from the Pareto-efficient

surface of the achievable rate region.

Sec.7.2 formulates scheduling as combinatorial optimization problem. Since scheduling according

to most optimization criteria is NP hard, approximative algorithms are also discussed.

Signalling schemes can only achieve limited and slightly outdated channel knowledge at the trans-

mitter. So Sec.7.3deals with channel interpolation and prediction, and scheduling under channel uncer-

tainty. The implication of limits for the gains of adapting transmission parameters is quantified.

In Sec.7.4receiver computational power is treated as variable which can be distributing over parallel

messages. This section builds on chapter6 and shows a potential gain by adding receiver computation

as scheduling variable.

Sec. 7.5 deals with protocol extensions for multi-hop relaying, which reduce signalling overhead

without violating the scheduling criterion.

107



108 Chapter 7. Medium Access Control Aspects

7.1 Scheduling Criteria: Fairness vs. Efficiency

Classical scheduling goals in a communication system are to maximize utilization (throughput) and

to allow communication for all users (fairness). These two goals are contradictory when like in wireless

communications the same physical resource can have different benefits for different users. Game theory

derived different solutions to the general problem of distributing some good in a way considering both ef-

ficiency and fairness and delivered an axiomatic characterization of these different solutions. In OFDMA

systems, different subcarriers can be dynamically allocated to different users. Because of normally dif-

ferent channel quality of the same subcarrier for different users, a clever scheduler can exploit multiuser

diversity [RC00]. A good channel quality subcarrier can be higher modulated and thus carry a higher

data rate. This section characterizes the efficiency/fairness-tradeoff in OFDMA resource allocation by

applying as schedulers and comparing the most important game theoretic solutions for cooperative bar-

gaining.

Applying bargaining theory to scheduling has been proposed by [MMD91]. [KMT98] has proposed pro-

portional fairness, which has been implemented in a TDMA system in [JPP00]. Proportional fairness for

multicarrier systems has been e.g. considered in [KH05]. The Kalai-Smorodinsky solution as scheduler

has been proposed for multimedia streaming in [PS07]. Scheduling approaches regarding the maximal

stability region for elastic traffic also lead to utility based solutions in the game theoretic sense [BW07].

(a) Dictatorial solution (b) Utilitarian solution (c) Nash solution

(d) Kalai-Smorodinsky solution

°

(e) Egalitarian solution

Figure 7.1: Comparison of common scheduling criteria [Tho94, IB07].



7.1. Scheduling Criteria: Fairness vs. Efficiency 109

7.1.1 Game Theoretic Cooperative Bargaining Solutions and Axiomatic Classification

Assume some good is to be divided between participants. The amount that participant j gets is

denotedRj . The good can be split up in different ways, the set of all feasible choices is denotedU. Each

possible solutionF(U) is a vectorR ∈ U ⊂ Rn. Each of the game theoretic solutions is defined by

a small number of axioms. These axioms can be regarded as normative objectives of fairness [Tho94].

While more solutions have been proposed and characterized, the four described here [IB07] play a central

role in bargaining theory.

The Utilitarian solution maximizes the sum of gains (compare Fig.7.1b). It is defined by the follow-

ing three axioms [Tho94]:

– Pareto-optimality:∄R′ ∈ U with R′ ≥ R

All gains should be exhausted, i.e. the solution lies on the boundary of the feasible set.

– Symmetry: IfU is invariant under all exchanges of participants, thenFi(U) = F j(U).

If the participants can not be differentiated on the basis of the feasible set, then the solution should

treat them the same.

– Linearity: F(U1 +U2) = F(U1) + F(U2)

Participants are indifferent between solving problems separately or consolidating them into a sin-

gle problem and solving that problem.

The Utilitarian solution is not always unique. When it is not unique, continuity also is an issue, i.e. small

changes in the feasible set should lead to small changes of the solution.

The Nash solution is obtained by maximizing the product of benefits
∏

Rj (compare Fig.7.1c). It is

the only solution satisfying [Tho94]:

– Pareto-optimality

– Symmetry

– Scale invariance:λ(F(U)) = F(λ(U))

A participant by participant scale dilation results in dilation of the solution with the same factors.

– Contraction independence: IfU′ ⊆ U andF(U) ∈ U′, thenF(U′) = F(U)

If an alternative is the best solution for some problem, then it should still be thebest solution for

any subproblem that contains it.

The Kalai-Smorodinsky solution Gains are proportional to their maximal possible values (compare

Fig. 7.1d), which are given by the Dictatorial solutions (Fig.7.1a). This solution has an interesting
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monotonicity property: expansion of the feasible set in a direction favorable to a particular participant

always benefits him. The solution is the maximal point ofU on the segment connecting the origin to

the ’ideal point’a defined bya j = max{Rj | R ∈ U} (where every participant would get his maximum

possible benefit, i.e. his Dictatorial solution). The solution is uniquely definedby the following axioms

[Tho94]:

– Pareto-optimality

– Symmetry

– Scale invariance

– Individual monotonicity (for n=2): if U′ ⊇ U andRj(U′) = Rj(U) for j , i , thenFi(U′) ≥

Fi(U).

By simply replacing contraction independence with individual monotonicity in thelist of axioms char-

acterizing the Nash solution, the Kalai-Smorodinsky solution is obtained.

The Egalitarian solution In the Egalitarian solution all gains are equal (compare Fig.7.1e). All

participants benefit from any expansion of opportunities. The solution is the only one satisfying [Tho94]:

– Pareto-optimality

– Symmetry

– Strong monotonicity: ifU′ ⊇ U, thenF(U′) ≥ F(U).

Figure 7.2: Disagreement pointd: the
benefitRj of participant j must be higher
than the disagreement point coordinated j ,
otherwise the participant will leave the ne-
gotiation (minimum requirement) [SB07,
IB07].

The Disagreement Point A disagreement pointd ∈ U can be considered, a solution must then satisfy

Rj ≥ d j , otherwise userj would leave the negotiation (see Fig.7.2). The disagreement point was ignored

before, which can be described as disagreement point equal to zero.The Nash solution with disagreement

point for example maximizes
∏

j(Rj − d j). An interesting property which the Nash solution satisfies is

strong individual rationality, meaning that all users strictly gain from compromise (gains are larger than

the disagreement point). The Utilitarian solution does not satisfy strong individual rationality [Tho94].
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7.1.2 Application as Schedulers

The good to be distributed is data rate. The amount of data that userj receives/transmits during one

scheduling interval isRj . The allocation of resources is a mapping (according to the selected criterion)

which determines the operating point of the system.

Maximum throughput: Utilitarian solution To maximize system throughput, every subcarrier is

allocated to the user for which the channel quality allows the highest data rate. The scheduling is:

SmaxT P= argmax
U

∑

j

Rj (7.1)

This solution is maximally efficient, but unfair: users with bad channel quality (e.g. cell edge users)may

be completely excluded from communication.

Proportional fairness: Nash solution Proportional fairness is currently the most popular scheduling

criterion. It is:

SPF = argmax
U

∑

j

log Rj = argmax
U

∏

j

Rj (7.2)

Using this scheduling, all users are guaranteed to receive some resources.

Kalai-Smorodinsky fair scheduling Coordinatea j of the ideal pointa is the data rate that userj would

achieve if only he was scheduled on the whole frequency band. The scheduler can be implemented as a

weighted max-min scheduler, where coordinatej is stretched with the factor 1/a j :

SKS = argmax
U

{
min

j

( Rj

Rj,max

)}
(7.3)

If the channel quality of a user improves, he will get a higher data rate without any reduction for the other

users (individual monotonicity). Also here, all users are guaranteed toreceive some resources.

Max-min fairness: Egalitarian solution As the name indicates, the max-min fair scheduler is

Smm= argmax
U

{
min

j
Rj

}
(7.4)

It is the maximally fair scheduler (all users get the same data rate), but a user with bad channel quality

limits system performance. If the channel quality of one user improves, all users will get a higher data
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rate (strong monotonicity).

Unelastic Traffic: Use of the Disagreement Point Different traffic classes and prioritization can be

included in a scheduler using the disagreement point. Users may have minimum rate requirements due

to unelastic traffic – streaming data like VoIP, videos etc. Such a hierarchical ressource allocation can

also be used in time direction: e.g. longer-term scheduling grants, which arepartly used to reduce

signalling overhead, describe unelastic traffic. The users’ minimum rate requirements can be modelled

as disagreement point before bargaining is applied.

Illustration for OFDMA

The illustration assumes 12 ressource blocks in frequency direction with 84ressource elements (sym-

bols) each, and four users. The full buffer model is used (all stations always want to transmit). The users’

channel qualities per ressource block are asuumed independent, and the probability distributions given

in Tab.7.1.

Efficiency: Sum throughput First, scenario 1 is considered. The resulting average sum through-

puts of the four schedulers are shown in figure7.3a. The proportional-fair scheduler and the Kalai-

Smorodinsky scheduler lie between the max-throughput and max-min schedulers. Kalai-Smorodinsky

scheduling achieves a slightly higher sum throughput than proportional-fair scheduling.

Fairness: Per user throughput Figure7.3bshows average data rates per user for the same scenario.

The max-throughput scheduler never schedules user 1, because there is always another user with better

channel. Max-min scheduling allocates equal rates. Proportional fairness in this scenario allocates less

Scenario 1
not usable QPSK 16QAM 64 QAM

User 1 50% 50% 0% 0%

User 2 0% 33% 33% 33%

User 3 0% 33% 33% 33%

User 4 0% 0% 50% 50%

Scenario 2
not usable QPSK 16QAM 64 QAM

all users 25% 25% 25% 25%

Table 7.1: Scenarios for scheduler comparison.
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(a) sum throughput (b) per user throughput
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(c) frequency band sharing

Figure 7.3: Scheduler comparison [IB07].

differing rates than Kalai-Smorodinsky, which fits to a smaller sum rate (Fig.7.3a). In cases where

the max-throughput solution is not unique, the implementation gives preference to smaller user indices,

which explains the high data rate of user 2 and comparatively small data rate of user 4.

Frequency band sharing The average number of allocated resource blocks per user (not their positions

in the frequency band) as consequence of the scheduling done in utility space (data rates) is shown in

figure 7.3c. Max-min scheduling allocates on average more than half of the whole frequency band to

user 1 to achieve equal rates, while max-throughput scheduling ignoresthis user completely.

Scaling with the number of users Now, scenario 2 is considered. Expected sum throughput is shown

in fig. 7.4a. All schedulers take advantage of multiuser diversity (increasing sum rates with the number

of users), and of course max-throughput scheduling exploits it most. The distance to the max-throughput

curve is ’fairness loss’. In this scenario of equal distributions proportional fairness is more efficient than

the Kalai-Smorodinsky solution.

Average user rate: Scaling of the average per user rate is shown in figure7.4b. The achieved average

rates are very similar in this scenario.

Minimum user rate is shown in fig.7.4c. Note that in another scenario the max-throughput sched-

uler’s minimum rate can be equal to zero for user numbers larger than one.The implementation uses

independent scheduling for different scheduling intervals. It is also possible to consider achieved rates
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of previous scheduling intervals (scheduler memory), which becomes a necessity when there are more

users than resources in a scheduling interval.

(a) expected sum throughput: multiuser diversity and fairness
loss

(b) expected average throughput: bandwidth sharing

(c) expected minimum user rate: fairness

Figure 7.4: Scaling with the number of users [IB07].

Comparison The Utilitarian solution is the only linear solution. As soon as any fairness criterion

is used, the problem becomes nonlinear. All four schedulers are Paretoefficient. It is up to the operator

to decide how much capacity he trades for fairness. Depending on algorithm implementation this could

be adjustable during operation. It would also be possible to provide an interface to the operator where he

could implicitly choose the scheduling algorithm by selecting his favoured fairness and efficiency rules.

Scheduling according to the Kalai-Smorodinsky solution is an alternative to proportional fairness, both

offer a compromise between efficiency and fairness. Which one of them is more efficient depends on the

scenario. Other utility functions are of course also possible, but they arenot special in a sense that they

are uniquely defined by a small number of common sense axioms like the game theoretic solutions.
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7.2 Joint Scheduling and Link Adaptation

In this section, uplink and downlink channel knowledge is assumed.

7.2.1 Optimization Problem

Scheduling is performed for MIMO-OFDMA in a 3-dimensional PRB index areaA ⊂ N3.

Variables to optimize:

– matrixu allocating physical ressource block indices to user indices.

– matrixm describing the PRBs’ modulation indices. Same modulation inside a PRB is assumed.

– per subcarrier matrixwi, j,k of weight vectors. These matrices also describe the power allocation

(by amplitude of the weight vectors).

– code ratec per user. Assuming constant code rate for one user’s ressources ina scheduling interval

means uniform puncturing pattern for this packet.

Derived variables:

– SINRγl,i, j,k after the demapper per user and subcarrier.

– number of (coded) bits per PRB in dependence on modulation:B(m).

– vectorR of user rates inA.

Target function: All scheduling criteria can be written as utility functionsU(R), which a solution

should maximize.

To maximize throughput, the utility function would be

UmaxTP=

k∑

j=1

Rj (7.5)

For proportional fairness the utility function is [KMT98]

UPF =

k∑

j=1

logRj =

k∏

j=1

Rj (7.6)

For max-min fairness the utility function is

UMM = min
j

Rj (7.7)
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Optimal scheduling means selecting user combinations (per PRB), modulations (per PRB), weight vec-

tors (per subcarrier) and code rates (per user) which maximize the utility:

(u,m,wi, j,k, c) = argmax
(u,m,wi, j,k,c)

U(R) (7.8)

Achieved utility can be determined for one choice of allocation parameters by the following steps:

1. compute power per user and subcarrier:Pi(w).

2. using channel knowledge, compute SINRs per subcarrier and user: γl.i. j.k(u,w).

3. using knowledge about the receiver algorithm, compute expected mutualinformation per subcar-

rier after the demapper:I (γ(),m)

4. compute expected MI per user:Ī

5. determine code rate individually per user:c(Ī ), for packet error rate of choice

6. compute expected user rate:Ri =
∑

A B(q) ∗ ciuδi

7. compute utility from user ratesU(R)

It is implicitly assumed that a code block is completely contained in the scheduling area.

Downlink constraint is a sum power constraint for the base station. The power constraint may take a

special form, like limitation of equivalent isotropically radiated power (EIRP).

Uplink constraints are per user power constraints (possibly also EIRP).

Additional constraints differ according to scenario, protocol or system. They often aim at reducing

signalling overhead. Additional constraints may include:

– contiguous allocations

– same modulation per user allocation

– constant power allocation

– fixed weight vectors. Applied in downlink, feedback is reduced. Leads to decoupling of parallel

MIMO channels, so that SINR feedback can be independently reportedper transmit stream.

– coding block size equivalent to user’s allocation in one subframe

– single MIMO stream per user



7.2. Joint Scheduling and Link Adaptation 117

7.2.2 Approximative Scheduling Algorithms

The optimization problem contains discrete variables, so it is a combinatorial problem. Since exhaus-

tive search needs unreasonably high complexity for larger number of users, suboptimal approximative

algorithms are of interest. Algorithms either operate in the discrete variable domain, or in a correspondig

continuous relaxation.

Discrete algorithms Search strategies for discrete optimization are described in [PS82]. Since the set

of feasible decisions is assumed too large for an exhaustive search, analgorithm tries to avoid looking

at most of the possible decisions. Possible approaches include search space partitioning (dimensionality

reduction, e.g. first subcarriers, then power), greedy, informed orexhaustive search in subspaces and

iterative local search. For single-user bitloading, [HH] iteratively assigns one more bit to that subcarrier

where the least amount of power is necessary, which leads to the optimal solution. For multi-user bit-

loading, [YL00] decomposes the problem by first determining the number of subcarriers and amount of

power per user, then assigning subcarriers and loading bits with the Hungarian method. In [HJL05] an

iterative algorithm is proposed, which exchanges subcarriers betweenpairs of users in each step.

Continuously relaxed algorithms Relaxation leads to a Lagrange or Karush-Kuhn-Tucker (KKT) for-

mulation as constrained nonlinear optimization problem. (relaxation mean e.g. infinite granularity in

modulation levels). Standard solvers are sequential quadratic programming, using active sets, interior

point method or the trust-region reflective algorithm. After the continuous solution, the ’closest’ discrete

solution needs to be found, e.g. using cutting planes and branch and bound (branch and cut method).

[KRJ00] relaxes single-user bitloading problem to a linear continuous one and finds the optimal solution

with less complexity than [HH]. For the multi-user case, [YSC07] gives a Lagrange based iterative algo-

rithm, [SAL99] employs a barrier-function based interior point method. [WCLM99] minimizes power

for given rate requirements using Lagrange relaxation and iterations to satisfy requirements.

Separation of short-term allocation and longer-term weight adjustment Equal algorithmic treat-

ment of the different scheduling criteria can be enabled using a linearization ofU as weighted sum rate:

U(R) =
k∑

j=1

v jRj (7.9)

This of course necessitates computation and updates of weightsv j , which can possibly be done in a

different time frame.
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Example algorithm using iterative local search

In this subsection, an iterative algorithm for the multiuser fair scheduling problem of adaptive OFDMA

systems is described. It uses iterative local search with k-opt switches inthe combinatorial solution space.

The algorithm can be used with different scheduling criteria like proportional fairness and max-min fair-

ness, both for constant and adaptive allocation of power to subcarriers/resource blocks. The algorithm

is initialized by a greedy heuristic, which iteratively allocates the resource block and modulation level

with most marginal utility (allocations are iteratively done in a way to maximize utility function increase

in each step). This gives a reasonably good allocation, but is suboptimal because of the nonlinearity of

a fair utility function. If adaptive power allocation is used, initialization needs toalso take the power

restriction into account. After initialization, the iterative local search starts. In each step, allocated re-

source blocks are switched between users (and modulation levels), if this increases the utility function. A

1-opt-switch means taking away a resource block from one user and allocating it to another one (in case

of adaptive power allocation, user and modulation are jointly considered).A k-opt-switch is a sequence

of k switches. Searching for k-opt-switches would mean higher complexity but may avoid termination in

a local optimum. The algorithm can also be used with a lower-complexity initialization ifneeded. The

utility function can be any function of theRj , e.g. max throughput, max-min fairness or proportional

fairness.

Algorithm initialisation using greedy heuristic Free resource blocks which could be allocated to one

user are kept in a sorted queue for this user. The queue is sorted according to the marginal utility (utility

increase in case of allocation) of resource blocks. Such a queue is kept for all users, the data structure

worked on is thus a vector of priority queues. To find the (greedy) bestnext allocation in each step,

the top entries of the user queues are compared. If an allocation is done, the marginal utility values in

the queue of the user who got the allocation have to be updated (nonlinearity). The allocated resource

block has to be removed from all users’ queues. Updating marginal utility values can be accelerated by

considering that there is only a fixed small number of possible values (number of modulation levels) per

queue.

Equal power allocation: If transmission power is distributed equally over subcarriers, for a predefined

target bit error rate the channel quality feedback can be directly mappedto a modulation level. The only

question is which user gets which resource block.

Adaptive power allocation: If transmission power can be adaptively distributed over subcarriers,

each resource block can be allocated to any user with arbitrary modulation level (if maximum power is
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not exceeded). Deciding about the greedy initialization is not straight-forward: maximizing marginal

utility in each allocation step leads to always choosing maximum modulation level andthe available

power is rapidly consumed (not all resources can then be used for transmission). Maximizing marginal

utility per power leads to always choosing the lowest modulation and probablyspare power. In any way,

initialization stops when all resources are allocated or when the maximum poweris reached.

Iterative local search using k-opt-switches The data structure used to find a 1-opt-switch is basically

an array. An array entry corresponds to a switch and contains the marginal utility of the switch (difference

of utility increase for new user/modulation and lost utility of old user/modulation). After a switch, array

values of the two affected users have to be updated (again a fixed small number of values, corresponding

to the number of possible modulation levels). To satisfy timing requirements, the maximum number

of iterations can be limited. The algorithm could also be just terminated (after the available processing

time) and the result of the last iteration used.

For Equal power, a switch is done if it increases utility. If no such switch is found, the algorithm

terminates in this local optimum.

For adaptive power allocation, A switch is done if it increases utility and satisfies the power con-

straint. Changing modulation for a user’s chunk is also considered an iteration.

Complexity considerations How does the computational effort scale with the number of users and

resource blocks?

Greedy initialization:

1. a) Equal power, sort allk queues withq different possible values:O(km).

b) Adaptive power, sort:O(kmlogm).

2. Find greedy next allocation:O(k)

3. Remove allocated resource block from queues:O(km)

4. Rescale values in queue:O(m)

5. Loopm-times back to 2)

The resulting complexity for greedy initialization is thusO(km2).

Iterations:

1. Build array:O(km)
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2. Find switch:O(km)

3. Rescale two users’ marginal utility vectors:O(m)

4. Loop back to 2).

Each iteration thus has a complexity ofO(km).

Illustration Equal power allocation: For illustration, scenario 1 from Tab.7.1on page112is used, with

proportional fairness as scheduling criterion. 5719 scheduling intervals have been simulated, both em-

ploying the algorithm for constant power and a computationally intensive search for the optimal solution

(using branch-and-bound). Figure7.5ashows a histogram of the number of iterations until termination.

Greedy initialization achieves good results, in about 50% of the intervals local search is not able to im-

prove the initialization by finding a 1-opt-switch. The algorithm almost always terminates after less than

5 iterations. Essence of the algorithm is utility improvement in each iteration. Figure 7.5bshows the

average achieved utility in each step, separately for each total number of iterations until termination. The

final iteration in all cases achieves similar utility values. The better (higher utility)the initialization is,

the less iterations are needed.

Average sum throughput in each iteration, separately for each total number of iterations, is shown

in figure 7.5c. The average sum throughput is roughly constant. Iterations thus do not lead to higher

sum throughput, but to more (proportional) fairness. The best way to answer the question of how far the

algorithm solution is away from the optimal solution, is to compare utility values (figure 7.5b). Another

way is chosen in figure7.5d. The average mean square error (MSE) of per-user rates with respect to the

optimal solution is shown for each iteration: the distance vector between the vector of user rates of the

iteration and the vector of user rates of the optimal solution is computed, and its entries are squared and

summed up to give the MSE. The average MSE is decreasing over iterations.If the algorithm would

always find the optimal solution, the last iteration’s MSE would be zero. This ishowever not the case

due to stopping in local optima.
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achieves good results: the algorithm almost always termi-
nates after less than 5 iterations (1-opt-switches).
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Figure 7.5: Equal power allocation [IB08].

Adaptive Power Allocation: Now a basestation power constraint of 1250 mWis assumed. CQI

feedback is simplified to be the power necessary for QPSK modulation (lowest modulation) of each

resource block. The basestation computes necessary powers for 16QAM and 64QAM by adding 6dB

resp. 12dB. Necessary powers for QPSK modulation are modelled as independant continuous random

variables for resource blocks and with different distributions for different users. Uniform distribution

in the log-power domain (dBm, decibel compared to milliWatt) is assumed. The useddistributions are

shown in table7.2.

In the greedy initialization, in each step the resource block allocation with highest marginal utility per

power is chosen. This leads to only QPSK or no modulation of a resource block (in case of no remaining
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Scenario 3
User 1 User 2 User 3 User 4

distribution from 20dBm 10dBm 10dBm 0dBm

distribution to 40dBm 30dBm 30dBm 20dBm

Scenario 3, algorithm effect
not used QPSK 16QAM 64QAM

initialisation 81 119919 0 0

last iteration 53 65074 34997 19876

Table 7.2: Scenario for adaptive power allocation [IB08].

power). 10000 scheduling intervals have been simulated, the number of occurrences of needed iterations

is illustrated in figure7.6a, showing an expectancy value of around 13 iterations. Table7.2 shows the

number of chosen modulation levels after initialization and after algorithm termination, clarifying the

mentioned property of greedy initialization with marginal utility per power and the effect of the iterative

algorithm part.

The average achieved utility values over iterations and iteration steps are shown in figure7.6b.

Figure7.6cshows used power levels over iterations. After the last iteration, the available 1250mW

are fully used. Initially there is low power allocation due to modulation level choices of intitialization.

The lower the initial power allocation is (meaning good channel qualities), the more iterations are done

by the algorithm.

Another effect of the initially low modulation levels is that iterations considerably increase not only

fairness, but also sum throughput (fig.7.6d), which is different from the constant power case (Fig.7.5c).
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(a) adaptive power) Histogram of number of iterations until ter-
mination (1-opt-switches). The curve has a different form than
in the constant power case (fig.7.5a), because greedy initializa-
tion with marginal utility per power always chooses the lowest
possible modulation level (which is later increased using itera-
tions).

(b) (adaptive power) Average achieved utility values
over iterations. Colours correspond to figure7.6a.
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Figure 7.6: Adaptive power allocation [IB08].
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7.3 Gains and Limits of Adaptation: Imperfect Channel Knowledge

For joint MIMO-OFDMA link adaptation and scheduling with limited signalling overhead, channel

quality feedback needs to be quantized, sparse and irregular. For flexible scheduling, prediction of the

quantized channel at the base-station is needed. In this section, measurement of 3D downlink channel

correlation parameters by the terminals and signalling back to the base station is described, which en-

ables prediction of the quantized channel by multi-dimensional Wiener filtering. The scheme is shown

to improve adaptive choice of transmission parameters and to avoid mis-adaptation due to control lag

[IOB11]. Different schemes of correlation feedback signalling are discussed in terms of (time-variant)

expected throughput.

According to Sec.1.3, time variance of a radio channel is divided into large-scale fading due to

pathloss and shadowing and small-scale fading due to multipath propagation (changes over distance on

the order of wavelength). Large-scale fading is traditionally countered by adaptation of transmit power.

Adaptation of transmit parameters on a radio link has since been extended to also account for small-scale

fading, e.g. in the form of per-subcarrier modulation in adaptive OFDM [Czy96].

Link adaptation as any control loop needs to consider adaptation delay. Tocope with delay, channel

prediction for adaptive OFDM based on received symbols is described e.g. in [KH00, MH02b, SA03]

using Wiener filtering or Kalman filtering respectively. Link adaptation either follows a channel reci-

procity assumption for time division duplex (TDD) links, or requires a feedback channel to report the

fading behaviour (closed-loop adaption) and possibly also interference. To reduce feedback bandwidth,

channel values can be quantized to yield the parameters of adaptation [KH00].

MIMO-OFDMA transmission used in modern systems for increased spectralefficiency, further ex-

tends the trend fowards finer-grained adaptation in two directions. In OFDMA, link adaptation can be

combined with multi-user scheduling to exploit multi-user diversity in addition to time and frequency

diversity [WE08]. In MIMO transmission, MIMO parameters can be adapted depending on channel cor-

relation between different antennas [FMP+07]. Joint multi-user MIMO scheduling and link adaptation is

described e.g. in [HHA07].

Feedback for the complete channel grows linearly with the number of users, while the corresponding

capacity grows only double logarithmically [HHA07] – so further reduction of feedback information is

necessary for joint scheduling and link adaptation. For this reduction, usage of SNR thresholds has been

proposed to avoid transmitting feedback for ’bad’ channel ressources [Bon04, HAGO05]. These thresh-

olds can be adaptive, relative (quality ordering) and individual per user. [HHA07] evaluates feedback
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thresholds to achieve a sum feedback rate limitation. A further overview of limited feedback schemes is

given in [LHL+08].

Prediction in the base station is discussed in [MK09, JSAM07]. In [JSAM07], terminals feed back

SNR values to the base station, which then predicts future SNR values using a2D Wiener filter, where the

spatio-temporal downlink channel correlation is estimated from uplink transmissions. [MK09] discusses

prediction in the base station based on quantized feedback. It uses linearpredictive coding, where the

filter parameters are determined by the base station.
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Figure 7.7: 2D fading OFDM channel,
quantized to physical resource block
granularity (average squared channel
gainḡ) [IOB11].

Gains of adaptation in MIMO-OFDMA transmission derive from the degreesof freedom in mapping

users’ tranmission to physical channel resources: user selection in time,frequency and space (MIMO

streams) and choice of modulation, code rate and MIMO mode.

Limits of transmission adaptation are set by the variance of the channel (autocorrelation), delays

(measurement, round-trip, signalling protocol) and feedback overhead. Delays comprise the risk of mis-

adaptation: wrong choice of channel resource and modulation and coding scheme lead to inefficient

transmission and high packet error rate. The aim is therefore to balance feedback overhead versus effec-

tive adaptation gain.

A recent commercial adaptation and signalling scheme for FDD MIMO-OFDMAis given by LTE

[3GP10a, 3GP10b]. Downlink channel measurement uses the pilot symbols for coherent demodulation,

feedback regarding the downlink channel is transmitted over an uplink control channel in the form of

wideband or subband feedback (subband selection either by base station or by terminal). The feedback

consists of channel quality indication (modulation and code rate), rank index (number of MIMO streams)

and precoding matrix indication (for MIMO stream selection), depending ontransmission mode. Uplink

measurement uses a sounding signal, where the bandwidth and antennas are commanded by the base
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station. Feedback or sounding transmission are thus a description of (part of) the actual space-frequency

quantized channel. Time instances for feedback and sounding are commanded by the base station, ei-

ther as periodic or aperiodic. Signalling overhead is further reduced bythe possibility for persistent

scheduling.

So on the one hand, flexible scheduling and link adaptation need channel information for all ressources.

On the other, reduced feedback for MIMO-OFDMA needs to be quantized, sparse, and irregular (traffic

requirements). Collisions of subband and stream selection can occur. Toresolve these contradicting

requirements as well as the adaptation delay problem, prediction of the quantized channel is necessary.

For reduced feedback overhead, this prediction should be performedat the base station. To enable this

prediction, also channel correlation information can be fed back (which changes slower than the chan-

nel itself) [IOB11]. Prediction (including error prediction) based on non-uniform sampling(feedback)

positions can be performed by Wiener filtering and is an approach to avoid mis-adaptation in wireless

systems covering a wide range of mobility and location scenarios.

Figure 7.8: Packet error rates for different
transmission modes (modulation and code
rate), chosen to have 1dBdistance [IOB11].
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7.3.1 Benefit of Channel Correlation Knowledge

The time-variant channel transfer function is denoted ash(i, j, p), with i OFDM symbol index, j

subcarrier index andp pair of transmit/ receive antennas.

For link adaptation and scheduling, the quantized channel according to granularity of adaptation/

scheduling is more interesting: a physical ressource block (PRB) consists of Nsub subcarriers overNt

OFDM symbols [3GP10b]. The average squared channel gain (proportional to SNR) of a PRBis:

ḡ(t, f , p) =
1

NsubNt

∑

i∈PRB t

∑

j∈PRB f

|h(i, j, p)|2 (7.10)
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with t PRB time index andf PRB frequency index. The correlation is

Rḡ(∆t,∆ f , p1, p2) =
E[(ḡ(t, f , p1) − µg)

σg
· (7.11)

·
(ḡ(t + ∆t, f + ∆ f , p2) − µg)]

σg

whereḡ is assumed as stationary random process with meanµg and varianceσg.
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Figure 7.9: 20MHz Urban macro OFDM
channel’s frequency selection gain in de-
pendence on signalling delay, for differ-
ent Doppler spectrum shapes and maximum
Doppler frequencies [IOB11].

As in [KL08], it is assumed here that the correlation is separable into three factors:

Rḡ(∆t,∆ f , p1, p2) = rt(∆t)r f (∆ f )rs(p1, p2) (7.12)

Autocorrelation is the inverse Fourier transform of power spectral density (compare Sec.1.3).

rt(∆t)r f (∆ f ) = F −1(Sdel(τ)SDop(ν)) (7.13)

with Doppler power spectrum spectrumSDop(ν) and delay power spectrumSdel(τ). Common spectra

assumption for the channelh include Gaussian shape, uniform spectrum or Jakes spectrum [Pat02]. Pre-

condition for correlation signalling is of course estimation of the correlation bythe terminal – but high-

accuracy channel estimation by adaptive filtering requires the receiverto estimate channel correlation

anyway [JL07, KID10] (Sec.3.1).

To predict the expected valueµp of ḡ on a position (t, f , p1, p2) from a vectorf of (possibly non-

uniform) feedback samples, the Wiener filter [Wie49] is used:

µ̂p = (R−1
A rA)T(f − µg1) + µg (7.14)
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whereRA is the correlation matrix of the feedback samples (within filter areaA), rA is the correlation

vector of these sample positions and the position to predict, and1 is a vector of adequate size containing

ones. The process meanµg is subtracted from the feedback and added later to the prediction. The

corresponding prediction error has the variance [HKR97]:

σ̂2
p = σ

2
g(1− rT

AR−1
A rA) (7.15)

The prediction is quite similar to multidimensional Wiener interpolation filtering for pilot symbol assisted

channel estimation as in [HKR97] (where in this case there is a non-zero process mean and non-uniform

sampling). For single feedback,RA = 1 and ˆµp decreases with the time-direction autocorrelationr t(∆t).

With growing time lag between feedback positions and PRB to predict, the mean prediction converges

to the process mean, and the error prediction to the process variance [BD87]:

lim
∆t→∞

µ̂p = µg , lim
∆t→∞

σ̂p = σg (7.16)

Figure 7.10: MIMO-OFDMA space-frequency
selection gain over delay for uncorrelated chan-
nels (20Hz max. Doppler, Gauss spectrum,
20MHz urban macro) [IOB11].
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Time-direction autocorrelation

Time-direction autocorrelation of ¯g as described by power Doppler spectrum can be approximated

using a parametric model with few parameters, in the first approximation (one parameter) e.g. termi-

nal speed, maximum Doppler shift or channel coherence time (correlationdropped to 50%). This is

illustrated with three common one-parametric models. Using the Jakes model, Doppler spectrum and

correlation are [Pat02]:

S( f ) =
1

π fd
√

1− ( f / fd)2
, | f | ≤ fd; rt(∆t) = J0(2π fd∆t) (7.17)
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with fd for the maximum Doppler shift.

The Gaussian spectrum assumption is:

S( f ) =
1√

2πσ2
e−

f 2

2σ2 ; rt(∆t) = e−πσ
√

2 · (∆t)2
(7.18)

where fd is defined asfd = σ
√

2, andσ is the standard deviation.

For the uniform model it is:

S( f ) =
1

2 fd
, | f | ≤ fd; rt(∆t) = sinc(2 fd∆t) (7.19)

For single feedback and time-direction prediction, the expected adaptation gain in dependence on feed-

back delay is illustrated in Fig.7.9 for different spectra ofh. Simulation uses the urban macro channel

model [3GP06], a PRB spans 0.5mstimes 180kHz(as in LTE). The expected adaptation gain by selecting

the best PRB in frequency direction (compared to channel average) is 3.5, for zero delay. With increasing

delay (round-trip and protocol delay) the figure shows the descent to channel average. The three example

models (Jakes, Gaussian, uniform) show little difference for the same max. Doppler shift (in the figure

10Hz, corresponding to low mobility, 5 km/h at 2GHz). The figure also shows the expected adaptation

gain over gain for 700Hz (medium/high mobility, 60 km/h at 2GHz), which reduces the coherence time

reduced from around 40 PRBs to less then 1 (anti-proportional tofD).

Fig. 7.10illustrates the expected adaptation gain over delay if the best PRB (urban macro channel) is

selected not only in frequency direction, but also over different (uncorrelated) MIMO streams (20Hz fD,

Gaussian spectrum). While the expected adaptation gain increases with the number of uncorrelated

antenna pairs, the behaviour over time is not influenced — the larger relative decrease poses a higher risk

for misadaptation.
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Figure 7.11: Prediction error variance for pe-
riodic feedback about best PRB in frequency
direction (every 10 PRB) and example chan-
nel realisation [IOB11].

In the following, packet error rate and throughput are determined in dependence on signalling (adap-
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tation) lag. Fig.7.8 illustrates packet error rates for different transmission modes (of one spatial stream;

modulation and code rate are varied), for a reference receiver algorithm. With current rate matching

methods (e.g. [CNB+08]), the code rate can be chosen with very fine granularity. With strong coding

(LTE turbo code in the example), the packet error rates show an ’on-off’ behaviour in dependence on

SNR: at a threshold SNR the PER drops very fast. The transmission modes inFig. 7.8 are chosen to

have a spacing of approximately 1dB SNR.

In addition to the expected mean adaptation gain as in Fig.7.9, Fig. 7.12also shows the expected

variance in dependence on delay, i.e. the expected prediction of mean value and prediction error ac-

cording to Eq. (7.14) and Eq. (7.15) (for urban macro channel parameters and a Doppler spectrum

assumption). The expected channel gain for a certain delay∆t is described by a Gaussian distribution

N(µ(∆t), σ(∆t)). The figure also contains SNR thresholdsTm for different transmission modesm (1dB

distances). With this, the packet error rate in dependence on delay can be determined as:

PER(Tm,∆t) =
∫ Tm

−∞
N(µ(∆t), σ(∆t))

= Φ(
Tm− µ(∆t)
σ(∆t)

) (7.20)

with the tail distributionΦ. The resulting packet error rate for different transmission modes is depicted

in Fig. 7.13in dependence on delay.

A transmission modem mapsBm bits into a PRB, so the expected relative throughput compared to

modem1) is:

TP(m,∆t) =
Bm ·PER(T,∆t)

Bm1

(7.21)

Resulting throughput for different modes and delays is illustrated in Fig.7.14.

Figure 7.12: Mean and standard de-
viation of adaptation gain over delay,
also transmission mode SNR thresholds
(1dBspacing) [IOB11].
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Terminals feed back current parameters of the Doppler spectrum model tothe base station, so that the
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base station can choose the transmission mode to optimize expected throughput, considering the control

lag. To illustrate the benefit of time-direction correlation knowledge, link adaptation for periodic channel

quality feedback with and without correlation knowledge are compared. Following a (short-term) static

channel assumption (channel correlation not known), the expected average throughput in dependence on

delaytlag and feedback periodtper is:

T̄Pstatic(m, tlag, tper) =
1

tper

tlag+tper∑

∆t=tlag

TP(m,∆t) (7.22)

Fig. 7.15shows an illustration.

With known correlation and the same feedback scheme, the average expected throughput becomes:

T̄Pcorr(tlag,tper) =
1

tper

tlag+tper∑

∆t=tlag

max
m

TP(m,∆t) (7.23)

The expected best transmission mode can be chosen in dependence on delay, which corresponds to the

envelope in Fig.7.14.
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Figure 7.13: Packet error rates over delay
for the transmission modes from Fig.7.12
[IOB11].
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Figure 7.14: Throughput over delay for the
transmission modes from Fig.7.12[IOB11].
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Correlation in frequency direction and over antennas

There are several reasons for the benefit of knowledge about the channel’s 3D correlation. First, more

correlation between feedback samples improves prediction accuracy (compare Eq. (7.15)). Second, with

a growing number of users, the probability of collisions of user-selected subband feedback increases –

which necessitates prediction for positions also on other frequencies and/or streams. In addition, spatial

(antenna) correlation can be used to select the number of MIMO streams and/or MIMO mode. For 3D

Wiener prediction filtering, the equations (7.12), (7.14), (7.15) remain unchanged – only the filter area

increases in dimensionality.

Fig. 7.11 illustrates the prediction error for 2D prediction (time-frequency, OFDM channel) for

periodic feedback withtper = 10. Other parameters for this illustration are Gaussian Doppler spectrum

with fD = 10Hz, uniform delay spectrum withτmax = 0.5µs, and zero signalling delay. For feedback

positions the prediction error is zero, and with increasing distance from feedback positions, the prediction

error increases towards process variance.

Figure 7.15: Average expected channel
throughput for transmission mode 4 from Fig.
7.12for 10 PRB adaptation delay and 4 PRB
feedback period [IOB11].
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7.3.2 Signalling and Tracking

It is now assumed that the terminal performs measurement of the short-time 3D correlation of ḡ

over a window in time direction (on the order of coherence time), frequencyand angular direction (or

equivalently between antenna pairs) e.g. according to [JL07, KID10].

To include feedback signalling into throughput optimization, the throughput has to be reduced by

signalling overhead. If asymmetric power and energy constraints are neglected in an FDD system, then

it is reasonable to reduce downlink throughput by the corresponding feedback overhead on the uplink

(since the frequency split in downlink/uplink could in principle be adjusted). Alternatively, different

weights can be given for uplink versus downlink bits.
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Feedback reporting parameters

While the cost of feedback signalling is clear, the benefit is the expected throughput increase with

the additional feedback (expected throughput conditioned on feedback positions). For single feedback

(request and transmission) this can be determined by Eq. (7.14) and (7.21), for periodic feedback directly

from Eq. (7.23). The expected adaptation gain depends of course on the multi-variate probability density

function of the channel (compare Fig.7.9and Fig.7.10).

Assuming a constant bit rate source and periodic feedback, the feedback period could be optimized

by:

t(opt)
per = argmax

tper

(T̄Pcorr(tper) −OV(tper)) (7.24)

where the feedback overhead OV(tper) is a hyperbola. A more detailed model may include feedback

collision probability and expected throughput for alternative allocations.

Time-variant channel autocorrelation

Channel correlation changes slower than the channel itself (by definitionand window-based estima-

tion), so separate signalling for channel correlation and channel qualityfeedback reporting is adequate.

While time-direction correlationrt is velocity dependent, frequency- and space-direction correlation are

location dependent and could possibly be stored in the base station to avoid signalling.

The maximum Doppler shift in dependence on terminal velocity is

fd = fc ·
v
c

(7.25)

with fc carrier frequency,v velocity, andc speed of light. Time-direction correlation change due to

accelerationdv
dt (assuming same spectrum shape) with acceleration values achieved by cars for example

means a slow correlation change which can be tracked by low-rate correlation change signalling.

A different cause of changing correlation can be variation of the spectrum shape due to alterations of

reflectors and scatterers in the channel (e.g. passing cars, trains).

Different ways of correlation change signalling are discussed in the followingand illustratied in Fig.

7.16. The urban macro channel and round-trip delay of 10 PRB (5ms) is assumed, further a Gaussian

Doppler spectrum and (non-continuous) change offD according to a step function from 10Hz to 200Hz.

Other parameters are periodic sounding (3 PRB period) and correlation measurement delay (3 PRB

for 200Hz). The blue curve in Fig.7.16 shows the expected throughput over time for no correlation
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signalling and (short-time) static channel assumption. The red curve showsthe expected throughput for

periodic correlation reporting with 10 PRB period. As already seen in Sec.7.3.1, correlation signalling

improves the steady-state throughput, which for higherfD is smaller. With periodic correlation reporting,

the transmission is adapted to the changed correlation after measurement delay, average reporting delay

(average offset of reporting time to correlation change time) and round-trip delay.

Terminal-decided aperiodic update of correlation information

To minimize both correlation reporting delay and overhead, it is desirable to update the transmit-

ted correlation only when a (significant) change has occurred: this meansterminal-decided correlation

feedback reporting. Terminal-decided aperiodic feedback transmissionrequires that an allocated uplink

ressource is available (data or control channel). Implementation can be transmission of correlation info

instead of scheduled data, or possibly piggy-back to channel quality reporting. Terminal-decided feed-

back offers an overhead reduction compared to high feedback periodicity, and packet error rate reduction

compared to updating with low periodicity. The black curve in Fig.7.16illustrates expected throughput

for terminal-decided correlation feedback, which compared to periodic correlation feedback avoids the

average reporting delay.

Figure 7.16: Expected throughput over time
for step function correlation change (after
10 PRB) and different correlation signalling
schemes [IOB11].
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Notes Jointly considering downlink and uplink, there is an ’information discrepency’ between the base

station and a terminal: while each terminal can continuously track the downlink channel, the base station

can estimate an uplink channel only on resources where the terminal transmits(data, control or sound-

ing). So the discussed method to obtain correlation information was measurement by the terminal and

feedback signalling. The channel correlation parameters of downlink and uplink are themselves corre-

lated, because changes in channel autocorrelation are caused by the same physical reasons (acceleration,
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location). This means both that a terminal can also continuously estimate correlation of the uplink chan-

nel, and that the base station could infer downlink correlation parameters from uplink sounding (if the

sounding signal is transmitted with low period). Conversion of 2D (spatio-temporal) correlation from up-

link to downlink is discussed in [JGA09]. Such estimation of correlation information avoids signalling

the correlation, although at the expense of a conversion error (reduced prediction accuracy).

7.4 Adapting Receiver Algorithm to Scheduling Parameters

This section considers joint optimization of adaptive transmit and receive processing for sub-optimal

(non-ML) receivers, which are constrained in computational power. It demonstrates potential gain of

non-equal allocation of receiver computational power to parallel messages (referring to chapter6 for

receive processing, this section deals with optimization at run-time rather thanat design-time). The op-

timal transmission parameters depend on the receiver’s computational power constraint and its available

algorithms. Specifically the (for block-ML reception capacity-achieving) waterfilling transmit power

allocation normally is not optimal in this context.

Optimization of transmission parameters aims at achieving channel capacity, most often with the

implicit assumption of an optimal (block maximum likelihood) decoder. For different channel mod-

els, capacity-achieving transmit strategies have been found. The optimal power allocation for adaptive

transmission over a spectrally shaped channel with channel state information at the transmitter (CSIT) is

known as ’waterfilling’ [CCB95, Gal68]. Corresponding bitloading algorithms for adaptive modulation

and finite transmission block length are based on a gap model, which describes the distance in signal

to noise ratio (SNR) from the (infinite block-length) capacity in dependenceon bit error rate (BER)

[KRJ00, CCB95]. Bitloading according to the waterfilling solution has been applied to OFDM transmis-

sion, e.g. for digital subscriber line (DSL, [KRJ00]) and wireless communications [Czy96]. Similarly

for MIMO transmission, the capacity achieving transmit parameters are yielded by singular value de-

composition and waterfilling power allocation over the resulting parallel channels [Tel99]. Practical

link adaptation schemes with fine granularity adapt not only modulation, but also code rate (for OFDM

described in e.g. [MH02a]).

Optimization of receiver processing assumes fixed transmission parameters. In chapter3 is was seen

that for each receiver function, many algorithm alternatives exist, in chapter6 the receiver’s Pareto ef-

ficient accuracy/complexity tradeoff was characterized: while the block ML receiver ranges at almost

infinite complexity for practically used packet length, combinations of (iterative) algorithms can approx-
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imate its accuracy with variable computational effort. For given transmission parameters, the optimal

receiver depends on the tolerated complexity.

Several information theoretic models have been developed to characterizechannel capacity for non-

block-ML receivers, notably theα-decoder [CK81], β-decoder [CK80] and d-decoder [CN95]. These

models consider different suboptimal decoding criteria, but as information theoretic models they do not

consider computational effort.

In this section, joint optimization of transmit and receive parameters under receiver complexity con-

straint is considered. Specifically, it is dealt with the following questions: Does the optimial transmit

strategy depend on the receiver computation constraint (i.e. , does it differ from the waterfilling solu-

tion)? Is non-equal computation allocation by the receiver beneficial? Fora given channel model, key to

answer is the (Pareto-optimal [Par]) relation between transmit power, achievable rate and receiver com-

plexity. It is shown that if modelled with parameters from available algorithms andan implementation

complexity metric, it is possible to quantify the gain obtainable by adaptive computational allocation.

(a) Necessary number of Turbo decoder iterations grows hy-
perbolically towards high code rate and low MI before de-
coding.
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(b) Computing effort of Pareto-efficient algorithm selection
for iterative MIMO demapping-decoding shows steep in-
crease towards singularity at low SNR [IB11].

Figure 7.17: Experimentally obtained performance-complexity-rate tradeoffs.

7.4.1 Motivation: Experimental Example Relations of Computation, Rate and SNR

Turbo decoding

In Turbo decoding, computational effort is variable by the number of decoding iterations – typically

3-11 iterations are used. The code rate can be adjusted by the transmitter in afine-grained way using rate-

matching (puncturing) methods (e.g. [CNB+08]). Fig. 7.17aillustrates the trade-off between receiver

computation, transmission rate and channel SNR for the LTE Turbo decoder. Mutual Information (MI)
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between bit log-likelihood ratios (LLRs) before decoding (decoder input) and transmit bits is used as

measure instead of channel SNR, because it is applicable for all modem parameters. The surface shown

in the figure is the necessary number of iterations to achieveBER < 10−3. The surface is limited by

singularities towards high code rate and low MI before decoding.

Iterative MIMO demapping-decoding

Complexity increase towards a singularity at very low SNR can also be observed in results from

iterative demapping-decoding, like e.g. soft-input soft-output sphere decoding combined with Max-Log

BCJR convolutional decoding in [SB10]. Here it is referred to the automatic algorithm optimization

method from chapter6. Fig. 7.17breproduces computational effort and channel SNR of the Pareto-

optimal receiver algorithms for 4x4 MIMO transmission with rate 1/3 Turbo code over a channel with

uncorrelated Rayleigh distributed coefficients.

(a) Example model 1 for necessary computing effort in de-
pendence on rate and SNR. For infinite computation limited
by Shannon capacity.

(b) Example model 2, steeper ascent for low SNR.

Figure 7.18: Example Rate-SNR-Computation tradeoffs.

7.4.2 Theoretical Explanation of Potential Gain

General model formulation

For the general model of a rate-SNR-computation relation, the continuous relaxation (continuous

interpolation of discrete sets) is considered. The rate is limited by channel capacity and can be achieved

for infinite receiver computation. The necessary computationC can be written as function in dependence

on SNRγ and rateR (here the Shannon capacity for the AWGN channel is assumed):

C = f̆ (R, γ) (7.26)
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for R< log2(1+ γ); C,R, γ ≥ 0

For this function, the following properties are assumed (which seem plausible based on the experimental

observations of the previous section):

1. singularities at channel capacity:

lim
Rրlog2(1+γ)

C = ∞ (7.27)

lim
γց2R−1

C = ∞ (7.28)

2. asymptotes:

lim
γ→∞

C = Cmin and lim
R→0

C = 0 , (7.29)

whereCmin is a minimum complexity which may be needed for channel equalization.

3. strict monotonicity:
δC
δγ

< 0 and
δC
δR

> 0 (7.30)

4. second derivatives:
δ2C

δ2γ
< 0 and

δ2C

δ2R
> 0 (7.31)

The inverse function for rateR in dependence on SNRγ and computationC is denoted (it exists due to

strict monotonicity off ):

R= f (C, γ), (7.32)

and the inverse function for SNRγ in dependence on rateRand computationC:

γ = f̃ (R,C) (7.33)

A parameter fit of a model to interpolate experimental data is possible.

Example model

For the following discussion, a concrete model is assumed:

C(γ,R) = (1+ γ − 2R)1/α; −∞ < α < 0 (7.34)
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with rate:

R(C, γ) = max(0; log2(1+ γ −Cα))

= max(0; log2(1+
Pg
N
−Cα)) (7.35)

with signal powerP, squared channel gaing and noise powerN. The properties from Sec.7.4.2are met

when assumingCmin = 0 for simplicity. The function is illustrated forα = −1 as example model 1 in Fig

7.18a, and forα = −0.5 as example model 2 in Fig.7.18b.

Distributing computation over parallel channels / messages

Transmission over parallel channels 1≤ i ≤ N with different squared channel gainsgi is considered,

where the problem is power allocation (bit loading) with sum power constraint and receiver computation

allocation with a sum computation constraint. The following schemes are compared:

1. transmitter uses equal power allocation, receiver uses equal computation allocation.

2. transmitter uses equal power allocation, receiver optimizes computation allocation.

3. transmitter uses waterfilling power allocation (needs channel state information at the transmitter,

CSIT), receiver uses constant computation allocation (if subchannels remain unused, the available

computing power is not completely used).

4. transmitter uses waterfilling power allocation, receiver uses equal computation allocation for the

used channels.

5. transmitter uses waterfilling power allocation, receiver optimizes computation allocation.

6. joint optimization of transmit and receive parameters (needs CSIT and knowledge of the receiver

accuracy/complexity/rate tradeoff at the transmitter).

In the following, differences of the results of these schemes are compared based on properties of the

computation model. The target function to maximize is chosen to be the sum rate. Soin the standard

form, the negative sum rate is minimized:

f0 = −
∑

i

Ri(Ci ,Pi)
!
= min (7.36)
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The sum power constraint, sum computational constraint, and non-negativity constraints are:

h1(P1, . . . ,PN) = Pmax−
N∑

i=1

Pi = 0 (7.37)

h2(C1, . . . ,CN) = Cmax−
N∑

i=1

Ci = 0

gk(Pk) = Pk ≤ 0 ; 1≤ k ≤ N

gl(Cl−N) = Cl−N ≤ 0; N + 1 ≤ l ≤ 2N

This nonlinear constrained optimization problem is a convex optimization problem[BV04]. Con-

vexity of f0 can be shown by showing that the Hessian matrix is positive semi-definite usingSylvester’s

criterion.

Necessary and sufficient for the global solution point are the Karush-Kuhn-Tucker (KKT)conditions

[BV04]:

∇ f0 +
2N∑

i=1

λi · ∇gi +

2∑

i=1

νi∇hi = 0 (7.38)

λigi = 0, i = 1, . . . ,2N

λi ≥ 0, i = 1, . . . ,2N

named stationarity, dual feasibility and complementary slackness. The value function describes the gain

in f0 (sum rate) by increasing the power or computation constraint:

V(Pmax,Cmax) = sup
P1,...,PN,C1,...,CN

f0 (7.39)

For the limit of infinite computing power, the problem becomes the normal waterfilling problem with the

analytic solution [BV04]:

Pi

Pmax
=



0 ; ν1 ≥ gi
N

1
ν1
− N

gi
; ν1 <

gi
N

where the fill level1
ν1

is determined by the waterfilling algorithm.

Numerical illustration

Here the transmission schemes 1) to 6) are simulatively compared using the two example models in

the following scenario: transmission over 100 parallel channels with independent Rayleigh-distributed

squared gains (σ = 1), Pmax = 150,Cmax = 50 andN = 1. The optimization problems are solved using
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the active set algorithm with sequential quadratic programming. Resulting average sum rates for both

models are shown in Fig.7.19. Referring to the introductory questions, the following can be seen:

– pooling computation allocation to completely use the available computing power is beneficial

(schemes 3-4).

– optimizing receiver computation allocation is beneficial (compare schemes 1-2).

– joint optimization performs best and shows a considerable potential gain in this scenario (scheme

6).

– the waterfilling transmit solution with receiver optimization afterwards performs worse than joint

optimization – illustrating that the optimization problem is not separable (schemes 5-6).

– adaptive receiver computation allocation has a higher potential benefit when the transmission is

not optimized (model 1, schemes 1-2 versus schemes 4-5).

– the waterfilling transmit solution can perform worse than equal transmit power allocation (model

2, schemes 2-5).
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Figure 7.19: Ex-
pected sum rates
in example sce-
nario for different
transmission/re-
ception schemes
and two example
models of rate -
SNR - computing
power tradeoff.

7.4.3 Exploiting the Gain in Practical Scenarios

In modern cellular systems there is channel state information at the receiver(CSIR, provided by

pilot symbol assisted channel estimation) and quantized channel state information at the transmitter

(provided over a control feedback link). Now there is the need to additionally differentiate whether there

is knowledge about the receiver’s rate-SNR-complexity tradeoff at the receiver (we denote it as RSCR),

or at the transmitter (RSCT). Other scenario differentiations are uplink versus downlink, reception from

a single or multiple users or MIMO per-stream encoding.
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Measuring and standardizing a practical receiver’s rate-SNR-complexity tradeoff

Possible transmission rates are given as discrete set of transmission parameters (modulation, code

rate etc.). For each choice of transmission mode and different SNR levels, the receiver is measured or

simulated for all possible variations of its receive parameters (decoder iterations etc.). For each point in

this discrete parameter space, the receiver’s computational effort is stored (as percentage of its available

computational power) if decoding is successful (defined asBER < 10−3). The rate-SNR-complexity

tradeoff can be stored in the receiver (RSCR) — as table look-up or as function parameters.

A selection of such rate-SNR-complexity tradeoffs can be standardized as ’receiver categories’. A

receiver belongs to a category if it has more computational power (needsless percentage) in the complete

parameter space than the reference one. To obtain RSCT, a terminal receiver’s category is transmitted to

the base station at system entry.

No RSCR and no RSCT

Normally a reference receiver algorithm with fixed receiver processing is assumed, no complexity

tradeoff. The set of transmission parameters is chosen to have equal SNR spacingfor this equal receiver

processing. Fig.7.20aillustrates such a a set of transmission modes with different modulation and code

rate, having 1.5dB SNR spacing for unbiased MMSE equalization and 8 Turbo decoder iterations (4x4

MIMO, uncorr. Rayleigh).

Receiver, detection of early decoding success and computation pooling In modern receivers, at least

the number of decoder iterations is variable. In the case of iterative demapping and/or iterative channel

estimation, run-time optimization of the receiver component computation schedulee.g. according to

[EMK06, ZLNA10] can also be used, possibly also switching of component algorithms. Withoutex-

plicit knowledge of the tradeoff, the receiver can use computation pooling for parallel messages. One

example is early detection of decoding success, which is normally possible because the transmitter adds

a checksum before encoding – so the receiver can detect and drop erroneous packets after failed decod-

ing. Decoding can be stopped as soon as the checksum fits after a forward error correction decoding

iteration. Another example is transmission only on a frequency subband in OFDMA. Since using only a

subband means transmitting less bits, the receiver has more time per bit for decoding and can run more

iterations. So after successful decoding of one message, any left-over computing power (equivalently

decoding time) can be used for other messages. This is applicable in multi-useruplink as well as in

downlink with single-user MIMO and per-stream encoding.



7.4. Adapting Receiver Algorithm to Scheduling Parameters 143

RSCR, but no RSCT With RSCR, the receiver can optimize its processing according to the given

transmission parameters. In the numerical illustration from Sec.7.4.2this corresponds to the gain from

2) in comparison to 1).

Uplink, receiver computation allocation One scenario is uplink reception at the base station from

several terminals (different transmitters for parallel channels).

Downlink, single-user MIMO with per-stream encoding Another scenario is downlink reception

of several MIMO streams at a terminal (same base station transmits several messages to this terminal over

different channels).

RSCT, but no RSCR

Transmitter, choose transmission parameter quantization for equal computation Here flexible re-

ceivers are considered, which have the same maximum computational poweras the reference one with

fixed processing. Compare again Fig.7.20a: as the code-rate is varied, the actual receiver computational

effort (measured per information bit) is not equal: for the shown rates between 6/16 and 11/16, Turbo

decoding effort with same number of iterations changes with almost a factor of 2. Accordingly for the

same transmit parameters and receive processing with equal computationaleffort (e.g. variable decoding

iterations), the SNR spacings would be different. Fig. 7.20billustrates variation of BER threshold of

one of the transmission modes with receiver computational effort (also compare Fig.7.17b). Transmit

adaptation assumes equal distribution of computational power at the receiver — in the numerical exam-

ple from Sec.7.4.2 this corresponds to 3). The set of transmission modes should be chosen tohave

equal SNR distance and constant receiver computing effort in order to completely use the available sum

computing power.

RSCR and RSCT

RSCR and RSCT together enable joint optimization corresponding to 6) in the numerical example

(Sec.7.4.2). Scenarios are

1. Uplink scheduling, transmit and receive processing jointly optimized by thebase station’s sched-

uler.

2. Accordingly in downlink, for single-user MIMO with per-stream encoding.
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3. Downlink, receivers with different computational power. Optimal link adaptation (and scheduling)

is different for receivers with small or high computational power.
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(b) BER threshold of transmission mode varies with receiver
computing effort (also compare Fig.7.17b).

Figure 7.20: Receiver computation as variable.

Some notes Concrete results depend of course on the actual scenario as well as therate-SNR-computing

trade-off (computational model). As in the case of adaptive power allocation only the possible gain (as

difference between equal and adaptive distribution) tends to zero with growing available power, here the

possible gain tends to zero with growing computational power. The target function for multi-user com-

munication may be changed from sum rate maximization to optimization of a utility functionconsidering

fairness between users (Sec.7.1). If link adaptation is done separately from (after) scheduling, it be-

comes similar to scheme 2) of the numerical illustration: after power control andscheduling, the SNRs

are fixed – only determination of rate and computation allocation remain. Extra gain can be achieved

for not fully used system bandwidth. In this case, adaptive computation allocation compared to fixed

receiver processing can provide more flexible link adaptation by partly circumventing rate limitation due

to tranmit power constraints of the individual transmitters. The potential gain isa motivation for joint

scheduling, link adaptation and computation allocation – exploiting multiuser diversity (flexibly mapping

transmitters to channels) for joint optimization gain.

7.5 Protocol Extensions for Multihop Relaying

Multihop relay nodes provide a means to quickly achieve the needed coverage of new systems with-

out the high costs of fixed network connection of each access node. Another benefit of relaying is

capacity improvement through higher SNRs. Multihop relaying means routing on the MAC layer. Sec.
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7.5.1considers necessary changes of frame structure and related signallingwith the introduction of mul-

tihop relays. To limit the increase of signalling overhead Sec.7.5.2describes aggregation of signalling to

minimize relaying control information. This entails hierarchical scheduling. Signalling for hierarchical

fair scheduling is discussed in Sec.7.5.3. Sec.7.5.4outlines benefits of traffic (de)multiplexing within

the radio protocol stack, in case multiple network interfaces are available in arelay.

7.5.1 Frame Structure Extensions

Cellular systems operate in frequency division duplex (FDD) or time divisionduplex (TDD). Com-

pared to FDD, TDD needs transmit/receive turnaround gaps — timing advance is not possible in TDD.

The overhead due to these gaps becomes less important with smaller cell size (smaller round-trip delays).

For relays, TDD has the advantage of cheaper radio frequency frontends. Relaying needs the inclusion

of a TDD component in the frame structure, also for an FDD system. A side effect for signal processing

is the impact of transmission times (non-reception) on channel tracking. Synchronization becomes hier-

archical: in a two-hop scenario, the relay synchronizes to the base station, the terminal to the relay. An

FDD relay must be able to receive and transmit in both frequency bands, differently from base stations

and terminals: it behaves in one direction like a base station and in the other like aterminal. Switching

these two relay modes (time duplexing) cannot be transparent to basestationand terminals (and other

multihop nodes). It must either be predefined in the standard, or dynamicallysignalled, which needs

inclusion in the protocol. One example protocol function which would need adaptation is synchronous

HARQ retransmission [3GP09], where HARQ process numbers are derived implicitly from timing in-

formation. The possibility for signalling relay mode switching is described in [HHIZ08].

7.5.2 Aggregated Control Signalling

To reduce signalling overhead with multihop relays, signalling can be aggregated in the multihop

nodes: terminal-relay connections are hidden within one relay - base stationconnection- If base station

and relays are not to transmit on the same ressources, additional signallingfor coordination of ressource

usage becomes necessary [IZHH08]. Regarding the uplinks, there is no problem. The multihop relay can

request uplink resources for both itself (transmission to base station) andthe connected terminals (trans-

mission to relay). For the downlink, there is a problem regarding resourceallocations for transmissions

from base station to relay versus resource allocations for transmissions from relay to terminals. To avoid

that base station and relay transmit on the same downlink ressources, new messages for requests, grants

and CQI feedback between relay and base station for the multihop relay downlink can be introduced
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[IZHH08]. It is possible to use a delay, i.e. to grant resources for later subframes to allow for processing

delay in the multihop relay. These messages can be used hierarchically, i.e. also for hop counts larger

than 2. As normal bandwidth grants, allocations can be valid for several frames.

7.5.3 Distributed Fair Scheduling

If control information is aggregated in a multihop node for the upstream like described in Sec.7.5.2,

this implicitly means hierarchical ressource allocation: each multihop node independently schedules

the ressources provided to it. Hierarchical (distributed) scheduling hasan impact on the base station’s

(’global’) scheduling criterion – it can no longer compute the utility based on user data rates. A number

of user data flows is hidden behind a single relay data flow. A global scheduling criterion can be achieved

nevertheless by signalling of local fairness information upwards in the scheduling hierarchy [Ibp07]: the

utility computation is decomposed is the same way as the scheduling decision. In thecase of max-

min fairness, local minimum rates can be propagated upwards. In the case of proportional fairness, the

product of local rates or the sum of logarithmic local rates can be propagated. The upstream scheduler

may apply linearisation, i.e. assume constant utility per bit from the last scheduling interval [Ibp07].

Figure 7.21: Exchanging the fairness
value of local scheduling enables hier-
archical fair scheduling [Ibp07].

7.5.4 Multi-Layer Routing

Multi-layer routing is an idea for quick network deployment (coverage) withreduced cost [Ibp08].

In the beginning of deployment, user numbers are small, leaving a large fraction of the radio resources

unused. At first, a few full basestations and many multihop relays can be deployed, Later, a relay can

be equipped with an additional network connection, either a fixed line or a line of sight radio link to the

base station (e.g. with a dish for higher frequencies). This corresponds to a partial upgrade from relay to

base station, saving relaying overhead over the air. Relay nodes can beupgraded to full base stations by

providing adequate lines step by step depending on the capacity requirements of the individual cell. The
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result is a base station/ relay hybrid, with a smooth transition depending on network side date rate. Relay

overhead reduction is achieved by splitting the radio protocol stack traffic (data and control information)

and partially transmitting it indirectly (not over the air) over IP between relay and base station. This

traffic split is a combined MAC/IP routing for load balancing, which differentiates it from ’multi-channel’

routing (which completely works on the IP layer) [Ibp08]. An analogous partial downgrade from base

station to relay is also possible, in case of cell bandwidth extension or upgrade to a new standard. In

this case, existing sites and fixed line connections are reused, which normally are comparably slow (e.g.

DSL) and by themselves would be insufficient for full upgrade. Traffic (de)multiplexing can be adaptive

to traffic classes and transport delay-sensitive traffic over the faster connection. Traffic can also partially

skip the base station and be transmitted directly between a relay with fixed line and the gateway.





Chapter 8

SDR Testbed

Many algorithms and ideas described in the previous chapters have been implemented and bench-

marked in the testbed described in this chapter. In the other direction, parameters described in this

chapter have been used for optimization in chapter6. Sec. 8.2 describes the hardware platform used

in the testbed, Sec.8.3 describes the software platform. Implemented functionality and results are de-

tailed in8.4. The PCIe form factor demonstrator has been presented at [Hei09], a demonstration using

Playstation 3 and USRP has been set up in the HHI lab.

8.1 Design Decisions

The choice of a standard bus enables usage of boards which are produced in high volumes (and are

therefore comparatively cheap) and makes the system upgradeable forfuture needs. The demonstrator

consists of off-the-shelf products in the common PCI Express form factor, which provides competitive

high performance. A workstation mainboard is used as PCIe backplane, the platform is easily extendable

using PCIe plug-in cards.

Comparison to FPGA-centric design A demonstrator platform based on FPGAs (with DSPs for chan-

nel estimation and computation of MIMO stream separation matrices) has been presented in [JFH+05].

Here, a processor-centric platform has been chosen because software development as compared to hard-

ware development generally offers a higher productivity and flexibility. The high computational require-

ments of signal processing can be well met with the Cell processor which is available as PCIe coprocessor

board. High-throughput network layer and medium access control layer protocol processing can be done

on an IXP network processor, which is also available as PCIe coprocessor board.

149
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Comparison to AdvancedTCA form factor A testbed based on the AdvancedTCA (ATCA) form

factor is presented in [JS07]. An ATCA backplane offers more slots and can be used with different

fabrics like PCI Express, Ethernet or Infiniband. ATCA has not beenchosen here because it would have

been considerably more expensive.

8.2 Hardware Platform

A block diagram of the main components is shown in Fig.8.2. A workstation mainboard [Asu] is

used as PCIe backplane. PCIe 2.0 is a (switched) serial bus with 2.5GBit/s per lane, offering a raw data

rate of 2GBit/s bidirectional per lane [BAS04]. Lanes can be aggregated for higher throughput.

The four plug-in cards used are:

– Cell accelerator board [Mer]

– Network processor board (IXP2350) [IP 05]

– FPGA board (Virtex5) [Xil ]

– (optionally) 10GBit Ethernet network interface card [Myr]

A base station should have only one cable connecting it to the network. If using the 10GBit card for

base band sample exchange in a distributed physical layer (’coordinatedmulti-point’, ’base station co-

operation’), the demonstrator platform uses two cables to be able to handle the high network load. A

network processor like IXP28xx would be able to handle the complete load, but unfortunately at the time

of purchasing, it was not available on a PCIe board.

8.2.1 PCIe Backplane

The mainboard used is an Asus L1N64-SLI WS [Asu]. It has four highspeed PCIe slots: 2 times

x16 (16 lanes, i.e. 32GBit/s bidirectional) and 2 times x8 (16GBit/s). In the demonstrator platform, the

two host processors (dual core Athlon 64 FX each) on the mainboard are only used for management

and to provide boot images from the local hard disc to the Cell and network processors. A more recent

mainboard alternative woud be [Asu09] — which has 7 highspeed PCIe slots.

8.2.2 Cell Processor

Base band signal processing and (de)coding are done completely in software on a Cell processor.

With up to 200 GFLOP/s the Cell processor [IBM06, IBM07a] offers considerably higher computational

power than currently available (multi-core) DSPs. It consists of a Power architecture core (PPE), eight
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Figure 8.1: SDR demonstrator with two radio frequency frontends in the foreground [Hei09].

co-processors (SPE) optimized for single-precision floating point arithmetic, and on-chip memory and

I/O controllers, connected via the Element Interconnect Bus (EIB), whichprovides a maximum total

bandwidth of 192 bytes per CPU cycle [Sca09]. The PPE features a simple dual-issue in-order execution

unit. The SPEs also do dual-issue in-order execution but use an instruction set optimized for multimedia

and signal processing applications, each operating on a local store (LS) consisting of 256 kB of on-chip

SRAM accessible with a latency of only 6 cycles. Larger data-sets can be processed by manually issuing

DMA commands for copying blocks of data from/to RAM, somewhat resembling a software controlled

cache. SPEs have 128 general purpose registers, each 16 byte wide. Most instructions use these in a

single instruction multiple data (SIMD) fashion, with single-precision floating point operations treating

each register as a vector of 4 values to be processed in parallel. Each SPE can issue one arithmetic

instruction in parallel with one load/store instruction per cycle. Maximum FLOP count is achieved

by the single-cycle multiply-and-add instruction, performing 8 FLOP per SPEand cylce. [KDH+05,

IBM06, IBM07a, IBM07c] The Cell structure is illustrated in Fig.8.3c. The Cell on the Cell Accelerator

Board (CAB) is clocked with 2,8 GHz, all eight SPEs are programmable. TheCAB is shown in Fig.

8.3a. Cell software can also be developed and run on a Playstation 3 (PS3, Fig. 8.3b). The Cell on the
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Figure 8.2: System overview
with main components
[IKK +08].
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PS3 is clocked with 3,2 GHz, six SPEs are programmable. The PS3 does not offer PCIe slots (only USB

and Ethernet). The physical layer is functionally decomposed into signal processing modules running

without operating system under hard real-time constraints on the SPEs, whilecontrol and management

is conveniently implemented on the power architecture core, benefitting from OS functionality.

8.2.3 IXP Network Processor

Network processors (NPUs) are flexibly programmable devices (normallyin the C language) which

have a specific architecture for efficient examination and manipulation of packet headers. They are used

in routers, switches, firewalls, intrusion detection/prevention devices and network monitoring systems

[Wik]. The IXP2350 network processor combines a general purpose XScale processor with a set of four

simple, 8-times multi-threaded RISC processors called microengines (MEs) [Int05, JK03, Car03]. The

microengines run small programs that operate on the majority of packets (‘fast path’), while the XScale

is used for exception handling and system maintenance (‘slow path’). Themicroengines have an 8K

instruction program store each (40bit instructions). Each microengine has 256 32bit general purpose

registers, which can be accessed in thread-local or in absolute mode (global for the MEs threads). Each

ME also has 256 32bit transfer registers for off-chip SRAM, and 256 32bit transfer registers for off-chip

DRAM. In addition, there are 128 next-neighbour registers in each ME for communication with the

adjacent ME. Two timer registers are available per thread [JK03]. A PCI interface allows the XScale

core and the microengines to initiate DMA transfers across the external PCIbus. Other per ME features

are context addressable memory (CAM, 16 entries, 32bit tag, 9bit returnvalue, 4bit state) and a CRC

unit. For MAC and RLC protocol processing the ’Double Espresso’ board [IP 05] is used. The board

contains two IXP2350 network processors, clocked at 900MHz and each capable of processing 2 GBit/s

traffic. A block diagram of the board is shown in Fig.8.4b. The board has an x4 PCI Express connector,
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(a) Cell Accelerator Board. (b) Playstation 3.
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(c) Basic structure and capabilities of a Cell CPU running at 2.8GHz [KDH+05].

Figure 8.3: Cell CPU and development boards.

four 1 GBit/s Ethernet interfaces (SFP) and an additional pair of 100 Mbps Ethernet ports (used to boot

from an NFS server). Each IXP2350 on the board has 128 MB of DRAMfor the XScale. The two sets

of microengines both have their own 512 MB DRAM as well as an 8 MB SRAM. The IXP2350 only

supports PCI (64bit, 66MHz; 533 Mbps bandwidth), so the board contains a PCIe to PCI bridge.

8.2.4 RF Frontends

Bus options for radio frequency (RF) frontend connection include PCIe-over-cable, USB2, Ethernet

and proprietary LVDS signalling. The Cell and the frontend device exchange base band samples (16bit

integer). Two different frontends are used.
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(a) ’Double Espresso’ board.
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(b) Block diagram of the network processor board [IP 05].

Figure 8.4: IXP NPU and development board.

2.6 GHz frontend supporting 20MHz bandwidth. The frontend device contains a Virtex5 FPGA for

interfacing and digital up-down conversion. The frontend has a PCIe-over-cable connector (and an LVDS

connector). It was connected to the demonstrator using an x8 PCIe-over-cable adapter (PCIe plug-in card

from [One]). The PCIe endpoint is implemented in the frontend’s Virtex5 FPGA (x8 PCIe) and FPGA

memory is mapped into the PCIe address space. A Direct Memory Access (DMA) controller is also

implemented in the FPGA, the registers are mapped into PCIe address space.

ISM band frontend with USB interface This is the ’Universal Software Radio Peripheral’ [Ett] with

USB interface. It was used with the demonstrator (PCIe form factor) andalso with the PS3 (with 5MHz

bandwidth).
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Other options Interfacing to RF hardware with digital base band interface can also be done using the

ML-555 PCIe FPGA board [Xil ]. It has an LVDS connector which could be used to connect proprietary

RF hardware. Also several commercial channel emulators support a digital base band interface with

LVDS. The ML-555 hosts a Xilinx Virtex5 LXT FPGA and has an x8 PCIe connector, so the same PCIe

interface can be provided to the software as with the 2.6 GHz frontend. Thiscard was used to implement

an (AWGN) base band channel emulator with the same PCIe interface (Sec.8.4.5).

Figure 8.5: ML555 FPGA PCIe board for connecting proprietary radio frequency frontends over LVDS
and for base band channel emulation.

8.2.5 Busses

An overview of the demonstrator’s bus topology is given in Fig.8.6. To measure actually achievable

bus bandwidths, a test setup with CAB and the ML-555 board has been setup. The test setup and

available raw data rates are shown in Fig.8.7, with the corresponding measured performance numbers

on the left. For data transfers utilizing the PCIe bus, write transactions initiatedby the data source are

preferable over read transactions initiated by the sink. This is due to the asymmetry of PCIe writes

versus reads, where reads consist of a two-stage request-response transaction, whereas writes are simply

transmitted as unconfirmed messages. For this reason, only results for writes are presented. In the target

application with 20Mhz bandwidth and two antennas, the system continuously receives and transmits

baseband samples at a rate of 2 Gbits per second and direction (62.5 Msamples/second I/Q parts× 2

antennas× 16 bits per sample). DMA has to be employed to achieve transfer rates this high. The

measured throughput from Cell (SPE) to FPGA with 4 lanes is 4.5GBit/s (56% raw bandwidth), and

with 8 lanes 7.5GBit/s (47% raw bandwidth). For write transactions in the opposite direction (FPGA to

Cell), the DMA controller implemented in the FPGA is used. Since the target application’s traffic would

almost completely saturate 2 lanes, each capable of transmitting 2 Gbit/s, the minimum requirement is

a 4-lane-connection. The PCIe interface in the FPGA is implemented using 64kB ring buffers made of

blockRAMs for the transmit and receive data, and registers for read/write pointers, status and control

registers, test pattern generation control and configuration. All three regions are memory-mapped by
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host and Cell processor. Towards the digital up/down conversion (or the base band channel emulator),

the ringbuffers have 64bit FIFO interfaces transmitting I and Q components of both antennas per clock

and direction.
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8.3 Software Platform

8.3.1 Linux’ on Host, Cell PPE and NPU XScale

The host is running a Linux 2.6.22 kernel, and provides an NFS server so that the Cell PPE and

NPU XScale can boot from the local disc. The Cell PPE (on CAB as well asPS3) is also running

a 2.6.22 kernel, and gcc version 4.3 is used. The PPE loads and starts code on the SPEs using the

libspelibrary [IBM07a]. The XScale, being an ARM derivative, can also be programmed using standard

GNU tools under Linux. Development was done on a standard desktop machine using a self-compiled

cross-toolchain [HIK09]. Compilation of the toolchain was aided by the kernel source code provided by

[IP 05]. The kernel is a patched 2.4.20 kernel that includes many modules for theDouble Espresso board

such as Ethernet drivers and memory mapping assignments that enable the XScale to access memory on

the microengines’ bus. Additional libraries downloadable from [ixa] offer microengine communication

and maintenance functions from within Linux userspace programs. The components map local memories

into PCIe address space, so that they can be accessed by other components over PCIe. PCIe address

offsets are set by bus enumeration at host boot. Communication between components is exclusively

performed using DMA block transfers to and from the recipient’s RAM, cache or I/O areas. A ring-

buffer scheme (or multi-buffering) ensures that participants can perform data processing concurrently

with transfer of data. Since all communication performed is strictly peer-to-peer (no broadcasts), no
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sophisticated synchronization schemes need to be implemented. The 2 notifications that need to be

handled for a one-directional pipe would be request-to-send and ready-to-read. These can either be

communicated via atomic writes and polled reads to locations in RAM, or using DMA writes to event

notification registers for hardware components that support that mode ofsynchronization (such as FPGA

and Cell SPE).

8.3.2 Cell SPE Programming

The SPE is supported by the GNU C compiler (gcc). Thelibspelibrary provides a special instruction

set and vector data types for SPE SIMD computation [IBM07b]. SPE programs are perceived as threads,

with DMA commands to and from system memory using the same virtual memory addresses as the parent

process by which the SPE was started. The SPEs do not access the EIB directly, they send DMA transfer

requests to their Memory Flow Controllers (MFC, one per SPE). A single DMAtransfer transports up

to 16kB. Scatter/gather DMA with DMA request lists is supported. An MFC is accessible through the

SPE’s registers, which are memory-mapped within the effective address space – so the MFCs can also

be used by the PPE. DMA is not only possible between an SPE’s LS and RAM, but also between LSs

of different SPEs (SPE-SPE DMA): therefore the effective addresses of LS have to be known, which

can be exchanged by the PPE. Time measurement (e.g. for throughput measurement) is enabled by an

SPE’s decrementer register. Atomic operations and mutexes can be used over thelibsync library. The

physical layer implementation was compiled using Cell SDK 2.1 with gcc 4.3-20070713 as replacement

for the included SPE C compiler. Several math libraries are provided by the Cell SDK. SPE intrinsics, i.e.

basic math and logical operations for fixed- and floating-point SIMD vectors are defined inintrinsics.h.

Since C-compilers are notoriously bad at extracting such parallelism from program code, these vector

intrinsics have to be explicitly used to achieve the SPE’s full computational potential. The SIMD math

library (simdmath.h) provides advanced mathematical operations like trigonometry and logarithm on

floating-point SIMD vectors. The MASSV library is similar to the SIMD math library, but operates on

arrays. Several functions oflibvectoroperate on four vectors at once,libmatrix only works on matrices

of 4x4 floats, Other math libraries areliblarge matrix (for matrices of any size), the standard basic linear

algegra subprogram librarylibblas– of which all routines are implemented for PPE, but currently only a

few for the SPE [Sca09] – andlibfft.

For optimized implementation of the physical layer algorithms, the SDK’s math libraries were judged

not flexible enough. Using only the SIMD vector intrinsics, an own library was implemented. Signal

processing in this library is based on a SIMD vector of four complex floats (data typec4, real and
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complex 4x32bit vectors). This library provides operations with vectors of these SIMD vectors, with

variable length (e.g.c4x4 for 16 complex numbers; operations expanded using preprocessor macros)

[KIJ08]. Necessity of this type of matrix-based processing can be understood looking at instruction

latencies. SPE load, store and all floating point instructions have a latency of 6 cycles, meaning that

although one instruction can be issued per cycle, the results of each instruction are only available to

other instructions after 6 cycles have passed. If a result is accessed earlier, execution stalls for the

remaining number of cycles [IBM07a]. The C-Compiler tries to reorder instructions for most efficient

execution, but depending on the algorithm, stalls are unavoidable. Fig.8.8a shows how one iteration of

a dot product routine already takes 8 cycles to execute. This is unfortunate, since most of the necessary

signal processing algorithms are expressed in terms of dot products. Operating on large matrices, one

6 cycle latency
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Figure 8.8: (a)
Long latency of
6 cycles leads
to stalls for one
iteration of a dot
product. (b) The
3-way parallel dot
product reduces
percentage of
stalled cycles due
to more parallelism
in the data flow
[KIJ08].

can usually extract enough parallelism from an algorithm to make full use ofSIMD instructions while

avoiding any stalls. [KBD07] shows how a block matrix based linear equation solver for large matrices is

implemented on the Cell processor, using the SPEs to operate on matrices of fixed size 64×64, achieving

up to 175 GFLOP/s on a single Cell CPU. For several instances of small problem size, parallelization

is more efficient over the problems (solving several at once), e.g. MIMO stream separation on different

subcarriers. Parallelism is then created external to the algorithm, making the algorithm processN data

sets in one run.N need not necessarily correspond to the widths of data elements processed by the SIMD

instructions. Adding more than just the SIMD parallelism greatly helps to reduce processor stalls, as

shown by the 3-way parallel dot product in Fig.8.8b. This can be seen as a logical extension of the

SIMD concept. Instead of generating just one instruction for a 4-way parallel multiply, it is preferred

to have the compiler generate 3 instructions for a 3·4 parallel operation. Using standard C syntax,

a 3-tuple structure and corresponding inline functions can be created to operate on these data items.
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The resulting programming model can be called ’pseudo-SIMD’ [KIJ08], since from the programmer’s

point of view, she just programs for a very wide SIMD architecture. Using C preprocessor macros,

an algorithm implementation can be made independent from the underlying pseudo-SIMD data width

and the programmer can choose the optimal level of parallelism at compile-time. Fig. 8.9 shows how

the parallelization grade affects performance of the 12× 12 MIMO channel matrix inversion code from

[KIJ08], running on a single SPE. The throughput has its maximum at a parallelism of4 · 4, processing

16 channel matrices in one run. At higher parallelism, the compiler starts generating inefficient code due

to limited number of registers and probably limits in the compiler’s abilities to analyse theincreasingly

complex data flow.

Figure 8.9: Single-SPE throughput of 12×
12 MMSE pseudo inverse depends on
pseudo-SIMD parallelization factor chosen
at compile-time [KIJ08].
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8.3.3 NPU Microengine Programming

The microengines are programmed using a proprietary software development kit which can be down-

loaded without cost from [ixa]. The SDK includes an assembler and a C compiler for the MEs. It also

includes an IDE with architecture tool (defining packet processing stages and tasks) and simulator with

packet generator. MEs’ code is loaded and started over the XScale using theresource managerlibrary.

Typical data plane functionality includes packet classification, segmentation, reassembly, packing, ad-

dressing and queueing. For standard functions like packet receive and transmit, amicroblocks library

with optimized microcode is available. The MEs transfer data to and from scratch memory, SRAM,

DRAM, Media Switch Fabric (MSF) and PCI. Access times for the different memory types from MEs in

IXP2xxx processors are listed in [Car03]: local memory (inside ME, 640 x 32bit) has a latency of 4 cy-

cles, scratch memory and message SRAM (16kB and 128kB resp., on-chip, global to MEs and XScale)

are accessed with 80 cycles, SRAM (off-chip) access needs 130 cycles and DRAM (off-chip) access 300

cycles. The programmer can explicitly decide where to put data with a type modifier. A simple memory

test application has been developed that measures the average access times for scratch memory, SRAM
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and DRAM under varying bus loads. The access time for any memory was measured to be roughly

constant with respect to reference count, i.e. the number of long- or quadwords transferred. The time

increases proportionally to the number of threads accessing a given memory regardless of the distribu-

tion of threads among the microengines. A summary of read access times for a constant reference count

of eight is given in Figure8.10. Write access times are similar. The latencies are used in Sec.8.4.4

for performance estimation and choice of necessary number of threads.Data plane functionality can be

implemented a pipeline of threads (threads work on the same packet) or in parallel threads (threads work

on different packets). Thread execution is non-preemptive. When a thread yields the ME, a hardware

arbiter selects the next thread to run among the non-blocked threads. There are two compiler modes:

explicit partitioning (EP, the programmer determines which threads on a ME executes which code) and

autopartitioning (AP, automatic ME assignment). In AP mode, there are C language extensions e.g.

for determination of packet processing stages, inter-PPS communication, path annotation (e.g. critical

path) and storage class declarations (DRAM, SRAM etc). There are several possibilities for inter-thread

communication. Rings (FIFOs) in scratch memory or SRAM can be used, whichcan be written by any

producer/consumer including the XScale with atomic operations. Scratch memory supports16 rings

with atomicput andgetoperations. Another possibility is that an ME writes to the adjacent ME’s next-

neighbour registers. For threads inside an ME, areflectcan be used to write into transfer registers of

another thread on the same ME. Or local memory can be used, global to the threads of an ME. The EP

compiler mode provides signal intrinsics between threads on the same or different MEs. Free lists of

buffer pointers are normally kept in SRAM.
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Figure 8.10: Read access time with increasing
bus load for reference count (number of long-
or quadwords transferred) of eight [HIK09].

8.3.4 TCL Scripting

For more comfortable development, testing and debugging, TCL (Tool Command Language, [OJ09])

is used. A TCL interpreter is running on the PPE (and one on the Host). Thedemonstrator is started
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by logging into the PPE and starting a TCL script. Code loading into the SPEs andstarting the protocol

application on the NPU are wrapped in TCL. The SPE signal processing modules are selected in the TCL

script, and the FIFO adresses are exchanged. The protocol stack mode is set to base station, terminal or

multi-terminal emulation (Sec.8.4.4). TCL scripts are also used for testing and debugging and for GUIs

(Sec.8.4.5). The instanciation of SPE signal processing modules as TCL script bears resemblance to the

receiver description language from chapter6.

8.4 Implemented Functionality

8.4.1 Modem

This subsection describes Cell implementations of (uncoded) Modem functionality, i.e. MMSE

MIMO demapping, QRD-M MIMO demappping, FFTs and channel estimation.

MMSE MIMO Demapper based on Greville Algorithm

For MMSE MIMO demapping, both the Greville-based algorithm from Sec.3.2.3and the Cholesky

based algorithm been implemented and compared as optimized programs on the SPE. To make full use

of the parallel MAC operations, the Greville-based implementation computes 4 equalization matrices in

parallel. Completely unrolling the innermost loop of the algorithm allows it to outperform the Cholesky

based implementation by up to a factor of 3.7. Comparable unrolling is not possible for the Cholesky

based algorithm since all loops are of variable length. However, the Cholesky based method can be un-

rolled along the outer loop when operating on many matrices. In that case peak performance is achieved

when working on 16 matrices in parallel, which is still substantially slower than theGreville-based al-

gorithm [KI08]. The results for quadratic matrices are illustrated in Fig.8.11. For 12x12 matrices, the

Cholesky-based code has a size of 1536 bytes and achieves a utilization of 2.11 MAC/cycle (of 4 MAC/-

cycle), the Greville-based code has a size of 3084 bytes and achieves autilization of 2.53 MAC/cycle.

List-QRD-M MIMO Demapper

Here, SPE implementation and benchmarks of the algorithm from Sec.3.2.3are described. The im-

plementation assumes separable QPSK or 16QAM modulation sets and an equalnumber of transmit and

receive antennas. For QPSK modulation up to 16x16 antennas and for 16QAM up to 8x8 are supported.

The modulation can be different for different PRBs (assuming LTE format). Any value for parameterM

is supported, and a priori LLRs are used. Set partitioning is not applied.For LLR generation the Max-
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Figure 8.11: Relative number of execu-
tion cycles per calculated matrix. Num-
ber of cycles is normalized for everyn to
the best-performing algorithm [KI08].
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Log approximation is used. If the candidate list does not contain a bit (counter-)hypothesis, clipping is

applied as in [Zim07]. Implementation uses the library for vectors of complex SIMD vectors (Sec. 8.3.2).

List-QRD-M MIMO demapping consists of QR-Decomposition, M-algorithm treesearch and (clipping)

Max-Log LLR generation. The implementation assumes low mobility and performs QR-decomposition

only every 5th received symbol vector. Three loops are performed per (vector of) transformed received

symbol vector(s). The outer loop is over the tree layers (transmit antennas), the middle loop is over the

surviving candidates of the previous layer (maximalM), and the inner loop over all possible modulation

symbols of this layer (node expansion). Sorting the metrics in descending order is performed using the

selection sort algorithm. The benchmarks in Fig.8.12aand Fig. 8.12bcompare the necessary cycles

per LLR for QPSK and 16QAM for different values ofM and for tuple typesc4_t to c4x8_t. The

highest throughput is again achieved withc4x4_t (16 complex symbols) — throughput compared to

usingc4_t is doubled. Fig.8.12cand Fig. 8.12dshow the complexity increase with larger number

of antennas (usingc4x4_t). Since the search tree for 16QAM is 4 times wider than for QPSK (16-ary

versus 4-ary), 4 times as many metrics have to be computed and sorted — withoutset partitioning, com-

plexity for 16QAM is up to 4 times higher compared to QPSK. Throughput for 4x4 on one SPE on the

CAB (2.8GHz) is shown in dependence onM for both modulations in Fig.8.12e. 10 Mbit/s per SPU are

achieved for QPSK forM = 6 and for 16QAM forM = 4.
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Figure 8.12: List-QRD-M MIMO demapper benchmarks on Cell SPE [WKI].

Fourier Transforms, Channel Estimation and PRB-(De)Mapping

FFT / IFFT are implemented using the radix-4 decimation-in-frequency algorithm. The highly regu-

lar code structure achieves a high processor utilization: the FFT code achieves around 3.4 MAC/cycle on

an SPE, IFFT achieves 3.3 MAC/cycle. For length-2048 FFT on the PS3 (with 3.2 GHz) this corresponds

to 118807 FFT/s per SPE. 2048-FFT computation for 20MHz 2x2 MIMO utilizes an SPE to 20%. Chan-

nel estimation assumes the LTE 2x2 downlink pilot pattern. For higher number of transmit antennas, this

pattern is extended with the same pilot density. The implemented channel estimation algorithm follows

[SJ06]: 1D static Wiener filtering and SNR estimation with subspace method. The interpolation matrix

is chosen according to estimated SNR from a precomputed set of matrices. Usage of the SPE’s LS for
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Program Component Size [KiB ] LS usage

data buffers 187.5 73.2%
free space (available for
stack, heap)

30.2 11.8%

channel inversion code 15.9 6.2%
C runtime library 10.5 4.1%
constant matrices W, u for in-
terpolation and SINR estima-
tion

6.2 2.4%

channel interpolation and
SINR estimation code

4.4 1.7%

DMA communication code 1.3 0.5%

Table 8.1: LS memory utilization of SPE for 12x12 MIMO channel estimation and equalization [KIJ08].

uncoded modem benchmark cycles/slot MBit/s

SISO, 1024-FFT, no equalization 249422 292
SISO, 1024-FFT, with channel estimation and equalization 347206 210
MIMO 2x2, 512-FFT, with channel estimation and MIMO MMSE equalization 365823 199

Table 8.2: Time domain loopback through emulated AWGN channel on one SPE of PS3, using 64QAM.

channel estimation and (Cholesky-based) MIMO stream separation for 12x12 MIMO is shown in Tab.

8.1. The code for symbol mapping, PRB mapping and pilot insertion achieves 683,9 Msymbols/s for

64QAM on a PS3 (4% utilization of one SPE on PS3 for 20MHz 2x2). PRB demapping and 64 QAM

per-stream soft demapping achieves 214,7 Msymbols/s (14% utilization of one SPE on PS3 for 20MHz

2x2). Uncoded MMSE MIMO modem benchmark (time domain loopback throughbase band channel

emulated in SPE) results are shown in Tab.8.2.

8.4.2 Error Correction

Error correction decoding is a computationally very expensive part of wireless receivers. There are

several papers on software FEC implementations for SDR. [VS01] presents a UMTS turbo decoder (two

concatenated 8-state convolutional decoders) on a 933MHz Pentium 3 processor. It uses single-precision

arithmetic and achieves a throughput of 366kBit/s per iteration, running up to 14 iterations. Memory

usage is 200kByte. [LMM +06] presents an implementation of the UMTS turbo code achieving 2MBit/s

on a 400MHz 32bit DSP (using SIMD instructions). Other software implementations of this decoder

achieve 1.8MBit/s on a Starcore [KMGW03] and 1.48MBit/s on an Xtensa based processor [GTW03].

[GZC+09] presents a WiMAX Turbo decoder implementation on the Cell, which achieves 1.4 Mbps on

an SPE running at 3.2 GHz. [FSS11] describes an LDPC decoder implementation on the Cell. [FAFF02]
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presents a comparison between different decoder algorithms implemented in software, regarding the

needed processor cycles per decoded bit on X86 and PowerPC general purpose processors.

This subsection gives details about SPE implementations of a 64-state soft-decision Viterbi decoder

(like used e.g. in IEEE 802.11a) and an 8-state BCJR and Turbo decoder(like used e.g. in LTE). The

implementation runs on one SPE. Parallelization is done in a way that different SPEs concurrently process

different packets. The decoder uses only registers and the local store. Over the Cell Element Interconnect

Bus (EIB) only LLRs as input and decoded bits or LLRs respectively asoutput are transferred.

Convolutional encoder

The discrete convolution can be written in time domain in matrix form or in (shift-) transform domain

with generator polynomial. For encoding in hardware, a shift register with tapped binary delay elements

and an exclusive or (XOR) combiner like in Fig.8.13is used. The stream of information bits is entering

from the left into the shift register. The shift register hasL − 1 binary delay elements and additional taps

before, between and after the delay elements. Altogether there areL taps. The generator polynomials

declare which taps are connected to the XOR-combiner. The value of the least significant bit (LSB) of

the generator polynomial number is representing the connection of the last delay element. In Fig.8.13

the LSB of both generator polynomials are one. The upper XOR-combiner represents the first generator

polynomial 1718. At the output the two resulting bits are concatenated. The shift register is initialized

with zeros at all binary delay elements. After the last information bit entered,the shift register may be

flushed withL− 1 zeros to bring the register to a predefined end state with generating 2· (L− 1) tail-bits.

Software implementation might use a register and shift operations, but higherthroughput necessitates

using iterative table look-ups for partial bit sequences of certain length.

Figure 8.13: Encoder shift register for 802.11a generator polynomial (1718;1338), code rate 1/2, con-
straint length 7 [WKI08].
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Viterbi Decoder

The Viterbi algorithm finds the minimum weight path through the code trellis (folded code tree). Im-

plementation is for a rate 1/2 code with constraint length 7 (trellis with 64 states) and uses soft decisions

with 16bit integer values for the metrics. The algorithm consists of two phases: in the first phase, path

metrics through the trellis and information about the most likely predecessor ofeach node are computed.

In the second phase, the minimum-weight path is traced back beginning from the (either predefined us-

ing tail-bits or most-likely) end node to obtain the information sequence. If thereis not enough memory

available to hold the trace back information for the complete packet, the two phases are performed on

parts of the packet (truncated Viterbi), which potentially leads to a slight accuracy degradation [LC04].

As example decoder parameters, the generator polynomials of the 802.11a standard, 1718 and 1338, are

used (binary representation is 1111001 and 1011011). In the implementation they define the shuffle mask

for branch metric generation and the shuffle masks for Add-Compare-Select (ACS) implementation. The

Figure 8.14: Convolution trellis with packet sizeM and constraint lengthL [WKI08]

trellis contains two sorts of information: on the one hand the path metrics describing the distance be-

tween the received coded sequence and paths through the trellis (code words), and on the other hand the

most likely predecessor of any node in the trellis. The latter can be thought of as a separate predecessor

trellis and constitutes the trace back information. The path metrics are computed level-by-level (state

transitions) as sums of branch metrics.

Compute branch metrics: the squared Euclidean distance (regarding bit positions as dimensions)

between the received code symbolr and every possible symbolb (branch word, Fig.8.15) for code rate

1/N (here:N bits branch word) is:

dE =

N−1∑

n=0

(rn − bn)2 =

N−1∑

n=0

(
r2

n − 2rnbn + b2
n

)
(8.1)
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Figure 8.15: Four state trellis (generator polynomial 7;5, code rate 1/2) [WKI08].

Considering the constant value (energy) of the squared terms, it is sufficient to evaluate only the middle

(dot product) terms [LC04]:

d =
N−1∑

n=0

(−rnbn) (8.2)

For code rate 1/2 this becomes:

d = −r0b0 − r1b1 (8.3)

Thus, the branch metric can be computed with an Add operation. With code rate1/2 there are only four

possible branch metrics, where two of them are just inverses of the other two. These four branch values

have to be calculated per time instant. Afterwards they are distributed to form the branch word. The

structure of this mapping to the branch word can be precomputed. The implementation uses a shuffle

mask as parameter for the SPE instructionspu_shuffle to permute vectors. With 16bit metric values,

eight values can be stored in one SIMD vector (8*16bit=128bit). For high SPE utilization, 16 received

symbolsr are computed in one call (the information word contains an integer number of bytes). The

branch metric values are computed by equation8.3. Afterwards an unrolled loop is used to perform

the following steps: distribute branch metric with precomputed shuffle mask, perform ACS butterfly

operation to compute path metric, and store bit of most likely predecessor.

Figure 8.16: Implementation of ACS butterfly operation by Add-Shuffle-Compare-Select instructions.
Calculation of path metricp of time instantm by sum of path metricp[m− 1] and branch metricd[m]
[WKI08].

Compute path metrics, Add-Compare-Select operation: the path metrics of the successor nodes are
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computed by summing the actual branch metric and the path metric of the survivorpath. The nec-

essary operations for each level are therefore:Add branch metrics to path metrics,Comparethe two

metrics of the arriving paths in each node andSelectthe better one (survivor path). The path met-

rics are computed on the fly and kept in registers: there is only one vector of path metrics necessary

which describes the actual computed time instant. The ACS butterfly operation [LMM +06] is imple-

mented as anAdd, Shuffle, Compare, Selectoperation. Shuffle is a permute instruction and used for

permuting the path metrics in enumeration order. This allows for 4x SIMD parallel processing of the

ACS butterfly operation. Path metrics are kept 8x parallel in the 128 bit registers. ACS implementa-

tion with SPE intrinsics is illustrated in (Fig.8.16): the branch metric is added with (spu_add(p,d))

to the path metric of the predecessor node. Since every node has two outgoing branches, two different

branch metrics are added to the predecessor path metric. They are storedin two different vectors. The

two vectors are permuted with (spu_shuffle(ple f t,pright,pattern)) to order them according to their

branch numbersb (enumeration order) and for the following constraint to be fulfilled: the element of

first returned vector and corresponding element of second returnedvector have the same state number

s = sbmod(2L−1). spu_shuffle has to be performed twice, because it returns just one vector. Both

vectors are compared with each other byspu_cmpgt(ple f t,pright), which returns a compare mask. Bits

of the returned vector are set to one if the corresponding element inple f t is greater than the element in

pright. spu_sel(ple f t,pright,compare mask) returns the elements with smaller path metric. This vector

represents the path metric of the actual time instant and replaces the path metric of the previous time

instant. For the 64-state trellis, path metrics for one time instant are stored in 8 128bit SIMD vectors.

This leads to high parallelization gain by reduced latencies: these eight vectors are independent and so

is the ACS operation on them. Loop unrolling enables the compiler to exploit this gain. Of course loop

unrolling also blows up the generated code and so the used memory in the localstore.

Update trace back information (predecessor trellis): The result of theSelectoperation (survived

predecessor node) has to be stored in a predecessor trellis to later enable trace back. The information to

be stored is one bit for each node (since every node has just two predecessors). The predecessor trellis

is built in local store. 64 bits are used for all 64 states, so that in a 128bit vector two time instants of

the trellis are stored. This is the only data structure in LS, all other variables are temporary and kept in

registers. The most likely predecessor node was already computed by thecompare intrinsicspu_cmpgt.

Elements with a zero indicate that the node with the smaller state number⌊s[m]/2⌋ is the survivor node.

Otherwise
(
⌊s[m]/2⌋ + 2L−2

)
is the state number of the survivor node.spu_gather(compare mask)

extracts the LSB of every element and return them concatenated in one integer element. This has to be
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Program Component Size [KiB ] LS usage

data buffer for predeces-
sor trellis

48.3 18.8%

Viterbi decoder machine
code

13.3 5.2%

C runtime library 5.2 2.0%

path metric shuffle masks 0.4 0.2%

free space 215.7 73.8%

Table 8.3: Local Store memory utilization of implemented decoder (802.11a polynomial and MLD for
packet size of 6144 Bit) [WKI08].

performed for all compare masks. The final vector with the information about the survivor nodes results

from merging the computed vectors to one SIMD vector. Two time instants are stored in one SIMD

vector (two time instants, 64bit*2=128bit).

Path trace back: the decoded bits (information bits) are obtained as path through the predecessor

trellis. Trace back starts either when the trellis is built completely up to the end of the packet, or it starts

earlier due to limited (trace back information) memory or limited tolerable processingdelay in stream

processing. Trace back from the end of the packet starts in the definedend node when tail-bits are used.

Trace back starting somewhere in the middle of a packet starts from the nodewith the best path metric so

far (truncated Viterbi). This is suboptimal, but the trace back path converges to the optimal path after a

certain length. Therefore, the first decoded (traced back) bits are not used, and the subtrellises for stream

decoding overlap. It is common to trace back for around five times the constraint length before using

the obtained information bits [LC04]. At the end of every decoder function call, the trellis memory is

checked. If the memory is full trace back is performed. Obtaining the node with the smallest path metric

is a compute-expensive operation. It can not be parallelized in vector arithmetics. The available trellis

memory can be defined as parameter, but should fit in the local store. Sincethe local store is comparably

large, also large packet sizes with over 10kB can be supported with MLD performance.

Implementation results: the performance of the decoder implementation dependson the size of mem-

ory used in the SPU local store. Usage of the LS shown in Tab.8.3. Due to loop unrolling and inline

function usage, 13,3KiB are occupied by the decoder code. This codesize is of course scalable. The

allocated memory for the predecessor trellis can vary between 3KiB and 200KiB, which is influencing

the speed of the application and the MLD performance for different packet sizes. Fig.8.17gives a de-

tailed view on the dependence between predecessor trellis size and performance. At small local storage,

8 Mbit/s performance are lost, but already at around 20KiB memory for the trellis (2048 data bits per
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trace back), almost the maximum throughput of 33 Mbit/s is achieved (with 2.8GHz, on CAB). Assum-
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Figure 8.17: Throughput of decoder de-
pending on trellis memory usage. (gener-
ator polynomials 1718; 1338). Benchmark
on one SPE on CAB [WKI08].

ing optimal parallelization without latencies and 16bit metric values, branch metriccomputation takes 16

cycles per decoded bit, ACS-butterfly takes 2·16+2 · 8, and predecessor trellis operations 8+4+2+1. So

a minimum number of 79 cycles per decoded bit are required [WKI08]. Some operations like shuffle can

be performed by both of the independendt SPE pipelines (spu_sl andspu_slqw instructions). So with

the additional hypothesis of optimal distribution of the operation on both SPU pipelines, 40 cycles per de-

coded bit is the theoretical maximum performance on one SPU. The presented implementation achieves

85 cycles per decoded bit by 50KiB local storage and 40 KiB trace backlength, which corresponds to

47% of the maximum. In [FAFF02] the hand optimized assembly Viterbi decoder takes 108 cycles/bit

on a Pentium III with SSE optimization (128bit wide). Performance of the presented implementation

could be further increased, for example by reducing the path metric numberformat to 8bit. This may

necessitate changes in normalization. Currently the path metrics are normalizedin certain distances by

subtracting the path metric of state 0 from the branch metric.
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Turbo Decoder

An 8-state Max-Log BCJR decoder and QPP Turbo (De-)Interleaver are implemented, with LTE

code parameters. The BCJR algorithm formulates the probability of state transition in the trellis from

states′ to sat time instantl given received sequencer using Bayes’ rule [LC04]:

p(s′, s, r ) = p(s′, s, r t<l , r t>l)

= p(r t>l |s)p(s, r l |s′)p(s′, r t<l)

= βl+1(s)γl(s
′, s)αl(s

′) (8.4)

with forward path metricα, backward path metricβ and branch metricγ. The decoder traverses the

code trellis both in forward and backward direction, computing the forwardand backward path metrics

using Add-Compare-Select (ACS) operations. The presented implementation again uses 16 bit integer

arithmetic, allowing to compute metrics for the 8 trellis states in parallel by using the 128 bit wide

SIMD operations (8·16bit= 128bit). The ACS operation using Add, Shuffle, Compare and Select SIMD

instructions is illustrated in Fig.8.19. The implemented algorithm has two phases. In the first phase,

a loop concurrently computes forward path metrics for the first half of the packet and backward path

metrics for the last half (using a forward moving window on the trellis forα, and a backward moving

window for β computation). Normalization is performed by subtracting the path metric of state 0 from

all states’ metrics in certain distances. At the end of the loop, forward and backward traversal meet in

the middle of the packet. The maximum size LTE packet consists of 6144 information bits, which needs

6144∗ 8 ∗ 16bit = 98kB memory for path metrics in LS (48kB forα and 48kB forβ). In the second

phase, a loop continues the bidirectional traversals and computes APP-LLRs. LLR reconstruction uses

Compare, Select, Shuffle and Subtract SIMD instructions.

With the same generator polynomials, the BCJR is around 3-times as complex as theViterbi al-

gorithm (assuming about equal computational effort for forward metric computation, backward metric

computation and APP-LLR computation [LC04]). When reconstructing also the parity bit APP-LLRs, it

is roughly 4-times as complex compared to Viterbi.

The implementation achieves 23 cycles/uncLLR on one SPE, which on the CAB corresponds to 140

MuncLLR/s.

The QPP interleaver implementation exploits the the fact that QPP interleavers are vectorizable

[Nim08]. It uses a window size of 8 LLRs, matching the 128-bit operand size of SIMD instructions.

To output one interleaved window, 8 source windows are loaded, using offsets computed from the QPP
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polymomial, implementing the inter-window permutation. Intra-window permutation is then performed

using Shuffle and Select instructions using the constant intra-window permutation pattern[IKWB09].

The (de-)interleaver implementation achieves 2.6 cycles/LLR.

With 8 iterations, the resulting Turbo decoder achieves 17MuncBit/s on one SPE on the CAB (com-

pare Tab.8.4).

Figure 8.19: ACS but-
terfly with SPE instrin-
sics [Ibi08].

8.4.3 Hybrid Iterative Reception

An iterative receiver is obtained by concatenating algorithms from the previous subsections: MMSE

channel estimation (1D Wiener Filter), MIMO MMSE stream separation (Greville-based) and demap-

ping, QRD-M MIMO demapping and Turbo decoding.

To achieve realtime throughput for a broadband configuration, a ’mini’ Turbo receiver with (only)

one outer iteration, a small number of turbo decoder iterations and a small M is used.

In the first demapping step, there is no apriori information from the decoder and therefore MMSE

demapping is performed (as proposed in [Zim07]) — which has a very low complexity and performs well

at low SNR. The LLRs obtained by (Max-Log) soft demapping are then improved by two Turbo decoder

iterations. After that, another demapping step is run using breadth first treesearch with the M-algorithm

(with M=3), taking the obtained information from the decoder as apriori information into account. After

the M-demapper, four turbo decoder iterations are run.

The granularity of loop unrolling and parallelization in most algorithms is one physical resource

block (12 subcarriers times 7 OFDM symbols). Multi-user MIMO with different modulation levels on

the same resources is supported.

Performance of this receiver is illustrated for QPSK, 16QAM and 64QAM transmission over 4x4

uncorrelated Rayleigh fading (for perfect synchronization and channel estimation) in Fig.8.20. Per-

formance would of course increase with largerM, larger number of Turbo decoder iterations and larger
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Function Benchmark result

2048-FFT 118807 transform/s (3,4 MAC/-
cycle)

Channel, SNR, CFO estimation, MMSE equalization, CFO
compensation

142,6 Msymbol/s (78.52
MAC/symbol)

Resource block demapping, soft demodulation (for
64QAM)

214,7 Msymbols/s

maxlogBCJR decoder 22.8 cycles/uncLLR, 140.0
MuncLLR/s

QPP (de)interleaver 2.6 cycles/LLR, 1210.2 MLLR/s
QRD-M algorithm, 4x4 QPSK M=3 82.4 cycles/LLR; 38.75 MLLR/s
QRD-M algorithm, 4x4 QPSK M=8 259.1 cycles/LLR; 12.32 MLL-

R/s
QRD-M algorithm, 4x4 16QAM M=3 (no set partitioning) 129.9 cycles/LLR; 24.58 MLL-

R/s
QRD-M algorithm, 4x4 16QAM M=8 (no set partitioning) 616,7 cycles/LLR; 5.18 MLLR/s

Table 8.4: Benchmark results on one SPU on CAB [IKWB09].

number of outer iterations.

In the presented implementation, the QRD-M detector for QPSK with M=3 is computationally al-

most as expensive as 2 Turbo decoder iterations. The computational effort for 16QAM with M=8 would

correspond to 12 turbo decoder iterations.

On the other hand especially the M-demapper code offers room for improvement: it supports variable

number of antennas, variableM and variable modulation size. The demapper code could be accelerated

by hard coding a special case (like 4x4 QPSK, M=3), which would allow for optimized register us-

age. The complexity of the M demapper could also be reduced for higher-level modulation by using

modulation set partitioning (with a slight accuracy degradation).

Processing 10 MHz in this configuration requires at least 8 SPEs runningat 2.8GHz, processing

20MHz requires around 13.

8.4.4 Medium Access Control and Radio Link Control

The protocol stack functionality implemented on the NPU allows for adaptive multi-user transmis-

sion with fair scheduling (adaptive to channel qualities and bandwidth demands). Towards the physical

layer, a physical downlink shared channel (PDSCH), physical uplinkshared channel (PUSCH), physical

downlink control channel (PDCCH), and physical uplink control channel (PUCCH) are currently present.

On the MAC layer, transport blocks (data) are transferred between MAC entities via the downlink shared

channel (DL-SCH) and uplink shared channel (UL-SCH). Finally, each user has (at least) one logical
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channel, the dedicated traffic channel (DTCH), in both the uplink and the downlink to carry user traffic

between RLC entities. The control channels (PDCCH and PUCCH) are used for scheduling requests and

grants and channel quality feedback information.

The control plane schedules user data and processes the control channels. The scheduler adapts to

channel conditions based on CQI feedback data from the user terminals.The management plane allows

clients to connect to the live protocol stack via TCP/IP, e.g. to view the measured data rate for each user.

Data plane packets are assigned headers with logical channel identifier (connection identifier), ARQ

sequence number for repeat requests and reordering, as well as length and framing bits for fragmentation

and packing/concatenation (to form transport blocks of adequate length chosen by the scheduler, and to

allow data reconstruction).

The software is implemented in three branches: one is the base station protocol stack (including e.g.

the MAC layer scheduler), the second one is the terminal protocol stack, the third is a multi-terminal

realtime emulator for testing of the base station implementation.

The software further has two modes: in the normal mode, transmit/receive queues (with in-band

control for the PHY) in DRAM are exported to PCIe address space and can be written by the Cell. In

standalone testing mode, instead of the PHY connection the physical channels are tunneled over Ethernet

beween MAC entities (physical channels are then separated by different ethertype field entries in the

Ethernet tunnel header).

The data plane is functionally decomposed into a pipeline of microengine threads. Control and

management plane are implemented (multi-threaded) in Linux user space on the XScale.
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Worst Case Req. Parallel
Block ME Line Rate Threads

Network RX 0 550 Mbps 2
QM Enqueue 0 504 Mbps 2

Segmenter/QM Dequeue 1/0 401 Mbps 3
PHY TX 1 369 Mbps 4
PHY RX 2 550 Mbps 2

Reordering 2 360 Mbps 2
Reassembly 3 213 Mbps 1
Network TX 3 369 Mbps 4

Table 8.5: Estimated worst case line rate for functional blocks [HIK09].

Design and Implementation

Performance considerations The multithreaded architecture of the microengines allows to divide the

data plane into a set of independent tasks. For example, one stage receives IP packets, the next stage

inserts them into queues, and a third stage forms packets of adequate size for transmission based on

a scheduling decision (segmentation, concatenation, fragmentation). To calculate the processing time

available to each stage, first the packet arrival rate is defined. Towards the network side, Ethernet payload

size can vary from 46 bytes to 1500 bytes, leading to a total of 84 to 1538 bytes per frame including

preamble and interpacket gap. With 1 GBit line rate, maximum arrival rate with respect to packet size

varies between 1/670ns and 1/12µs. This corresponds to a maximum number of 603 or 11070 cycles

per stage respectively [HIK09].

The second major performance consideration is that of memory bandwidth. The microengines have

shared access to three types of memory on the Double Espresso board withvarying capacities and access

times (compare Fig.8.10on page161). 512MB of DRAM are intended to hold packet buffers, 8MB of

SRAM store packet handles and other frequently used data, and 16KB of fast scratch memory primarily

support interthread communication.

Data Plane Functional Blocks and Thread Assignment The data plane’s tasks are broken down into

a set of processing stages to be implemented on the microengines. An estimate ofthe worst-case line

rate for each block is given in Table8.5 based on memory access time measurements, and the required

parallel thread count is mainly determined by dividing 1000 Mbps by the worst-case line rate. The blocks

communicate by scratch rings (circular FIFOs) except where noted. Threads are distributed as evenly as

possible among the microengines and as dictated by use of the next neighborbus, which allows efficient

transfer of data from microengineN to microengineN + 1.
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Ethernet Drivers The gigabit Ethernet port used for base station communication with the network

requires RX/TX drivers which transfer network data to and from the microengines. The source code for

a simple pair of drivers is presented in [JK03] and was adapted: in particular the TX driver was modified

to deal with the quadword alignment present in the DRAM where packet datais stored, enabling the

transmitter to efficiently access user packet data segmented at byte boundaries. In standalone mode, a

second gigabit Ethernet port is also used.

Queue Manager User data sourced from the Ethernet receiver needs to be buffered prior to schedul-

ing. The queue manager block also performs packet classification according to IP address and DiffServ

type field for QoS. The queue manager maintains a packet queue in SRAM for each logical channel,

and provides packets to the segmenter when requested. Separate threads are implemented for enqueue

and dequeue operations, and a table of current queue sizes is maintainedin shared memory for access

by the scheduler. Enqueue and dequeue requests are transported byscratch rings, while dequeue replies

are delivered to the segmenter by the next neighbor bus to reduce load onthe scratch buses. Because

the SRAM controller handles a limited number of simultaneous FIFOs, the CAM of the microengines is

used as a cache to track which queues are currently active and to swap them in and out of the controller

as needed.

Segmenter Segmentation (also concatenation and fragmentation) is performed on user packets

based on a table of transport block sizes maintained by the control plane. The table is double buffered

in shared scratch memory, allowing the control plane to write one buffer while the data plane reads the

other. A microengine timer triggers the construction of a transport block foreach user with schedulable

data once per TTI (one millisecond). For each user, the segmenter requests packets from the queue man-

ager until it has sufficient data to build a PDU. An Ethernet and MAC/RLC header is written and sent to

the transmitter, followed by the packets (SDUs) to be included in the PDU. The final packet is segmented

if necessary to fulfill the size requirement, with remaining data buffered by the segmenter for the user’s

next PDU.

Reordering As data is received, it is passed to the reordering block to correct for any out-of-order

PDUs. A 512 PDU reception buffer for each user is maintained in SRAM, and the reordering timer is

implemented using a microengine timer. Because most PDUs are expected to arrive in order, the block

is optimized for that case, and the worst-case line rate of 360 Mbps given inTable8.5is correspondingly

improbable. For this reason, only one or two threads are needed for gigabit line rate. This block also
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performs demultiplexing of data and control channels (packets).

Reassembly Reordered PDUs have their SDUs reassembled into IP packets, undoing the operation

of the segmenter. If SDUs are segmented across multiple PDUs, they must be buffered by the reassembler

block until all SDUs belonging to the packet are received. The reassembler maintains a set of FIFO

queues for incoming PDUs quite similar to the queue manager. However, userpackets at higher data rates

will have been segmented into only a few SDUs. For this reason, the reassembler buffers packet handles

in local memory before resorting to the much more expensive SRAM FIFO access, giving the block a

worst-case rate of nearly 2 Gbps for largely unsegmented data. Highly segmented packets requiring the

SRAM FIFO will have been scheduled at a lower rate, making the slower memory access irrelevant.

Figure 8.21: Block diagram of downlink and uplink protocol processing [HIK09].

Control and Management Plane The control and management plane are implemented as a Linux

userspace application on the XScale processor with separate threads for scheduling, housekeeping and

management. A custom kernel module receives timing interrupts from the microengines and signals the

control plane when a new scheduling decision is to be made.

The scheduling algorithm currently implemented for OFDMA scheduling is a simpleproportional

fairness heuristic, evenly dividing the physical resource blocks of thesystem among users with schedu-

lable data. The average channel quality in frequency direction for a user’s PRBs determines the modula-

tion index, which then gives the number of bits per PRB based on a lookup table. The size of the user’s

transport block is thus determined and passed to the segmenter. Uplink scheduling takes place through

scheduling requests and grants via control channels. The XScale’s control plane is responsible for con-

structing scheduling/CQI control packets, which are then transmitted and received by the microengines

through a high priority scratch ring. For testing purposes, the control plane offers to manually override
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CQI values for uplink and downlink and to schedule dummy traffic (using the client GUI over network).

The Linux kernel currently used here limits the control plane to respondingto scheduling interrupts

every 10 ms. A scheduling granularity of 1 ms (1 TTI) is supported by making decisions for ten TTI at

once (into the future) — with the control plane latency still being 10 ms.

Implementation Results

Data plane goodput The data plane was set to multi-terminal emulation and tunnel mode on one side

of the tunnel, and the GUI was used to manually adjust the transport block size for each user. On the other

side of the tunnel the base station stack was running in tunnel mode. Traffic was generated and goodput

measured using iperf [ipe], a bandwidth measuring tool, in TCP mode. It was verified that the goodput

of any connection can be independently adjusted (tested with 480 kbps to 15.2 Mbps) by varying the

transport block size (from 60 to 1900 bytes, one block per connection and TTI). Up to fifty simultaneous

connections were active while performing this test. The maximum speed of the data plane was tested by

setting the transport block size to 1900 for all users and starting multiple instances of iperf. The highest

measured goodput of the data plane is approximately 550 Mbps. Above 500Mbps, the data rate begins

to fluctuate significantly.

Microengine utilization and memory bus load For a processor load, the data plane was simulated in

Developer Workbench and performance statistics gathered for a periodof five TTIs, or five milliseconds.

The threads involved in segmentation (ME0/ME1) were sent IP packets at gigabit line rate using the

packet generator, and the tunnel packets transmitted from the segmenter were then logged. These logged

packets were then fed to the threads involved in reassembly (ME2/ME3), simulating tunnel traffic from

five TTIs. To represent the worst case in terms of processing time per packet, 60-byte user packets were

used in the simulation. These were formed into 1500-byte PDUs, and 20% of the tunneled PDUs were

set to arrive out of order, thus also testing the reordering block. Figure 8.22shows the thread execution

time. Most of the threads demonstrate relatively little activity with the exception of the segmenter and

reassembler. The total load on each microengine is illustrated in Fig.8.23. With the load below about

50% in all cases, the microengines show plenty of potential for increasing data plane speed and incor-

porating additional functions. The memory bus usage further backs this claim. Fig. 8.23also shows the

bus utilization for the three main types of data plane memory. In all cases the usage is under 20%, again

indicating a possibility for expansion.
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Figure 8.22:
Microengine
thread execu-
tion time for
60-byte IP
packets and
1500-byte
transport
blocks
[HIK09].
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8.4.5 Testing and Visualization

Rather than dealing with software test cases, this subsection describes some demonstrator test setups.

Base station protocol test, MAC/RLC GUI A setup for base station protocol test in one host is illus-

trated in Fig.8.24. One NPU on the ’Double Espresso’ board is running the base station stack and the

other is running multi-terminal emulation, both in tunnel mode. An Ethernet switch isalso contained in

the host chassis and connected in the middle of the tunnel. Tunnel traffic carries the broadcast destination

address, so that the host can sniff all packets on a third port.

For protocol stack visualization, status and control, a server is running on the XScale. It provides

queue fillings and packet counts, channel feedback values and throughput measurements. A client was

written in TCL/TK and run on the host. It allows to manually override scheduling parameters(CQI
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values in uplink and downlink and ressource allocations per logical channel) and also to schedule dummy

traffic. For an impression of the GUI compare Fig.8.1 on page151, where also the switch is visible.

To visualize scheduler operation, traffic is generated with iperf on two external computers (assigning

multiple IP addresses to its NIC for multiple connections).

Using the GUI CQI controls, it can be verified that the data rate of the connections can be varied by

changing the channel conditions. By increasing the number of users with schedulable data either through

actual traffic generation or by manually overriding the queue status, it can be observed that the goodput

of the connections varies according to the number of scheduled users.

Correct operation of all physical channels (including the control channels) is visualized using the

protocol analyzer software Wireshark [wir] on the host for the sniffed tunnel traffic with adequate filter-

ing.

Figure 8.24: Base station protocol test
in one host.

PS3 only test, PHY GUI To demonstrate only Cell software (PPE and SPE) without PCIe components,

the PS3 can be used. It can either transmit and receive over the USRP frontend with USB connection,

or a physical layer loopback through a base band channel emulated in software can be used for defined

channel conditions. A dummy MAC layer is implemented on the PPE supporting onequeue (one logical

channel). A physical layer visualization GUI was written in TCL and using theplplot library. It is run on

the PPE (the window can of course also be exported over the network). The GUI includes a time domain

scope, sprectrum scope, scatter plot and LLR distribution plot. The PHY GUI allows for loopback test

to vary modulation, number of turbo decoder iterations and noise power of abase band channel emulator

(run in an SPE). To visualize the effect of PHY PER on a video codec, test videos were streamed using
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vlc [Vid] server and client.

Software channel emulation A realtime base band AWGN channel emulator was implemented on

the SPE (single-precision float, 4xSIMD). It first generates uniform distributed random numbers from

a 128bit register usingshift andxor operations. The uniform distributed numbers are then mapped to

Gaussian distributed numbers using the inverse distribution function — which isinterpolated with line

segments. Interpolation with 8 line segments is illustrated in Fig.8.25. Gneration of the PRBS on an

SPE on the CAB achieves 38909 MBit/s, and of the complex Gaussian noise 315Msample/s [Ibi08]. The

SNR is adjustable, and the software channel is used for visualization with thePHY GUI or to measure

BER/PER curves.

Figure 8.25: WGN density plot
of realtime Software emulated
channel, inversion method with
8 line segments [Ibi08].

FPGA channel emulation Since an FPGA is available in the platform anyway, it was also used as

base band channel emulator – using the same PCIe interface as the RF frontend. It allows for the same

tests and visualization as the software channel on SPE, but also includes the number conversion, PCIe

bus, FPGA DMA controller and FIFO flow control into the loopback. The interface number format is

16 bit fixed-point, with symbol raten · 125MHz (with n being variable, in SISO casen = 2). The

implementation was pipelined to achieve the 125 MHz. Internally the emulator uses a 32 bit fixed-point

representation of both data and noise for calculations [EKKI]. The interface offers 4 lanes PCIe (v1.1),

with DMA controller in the FPGA. Signal and noise gain are adjustable (with SNRrange more than

30dB) over registers mapped into PCIe adress space.

For WGN generation, first uniformly distributed numbers are produced bymeans of linear feedback

shift registers (LFSRs, Galois type, see fig.8.27), which are in turn transformed into Gaussian distributed

samples using the inversion method:

U ∼ unif. ⇒ F−1(U) ∼ F (8.5)
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If U is uniformly distributed, thenF−1(U) hasF as its CDF. Implementation uses a 128bit LFSR and

linear interpolation with 14 line segments of the inverse CDF (which results in a step-wise constant

interpolation of the PDF, since the PDF is the CDF’s derivate). The difference between target and ap-

proximating function is an overall error of 5.2% and variance error of 1.8%. Doubling the number of

interpolation line segments roughly halves the error. Instantiation including DMA transfer logic and

FIFO registers for the PCIe interface on the Xilinx Virtex 5 FPGA of the ML-555 board (more specif-

ically an xc5vlx50t) consumes roughly 30% of its slices and 20% of the DSP48blocks (multipliers for

gains and Gauss transformation). The resource consumption on the target FPGA (xc5vsx95t) in the radio

frontend uses less than half its slices.

Figure 8.26: Channel emulator noise samples and their probability density [EKKI].

Figure 8.27: 7 bit Linear Feedback Shift Register (clock connections not shown) [EKKI]. Implementa-
tion uses 128bit LFSR.

8.5 Suitability for Further Developments

8.5.1 Distributed Physical Layer

Motivation The approach is to increase the number of base station antennas serving auser by also us-

ing the antennas from neighbouring cells. Intercell interference is countered by multi-cell joint detection

(and possibly joint transmission) or intercell interference cancellation (compare Sec.1.5). The approach

is particularly interesting for cell-edge users, where the received energy almost equally splits between
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the neighbouring cells. High-throughput low-delay connections betweenbase stations are assumed. Dis-

tributed physical layer processing can be interpreted as an extension ofremote antenna heads or of the

soft handover applied in 3G systems. Remote antenna heads offer to connect antennas to base stations

over a longer distance, where digital base band samples are transmitted over the interface [obs, cpr].

Distributed physical layer processing is also called cooperative transmission/reception, network MIMO

or coordintated multi-point transmission/reception. Joint processing of multiple base stations’ and/or

relays’ signals is in principle applicable in uplink and downlink.

Signal processing issues Signal processing issues with this approach concern channel estimation and

synchonization.

The MIMO pilot grid in a sector is designed to have no intra-cell interference on pilot symbols (com-

pare Sec.1.4). For intercell channel estimation with the same grid, interference cancellation has to be

performed on pilot symbols (this relates to MIMO APP channel estimation, compare Sec.3.1.3). The

alternative of adapting the pilot grid to the intercell setup (containing transmit antennas from neighbour-

ing cells) runs into the pilot overhead problem: when increasing the number of MIMO transmit antennas

with constant pilot density per antenna, the pilot symbol overhead (counting pilot symbols and zero sym-

bols at other antenna’s pilot locations) grows quadratically, while the sum of available symbols (pilots+

data) only grows linearly. This leads to the tradeoff of pilot overhead versus potential multiplexing gain

(or here interference cancellation gain) – limiting the number of MIMO transmit antennas.

For synchronization, propagation delay differences from dislocated transmitters cause timing offsets.

Timing advance (like in normal uplink, Sec.1.4) can only be applied with respect to one receiver. The

OFDM cyclic prefix length is chosen to cope with delay spread — which is now increased by propagation

delay difference. With symbol rateTS and speed of lightc, one sample on the air has lengthc/TS, and

a distance ofs translates intos/(cTS) samples delay. For OFDM signal processing at the receiver, the

cooperation area is limited by the sum of delay spread (regarding one of thetransmitters) and propagation

delay difference: intersymbol interference is inherent if this sum exceeds CP length [IM08]. This leads

to the tradeoff of CP overhead versus potential multiplexing gain (or here interference cancellation gain).

Compare Fig.8.28and Fig.8.29for an illustration.
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Figure 8.28: Example scenario of 2x2 coopera-
tive MIMO-OFDM: two base stations with one
antenna each (BS1 and BS2) are jointly pro-
cessed as a virtual station with two antennas in
uplink and downlink. A terminal T1 with two
antennas receives both data streams, but has to
cope with delay differences [IM08].
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Figure 8.29: Superposed receive sample streams of two transmit antennasfrom different transmit sta-
tions. In this case the cyclic prefix is long enough to guard against channel delay spread, but not
long enough to guard against delay differences. The result is intersymbol interference between the data
streams of the transmit antennas [IM08].

System architecture Since network-wide central processing is not feasible, the question of choice of

cooperation areas is raised. Joint processing wants to include the desired signal(s) and the strongest

respective interferers. The base station grid with its antenna directions influences receive power from

different transmitters. The areas of joint processing can be either chosen statically (predefined) or dy-

namically. [MC11] selects clusters of cooperating base stations based on received signal strengths. Static

predefined cooperation areas are described e.g. in [IJ08, WY10], discussing the possiblity for joint se-

lection of cooperating stations, antenna directions and MIMO pilot grid. Dynamic selection of possibly

overlapping cooperation areas is discussed e.g. in [IHJ08, RCP10].

Network requirements The network requirements between base station connections in terms of through-

put and delay largely increase for base band sample exchange, in dependence on the chosen system ar-

chitecture. A very rough estimation for static cooperation areas is given in [IJ08]. For ’distributed joint

processing’, there is a choice between iterative sample transport and redundant computation in different

stations. Available network infrastructure may require the system architecture to work scaleably with

variable bandwidth. A multicast sample exchange protocol for dynamic overlapping cooperations areas
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is drafted in [IHJ08].

Computational requirements Another consequence from the chosen system architecture is an in-

creased computational requirment for the base stations: computational power has to increase to perform

multicell joint detection or sequential intercell interference cancellation. A very rough estimation for

static cooperation areas assuming linear MIMO stream separation is given in[IJ08].

Static cooperation areas Central processing (compared to distributed processing) for cooperation ar-

eas minimizes network and computational load. Static cooperation areas for piecewise central processing

are illustrated in Fig.8.30, based on a setup with 120 degree sectorization. The same base station po-

sitions are used as in the standard hexagonal grid, but rotating sectorization by 90 degrees (Fig.8.30).

The resulting hexagonal cells are 3 times larger in area. Before, there were 3 cells (sectors) per base

station, with the mapping there is one cell per base station. In the new hexagonal grid, a terminal nor-

mally receives strong signals from three base stations. The antennas offering most performance gain

when cooperating thus belong to three sectors each from a different base station. Each location in the

system can be mapped to such three sectors of three different base stations. Another mapping without

rotating the base stations and with the same old cell size can be done by introducing more base stations

(Fig. 8.32). The same joint processing approach can be used. The whole area covered by the system is

partitioned into disjunct areas, each consisting of three sectors belongingto three different base stations.

Joint signal processing is applied to each such three-sector-area. The resulting partitioning is depicted in

Fig. 8.31. The processing for a service area is located in one base station. In Fig.8.31the processing for

service aream is located in base stationm. Between the base station and its two remote sectors (hosted

by two neighbouring base stations) base band samples are exchanged for uplink and downlink. Between

neighbouring service areas the well-known approaches of interference mitigation can of course still be

applied. Now there are two types of Sectors: one base station still handles data, protocol and signal

processing for three sectors, but for three different ones, of which two are remote. Signal processing for

the three sectors can now be done jointly to reduce inter-cell interference(before, the three local sectors

were separated by sectorized antennas). Each base station now offers two sectors and their network con-

nection for base band sample exchange to other base stations and jointly processes signals from the third

and two remote sectors.
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Figure 8.30: The current
hexagonal grid (left) can be
modified into a new hexag-
onal grid with exactly the
same base station positions
(right) by rotating sector-
ization 90 degrees, suited
for piecewise joint process-
ing [IJ08].

SA 1

SA m

SA 2

BS 1

BS 0

BS n

BS 2

BS m

Figure 8.31: Mapping joint signal
processing areas into the hexagonal
grid: signals in area ’SA m’ are jointly
processed by base station ’BS m’.
Each base station processes samples
from one local and two remote sectors,
and offers the other two local sectors
for remote processing [IJ08].

Figure 8.32: This architecture can also be imple-
mented with the current cell size and without ro-
tating sectorization, by introducing more base sta-
tions (red dots) [IJ08].
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Dynamic cooperation areas Dynamic cooperation areas can be formed in uplink, when base stations

dynamically request neighbouring base stations’s sample streams to aid the own computation. Sample

streams can possibly be requested for certain subbands (in frequencydomain). Protocol-wise this can

be seen as dynamic join/ leave of multicast groups [IHJ08]. Computation in this architecture is partly

redundant (if sample streams are mutually requested), because there is noactual central unit. Overlapping

areas of joint detection are formed, where each base station is a virtual central unit. This architecture is

scaleable in terms of network bandwidth (heterogeneous backhaul) and computational power. Groups of

cooperating stations can dynamically form according to the actual interference situation.

Testbed suitability For high-rate base band sample exchange with the demonstrator platform, a PCIe

10BGit Ethernet interface card can be used, e.g. the Myri10G card [Myr] (compare Fig.8.2on page152).

It offers a fiber connection with pluggable XFP interface, has an x8 PCIe connector and is supported by

Linux. Samples can be streamed over UDP/IP. With interrupt coalescence (not for every received packet

an interrupt) and checksum offload from the host into the NIC, more than 9.9GBit/s througput were

measured. An example 12x12 configuration for channel estimation and stream separation on the Cell

(e.g. for three sectors with 4 antennas) is covered by Fig.8.11on page162and in [IKK +08].
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Abbreviations

3GPP 3rd Generation Partnership Project.

APP A Posteriori Probability

CSI Channel State Information.

FDD Frequency Division Duplex

FIR Finite Impulse Response.

ICI Intercarrier Interference

ISI Intersymbol Interference.

LS Least Squares

LTE Long Term Evolution.

LLR Log Likelihood Ratio

MAP Maximum A Posteriori

MIMO Multiple Input Multiple Output.

MISO Multiple Input Single Output.

ML Maximum Likelihood

MMSE Minimum Mean Square Error.

MSE Mean Square Error.

OFDM Orthogonal Frequency Division Multiplexing.

PDF Probability Density Function.

QAM Quadrature Amplitude Modulation.

SER Symbol Error Rate.

SIC Successive Interference Cancellation.

SINR Signal to Interference plus Noise Ratio.

SISO Single Input Single Output.

SNR Signal to Noise Ratio.

TDD Time Division Duplex.

WiMAX Worldwide Interoperability for Microwave Access.

WLAN Wireless Local Area Network.
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