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Zusammenfassung

Die vorliegende Dissertation bearbeitet das Problem des Designs viova8otler Bitibertragungs-
schicht fir auf einer homogenen Mehrkern-Prozessorarchitektur baseekamdmunikationsemginger.
Dies beinhaltet die Auswahl von Komponentenalgorithmen sowie eines lidrnegs-Schedules, unter
Beachtung von Nglichkeiten der iterativen Verarbeitung und Parallelisierung. Die Arbaifolgt ei-
nen Ansatz zur automatischen suchbasierten Optimierung unter Ausnudeurspeziellen Problem-
struktur. Das Kriterium der Emphgeroptimierung ist dabei flexibel und kann als Utility-Funktion der
Performanz-Parametéibertragungsmodus, Signal-zusBtertaltnis, Bitfehlerrate, Komplexit, Ver-
zogerung sowie Durchsatz angegeben werden. Die Arbeit beginnt reit Betrachtung von Standard-
empfangerarchitektur und -algorithmeiirfTurbo-kodierte MIMO-OFDMAUbertragung. Danach wird
in Abhangigkeit dedJbertragungsmodus die generische Eamgferarchitektur aus bedingten Unabh
gigkeiten detUbertragungsvariablen hergeleitet. Die Zerlegung in Emgérkomponenten folgt aus der
mathematischen Problemstruktur der stochastischen Inferenz. Zur phaktisnplementierung werden
approximative Algorithmen zur Realisierung der verschiedenen &nggfkomponenten betrachtet. Bei
iterativer Verarbeitung wird jeweils Information aus den anderen Bng#rkomponenten als a priori
Wissen verwendet. Die Zusammensetzung eines komplettendaggrs aus Komponenten wird formal
beschrieben und im Hinblick auf die Performanz-Parameter untersuiciet.Nglichkeit der schnel-
len Piadiktion wird aufgezeigt, wobei eine Monte-Carlo Simulation des gesamtendaggfs nicht
notig ist. Darauf aufbauend folgt die automatische Suche im Bng#r-Entwurfsraum mittels Graphen-
algorithmen. Im Vergleich zur Standarderap§erarchitektur eriglichen die optimierten Emahger
einen Empfang bei signifikant geringerem SNR bzw. eine Komg@estieduktion im niedrigen SNR Be-
reich. Weiter wird die Wechselwirkung zwischen der Leistuabajkeit der physikalischen Schicht und
der Ressourcenzuteilung betrachtet und eine Bngerbewertung auf Netzwerkschicht in Alplgigkeit
von Protokollkriterien erridglicht. Abschliessend wird beispielhaft die Implementierung eines SDR Test-
betts beschrieben, wobei Testbett-Parameter zur Veranschaulichsi@ptimierungsverfahrens genutzt

werden. Die vorliegende Arbeit basiert auf den auf SE&&folgende aufgelisteten Publikationen.






Abstract

The dissertation at hand deals with the problem of designing physicaldaftarare for communica-
tion receivers based on a homogeneous multicore architecture. Thisisesire choice of component
algorithms and computation schedule, considering iterative processingoanitilities for paralleliza-
tion. The approach which is used is an automatic search-based optimizatloitieg the special prob-
lem structure. The criterion for receiver optimization is flexible and carpbeiBed as utility function of
the performance parameters transmission mode, signal to noise ratiopbitager, complexity, delay and
throughput. The dissertation begins with a review of the standard re@engtecture and standard re-
ceiver algorithms for Turbo coded MIMO-OFDMA transmission. Then theayic receiver architecture
is derived from conditional independencies of transmission variablégpgandence on the transmission
mode. The receiver split-up into components follows the mathematical proltectuse of stochastic
inference. For practical implementation, approximative algorithms to implememeteg/er compo-
nents are treated in detail. In iterative processing, information from the otimeponents is used as a
priori knowledge. The composition of a complete receiver is formally sgecdhd analysed regarding
the performance parameters. A method for fast prediction is derivadhwlbes not need Monte-Carlo
simulation of the complete receiver. Based on this, automatic search in tteeredesign space using
graph algorithms is described. Compared to the standard architecturegtitmized receivers enable
reception at significantly lower SNR or complexity reduction in the low SNReargpectively. The in-
terrelation between performance of the physical layer and ressdiocateon is looked at, and receiver
evaluation on network layer in dependence on protocol criteria is enaBlattluding, example imple-
menation in an SDR testbed is described, where testbed parameters areilissttiate the optimization

method. The document at hand is based on the publications listed oii@aged the following.
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Chapter 1

Introduction

1.1 Aims and Structure of the Text

This work has two aims: first, to find the optimal software design and implementaftesoftware
defined radio (SDR) physical layer, and second, to develop a realtimerggrator for novel mobile
radio systems.

Conditions for the first aim (software design and implementation) are a geenof transmission
parameters and performance requirements for the receiver. Theassftan run on a fixed number of
homogeneous processor cores with given instruction set.

Since the receiver’s function of reconstructing a transmitted packet diistortion by the radio channel
is a mathematical problem, chap®ooks into the structure of this mathematical problem to explore the
possibilities for the software design. The generic receiver structureriged], from which any specific
receiver structure can be generated by parameter choice. Théogengsture is a breakdown of receiver
functionality into components. Each component solves a mathematical prohlecgrbputation of the
correct solution is far too complex.

To find ways to make the components computable with a limited number of instructidnsithout
degrading their accuracy too much, chaf@dooks into approximative algorithms to implement the
components. DOferent algorithms can be found, showing a tratleetween the number of instructions
and accuracy for each component: with respect to the complete redeareto &icient component
implementations can be found.

To yield a complete receiver, component implementations are combined in cAa@ce there are
different component implementations available, can be done in many ways. éordiag to the generic

receiver structure, the receiver's components can be recomputedpd#ted input from neighbouring

1



2 Chapter 1. Introduction

components, if the overall accuracy is not yeffisient. Further, sometimes several components can be
computed at the same time if multiple processing elements (processor coragitable.

To enable a quick comparison offidirent receiver candidates, chapbedeals with fast determination

of a receiver’'s performance parameters. A method is derived to qupriklgict the accuracy of the
concatenated processing without actually executing it. Other predictéatipance parameters are the
sum number of instructions necessary to reconstruct a packet anedbgsary processing time.
Chapter6 searches the optimal software as selection of component algorithms, ctiompotaer and
mapping to processor elements. This combinatorial problem is representedree, and the search
uses tree traversal with branch and bound, where the search targetgnde minimal sum number of

instructions, minimal packet processing time or maximum throughput underadBESNR constraints.

One conditions for the second aim of the work (development of realtime dgragor) is to min-
imize developmentféort: the testbed intention is to demonstrate functionality, not to be prototype for
a commercial product. Another condition is to meet the performance requiterhexecuting modern
signal processing and coding for 20MHz 2x2 MIMO.

The demonstrator needs higher layer protocol functionality, which is dethlin chapter7.
The demonstrator follows the SDR approach and is described in detailptecBa

There are several relations between the two aims of the work. The deaton$iardware is used as
example target for the automatic optimization method, i.e. parameters like the destmmisistruction
set are used in the chapte34o 6. Relations between physical layer optimization and medium access

control criteria are described in chapter

1.2 Turbo-Coded MIMO-OFDMA Transmission

Modern radio communication systems which face multipath propagation normellEBM trans-
mission — e.g. the standards 3GPP LTE, mobile WiMax, DVB-T(2) and WLARIBDgg/n. It is often
combined with multiple antenna signal processing schemes (MIMO) to enkpactal diciency. One
driving reason for this is the possibility of low-complexity equalization, whiah be performed inde-
pendently per subcarrier (also for MIMO). Modern systems furtherleyngtrong channel codes like
parallel concatenated convolutional codes (Turbo codes) or LDEEsce both of which are fit for iter-
ative decoding.

A block diagram of a transmitter for Turbo-coded MIMO-OFDMA transmissi® shown in Fig.

1.1- An information wordu is Turbo encoded with the desired code rate (puncturing, rate matching, e.g
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Figure 1.1: MIMO-OFDM transmitter using Turbo code.

[CNB*08]) into code wordb. After the QAM modulation mapper, it becomes the vector of complex
symbolsx in the frequency domain. The diagram depicts joint encoding féémdint data streams (over
different transmit antennas), which is possible for single-user MIMO (SM®). For MU-MIMO,
joint encoding of all data streams to one terminal is also possible. The otbemaauld be separate
encoding of each MIMO data stream (e.g. in LTE). After mapping the lzaskbymbols to subcarriers
and antennas, IFFTs are performed for the symbol vectors of eadmtittantenna independently, before
cyclic prefices (CP) are added to guard against multipath propagatiaesyng periodicity for receiver

FFT processing.

1.3 3D WSSUS Channel Model

Channel variations over time are classified as large scale fading on theaodeand small-scale
fading on the other. Large scale fading means changes which occudigt@nces much larger than
one wavelength, especially path loss and shadowing (e.g. by buildinggll Scale fading describes
the dfect of superposition of incident wave fronts taking into account theispltiterences — small
scale thus means thdfects in the distance order of one wavelength. An incident wave fronteat th
receive antenna positigmcan be described by path delaydirection of arrivalQ = {¢, 8}, and Doppler
frequency shiftr. For antenna arrays at transmitter and receiver, the antenna elensgidnsoare

denoted with the vectorsr andpgr. The spreading function for propagation with discrete nunibef

h(tv,p) —— h(f.,v.p)

/

h(t.v.Q) h(f,v.Q)
h(t.t.p) h(f.t.p)
h(z.t.Q) h(f,t.Q)

Figure 1.2: Channel spreading functions accordingzal(7.
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rays only can therefore be written d&4¢0Q Gal07:
K
h(m,v,Q) = " - 6(r = 1) - (v = ) - 6(Q = Q) (1.1)
k=1

A transmit signak(t) is received at receiver positignas [Gal07:

X(t, p) = fR fR fs ) h(r, v, Q)s(t — 7)e” (K Pei2mtgQqrdy (1.2)

This description was obtained ikle0J as generalization from the Bello system equatiddsi§3 by
Fourier transform along the spatial dimension at the receiver sideGal0}] the model is extended
again to include also the spatial dimension at the transmitter (direction of depB@D, and direction
of arrival DOA). The spreading function then beconhés v, Qt, Qr). The 3-dimensional selectivity is
represented bly(f, t, p) (frequency-selective, time-selective and antenna-selective fadihg extended
system equations and their Fourier transform relationships are illustrefayl th 2 (if the diagram would
include DOD and DOA separately, it would be 4-dimensional and includequétens Gal07). For
transformation along the angular domain (2D transform, azimuth and elevdkieristance vectors are

normalized with the wavelengthto q = %’, yielding a 'modified’ Fourier transform3al07:

h(z, v, p) = fs he.. Q)e 1T Pd0 (1.3)

h(r,v, Q) = % fﬂs h(z,v, p)el T2 Pdp (1.4)

The multidimensional channel autocorrelation in this form is given as (&reqttime-space correlation

function [Fle0Q Gal07):
R(Af, At, Agr, Adr) = E[h(f,t,qr,dr) - h*(f + Af,t+ At,qr + Adr, dr + AdR)] (1.5)
The autocorrelation function in frequency domain onlyG&[07:

p01) = [ [ R@f.v.aar. lagr-0 dOsdl (1.6)
R
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The autocorrelation in time domain is

p(At) = f LZ R(T, At, AqT, QR)|AqT:O dQRdT (1.7)
R

and the autocorrelation in spatial domain:

p(0a) = [ [[| RE v Ak ARy el (1.8)
R

According to the Wiener-Khinchin theorem, the power spectral densitywifia-sense-stationary ran-
dom process is the Fourier transform of the corresponding autdetorefunction. The power delay

profile is thereforeGal07:

P) = [ [/, Rsv At 2a)agr—0 d0xdy = S (1.9)

The power Doppler profile is:

P(v) = Lfsz R(, v, AT, QR)|agr—0 dQdr = E[|h(v)] (1.10)

And the power angular profile:

P(Qr) = fR jl; R(7, v, Agr, QR)lagr=0 drdv = E[(QR)I’] (1.11)

The physical radio channel is sampled by the digital communication systemage #ps sampled at the
antenna positions, withlr transmit and\r receive antennas. It is sampled in time with periddt a
number of sampling frequencies with distaide. The sampled channel at timyeand frequency (on

the sampling grid) is denoted as matrix:
H(tn, Fi) € CNexNt (1.12)

In the following the base band channel model is used for convenieri@nn@l correlation is especially

relevant for channel estimation in chap8sind scheduling and link adaptation in chapter
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coarse synchronisation

preamble
| detection
[%2] N
I RE H AID I""i éP l_éomp._ _:%F Soft g_ — | Turbo  |__
CFO > c demod Q % o Decoder
. o ST J 18]l 3
: 4 4 g Q%w o |E[|IE 2
. . 3 = % = e S
- =52 Soft =||5 £
omp.L_| FET © | demod |- |5
e or cro TLFFT] : —
d/) @ 4 4 pilot|symbols

Estimate channel,

fine synchronisation
y SNR

Figure 1.3: Standard receiver architecture for downlink (compdi&qg]).

1.4 Standard Receiver Architecture

In this section the standard receiver architectures for MIMO-OFDMavrdimk and uplink are

shortly reviewed and their fierences are highlighted.

1.4.1 Downlink

A block diagram of the downlink receiver (terminal receiver) is showRim 1.3. In the following,

the main signal processing functions are described.

Coarse synchronisation: A mobile receiver needs to synchronize its time, frequency and (to a lesser
extend) sampling clock to the transmitter. Carrier frequertésed (CFO) is caused by oscillator mis-
match and relative movement, and is for OFDM divided into integer CFO (intageber of subcarrier
distances) and fractional CFO. Initial information about time and frequefiset compared to the base
station is obtained by correlation using knowledge about a synchronigagamble which is contained

in the downlink signal. In the obtained correlation profile, the existence asifign of a preamble is

determined by peak-to-average detection using thresholding.

Timing offset Preamble detection uses either cross-correlation with the known preargbknse
or (with less complexity) autocorrelation of the received values exploitirepjeate structure of the

sequence. A 2-fold periodic preamble in time domain with petiaglautocorrelated ingC97:

L-1
P(d) = > (Fsmldsmel) (1.13)
m=0
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Computation can be implemented as moving sum. For a constant channel, sairplef plae two
preamble halves add up with the same phase (phase increase betweembmblsives). The energy

(used for thresholding later) is computei}97:

L-1
R(d) = > IMdsmsL? (1.14)
m=0
And the correlation profile yielded as:
|P(d)I*
M(d) = 1.15

The threshold value is a trad&detween preamble miss probability and false detection probability,
which both depend on SNR. If several receive antennas are avaitadm@num ratio combining (MRC)
can be employed to benefit from receive diversity. In a similar sch&BB95, autocorrelation has been
applied to the OFDM cyclic prefix — which finds the start of OFDM symbols,axfstame start marked

by a preamble.

Fractional frequency offset After timing detection using the peak-to-average threshold, the angle
of the peak
® = anglgP(d)} (1.16)

gives the estimation of fractional CFGC97:

~

Af = (1.17)

d

il

This fractional CFO is then compensated by multiplication with a complex oscillation.
Integer frequency dfset [SC97 uses a second preamble OFDM symbol, which compared to the

first one is diferentionaly modulated with sequenge The integer CFO (shift of 2g positions) can be

determined again by correlation:

: 2
g B argmax| Zkex Xik+zgv|¥(x2,k+29|

1.18
9 2(Xkex 1Xokl?)? (1.18)

wherexy is the modulation symbol on subcarriein the second preamble OFDM symbal. The

integer CFO is then also compensated.
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Figure 1.4: Downlink frequency synchonization accuracy.

Transmit diversity for synchronization preambles To also exploit transmit diversity in case
of MIMO, [SZ03 uses a cyclically shifted ZadibChu sequence per transmit antenna. Perfect cross-
correlation is maintained for a shift larger than CIR. With preamble pexigdhe shift can beéNp/Nr,

for Nt transmit antennas. Joint correlation at the receiver for CFO estimatiSZ &3]

m+Np—1

Am = > Mr(k+ Ny (1.19)

k=m

Time and Frequency Ofset Precompensation CFO causes inter-carrier interference (ICI) due to
receiver FFT processing (subcarriers loose orthogonality). Tiffsetocauses phase rotation after re-
ceiver FFT and possibly inter-symbol interference (1SI, if outside. @B)avoid both &ects, estimated
time and frequencyftset are precompensated before receiver FFHFMO0]. Time offset is compen-
sated by selecting the start of the FFT symbol vector, frequefisgtds compensated by multiplication
with complex oscillation. The two precompensation parameters are fed initiallgdnge synchronisa-

tion, later by fine synchronisation.

Channel estimation: Channel estimation is normally enabled by transmission of pilot symbols which
are known to the receiver, so that the channel is sampled at the pilot pssifithe receiver needs to
reconstruct the channel at the positions of (unknown) data symbatstfre received pilot values, which
are corrupted by noise. The Wiener filt&¥ie49 is the optimal noise reduction filter for a noisy signal

(in the minimum mean square error sense) if autocorrelation and noisec@aas known. It is used
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for one-dimensional signals like speech as well as multidimensional signalmiiges (2D) and video
(3D) [Woo04. The combination of Wiener filtering and interpolation to solve the chanrnghaton
problem is known as Wiener Interpolation Filter and has been describ&HDOM channel estimation
in [HKR97]. It is normally applied to the time-variant channel transfer function. Aféenoving cyclic

prefix and performindN-point FFT, the signal in frequency domain is given as

YIn, K] = X[n, KIH[n, K] + Z[n, K] (1.20)

whereY[n, K] is the received symbol on subcarriein OFDM symbolk. As initial step (least squares
method), the receiver obtains noisy samples of the time-variant chanm&fieréunction at the locations

of the known pilot symbols:

Foln kg = MK g o 2ot K 1.21
p[ > ]_ Xp[n, k] - p[ > ]+ Xp[n,k] ( . )
Noise suppression filtering based on the initial least squares estimates waittén as
Hpln, Kl = > ¢'[n, KIFp[n - no, k - ko] (1.22)
No,Ko
wherec[n, k] are filter codficients. The estimation Mean Square Error
MS E(c) = E{Hp[n, K] — Hp[n, K]} (1.23)

becomes minimal for the cfiecients satisfying the Wiener-Hopf-Equation (follows from principle of
orthogonality Hay01, HKR97)):

c[n. Kllopt = (R[N, K] + S'—N “Ir[n, K (1.24)

wherer[n,K] is the crosscorrelation between the channel transfer Vdlurek] at the position to be
computed and the pilots within filter range (values written as vect&n, k] is the autocorrelation
(values written as matrix) betwedt[n, k] at all the pilots within filter range. The OFDM channel
transfer function’s 2D correlation functiany(At, Af) = E{H(t1, f1)H*(t2, f2)} can be separated into
time and frequency parts:

(AL AT) = ra(ADra(Af) (1.25)
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Receivers use either a (less complex) static Wiener filter or an adaptiveekViker. For a static Wiener
filter the autocorrelation is assumed to be known apriori and normally pnedeficcording to 'worst-
case’ assumptions (like maximum delay spread and maximum Doppler spiidas)means assuming
less correlation between pilots than there will be typically, and the approaeffeised to as robust’
filter design — robust against filter mismat@HFS04. Static 'robust’ filtering normally assumes a uni-
form multidimensional power density spectrum (for MIMO-OFDM with the dimens delay spread,
Doppler spread and angular spre&HFS04 Aue09). From the power spectrum assumption, the chan-
nel autocorrelation follows by IFFTQS09. For the uniform spectrum case the correlation in time
direction becomes:

Franif(At) = Sing2r fpAt) (1.26)

with singx) = sin(x)/x, and fp being the maximum Doppler shifat = Akts(L + N) with tg being the

sampling period anti(L + N) one OFDM symbol duration. The correlation in frequency direction:

FHanif(AT) = SingrTmA f)el2rshirus (1.27)

with T, = Lts as the maximum delay,shisc = Tm/2, AT = AFAl with AF being the subcarrier dis-
tance. With the distancedak Al] from pilots inside filter range, the céitcients can be computed from
(1.25 and (.24. SNR estimation can be done by singular value decomposition based seilmspth-
ods (projection onto noise subspace, normally static file§H 98], or with IFFT from CFR — signal
and noise variance are then contained in the CIR area of an OFDM symldobugside only noise
variance JL0O7]. To enable channel estimation for MIMO, pilot positions are exclusiveia@smit an-
tenna (other transmit antennas do not transmit on these positions, zerolsymiie described Wiener
interpolation filtering can then be performed without crosstalk per transegeive antenna pair. E.g.
[LI20Db] illustrates filter performance simulatively by measuring channel estimation swsare error
for different channel autocorrelation and noise parameters. The assunmetyimgdchannel model is
the 'urban macro’ type from3GP0§. The gain of increasing filter size is illustrated in Flg5a where
the resulting MSE is shown over channel SNR. Figbb shows a comparison of a 2D filter with with
different filter types, namely a 1D filter in frequency direction and a casc2xldd filter (separable,
applied first in frequency direction and then in time direction). All three filtess the same amount of
pilots for Wiener filtering. The fect of degrading accuracy with increasing terminal velocitiyfédent

max. Doppler shift) is illustrated in Fid..5¢
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Figure 1.5: Channel estimation accuracy.

Fine synchronisation, tracking: Based on channel estimation, time and frequerftsets can be re-

estimated with higher accuracy and fed back to pre-compensation beddré&h

CFO is described as time domain multiplication with the complex oscillaﬁgﬂr%, where the
phase increasesy for neighbouring samples. Here it is assumed that the frequency dispehsinnel
is constant for two neighbouring OFDM symbols. A received symbol in timmealo (ith sample inmth

OFDM symbol) is:

N-1
1 Kkn - 2rAgn
Ymn = N{ kaerZ" N} @7 40y (1.28)
k=0 CFO

where Xmk is the transmit symbol on thith subcarrier. After FFT the received symbol on tke

subcarrier is:

P
=
pzd

Ym,|:% {
0

-1
i kn : 2rAgn
kaerJZ”W}-eJ N

0

L& 127 4 Ny (1.29)

=}
I
=)
Il
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With the approximatiol“" ~ 1+ jZ54 this can be rewritten asjVo2]:

N-1 N-1 N-1
1 2nAgn, 1 L 2TAPN o (KN
Ymi & HiXmy N Z(l"' J N )+ N Z HiXmk Z(l+ J—N )e 17" +Nmy (2.30)
n=0 k=0,k= n=0
~el¥, common phase error intercarrier interference

i.e. the received symbols undergo a common phase error (same for edrgats) and intercarrier
interference. Since the channel is estimated including the common phas€&@and 'clean’ channel

are not separable in one OFDM symbol. But between neighbouring ORBDMN@S it is:
E(Hmi — Hm-1)) = e/2 (1.31)

The CFO can thus be estimated by maximum ratio combining over subcarridree@ive antennas if
several are available):

£y HmeHy o (1.32)

Results for a sequence of OFDM symbols can be filtered. Accuracyaserom inital coarse CFO
synchronization to CFO tracking is illustrated in Fip4h Precompensating CFO before receiver FFT

avoids it causing ICI.

Delay: Time ofset is tracked to fully use the CP against delay spread, and to avoid |pddtsip
(phase) mismatch of a static Wiener channel estimation filter. Timifsgts, as long as not exceeding
the CP, cause only a circular shift of the samples of an OFDM symbol in the timaid. According to
the Fourier transform shift theorem

F(Yom) = Yic-€ 1 K™ (1.33)

this means a phase rotation which linearly grows over subcarriers. To &stinestime dfset, either a
regression over the phase of the channel samples can be perfdvd&8][— which is biased by the
channel’'s own CIR (decreasing phase over subcarriers). Garpi#y it can be estimated using an IFFT
transform from CFR to CIR, followed by a sliding window search for theg@Bition which contains

maximum CIR energy3FFMO1.

MIMO symbol demapping, LLR generation After channel estimation, the MIMO streams are sep-

arated according to the MMSE criterion, to enable per-stream demappiitiy.nése variancer?, the
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MMSE receiver filter matrix for separation of the streams is given by:
Gpias= (H'H + o21)"1H"

The unbiased version G, = S Gyias, WhereS is the diagonal matrix which removes the bias introduced

by the MMSE criterion ZimO7]:

1 1
S =dia e,
g((Gbias|'|)1,1 (GbiasH )Ny Nr

The equalized symbol vector is:

X = Gunby
The receiver then computes a log-likelihood ratio (LLR) for each transitnit b

P(c=+1)

L(C) =1In P(T—l)

(1.34)

For ease of notation (and implementation), ecliiin take the valuesl instead of 1 and 0. The LLR for
transmit antennaand bit position] is (under assumption of Gaussian noise and Max-Log approximation

per stream):

l . ~ 2 . Py 2
LGy) = =5 ( min 1% =xP= min I% - x[?)

Oeq %eXi, xie/\’}:_l
whereo-gq is the noise variance on the stream after filterirge X 11:1 means the set of symbols where
the bit whose LLR is to be computed has the valuﬁ’}l:L1 is the complement set. The applied max-log
approximation considers only the Euclidean distances to the closest two syamolidiates (with positive
and negative bit, respectively). For separable modulation sets (likeeugedh LTE), implementation

reduces to independent one-dimensional table lookups for inphaspiadchture bits.

Channel decoder: After de-ratematching (depuncturing and de-interleaving), the Turbadbs is run.

A Turbo decoder consists of two constitutional decoders (fitting to the twodars), and Turbo inter-
leaver and Turbo de-interleaver. The constitutional soft-input sdfitdiwonvolutional decoders use the
BCJR algorithm BCJR74. Normally systematic constitutional codes are used, so that the two decoder
only need to exchange extrinsic information for the information bits (and Isottae parity bits). A
block diagram of the Turbo decoder is shown in Figh. The constitutional codes can be identical (like

e.g. the 8-state decoders in LT&EFP09). As example of a pseudo-random Turbo interleaver, quadratic
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Figure 1.6: Turbo decoder structure (compar€(4)).

polynomial permutation (QPP) is used in LTRIMO08]. Normally 3-11 Turbo decoder iterations are run,
accuracy of the LLR signs improves over iterations. The information bitslai@ned by quantizing the

information bit LLRs to their sign.

1.4.2 Uplink

The structure of an uplink OFDMA receiver is illustrated in Fig7.

Coarse synchronization: Random Access ChannelFor entering the system by non-synchronized
transmission, a random access channel (RACH) is used (its position in tifrfeegiuency is broadcast
in the downlink). To guard against a long round-trip delay, the RACH is nhoigger in time than one
OFDM symbol (which is only guarded against delay spread, not ratpdielay). To allow for reduced-
complexity computation of correlation using FFT-based fast (cyclic) ttrom, a RACH preamble con-
tains an own (extra long, for round-trip delay) cyclic prefix. RACH aldRl preamble are illustrated
in Fig. 1.8 Detection of RACH preambles is done on the time domain sample stream befoid OF
cyclic prefix removal and the receiver FFTs. A large FFT (fitting the mitda sequence length) of the

time domain samples in the RACH window is computed, followed by elementwise multiplicatibn

%)
RF A/ID CP FET Fe—3 _| Soft [__|de- | | Turbo  [__
H H '_I | E c demod ratematch Decoder
: [ ] [ (%‘ O g ’UT 0
T 0
g : bl 282 :
© = = 3 Soft de- || Turbo
RF |—| A/D |-<>-| CcP '—l FFT} o — demod |— ratematch Decoder |—

A
d\D @ =ACH pilotjsymbols
N

detection I
Estimate channels,
SNRs

Figure 1.7: Standard receiver architecture for uplink (compai@9]).
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Figure 1.8: Uplink random access channel (RACH).
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Figure 1.9: Peak-to-average threshold for preamble detei08]

the stored FFT of a preambl®PSBO07. The resulting vector is IFFT transformed, followed by peak
to average detection (comparison to a threshold vaN#)Z06]. If a peak is detected, the round-trip
delay estimate is given by the peak position and phase. The peak-tg@aterashold value should both
avoid preamble misses and false detections in the receiver operating §NR (idustrated in Fig1.9a
and1.9h. After detection of an initial ranging preamble, the base station protocck gtatructs the
terminal to adjust its clock to compensate the round-trip delay (timing advargieye-the base station

is/has reference time and frequency.

Channel estimation uses Wiener filtering like in the downlink; pilots are transmitted in the resources
allocated to a terminal. To provide uplink channel knowledge to the base stimaraother subbands,
the base station can command transmission of a sounding signal. The Wiené&s &jiplicable also to

the sounding signal. The error vector magnitude (average squaredogisthsymbols from their ideal
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Figure 1.10: Influence of velocity, synchronizatioffisets and transmission bandwidth.

locations in the complex plane) after equalization is illustrated in EigQafor different noise levels and
velocities (Jakes Doppler Spectrum). Uncoded bit error rates withoOt&¥e with two diferent CFOs

(two terminals) and compensation are illustrated in EidObfor different bandwidths.

MIMO demapping and Turbo Decoding use the same algorithms as described for the downlink. Fig.
1.11aillustrates resulting bit error rates (BER) after turbo decoding feiedent modulation levels for
small packet size and flierent terminal velocitiesZ109]. Fig. 1.11billustrates frame error rates (FER)

for intermediate packet size.

Differences to downlink processing In OFDMA uplink, transmission of a terminal is non-continuous.
Considering the transmission gaps (in time and frequency), tracking of tich&requency ffsets can

still be applied [ZKO08]. Since the remainingfisets are individual per terminal, receiver-based pre-
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(a) Bit error rates for the worst case of 40 information kib) Frame error rates for fierent modulations and terminal
packet (smallest packet size), foifférent terminal veloci- velocities, packet size 512 information bits, DFT-S OFDMA
ties, urban micro channel and DFT-S OFDMAI(9]. [Z109].

Figure 1.11: BER and PER forfiierent modulation and velocity.



1.5. Noise, Interference and Countermeasures 17

compensation before FFT is not possible (and also not wanted, sinc8tlse&erence). After receiving
a timing advance instruction, the terminal sets a timer to switch it to ‘'unsynchnizade — uplink
transmission then requires transmission of a new RACH preamble. The B®wemand an adjustment
of timing advance with a certain granularity and reset the terminal’s synidatoom timer BGPO1.
Similar to timing advance there would also be the possibility to command a frequdaapce with

certain granularity (to reduce ICI).

1.5 Noise, Interference and Countermeasures

Noise can be countered by increasing packet size and using a strdadagart from increasing
transmission power). Theftierence between thermal noise and interference is that interferenagcis str

tured: it has non-Dirac shaped autocorrelation and also has codeistruc

Interference Randomization A (pseudo-)randomization is used by interfering transmitters to avoid
interference with same structure. The receiver treats interferencagises mMhe decoderfiects coding
gain for input with the adequate structure — and fieat of interference randomization is to avoid apply-
ing this gain also to interference. Current cellular systems use intereerandomization in the form of
terminal-specific scrambling (LTE) or (pseudo-)randomized OFDM suiecanapping (Wimax). Fig.
1.12shows an example (assuming same constant channel and QPSK moduldieng) randomization

enables communication at negative SIR.
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(c) LLRs after decoder. Unstructured (random) interference is
not amplified by decoder. Decoding is successfull.

Figure 1.12: Interference randomizatiopg103.

Interference Suppression The receiver treats (white) noise and interference together as cdloure
noise, and applies filtering to improve SINR. This approach needs an estifietth noise and interfer-
ence statistics (or their joint statistics). An example is MIMO stream separatibikmown interference

directions and powers (sometimes called 'interference rejection combining’)

Interference Coordination and Interference Alignment A signalling protocol is used to avoid or
reduce interference. One example is LTE, where cell edge users&ighbouring cells are scheduled in
different subbands, and the schedulers semi-statically negotiate sublanatgower levels3GP105.

A generalization from this would be multi-cell scheduling. Another example ggmitive radio using
spectrum sensing. The aim is to only transmit when not causing (too muchfeietece. The 'full-
blown’ case is Interference Alignmen€J09g, where all transmitters have full channel state information

and jointly precode to orthogonalize signal subspace and interferahspace at all receivers.

Interference Cancellation The approach is to decode and subtract interference at the redeiesr
ference is treated as separate signal. Interference cancellation armitter according to dirty paper
coding [Cos83 needs channel state information (which renders it somewhat unpiacticirference

cancellation at the receiver needs channel estimation also for the iterééannel, and knowledge
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Figure 1.13: Interference cancellatiapd104.

about the interference signal structure. An example is again MIMO deteetsuccessive detection of
separately encoded MIMO streams. The principle can also be appliedcessie detection of fierent
transmission systems using overlapping channel ressources. An impléorentsstacle is that the in-
terference reduces the available ADC dynamics. An illustration of interéereancellation in the LLR
domain is given by Figl.13 A special case of interference cancellation is the concept of anteama c
cellation [CJS 10], which can be described as echo cancellation in the analog domaingeér and
ADC) to allow for full-duplex transmissigreception at the same frequency — using multiple transmit

antennas whose waves cancel out at receive antenna positions.

Joint signal and interference detection While interference cancellation uses successive detection,
this more complex approach detects using the joint model of signal and meterée Examples are
MIMO maximum likelihood detection, or the concept of multi-cell joint detectiom{stimes called

'coordinated multi-point’).



20 Chapter 1. Introduction

1.6 Software Defined Radio Baseband Hardware Model

There are dterent definitions of 'Software Defined Radio’. A common one is that tasgmodula-
tion and demodulation are performed in software. Recent multicore parsdss baseband processing
in the terminal are the EVM (embedded vector procesBbINI*05]), the MUSIC chip Ram07 and the
Sandbridge processds[M*06]. For high-end terminals an SDR implementatidfecs a cost advantage
due to smaller (cheaper) silicon area: in case of many functions whiclobadl needed at the same time,
only a small increase in code memory is necesRayn07. Recent multicore DSPs for base station base
band processing are TC1648B3x07 (C64x+ cores) and MSC8144Fe07 (Starcores). Channel decod-
ing is always coprocessor accelerated, also possibly FFT proce&singe related multicore examples
from high performance computing are the Cell procesk@H *05], Tilera [Til09], Larrabee §CS 08]
and TeslalNVI07]. Physical layer processing in the testbed (cha@tés implemented on the Cell. The
main topics of this thesis are receiver algorithms, their optimization and softwplementation. Hard-
ware criteria like area and power consumption are not considered. Aderaous multicore processor
architecture is assumed, allowing to flexibly distribute (or dynamically allocatepatational power

between receiver functions.

1.7 Search Based Software Engineering

Search based software engineering means the approach of applgiog akyorithms for optimiza-
tion to software engineering problems. It has been applied to problemsiveseftesting, requirements
analysis, software design, software development and software maingenA list of example applica-
tions is given in Har07.

[KWA*09] describes a design flow for co-design of hardware and softwarsD&R. (WDS1J also
relates to the problem of joint design of hardware and software for edeloesl/stems, and formulates it
as two coupled optimization problems ('hardware knapsack problem’ aftdvare knapsack problem’;
the hardware solution must providefBcient ressources for the software solution). After partitioning of
system functionality into hardware and softwardfatient configuration options remain both in hardware
(e.g. clock speed) and in software (e.g. image resolution), which arejainbly optimized.

The document at hand deals with communication receivers whose furitfiaeanainly realized
in software. The desired result is an optimization of the software implementdtrecaiver algorithms
(software part of the two coupled problems), in dependence on thelyimdehardware (instruction set

etc.). The mathematical problem structure and signal processing andimig@bgorithms of commu-
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nication receivers foer a wide tradefd between accuracy, complexity and processing delay. Software
complexity can be measured as processor cycles on target prooess(s).cThe special communication
receiver problem structure allows to quantify accuracy using an infiwmgheoretic measure (namely
mutual information), even for intermediate processing results. The comntionicgaceiver software

design problem therefore proves especially suited for search bpsedzation.






Chapter 2

Generic Recelver Architecture

In this chapter, stochastic inference frameworks are shortly treatetgingloopy) Bayesian belief
propagation, Kullback-Leibler (KL) divergence minimization and Bethe &rergy. The corresponding
graphical models are shortly reviewed, especially factor graphs. Tiepjmbability density function
of receiver random variables is factorized exploiting conditional inddpacies between variables, and
the resulting generic receiver structure is illustrated as graphical modslrfgle-user and multi-user
reception and concatenated channel codes. This chapter is a busadiiine receiver into components
(and their connections) which perform a posteriori probability (APPhmatation on variable subsets,
to iteratively approximate the joint a posteriori probability. The componentasbk/es are described in

detailed in chapteB.

Stochastic inference and the related graphical models (illustrating condliiepandence and in-
dependence of variables) are describedAed88 Bea03. Bayesian belief propagation is derived in
[Pea88 as propagation of local 'beliefs’, which corresponds to sequengiehting of probability dis-
tributions according to Bayes’ theorem. It has originally only been intefidlegraphs without loops,
i.e. trees Pea88 Propagation of any initially known probability densities (‘evidence’) tigb the
tree computes the correct a posteriori probabilities. The algorithm is @&st as 'summary propaga-
tion’; the sum-product algorithm and corresponding factor graph mfoddlustration are described in
[KFLO1]. Bayesian belief propagation yields the correct joint a posteriorigdsidity density function
when the variable dependency structure is a tree (no loops) — for ayhitqaology it can be used as
approximationPea88Mac04 (iterative approximation, as local beliefs then propagate in loops). y.oop
belief propagation is also discussedJJNDP2 RUO08], its convergence for graphs is discussedWHO1].
While Belief propagation works on directed graphs, the Bethe free gi@yence works on undirected

graphs (Markov random fields). Bérent stochastic inference frameworks are described and compared

23
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in [YFWO01, YFWO05, Min05, AS0€. The relation between free energy and belief propagation is de-
scribed in YFWO01], the correspondence of iterative maximization of a posteriori probabiligesus
minimization of KL divergence is given ilAS0§].

Inference frameworks have been applied to understand as well asd@agealgorithms for receivers.
In [MMC98§] it is shown that the standard Turbo decoding algorithm is an instance p¥ IBelief
propagation. Factor graphs have been applied to (iterative) resenauding symbol demapping in
[WS01, WymQ7]. KL divergence minimization has been used for CDMA receptiorHhR*08] and for
OFDM reception in MKF*09]. The Bethe free energy approach has been applied to iterativeeexei
in [LLO9].

2.1 Bayesian Inference

Bayesian inference for trees A Bayesian network is a directed acyclic graph (DAG), where random
variables are represented as nodes. Conditional independenciesebetades are given by the d-
separation property of the DA@[s0§. Probabilistic inference is done by local message-passing in
the tree (i.e. only between neighbouring nodes). To avoid counting infanmiavice during inference,
the aposteriori probability of each variable is split into two parts: the 'dasiggportr (for 'probability’)

and the 'diagnostic’ suppont (for 'likelihood’). The 'belief’ (aposteriori probability) of a variable is
computed as:

BEL(b) = aA(b)x(b),

where the 'causal’ suppori(b) is the probability density of the variable conditioned on the evidence

e in the graph propagated to the node through its parents:
n(b) = P(ble").

The ’diagnostic’ supporii(b) is the probability of the evidence propagated to nodb through its
children, conditioned ob:

A(b) = P(e7|b)

a always denotes a constant to normalize a probability density. Incoming gesssam several children

a;...a3 are combined as:

J
Ab) = [ | Aay(0)
j=1



2.2. Factorizing Joint Probability Density Function 25

The combination of incoming messages from several pakntsdk is [Pea8%

K
ab)= . P(oldy,...dk) [ | mo(ch)
i=1
The message sent to parelptis computed asHea88

(@) = @ )" A0) Y B(bidy,...,dk) [ ] m(dn)
b

di: i#k nzk

The message sent to chglis:
BEL(b)

7 ®) =02 )

Each node only has to '’know’ its probability conditioned to that of its immediatergar

For graphs (with loops) For exact marginalization, the graph can be transformed into a tree using the
junction tree algorithmlS8§, where cycles are eliminated by clustering them into single nodes. An
example would be to implement a Turbo decoder by applying the Viterbi algotithtme supertrellis
(which hugely increases complexity).

A low-complexity approximation alternative is to just apply belief propagation ¢ogtaph (loopy
belief propagation, LBP)Nlac04. For the case of more than two factor nodes (more than one cycle),

the sequence of factor node updates (local message propagation)fimenda convergence behaviour.

2.2 Factorizing Joint Probability Density Function

MIMO transmission at time instandeover the channel matrid (") of the jth OFDM subcarrier is
denoted as

Y0 = HOD (O (B(I0Y 4 G, (2.1)

We assume that the channel does not have memaory, which can also meoetas subcarrier model in
MIMO-OFDM transmission.b(Y) is a vector of transmit bits as part of the complete codeviondi)

is the corresponding vector of modulated symbols. The complete set ofee@symbol values of the
message (all time instances) is denogedrhe transmitter uses Turbo coding, so that the code Wword
consists of the information bits, parity bitsc, of the first constituent encoder and parity hitsof the
second constituent encoder. For a single bit of the bit vezirpositioni it is written b;. Fig. 1.1 0on

page3illustrates the encoding and modulation signal flow at the transmitter.
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o
/@AV demapper 4

B -0 emapper- £
O : : S 3=
b mEpert 5. TES

Figure 2.1: Factor graph of joint probability density. Variable nodes iackes, factor nodes are squares.
'Evidence’y is shaded. All variable nodes are vectdi) are matricesipal0d

Maximum receiver accuracy would be reached if computing the maximum lilailsolution on
codeword basis:

0 =arg rrl1]a><IP(u|y)

As this is practically infeasible, the practical approach is an iterative I@gabaimation of the informa-

tion bit APPs with subsequent binary quantization. The joint probabilityitlecan be factorized:

Pu,Y) = (] ] foem(b®0, y0, HO9))- foea (u, 1) foea(U, €2) - feely-X) - (| | fuapd™?))
it it
which corresponds to a demapper for eadfedent time instance, the two constituent decoders, a soft
symbol mapper for each time instance and channel estimation (for all syditibps of the code word).
The received vectorg are 'evidence’. The factorization is illustrated in Fig.1 (using a factor graph
notation similar to Bis0€]). The factor graph for multi-user MIMO (MU-MIMO) is illustrated in Fig.

2.2for two users: demapping is performed jointly, decoding separately.
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Figure 2.2: MU-MIMO: joint MIMO demapping, separate decodirigafL0g

2.3 Receiver Components

This section describes the updatdaftor nodesandvariable nodegrom the generic receiver archi-

tecture (Fig.2.1) and specifies the messages passed between them.

Factor nodes perform APP computation for the neighbouring variablesnoflPP computation is
an improvement over likelihood computation, if a priori information is availabpaiafrom the non-
informative prior). Expressed in terms of the maxima of the respectivataEnsnaximum a posteriori
(MAP) is at least as accurate as maximum likelihood (ML). To avoid premajugetization, the com-
plete densities are to be computed and exchanged. For complexity redudtngpiémentation, densi-
tites are normally represented by one or a few parameters, e.g. mean ARR.okPP (Dirac), or mean
and variance (Gaussian) etc. For bit variables, a complete probabilisitglean be expressed in one

number as LLR.

After the last node update, parameter estimates are then obtained by diantizking the mean

value of the APP or its maximum (block MAP instead of symbol MAP).

MIMO Demapper Digital transmission has a discrete modulation alphabet, plogsible MIMO vec-
tors are denoteglg;. Although not necessary in general, for implementation the estimated density of

channel sample is assumed to be a Dirac distribution (i.e. quantized to ong veheedemapper for
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time instance and subcarriej then computes and outputs for eachtbivf the codeword fragmeti-0:

B(0) = ) P(bilxai, HU9, yI0)R(xg) = ) Pbibxai, U, yi0) [ () (22)

XQi XQi

The bit density is conditioned on all valid modulation vectors, where a priofability information
about the modulation vectors (from a priori bit probabilities) is used. Tdreinformative prior would
be the uniform distribution. There aM" possible transmit vectors when transmitting with modulation

constellation sizé/ onn antennasr(log, M bits in b(-),

Constituent Decoder The decoder uses a priori codeword probabilities (from a priori bibabilities)
and conditions on all valid codeworgigrom the codebook/. Decoder 1 computes and outputs for each

bit b; of u andcy:

P(b) = ) BOINEWY) = > POV [ | P(b)

veV veV
There are % valid codewords for a transmission wik information bits, where is the length ofu.
The computation can be reformulated as summation over states of the code ticelis@ently imple-
mented using the BCJR algorithB€CJR74. Decoder 2 makes a corresponding computation involving

a summation over the valid codewords of constituent code 2.

Soft Mapper The soft mapper computes the probability density of a transmit symbol (Yéaior bit
probabilities. Conditioning is therefore on all possible bit combinations of thgtlecorresponding to

one symbol (vector).

P(X) = > P(xIb)P(b) (2.3)
b

For pilot positions soft mapping is not needed, pilot symbols have a priokvk Dirac distributions.

Channel Estimator The channel estimator estimates the probability density of channel sariples
using received values within a surrounding estimation area — e.g. covkdarpmplete area where the

codeword is transmitted — and also uses probabilities for transmit symbols wiiharé&a:

P(HOV|Y ) = f P(HUD)Y 1, X 2)P(X ) (24)
Xa

whereA is the estimation area including neighbouring symbols from position ¥ 4 andX 4 are the
random vectors of transmit symbot&nd received valugsinsideA. The integral is used in the formula

to cope for the general case where the densities of transmit symbolsanedelled as Dirac distributed
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by the receiver. The model for the conditional probability normally useseél autocorrelatioR and

noise varianceﬁ, so that noise reduction Wiener filteringiQ0] can be performed.

Variable nodes For illustration of variable node update processing, R2dg3 is used, which depicts
message passing of LLR vectors for iterative demapping-decoding. L& L(c) is equivalent to the

probability distribution of the corresponding loit

P(c = +1)
L(c)=In—= 2.
@@=z (2.5)
The inverse relations between LLR and the probability of the bit being pegitinegative are:
+L(c)/2
P(c=+1)= —— (2.6)

The nodes of vector variables andc, have links to two factor nodes and simply forward messages,
e.g. Lgded)(cl) = Lédet)(cl) . Nodeu has links to three factor nodes and therefore computes an outgoing
message as (elementwise) multiplication of the incoming messages from thetivespea other links.

In the log-APP domain the multiplication is an additiot®®®(u) = LYY (w) + L% (u). When the
iterative update of nodes is to be stopped, the decoded message is ob&iniedry quantization of

Lp(u) = LE () + LE*D(u) + LE=D(u).

‘\Le (dec 1 )(
c
/ L, (decy 7 )~

° N\ o
/\’ S\ e K“\/ S
o)
qL) ) § \° /\,a &deo'\\ \“\/ a
o 23 <_|_a(det)(l'|)_ o\
g %_‘g —L (det)(u)_> '\LG’ (0’602)
= e
8 = 3 \La (d@cg)(u)\ (E a;
( (O'@ (u O o 8
e ’)( )~ B
{, (aef?/\ oD (C2) ] S =S| Figure2.3: Message flow for iterative
[C‘g/ /\'aseci\(cz\’ A 2| demapping-decoding consisting of LLRs
N e\ e [1B10].

Scheduling Factor Computation The order of node updates is arbitrary (although it does not make
sense to update a node when there is no new message on an incident lirbutphewould remain
the same). One possibility is to iteratively update all variable nodes at omcéhan all factor nodes

at once, but for practical implementation a reduction of computatioffiaités wanted. The normal
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MIMO receiver processing scheme for Turbo coded transmission isegleld special case with following
schedule: first update all demappers once and the variable nodestettatively update decoder 1,
decoder 2, and. For iterative demapping-decoding, demapper updates can be mixed istchéiatule.

It is also possible to update e.g. only a subset of the demappers (not all stardas).



Chapter 3

Component Algorithms Performing

Approximate APP Computation

This chapter discusses details of the receiver components (facta abcleapteR), with a focus on
complexity-reduced approximative APP computation. Several algorithmdesaibed and compared
to characterize the accurdgcgmplexity tradefi of each component. A second focus lies on accuracy

improvement with growing a priori information.

3.1 Channel Estimator

The algorithms in this section are based on Wiener filtering. Compared to tlikesdapproach (Sec.
1.4) there are two dierences: filtering is adaptive to changing channel statistics, and drestineation
is soft data-aided. For a non-informative prior of data symbols, chhastienation complexity can be
considerably reduced — therefore sect®h.2describes ML channel estimation for the first iteration,

and sectior8.1.3describes the APP version for later updates.

3.1.1 Channel Statistics Estimation and Tracking

For adaptive Wiener noise suppression filtering both in ML and APP atastimation, channel
and noise covariances need to be estimated and tracked. The chatistdstre estimated here from
pilot positions. In this formulation, channel and noise statistics parametroatupdated by Bayesian
inference (it is of course possible to extend the estimation to also use ddians)s The adaptive
filtering is based on parametric tracking of multidimensional correlation of ttdMOFDM channel

transfer function and SNR (in uplink per user). Initialization assumes minimwargt-case’) pilot

31
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correlation (robust filtering as ih.4).

Parametric multidimensional PSD tracking Motivation for adaptive filtering is to exploit as much
correlation between pilots as possible. This means that the channel aetaiion is to be estimated
and tracked. Fig3.1lillustrates diferences between available time direction correlation fident user
velocities, assuming 2.1 GHz carrier frequency and maximum velocity of 498 kworst case, e.qg.
high-speed train).
Channel correlation can be estimated directly or using the power speetrsityl (Sec.1.3). Here
the latter approach is chosen. In uplink, there are also remaining unceatpdrsynchronization errors
(per-user time and frequencytsets), which in dference to the downlink cannot be precompensated by
the receiver before FFTILO7] uses a 2-parametric PSD model, assuming Gauss spectra for delay sprea
and Doppler spread. Adding the two synchronizatifisets, here a 4-parametric PSD model is tracked.
[YAQ8] points out that synchronization errors may bias spreading estimationhvga motivation to
estimate these parameters jointly or at least independently. The 2D mod&@HKfK) is illustrated
in Fig. 3.2 assuming uniform spectra. The width of the window in F&2 indicates delay spread,
the height indicates Doppler spread and the location of the @istiows time and frequencyfieet
(shifting the spectrum). The number of parameters to describe the PSD camrse be increased (e.g.
using distribution moments), which increases necessary estimdfmm €There is a tradébbetween
estimation accuracy and estimation time, which is essential for tracking a timiexyapectrum.
A block diagram of the resulting (multi-user) uplink adaptive channel estim&ishown in Fig3.3.
For complexity reduction, synchroniatiofffeet compensation (by phase rotations) and noise reduction

filtering are separated, which allows for pre-compensation of a smallf $éteo kernels (the filtering
approach is detailled in Se8.1.2and3.1.3.
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Delay and delay spread estimation There are dferent approaches for delay and delay spread estima-
tion, e.g. MZBO00, YLCCO0O0, AJO4, WKPOQ1]. Here, the begin and end of delay spread are determined
by thresholding in an estimate of the power delay protD[10]. Beginning with the LS channel es-
timation samples, windowing in frequency direction is applied to avoid leakadeobyier transform
from frequency domain to delay domain. The PDP estimate is averaged usiding window in time

direction over several OFDM symbols.

Frequency dfset and Doppler spread estimation References for Doppler spread estimation include
[YAO8, SL03 JLO7]. The time-direction estimation window should be longer than the channeteate
time. Analogeous to delay and delay spread estimation, frequetsst and Doppler spread could be
estimated by thresholding in the power Doppler profile. Here, the direcbapp using the (absolute
value of) time-direction autocorrelation (using LS channel estimation saniple&en. 5L03 searches

for the first zero crossing,JL07] for the minimum extreme value. To also yield a result in the case of
Gaussian correlation shape (Gaussian spectrum), here the 10% groasibbeen chosen. Frequency

offset estimation uses the maximum ratio combing formula as in1Sé¢Eq. 1.32).
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MIMO correlation estimation  Either parameters of power angular spread are tracked (power angula
spectrum, would fit nicely into the picture of multidimensional PSD tracking)jrecty the correlation

between elements of the MIMO matrix are estimated.

SNR Estimation SNR is estimated as idL07] from the power delay profile, with the assumption that
signal energy is contained within a delay equal to cyclic prefix length, ais&renergy is spread over

the complete OFDM symbol duration.

Illustration  Tracking of time-varying OFDM channel statistics is illustrated in F3gd. Simulation
parameters are 20 MHz bandwidth, 1200 used subcarriers of FFT 12648) with subcarrier spacing
15 kHz. A 2D rectangular pilot grid with 4 resource elements spacing betpiats is assumed. Ob-
servation window length is 70 ms, only for Fi§.4ea smaller window of 10 ms is used. Fi§.4dand

Fig. 3.4eillustrate the tradef® between estimation variance for slowly varying channels (long window

performs better) and filter adaptation delay for fast varying paramestierali(window performs better).
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3.1.2 Approximate ML for First Iteration

This subsection describes a complexity-reduced shift-invariant implementidtibe Wiener inter-
polation filter. Computational complexity of the implementation can be consideradhliced by exploit-
ing two properties: first, multidimensional Wiener filtering is in general ngraszble, while upsampling
for interpolation is separable if the sample structure is a lattice - so it is behéficGaparate the two
steps LI10b]. Second, Wiener filtering can be implemented using spectral shapingiafipaverlap-
ping multidimensional blocks (fast convolution, overlap-add or overtye snethod)LL110b]. Accuracy
and complexity are scalable by choice of Wiener filter kernel size.

In many cases, filtering can be implemented as convolution. For sampled sitpmldepends on
the sampling grid (which for channel estimation is the pilot gridf.SB3 showed that convolution of
a (multidimensional) sampled signal is possible if the sample grid is a lattice, i.e. rifdimaensional
sample grid is spanned Imybasis vectors. In particular, there are lattices corresponding to nangadar
sampling. For computationallyffecient computation of convolution, fast algorithms based on Fourier
transform can be applied. Fast linear convolution can be implemented baseldck-wise Fourier

transforms (circular convolution) using the 'overlap-save’ or 'ovesdad’ method ©S09.

AR u
\ i
\
Sy
\
B 1
\ (14
| \ |
Figure 3.5: Example pilot lattice. To es-
timate an area 0By x Sy values, noise P
reduction filtering is applied only on the X
Px x Py pilots, and upsampling afterwards p. AE ]
[LI10b). Iy |

Published implementations of the Wiener Interpolation Filter jointly perform nothécteon and in-
terpolation and are based on matrix multiplicatietkR97, ESB*98, SJ0§. [HKR97] searches for each
data symbol position for the closest pilot locations based on Euclidean distance or a weighted distance
measure (to select pilots with large correlation values). The filter d¢heients are not position inde-
pendent (they dier depending on data symbol position). The estimator is hence shift-vEHERO7].

For complexity reduction, the numbarof pilots involved in filtering can be chosen small. For static
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filtering, codficients can be precomputed (to avoid correlation matrix inversion). Also Dres@imator
can be approximated by a concatenation of two 1D filteHSRR97] (this entails accuracy loss because
while the channel autocorrelation function is separable according to rassienptions, the resulting fil-
ter is not). ESB"98] considers 1D filtering (in frequency direction) and achieves complegityction
(with accuracy loss) by 'Optimal Low Rank’ filtering (OLR-MMSE), whichaslimension reduction by
projection of pilot values onto a subspace found by singular value demsitign (SVD), before filtering

is performed by matrix multiplication. For static filtering, the SVD can be precondp(i8J086 applies
1D Wiener Interpolation filtering (frequency direction) by matrix multiplication in@ck-based way to
reduce complexity (with accuracy loss): the matrix for one small block isopnpaited (static filtering),

and to reduce edge distortion the blocks of pilots overlap.

o
N
!

o

-

o
|

Figure 3.6: 2D convolution filter ker-
nel magnitude for filter size 2% 21,
maximum Doppler shift 200Hz and

Magnitude
o
e
|

20 20dB SNR, urban macro channel model
0 [3GP0§. High Doppler spread means
_ C w0 g 5 filter coefficient little channel correlation in time direc-
filter coefficient time direction frequency direction .
tion [LI10b].

Figure 3.7: lllustration of 2D application of
overlap-save method.[10b].

Noise reduction filtering on pilots by 2D fast convolution

Here, noise reduction filtering and interpolation are separated andpedcsequentially. Since the

sample grid is assumed to be a lattice, multidimensional Wiener filtering only on pitqgtiea becomes
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shift-invariant and can be implemented by convolution (compare Bi&). Fast linear convolution
by overlap-save (or overlap-add) method is applied, which is basedtotk-wise application of the

circular convolution theorenJS09:
b[n] = c[n] = FHF (b[n]) - 7 (c[n])} (3.1)

For computation of linear convolution by this method, zero-padding is usedati@ ggainst the overlap
error compared to cyclic convolution. Two-dimensional application of thexlap-save method is illus-
trated in Fig.3.7. Magnitude of a 2D complex Wiener filter kernel is illustrated in F3g6. For static
filtering, the multidimensional FFT of the filter kernel can be precomputed.pthdafiltering can be

implemented by precomputing a set of filter kernels and adaptively choosengfahem.

Upsampling interpolation

In a second step, multidimensional upsampling interpolation is performed. Phaiaiton is sep-
arable o004, so it can be performed sequentially for each dimension. Implementatigist®mof
upsampling (zero sfting) followed by 1D lowpass filtering, where again fast convolution anckagm-

puted FFT of the filter kernel are used. Upsampling is:

H(ﬁp) whenLy, dividesn

Hup(n) = (3.2)

0 else

For an upsampling factor df,, (in Fig. 3.5Lyp is 4), the cutd frequency of the lowpass filter ig/Lyp.

Complexity

Complexity of the proposed implementation for two dimensions is compared with amiraptation
following [HKR97, SJ08, where a precomputed filter matrix is used (static filter or adaptive seledtion o
one of several precomputed filters). Block-wise filtering is assumedienthe channel cdgcients are
estimated for a block dbyx x Sy symbols, which containBy x Py pilots. Compared are the number of
complex multiplications necessary per estimated sample, because in sigreslgamscadditions tied to
multiplications are most often computed 'for free’ by meanswitiply-accumulaténstructions.

The normal implementation is a linear mapping (matrix multiplication) of the block’s pdbates
onto all symbols of the block. Followingsp0§, the mapping includes a few pilots from neighbouring

blocks, to avoid poor accuracy at the edges. Thus, fiieeteve 2D blocks overlap at the edges: instead
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of using only thePy x Py pilots, the matrix is a mapping frof x P;’ pilots onto theSy x Sy symbols
and therefore needs

Chor! = PPY (3.3)

multiplications per estimated sample.

The proposed implementation filters on blocks of pilot symbols with the same bielP$ x Pg
(including overlap, but not including data positions). Multidimensional Fsuransformation is sepa-
rable Woo0§. For a block area (with overlap) including' 2K pilots, the 2D-FFT of the block’s pilots
needsPYPYlog,P + PRPlog, Py multiplications (Cooley-Tukey implementatio€T65)). If the block
dimensions are not chosen as power-of-2 values, the prime factordfHiecappliedGoo5§. The FFT
of the filter kernel is assumed to be precomputed, where zeros wéliedsat the edges to fill the block
size and to avoid wrap-around. After transformatiBy multiplications are needed in Fourier domain.

IFFT needs the same number of multiplications as FFT, so for pilot filtering cottyptaere is in sum:

2(PSPSlog,PS + PEPYIogzPy) + PSPY
SxSy

Ciitter = (3.4)

Upsampling interpolation by zero s$ting and lowpass filtering is performed sequentially for the dimen-
sions. The lowpass can be implemented by 1D fast convolution. Dependlitigesize of the lowpass
filter kernel, the overlap can beftirent than for previous Wiener filtering. It is assumed that an area of
PX x Py pilots (including overlap for convolution) is interpolated to a resolutioBpk Sy samples (also
including overlap), first in y-direction with

2PySylog, Sy + PLSY
Cupsampley = it/ S Sy el (3.5)
xSy

multiplications, then in x-direction with

2S,SYlog 2SY + S, SY
Cupsamplex = Y x S SX o (3.6)
xSy

multiplications. For the proposed Wiener interpolation filter implementation the multiplisagier out-

put sample are yielded as:

roposed
C\F,)V”:p = Ciitter + Cupsampley + Cupsamplex (3.7)

Using the same pilot grid as in Se&.1.2(2D rectangular, 4 resource elements pilot spacing), a com-
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parison of the complexity of normal and proposed implementation féerént filter sizes is shown in
Fig. 3.8 Due to the diferent complexity growth orders, the gain of the proposed implementationlyguick
grows with larger filter size. A breakdown of the complexity of the propdegaglementation into the
three contributing parts from Eq3.7) is shown in Fig. 3.9 for different filter sizes. In the presented
example, the complexity of the proposed WIF implementation in mainly determineddayryging in-
terpolation. Thisis due to the fact that an upsampling interpolation filter suitegferal-purpose signal
processors is chosen. In case of hardware acceleration by algeect-processor, further complexity
reduction is possible by using afidirent lowpass filter. With a cascaded-integrator-comb (CIC) filter,
upsampling interpolation is possible without any multiplications, only using addifl08€9.

Complexity Comparison
900

800 -

L 2700
S -2 600
$ 8500 -
€ 2400 M proposed
Figure 3.8: Complexity comparison for thé& 3 3qp - M normal

example pilot grid (Fig.3.5). The proposed 200 -
implementation reduces absolute complexity %0
as well as complexity growth order with re-

spect to filter sizel[I10b].

5*5 7*7 9*%9  11*11 13*13 15*15
Filter Size

Accuracy illustration

The choice of block length in time direction needs to consider channel estindglap (for both
the normal and the proposed implementation). A combination of the proposediemigtion with the
matrix multiplication based one is also possible: edge blocks where there pitetsdrom neighbouring
blocks available, could be estimated using a precomputed matrix (at the ddgeguency band or at
the edges of resource allocations in frequency direction for OFDMA kipliThe limitation of filter
kernel size can employ an appropriately smooth windowing function (e.gintiag window 0S09).
The filter kernel size can be chosen adaptive to delay spread andébsppead (adaptive filtering, e.qg.
rectangular but non-quadratic filter kernel).

Fig. 3.10illustrates the channel estimation MSE versus SNR curves for perfautivel AMMSE fil-
tering (perfect parameter tracking), adaptation with some mismatch (erqmasameter tracking and dif-
ferences between actual and modelled spectrum assumptions), riibtiagfiassumed Doppler spread
of 700 Hz) and least squares channel estimation.

In [Aue09 the spatial correlation is exploited for improved noise reduction by 3D Wiéhering

(robust static filtering).
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Fig. 3.11illustrates the maximum achievable channel estimation gain exploiting MIMO cborela
For full correlation (in the figure assumed for time, frequency and gpdoabling the number of pilots

covered by the filter are (into any of the directions) reduces the MSE By 3d

Complexity breakdown of proposed WIF
45

40

35 +—
1D upsampling
(2nd dimension)
® 1D upsampling (1st - Figyre 3.9:  Complexity of the
IS NN N S . dimension) . X .
proposed implementation in the
example is mainly determined by
S B B B upsampling interpolation. Further
> tl:l:l:l:l: complexity scaling is possible by
0 choice of the 1D lowpass filter

5%5 7*7 9%9  11*11  13*13  15*15
Filter Size [LIlOb].

i B R B R

25 +—
20 +—

15 - -~ = #filtering on pilots

Number of
multiplications

—p— Perfect Adaptive
—#— Adaptive with Mismatch
—<&— Robust
Least Square

MSE of Channel Estimation (dB)

i i i i i
0 5 10 15 20 25 30

SNR (dB) Figure 3.10: MSE comparisoiK[D10].

3.1.3 Approximate APP: Soft Data-Aided Channel estimation

APP channel estimation also uses data positions for improved estimation@c@lsa called 'semi-
blind’ estimation). Data symbols are uncertain at the receiver, their piltlesbare obtained from bit
LLRs by a soft mapper. This subsection describes two APP channel gstirafgorithms, which dfer
in the density model of uncertain data symbols. The first subsubsectiontsissan algorithm suited for
OFDM APP channel estimation, which uses a Gaussian transmit symbol pef enodl includes ’soft
symbol noise’ into a Wiener noise reduction filter. The second substitisatescribes an algorithm
suited for MIMO-OFDM APP channel estimation, which also includes (MIM®terference. The

algorithm uses discrete pdf models for data symbols and for interfering $gmBaussian parameters
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MIMO AWGN, Corr 1

SISO (331)
—MIMO (3*3*2)
4 ——MIMO (3*3*4)

Mean Square Error

Figure 3.11: 3D ML channel estimatio 107 0 5 10 15 20 25
[Llloa] SNR (dB)

(first two moments) of channel sample pdf estimates are then derived tte &emer noise reduction

filtering.

Many references deal with APP channel estimation. Soft data aidedehaacking with a Kalman
filter is described in $K08. APP channel estimation with a joint Wiener noise reduction filter for
pilot and data positions is performed i8JS03 and [SDUO], where they assume the same noise and
correlation between samples, independent of whether the samples ataan gilot positions. Usage of
the expectation-maximization (EM) algorithm for channel estimation is considef®©NSSO08 for an
uncoded system. EM-based joint channel estimation and detection in a fionaa Gaussian message
passing is described for single-carrier transmissior@R11. Iterative blind channel estimation and
detection based on EM for CDMA is employed WMKO08]. Joint channel estimation and detection for
OFDM with the space-alternating generalized EM (SAGE) algorithm andatescosine transform based
dimension reduction is proposed iR$P1(. A variational Bayesian SAGE algorithm with sparsity prior
distributions is used in§F1] to estimate the number of relevant multipath channel components and
their parameters. Semi-blind channel estimation for MIMO-OFDM with a weighitegr prediction
based blind criterion in the least squares (LS) approach is describ¥d280F. Channel estimation
with the EM algorithm is performed irBO6] separately for pilot and data positions, and the estimates
are combined afterwards. I®RP03, probability based grouping of symbols and interpolation based on
discrete Fourier transform is proposed. Thresholding of a-priobabilities is proposed irKBH06] to

only use reliable’ symbol positions, which can be seen as list-baseéssing.
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u b X
——+| Encoder [ Interleaver }———W‘———»
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Y v 7
<————| SISO DecoderH Deinterleaver H DemapperH Equalizer FFT H Synch \
L(b) B _ . . .
Xs e pilot Figure 3.12: Application of itera-
anne ™ . . . . . .
Interleaver »| Soft Mapper|—| "0 | - positions tive channel estimation in iterative
data positions receiver LI].

APP Estimation for OFDMA: Gaussian Densitiy Model

In this subsubsection, the model used33$03and [SDUO] is extended to account for per-symbol
noise enhancement due to uncertainty about transmit data symbols. Freofttmapper, normally only

the mean of the transmit symbol density is used as 'soft symbol’:
Xs(mr) = Exmn)] = [ Fx(mmx . (3.9)
X

where an integral is used for the general case instead of a sum, to fEavéhe transmit symbol density

modelP(X(m, n)) at this point. APP channel estimation in the general formulation computes

B(H(M MY ) = f BH(M Y 1, X )P X )dXt (3.9)

Xa

whereA is an area around( n), including neighbouring symbolsY # and X # contain the random
variablesX(i, j) andY(k, 1), with i, j andk, | insideA. The frame for a channel estimation algorithm is

defined by choosing the density modB{X #) andP(H(m, n)|Y 4, X #).

Standard approach to APP channel estimation As standard algorithm it is referred to the work
[SJS03and [SDUOEG. Initial LS estimation on data positions is performed usKy{m, n) as transmit

symbol hypothesis:
Y(mn) — X(mnH(mn)  N(mn)

H n) = = + 3.10
M = Smn ~ Xsmm) T Xs(mn) (519

Joint filtering of theH | s on pilot and data positions is:
Hmn) = > C'(kHis(m+k n+1) (3.11)

k| eA
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When written as a vectar= vec(C), the filter codficients can be computed a83KR97]
c=Ra+ayl)ra , (3.12)

wherer 4 is the autocorrelation vector of the channel transfer function betwegootsidgon H(m, n) to

be filtered and the positiot$(m+ k, n+1) in filter rangeA. R4 is the autocorrelation matrix of channel
transfer function valued (m+k, n+l) in filter range (noise and channel transfer function are uncorrélated
While the enumeration order of veq(for elements ofA is arbitrary in Eq. 8.12), the same enumeration
order needs to be applied for R andr 4. Accuracy of this algorithm is clearly suboptimal, because
for data positions the noise variance is underestimated, or correspbniiegiormalized correlation is

overestimated. Data positions are given too much weight.

Practical infeasibility of using exact transmit symbol densities In this section, the exact transmit
symbol density model is used and filtering with position-dependerttic@ats is appliedP(X #) in EQ.

(3.9 follows a discrete distribution for digital systems, which use e.g. quadrataplidude modulation
(QAM). The modulation set is denoted & and its elements asy(i), i = 1,...,Ng. For pilots, the
receiver is completely sure about the symbol value, i.e., the distribution ift@dsBirac function. For

a data position, the distribution is a weighted sum of Dirac impulses at modulatipostonsxg. The
integral in Eq. 8.9) can therefore be replaced by a suXg denotes one realisation of the transmit
symbol random variables iifl. With independent transmit data symbols, the probability of one such
realisation iSP(X #) = [k jea P(Xa(m+ k,n+1)). For givenX 4, the mean conditional probability of a

channel position to estimate can be determined as:

E[H(M, N)Y 4, X4] = Z é*(m,n,k,I,Xﬂ)HLs(m+ kn+1, Xa(m+k n+1)) (3.13)
kIl eA

The filter codficients as well as the unfiltered channel estimates depend on the assulisatiorX #
of transmit symbols. The filter has to be applied for each possible realisdtkn,@nd the results have

to be weighted with the realisation probability, yielding the mean APP for this @ g@asition:

EHMO)IYa] = ) E[HMMIYa Xal - P(Xa) (3.14)
XaeXa

where X, is the set of allX 4 with non-zero probability. For a filter area witkia positions,NgA fil-

ters would be applied for one channel position to estimate, which clearly isotoplex for practical
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Computation Type and Number of operations
His 1 CDIV
filter matrix:

add covariances Na RADD

inversion IN3 + IN2 RMAC

multiply r, H.s Na RMAC, Na CMAC

Xs  (only for proposed APP) 4 LU, 4 RMAC, 4 CMAC
ag (only for proposed APP) 1 CMAC, 1 RADD

ol (only for proposed APP) 1 RDIV, 2 RMAC, 1 RADD, 1 CMAC
Nef f

Table 3.1: Complexity per position to estimate, using QPSK and filter areaNyitntries.

implementation.
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Proposed model and algorithm While [SJSO3and [SDU0OG maodel P(X(m, n)) as Dirac function at

position Xs(m, n), here a Gaussian model with mexg(m,n) and varianceré(m, n) is used. Both
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Xs(m, n) andcré(m, n) are computed by the soft mapper from a-priori bit probabilitigg,n):

No

Xs(mn) = E[Xmn)] = ) o) B(X(M.n) = Xg(0)) (3.15)
I;i

cdmn) = VIX(mn)] =" Ixgi) - Xs(m n)PE(X(m, n) = xo(i)) (3.16)

i=1

For 4-QAM it is aé(m, n) = 1 — [Xs(m, n)|%. Without any a-priori information, the mean soft symbol is
zero and the soft symbol variance is onéfekEtive noise variance of least squares channel estimates on

data positions is higher than on pilot positions. Soft symbol 'noise’ is derexbls:

X(m,n) = Xs(m, n) + Ns(m, n) (3.17)

With the channel transfer on one OFDM subcar¥én, n) = H(m, n) - X(m, n) + N(m, n), for the channel

estimates before filtering it is:

_ Y(mn) Xs(m, n) Ns(mn)  N(m,n)
s = ssmm = "™ V%mn TV emn  Xemn
= H(Mn) + Nets(m,n) (3.18)

His(m, n) is an unbiased estimate, i.&[H_s(m,n)] = H(m,n). The dfective noise variance before

filtering is:

O'ﬁ (Té(m, n)
+
IXs(m )z [Xs(m,n)]?

IHLs(m, n)|? (3.19)

TRer(MN) = V[His(Mn)] = V[Nesr(m n)] = IH(m, n)|?

ok o%(mn)

+
Xs(m )2 [Xs(m n)2

The dfective noise variance depends on soft symbol magnitude, soft symbahe@a and (approxi-
mately) the unfiltered channel estimate, and is therefore position-defge@denputation of the position-

dependent filter cdicients is
c(mn) = (Ry + diagey y,, (M N) ra . (3.20)

where diag@q Ne”(m, n)) is the diagonal matrix containing théective noise variance vectmf,q Ne”(m, n)

of the positions in filter are&.
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lllustrations  This paragraph illustratedtects of data symbol uncertainty and channel noise. Ef-
fective noise variance is illustrated in Fi®.13 The figure shows the ratio of the expecteteetive
noise variance and channel noise variance only, in dependencdt@ymsol magnitude. The figure
contains simulation results as well as predictions according toEf9) (for different channel SNR val-
ues. The assumption of the standard APP model is also shown. While tharstamatdel underestimates
variance of channel estimates on data positions, the proposed modettovertes it. For very reliable
soft symbols (magnitude close to 1, almost like pilots), the models convergeretluction factos of

normalized correlation of LS estimates compared to that of the channel islemsts

E[His(mu, n))H{ (M2, n2)]/Prs
E[H(my, ny)H*(mg, nz)] /Py

B(my, ng, Mp, Np) = (3.21)

wherePy is the average channel power. Apart from channel noise, the noedal@relation between
His(m, n1) and H s(mp, ny) also depends on the magnitude of the two soft symbg{sn, n;) and
Xs(Mp, n2), their soft symbol variances and the magnitudes of the noise-freenehaamples them-
selves. Reduction with channel noise is illustrated in Bd.4 for varying SNR and dferent a-priori
MI values. Simulations use the common 1-parametric conditional Gaussianwisimilassumption for

a-priori LLRs from fen01.

Estimation Accuracy Filter performance is evaluated simulatively by measuring channel estimation
mean square error (MSE) forftBrent values of channel noise and a-priori MI. Parameters of OFDM
transmission are FFT length 2048, of which 1200 subcarriers are asdd,5kHz subcarrier distance
(20MHz bandwidth). For the simulations, a rectangular filter afle 13x 13 symbols is used, including

3 x 3 pilots, and AWGN channel. Fi.15aand Fig.3.15bcompare the MSE over SNR for WIF (using
only pilots), the standard method and the proposed algorithm. As uppedbalso the hypothetical
OFDM system where only pilots are transmitted (highest possible pilot densitgata symbols) is
included, corresponding to Mk 1. While the standard APP algorithm outperforms the WIF only for
high a-priori Ml and low channel SNR, accuracy of the proposedrélgu is always equal to or better
than the WIF. Due to the higher ’pilot’ density, the hypothetical 'full MI’ 151 compared to the WIF
achieves an accuracy which is 10 I§§ = 13dB better for this example filter area, pilot grid and channel
correlation. Fig.3.15dshows the MSE of the fferent algorithms in dependence on a-priori MI. Here
again it is evident that the standard APP algorithm needs a thresholdraMbrto offer an improvement
over the less complex WIF. The proposed algorithm outperforms the Wi @wvery low a-priori Ml,

and shows better accuracy than the standard APP algorithm for the copgiateeter range. Only for
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very high a-priori Ml, the two APP algorithms converge to the same solutidraaouracy (‘full MI’).

Complexity The complexity of the proposed method is compared to that of the 2-dimen$\dral

It is not compare to the standard APP method, as that is more complex andeseaccurate than the
WIF. If the channel is to be estimated for a small filter area within a largeuresallocation used for
transmission, the WIF could be implemented with 2D fast convolution and sepgrsamplinglL10b].

But on the boundaries of the resources allocated for transmissiorglatiom would introduce distortion.
Therefore the complexity is compared to that of the general, i.e. shift-vaN#h implementation as

in [HKR97]. Complexity is measured by the type and amount of elementary operatioassaeg to
compute one filter output sample. The complexity break-down is listed in Babfor a filter area
using Np positions, which may be pilots afat data symbols. Listed are real-valued and complex-
valued multiply-accumulate instructions (RMAC and CMAC), divisions (RBINYIV), table look-ups
(LU) and additions (RADD). Tab.3.2 assumes that matrix inversion is performed using the Bauer-

Reinsch algorithmBR70. Any search €&ort for the positions to include in the WIF is neglected in the
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(a) Mutual information of LLRs after decoder forftirent (b) Bit error rate after decoder forfierent number of itera-
number of iterations. tions.

Figure 3.16: Application example in iterative receiviel][

comparison. Both for the WIF and for the proposed APP method, complaxdtgecuracy can be scaled

by chosing the size of the filter area. The WIF can be seen as the sppemabicAPP where only pilots

are used. For data positions the APP method needs an ébdgravehich consists of the soft mapper
and computation offéective noise variance. For both estimators, the complexity is mainly defined by
the matrix inversion. Considering e.g. &4 filter area Na = 16 entries), filtering requires only 2%
more operations if all entries are data symbols compared to when all 16 earigdlots (counting 4
real-valued operations for a complex one). Rather than distinguishingebetpilot positions and data
positions, the used number of filter ¢heients can be seen as limiting factor for channel estimation
accuracy. The filter should use the positions with most normalized correlzigreen their LS channel
estimates. Depending on pilot distance and channel fading behavioum#éyebe only pilot or also data

positions.

Application Example in Iterative Receiver The proposed estimation is evaluated in an example iter-

ative receiver setup, together with the (weak) 8-state convolutionaiheh@&ode with encoder transfer

functionG(D) = [1; 11:%2:333], as depicted in Fig.3.12 MI and bit error rate are evaluated after the
channel decoder in dependence on channel SNR, fi@reiht number of iterations. Improvements over
iterations are shown in Fig§.16aand Fig.3.16h In this example, a channel estimation improvement of
around 10dB translates into a system improvement of around 1dB in termsaridVBER. For higher
channel SNR only one iteration is enough to exploit the APP channel estimatida for very low SNR
the improvement needs several iterations. In the SNR range of intengsiptasic accuracy is achieved

with 10 iterations.
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APP Estimation for MIMO-OFDMA: Discrete Density Model

APP channel estimation for MIMO-OFDM needs an accurate stochasticlimodeler to dfer an
improvement over the WIF. In addition to channel choise, data positiorergad1IMO stream interfer-
ence and #ective noise due to uncertainty about the transmit symbols. While for OFDirtression
good results can be obtained with a Gaussian density model for uncertamttgaymbols, this approach
does not work for MIMO-OFDM. With a data symbol also in the denominateryésulting distribution
would contain a complicated Gaussian ratio distribution. A ratio distribution ofpeddent Gaussian

variables with zero mean e.g. would be a Cauchy distribution, i.e. not hamsgaatancy nor a variance.

Notation The notation for this subsubsection is as follows: transmit and receiveragare enumer-
ated as vector and matrix indices, while subcarriers and time are enumerdtiedkets. For brevity,
indices or brackets are sometimes omitted. The equation then holds indefherideany index or
bracket value. E.g. for 2x2 MIMO it is written:

Y Hi1 H X N
1] 11 R12 1 N 1 7 (3.22)

\Z Ho1 Hao J| X2 N2

for any one time instance and subcarrier.

Algorithm  The soft mapper computes

PXMm) = > BX(Mn)bxmn)Pbxmn) (3.23)

bx(mn)e{O,l}'°92(M)

whereM is the modulation alphabet size angmn) are the bits from the codewolithat were mapped

1

to symbolX(m, n). LLRs are converted to probabilites according’(b = +1) = 5.

The first algorithm iteration computes the standard WIF, because theré¢ i \@priori information

available. The remaining noise after WIF HHR97]:

e = oa(1- 1h(Ra+oq1) " ra) (3.24)

In a later iteration after channel decoding, the LLRs are first mappedrsntia symbol distributions
according to Eq. 3.23. Then LS channel estimation is performed on data positions, and expgctan

and variance of channel samples at data positions are derived fontaserreduction filtering. A data
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transmit symbok; is nonzero, so the MIMO transmission equation can be solved for chaamgles:

Yi = Ni = k=1 Ny ke j HikXk

Hij = X, (3.25)
The expectancy is:
Y X«
k=1..N7 ;K] j
The variance is approximated with the total variance formula:
VHij] ~ Ex|V[HijIX]] + Vx|E[H;jIX]| (3.27)
To illustrate, this is solved far 1 in 2x2 MIMO with QPSK modulation:
H]_]_ _ Yl - H12X2 - Nl (328)
X1
With the expectancy
X
E[H1] = ]Exl[ ] Er,[Hiz] - Ex, | x2] (3.29)
1
For QPSK the variance is yielded:
V[H11] = Ex.x [V[Hlﬂxla Xz]] + V[Exl xz[H11IX1, Xz]]
Y-
= VIH +0f + Vi E[le] o (3.30)

The two unknown values in this equation can be approximated with valuestifroWIF asE[H1,] ~
Hwie and V[H12] ~ O'\ZNH:, or alternatively with values from the last iteration. Then a 2D position-
dependent Wiener filter is applied jointly for all positions in filter area, i.e. pibst and data posi-
tions. The filter is applied independently per transmit-receive antennaJmaitputation of the position-

dependent filter cdicients is
c(mn) = (Ra + diageZ(m ) *ra (3.31)

where diagé-;(m, n)) is the diagonal matrix containing the vector of varianggsl; jJ(m, n) of the posi-

tions in filter area.



52

Chapter 3. Component Algorithms Performing Approximate APP Computation

=t
“eee..
(| - IEREEEER [ I ‘u”“.‘ o
“w.
107
% " . N N .
=
107°F
@ LS
-A= \WIF
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Mutual information

Computation WIF 3x3 pilots APP 15x15 symbols
Symbol probabilities - 8
E[h] 1 25
V[h] - 76
scaling - 20
filter
inverse 18 1800
codficients 9 225
apply 3 15
> 31 2169

Table 3.2: Complexity of APP MIMO-OFDM channel estimation: number of multipilices per position
to estimate for 2x2 QPSK.

Accuracy Fig. 3.17shows the MSE in dependence on a-priori Ml foffelient estimators in the fol-

lowing transmission scenario. The scenario is 2x2 MIMO-OFDM transmissitn@QPSK modulation

over a flat channel with full crosstall] = , at 5dB SNR. A rectangular pilot grid with pilot

11
distance 5 is used, and the grid i$set between the transmit antennas. At the subcarrier and time where

one antenna transmits a pilot, the other one does not transmit.3F@.shows that the discrete APP
model outperforms the WIF only for a-priori Ml of more tharYB. This bad accuracy at low a-priori Ml
is attributed to the following model mismatch. While the Wiener noise reduction filkeinass Gaussian
densities, here there are actually mixture Gaussians. On the other han&R@hinulas include the
WIF as special case for using only pilot positions, so it should be possildembine the two curves
for best accuracy. The heuristic solution is to scale down the weighttafgissitions for low a-priori

MI, which is indicated by small absolute value of the expectany of the transatat fymbol. In this

way, more variance is counted for uncertain data positions, in order éoiacfor neglected higher order
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distribution moments. Instead of E@®.80, the scaled version is used:

. V[H12] + Vx| & — E[H12] - &2 2
T[H1 = vl i P (3.32)
IE[Xq]I*2 [E[X4][

The resulting curve has the same accuracy as the WIF for low a-prigramdl has better accuracy for

a-priori Ml > 0.4.

Complexity Complexity of the scaled APP algorithm is compared to that of the WIF, in the same
scenario of Fig3.17. Complexity is measured as the number of multiplications necessary for one filter
output sample. The APP algorithm needs extra computation to map LLRs to sprobabilities and to
compute the variance of LS estimates. A break-down is shown in3[abln this scenario, the number

of multiplications increases by a factor of 70 when applying the APP algoritsiead of the WIF. On

the other hand the table shows that this increase is mainly due to more filtBcieo¢s, whose number

increases from a2%3%2 WIF matrix to a 15x15% APP matrix.

Notes Both estimation accuracy and complexity increase considerably. Theyeealed by choosing
the size of the filter area. To reduce complexity, it is also an option to not iaadath symbols with
small LLR magnitudes into the filtering. This is comparable to the list-based agpindKBHO06],
with the diference that all used symbols are still adequately weighted. Apart fragtesiand multi-
user MIMO, the presented algorithm is also applicable to coordinated multi-@E@aMP) transmission
(distributed MIMO; interference also on pilots). For maximum filter accuresgems possible to extend

the algorithm to 3D filter areas, to also exploit MIMO correlation for noiseiotidn.

3.1.4 Accuracy Increase with A Priori Information

Accuracy of APP channel estimation increases with growing a priori imédion from that of the
WIF to that of the case where only pilots would be transmitted. The propdgedthm thus extends
the receiver accuragyomplexity tradefi: it means higher complexity due to position-dependent filter
codficients, but ffers an improvement for high-accuracy receivers. Better chantielag®n accuracy
can be exploited for reception at lower SNR, for higher modulation orfduaction of pilot overhead. In
practical implementation it may be beneficial to use the Wiener interpolation filteeifirgh iteration:

it is less complex with the same accuracy, as long as there is no a priori infonma
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3.2 MIMO Demapper

In classical non-iterative MIMO demapping, a soft-output MIMO demamaenputes likelihoods
of the transmit bits being 1 or 0, given the received symbol vector. IntiterdIMO demapping-
decoding, detection accuracy is improved by exploiting apriori informatimugbit probabilities from
the decoderHitB03]. Transmit bits are viewed as random variables and the optimum demapfmnue
Bayesian updating of transmit bit probabilities to compute the aposteriorapilgtes (APP). The iter-
ative demapping-decoding setup ('Turbo receiveta§03) is illustrated in Fig.3.18 The 'maximum
likelihood (ML) MIMO detector’ [PGNBO04 is the special case of APP demapping for hard decision

(binary output) for no a priori information.

—{sink

H,y: MIMO

. . . Detector
Figure 3.18: Setup for iterative MIMC Y
demapping-decodindKB09].

Decoder

The optimal APP MIMO demapper as well as its Max-Log approximation (usinty’ the closest
two candidate symbol vectors for LLR generation) are NP-hard problaBSS97. This can be seen
as reason why a large 'MIMO demapper zoo’ difeient algorithms has been developed.

Since the demapper outputs soft information, its accuracy cannot beadBgmeasured by bit error
rates (as a bit is only the sign of an LLR). The adequate measure for gemagcuracy is the mutual

information (MI) between the correct transmit bits and LLRs:

B ~ P(l, c)
I(C,L) = I(L,C) = |ZL" ; P(l, ) In OBCE (3.33)

whereP(l, ¢) is the joint distribution of transmit bits and receiver LLR$, andP.(c) andPi(l) are the
marginal distributions. Ml is a value between 0 and 1, where 1 means compieteation (correct
detection, a posteriori LLRs). In simulations, Ml can be computed usingdretas or (with better
accuracy) Kernel density estimatioM$d89, Par63.

Many of the proposed MIMO demappers have partial algorithms in commogiv&éaan overview,
common partial algorithms are shown in FBj19 They are divided into preprocessing algorithms and
Log-APP generation algorithms. These components can be freely combipezld a specific MIMO
demapper. Subsectidh2.1shortly describes the purposes of the preprocessing algorithmsgctohse
3.2.2those of the Log-APP generation methods, and subsegibBpresents some interesting complete

demappers as composition of the parts. The algorithms in this chapter asstithe {feéements of the)
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channel matricebl are input as Dirac distributions (quantized to numbers, MAP channel esti&tio

the demapper.

Preprocessing Log-APP generation
 Stream separation * APP demapping
- (poly-)diagonalization * Max-Log APP demapping
- MSE minimization « List-based generation

. Bi | i
o ias remova.t- - Candidate search
QR decomposition « Depth first

Choleski decomposition * Breadth first

. * Informed search
Row/column permutation i
_ _ - Clipping
Lattice reduction - Hierarchical generation Figure 3.19: MIMO demap-
per 'tool box'.

3.2.1 Preprocessing Transformations
Stream Separation

Stream separation (by matrix multiplication of the received vector) enaljjesate LLR generation

(per-stream demapping).

(Poly-)Diagonalization One way of stream separation is to diagonalize H by multiplication with its
inverse (zero-forcing, ZF). A negative sidffext is that the receiver AWGN also undergoes the ma-
trix multiplication and in case of badly conditionned matrix is largely enhanced.emelization is
poly-diagonalization (remaining nonzero elements not only on main diagossalntése enhancement).
In [YLOS8] this approach is combined with tail-biting trellis decoding to yield a (hard outpulyl®

demapper.

Minimize MSE Stream separation according to the MMSE criterion is analog to ZF, but minimizes
the remaining MSE also considering noise enhancement. This reduction BfS&eintroduces bias.

The 'unbiased MMSE’Zim07] removes the introduced bias afterwards per-stream (as described.in S
1.4).
QR decomposition

QR-decomposing the channel matrix enables list-based Log-APP genebgtimee search algo-

rithms (breadth first, depth first or informed searcYiK{5103]. QR-decomposition can be also applied



56 Chapter 3. Component Algorithms Performing Approximate APP Computation

to the extended channel matrix (regularized with noise covariance matrikjrrgtahannel noise into

account but introducing the MMSE biagF064.

Choleski decomposition

Same as QR decomposikg Choleski decomposition ¢1™ H enables tree search algorithragyv03.

Row/column permutation

For sequential algorithms like list candidate search, the result deperttie oovycolumn order of
H. Early errors and their propagation can be reduced by first sorticgrding to the vector norm (best

channel vector first).

Lattice Reduction

Problematic for stream separation are ill-conditioned channel matrice® @uoigncement). Lattice
reduction tries to circumvent this problem by changing the basis vectorsltbanealmost orthogonal
base. The receiver AWGN does not undergo a linear transformattus.approach spends som@oet

for finding an adequate basis, normally according to the LLL algorithinh 2, WOS5).

3.2.2 Log-APP Ratio Generation

The three approaches considered here are correct APP demaggingpping using the Max-Log
approximation and list-based LLR generation. These methods can be gppligdfor all streams or

(with reduced complexity) separately after stream separation.

Correct APP demapping

In correct APP demapping, all possible transmit veckorentribute to the metric. Such a demapper

computesiHag03:
IP)(C = +1|y) _ erX‘fl P(y|x)IP(x)
P(c = -1ly) 2ixex-1 PYX)P(X)

L(cly) = In (3.34)

whereX* means the set of all possible transmit vectomshere the bit whose LLR is to be computed
has the value-1. This computation uses apriori information (from the decoder) in the &dntime P(x) to

compute the aposteriori LLR. In iterative processing only the extrinsiarimétion is forwarded, which
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can be obtained from the aposteriori LLR by simple subtractittB3]:

Nt Ng
erxrl P(yIx) ngl P(cn)

P(ci = +1ly) |
Zxex-1 P(YX) [T P(Cn)
n=
+1 P(Y[X P(c,
) Ianexil (vl )r11;1| (Cn) X nP(Ci - 41)
Lrex FOW TLE(C) -~ F(G = -1)
n#i
Lp(ci) = Le(c)  +  La(c) (3.35)
SN—— N—— —
aposteriori information extrinsic information apriori information

where the LLR is computed for bif, and there ar&ly transmit antennas andi bits per symbol.

Max-Log APP demapping

For practical implementation, the max-log approximation is often used in the demappvell as in

the decoder (max-log-BCIRRYH9Y:

In Z an ~ max(in(an)) (3.36)

Result is that only two candidate vectors (and the apriori LLRS) contritautan LLR, which reduces
computational fort spent on computing the LLR. On the other hand, searching for efattte dwo
Max-Log hypothesis vectors is still NP-harABSS97 AEVZ02]. A further complexity reduction is
often achieved by using a separable modulation set, meaning that real ajidargaomponents can be
independently demapped (e.g. in LTEJP10B, compare Secl.4). Applying the Max-Log approxi-
mation to the APP detector yieldRYH95, RBO04:

Lp(c) = ;g;;(ln(l@Mx))+;min(ana(cn);0>)

_ L‘Q»‘??(( In(B(y|x)) + 2 Min(CaLa(Cn); 0)) (3.37)

The max-log approximation is also applied to the mapping from LLR to probabildy, e

In(P(c=-1))=1In 1 1 =In1-In(e® + &) ~ 0 - maxL;0) (3.38)

+ek

This approximation is illustrated in Fig3.20 Many decoder implementations use a 'softmax’ function

by table lookup to soften the break in the approximatiog02. Considering the noise to be Gaussian,
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the (Max-Log approximated) extrinsic LLR is:

1 2 R .
Le(@) = ma{ - 55 lly - (@)l +;mun(ana(cn),0))
1
—max{ — =|ly - Hx(c)|[? min(cnLa(cn); 0 3.39
man{ - Ity = Hx()l +§ (CaLa(cn); 0)) (3.39)
=0 =0
+ |
1 Il
&) (&)
. a- - a2
Figure 3.20: Exact and Max-LoE _exac_tl T |—exact
approximated relation between LLI R 5 mzax 094 _4=max-log
and bit probabilities|KBO9]. LLR T S

List-based generation

List based LLR generation searches for candidate vectors for thelldgapproximation. Complex-
ity is reduced compared to the Max-Log solution by not visiting all possiblestnitrvectors (not com-
puting all metrics). An ordered search strategy (as opposed to randtmasgin terms of graph algo-
rithms is normally enabled by the preprocessing step of QR decomposingamestimatrix (or Choleski
decomposition). Graph search algorithms are depth first, breadth firéfanmed search (special enu-
meration, best partial metric first) and may be combined with branch and ljpuming the search tree).
A number of found candidates with good metric is added to the list from whichltRs are generated.
An example of depth first search with branch and bound is the 'spheoglde [VB99, WG04]. Special
enumerations are the Fincke-PohHsPBg and Schnorr-EuchnelSE94 enumerations. Adaptations of
the sphere decoder to use a priori probabilities are describe&&Bih( LLN*09, WBA*10]. An exam-
ple of breadth first search (using a priori information) for tiebest candidates is the 'M-algorithm’
[JA71, RBO04, and with a variable candidate number the 'T-algorithi®imi9d. Unbiasing regular-
ized tree search (MMSE criterion) is described Z#060. An approximation for further complexity
reduction in breadth-first search is 'modulation set partitionigVy/03, which converts the tree into
a narrower but deeper one. If one searches only for one candidetier, the demapper is reduced to
hard output (closest point search in lattiéd=\Z02]). Soft output needs the Max-Log hypothesis vector
and counter-hypothesis vector per bit (for this bit being positive agdtive respectively). The reduced
search has twoffects: first, not always the best hypothesis vectors are in the list, whids teaeduced
accuracy compared to the Max-Log solution. Second, a hypothesig ¥ectcertain bit value may be

missing. For a missing hypothesis, two approaches have been propdggung’ the LLR to a pre-
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defined value with correct sigifB03], or preferably using as hypothesis also partial vector candidates

whose subtrees have been pruned (hierarchical or per-level EbBrgtion) WMO04].

3.2.3 Demapper Synthesis

In this subsection, four example MIMO demapper algorithms are describeahaposition from the

partial algorithms.

Joint Max-Log APP demapping

For all possible transmit vectors the metric
-1 2, LT
u(€) = s=lly = Hx(0)II” + S La(c) 'c (3.40)
20 2

has to be computed. According to E@®.39, to generatd.¢(c;), the vector with best metric fronX;"
andX; has to be found. The LLR is then theifid@irence. Implementation aims at reusing intermediate

results from metric computation and searches.

MMSE stream separation with per-stream Max-Log demapping

This is the least complex algorithm which serves as 'baseline’ and haslalbegn described in
Sec. 1.4 Here a lower level algorithm for implementation is describ&tD8]. It is based on the
Greville algorithm and needs not more multiply-accumulate (MAC) operations te ZF solution
(using Greville). The Greville algorithm can be used to compute the ZF matrix(@iBenrose pseudo

inverseH™) with an iteration over th& columns ofH:

RH(l = He_qH!
g = e (3.41)
IIhE(I —HiaHp )II2

o,
H
hl

ARy
T_ S
A= 1| HiL 0 - Fet) (3-42)
else
o

assuming thap # 0. H,_1 consists of colum§; .. f_1. The MMSE matrix difers from the ZF one by

an additive diagonal matri® for noise regularization4BI103] before inversion. The Greville algorithm
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can be modified to account for this biIP8]:

R (1 = Hic1Gi1)

By = — . - (3.43)
IR (I = Hk-1Gk-1)I1? + 02 + |IDk-1Gk-1hul?
fi e
Gk = Gia(l — ﬁkﬁkH) (3.44)
else
i

Where only the denominator qij differs from the original Greville algorithm in Eq3.41). The first
good property of this algorithm is its low complexity. Rewritir§}43 for better reuse of intermediate

results gives

B (I - Hi-1Gke1)
AP0 - HicaGren)I2 + 62 + 1Dk 1 G 1FulI2
B A — (Gk_1h)THET

d2 + (A - (Gk_1h)HHE A

B

Based on this, pseudo-code of the algorithm is given in Alghe GNU OctaveEat07q implementation

is also reproduced. The algorithm obviously requiregciprocal calculations. The remaining arithmetic

Figure 3.21: GNU Octave implementation of modified Greville algoritihi98]

function G = mgreville (H,D)
n rows(H); m= columns (H);

1

2

3 G zeros (m, n);

4

5 a=D(1,1)"2 + nom(H(:,1))"2;

6 G(1,:) = (1/a) = H(:,1)";

7 for k = 2:m

8 v =G(1:k=1,:)«H(:,k);

9 G(k,:) =H(:,k)" = v's«H(:,1:k-1)";
10 a=D(k,k)"2 + real (G(k,:)*H(:,k));
11 G(k,:) = (1/a) = G(k,:);

12 G(l:k=1,:) = G(1:k=1,:) — v«G(k,:);
13  endfor

14 end

operations are counted in terms of real-valued MAC operations, to béstamtswith execution units
available on current DSP and FPGA architectures. Conjugation opeyaiemot counted as they are
folded into MAC operations with a change of sign (i.e. negative multiply-aswlsaulate). For algorithm

lines 1-2 /1 MAC operations are counted. For the loop body in lines 4-8 the number & bp¥rations
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Algorithm 1 Pseudo-code for modified Greville algorithiKI(8].

1: a« Dil + IH i
2: Gy < at- HH,,n},{l}
3: for k = 2tomdo

4: Ve G- enHwnnkg

5 Guirn < H{Hl..n;{k} B VHH{Hl..n},{li.k—l}

6:  a«< Df, +realGg1mHwnk)

7. Gt <« @ G wn)

8  Guk-11n < Guk-11n — VG 1.n)
9: end for

Operation Formula Count

saxpy with real- Z«— aX+Vy (@€ m
valued scalar R)
complex saxpy

dot Z« real®'y+Vv) m

Z—axX+y
real-valued
product

complex dot prod- Z « Xy +v

NI
2
|
NI
3

uct

scalar reciprocal B—a! (@€R) m

is a function of the counter variablke

Table 3.3: Operation counts on a vector pro-
cessor handling length-operations.

12(k-1) n+4n

With ¥, k = ™ + T the expression for the total number of MAC operations becomes:

6nnf —2nm

The second good property of the algorithm are its fixed-length loops. righgo 1 utilizes only

matrix-vector and vector-vector operations for which at least one dimms the involved matrices

resp. vectors is. It is thus possible to express the algorithm in terms of lemgiketor operations (see

Alg. 2). Table3.3lists the number of length-vector operations required to implement the algorithm.

The complexity is compared to the two best performing algorithms for calculafitmedVMSE

equalizer matrix documented iKE107):



62 Chapter 3. Component Algorithms Performing Approximate APP Computation

Algorithm 2 Reformulation of Alg.1 that exposes fixed-length loops.

. 2 H
Lae Dy +Hg oo Hinna
. -1 H
2: Gy <&@ -Hy
3: for k=2tomdo
for j=1tok-1do
Vj < Gyjpan - Hipni
end for
H
le}a_{l-n} < HiL
for j=1tok-1do
o HH
Gz < Grgrn) = Vi -Hig gy
10: end for
11: a «— Di,k + rea(G{kHl,.n, . H{l..n},{k})
12: Guqrn < & Gy
13: for j=1tok—1do

© o N aA

14: Gjranm < Gyjpian = Vj- G 1)
15:  end for
16: end for

Table 3.4: Comparison of total number _ )
of MAC-operations required to obtainAlgorithm real-valued MAC operations

Guumse [KO7).

Cholesky based Afn—-2mn+ % - 2m

QR-decomposition based n&n-2mn+ % +mP -

w|3

modified Greville 6rén-2mn

— Cholesky factorization followed by forward-backward substitution, i.e

LLH = (H"H + D?)

LLPG = HY

— QR-decomposition of the extended matrixfollowed by backward-substitution

D| |[Q2
RG=Q}

Comparison of the MAC operation counts is given in taBlé Assumingm = n, the comparison is
illustrated in Fig.3.22

Application of the stream separation matrix neatlsn MACs. The last step is then LLR genera-
tion per stream using the Max-Log approximation. Assuming a separablelatioduset, this can be

implemented using independent (one-dimensional) table look-up operdtidhsl(LU per LLR.
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ICh(’)leslky i)as:ed e
QR decomp. based -
proposed algorithm —x—

Relative Number of MAC-operations

e e Figure 3.22: Relative number of operations
0 = T T 1o 1 14 16 18 a0 required for computingGuwse for H €
C™n [KIO08].

QRD-M tree search with a priori information and clipping Max-Log dema pping

The M-demapper also evaluates E8.40) - not for all possible transmit vectors, but for a greedily
chosen subset. To enable tree search detection (illustrated in3F2&§), the channel matrix is QR
decomposed. Because of the resulting triangular matrix, detection canneesdquentially for the
transmit antennas (where one transmit antenna corresponds to ongdfeBO04. The M-algorithm
prunes the search tree at each level and follows only the M best nodles text level. By choosing
M, the accuracy and complexity of the algorithm can be scaled. The shdatance of the mapped

received vectoy’ from modulation symbol vectot(c) at the receiver is:
ly" = QHx(e)? (3.45)
with
y'=Q"y and Q"H=R

The tree search metric is as in E§.40:
1 ’ N2 1 AT !
p(X) = ==y’ = RX(C)lI* + SLa(c) ¢ = max (3.46)
20 2

with the only diference that the dimensionsyfandR are equal to the actual tree search level and the
corresponding number of leading bits frans used ag’. For MU-MIMO, different modulation levels
for different users (i.e. transmit antennas) are possible on the same restheceEarch tree becomes a
mixed tree. In this case implementation usefedént demapper functions (one function per tree level) —

function calls are computationally cheap if applied for several subcsiatesnce (cf. chapted).

To reduce complexity of the tree search for higher QAM modulation levelpasgtioning [dJW02
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® — e
0

Level O Level 1 Level 2 Level 3 Level 4

Figure 3.23: QRD-M search tree for BPSK,
M = 3 and 4 transmit antenna&WB09].

Lai08, HKMSO04] can be applied, which reduces the search tree to a 4-ary QPSK treetfwithree
times the depth when using 16QAM or 64QAM respectively) and leads tchipuwgnstant computa-
tional dfort per bit for all modulation levels. Set partitioning with the LTE modulation sets istithted
in Fig. 3.24 the first two bits of a 16QAM symbol are the closest QPSK symbol, the Gistlbits of

64QAM are the closest 16QAM symbol. This modulation set is also separable.

1 1011 ° 1001 ° ® 0001 ® ¢ ol |
%
0.8 o ° [ ] ° ° ° o
0.6/ ‘10 %o
04 ° ¢ ® 1000 ° * 0go0 ° * o010 °
A4F1Q10 8
R x % %
5 02r, ° ° ° ° ° ° °
IS
s O
g [ ] [ ] [ ] [ ] [ ) [ ] [ ] [ ]
o 02 1§0 1100 0100 0110
04 ° ° ° ° ° ° ° °
0.6 11 01
_O 8’ [ ] .‘ [ ] [ ] [ ) [ ] ‘. [ ]
Sl 1111 1101 ogl 0111
- -y - _17 )
Figure 3.24: Set partitioning e e e e e ° e | °
with separable modulation se -1 -05 0 0.5 1
In-Phase

[IKWBO9].

In the clipping QRD-M demapper version, LLRs are generated from thdidate list of Mleaf

nodesobtained by the tree search. The subset of candidate leaf nodes witikiepb# at positioni is
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denotedy;!

i eaf The extrinsic LLR is:

max u(x) — max u(x) for X, X joqe # 0

XEXthlleaf XE‘)(i. leaf
Le(©) =1 /02 if X =0 (3.47)
~Hclip/ 07 else

If the list contains only candidates with the same bit value for one LLR, theisldRpped tOJ_r,uC"p/az.
An iteration of the tree search with actualized a priori information from thedkecconly leads to a better
result if the search gives aftiérent candidate list. Algorithm accuracy in terms of BER fdfedent
values of parametevl in comparison to MMSE and ZF equalization are indicated in Big5for QPSK
transmission over a 4x4 MIMO channel with uncorrelated Rayleigh fadikgystated before, BER is
not a reliable measure for accuracy of soft-output demapping, adiieéea only the signs of LLRs. M

with transmit bits of hard versus soft output magtel by several dB.

BER performance of QPSK
1 T T T T B
~ M-Algorithm, M=1
‘ 3 M-Algorithm, M=2
........ e M Al Or AT, Mad
1 M-Algorithm, M=4 ———
M-Algorithm, M=5 ——
01l MMSE —— |
: ZF —%—
. .
w
m
0.01
0.001 Figure 3.25: QRD-M MIMO demap-

10 5 0 5 GNR[dB11® 20 25 30 ping BER for 4x4 QPSK\VKI].

Hybrid unbiased MMSE / Subspace-Max-Log-APP

This demapper employs ’partial marginalization’, describedLi#OB. It scales in accuracy and
complexity between unbiased MMSE with per-stream Max-Log demappingcamdMax-Log APP
demapping.

Unbiased MMSE demapping gives reliability information about bits (in formIdRE) at low com-
plexity. Fig. 3.26illustrates the uncoded error rates in 4x4 16QAM transmission (uncoryleigh
fading) for the subset of theLLRs with largest magnitude. For the SNR range of interest, the error rate

e.g. of the 4 LLRs with largest magnitude (per MIMO vector) is far lower ttheat of maximum likeli-
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hood (ML) detection of all bits. The idea is to reduce the candidate sepacie $or the Max-Log-APP
solution to a fixed predefined size, based on reliability: ritét positions with largest LLR magnitude
are assumed as correct, and the remaining subspace of'sfz8 i8 'most likely’ to contain the ML so-
lution and Max-Log-APP counter-hypothesé (transmit antennas arkbit per transmit antenna, gives
a sum ofNTk LLRs to generate). For this remaining (smaller) 'unreliable’ subspace Nta®-Log-APP

postprocessing can be performed.

4x4 16QAM, uncorr. Rayleigh

=®=ML, all bits

v n=16 best (MMSE, all bits)
—»-n=12 best

-t n=8 best
il =#=n=4 best
-8-n=2 best
——-n=1 best

Figure 3.26: Partial BER of linea
MIMO detection for n bit positions ‘ ‘
with largest LLR magnitudelKB10]. B oNRdB

The demapping algorithm consists of three steps. The first step is torpanfdiiased MMSE demap-
ping as described in Set.4.

In the second step theLLRs with largest magnitudg.(c; ;)| are selected as 'reliable’, whends a
predefined constant. The bit values are the signs of the LLRs. The riegnalpk — n bit positions are
the 'unreliable’ subspace.

In the third and last step the algorithm computes the joint Max-Log-APP soligidhe 'unreliable’
candidate subspace. Since this subspace is relatively small, binary estiomef the candidates can be
performed. For each bit position, the subspace always contains legmtnd counter-hypothesis vec-
tors, so that clipping operations like in the list sphere decadtB(3] are not necessary. The extrinsic
(Max-Log) LLR for the 'unreliable’ bit positions are computed accordiodeq. 3.390n pages8 (using
a priori LLRs from the decoder). The LLR vector which the detector oistgonsists oh values gen-
erated by linear detection amdrk — n values generated by subspace-Max-Log-APP computation. For
iterative detection-decoding only step 3 needs to be repeated afterguthridecoder. A pseudo-code
formulation of the algorithm is given in AlgB.

Now it is illustrated that the accuracy in terms of error rates and mutual infammearies between
that of unbiased MMSE and Max-Log-APP. Both are included in the algoriils special cases for

n = Ntk andn = 0 respectively. Simulation assumes 16QAM transmission over 4x4 undedela



3.2. MIMO Demapper 67

Rayleigh fading, and perfect channel estimation at the receiver. déacerror rates are shown for
differentn in Fig. 3.28a The detector curve fon = 0 is denoted ML, since Max-Log-APP without
apriori information and with hard output (bits instead of LLRs) reducesstrching the most likely
candidate bit vector. Postprocessing for a small subspace of fouoditigns (16 candidate vectors)
already results in more than 1dB improvement for the practically interestimgpeddBER range around
101, To assess the accuracy of soft-output demappers, mutual informMidris(a more suitable
measure than uncoded BER. Ml in dependence on SNR is shown iBR28h By this measure, Max-
Log processing only brings gains for SNR larger than 10dB in this smenkor enhanced demapper
accuracy also at low SNR, iterative demapping-decoding can be apiechapper accuracy for this
case is illustrated in form of an EXIT chart in Fi§.28c While the linear detector does not benefit from

apriori information, the presented algorithm increasingly exploits it witheksing parameter.

Algorithm 3 Subspace-Max-Log by enumeratidKB10]

X = Gynpy {MMSE stream separatidn
for all tx-antennaslo
for all bit-positionsdo {bits of this antenna

Le(cj) = (minA — minA) {max-log per streain
xeX?t xeX?t

end for

end for

selectn positions of largegL(c)| {'reliable’}

for all c(SUd e 2NTk-n do {"unreliable’ subspade
metriqx(c)) = 551ly — Hx|[? + 3La(c)"c

end for

for i = 1to Ntk — ndo {'unreliable’ bit position$
maxp= max (metrigx(c)))

c(suB|cj=+1
maxm= max (metrigx(c)))
c(s|cj=—1
Le(cj) = maxp — maxm— La(cj)
end for
4x4 16 QAM
10° ‘ > QAM ‘ ‘
Il first run
Il \ater run (update)
>210° |
< .8
I
=y
Lo 4
o 3 10 8
S5
3%
1S Q. 2
=] -
3 g 10
o
Figure 3.27: Complexity scales
o . )
exponentially with parameten
107 2 4 6 8 10 12 14 16 P y P

Number n of linearly demapped bit positions [IKB1O].
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4x4 16QAM, uncorr. Rayleigh 1 T T T o =R
-2-n=0 (ML) ool ; s — v
A v n=16 (MMSE) ' fot A
107 —-n=12 i 0.8F A
<+ n=8 &S
“#-n=4 0.7F 'v
> 0.6
107t s
IEId y 0.5
> 0.4r —e—n=0 (Max-Log-APP)
10 03 ‘¥ n=16 (MMSE)
’ ; —»-n=12
0.2 - B -+ n=8
4 -8-n=2
» 0.1 i i i ‘ ‘
10 : - y y 0 5 10 15 20 25 30
10 15 onr g2 25 30 SNR [dB]

(a) Error rate of proposed algorithm forfidirent number of (b) Mutual information for diferent number of linearly de-
linearly detected bit positions. tected bit positions.

o 12 dB SNR 4
- g
..... <=
_ =<\ --
=0 Fad-- 1 R R
o I\ V] = > ’
2
504 9
mimimimimmimimim ==
7 -e-n=0 (Max-Log-APP)
02r v n=16 (MMSE)
' 5dB SNR NG
<+ n=8
—#-n=4
% 0.2 0.4 06 08 1
apriori Ml

(c) EXIT chart: usage of apriori knowledge from the channel
decoder.

Figure 3.28: Hybrid uMMSE subspace Max-Log-APP demappl<B10].

Algorithm complexity: the number of elementary real-valued computationabtipes for diferent
nis illustrated in Fig.3.27. Operations likeMultiply-AccumulateandCompare-Seledre counted as the
same unit. For hardware independence the possibility of reuse of inteteegBalts (infinite’ memory)
and cost-fred.oad'Storeoperations are assumed. The figure shows that complexity scales akiptiye

with n (apart from MMSE preprocessing), which is due to the problem beinhae.

3.2.4 Accuracy Increase with A Priori Information

If instead of MIMO transmission a SIMO system is used (one transmit antmhaeveral receive
antennas), the optimal receiver exploits the receive diversity by usirgmaen ratio combining (MRC):
the symbols received on each antenna are combined by weighting therdiagdo signal amplitude
[GLMZ07]. Here it is shown that with growing apriori information the accuracy ahlitbe MIMO APP
detector and its max-log-APP approximation increase up to that of SIMO MIRER transmitting with
the same energy per symbdKB09]. And even better: SIMO MRC accuracy for a (possibly shifted)

BPSK modulation. This quantifies the maximum benefit of a priori informatioMiidO detection and
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can serve as an upper bound for demapper accuracy in iterative Mid@pping-decoding. This is
not a statement about the accuracy of iterative demapping-decodingtdtément is about demapper

accuracy in dependence on the amount of available a priori information.

£ o X

s

S 0

@

8, -02 1
-0.4 ] Figure 3.29: If all but one bits in
o8 o a QAM symbol vector are fixed (or
-0 ] known at the receiver), this corresponds
-1 o5 5 o 1 to a shifted and scaled BPSK modula-

In-Phase tion [IKB09].

APP demapping with large a priori information The APP extrinsic LLR is (subsectidh2.3:

St PYX) [T B()
) e FOR PG (349)
For no apriori information about a it P(c,) is:
P(ch = +1) = P(c, = -1) = 1/2, (3.49)
while for the limit of full apriori knowledge it is either
P(ch=+1)=1 and P(c,=-1)=0 (3.50)

or vice versa.
In this limit case, the symbol vector candidates are ‘filtered’ byPtfeg) = 0, so that in the nominator

and denominator of eq3(48 only the candidate vector with

[ [Py =]]1=1

n#i n#i

remains. The extrinsic LLR then yields

1 2 2
Le(@i) = =55 (ly = Hx. I = lly = Hx- ) (3.51)
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where all bits except; are chosen according to the a priori information. Assume that the; gt
transmitted on antennia The vector hypotheses. andx_ then difer in exactly thek-th component.

With the vectorx; of symbols which both hypotheses have in common

X| = (X+19 s X+k_1’ 0’ X+k+1, X+nTX)T
= (e X 0 X )T
it is substituted
Yysimo =Y — HX| (3.52)

and obtained:

1
Le(@i) = — 55 (I¥s 1m0 = oI = llysivo — i )

The symbols transmitted on all other antennas were given by a priori infiemao that this known
interference cancelled out and the MIMO problem has become a SIMi@emno The transmit symbol
hypotheses (complex numbers), andx_, for antenn&k differ in only one bit, i.e. one direction in the

complex plane. This modulation can be regarded as a shifted BPSK:
Xp = XM + A, X =Xm—A (3.53)

wherexy is the middle point between the two symbol hypotheses aitl & their distance. This shifted

BPSK modulation is illustrated in Fi@.29 It is substituted

YsiMoBPSK = YsiMo — NkXu (3.54)
and the LLR becomesKBO09]:
N 2
Le(c) = _ﬁ(”ySIMQBPSK"' hiAll
—llys imasps k— hiAll?)
4
= —ZT_Z%WEMO,BPS kKA (3.55)

Max-Log-APP demapping with large a priori information  In this paragraph it is shown that for large
a priori information, only one bit of one transmit antenna remains unknowire +est is cancelled by

the Max-Log-APP detectotkB09]. It is assumed that thiey(c,) are correct and have a 'large enough’
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maghnitude, so that they and not the Euclidean metric term decide about tidatanvector selection.

This is certainly fulfilled if:

1
ILa(cn)l > max lly — Hx[l? = [ly — Hx2||?

X1€XF X2€XR 20_2

i.e. the absolue value &f;(c,) is larger than the maximum possible contribution ofriid the Euclidean
distance part of the metric, so that the Max-Log bit hypothesis is chosemdiag to the a priori LLR.
For the computation of one LLR, all other bits in both Max-Log transmit vecymotheses., andx_

are then chosen according to the a priori LLRs, so that the a priori IdaRsel out [KB09]:
Le(ci) = —i(ny — Hx, I = lly - Hx_|?) (3.56)
202

This is the same equation as for APP detection with full a priori information(@§2).

Maximum Ratio Combining Now it is assumed that the transmitter has one antenna, and that the
receiver uses its multiple antennas for maximum ratio combining (which is the @\Ral diversity

combining methodGLMZ07]). The channel vector is denotédand the system model becomes:
YMRC = hx+n (357)

The weighting of the symbols received on théfelient antennas is done according to signal ampli-

tude: the weight vector for the received symbolsvis= hH. The equalized symbol after combining is

[GLMZ07]:
. h"ymre h"n
X= —— = X+ o (3.58)
The resulting noise power is:
hHn E{lh"nnthy)
2 2
= E =
Ture = Ellgapl = =y
_ hHE(nntih o2
[Ihi* [Ihi2

As modulation set a (possibly shifted) BPSK modulation with the two possible dyralheesx; andxg

is assumed. Soft demodulation yields the LLR:

1| B)

L=-—
> =
ZO—MRC P(X|xo)

(3.59)
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The two symbol candidates can again be written as

X1 = Xm + A, Xo = XM — A (3.60)

where for normal BPSky would be zero (Fig3.29.

The LLR becomes

. hii? 2 2
Sz (%= (n + A)F = 1% = (O = A)F)
INP o (A=
5oz AR{AGwM = %)

To subtract the modulation set center it is substituted

KPSk = X — Xum (3.61)
and obtained
L= i 4R {A%epsi} (3.62)
202

Equivalence The MRC channel vectdr can be seen as one column of the MIMO channel matrix, e.g.

thek-th: h = hy. Itis noted that with same energy per symbol:

VS mosps khl = IIIP1keps K

This means that with the same average transmit power per data stream, theolMiRahdor (shifted)
BPSK transmission in a SIMO system is equivalent to the Max-Log-APP solatid the APP solution
for MIMO transmission (provided shicient a priori information). For each LLR to compute in the

MIMO system, a maximum ratio combiner remains after cancellation of the knowalsig

Simulative illustration  For simulation, uncorr. Rayleigh fading is assumed. It is looked at a 4a4 an

1x4 system, for dferent amounts of a priori information and channel SNR.

EXIT-Chart based To measure demapper accuracy in dependence on a priori informat@n, th
a priori LLRs generated in the common waen01: the transmit bitsc (=1 values) are perturbed by
additive White Gaussian Noise and scaled according to noise varianicingithel,. The chosen noise

variance determines the mutual informatigh,; ¢) of the apriori LLRSL, with the transmit bitc. Ml
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is measured using Eq3.83 on pageb4. Extrinsic information transfer (EXIT) charts for 4x4 QPSK
transmission and Max-Log-APP demapping are shown fdedintEs /Ng in Fig. 3.30 With increasing
I(La; €), demapping accuracy measured @s; ) increases up to the value for SIMO MRC with shifted

BPSK modulation (denoted SBPSK, as illustrated in Bi@9.

Figure 3.30: With an increasing

:‘1“‘3 gglngmﬁé‘éO%‘?ﬁgv ESS/S'S = -5d8 amount of a priori information, max-
0.2 X , ES/NO = -
~—4x4 QPSK max-log—APP, ES/NO = ~1dB Iog-APE MIMO detector accuracy for
|=—1x4 SBPSK MRC, Es/NO = -1dB QPSK increases up to SIMO MRC
% 0.2 0.4 ( )0.6 0.8 1 accuracy for (shifted and scaled) BPSK
I(La; c

modulation [KB09].

Varying Es/Ng To illustrate the maximum possible demapper accuracy gain through a priori in-
formation in this scenario, Fig3.31shows the accuracy of 4x4 QPSK max-log-APP without a priori
information and 1x4 SBPSK MRC detection in dependenc&gfNg. The distance between the two

curves is roughly 2dB.

1

0.8/

06 Figure 3.31: The dierence between
S ' MIMO max-log-APP accuracy without
‘:I’o Al apriori information and max-log-APP
' accuracy for large apriori information
0 2' | is roughly 2dB for 4x4 QPSK transmis-

' = 1x4 SBPSK MRC sion. For channeks/Ng of -1dB and -
—=-4x4 QPSK max-log—APP, no apriori information 5dB the transition from the lower curve

R -4 2 0 2 4 to the upper curve is shown in Fig.30

Some Comments The maximum accuracy of a demapper in iterative MIMO demapping-decoding
was quantified to be that of SIMO BPSK transmission with maximum ratio combinitegtien. This
equivalence holds if the average transmit power per antenna is eqdeésinot hold if the transmitter’s
sum power is constrained, since then the power per data stream wowdlzzed to In when usingn

transmit antennas. If demapper and decoder would be considered jairdhedarge processing block
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implementing an ML receiver on message basis, there would be no such shéxdriasic information.

The notion of extrinsic information only comes into play when performing itegdtical processing in

different blocks. If full a priori information would be available for the demapphere would be no

need to run it, as the message would already be known. The motivation ise¢@ltanverging iterative
process. The decoder exploits diversity which is provided by the ehama contained in the LLRs. The
potential gain in demapper accuracy using apriori informatiofigicince between MIMO max-log-APP
and SIMO BPSK MRC) increases with higher number of antennas and laagulation size. From a
demapper point of view, n-PSK modulation could be a good idea. When adlipipin a symbol means
the opposite position on the unit circle, the Max-Log-APP demapper re&iivO BPSK accuracy for
large a priori information: the two symbol hypotheses for one bit would maaximum distance in the

complex plane, and no energy would be wasted by a shifted modulatiomset.ce

3.3 Constituent Decoder

Correct computation of bit APPs for a convolutional code is done by th#RB&Igorithm BCJIR74.
Suboptimal approximations include the already mentioned Max-Log approxim@iax-Log-BCJIR),
soft-ouput M and T algorithmL]C04]. Operation counts per LLR of Max-Log BCJR decoding and
Turbo (de-)interleaving are shown in Téh5, assuming LTE parameters (8-state decoder and quadratic
permutation polynomial interleaving). Elementary operationsfalé-Compare-SelecAdd Compare-
SelectandLoadStore

Convergence behaviour of Turbo decoding is normally illustrated using EKarts fen0]. An
EXIT chart for LTE parameters3(GP09 is shown in Fig.3.32

There is one dference in iterative demapping decoding compared to Turbo decoding: thkile
constituent decoder in a Turbo decoder only has to reconstruct LarRsfbrmation bits, this now has
to be done also for parity bits — a demapper iteration uses both informatioreaitydlpt a priori LLRS.
This difference is due to the serial concatenation of MIMO modulation mapper andehencoder in
difference to the parallel concatenation of the constitutional encoders (oooi@ptel).

With growing a priori information the decoder’s accuracy increases tipatiowhen only one bit of

the codeword is uncertain.
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Function Operations

8-state BCJR decoder

Compute Metrics (fwbw) 16 ACSuncLLR
Paths 16 AddincLLR
LLR generation 14 CAIncLLR, 1 SuluncLLR

QPP interleaver

get target index 1 Redd R
get source lIr 1 ReadLR
write target lIr 1 WritéLLR

<

= —+—MI detector: 0.295
—~—MI detector: 0.324
—~—MI detector: 0.360

0.8

-9 —+—MI detector: 0.388
‘ MI detector: 0.415
——MI detector: 0.457

O.GL ——MI detector: 0.488

5 MI detector: 0.529
° Y MI detector: 0.565
= 04 MI detector: 0.607
: —4+—MI detector: 0.650
MI detector: 0.687
MI detector: 0.724
0.2 Y | =Ml detector: 0.763
Y | Ml detector: 0.796

. | v

0 0.2 0.4 - 06 0.8 1
Ml in

Table 3.5: Turbo decoder complexity
for LTE parameters using Max-Log-
BCJR.

Figure 3.32: EXIT chart for turbo de-
coder with LTE parameters.






Chapter 4

Receiver Description Language

To describe node update schedules, wheflemint algorithms for each update are possible, a de-
scription language is introduced in this chapter. The chapter starts with thdomoof the receiver
architecture (Sec4.1) and of the component algorithms (Set2). For serial processing on one pro-
cessing element, the language has a regular grammar4S@nd can thus be parsed by a finite state
automaton. A receiver then corresponds to a path through this finite stateatan. The description
of parallel schedules (parallelization using several processing eleneedescribed in Sect.4. While
the purpose of this chapter is instantiation and connection of receivercARiponents, an automatic
mapping from such a receiver description to prediction of the perforepacameters is described in

chapters.

4.1 Receiver Architecture Notation: Directed Bipartite Graph

A factor graphF is given by the sets of its vertices (nodes) and directed eBges{V, E}, with
the property that the graph is bipartite: the set of nodes consists of twandisjdsets, where every
edge is between nodes belonging tefient sets. For the factor graph describing the generic receiver

architecture (compare Fig.1on page26), the first node subset are the factor nodes:
V1 = {ce, dem, decl, dec2, map} 4.1

The node abbreviations used here are listed in tdldleogether with the corresponding factor node and

the factor node type. The second subset are the variable nodes:

V2 ={u,c1, C, Y, H, X} (4.2)

77
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Factor node Type Abbreviation
Channel estimation channel estimation ce

MIMO demapper demapping dem
Constituent decoder 1 decoding decl
Constituent decoder 2 decoding dec2

Soft Mapper mapping map

Table 4.1: Naming factor nodes .

The complete set of nodes is:

V=ViuV, (4.3)

The general set of edg&sc V x V with the bipartite graph property is
E=Ei1UEy;withE; CVi1xVy, ExCVoxV; (4.4)

where the adjacency matrix can be described as:

0 M ]
M = (4.5)

My, O

In the receiver graph case from Fig11on page26 the edges are:

E = {(udem,(u map,(u,ded),(u, de),(demu),(dedl, u), (de,u),(cl, denj,
(c1, map, (cl,ded)(demcl), (ded, cl), (c2,den), (c2, map, (c2, de?),

(demc2), (dei, c2), (y, ce), (y, dem), (H, den), (ce H), (x, ce), (map X)} (4.6)

4.2 Component Algorithm Notation

After naming the factor nodes, now the mapping of an algorithm to a nodegsiloed. The exem-
plarily considered algorithms are listed in taldl, together with algorithm type and abbreviation. The

set of algorithm abbreviations is

A = {wif, snd, ummse, hummse-ml (m=m),maxlog, bcjr} 4.7)
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Algorithm Type Section Abbreviation
Wiener interpolation filter channel estimation 3.1.2 wif

2nd order model CE channel estimation 3.1.3 snd

unbiased MMSE demapping 3.2.3 ummse
Max-Log-APP demapping 3.2.3 maxlog

hybrid uUMMSEMax-Log-APP, demapping 3.2.3 hummse-ml (m=m)
mMLLRs linear

BCJR decoding 3.3 bcjr

Table 4.2: Naming component algorithms.

To map an algorithm to a factor node, the abbreviations of node and alga@ithooncatenated. Algo-
rithm and factor node must have the same type (e.g. the BCJR algorithm ippiahle for channel
estimation).

The set of valid algorithm mappings to factor nodes is the alpt2fstt of symbols) of the receiver

description language:
Y= {(v,a) |ve Vi, ae A factor nodev and algorithma have same typ}e (4.8)

Examples:
— ce_wif: channel estimation using Wiener interpolation filter.
— dem_hummse-ml (m=8): MIMO demapping using the hybrid unbiased MM@$Eubspace Max-
Log-APP algorithm with parameten = 8.

— dec2_bcjr: constituent decoder 2 implementing the BCJR algorithm.

4.3 Serial Computation Schedule Notation: Regular Expression

A schedule is a valid word from the regular receiver description languyagrhe language can be
defined by a starting set of valid words and 'construction ruld&79].
Starting set:

— L(0): 'empty’ receiver is inL.

- S\;’ZL(S) = s only one factor node update
Construction rules:

- s::;ZL(SIt) = £(s) U L(t): alternative

— L(st) = {aB | @ € L(S) A B € L(t)}: sequence
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— L(b") = ‘UOIZ‘(b): repetition
- L(b") :Ejljji(b): nonzero repetition (at least once)
A receiver c]esign space (search space) is a s#bsef’ and can be given as regular expression.
Examples:
— Rex-1 = (ce_wif dem_ummse)(decl_bcjr dec2_bcjr)*™ describes a 'normal’ linear receiver with
turbo decoder (at least one turbo decoder iteration).
— Rex-2 = (ce_wif)(dem ummse|dem maxlog|decl bcjr|dec2_bcjr)* describes areceiver with pos-

sibly iterative demapping — decoding allowing free concatenation of fonrageingdecoding

components.

4.4 Parallel Schedule Notation: Parallelization on Factor Node Level

In order to balance computatiofffert and communicationfiort, parallelization using several PEs
is done on a factor node level. There are strong data dependenciasangidactor, while updates of
different factors can be independently computed in parallel with only/opiput values as possible data
dependencies. So one factor update is computed SIMD parallel on gnehR& different factors are
possibly updated in parallel onftérent PEs.

The demapper consists offidirent factors for each time instance and subcarrier (compare2Hig.
on page26), so that the factor updates of a demapper update can be perfectlglpad with several
PEs.

Parallel schedules can therefore be characterized by the mappirgsarfdpdates (with the respec-
tive algorithms) to PEs. This can be seen as a list of decisions at a certain-tahesit which factors to
update with which algorithms on how many PEs. A new decision is always dbea & factor update
is completed. Such a decision list does not follow a regular grammar (like gwaswase of serial
schedules, i.e. for 1 PE does), it needs variables to parse the language

A synchronous data flow (SDF) graph as usedkidVA *09, LM87] can be generated from the de-
cision list. Fig. 4.3 shows the SDF corresponding to the decision list according to41y. The SDF
carries less information since it does not contain the PE mappings.

There is an influence of parallel schedules on receiver accuraclcgion as described in chapter
5: factor update start times and durations have to be considered. A fadiexts its input at start time,
message updates are output after the update duration. A receiveai@cptediction (chaptes) consists

of time-sequential look-ups with start and end events (generated frohettision list describing the
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schedule).
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Chapter 5

Recelver Performance Prediction

This chapter deals with the determination of performance parameters faceet®receiver given a
certain transmission mode and channel distribution, where the receivebengiyen in a specification
according to chaptet. The relevant hardware parameters are the number of processinghedemd the
instruction set architecture (ISA). The performance parametersedirnvthis chapter are the receiver’s
complexity (Sec.5.1), delay (Sec.5.2), throughput (Sec5.3) and accuracy (BER in dependence on
SNR, Sec5.4). Complexity considers the time complexity of receiver algorithms with the spégifiet
ISA. Data space complexity or program length complexity are not consideee memory is assumed
to be large enough for the considered algorithms. Data move operationfieardree if the target has
independent logdtore and arithmetic pipelines and DMA controllers. The fast performarezigbion

described in this chapter is the basis for automatic receiver optimization iteciéap

5.1 Complexity

Algorithm complexity can be considered either hardware independerardmiare dependent. A
hardware independent measure is the amount and type of necessaentaley operations. A hardware
dependent measure also compares ffartefor different types of elementary operations. For hardware
dependent complexity, either an implementation can be benchmarked (ach@wplexity of imple-
mentation), or a theoretical upper limit (assuming optimal implementation, optima¢gsoc utiliza-
tion) can be used. Here, hardware-independent counts of elemeptnations (theoretical upper limit)
are used as a first step, which are then mapped to 'complexity’ using ampéx@rocessor core (with
specific SIMD width using certain number formats). This processor caksdsused in the testbed de-

scribed in chapte8, which allows for comparison of optimal and achieved processor utilizafldwe

83
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hardware-dependent measure is 'cyfas which is independent of clock speed and packet length.
'Retargeting’ of the complexity measure is of course possible fideidint instruction sets andfférent

processor cores.

Hardware-independent algorithm complexity measure The counted elementary operationslsltiply-
Accumulat§MAC), table Look-Up(LU), Add-Compare-Sele¢ACS), Compare-SelediCS) andRead-
/Write (RW). MACs are used in linear algebra operations for signal proagsespecially in channel
estimation and MIMO demapping. LUs are used in the demapper’s LLR gererdDecoding uses
ACS for trellis traversal and CS for LLR reconstruction in Max-Log BG&#Rnputation. RW operations

are used especially in interleavers.

Hardware-dependent measure, theoretical clock cycles on Cell 8 To enable comparison and
joint optimization, the dterent operations have to be expressed in a common metric. For this hardwar
dependent mapping, theoretically achievable clock cycles on the tangltdre under the assumption
of full utilization of processor resources are counted. By using thisdieal upper limit, the measure
is hardware-dependent, but independent from the actual implementaiienquiality (dfferent from
using benchmark results as complexity measure). Usagedfefelit number formats for fierent com-
ponents is of course possible: fixed point or floating point numbers, witiaio number of bits. Here,
the Cell processor SPU is chosen as example target hardware due toeitalgaurpose signal process-
ing architecture and high performance. It is used in the SDR testbedlmksbar chapteB which gives
implementation benchmarks and also discusses how close an actual implemavitatreasonable pro-
gramming €ort (C-language using vector intrinsics) can reach the theoretical cgal&. The numbers
of elementary operations per cycle on the SPU using SIMD parallel implementatogiven in table
5.1 The numbers in the table are a consequence of SIMD processing withith2&ith, where signal
processing operations (like MAC) are performed on 32bit (singleigim® float numbers and decoding
uses 16bit integer representation for LLRs. Lfstoke operations can be done in parallel to arithmetic
operations (dferent processor pipelines) for all blocks except the turbo (de-)jeatezr, where they
have to be counted explicitly. Retargeting the complexity measure fdfeaatit architecture would use

a different table.

Complexity of a (parallel) factor update schedule A schedule consists of a number of factor updates
with certain algorithms. The schedule may include only sequential updatalsoonpdates of éierent

factors in parallel on dierent processor elements (PEs). A schedule Wittfactor updates has the
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Operation SPU Cycles
real-valued Multiply-Accumulate (MAC, 32bit float) 0.25
Select (conditional move, 32bit float) 0.25
table look-up (LU, demapper) 1
Add-Compare-Select (decoder, 16bit) 0.5
Compare-Select (decoder LLR gen., 16bit) 1
Add (decoder, 16bit) 0.125
QPP read (turbo interleaver) 1
QPP write (turbo interleaver) 1

Table 5.1: Mapping hardware-independent algorithm complexity to joint ity metric for example
target hardware.

complexity
Na
C=) c@) (5.1)
i=1
wherec(g) is the number of cycles per LLR of the factor update numilqgith algorithma), i.e. the

complexity of the schedule is the sum of the complexities of the contained faudates. Processor idle

times (at the beginning or end of the schedule or inbetween) to not contidbilte complexity measure.

5.2 Processing Delay

Delay measures the processing time of a packet, which is e.g. relevanideceapaing of protocol
timers (like HARQ ACKNACK). As for complexity, the unit is [cyclgELR], to be independent of
clock speed and packet length. If one processor element workssasatiuon a packet (serial processing
schedule), the processing delay is equal to the complexity. If more thaRBrig available, the PEs
can work concurrently on fferent packets — with the same complexity (per packet). In order to reduce
delay (possibly at the expense of increased complexity), severatgsocelements can work on the

same packet in parallel (parallel processing schedule). The delay is

d= miax{tend(ai)} - miin {tstart(a)} (5.2)

with start timedsiar; and end time&ng Of the factor updates.

5.3 Throughput

The throughput of a receiver can be determined from the computatiedsieh) the available number

of PEs and the clock speed. For repeated execution of a paralleLdetieddiferent packets, pipelining
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at schedule level may be possible: depending on the schedule, idle timam®f*Es at the beginning
and end of the schedule can be used for execution of the neighbouahadude instance. The pipeline
speedup is denoteBhipe. Pipelining may especially be possible if the number of available PEs is larger
than the number used by the schedule. If the number of available PEs is gerintaltiple of the
number of PEs used by the schedule, then the schedule can even b#hrseveral instances in parallel
(on different packets). This includes concurrent application of a seriadstdhéo diferent packets.
Although this would rather be parallelization of schedules than pipelining,ptbedsip is nevertheless
counted inSpipe. The throughput is

TP = Spipe- felock/d (5.3)

with clock speedock and delayd. The unit of throughput is [bis].

5.4 Accuracy: BER and Ml in dependence on SNR

The usage of iterative processing naturally leads to the question ofrgemee. Since a wireless re-
ceiver has to work in a variety of scenarios, convergence has todveified for a probability distribution
of the multidimensional radio channel. The question of convergence @ivez@rocessing for a channel
distribution necessitates a stochastic analysis. The last chapters illustrastidesign space for iter-
ative receiver algorithms. An interesting objective is to search for thet&aicient [Pai algorithms
which determine the accurgcpmplexity tradeff — this comprises removing all Pareto-ifieient algo-
rithm candidates and algorithm combinations. Monte Carlo simulation of complsivee processing
of any iterative processing scheme is too slow for the large design dpao@ntrast to 'slow’ link-level
simulation, a 'faster’ convergence prediction method is heeded.

Extrinsic information transfer charts (EXIT charts) are widely used fedting and illustrating
convergence of iterative decoding of concatenated cage®] BRG0Y. The model underlying the
chart assumes that the log-likelihood ratios (LLRS) of the transmit bit vadueslistributed after the
symbol demapper according to BPSK transmission over an AWGN chamesliting in a 1-parametric
conditional Gaussian distribution (conditioned on the transmit bit value).

EXIT charts have also been used to model convergence of iterativeOvibtection-decoding. In
[YWO5] they are applied to optimize irregular repeat accumulate codes for MIM@riresion and it-
erative receiver processing. An optimization of Turbo coded spacehiou code transmission based
on EXIT charts is presented iy LWO09]. [HSMO05 uses EXIT charts to analyse and optimize MIMO

transmission with low-density parity-check codes. EXIT charts have @en bsed to optimize activa-
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tion order of demapper, decoder and channel estimator in iterativeees@ BRG05 YKJ10].

On the other hand, inHuOY it is argued that even if the input of a log-APP decoder follows a
1-parametric Gaussian distribution, the output needs to be described Ipatameters (mean and vari-
ance) to adequately represent the dynamics of Turbo decod®ht)/(Q7] presents an analytic model of
the MIMO MMSE interference cancelling demapper in terms of the transfereains and variances of
the demapper input to those of the output.

This chapter elaborates on the applicability of the stochastic decoding smalythods. Following
[FuO5 RHVO07], a two-parametric chart based prediction method is used. Predidtgst oompensation
is used to account for higher order distribution moments. The prediction mitivedified to yield ac-
ceptable prediction accuracy forfidirent receiver computation schedules for the case of iterative MIMO

detection-decoding with Turbo coddB10].

5.4.1 Parametric Tracking of LLR Density Evolution

For illustration it is referred to the iterative demapping-decoding setuprsimowig. 2.30n 29. For
this case with three nodes, the order of factor node updates is arbithigh(was pointed out in the
context of iterative decoding of arbitrarily concatenated code8MIPP98 BRGO05). The joint APP

approximation is given by:
Lp(u) = L W) + LED () + LE*D () (5.4)

The aim is to predict convergence of iterative receiver processingnip schedule. The approach is to
track the conditional LLR distributions corresponding to the messages irRRBdor all node updates.
Receiver accuracy is then given by the mutual information (MI) betweeh §tu) and the transmit bits
u.

To evaluate the accuracy of the presented prediction method for coderatgppedecoder schemes,
the following common algorithms are picked: the constituent decoders pelbgr@PP decoding ac-
cording to the BCJR algorithnBICJR74, the MIMO demapper uses max-log-APP detectibit§03].
For the exemplary channel distribution, uncorr. Rayleigh fading foin ¢éiate instance;, and noise vari-
ancecr,z\l is assumed. Threeftierent schedules are arbitrarily picked, for which the prediction acgura
is assessed:

— schedule 1: 'normal’ receiver with Turbo decoder. First the demaispgodated once, then the

constituent decoders are run alternatingly.
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— schedule 2: the demapper is run first, and then again always aftefdduw decoder iterations
(eight constituent decoder updates).
— schedule 3: 'round-robin’ schedule. Demapper, decoder 1 acmblde 2 are run periodically in
this order (demapper update after each Turbo decoder iteration).
For simulation, 4x4 QPSK transmission and channel coding with the 3GPP w6 Tode (rate/B) is

assumed.

Shortcomings of 1-parametric model EXIT charts fen01 BRGO0] are based on a 1-parametric con-
ditional Gaussian distribution model of LLRs. This model is derived fromassumption of BPSK
transmission over an AWGN channel:

y=x(b)+n (5.5)

Under this assumption the extrinsic LLRs generated by the demapper folloanditional) Gaussian
distribution with the special property that the (conditional) absolute expectatue is half of the (con-
ditional) varianceten01:

|E(|_£§’e°(b)|b)| - %V(L(ede‘)(b)|b) (5.6)

An LLR distribution is therefore completely described by one parameterbg.the standard deviation
o. As consequence, there is a bidirectional mapgingr — | between this parameter and the mutual
information carried by this distribution (MI of LLRs with the transmit bits, E§.33). This mapping

is the basis of EXIT chartd4¢n01. EXIT charts assume that the 1-parametric distribution property is
sustained after a BCJR decoder. The parameter trahdfgr — I(Le) is tabularised in a tabl&, its
graph is the EXIT curve. To track LLR density evolution for convergepiediction | (Le) can be looked

up from this table for knowm(L,) for information bits and code bits:
le(b) = T(la(u), 1a(c)) (5.7)

The 1-parametric property (Edb.6)) is also sustained for summation of LLRs, since mean and variance
of the sum distribution are the sum of the means and variances, respeciiie Ml of the LLR sum

can therefore be determined by usiig and adding the varianceteh01:

laundt) = 3 [> 3219 (W)2) (5.8)

To see why this model is not adequate in the scenario at hand, EXIT ehartgpplied to predict
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convergence of schedule 1 ('normal’ receiver, no iterative demagppan channel SNR of 1dB. The pre-
diction of Ml after each factor node update is shown in B The figure also shows the measured Ml,
which is obtained by Monte Carlo simulation of the complete receiver procgasid non-parametric
conditional LLR distribution estimation after each factor update number. WX Eharts predict
convergence after 8 node updates, measurement shows a saturioof &.53. An EXIT chart pre-
diction for 0dB channel SNR predicts saturation at higher M| th&8 0T he prediction error in this case

is therefore larger than 1dB, which is so large that it renders the predittthod useless.

1 ‘ DI o o o e e
0.8
S
§ 0.6 o caast . Figure 5.2: For the Rayleigh fading MIMO chan-
S 0.4 nel, EXIT chart based prediction produces a large
‘_5 ' error; in this case (4x4 QPSK, max-log-APP
3 0.2 —prediction for 1dB SNR (EXIT chart)| demapper) the prediction error corresponds to
"'PfediCtiogfiL%dgNSRNR (EXIT chart) more than 1dB channel SNR. Simulation uses
- - . .
0 : reasres, : : maximum LTE packet length of 6144 information
5 10 15 20 25 30 )
Factor node update number bits [IB10].

The misprediction is explained by the actual LLR distribution after the demajopex-log-APP
demapping, uncorr. Rayleigh fading), which is shown in H@. While it does resemble a conditional
Gaussian distribution, Eq5(6) is clearly violated: the mean value is not half the variance. ¥igalso
shows a conditional Gaussian distribution with the same MI which satisfieSEB)(ifiean and variance
are diferent from the measured distribution). This is the curve which EXIT giradiction assumes for
this Ml value, and it is the reason for the wrong prediction trend. Thelpnolis not that the demapper
or decoder EXIT curves would be wrong: histogram based measuterfitée extrinsic Ml as inten0]
is indeed correct. The problematic 1-parametric fitting occurs when thetduts become input for

the next factor node, because the EXIT curves are computed withalnpéiic input distributions.
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5.4.2 2-Parametric Gaussian Model and @set Compensation

It is noted that while EXIT charts track the Ml value corresponding to aR Idistribution, they
could equivalently track a flierent parameter describing the 1-parametric Gaussian distribution, e.g. the

standard deviatiorHuO03.

Until now the conclusion has been drawn that the 1-parametric Gaussiaat witetre the expectancy
u is half the variance-? (Eq. (6.6)) is not adequate in the scenario at hand. But it could still be the case
that another 1-parametric model, maybe with a nonlinear relation bejwaedo?, can be used. To test
this, Monte Carlo simulation of the complete receiver processing is rundingaio schedule 3 ('round
robin’), andu ando of the LLR distributions are measured after each factor update numbekirigoat
the value pairs oft ando, the result is that a 1-parametric description does not work. The evolotion
mean and variance of the information bit a posteriori LLRs is shown in3=#.Since a high mean value
at low variance implies high mutual information, the MI growth through praogssan be qualitatively

observed.

100 Sc‘:hedule‘ 3 (rouqd—robip), 1dB‘chann(‘aI SNR‘
Figure 5.4: The progress of iterative processi ~—mean value of L (u), measured ,
can be observed in this example: large mean ve = gg|| - standard deviation of L (u), measured /ﬂ
and small standard deviation means that the coi
tional LLR distribution has high mutual informa 60
tion with the transmit bits. Every third factor ug
date in this schedule is the MIMO demapper, f
which the chart shows no increase of LLR me 20 |
value but a small reduction of standard deviatic ’
corresponding to interstream interference red -0ttt * w w w w
: 5 10 15 20 25 30 35
tion. Factor node update number

401
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Therefore one parameter is added to the model and in accordancéu@h RHVO07] it is assumed
that the LLRs are conditionally Gaussian distributed with arbitrary meand standard deviatiosm,
leaving out Eq. %.6). Table look-ups for the extrinsic information transfer of decodersanapper now
have more dimensions: based on mean and standard deviation of the inphbttiiss, the mean and

standard deviation of the extrinsic output distribution are looked up. Adkrdook-up becomes:

(ue(b), oe(B)) = T((ua(u). oa(W)); (ua(c). a(0))) (5.9)

The MIMO demapper look-up in the scenario at hand has six input vatliese(input vectors with two
parameters each, compare F2g3, page29).

The mapping from distribution parameters §) to Ml (function J) now has one dimension more.
MI of the Gaussian distribution is only determined by the ratie u/o of mean value and standard

deviation, the corresponding bit error rate (for a posteriori LLRs)viergby the tail probability Fu03g:
BER= Q(q) (5.10)

Therefore as coordinates for the 2-dimensional mapping function, naaew quotientq = /o, and
Ml are used:

J: (u g) 1 (5.11)

The function is illustrated in Figs.5. The figure also shows the curve for the 1-parametric case, embed-

ded as special case in the Ml surface.

=
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06 Figure 5.5: Mapping LLR distribution parameters
04 to mutual information. The mutual information is
02 determined by the ratiq of mean value and stan-
dard deviation. 'Full’ Ml corresponding to BER
smaller 104 is achieved forq > 3.7. The 1-
parametric model is included as special case and
g=H/o mean value shown as curve in the Ml surfacH[LO].

©c o o o
oM M o @
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A BER smaller than 10" corresponds tq > 3.7. Fig. 5.5therefore also shows the parameter range
which has to be covered by the look-up tables. Since there are infinitely Gaungsian distributions

with sameq, the functionJ is no longer invertible. Due to this, the distributions are tracked for iterative
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decoding using only their Gaussian parameteasnido-, the mapping to Ml (or BER) is only necessary

when the iterations are stopped. For a sum of LLRs it is now instead oBE): (

W = > a0

oMy = /Z (cM)? (5.12)

i.e. the sum is still (conditionally) Gaussian distributed.

Schedule 1, 1dB channel SNR

=+measured
=e—predicted, offset compensation
|| == predicted, no offset compensation
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Figure 5.6: Mutual information of a posteriol
LLRs during iterative decoding (factor update
according to Fig.2.3 and MI prediction. Node 2

update number 1 is the demapper, thenthe c= o

: ) : 5 10 15 20 25 30 35
stituent decoders are iteratively updated. Factor node update number

al information: (L p(u),u)

Compensating Ml Offset for Higher Order LLR Distribution Moments

Prediction accuracy of the 2-parametric model is illustrated in FEd. As expected, the more
flexible 2-parametric model reproduces the actual Ml evolution trend adsybetter accuracy — but
beginning from the first demapping, the prediction has an et compared to the measured MI. This
offset can be explained by the fact that the MIMO demapper LLRs do natlgXallow a Gaussian
distribution: not all cumulants of the distribution for order larger than 2 &m®.z This is illustrated
in Fig. 5.7. The figure shows the LLR distribution from the MIMO example as well as thasSian
distribution which has the same mean and variance. The measured LLR disirishows a nonzero
skewness, it is not symmetric. Ml of the assumed Gaussian distribution is sneallsing the initial
prediction dfset. The assumed Gaussian distribution can either have the same meariarnzb\as the

real distribution, or the same MI - but not both.

For a consistent concatenation of table look-ups the demapper table imitetdusing the Gaussian
distribution with same mean and variance as the real one. To compensate thilliniss, it is also

computed at table generation time. For one channel SNR value, the dentappeanow is a mapping
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% 0.2k Figure 5.7: LLR probability density for positive
8 transmit bits from the example (as in Fig.3)
= 01l | and the corresponding 2-parametric Gaussian den-
sity. The two densities have same mean and vari-
o s 5 5 y . ance, but dterent Ml (LLRs: 0.39; Gauss: 0.34)
LLR value [1B1Q].

from 6 input dimensions to 3 output dimensions (compare Zig):

(1e(D), oe(b), lofsed = T((,Ua(u), oa(U)); (ua(C1),oa(C1)); (Ha(c2), O'a(CZ))) (5.13)

Adding channel SNR as input dimension makes the demapper table input rAsitmal. For the pre-
sented prediction results, the input LLR distributions are sampled with 8 pointirpension (0< u <
15 0 < g < 5), resulting in 260000 entries in the demapper table per channel SNR vasieg the
fact that the roles ofl, c; andc; are interchangeable for the demapper, only 46000 table entries have to
be computed. The table for a constituent decoder was already deseabied in this chapter (4 input
dimensions to 2 output dimensions). Since the two constituent decodereatieadifor the LTE Turbo
code used in the scenario at hand, they are both described by the sdene-@mbtable look-ups, lin-
ear interpolation between neighbouring sample points is used. The denhagipeip table depends on
channel SNR, a constituent decoder table is independent of this.

The predicted Gaussian parameterg, p) of the distribution of the a posteriori LLRIsy(u) are
then mapped to Ml by table look-up (functid, and thel ogset Value returned by the last demapper table
look-up for L% (b) is added:

U
Ipredict = J(ip, _p) + loffset (5.14)

9p
5.4.3 Mutual Information Prediction Accuracy for Di fferent Schedules

MI prediction accuracy is verified by comparison with Ml measurement, fertlinee example re-
ceiver processing schedules. 'Prediction’ uses the describedtenation of table look-ups, where the
concatenation order of look-ups from the two tables is determined by tleelsleh 'Measurement’ per-
forms Monte Carlo simulation of the complete receiver and measures M| usmgarametric estima-
tion of the joint distribution of a posteriori LLRs and transmit bits accordinggo(B.33), independently

for each schedule.
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The results of prediction and measurement are shown irbE8gSchedule 1 (‘normal’ receiver) does
not converge for this low SNR level, which is now correctly predicted. VMihef a posteriori LLRs sat-
urates after around 7 factor computations (6 constituent decoder gpdate53. Schedule 2 converges
after around 40 factor computations (including 5 demapper updates aruh88tuent decoder updates).
A demapper update only brings a small Ml improvement in itself, but aftesvdedoder updates gain

more again. Schedule 3 (‘round-robin’) converges already withrett@5 factor computations.
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T //r ===schedule 1, measured
% 0.4 schedule 1, predicted ||
€ =»-schedule 2, measured
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racy: predicted and measured Ml for tt 2 schedule 3, predicted

f[hree dﬁgrent_schedules (packet length 61. 0% 10 15 20 25 30 35 40
information bits) [B10]. Factor node update number

All periodic schedules which include the same factors converge to the saimeitwalue [BRGO0T,
since they completely use the same information sources. The maximum M vaicte eam be reached
by the extrinsic MIMO demapper outpuﬁdet) is that of SIMO maximum ratio combining for (shifted)
BPSK modulationlKB09]: if the demapper a priori LLngdet) have full MI (implying that the receiver
algorithm has already converged), for each LLR to compute all transmibbitee MIMO vector are

known except one, meaning that only two symbol constellation points remain.

The MI prediction curves in Fig5.8 do show small deviations from the also shown measurement
curves, which are due to higher order cumulants (order higher thahl2)R distributions and finite

granularity of the look-up tables.

5.4.4 \Verifying BER and Threshold Prediction

Prediction of the APP LLR distribution includes bit error rate (BER) predicaacording to Eg.
(5.10. To verify BER and SNR threshold prediction, this mapping from the LLRrithstion to BER
is applied for the two models and compared with measurement for very lokgtgaéor the proposed

method it is:

BER= Q(Z—'; , (5.15)
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while for EXIT chart based prediction this reduces to one parameter:

BER= Q( \/Zzp) (5.16)

Prediction and measurement for varying SNR (for a fixed schedul€yvateated with focus on the SNR
threshold required for a target BER like e.g.”40Fig. 5.9illustrates results for the 'normal’ schedule
with 21 factor updates. As implied by Ml prediction (Fig.2), EXIT charts predict the threshold for this
schedule more than 1.5dB too small, while the proposed method predicts it 0.dd#Byto For BER

prediction, no compensation is applied to the Mket, as this wouldféect the complete BER curve and

not only the BER threshold. Mlftset causes the SNR threshold to be predicted too high.

;)normal’ schedule, 21 factor updates, 10° bits/packet
10" ‘ ‘ ‘ ‘ ‘

Figure 5.9: Predicted and measured bit er-

10 " == 1-parametric (EXIT chart) ] ror rate for one example schedule, using

__:rzn_eﬁrjggtr'c very long packets (f0bits). The curves

_10‘5 o 05 1 s 5 for smaller packet length (6144 information
' 'SNR [dB] ' bits) differ only insignificantly [B10].

To sum up, EXIT charts in the normal way as applied to AWGN channelsarapplicable to some
practically relevant scenarios with fading MIMO channels. How well theéeulying 1-parametric model
fits the demapper LLR distribution depends on the demapper algorithm, modulatdvii&O fading
distribution. This may explain why the presented resuB4 (] seem to difer from e.g. HSMO0Y, where
a 'good match’ was found between simulation and EXIT chart based piedio a diferent scenario.
The 2-parameter extension improves prediction accuracy by better fitting te#h LLR distribution.
Together with éfset compensation for higher order distribution moments it achieves satigfaditpre-
diction accuracy. For non-Gaussian distributions a systematic error re(égmer order moments), so
that prediction accuracy is less accurate than for AWGN channelsicRoadaccuracy for other channel
models — especially intersymbol interference (ISI) channels — has eatibeestigated. The proposed
method is however applicable to MIMO-OFDM, as OFDM converts an IShokhinto a set of individ-
ually flat fading channels. The higher dimensionality of the extended ctawtses the charts to be less
illustrative. Complexity of look-up table computation increases due to the higmendionality. On the

other hand, computationaffert is reduced again a bit by the parametric density estimation: estimating
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mean and variance is faster than estimating MI (with non-parametric density éstirtilee histograms
or kernel methods). This could also be used for computation of normal EXarts, as it is also con-
sistent with the 1-parametric model. In principle, the prediction accurachpeamproved by increasing
the number of parameters used to describe LLR distributions: look-up tedléd be extended to in-
clude higher order moments. This is limited in practice by the time necessary to tthputables,
the advantage of fast prediction compared to slow link-level simulation waaliee The presented pre-
diction method serves as a basis for receiver optimization at receivigndésae (choice of algorithms
and processing schedule) in chapietComparing all receivers for the described scenario (three factor
nodes) which have a schedule length of exactly 20 factor node upddfeslifferent receivers) may
well be too much for link-level simulation based comparison. Using the predenethod, all of them
can be compared after generating only two look-up tables. Comparisdfieredt factor computation
algorithms (especially demapper algorithm alternatives) can be done hgiobahe respective factor
look-up table. A criterion for optimization can be the sum computational coseézhing the target Ml
(corresponding to a required packet error rate) at a certain SN&RprEuliction accuracy of the proposed
method is sfficient to reduce the receiver design space to a few interesting algoritifidetes, which

can then be verified by more time-consuming link-level simulation.



Chapter 6

Automatic Receiver Optimization

Several publications deal with the problem of optimizing the node activatiderdn an iterative
receiver (or more generally in a graphical model). It can be distingdibbveen a statistical optimiza-
tion (pre-determining the best activation order at design time for a PDFeived vectors) and between
a run-time optimization (determining the best activation order for one coneregéved vector). For a
statistical activation order optimization of demapper, decoder and chasti@lator, BRG05 YKJ1(]
use EXIT charts. EMKO6] describes a greedy approximation which orders the nodes to update by th
difference in output message magnitude compared to their last update. ltuseddmth for design-time
and for run-time optimization. For statistical optimization, the greedy orderingisa be applied to MI
increase or to attainment of an objective function (e.g. including complexgy@aa of message magni-
tude. The greedy activation ordering froEBNIKO6] has been applied to iterative demapping-decoding
in [ZLNA10].

This chapter deals with joint optimization of component algorithm selection andton order at
design-time. It is therefore based on the generic receiver architentdreeceiver description language
described in chapt&and chapted, the component algorithm alternatives discussed in ch8@rd the
fast performance prediction method from chagiehe aim of finding the ’best’ receiver with respect
to a certain optimization criterion, where the receiver components are skfeate the large body of
published algorithms, faces severaffidulties. While the structure of a receiver is clear and follows
from the interrelations of transmission variables, the optimization lies in the selesttbconcatenation
of component algorithms. For each receiver component, a whole 'algozitio’ is available, containing
algorithm candidates which are Pareto-optinRaf regarding an accuraggomplexity tradefi. Attain-
ment of receiver 'optimality’ further requires evaluation of a componettiéncomplete receiver: while

receiver complexity is the sum of component complexities, there is no suclesietation for the ac-
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curacy. For optimization of iterative receivers, usage fedént component algorithms in each iteration
is possible. The criterion for receiver optimality can be chosen as utility valiecombination of re-
ceiver operational SNR, complexity, packet processing delay, thmutgnd number of processor cores.
Operational SNR can be determined using the method from chapateithat SNR level (for assumed
channel distribution), where BER or MI cross a threshold. The receigscription language from chap-
ter 4 allows enumeration of the design space (using branch and bound grapiin)s where for each
receiver candidate its utility (according to the chosen criterion) can bélgussessed. Automatic re-
ceiver optimization is illustrated in an example scenario, where the optimizeiweeshow both an
extended operational SNR range compared to the standard receitecture, as well as significantly
reduced complexity compared to iterative processing according to nalmaditeration scheduling using
the same algorithm components. Further, minimum processing delay in deperate the number of
parallel processing elements is discussed, as well as the relation betaraptexity and delay when

parallelizing on the factor level.

6.1 Optimization Criteria

The task is an optimal distribution of computational power to a number of honeogermultipro-
cessor cores (compare SDR baseband hardware model frorh.8euvhere the number of cores as well
as the update schedule and component algorithm for each factor upglfiexdble. For given transmis-
sion mode (modulation, MIMO scheme and code rate) and channel chatcie receiver processing
quality can be described by the performance parameters from clapiée general optimization tar-
get function is a utility function from these performance parameters. This tilitgtion may contain
constraints like e.g. maximum delay. In the 5-dimensional (target SNR, coityplerocessing delay,
number of processor cores and throughput) Pareto-optimal reedgarithm utility space, the following

optimization criteria could be chosen (among any other weighted combinations):

1. Minimum complexity for fixed operational SNR. Which receiver satisfiexerational require-
ments with minimum computationaffert? The answer may be interesting as complexity is related

to power consumption.

2. Minimum operational SNR. Given a fixed hardware with certain computtijpower, what are

the achievable operating conditions (and with which algorithms can this beedyc

3. Minimum delay for fixed operational SNR. How far can the processatgycbe reduced by paral-

lelizing node updates using multiple processor cores?
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6.2 5D Pareto Hiiciency: Searching in the Decision Tree

All schedules can be seen agfeient paths in a decision tree. One node in this tree is a decision at
a certain time — about which factors to update with which algorithms on how masyAEew decision
is always done when a factor update is completed. The decisions of oistodepath in the tree are
therefore ordered by increasing decision times.

Part of the decision tree for 6 PEs is illustrated in Fid.. One path in the tree (one parallel schedule)
is highlighted as example with red nodes. The schedule is described by tifebstesponding decisions

(written next to the nodes).

Figure 6.1: An example
decision tree for 6 PEs.
7.8, decl_bejr, PE1 For each decision the

. start cycldLLR, fac-
o
Mg == . ‘ 19.1, decl_bcjr, PEL tors to update and cor-
¢ d log, PE2-6 . .
1.3, dec1_bejr, PE1 enmaxios. * responding algorithms
“dem_ummse, PE1-6 dec2_bcjr, PE2

* with PE mapping are
A.\ noted. One decision
. path (parallel schedule)
axlog, PE1-6 60.0, decl_bcjr, PE1 o is h|gh||ghted with red
dec2_bcjr, PE2 e

decision nodes.

0, de

All possible decisions which are children of a node in the decision treeeanlbmerated. A factor
can be updated if it received at least one new input message, and &dtosik not currently active being
updated. The output of a factor update enables activation of otherdaatoording to the factor graph
and their current state (like process scheduling in a non-preemptivatogesystem, compare Fig.2).

All parallel schedules can be enumerated by tree traversal.

The Pareto #icient receivers dier in the five dimensions operational SNR, complexity, delay, num-
ber of processing elements and throughput. Search for the 'best/eeoe Pareto fficient receiver sets
is implemented by level-order traversal of the decision tree (using a listaidide paths) with branch
and bound. For each pair of operational SNR and number of PEsrahdeze is opened. Node expan-
sion needs to enumerate combinations of ready factors, which can béndmténary way as illstrated
in Tab. 6.1 Then the Cartesian product of candidate algorithms is needed, whidmptment the
different factors to activate. A Cartesian product implementation is shown i 2ig.

Adding a decision to a decision path can not decrease delay or complexitgtdranch and bound
can be used conveniently with a utility measure (one target function as mgasim a search for Pareto

efficient receivers (several measures at once).
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No Factorl Factor2 Factor3 No. Factors
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 2
4 1 0 0 1
5 1 0 1 2
6 1 1 0 2
7 1 1 1 3

Table 6.1: Enumeration of combinations of three factors which can be t@ttilhaving new input and
not being currently active).

Figure 6.2: Matlab implementation of Cartesian product.

1 function p = CartesianProduct(listvector)

2 k = length(listvector); % number of dimensions
3  for i=1:k

4 numelem (i) = length(listvector{i});

5 end

6 numcp_elem = prod (num_elem);

7 for i=1:k

8 num_elem.restdim = prod (num_elem (i+1:k));

9 col = kron (listvector{i}, ones(num_elem.restdim ,1));
10 repetitions= num.cp_elem / length(col);

11 cp(:,i) = kron(ones(repetitions ,1),col);

12 end

13 end

6.3 Example Search Results

This section illustrates the automatic receiver optimization for Cell SPU as taagvare by giving
an exemplary optimization of iterative demapping-decoding for 4x4 QP3Unaisg perfect channel
estimation. Resulting block complexities (in cygldsR) are illustrated in Fig.6.3afor uMMSE and
Max-Log demapper, and for decoder 1 and decoder 2 using the BIgdRttam. The decoder 2 block
is a bit more complex then decoder 1 because Turbo interleaver and deierleaver are counted
as belonging to this block. For the Max-Log demapper’s complexity, indigrgncomputation of all

candidate vector metrics is assumed (no usage of intermediate partial metrics).

6.3.1 Operational SNR versus Receiver Complexity

Minimum receiver complexity is achieved with a serial computation schedulesi@ered are con-
catenations of the four processing blocks illustrated in &i§a For each SNR the objective is to find the
cheapest (least complex) schedule which achieves convergefioeddeere adll > 0.99 (equivalently
the BER for convergence can be defined, termed ’just acceptabte&tebin [LAMC11] in the context

of channel adaptive MIMO demapper switching). The following threeiker spaces are considered:
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— Rnormal = (dem_ummse)(decl_bcjr dec2_bcjr)*

'Normal’ receiver with Turbo decoder. The number of Turbo decdtgeations is variable.
— Rround-robin= (demmaxlog decl bcjr dec2 bcjr)*

Iterative MIMO demapping-decoding using the Max-Log demapper aodrd-robin schedule.
— Riterative-1 = (dem_ummse | dem maxlog | decl bcjr |

dec2 bcjr)*

All possible concatenations of the four blocks are used as input to the oatiamz

The receiver spac®jerative-1 iS illustrated in Fig. 6.3bin form of a state transition graph (finite state

machine) containing the processing blocks as states.

The optimization consists of predicting performance for each receivitedis the search tree. For
the search spad@eraiive-1, the branch-and-bound costs can be initialized with the resultsRiRd-robin
if there is a converging receiver for this SNR, then there is a convergizegver with round-robin sched-

ule ([BRGO0Y — although it is probably not the optimal receiver according to the chogtamion).
Optimization results are shown in Fi§.3c

— standard receivers accordingRaormal @are computationally inexpensive, but do not work at very
low SNR. In this scenario (4x4 QPSK, Rayleigh fading, rg®),the necessary number of Turbo
decoder iterations increases from 1 iteration at 5dB to 10 iterations at 2.1 dB

— Rround-robin €Xtends the operational SNR by 1 dB to the low SNR regime, although at largely
increasing computational cost.

— optimization amonRiterative-1 reduces the necessary cost comparef tand-robin Dy a factor of
2 with the same operational SNRs. At the same complexity the operational SHRuised by
around 0.5 dB. The standard receiver architecRH&mal is included as special case and is result

of the optimization for the high SNR regime.

The Pareto-optimal receivers lie on what seems like a hyperbola in thatmped SNR/ complexity
diagram. Receivers inside the hyperbola are suboptimal, dominated byrtte-Bptimal ones. Which
receiver from the hyperbola is the optimal one depends on the chateiocr. To the lower SNR region
(left in the diagram), the hyperbola is limited by channel capacity (if arbifppangessing is allowed) and
transmitter characteristics. The hyperbola may be improved (to the lowef teé diagram) by improv-
ing one of the contained APP computation components (towards better @cofiraPP approximation
or towards complexity reduction). The optimization process itself does et teachange to include

new algorithm developments.
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The number of factor node updates of the found 'optimal’ receivers iaxbmple is 3 for 5dB, 47 for
Rround-robinat 1.1 dB and 56 foRjerative-1at 1.1 dBRiwerative-1 cONtains 2% > 10%3 receivers of schedule
length exactly 56. These numbers clearly show the necessity of an optimiaafiooach based on fast
performance prediction, as it would have been unfeasible to obtain résulte presented optimization
problem by Monte-Carlo simulation of the receivers. Receiver desigoespfurther grow exponentially
if more algorithm alternatives are considered and if the optimization appreagkended to also include

iterative channel estimation algorithms.
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Figure 6.3: Automatic receiver optimization examdiB11].
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6.3.2 Processing Delay versus Number of Processing Elements

An example search is run to find the receiver with minimum delay in dependenttee number of
available PEs, for 3dB target SNR. The optimum serial schedule (1 REjfis:
dem_ummse (dec1_bcjr dec2_bcjr)? decl becijr
i.e. linear demapping followed by 5 constituent decoder updates, with a slay af 785cyclesLLR.
The minimum delays for dierent number of PEs are shown in F@&4. The solutions follow the same
processing as the serial schedule, only the demappers are parallsizgdhe available PEs. This can
be explained with the comparably high target SNR (compare €ig¢. Max-Log demapping in this
case can not replace one of the five decoder updates, and paretidedepdates can not replace the last
decoder update. The minimum delay in this case therefore follows Amdaht’'s law

Tpar

T(Npg) = Nor

+ Tser (6.1)

where Tpa is the part which can be parallelized (demapping) d@gg is the serial computation part
(decoding). The asymptote in Figh.4 lies atTser = 70.75cyclegLLR. More complicated parallel

schedules like in Figd.1are only relevant for low SNR.

80

57&

—--3 dB

Ea

s | Figure 6.4: Minimum delay in dependence

60, 10 20 30 on number of processing elements, for 3dB
Nunber of Processing El enents target SNR.

6.3.3 Receiver Complexity versus Processing Delay

For the same 3dB example the traffdmetween complexity and delay is illustrated in F&5. For
this high SNR case, only one receiver is Parditcient, resulting in the rectangular Paretd@ency
curves in Fig.6.5. With variable number of PEs, the delay can be reduced according to Asdahby

parallelizing the demappers — at the same receiver complexity, resulting nizatal Pareto ficiency
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curve.
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Notes for extensions Apart from applying the presented approach for comparing and optimizing
ceivers including dtferent component algorithms not covered by the examples, four main iextease
possible:

— multiple transmitter or multi-codewordptimization for this case is also possible (compare Fig.
2.20n page27 from chapter2). The determination of the optimal receiver processing sequence is
analogous to the single usesingle codeword case, with the followingidirences:

— different SNRs per usétransmitter are allowed, leading tofi@irent (input) receive value den-
sities.

— some blocks jointly process signals of thé&elient transmitters or codewords (like MU-MIMO
demapping), some blocks separately (like decoding).

— BER is determined per transmittareceiver pair.

— including channel estimationThe optimization can also be extended to include possibly itera-
tive channel estimation. The assumption of Gaussian densities (meangceagan not only be
applied to model conditional LLR densities, but also to model baseband $ylabsities (com-
plex Gaussian densities). Input to the channel estimation prediction areciige value density
P(y), the soft transmit symbol densiB(x) and of course the channel statisti€s (er). The re-
sulting densityP(H) (represented as channel estimation MSE under the assumption ofdmsas-fr
estimation) is also parameterized as input in the demapper table — which adds@d@imension
there.

— faster tree search for very wide decision treesnsidering a large number of candidate algorithms,
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many PEs and low SNR (requiring many updates), the tree becomes too lagarth for the
optimal solution. In this case suboptimal search strategies like e.g. the Mtalg@an be applied.
The problem of too large search spaces and the application of heuratih Strategies is common
for search based software desigtaf07].

— PEs with limited local store:or static instantiation, the local store implies a limit for the sum
code size of factor update algorithms run by a PE. This constraint carkée tare of during
tree search. The other possibility is dynamic instantiation — with ffexteof additional delays

between factor task’ switches.






Chapter 7

Medium Access Control Aspects

Main task of the medium access control layer is scheduling. Input to theedtagon’s scheduler
includes uplink bandwidth requests, downlinkfiieu filling levels and channel quality information. Up-
link channel information is obtained by channel sounding schemes comahagdiee base station, and
by channel estimation in the resources where a terminal transmits. Downlmnehinformation is
obtained by a terminal by channel estimation, and fed back to the base stadioa control channel.

Scheduling output is the resource allocation to users, and choice afissien parameters.

When several users share radio resources, the achievable redeseba multi-dimensional region.
Scheduling should clearly select a point on the surface of this regioet{Pdficient allocation) — but the
decision which point to select is to a certain degree arbitrary. Se¢tibtlescribes scheduling criteria,
which are based on filerent sets of plausible arguments and single out a point from the Pdiietors

surface of the achievable rate region.

Sec.7.2formulates scheduling as combinatorial optimization problem. Since schedabngding

to most optimization criteria is NP hard, approximative algorithms are also destuss

Signalling schemes can only achieve limited and slightly outdated channel ldgevé the trans-
mitter. So Sec7.3deals with channel interpolation and prediction, and scheduling undenehancer-

tainty. The implication of limits for the gains of adapting transmission parametersigitjed.

In Sec.7.4receiver computational power is treated as variable which can be distglmar parallel
messages. This section builds on chaptand shows a potential gain by adding receiver computation

as scheduling variable.

Sec. 7.5 deals with protocol extensions for multi-hop relaying, which reduce sigigadirerhead

without violating the scheduling criterion.
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7.1 Scheduling Criteria: Fairness vs. Hiciency

Classical scheduling goals in a communication system are to maximize utilizationdktimat) and
to allow communication for all users (fairness). These two goals are dacttway when like in wireless
communications the same physical resource can hdkaretit benefits for dierent users. Game theory
derived ditferent solutions to the general problem of distributing some good in a waydsying both ef-
ficiency and fairness and delivered an axiomatic characterization & tlifésrent solutions. In OFDMA
systems, dferent subcarriers can be dynamically allocated ffedént users. Because of normally dif-
ferent channel quality of the same subcarrier féfedlent users, a clever scheduler can exploit multiuser
diversity [RC0(J. A good channel quality subcarrier can be higher modulated and thiasadigher
data rate. This section characterizes thiencyfairness-tradefd in OFDMA resource allocation by
applying as schedulers and comparing the most important game theoreticrsofaticooperative bar-
gaining.
Applying bargaining theory to scheduling has been propose¥bji)91]. [KMT98] has proposed pro-
portional fairness, which has been implemented in a TDMA syste@HARQ(Q. Proportional fairness for
multicarrier systems has been e.g. considere&ki0db]. The Kalai-Smorodinsky solution as scheduler
has been proposed for multimedia streamingAB8Q7. Scheduling approaches regarding the maximal

stability region for elastic tif@ic also lead to utility based solutions in the game theoretic s&\AOT).

R2 Ro R2

R Ri R:

(a) Dictatorial solution (b) Utilitarian solution (c) Nash solution

R2 RQ

o

R 2 R1

(d) Kalai-Smorodinsky solution (e) Egalitarian solution

Figure 7.1: Comparison of common scheduling critefiad94 IBO7].
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7.1.1 Game Theoretic Cooperative Bargaining Solutions and Aamatic Classification

Assume some good is to be divided between participants. The amount tlieippat | gets is
denotedR;. The good can be split up infiierent ways, the set of all feasible choices is den@tedEach
possible solutior=({) is a vectorR € U c R". Each of the game theoretic solutions is defined by
a small number of axioms. These axioms can be regarded as normativivekjet fairnessTho94.
While more solutions have been proposed and characterized, the fauibael herelB07] play a central

role in bargaining theory.

The Utilitarian solution maximizes the sum of gains (compare Figlb). It is defined by the follow-
ing three axiomsTho94:
— Pareto-optimality: AR’ € U with R’ > R
All gains should be exhausted, i.e. the solution lies on the boundary ofdkible set.
— Symmetry: IfY is invariant under all exchanges of participants, tRefif) = Fj(U).
If the participants can not beftirentiated on the basis of the feasible set, then the solution should
treat them the same.
— Linearity: F(U* + U?) = F(UY) + F(U?)
Participants are inflierent between solving problems separately or consolidating them into a sin-
gle problem and solving that problem.
The Utilitarian solution is not always unique. When it is not unique, continlgty & an issue, i.e. small

changes in the feasible set should lead to small changes of the solution.

The Nash solution is obtained by maximizing the product of benefi{sR; (compare Fig.7.19. Itis
the only solution satisfyinglho94:
— Pareto-optimality
— Symmetry
— Scale invarianceil(F(U)) = F(A(U))
A participant by participant scale dilation results in dilation of the solution with #meesfactors.
— Contraction independence:M’ € U andF(U) € W, thenF(U’) = F(U)
If an alternative is the best solution for some problem, then it should still beekiesolution for

any subproblem that contains it.

The Kalai-Smorodinsky solution Gains are proportional to their maximal possible values (compare

Fig. 7.1d, which are given by the Dictatorial solutions (Fig.1g9. This solution has an interesting
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monotonicity property: expansion of the feasible set in a direction fal®taba particular participant
always benefits him. The solution is the maximal pointZéfon the segment connecting the origin to
the "ideal point'a defined bya; = maxR;| R € U} (where every participant would get his maximum
possible benefit, i.e. his Dictatorial solution). The solution is uniquely defiyetie following axioms

[Tho94;:

Pareto-optimality

Symmetry

Scale invariance

Individual monotonicity (for g2): if &’ > U andRj(U’) = Rj(U) for j # i, thenFi(U’) >
Fi(U).
By simply replacing contraction independence with individual monotonicity iHigh@f axioms char-

acterizing the Nash solution, the Kalai-Smorodinsky solution is obtained.

The Egalitarian solution In the Egalitarian solution all gains are equal (compare Figlg. All
participants benefit from any expansion of opportunities. The solutior igrity one satisfyinglTho94:
— Pareto-optimality
— Symmetry
— Strong monotonicity: iftl’ 2 U, thenF(U’) > F(U).

R

A

\

Figure 7.2: Disagreement poimt: the
benefitR; of participantj must be higher
than the disagreement point coordindfe d,

otherwise the participant will leave the ne-
gotiation (minimum requirement)SB07, » R
IBO7]. ol

The Disagreement Point A disagreement poird € U can be considered, a solution must then satisfy
R; > d;, otherwise usej would leave the negotiation (see Fig2). The disagreement point was ignored
before, which can be described as disagreement point equal tolterdlash solution with disagreement
point for example maximizep[;(R; — dj). An interesting property which the Nash solution satisfies is
strong individual rationality, meaning that all users strictly gain from commige (gains are larger than

the disagreement point). The Utilitarian solution does not satisfy strongdiudivrationality Tho94.
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7.1.2 Application as Schedulers

The good to be distributed is data rate. The amount of data thaf useeivegiransmits during one
scheduling interval i®;. The allocation of resources is a mapping (according to the selected erjterio

which determines the operating point of the system.

Maximum throughput: Ultilitarian solution  To maximize system throughput, every subcarrier is

allocated to the user for which the channel quality allows the highest datd fegescheduling is:
SmaxTP _ argmaxz R (7.1)
"o

This solution is maximally icient, but unfair: users with bad channel quality (e.g. cell edge usexg)

be completely excluded from communication.

Proportional fairness: Nash solution Proportional fairness is currently the most popular scheduling

criterion. Itis:

SPF = argmax) logR; = argmax| |R; (7.2)
e, o = argmax| |7
Using this scheduling, all users are guaranteed to receive someaesour
Kalai-Smorodinsky fair scheduling Coordinates; of the ideal pointiis the data rate that usgwould

achieve if only he was scheduled on the whole frequency band. Tledglen can be implemented as a

weighted max-min scheduler, where coordinpi® stretched with the factor/a;:

SKS = argmax{min ( R )) (7.3)

U J j.max

If the channel quality of a user improves, he will get a higher data rate wtitioy reduction for the other

users (individual monotonicity). Also here, all users are guaranteezt&ive some resources.

Max-min fairness: Egalitarian solution As the name indicates, the max-min fair scheduler is

S™M = argmax{min R} (7.4)
U J

It is the maximally fair scheduler (all users get the same data rate), but avilisdad channel quality

limits system performance. If the channel quality of one user improvessatswill get a higher data
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rate (strong monotonicity).

Unelastic Traffic: Use of the Disagreement Point Different trafic classes and prioritization can be
included in a scheduler using the disagreement point. Users may have minatairequirements due
to unelastic tréfic — streaming data like VoIP, videos etc. Such a hierarchical ressollwcateon can
also be used in time direction: e.g. longer-term scheduling grants, whicpaatlg used to reduce
signalling overhead, describe unelastidiica The users’ minimum rate requirements can be modelled

as disagreement point before bargaining is applied.

Illustration for OFDMA

The illustration assumes 12 ressource blocks in frequency direction wits8durce elements (sym-
bols) each, and four users. The fulltter model is used (all stations always want to transmit). The users’
channel qualities per ressource block are asuumed independentegmaiability distributions given

in Tab.7.1

Efficiency: Sum throughput First, scenario 1 is considered. The resulting average sum through-
puts of the four schedulers are shown in figit8a The proportional-fair scheduler and the Kalai-
Smorodinsky scheduler lie between the max-throughput and max-min defedifalai-Smorodinsky

scheduling achieves a slightly higher sum throughput than proportiaivaeheduling.

Fairness: Per user throughput Figure7.3bshows average data rates per user for the same scenario.
The max-throughput scheduler never schedules user 1, becatsésthBvays another user with better

channel. Max-min scheduling allocates equal rates. Proportional $aiinghis scenario allocates less

Scenario 1
notusable QPSK 16QAM 64 QAM
User 1 50% 50% 0% 0%
User 2 0% 33% 33% 33%
User 3 0% 33% 33% 33%
User 4 0% 0% 50% 50%
Scenario 2

notusable QPSK 16QAM 64 QAM
all users 25% 25% 25% 25%

Table 7.1: Scenarios for scheduler comparison.
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Figure 7.3: Scheduler comparisdB(7].

differing rates than Kalai-Smorodinsky, which fits to a smaller sum rate (Figg. In cases where
the max-throughput solution is not unique, the implementation gives pretetersmaller user indices,

which explains the high data rate of user 2 and comparatively small datef egercs.

Frequency band sharing The average number of allocated resource blocks per user (notdiséiops
in the frequency band) as consequence of the scheduling done in utditg ¢gata rates) is shown in
figure 7.3c Max-min scheduling allocates on average more than half of the wholeeineglband to

user 1 to achieve equal rates, while max-throughput scheduling igthisesser completely.

Scaling with the number of users Now, scenario 2 is considered. Expected sum throughput is shown
in fig. 7.4a All schedulers take advantage of multiuser diversity (increasing stes véth the number
of users), and of course max-throughput scheduling exploits it mostdiBtance to the max-throughput
curve is 'fairness loss’. In this scenario of equal distributions priopual fairness is moreficient than
the Kalai-Smorodinsky solution.

Average user rate: Scaling of the average per user rate is shownraTigtr The achieved average
rates are very similar in this scenario.

Minimum user rate is shown in figi.4c Note that in another scenario the max-throughput sched-
uler's minimum rate can be equal to zero for user numbers larger thanTdreeimplementation uses

independent scheduling forftérent scheduling intervals. It is also possible to consider achieved rates
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of previous scheduling intervals (scheduler memory), which becomesessity when there are more

users than resources in a scheduling interval.

Mbit/s

! 2 3 4 5 1 2 3 4 5
number of users number of users

(a) expected sum throughput: multiuser diversity and fairness (b) expected average throughput: bandwidth sharing
loss

—e— Max. throughput
—=— Proportional-fair
Kalai-Smorodinsky

Mbit/s

——  Max-min fair

number of users
(c) expected minimum user rate: fairness

Figure 7.4: Scaling with the number of usei8Q7].

Comparison The Utilitarian solution is the only linear solution. As soon as any fairnessioriter
is used, the problem becomes nonlinear. All four schedulers are Rfiietent. It is up to the operator
to decide how much capacity he trades for fairness. Depending on atgonithlementation this could
be adjustable during operation. It would also be possible to provide afeicedo the operator where he
could implicitly choose the scheduling algorithm by selecting his favouredesgrand ficiency rules.
Scheduling according to the Kalai-Smorodinsky solution is an alternativeofmoptional fairness, both
offer a compromise betweeffieiency and fairness. Which one of them is mofféceent depends on the
scenario. Other utility functions are of course also possible, but theyadrepecial in a sense that they

are uniquely defined by a small number of common sense axioms like the gametithsolutions.



7.2. Joint Scheduling and Link Adaptation 115

7.2 Joint Scheduling and Link Adaptation

In this section, uplink and downlink channel knowledge is assumed.

7.2.1 Optimization Problem

Scheduling is performed for MIMO-OFDMA in a 3-dimensional PRB indeseafl ¢ N2,

Variables to optimize:
— matrixu allocating physical ressource block indices to user indices.
— matrixm describing the PRBs’ modulation indices. Same modulation inside a PRB is assumed
— per subcarrier matriw; jx of weight vectors. These matrices also describe the power allocation
(by amplitude of the weight vectors).
— code rate per user. Assuming constant code rate for one user’s ressouisslieduling interval

means uniform puncturing pattern for this packet.

Derived variables:
— SINRy jk after the demapper per user and subcarrier.
— number of (coded) bits per PRB in dependence on modulaim}.

— vectorR of user rates ii#A.

Target function: All scheduling criteria can be written as utility functiobR), which a solution
should maximize.

To maximize throughput, the utility function would be
k
UmaxTP: Z Rj (7'5)
=1
For proportional fairness the utility function iIKMT98]
k k
Upk = Z logR; = ]_[ Rj (7.6)
=1 j=1
For max-min fairness the utility function is

Upmm = min Rj (7.7)
]
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Optimal scheduling means selecting user combinations (per PRB), modulg@m3RB), weight vec-

tors (per subcarrier) and code rates (per user) which maximize the utility:

(u,m,w; jk,c) = argmax U(R) (7.8)

(u,m,w; j,C)
Achieved utility can be determined for one choice of allocation parameters by the followipg; ste
1. compute power per user and subcarrig(w).

2. using channel knowledge, compute SINRs per subcarrier anchysgi(u, w).

3. using knowledge about the receiver algorithm, compute expected nmfturahation per subcar-

rier after the demapper(y, m)
4. compute expected Ml per useér:
5. determine code rate individually per use(n:_), for packet error rate of choice
6. compute expected user raR:= > A B(q) * CGiud;
7. compute utility from user ratd$(R)

It is implicitly assumed that a code block is completely contained in the scheduéag ar

Downlink constraint is a sum power constraint for the base station. The power constraint keag ta

special form, like limitation of equivalent isotropically radiated power (EIRP)

Uplink constraints are per user power constraints (possibly also EIRP).

Additional constraints differ according to scenario, protocol or system. They often aim at reglucin

signalling overhead. Additional constraints may include:

contiguous allocations

same modulation per user allocation

constant power allocation

fixed weight vectors. Applied in downlink, feedback is reduced. kdadlecoupling of parallel

MIMO channels, so that SINR feedback can be independently reppetetdansmit stream.

coding block size equivalent to user’s allocation in one subframe

single MIMO stream per user
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7.2.2 Approximative Scheduling Algorithms

The optimization problem contains discrete variables, so it is a combinatavlalepn. Since exhaus-
tive search needs unreasonably high complexity for larger numbereos,usuboptimal approximative
algorithms are of interest. Algorithms either operate in the discrete variablemoma a correspondig

continuous relaxation.

Discrete algorithms Search strategies for discrete optimization are describgéS83. Since the set

of feasible decisions is assumed too large for an exhaustive searalyarithm tries to avoid looking

at most of the possible decisions. Possible approaches include spacehpartitioning (dimensionality
reduction, e.g. first subcarriers, then power), greedy, informesklbaustive search in subspaces and
iterative local search. For single-user bitloadindH] iteratively assigns one more bit to that subcarrier
where the least amount of power is necessary, which leads to the optilutébiso For multi-user bit-
loading, [YLOO] decomposes the problem by first determining the number of subcamiémsnaount of
power per user, then assigning subcarriers and loading bits with theaHangnethod. InHJLO5 an

iterative algorithm is proposed, which exchanges subcarriers bepadeof users in each step.

Continuously relaxed algorithms Relaxation leads to a Lagrange or Karush-Kuhn-Tucker (KKT) for-
mulation as constrained nonlinear optimization problem. (relaxation mean e.gteigianularity in
modulation levels). Standard solvers are sequential quadratic prograpnumsing active sets, interior
point method or the trust-region reflective algorithm. After the continuolugien, the 'closest’ discrete
solution needs to be found, e.g. using cutting planes and branch and fmanch and cut method).
[KRJOQ relaxes single-user bitloading problem to a linear continuous one arsitfiscbptimal solution
with less complexity tharHH]. For the multi-user caseYBCO07 gives a Lagrange based iterative algo-
rithm, [SAL99] employs a barrier-function based interior point methdd/LM99] minimizes power

for given rate requirements using Lagrange relaxation and iterationtigfysaquirements.

Separation of short-term allocation and longer-term weight adjusment Equal algorithmic treat-

ment of the diferent scheduling criteria can be enabled using a linearizatibhasf weighted sum rate:

k
UR) = > ViR (7.9)
j=1

J

This of course necessitates computation and updates of weighighich can possibly be done in a

different time frame.
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Example algorithm using iterative local search

In this subsection, an iterative algorithm for the multiuser fair schedulinigienoof adaptive OFDMA
systems is described. It uses iterative local search with k-opt switchies @ombinatorial solution space.
The algorithm can be used withftérent scheduling criteria like proportional fairness and max-min fair-
ness, both for constant and adaptive allocation of power to subcesurce blocks. The algorithm
is initialized by a greedy heuristic, which iteratively allocates the resourak lz@lod modulation level
with most marginal utility (allocations are iteratively done in a way to maximize utility fiendncrease
in each step). This gives a reasonably good allocation, but is suboptaoalde of the nonlinearity of
a fair utility function. If adaptive power allocation is used, initialization needalso take the power
restriction into account. After initialization, the iterative local search starteakh step, allocated re-
source blocks are switched between users (and modulation levels), ifdteages the utility function. A
1-opt-switch means taking away a resource block from one user andtaligd to another one (in case
of adaptive power allocation, user and modulation are jointly considefekbopt-switch is a sequence
of k switches. Searching for k-opt-switches would mean higher compleuxitsnay avoid termination in
a local optimum. The algorithm can also be used with a lower-complexity initializatioeetied. The
utility function can be any function of thR;, e.g. max throughput, max-min fairness or proportional

fairness.

Algorithm initialisation using greedy heuristic  Free resource blocks which could be allocated to one
user are kept in a sorted queue for this user. The queue is sortediagdo the marginal utility (utility
increase in case of allocation) of resource blocks. Such a queuetifokgl users, the data structure
worked on is thus a vector of priority queues. To find the (greedy) hest allocation in each step,
the top entries of the user queues are compared. If an allocation is demaathinal utility values in
the queue of the user who got the allocation have to be updated (nonlifeatity allocated resource
block has to be removed from all users’ queues. Updating marginal utilingsaan be accelerated by
considering that there is only a fixed small number of possible values (mohb@dulation levels) per
queue.

Equal power allocation: If transmission power is distributed equally ovacauiers, for a predefined
target bit error rate the channel quality feedback can be directly map@echodulation level. The only
guestion is which user gets which resource block.

Adaptive power allocation: If transmission power can be adaptively dig&thover subcarriers,

each resource block can be allocated to any user with arbitrary modulater{ifenaximum power is
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not exceeded). Deciding about the greedy initialization is not straightafak: maximizing marginal
utility in each allocation step leads to always choosing maximum modulation levethanalvailable
power is rapidly consumed (not all resources can then be used fentisgion). Maximizing marginal
utility per power leads to always choosing the lowest modulation and probphhg power. In any way,

initialization stops when all resources are allocated or when the maximum weached.

Iterative local search using k-opt-switches The data structure used to find a 1-opt-switch is basically
an array. An array entry corresponds to a switch and contains the rakuglity of the switch (diference
of utility increase for new usgnodulation and lost utility of old usgnodulation). After a switch, array
values of the two fiected users have to be updated (again a fixed small number of valuespmrding
to the number of possible modulation levels). To satisfy timing requirements, thienomaxnumber
of iterations can be limited. The algorithm could also be just terminated (aftev#ilalale processing
time) and the result of the last iteration used.

For Equal power, a switch is done if it increases utility. If no such switcloisfl, the algorithm
terminates in this local optimum.

For adaptive power allocation, A switch is done if it increases utility and sedisfie power con-

straint. Changing modulation for a user’s chunk is also considered atigtera

Complexity considerations How does the computationaffert scale with the number of users and

resource blocks?

Greedy initialization:

1. a) Equal power, sort akl queues withg different possible value©(km).

b) Adaptive power, sortO(kmlogm).
2. Find greedy next allocatior®(k)
3. Remove allocated resource block from que@{&m)
4. Rescale values in queu®(m)
5. Loopmttimes back to 2)

The resulting complexity for greedy initialization is th@gkn?).

Iterations:

1. Build array:O(km)
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2. Find switch:O(km)
3. Rescale two users’ marginal utility vectof3(m)
4. Loop back to 2).

Each iteration thus has a complexity@fkm).

Illustration  Equal power allocation: For illustration, scenario 1 from Tallon pagel12is used, with
proportional fairness as scheduling criterion. 5719 scheduling ingeingae been simulated, both em-
ploying the algorithm for constant power and a computationally intensivelséar the optimal solution
(using branch-and-bound). Figuresashows a histogram of the number of iterations until termination.
Greedy initialization achieves good results, in about 50% of the intervalkdeasch is not able to im-
prove the initialization by finding a 1-opt-switch. The algorithm almost alwaysitetes after less than
5 iterations. Essence of the algorithm is utility improvement in each iteration. dijib shows the
average achieved utility in each step, separately for each total numbenatibites until termination. The
final iteration in all cases achieves similar utility values. The better (higher utiigy)nitialization is,
the less iterations are needed.

Average sum throughput in each iteration, separately for each totalerumhliterations, is shown
in figure 7.5¢ The average sum throughput is roughly constant. lterations thustdeatbto higher
sum throughput, but to more (proportional) fairness. The best waysteenrthe question of how far the
algorithm solution is away from the optimal solution, is to compare utility valuesréigibh). Another
way is chosen in figur@.5d The average mean square error (MSE) of per-user rates withctasgbe
optimal solution is shown for each iteration: the distance vector between thar o user rates of the
iteration and the vector of user rates of the optimal solution is computed, andriesseare squared and
summed up to give the MSE. The average MSE is decreasing over iteratfdhs. algorithm would
always find the optimal solution, the last iteration’s MSE would be zero. THigwgever not the case

due to stopping in local optima.
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Figure 7.5: Equal power allocatiot508].

Adaptive Power Allocation: Now a basestation power constraint of 1250 im#ssumed. CQI
feedback is simplified to be the power necessary for QPSK modulation flom@dulation) of each
resource block. The basestation computes necessary powers faAMLEQD 64QAM by adding 6dB
resp. 12dB. Necessary powers for QPSK modulation are modelled gseimdknt continuous random
variables for resource blocks and withfdrent distributions for dierent users. Uniform distribution

in the log-power domain (dBm, decibel compared to milliWatt) is assumed. Thedisteithutions are

shown in table7.2

In the greedy initialization, in each step the resource block allocation with stigherginal utility per

power is chosen. This leads to only QPSK or no modulation of a resourck (dtocase of no remaining
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Scenario 3
User 1 User 2 User 3 User 4

distribution from 20dBm 10dBm 10dBm 0dBm

distribution to 40dBm 30dBm 30dBm 20dBm

Scenario 3, algorithm dfect
notused QPSK 16QAM 64QAM

initialisation 81 119919 0 0
last iteration 53 65074 34997 19876

Table 7.2: Scenario for adaptive power allocatitB0g].

power). 10000 scheduling intervals have been simulated, the numberwfecces of needed iterations
is illustrated in figurer.6a showing an expectancy value of around 13 iterations. Tal#shows the
number of chosen modulation levels after initialization and after algorithm termimatiarifying the
mentioned property of greedy initialization with marginal utility per power and ffexeof the iterative
algorithm part.

The average achieved utility values over iterations and iteration stepsave ghfigure7.6h

Figure7.6cshows used power levels over iterations. After the last iteration, the aleail2BOmW
are fully used. Initially there is low power allocation due to modulation level @waf intitialization.
The lower the initial power allocation is (meaning good channel qualities), thre it@vations are done
by the algorithm.

Another dfect of the initially low modulation levels is that iterations considerably increasemniyp

fairness, but also sum throughput (fig6d), which is diferent from the constant power case (Fd0.
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constant power case (fig.5c Colours correspond
to figure7.6a

Figure 7.6: Adaptive power allocatiofg08].
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7.3 Gains and Limits of Adaptation: Imperfect Channel Knowledge

For joint MIMO-OFDMA link adaptation and scheduling with limited signalling oweaid, channel
quality feedback needs to be quantized, sparse and irregular. Fbtdlegheduling, prediction of the
quantized channel at the base-station is needed. In this section, rmeesticd 3D downlink channel
correlation parameters by the terminals and signalling back to the base statigtiibed, which en-
ables prediction of the quantized channel by multi-dimensional Wiener filtefihg scheme is shown
to improve adaptive choice of transmission parameters and to avoid mis-{talaphae to control lag
[IOB11]. Different schemes of correlation feedback signalling are discussed in tEftimesvariant)

expected throughput.

According to Sec.1.3 time variance of a radio channel is divided into large-scale fading due to
pathloss and shadowing and small-scale fading due to multipath propagdténgés over distance on
the order of wavelength). Large-scale fading is traditionally counteyestiaptation of transmit power.
Adaptation of transmit parameters on a radio link has since been extendsd &xeount for small-scale

fading, e.g. in the form of per-subcarrier modulation in adaptive OFQ¥y/Pg.

Link adaptation as any control loop needs to consider adaptation delapp®owith delay, channel
prediction for adaptive OFDM based on received symbols is descrilgedre[KHO0, MHO2b, SA03
using Wiener filtering or Kalman filtering respectively. Link adaptation eitlodlodvs a channel reci-
procity assumption for time division duplex (TDD) links, or requires a feetthchannel to report the
fading behaviour (closed-loop adaption) and possibly also interferefreduce feedback bandwidth,

channel values can be quantized to yield the parameters of adaptaton]|

MIMO-OFDMA transmission used in modern systems for increased speffiicéncy, further ex-
tends the trend fowards finer-grained adaptation in two directions. INND%Dink adaptation can be
combined with multi-user scheduling to exploit multi-user diversity in addition to tintefeequency
diversity WEQ§. In MIMO transmission, MIMO parameters can be adapted dependingamnel cor-
relation between dlierent antennas-MP*07]. Joint multi-user MIMO scheduling and link adaptation is

described e.g. ilHHAOQ7].

Feedback for the complete channel grows linearly with the number of, wgeits the corresponding
capacity grows only double logarithmicalllAHAQ7] — so further reduction of feedback information is
necessary for joint scheduling and link adaptation. For this reductiageusf SNR thresholds has been
proposed to avoid transmitting feedback for 'bad’ channel resss(Boan04 HAGOO0Y. These thresh-

olds can be adaptive, relative (quality ordering) and individual per. usiHAQ7] evaluates feedback
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thresholds to achieve a sum feedback rate limitation. A further overview of tifeeedback schemes is
given in [LHL*08].

Prediction in the base station is discussedviiKp9, JSAMO7. In [JSAMO7, terminals feed back
SNR values to the base station, which then predicts future SNR values Wing/aner filter, where the
spatio-temporal downlink channel correlation is estimated from uplink trasgonms MKO09] discusses
prediction in the base station based on quantized feedback. It usesdmeéative coding, where the

filter parameters are determined by the base station.

150  Figure 7.7: 2D fading OFDM channel,
quantized to physical resource block
granularity (average squared channel
gaing) [IOB11].
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Gains of adaptation in MIMO-OFDMA transmission derive from the degoéé®edom in mapping
users’ tranmission to physical channel resources: user selection inftegeency and space (MIMO
streams) and choice of modulation, code rate and MIMO mode.

Limits of transmission adaptation are set by the variance of the channetdaniation), delays
(measurement, round-trip, signalling protocol) and feedback overliesdys comprise the risk of mis-
adaptation: wrong choice of channel resource and modulation andgcedireme lead to iffiécient
transmission and high packet error rate. The aim is therefore to balkeedkeck overhead versus$ee-
tive adaptation gain.

A recent commercial adaptation and signalling scheme for FDD MIMO-OFD#given by LTE
[3GP10a3GP10k. Downlink channel measurement uses the pilot symbols for coheremidigdation,
feedback regarding the downlink channel is transmitted over an uplinkkadamannel in the form of
wideband or subband feedback (subband selection either by basa stalip terminal). The feedback
consists of channel quality indication (modulation and code rate), rank {(ndenber of MIMO streams)
and precoding matrix indication (for MIMO stream selection), dependinamsmission mode. Uplink

measurement uses a sounding signal, where the bandwidth and antencameanded by the base
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station. Feedback or sounding transmission are thus a description todfijghie actual space-frequency
guantized channel. Time instances for feedback and sounding are coleaniay the base station, ei-
ther as periodic or aperiodic. Signalling overhead is further reducetthdoypossibility for persistent
scheduling.

So on the one hand, flexible scheduling and link adaptation need chafomeiation for all ressources.
On the other, reduced feedback for MIMO-OFDMA needs to be quahtzgarse, and irregular (ffec
requirements). Collisions of subband and stream selection can occuesdlve these contradicting
requirements as well as the adaptation delay problem, prediction of the aehaliannel is necessary.
For reduced feedback overhead, this prediction should be perfaatrted base station. To enable this
prediction, also channel correlation information can be fed back (whiehges slower than the chan-
nel itself) [OB11]. Prediction (including error prediction) based on non-uniform samgfiegdback)
positions can be performed by Wiener filtering and is an approach to avoiddafgation in wireless

systems covering a wide range of mobility and location scenarios.
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——QPSK 8/16
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——16QAM 10/16
—16QAM 11/16
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—16QAM 13/16
——64QAM 10/16
. ] —64QAM 11/16
Figure 7.8: Packet error rates forfiégrent _, : : ‘ ——64QAM 12/16

. . 10 . N
transmission modes (modulation and co 0 5 SNR[@%} 15 20 _gjgm e
rate), chosen to havalB distance [OB11].

7.3.1 Benefit of Channel Correlation Knowledge

The time-variant channel transfer function is denoted@sj, p), with i OFDM symbol index, ]
subcarrier index ang pair of transmif receive antennas.

For link adaptation and scheduling, the quantized channel accordingualgrity of adaptation
scheduling is more interesting: a physical ressource block (PRB) temdibls,, subcarriers oveN;

OFDM symbols BGP10k. The average squared channel gain (proportional to SNR) of ai®RB

IhGi, . p)I? (7.10)
icPRBt jePRB f
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with t PRB time index and PRB frequency index. The correlation is

EI(G, £, pr) — pg)
g
G+ AL T+ AF, p2) - pg)]

Jyg

Rg(At,Af, pl, p2) = (7.11)

whereg is assumed as stationary random process with mgand variancerg.
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£ 157 Figure 7.9: 20MHz Urban macro OFDM
Al channel’s frequency selection gain in de-
pendence on signalling delay, for fidir-
0.5 5 20 20 20 5 60 ent Doppler spec'Frum shapes and maximum
time offset [PRB] Doppler frequencied@B11].

As in [KLO8], it is assumed here that the correlation is separable into three factors:

Rg(At, Af, pl, p2) = re(At)r(Af)rs(p. p2) (7.12)

Autocorrelation is the inverse Fourier transform of power spectraditle(compare Sedl.3).
r(ADr£(Af) = F*(Sdel(r)Spop(¥)) (7.13)

with Doppler power spectrum spectru@op(v) and delay power spectruBye(r). Common spectra
assumption for the channkinclude Gaussian shape, uniform spectrum or Jakes speddai®d. Pre-
condition for correlation signalling is of course estimation of the correlatiothbyterminal — but high-
accuracy channel estimation by adaptive filtering requires the redeiestimate channel correlation

anyway PLO7, KID10] (Sec.3.1).

To predict the expected valyg, of g on a position {, f, p1, p2) from a vectorf of (possibly non-

uniform) feedback samples, the Wiener filtévig49 is used:

o = (R ) (F = pg1) + g (7.14)



128 Chapter 7. Medium Access Control Aspects

whereR 4 is the correlation matrix of the feedback samples (within filter afi@ar # is the correlation
vector of these sample positions and the position to predictland vector of adequate size containing
ones. The process meay is subtracted from the feedback and added later to the prediction. The

corresponding prediction error has the variartd&IR97]:
02 = 31— TR ) (7.15)

The prediction is quite similar to multidimensional Wiener interpolation filtering for pitottsol assisted
channel estimation as itHKR97] (where in this case there is a non-zero process mean and non-uniform
sampling). For single feedbadR# = 1 andup decreases with the time-direction autocorrelatignt).

With growing time lag between feedback positions and PRB to predict, the medittwn converges

to the process mean, and the error prediction to the process variD8e|{

lim fp=pugq, lim &p = 7.16
At—>ooup Hg At— o0 Ip 79 ( )
8

— MIMO 4x4 (16 antenna pairs)
—MIMO 2x2 (4 antenna pairs)
— SISO (1 antenna pair)

(0]
T

expected relative SNR
N IN

Figure 7.10: MIMO-OFDMA space-frequenc
selection gain over delay for uncorrelated che
nels (20Hz max. Doppler, Gauss spectru 0, 20 20 60 80 100
20MHz urban macro)lPB11]. time [PRB index]

Time-direction autocorrelation

Time-direction autocorrelation @ as described by power Doppler spectrum can be approximated
using a parametric model with few parameters, in the first approximation @mengter) e.g. termi-
nal speed, maximum Doppler shift or channel coherence time (correlditapped to 50%). This is

illustrated with three common one-parametric models. Using the Jakes model, Dsppbtrum and

correlation arePat02:

S(f) = ! L 1F] < fa: r(AY) = Jo(2nfaAt) (7.17)

nfa /1 - (f/14)2
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with fy for the maximum Doppler shift.

The Gaussian spectrum assumption is:

1 _f2 V2 (A2
S(f) = ———e22; ry(At) = g7 V2 (A (7.18)
V2no?2

wherefq is defined ady = o V2, ando is the standard deviation.

For the uniform model it is:
1 .
S(f) = >t [f| < fq; ri(At) = sinq2fyAt) (7.19)
d

For single feedback and time-direction prediction, the expected adaptaiimingiependence on feed-
back delay is illustrated in Figz.9 for different spectra df. Simulation uses the urban macro channel
model BGP0G, a PRB spans.8mstimes 18&Hz(as in LTE). The expected adaptation gain by selecting
the best PRB in frequency direction (compared to channel averagé) feBzero delay. With increasing
delay (round-trip and protocol delay) the figure shows the descehtaimnel average. The three example
models (Jakes, Gaussian, uniform) show littl#etence for the same max. Doppler shift (in the figure
10Hz, corresponding to low mobility, 5 kfh at 2GHz). The figure also shows the expected adaptation
gain over gain for 708z (mediunihigh mobility, 60 knih at 2GHz), which reduces the coherence time
reduced from around 40 PRBs to less then 1 (anti-proportiongy)to

Fig. 7.10illustrates the expected adaptation gain over delay if the best PRB (urbao cwannel) is
selected not only in frequency direction, but also ovéliedent (uncorrelated) MIMO streams (22 fp,
Gaussian spectrum). While the expected adaptation gain increases withntibernof uncorrelated
antenna pairs, the behaviour over time is not influenced — the larger estkgiorease poses a higher risk

for misadaptation.
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o Figure 7.11: Prediction error variance for pe-
0 riodic feedback about best PRB in frequency
100 80 60 40 20 0 direction (every 10 PRB) and example chan-
PRB index frequency direction nel realisation IpBll].

In the following, packet error rate and throughput are determined iardince on signalling (adap-
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tation) lag. Fig.7.8illustrates packet error rates forfidirent transmission modes (of one spatial stream;
modulation and code rate are varied), for a reference receiveritaigor With current rate matching
methods (e.g. §NB*08]), the code rate can be chosen with very fine granularity. With strongngod
(LTE turbo code in the example), the packet error rates show anflfotehaviour in dependence on
SNR: at a threshold SNR the PER drops very fast. The transmission moBes in.8 are chosen to
have a spacing of approximately 1dB SNR.

In addition to the expected mean adaptation gain as in Fig.Fig. 7.12also shows the expected
variance in dependence on delay, i.e. the expected prediction of meanaraduprediction error ac-
cording to Eq. 7.14 and Eq. {.19 (for urban macro channel parameters and a Doppler spectrum
assumption). The expected channel gain for a certain delay described by a Gaussian distribution
N (u(At), o(At)). The figure also contains SNR threshollgg for different transmission modes(1dB

distances). With this, the packet error rate in dependence on delay cetdyrmined as:

PERTmAY = [ Au(AD. o(AD)

q)(Tm — p(At)

) (7.20)

with the tail distributiond. The resulting packet error rate forfidirent transmission modes is depicted
in Fig. 7.13in dependence on delay.

A transmission moden mapsB, bits into a PRB, so the expected relative throughput compared to

modemy) is:
Bm - PER(T, At
TP(m, At) = B PER(, AY) (7.21)
Bm,
Resulting throughput for éfierent modes and delays is illustrated in Hdgl4
5
B A T 8
[ Pt L R
(o)) S . ~——_ e
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Figure 7.12: Mean and standard d 9 ||—transmission mode 3 Rk |
viation of adaptation gain over delay® || Wansmissionmoded) o Teel
. : ——transmission mode 5 =1
also transmission mode SNR threshol -1 1 - 2 m = -
(1dB spacing) [OB11]. time [PRB]

Terminals feed back current parameters of the Doppler spectrum mdbelltase station, so that the
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base station can choose the transmission mode to optimize expected throughgidering the control
lag. Toillustrate the benefit of time-direction correlation knowledge, link tategm for periodic channel
quality feedback with and without correlation knowledge are comparetbwing a (short-term) static
channel assumption (channel correlation not known), the expectedge/throughput in dependence on
delaytj,g and feedback periother is:

tiag+tper

TPutaic(M tiag. tper) = ;— ), TP(MLAY) (7.22)
PET At=tiag

Fig. 7.15shows an illustration.

With known correlation and the same feedback scheme, the averageeskfigoughput becomes:

tiag+tper

TPeorttiag tper) = = Z maxTP(m, At) (7.23)

PET At=tiag

The expected best transmission mode can be chosen in dependendaypwidieh corresponds to the

envelope in Fig7.14
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Correlation in frequency direction and over antennas

There are several reasons for the benefit of knowledge aboutéin@el’'s 3D correlation. First, more
correlation between feedback samples improves prediction accuranpéce Eq. 7.15). Second, with
a growing number of users, the probability of collisions of user-seleatbdand feedback increases —
which necessitates prediction for positions also on other frequencigs atrdtams. In addition, spatial
(antenna) correlation can be used to select the number of MIMO streaifts 8MO mode. For 3D
Wiener prediction filtering, the equation&.12), (7.14), (7.15 remain unchanged — only the filter area

increases in dimensionality.

Fig. 7.11 illustrates the prediction error for 2D prediction (time-frequency, OFDMratel) for
periodic feedback witliyer = 10. Other parameters for this illustration are Gaussian Doppler spectrum
with fp = 10Hz, uniform delay spectrum withmax = 0.5us, and zero signalling delay. For feedback
positions the prediction error is zero, and with increasing distance fredb&ek positions, the prediction

error increases towards process variance.

throughput

Figure 7.15:  Average expected chanr
throughput for transmission mode 4 from Fi
7.12for 10 PRB adaptation delay and 4 PR 0.8 : 5 r 20
feedback periodlOB11]. time [PRB]

rel

7.3.2 Signalling and Tracking

It is now assumed that the terminal performs measurement of the short-timergfdation ofg
over a window in time direction (on the order of coherence time), frequandyangular direction (or

equivalently between antenna pairs) e.g. accordinglt67, KID10].

To include feedback signalling into throughput optimization, the throughasittd be reduced by
signalling overhead. If asymmetric power and energy constraints alectedin an FDD system, then
it is reasonable to reduce downlink throughput by the correspondetpéek overhead on the uplink
(since the frequency split in downliflkplink could in principle be adjusted). Alternatively,fiirent

weights can be given for uplink versus downlink bits.
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Feedback reporting parameters

While the cost of feedback signalling is clear, the benefit is the expectedghput increase with
the additional feedback (expected throughput conditioned on fekdllmesitions). For single feedback
(request and transmission) this can be determined byEtd)@nd (7.21), for periodic feedback directly
from Eq. (7.23. The expected adaptation gain depends of course on the multi-varibbity density
function of the channel (compare Fig.9and Fig.7.10.

Assuming a constant bit rate source and periodic feedback, the fdegbgaod could be optimized
by:

to0Y = argmax(TPeorr(tper) — OV(tper) (7.24)

tper
where the feedback overhead @)() is a hyperbola. A more detailed model may include feedback

collision probability and expected throughput for alternative allocations.

Time-variant channel autocorrelation

Channel correlation changes slower than the channel itself (by defiaitidnvindow-based estima-
tion), so separate signalling for channel correlation and channel gtesithpack reporting is adequate.
While time-direction correlation; is velocity dependent, frequency- and space-direction correlation are
location dependent and could possibly be stored in the base station to igvitlisg.

The maximum Doppler shift in dependence on terminal velocity is
fg=fc- = (7.25)

with f. carrier frequencyy velocity, andc speed of light. Time-direction correlation change due to
acceleratiorié'—‘t’ (assuming same spectrum shape) with acceleration values achieved ligraample
means a slow correlation change which can be tracked by low-rate ¢mmethange signalling.

A different cause of changing correlation can be variation of the spectame shue to alterations of
reflectors and scatterers in the channel (e.g. passing cars, trains).

Different ways of correlation change signalling are discussed in the follavidgilustratied in Fig.
7.16 The urban macro channel and round-trip delay of 10 PRB (5ms) isreskuurther a Gaussian
Doppler spectrum and (non-continuous) changéxadiccording to a step function from 10Hz to 200Hz.

Other parameters are periodic sounding (3 PRB period) and correlatasuneenent delay (3 PRB

for 200Hz). The blue curve in Fig7.16 shows the expected throughput over time for no correlation
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signalling and (short-time) static channel assumption. The red curve shewespected throughput for
periodic correlation reporting with 10 PRB period. As already seen in B8c], correlation signalling

improves the steady-state throughput, which for higiags smaller. With periodic correlation reporting,
the transmission is adapted to the changed correlation after measuremgnadeiage reporting delay

(average fiset of reporting time to correlation change time) and round-trip delay.

Terminal-decided aperiodic update of correlation information

To minimize both correlation reporting delay and overhead, it is desirabledateghe transmit-
ted correlation only when a (significant) change has occurred: this nieanisal-decided correlation
feedback reporting. Terminal-decided aperiodic feedback transmissioires that an allocated uplink
ressource is available (data or control channel). Implementation cannsenission of correlation info
instead of scheduled data, or possibly piggy-back to channel qualitytiegp. Terminal-decided feed-
back dfers an overhead reduction compared to high feedback periodicityzmkdterror rate reduction
compared to updating with low periodicity. The black curve in FidL6illustrates expected throughput
for terminal-decided correlation feedback, which compared to periodieletion feedback avoids the

average reporting delay.

1.4 : :
——no correlation reporting
1.9k ——periodic correlation reporting I
’ _‘ ——terminal—-decided correlation reporting

[

rel. throughput
¢ o o
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i

Figure 7.16: Expected throughput over tin

for step function correlation change (aft 02
10 PRB) and dterent correlation signalling 0 : : : ‘

< 0 20 40 60 80 100
schemesIPB11]. time [PRB]

Notes Jointly considering downlink and uplink, there is an 'information discrepenetween the base
station and a terminal: while each terminal can continuously track the downlarinet the base station
can estimate an uplink channel only on resources where the terminal trafsgatitscontrol or sound-
ing). So the discussed method to obtain correlation information was meastieyrite terminal and

feedback signalling. The channel correlation parameters of downlidluplink are themselves corre-

lated, because changes in channel autocorrelation are caused bynthplsysical reasons (acceleration,
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location). This means both that a terminal can also continuously estimate torretethe uplink chan-
nel, and that the base station could infer downlink correlation parametensuplink sounding (if the
sounding signal is transmitted with low period). Conversion of 2D (spatio-teatjpcorrelation from up-
link to downlink is discussed inJGAOY. Such estimation of correlation information avoids signalling

the correlation, although at the expense of a conversion error @ddguediction accuracy).

7.4 Adapting Receiver Algorithm to Scheduling Parameters

This section considers joint optimization of adaptive transmit and recedgepsing for sub-optimal
(non-ML) receivers, which are constrained in computational powedemonstrates potential gain of
non-equal allocation of receiver computational power to parallel messagferring to chapted for
receive processing, this section deals with optimization at run-time ratheatithsign-time). The op-
timal transmission parameters depend on the receiver’'s computational pawgtraint and its available
algorithms. Specifically the (for block-ML reception capacity-achievingjesfilling transmit power
allocation normally is not optimal in this context.

Optimization of transmission parameters aims at achieving channel capacitypfremswith the
implicit assumption of an optimal (block maximum likelihood) decoder. Fdiedént channel mod-
els, capacity-achieving transmit strategies have been found. The optwual pllocation for adaptive
transmission over a spectrally shaped channel with channel state infanrastfee transmitter (CSIT) is
known as 'waterfilling’ CCB95 Gal6§. Corresponding bitloading algorithms for adaptive modulation
and finite transmission block length are based on a gap model, which dssitrébdistance in signal
to noise ratio (SNR) from the (infinite block-length) capacity in dependemceit error rate (BER)
[KRJOQ CCB91g. Bitloading according to the waterfilling solution has been applied to OFDMsirés:
sion, e.g. for digital subscriber line (DSLKRJOQ) and wireless communication€fy9q. Similarly
for MIMO transmission, the capacity achieving transmit parameters are gliélgesingular value de-
composition and waterfilling power allocation over the resulting parallel ailar{fiel99. Practical
link adaptation schemes with fine granularity adapt not only modulation, butatie rate (for OFDM
described in e.g.NJH024).

Optimization of receiver processing assumes fixed transmission paranietenaptei3 is was seen
that for each receiver function, many algorithm alternatives exist, iptehé the receiver’s Pareto ef-
ficient accuracjcomplexity tradefi was characterized: while the block ML receiver ranges at almost

infinite complexity for practically used packet length, combinations of (itezatilgorithms can approx-
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imate its accuracy with variable computationioet. For given transmission parameters, the optimal
receiver depends on the tolerated complexity.

Several information theoretic models have been developed to charactesizeel capacity for non-
block-ML receivers, notably the-decoder CK81], B-decoder CK80] and d-decoder@N95. These
models consider flierent suboptimal decoding criteria, but as information theoretic models thaegtd
consider computationatiert.

In this section, joint optimization of transmit and receive parameters undeivez complexity con-
straint is considered. Specifically, it is dealt with the following questionsedibe optimial transmit
strategy depend on the receiver computation constraint (i.e. , doe®eit flom the waterfilling solu-
tion)? Is non-equal computation allocation by the receiver beneficiala fiwen channel model, key to
answer is the (Pareto-optimd&4i) relation between transmit power, achievable rate and receiver com-
plexity. It is shown that if modelled with parameters from available algorithmsaanichplementation

complexity metric, it is possible to quantify the gain obtainable by adaptive cotqmaaallocation.
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Figure 7.17: Experimentally obtained performance-complexity-rate tfésleo

7.4.1 Motivation: Experimental Example Relations of Computaton, Rate and SNR
Turbo decoding

In Turbo decoding, computationafffert is variable by the number of decoding iterations — typically
3-11 iterations are used. The code rate can be adjusted by the transmitiaehgeained way using rate-
matching (puncturing) methods (e.gCNIB*08]). Fig. 7.17aillustrates the tradefbbetween receiver

computation, transmission rate and channel SNR for the LTE Turbo dedddéual Information (MI)
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between bit log-likelihood ratios (LLRs) before decoding (decodertinand transmit bits is used as
measure instead of channel SNR, because it is applicable for all modemetars. The surface shown
in the figure is the necessary number of iterations to achB&R < 10°3. The surface is limited by

singularities towards high code rate and low MI before decoding.

Iterative MIMO demapping-decoding

Complexity increase towards a singularity at very low SNR can also be\asban results from
iterative demapping-decoding, like e.g. soft-input soft-output sphereding combined with Max-Log
BCJR convolutional decoding irSB1(J. Here it is referred to the automatic algorithm optimization
method from chapte8. Fig. 7.17breproduces computationaffert and channel SNR of the Pareto-
optimal receiver algorithms for 4x4 MIMO transmission with rat8 Turbo code over a channel with

uncorrelated Rayleigh distributed dheients.
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pendence on rate and SNR. For infinite computation limited
by Shannon capacity.

Figure 7.18: Example Rate-SNR-Computation trafseo

7.4.2 Theoretical Explanation of Potential Gain
General model formulation

For the general model of a rate-SNR-computation relation, the continetasation (continuous
interpolation of discrete sets) is considered. The rate is limited by chanpetitaand can be achieved
for infinite receiver computation. The necessary computatican be written as function in dependence

on SNRy and rater (here the Shannon capacity for the AWGN channel is assumed):

C=1f(RY) (7.26)
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forR<log,(1+7v); C,Ry=>0

For this function, the following properties are assumed (which seem platgibed on the experimental

observations of the previous section):

1. singularities at channel capacity:

lim C=w (7.27)
R,710g,(1+y)
im C=cw (7.28)
N2R-1
2. asymptotes:
im C=Cnhin and ImC=0, (7.29)
y—00 R—0

whereCpin is @ minimum complexity which may be needed for channel equalization.

3. strict monotonicity:
oC oC

— <0 and — >0 7.30
5y SR~ (7.30)
4. second derivatives:
2 2
& <0 and & >0 (7.31)
52y 52R

The inverse function for rat® in dependence on SNRand computatiol© is denoted (it exists due to
strict monotonicity off):

R=f(C.7). (7.32)
and the inverse function for SNRRin dependence on raRRand computatiorC:

y=f(RC) (7.33)

A parameter fit of a model to interpolate experimental data is possible.

Example model

For the following discussion, a concrete model is assumed:

C.R = (+y-2RYe —c0 <@ <0 (7.34)
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with rate:

R(C,y)

max(0; log(1 + y — C))

max(0; log(1 + %’ - C%) (7.35)

with signal powerP, squared channel gaghand noise poweN. The properties from Se@.4.2are met
when assumin@nmin = 0 for simplicity. The function is illustrated far = —1 as example model 1 in Fig

7.18a and fora = —0.5 as example model 2 in Fig.18h

Distributing computation over parallel channels/ messages

Transmission over parallel channels1 < N with different squared channel gaigss considered,
where the problem is power allocation (bit loading) with sum power consiaithreceiver computation

allocation with a sum computation constraint. The following schemes are cothpare

1. transmitter uses equal power allocation, receiver uses equal cdiop@tiéocation.
2. transmitter uses equal power allocation, receiver optimizes computatioatailo

3. transmitter uses waterfilling power allocation (needs channel state infomaa the transmitter,
CSIT), receiver uses constant computation allocation (if subcharerasim unused, the available

computing power is not completely used).

4. transmitter uses waterfilling power allocation, receiver uses equalutatign allocation for the

used channels.
5. transmitter uses waterfilling power allocation, receiver optimizes computdibaation.

6. joint optimization of transmit and receive parameters (needs CSIT awddage of the receiver

accuracycomplexityrate tradeff at the transmitter).

In the following, diferences of the results of these schemes are compared based oniggagehe
computation model. The target function to maximize is chosen to be the sum raie.tHgostandard

form, the negative sum rate is minimized:

fo=- Z R(Ci, P) < min (7.36)
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The sum power constraint, sum computational constraint, and nonviggatinstraints are:

N
hy(PL,...,Px) = Pmax— ) Pi=0 (7.37)
i=1

N
ho(Ci,..,Cn) = Cinax— ), Ci =0
i=1
ok(Pk) =Pk <0; 1<k<N

g(C_Nn)=C.n<0; N+1<I|<2N

This nonlinear constrained optimization problem is a convex optimization profiaf@4]. Con-
vexity of fg can be shown by showing that the Hessian matrix is positive semi-definite Sigivester’s
criterion.

Necessary and flicient for the global solution point are the Karush-Kuhn-Tucker (KK®&hditions

[BVO4]:
2N 2
Vfo+z/li-Vgi+Zvthi = 0 (7.38)
- - Ag = 0 i=1,...,2N
A >0 i=1....2N

named stationarity, dual feasibility and complementary slackness. The valctioh describes the gain

in fo (sum rate) by increasing the power or computation constraint:

V(Pmax, Cmax) = sup f0 (7-39)

For the limit of infinite computing power, the problem becomes the normal wateagflioblem with the

analytic solution BVO04]:
Pmax | 1 _ N o
max y_l _ g VIR N

where the fill Ievelv—l1 is determined by the waterfilling algorithm.

Numerical illustration

Here the transmission schemes 1) to 6) are simulatively compared using theample models in
the following scenario: transmission over 100 parallel channels with imilepe Rayleigh-distributed

squared gainss{ = 1), Pmax = 150,Cmnax = 50 andN = 1. The optimization problems are solved using
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the active set algorithm with sequential quadratic programming. Resultimggeyeum rates for both
models are shown in Fig.19 Referring to the introductory questions, the following can be seen:
— pooling computation allocation to completely use the available computing powenédidiel
(schemes 3-4).
— optimizing receiver computation allocation is beneficial (compare schergs 1-
— joint optimization performs best and shows a considerable potential gaiis iscémario (scheme
6).
— the waterfilling transmit solution with receiver optimization afterwards paréoworse than joint
optimization — illustrating that the optimization problem is not separable (scherges 5-
— adaptive receiver computation allocation has a higher potential beredit the transmission is
not optimized (model 1, schemes 1-2 versus schemes 4-5).
— the waterfilling transmit solution can perform worse than equal transmi¢pallocation (model

2, schemes 2-5).

2) const P, opt Comp 4) fill P, const pooled Comp 6) joint opt
1) const P, const Comp 3) fill P, const Comp 5) fill P, opt Comp power traded.
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7.4.3 Exploiting the Gain in Practical Scenarios

In modern cellular systems there is channel state information at the re¢€8#R, provided by
pilot symbol assisted channel estimation) and quantized channel statematifom at the transmitter
(provided over a control feedback link). Now there is the need to additiodifferentiate whether there
is knowledge about the receiver’s rate-SNR-complexity tréidetdhe receiver (we denote it as RSCR),
or at the transmitter (RSCT). Other scenarifietientiations are uplink versus downlink, reception from

a single or multiple users or MIMO per-stream encoding.
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Measuring and standardizing a practical receiver’s rate-SNR-omplexity tradeoff

Possible transmission rates are given as discrete set of transmissioref@sa(modulation, code
rate etc.). For each choice of transmission mode afidrént SNR levels, the receiver is measured or
simulated for all possible variations of its receive parameters (decodatidtes etc.). For each point in
this discrete parameter space, the receiver's computatifioal is stored (as percentage of its available
computational power) if decoding is successful (definedBR < 10°3). The rate-SNR-complexity
tradedt can be stored in the receiver (RSCR) — as table look-up or as functrampégers.

A selection of such rate-SNR-complexity tradlsocan be standardized as 'receiver categories’. A
receiver belongs to a category if it has more computational power (hessdgercentage) in the complete
parameter space than the reference one. To obtain RSCT, a terminmatreaategory is transmitted to

the base station at system entry.

No RSCR and no RSCT

Normally a reference receiver algorithm with fixed receiver procegssirassumed, no complexity
tradedf. The set of transmission parameters is chosen to have equal SNR sjoathig equal receiver
processing. Fig7.20aillustrates such a a set of transmission modes wifffedint modulation and code
rate, having 1.5dB SNR spacing for unbiased MMSE equalization and® Tecoder iterations (4x4
MIMO, uncorr. Rayleigh).

Receiver, detection of early decoding success and computationgding In modern receivers, at least
the number of decoder iterations is variable. In the case of iterative demgagopdor iterative channel
estimation, run-time optimization of the receiver component computation scheduleaccording to
[EMKO06, ZLNA10] can also be used, possibly also switching of component algorithms. Widxaut
plicit knowledge of the tradef the receiver can use computation pooling for parallel messages. One
example is early detection of decoding success, which is normally possiddedeethe transmitter adds
a checksum before encoding — so the receiver can detect andrdoop@us packets after failed decod-
ing. Decoding can be stopped as soon as the checksum fits after adawear correction decoding
iteration. Another example is transmission only on a frequency subbandDiM@EFSince using only a
subband means transmitting less bits, the receiver has more time per bitdadirdgand can run more
iterations. So after successful decoding of one message, any lefcavguting power (equivalently
decoding time) can be used for other messages. This is applicable in multiplsde as well as in

downlink with single-user MIMO and per-stream encoding.
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RSCR, but no RSCT With RSCR, the receiver can optimize its processing according to the given
transmission parameters. In the numerical illustration from 3ek2this corresponds to the gain from

2) in comparison to 1).

Uplink, receiver computation allocation One scenario is uplink reception at the base station from

several terminals (€fierent transmitters for parallel channels).

Downlink, single-user MIMO with per-stream encoding Another scenario is downlink reception
of several MIMO streams at a terminal (same base station transmits sevesalgas to this terminal over

different channels).

RSCT, but no RSCR

Transmitter, choose transmission parameter quantization for eqal computation Here flexible re-
ceivers are considered, which have the same maximum computational pewer reference one with
fixed processing. Compare again Frg20a as the code-rate is varied, the actual receiver computational
effort (measured per information bit) is not equal: for the shown rates bet®/@6é and 1116, Turbo
decoding &ort with same number of iterations changes with almost a factor of 2. Acagiydior the
same transmit parameters and receive processing with equal computefiiorige.g. variable decoding
iterations), the SNR spacings would befdient. Fig.7.20billustrates variation of BER threshold of
one of the transmission modes with receiver computatiofiattgalso compare Fig7.178. Transmit
adaptation assumes equal distribution of computational power at theeeeeiin the numerical exam-
ple from Sec.7.4.2this corresponds to 3). The set of transmission modes should be chokawveto
equal SNR distance and constant receiver compulfiiogtén order to completely use the available sum

computing power.

RSCR and RSCT

RSCR and RSCT together enable joint optimization corresponding to 6) in theriwal example

(Sec.7.4.2. Scenarios are

1. Uplink scheduling, transmit and receive processing jointly optimized bpdie station’s sched-

uler.

2. Accordingly in downlink, for single-user MIMO with per-stream enicag
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3. Downlink, receivers with dierent computational power. Optimal link adaptation (and scheduling)

is different for receivers with small or high computational power.
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(a) Example set of transmission modes (modulation and c@oeBER threshold of transmission mode varies with receiver

rate) with equal receiver processing (non-equal computic@mputing &ort (also compare Figr.178.

effort) and SNR spacing of 1.5dB.

BER
BER

Figure 7.20: Receiver computation as variable.

Some notes Concrete results depend of course on the actual scenario as weltareHSNR-computing
trade-dt (computational model). As in the case of adaptive power allocation only th&lpe gain (as
difference between equal and adaptive distribution) tends to zero with greméilable power, here the
possible gain tends to zero with growing computational power. The targetidm for multi-user com-
munication may be changed from sum rate maximization to optimization of a utility funmiesidering
fairness between users (Set.l). If link adaptation is done separately from (after) scheduling, it be-
comes similar to scheme 2) of the numerical illustration: after power controsetmetluling, the SNRs
are fixed — only determination of rate and computation allocation remain. Exirecga be achieved
for not fully used system bandwidth. In this case, adaptive computatiocatibtm compared to fixed
receiver processing can provide more flexible link adaptation by partdymiventing rate limitation due
to tranmit power constraints of the individual transmitters. The potential gamistivation for joint
scheduling, link adaptation and computation allocation — exploiting multiusersitiyéilexibly mapping

transmitters to channels) for joint optimization gain.

7.5 Protocol Extensions for Multihop Relaying

Multihop relay nodes provide a means to quickly achieve the needed gevefraew systems with-
out the high costs of fixed network connection of each access nodethémbenefit of relaying is

capacity improvement through higher SNRs. Multihop relaying means routingeoMAC layer. Sec.
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7.5.1considers necessary changes of frame structure and related signétlliriige introduction of mul-
tihop relays. To limit the increase of signalling overhead Ses.2describes aggregation of signalling to
minimize relaying control information. This entails hierarchical schedulingna&ligpg for hierarchical
fair scheduling is discussed in Se&5.3 Sec.7.5.4outlines benefits of tfic (de)multiplexing within

the radio protocol stack, in case multiple network interfaces are availablelaya

7.5.1 Frame Structure Extensions

Cellular systems operate in frequency division duplex (FDD) or time dividigriex (TDD). Com-
pared to FDD, TDD needs transynéceive turnaround gaps — timing advance is not possible in TDD.
The overhead due to these gaps becomes less important with smaller callisidle( round-trip delays).
For relays, TDD has the advantage of cheaper radio frequenciefrds. Relaying needs the inclusion
of a TDD component in the frame structure, also for an FDD system. A fidetdor signal processing
is the impact of transmission times (non-reception) on channel trackingh8ymization becomes hier-
archical: in a two-hop scenario, the relay synchronizes to the base stagaierminal to the relay. An
FDD relay must be able to receive and transmit in both frequency baittiredtly from base stations
and terminals: it behaves in one direction like a base station and in the othertdéikmiaal. Switching
these two relay modes (time duplexing) cannot be transparent to basestadid@rminals (and other
multihop nodes). It must either be predefined in the standard, or dynamsigiiglled, which needs
inclusion in the protocol. One example protocol function which would neegtation is synchronous
HARQ retransmissiondGP09, where HARQ process numbers are derived implicitly from timing in-

formation. The possibility for signalling relay mode switching is describedHidlZ08].

7.5.2 Aggregated Control Signalling

To reduce signalling overhead with multihop relays, signalling can be agigedn the multihop
nodes: terminal-relay connections are hidden within one relay - base statioection- If base station
and relays are not to transmit on the same ressources, additional sigf@lligrdination of ressource
usage becomes necessdBHHO08]. Regarding the uplinks, there is no problem. The multihop relay can
request uplink resources for both itself (transmission to base statioth@mrdnnected terminals (trans-
mission to relay). For the downlink, there is a problem regarding res@liaeations for transmissions
from base station to relay versus resource allocations for transmissionsdlay to terminals. To avoid
that base station and relay transmit on the same downlink ressources, seage®for requests, grants

and CQI feedback between relay and base station for the multihop relaylidbwan be introduced
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[IZHHO8]. Itis possible to use a delay, i.e. to grant resources for later sub$raoradlow for processing
delay in the multihop relay. These messages can be used hierarchicallysa.éorehop counts larger

than 2. As normal bandwidth grants, allocations can be valid for sevarakt.

7.5.3 Distributed Fair Scheduling

If control information is aggregated in a multihop node for the upstream likerdeed in Sec7.5.2
this implicitly means hierarchical ressource allocation: each multihop nodeeéndeptly schedules
the ressources provided to it. Hierarchical (distributed) schedulinguhaspact on the base station’s
('global’) scheduling criterion — it can no longer compute the utility basedsar data rates. A number
of user data flows is hidden behind a single relay data flow. A global sdingdriterion can be achieved
nevertheless by signalling of local fairness information upwards in thedsdimg hierarchylpp07]: the
utility computation is decomposed is the same way as the scheduling decision. dasief max-
min fairness, local minimum rates can be propagated upwards. In the fgas®ortional fairness, the
product of local rates or the sum of logarithmic local rates can be patedg The upstream scheduler

may apply linearisation, i.e. assume constant utility per bit from the last sthgdhterval [[lbp07].
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7.5.4 Multi-Layer Routing

Multi-layer routing is an idea for quick network deployment (coverage) wattuced costipp0§.
In the beginning of deployment, user numbers are small, leaving a largmfraf the radio resources
unused. At first, a few full basestations and many multihop relays caneyael, Later, a relay can
be equipped with an additional network connection, either a fixed line or aflisiglt radio link to the
base station (e.g. with a dish for higher frequencies). This corresgoralpartial upgrade from relay to
base station, saving relaying overhead over the air. Relay nodes cggitzaled to full base stations by

providing adequate lines step by step depending on the capacity requiseshére individual cell. The
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result is a base statigmelay hybrid, with a smooth transition depending on network side date ratey Re
overhead reduction is achieved by splitting the radio protocol stafiict(data and control information)
and partially transmitting it indirectly (not over the air) over IP between relay lzase station. This
traffic splitis a combined MA@P routing for load balancing, whichfiierentiates it from 'multi-channel’
routing (which completely works on the IP layetpp0g. An analogous partial downgrade from base
station to relay is also possible, in case of cell bandwidth extension or dgpd¢waa new standard. In
this case, existing sites and fixed line connections are reused, whichllyoaneacomparably slow (e.g.
DSL) and by themselves would be irfBaient for full upgrade. Tréic (de)multiplexing can be adaptive
to traffic classes and transport delay-sensitiveitaver the faster connection. Hia can also partially

skip the base station and be transmitted directly between a relay with fixed linecagdtéway.






Chapter 8

SDR Testbed

Many algorithms and ideas described in the previous chapters have beeminged and bench-
marked in the testbed described in this chapter. In the other direction, garandescribed in this
chapter have been used for optimization in chapteGec. 8.2 describes the hardware platform used
in the testbed, Sed.3 describes the software platform. Implemented functionality and results are de
tailed in8.4. The PCle form factor demonstrator has been presentddeddy, a demonstration using

Playstation 3 and USRP has been set up in the HHI lab.

8.1 Design Decisions

The choice of a standard bus enables usage of boards which ateedod high volumes (and are
therefore comparatively cheap) and makes the system upgradeahléuferneeds. The demonstrator
consists of &-the-shelf products in the common PCI Express form factor, which pesvidmpetitive
high performance. A workstation mainboard is used as PCle backplangatiorm is easily extendable

using PCle plug-in cards.

Comparison to FPGA-centric design A demonstrator platform based on FPGAs (with DSPs for chan-
nel estimation and computation of MIMO stream separation matrices) has besanfed inJFH05].
Here, a processor-centric platform has been chosen becausarsofiewvelopment as compared to hard-
ware development generallyfers a higher productivity and flexibility. The high computational require-
ments of signal processing can be well met with the Cell processor whighilalale as PCle coprocessor
board. High-throughput network layer and medium access contral pegocol processing can be done

on an IXP network processor, which is also available as PCle commcksard.

149
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Comparison to AdvancedTCA form factor A testbed based on the AdvancedTCA (ATCA) form
factor is presented inJ507. An ATCA backplane &ers more slots and can be used witlfetient
fabrics like PCI Express, Ethernet or Infiniband. ATCA has not l@®sen here because it would have

been considerably more expensive.

8.2 Hardware Platform

A block diagram of the main components is shown in B2 A workstation mainboardAsu] is
used as PCle backplane. PCle 2.0 is a (switched) serial bus with 2/5@8itlane, fiering a raw data
rate of 2GBits bidirectional per lanegAS04. Lanes can be aggregated for higher throughput.

The four plug-in cards used are:

Cell accelerator boardJer]

Network processor board (IXP2350[05

FPGA board (Virtex5)Xil ]

(optionally) 10GBit Ethernet network interface cahdyfr]

A base station should have only one cable connecting it to the networkinlj tlee 10GBit card for
base band sample exchange in a distributed physical layer ('coordimatiéieboint’, 'base station co-
operation’), the demonstrator platform uses two cables to be able to haedbégth network load. A
network processor like IXP28xx would be able to handle the complete loadnlfortunately at the time

of purchasing, it was not available on a PCle board.

8.2.1 PCle Backplane

The mainboard used is an Asus L1IN64-SLI W&(]. It has four highspeed PCle slots: 2 times
x16 (16 lanes, i.e. 32GB# bidirectional) and 2 times x8 (16GR). In the demonstrator platform, the
two host processors (dual core Athlon 64 FX each) on the mainboardrdy used for management
and to provide boot images from the local hard disc to the Cell and netwodegsors. A more recent

mainboard alternative woud bAgu09 — which has 7 highspeed PCle slots.

8.2.2 Cell Processor

Base band signal processing and (de)coding are done completelywasobn a Cell processor.
With up to 200 GFLOP the Cell processotBMO06, IBMQ74] offers considerably higher computational

power than currently available (multi-core) DSPs. It consists of a Powéitacture core (PPE), eight
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Figure 8.1: SDR demonstrator with two radio frequency frontends in tlegfound Hei09.

co-processors (SPE) optimized for single-precision floating point arttbpad on-chip memory and
I/O controllers, connected via the Element Interconnect Bus (EIB), whiokhides a maximum total
bandwidth of 192 bytes per CPU cycleda09. The PPE features a simple dual-issue in-order execution
unit. The SPEs also do dual-issue in-order execution but use an instraetioptimized for multimedia
and signal processing applications, each operating on a local storedhSisting of 256 kB of on-chip
SRAM accessible with a latency of only 6 cycles. Larger data-sets carobegsed by manually issuing
DMA commands for copying blocks of data frgtm RAM, somewhat resembling a software controlled
cache. SPEs have 128 general purpose registers, each 16 byteMadeinstructions use these in a
single instruction multiple data (SIMD) fashion, with single-precision floatingitpaperations treating
each register as a vector of 4 values to be processed in parallel. E&cbaBHssue one arithmetic
instruction in parallel with one lodstore instruction per cycle. Maximum FLOP count is achieved
by the single-cycle multiply-and-add instruction, performing 8 FLOP per SRdEcylce. KDH*05,
IBMO6, IBMO7a, IBMO7c] The Cell structure is illustrated in Fi@.3c The Cell on the Cell Accelerator
Board (CAB) is clocked with 2,8 GHz, all eight SPEs are programmable. OAR is shown in Fig.

8.3a Cell software can also be developed and run on a Playstation 3 (PS3.8iy The Cell on the
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PS3 is clocked with 3,2 GHz, six SPEs are programmable. The PS3 dodsand@le slots (only USB
and Ethernet). The physical layer is functionally decomposed into signaégsing modules running
without operating system under hard real-time constraints on the SPEs,oohtl®l and management

is conveniently implemented on the power architecture core, benefitting fi®fuaztionality.

8.2.3 IXP Network Processor

Network processors (NPUSs) are flexibly programmable devices (norinathe C language) which
have a specific architecture foffieient examination and manipulation of packet headers. They are used
in routers, switches, firewalls, intrusion detectmevention devices and network monitoring systems
[Wik]. The IXP2350 network processor combines a general purposalX$mcessor with a set of four
simple, 8-times multi-threaded RISC processors called microengines (ME33,[JKO3 Car03. The
microengines run small programs that operate on the majority of packetsdth’), while the XScale
is used for exception handling and system maintenance (‘slow path’).mi¢r®engines have an 8K
instruction program store each (40bit instructions). Each microengia@b@ 32bit general purpose
registers, which can be accessed in thread-local or in absolute mobal(fjothe MEs threads). Each
ME also has 256 32bit transfer registers féirchip SRAM, and 256 32bit transfer registers fdi-chip
DRAM. In addition, there are 128 next-neighbour registers in each MEEdmmunication with the
adjacent ME. Two timer registers are available per thrd&®8. A PCI interface allows the XScale
core and the microengines to initiate DMA transfers across the externdd3COther per ME features
are context addressable memory (CAM, 16 entries, 32bit tag, 9bit realue, 4bit state) and a CRC
unit. For MAC and RLC protocol processing the 'Double Espressord@# 05 is used. The board
contains two IXP2350 network processors, clocked at 900MHz artud @gpable of processing 2 GRit

traffic. A block diagram of the board is shown in FBj4h The board has an x4 PCI Express connector,
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(a) Cell Accelerator Board.

(b) Playstation 3.
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(c) Basic structure and capabilities of a Cell CPU running at 2.8GHDH*05].

Figure 8.3: Cell CPU and development boards.

four 1 GBit/'s Ethernet interfaces (SFP) and an additional pair of 100 Mbps Etheorts (used to boot
from an NFS server). Each IXP2350 on the board has 128 MB of DRé&he XScale. The two sets
of microengines both have their own 512 MB DRAM as well as an 8 MB SRANE TXP2350 only
supports PCI (64bit, 66 MHz; 533 Mbps bandwidth), so the board cantalPCle to PCI bridge.

8.2.4 RF Frontends

Bus options for radio frequency (RF) frontend connection includeeR®Er-cable, USB2, Ethernet
and proprietary LVDS signalling. The Cell and the frontend device exghdase band samples (16bit

integer). Two diferent frontends are used.
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(a) 'Double Espresso’ board.
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(b) Block diagram of the network processor bodfl 5.

Figure 8.4: IXP NPU and development board.

2.6 GHz frontend supporting 20MHz bandwidth. The frontend device contains a Virtex5ARG
interfacing and digital up-down conversion. The frontend has a B@e-cable connector (and an LVDS
connector). It was connected to the demonstrator using an x8 PCieabke adapter (PCle plug-in card
from [Ond). The PCle endpoint is implemented in the frontend’s Virtex5 FPGA (x8ep@hd FPGA
memory is mapped into the PCle address space. A Direct Memory Acces8)(Ddtroller is also

implemented in the FPGA, the registers are mapped into PCle address space.

ISM band frontend with USB interface This is the 'Universal Software Radio Peripherdtf] with
USB interface. It was used with the demonstrator (PCle form factorpswwith the PS3 (with 5SMHz
bandwidth).
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Other options Interfacing to RF hardware with digital base band interface can also e uking the
ML-555 PCle FPGA boardXil]. It has an LVDS connector which could be used to connect propyietar
RF hardware. Also several commercial channel emulators supporital digse band interface with
LVDS. The ML-555 hosts a Xilinx Virtex5 LXT FPGA and has an x8 PCle rector, so the same PCle
interface can be provided to the software as with the 2.6 GHz frontendcatdsvas used to implement

an (AWGN) base band channel emulator with the same PCle interface8 8e3.

Figure 8.5: ML555 FPGA PCle board for connecting proprietary raaigdency frontends over LVDS
and for base band channel emulation.

8.2.5 Busses

An overview of the demonstrator’s bus topology is given in Bd. To measure actually achievable
bus bandwidths, a test setup with CAB and the ML-555 board has beaipsethe test setup and
available raw data rates are shown in R#j7, with the corresponding measured performance numbers
on the left. For data transfers utilizing the PCle bus, write transactions initigtéide data source are
preferable over read transactions initiated by the sink. This is due to timenzetyy of PCle writes
versus reads, where reads consist of a two-stage requestsedpmmsaction, whereas writes are simply
transmitted as unconfirmed messages. For this reason, only results feravetpresented. In the target
application with 20Mhz bandwidth and two antennas, the system continuacdjves and transmits
baseband samples at a rate of 2 Gbits per second and direction (62.5 lelgsetond /Q partsx 2
antennasx 16 bits per sample). DMA has to be employed to achieve transfer rates this Ttgh
measured throughput from Cell (SPE) to FPGA with 4 lanes is 4.56B6% raw bandwidth), and
with 8 lanes 7.5GBjs (47% raw bandwidth). For write transactions in the opposite direction fRBG
Cell), the DMA controller implemented in the FPGA is used. Since the target apphtstrafic would
almost completely saturate 2 lanes, each capable of transmitting /&,Gbé& minimum requirement is
a 4-lane-connection. The PCle interface in the FPGA is implemented usimyrésk bufers made of
blockRAMs for the transmit and receive data, and registers fornedd pointers, status and control

registers, test pattern generation control and configuration. All tlegiens are memory-mapped by
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host and Cell processor. Towards the digitagldgevn conversion (or the base band channel emulator),
the ringbdfers have 64bit FIFO interfaces transmitting | and Q components of bothrest@er clock

and direction.
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8.3 Software Platform

8.3.1 Linux on Host, Cell PPE and NPU XScale

The host is running a Linux 2.6.22 kernel, and provides an NFS seovttas the Cell PPE and
NPU XScale can boot from the local disc. The Cell PPE (on CAB as welt@3) is also running
a 2.6.22 kernel, and gcc version 4.3 is used. The PPE loads and staterade SPEs using the
libspelibrary [IBMO7a]. The XScale, being an ARM derivative, can also be programmed usandard
GNU tools under Linux. Development was done on a standard desktopmaeadding a self-compiled
cross-toolchainHIK09]. Compilation of the toolchain was aided by the kernel source code prbwige
[IP 05. The kernel is a patched 2.4.20 kernel that includes many modules fDothigle Espresso board
such as Ethernet drivers and memory mapping assignments that enablecile ¥ access memory on
the microengines’ bus. Additional libraries downloadable fraxa][offer microengine communication
and maintenance functions from within Linux userspace programs. Thpatents map local memories
into PCle address space, so that they can be accessed by other eatspmrer PCle. PCle address
offsets are set by bus enumeration at host boot. Communication between emtspisnexclusively
performed using DMA block transfers to and from the recipient's RAMsheaor JO areas. A ring-
buffer scheme (or multi-tering) ensures that participants can perform data processing centiyr

with transfer of data. Since all communication performed is strictly peer#o-g@® broadcasts), no
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sophisticated synchronization schemes need to be implemented. The 2 natifidht need to be
handled for a one-directional pipe would be request-to-send ang-teagéad. These can either be
communicated via atomic writes and polled reads to locations in RAM, or using DMi&sixto event
notification registers for hardware components that support that maymotironization (such as FPGA

and Cell SPE).

8.3.2 Cell SPE Programming

The SPE is supported by the GNU C compiler (gcc). Tithepelibrary provides a special instruction
set and vector data types for SPE SIMD computatiBiMO07b]. SPE programs are perceived as threads,
with DMA commands to and from system memaory using the same virtual memorysagdras the parent
process by which the SPE was started. The SPEs do not access thegetl,dhey send DMA transfer
requests to their Memory Flow Controllers (MFC, one per SPE). A single DMAsfer transports up
to 16kB. Scattggather DMA with DMA request lists is supported. An MFC is accessible thidhg
SPE'’s registers, which are memory-mapped within tfiective address space — so the MFCs can also
be used by the PPE. DMA is not only possible between an SPE’s LS and, Rdi\iso between LSs
of different SPEs (SPE-SPE DMA): therefore theetive addresses of LS have to be known, which
can be exchanged by the PPE. Time measurement (e.g. for throughmitremaant) is enabled by an
SPE’s decrementer register. Atomic operations and mutexes can be esdtiedibsynclibrary. The
physical layer implementation was compiled using Cell SDK 2.1 with gcc 4.3-20(8/8s replacement
for the included SPE C compiler. Several math libraries are provided byelh&COK. SPE intrinsics, i.e.
basic math and logical operations for fixed- and floating-point SIMD vedaice defined imtrinsics.h
Since C-compilers are notoriously bad at extracting such parallelism frogrgam code, these vector
intrinsics have to be explicitly used to achieve the SPE’s full computationahfi@teThe SIMD math
library (simdmath.h provides advanced mathematical operations like trigonometry and logarithm o
floating-point SIMD vectors. The MASSYV library is similar to the SIMD math lilyrdyut operates on
arrays. Several functions tbvector operate on four vectors at onddgmatrix only works on matrices
of 4x4 floats, Other math libraries diblarge_matrix (for matrices of any size), the standard basic linear
algegra subprogram libraiypblas— of which all routines are implemented for PPE, but currently only a
few for the SPE $ca09— andlibjfft.

For optimized implementation of the physical layer algorithms, the SDK’s math lilsraeee judged
not flexible enough. Using only the SIMD vector intrinsics, an own librapswmplemented. Signal

processing in this library is based on a SIMD vector of four complex fladasa(typec4, real and
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complex 4x32bit vectors). This library provides operations with vectbthese SIMD vectors, with
variable length (e.gc4x4 for 16 complex numbers; operations expanded using preprocessasanac
[KIJO8]. Necessity of this type of matrix-based processing can be understo&uhdpat instruction
latencies. SPE load, store and all floating point instructions have a latéricgyeles, meaning that
although one instruction can be issued per cycle, the results of eactciistrare only available to
other instructions after 6 cycles have passed. If a result is acceadest, eexecution stalls for the
remaining number of cycledBM07al. The C-Compiler tries to reorder instructions for moftaent
execution, but depending on the algorithm, stalls are unavoidable8FBgshows how one iteration of
a dot product routine already takes 8 cycles to execute. This is un&beiusince most of the necessary

signal processing algorithms are expressed in terms of dot producesatidg on large matrices, one

1 load rl = al[0]
2 load r2 = bi[ 0] — )
3 load r3 = a2[0] Figure 8.8: (@)
4 Toad 4 = b2[0] Long latency of
6 cycles leads
1 load r1 = a[o] 6 load rS = as3[o] to stalls for one
2 load r2 = bfo) —— ° load ré = bs[o] iteration of a dot
3 stall 6 cycle latency 7 stall product. (b) The
4 stall 8 multiply&add r0 = r0 + rl*r2 < 3-way parallel dot
6 stall 9 stall product  reduces
5 stall 10 multiply&add r10 = r10 + r3*r4 <4 | percentage of
7 stall 11 stall stalled cycles due
8 multiply&add r0 = r0 + ri*r2< 12 multiply&dd r20 = r20 + r5*r6 -—— tomore parallelism

in the data flow
(@) (b) [K|J08].

can usually extract enough parallelism from an algorithm to make full ustMD instructions while
avoiding any stalls.KBD07] shows how a block matrix based linear equation solver for large matrices is
implemented on the Cell processor, using the SPEs to operate on matricesl&fifix 64 64, achieving

up to 175 GFLOPs on a single Cell CPU. For several instances of small problem sizdlegfiaedion

is more dficient over the problems (solving several at once), e.g. MIMO streparagon on dierent
subcarriers. Parallelism is then created external to the algorithm, makintgtréhan procesd\ data
sets in one runN need not necessarily correspond to the widths of data elements pibbgsbe SIMD
instructions. Adding more than just the SIMD parallelism greatly helps to eeguocessor stalls, as
shown by the 3-way parallel dot product in Fi§.8b. This can be seen as a logical extension of the
SIMD concept. Instead of generating just one instruction for a 4-wagllphmultiply, it is preferred

to have the compiler generate 3 instructions for-& parallel operation. Using standard C syntax,

a 3-tuple structure and corresponding inline functions can be creatgoetate on these data items.
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The resulting programming model can be called 'pseudo-SIMIQE], since from the programmer’s
point of view, she just programs for a very wide SIMD architecture. g/Shpreprocessor macros,
an algorithm implementation can be made independent from the underlyindge$éMD data width
and the programmer can choose the optimal level of parallelism at compile-tige8.8 shows how
the parallelization gradefieécts performance of the 2212 MIMO channel matrix inversion code from
[K1J0g], running on a single SPE. The throughput has its maximum at a paralleligndoprocessing
16 channel matrices in one run. At higher parallelism, the compiler startsajgmgindficient code due
to limited number of registers and probably limits in the compiler’s abilities to analysad¢heasingly

complex data flow.
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at compile-time KIJOS].

Pseudo-SIMD Parallelism

8.3.3 NPU Microengine Programming

The microengines are programmed using a proprietary software deveaibginehich can be down-
loaded without cost fromixa]. The SDK includes an assembler and a C compiler for the MEs. It also
includes an IDE with architecture tool (defining packet processing st@ge tasks) and simulator with
packet generator. MESs’ code is loaded and started over the XScatethsiresource manageibrary.
Typical data plane functionality includes packet classification, segmentatiassembly, packing, ad-
dressing and queueing. For standard functions like packet reagiv&ransmit, amicroblocks library
with optimized microcode is available. The MEs transfer data to and from bcnagenory, SRAM,
DRAM, Media Switch Fabric (MSF) and PCI. Access times for théedent memory types from MEs in
IXP2xxx processors are listed i€fr03: local memory (inside ME, 640 x 32bit) has a latency of 4 cy-
cles, scratch memory and message SRAM (16kB and 128kB resp., grgldbal to MEs and XScale)
are accessed with 80 cycles, SRAMt{ohip) access needs 130 cycles and DRAM-@hip) access 300
cycles. The programmer can explicitly decide where to put data with a type erodifsimple memory

test application has been developed that measures the average acce$artsomatch memory, SRAM
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and DRAM under varying bus loads. The access time for any memory wasune€iato be roughly
constant with respect to reference count, i.e. the number of long- awerds transferred. The time
increases proportionally to the number of threads accessing a given yneggardless of the distribu-
tion of threads among the microengines. A summary of read access timesiustartt reference count
of eight is given in Figure8.10 Write access times are similar. The latencies are used in §dc}
for performance estimation and choice of necessary number of thi@atks plane functionality can be
implemented a pipeline of threads (threads work on the same packet) or lielghraads (threads work
on different packets). Thread execution is non-preemptive. When a thieldd the ME, a hardware
arbiter selects the next thread to run among the non-blocked threadese digetwo compiler modes:
explicit partitioning (EP, the programmer determines which threads on a Mii®sewhich code) and
autopartitioning (AP, automatic ME assignment). In AP mode, there are C lgagedensions e.g.
for determination of packet processing stages, inter-PPS communicadithnapnotation (e.g. critical
path) and storage class declarations (DRAM, SRAM etc). There aeeadeossibilities for inter-thread
communication. Rings (FIFOs) in scratch memory or SRAM can be used, whithe written by any
producefconsumer including the XScale with atomic operations. Scratch memory sugdjorisgs
with atomicput andgetoperations. Another possibility is that an ME writes to the adjacent ME'’s next-
neighbour registers. For threads inside an MEgféectcan be used to write into transfer registers of
another thread on the same ME. Or local memory can be used, global toeadgtof an ME. The EP
compiler mode provides signal intrinsics between threads on the sam#&avedi MEs. Free lists of

buffer pointers are normally kept in SRAM.
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Figure 8.10: Read access time with increasing
, s o 15 20 2 30 bus load for reference count (number of long-
Simultaneous Read Threads or quadwords transferred) of eighdllK09].

8.3.4 TCL Scripting

For more comfortable development, testing and debugging, TCL (Tool Cothhaarguage,J09)

is used. A TCL interpreter is running on the PPE (and one on the Host).d@menstrator is started



162 Chapter 8. SDR Testbed

by logging into the PPE and starting a TCL script. Code loading into the SPEstamitig the protocol
application on the NPU are wrapped in TCL. The SPE signal processinglesoate selected in the TCL
script, and the FIFO adresses are exchanged. The protocol staekisrs®t to base station, terminal or
multi-terminal emulation (Se@.4.4). TCL scripts are also used for testing and debugging and for GUIs
(Sec.8.4.5. The instanciation of SPE signal processing modules as TCL scrip tessamblance to the

receiver description language from chagger

8.4 Implemented Functionality

8.4.1 Modem

This subsection describes Cell implementations of (uncoded) Modem foalitip i.e. MMSE

MIMO demapping, QRD-M MIMO demappping, FFTs and channel estimation.

MMSE MIMO Demapper based on Greville Algorithm

For MMSE MIMO demapping, both the Greville-based algorithm from Se2.3and the Cholesky
based algorithm been implemented and compared as optimized programs oii:thio $fake full use
of the parallel MAC operations, the Greville-based implementation computesadization matrices in
parallel. Completely unrolling the innermost loop of the algorithm allows it to ofdperthe Cholesky
based implementation by up to a factor of 3.7. Comparable unrolling is not poésilthe Cholesky
based algorithm since all loops are of variable length. However, the §kyolmsed method can be un-
rolled along the outer loop when operating on many matrices. In that cak@edarmance is achieved
when working on 16 matrices in parallel, which is still substantially slower thaiGtiesille-based al-
gorithm [KI08]. The results for quadratic matrices are illustrated in Fgd.l For 12x12 matrices, the
Cholesky-based code has a size of 1536 bytes and achieves a utiliZ8tiaét MAC/cycle (of 4 MAG-

cycle), the Greville-based code has a size of 3084 bytes and achietibzadion of 2.53 MAGcycle.

List-QRD-M MIMO Demapper

Here, SPE implementation and benchmarks of the algorithm from352@&are described. The im-
plementation assumes separable QPSK or 16QAM modulation sets and anwgbat of transmit and
receive antennas. For QPSK modulation up to 16x16 antennas andJ&Mléip to 8x8 are supported.
The modulation can be filerent for diferent PRBs (assuming LTE format). Any value for parambter

is supported, and a priori LLRs are used. Set partitioning is not apdhedLLR generation the Max-
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Log approximation is used. If the candidate list does not contain a bit {epdimypothesis, clipping is
applied as inZimQ7]. Implementation uses the library for vectors of complex SIMD vectors.($8c2.
List-QRD-M MIMO demapping consists of QR-Decomposition, M-algorithm search and (clipping)
Max-Log LLR generation. The implementation assumes low mobility and perfofRig&€omposition
only every 5th received symbol vector. Three loops are performe@/petor of) transformed received
symbol vector(s). The outer loop is over the tree layers (transmit arggrtha middle loop is over the
surviving candidates of the previous layer (maxirwBl and the inner loop over all possible modulation
symbols of this layer (node expansion). Sorting the metrics in descendiegisrperformed using the
selection sort algorithm. The benchmarks in F&yl12aand Fig. 8.12bcompare the necessary cycles
per LLR for QPSK and 16QAM for dierent values oM and for tuple types4_t to c4x8_t. The
highest throughput is again achieved witx4_t (16 complex symbols) — throughput compared to
usingc4_t is doubled. Fig.8.12cand Fig. 8.12dshow the complexity increase with larger number
of antennas (using4x4_t). Since the search tree for 16QAM is 4 times wider than for QPSK (16-ary
versus 4-ary), 4 times as many metrics have to be computed and sorted — wehpattitioning, com-
plexity for 16QAM is up to 4 times higher compared to QPSK. Throughput ¥dr@h one SPE on the
CAB (2.8GHz) is shown in dependence bhfor both modulations in Fig8.12e 10 Mbit/s per SPU are
achieved for QPSK foM = 6 and for 16QAM forM = 4.,
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Figure 8.12: List-QRD-M MIMO demapper benchmarks on Cell SRK]].

Fourier Transforms, Channel Estimation and PRB-(De)Mapping

FFT/IFFT are implemented using the radix-4 decimation-in-frequency algorithm highly regu-
lar code structure achieves a high processor utilization: the FFT codsestaround 3.4 MAycle on
an SPE, IFFT achieves 3.3 MAgycle. For length-2048 FFT on the PS3 (with 3.2 GHz) this corresponds
to 118807 FFTs per SPE. 2048-FFT computation for 20MHz 2x2 MIMO utilizes an SPE to. 2Z0Ban-
nel estimation assumes the LTE 2x2 downlink pilot pattern. For higher nunib@ngmit antennas, this
pattern is extended with the same pilot density. The implemented channel estinigtiotnen follows
[SJ0§: 1D static Wiener filtering and SNR estimation with subspace method. The itaégromatrix

is chosen according to estimated SNR from a precomputed set of matricage bisthe SPE’s LS for
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Program Component Size KiB] LS usage
data bifers 187.5 2%
free space (available for30.2 118%
stack, heap)

channel inversion code 15.9 286
C runtime library 10.5 4%
constant matrices W, u for in- 6.2 24%
terpolation and SINR estima-

tion

channel interpolation and4.4 17%
SINR estimation code

DMA communication code 1.3 .B%

Table 8.1: LS memory utilization of SPE for 12x12 MIMO channel estimation apkzation KIJOS].

uncoded modem benchmark cyclegslot  MBit/s
SISO, 1024-FFT, no equalization 249422 292
SISO, 1024-FFT, with channel estimation and equalization 347206 210

MIMO 2x2, 512-FFT, with channel estimation and MIMO MMSE equalization 5&8&3 199

Table 8.2: Time domain loopback through emulated AWGN channel on one SP&3pusing 64QAM.

channel estimation and (Cholesky-based) MIMO stream separatior2xd2IMIMO is shown in Tab.
8.1 The code for symbol mapping, PRB mapping and pilot insertion achiev&® 68symbolgs for
64QAM on a PS3 (4% utilization of one SPE on PS3 for 20MHz 2x2). PRB geing and 64 QAM
per-stream soft demapping achieves 214,7 Msymni®@l1% utilization of one SPE on PS3 for 20MHz
2x2). Uncoded MMSE MIMO modem benchmark (time domain loopback thrdozgie band channel

emulated in SPE) results are shown in Tal2

8.4.2 Error Correction

Error correction decoding is a computationally very expensive partir@iegs receivers. There are
several papers on software FEC implementations for SBRO[] presents a UMTS turbo decoder (two
concatenated 8-state convolutional decoders) on a 933MHz Pentiumsésgor. It uses single-precision
arithmetic and achieves a throughput of 366fBjter iteration, running up to 14 iterations. Memory
usage is 200kByte LMM *06] presents an implementation of the UMTS turbo code achieving 2MIBit
on a 400MHz 32bit DSP (using SIMD instructions). Other software implentiensof this decoder
achieve 1.8MBjts on a StarcoreMGWO03] and 1.48MBifs on an Xtensa based processeiW03.
[GZCF09] presents a WIMAX Turbo decoder implementation on the Cell, which achiedesihps on
an SPE running at 3.2 GHZ=§S1] describes an LDPC decoder implementation on the CeAFF02
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presents a comparison betweefftatient decoder algorithms implemented in software, regarding the
needed processor cycles per decoded bit on X86 and PowerPalgamgose processors.

This subsection gives details about SPE implementations of a 64-state cisfodé/iterbi decoder
(like used e.g. in IEEE 802.11a) and an 8-state BCJR and Turbo detiddensed e.g. in LTE). The
implementation runs on one SPE. Parallelization is done in a way fiiatatit SPEs concurrently process
different packets. The decoder uses only registers and the local stereh® Cell Element Interconnect

Bus (EIB) only LLRs as input and decoded bits or LLRs respectivelyudigut are transferred.

Convolutional encoder

The discrete convolution can be written in time domain in matrix form or in (shiftAsficem domain
with generator polynomial. For encoding in hardware, a shift register wiietd binary delay elements
and an exclusive or (XOR) combiner like in Fig.13is used. The stream of information bits is entering
from the left into the shift register. The shift register has 1 binary delay elements and additional taps
before, between and after the delay elements. Altogether theletams. The generator polynomials
declare which taps are connected to the XOR-combiner. The value of #iesigaificant bit (LSB) of
the generator polynomial number is representing the connection of theelagtelement. In Fig8.13
the LSB of both generator polynomials are one. The upper XOR-comlapegsents the first generator
polynomial 17%. At the output the two resulting bits are concatenated. The shift registatiaized
with zeros at all binary delay elements. After the last information bit enténedshift register may be
flushed withL — 1 zeros to bring the register to a predefined end state with generatfhg-2) tail-bits.
Software implementation might use a register and shift operations, but Higloeighput necessitates

using iterative table look-ups for partial bit sequences of certain length.

information bits

encodeg bits
A v

A 4

Figure 8.13: Encoder shift register for 802.11a generator polynorrds(133%), code rate 2, con-
straint length 7\WKI08].
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Viterbi Decoder

The Viterbi algorithm finds the minimum weight path through the code trellis (tb&iele tree). Im-
plementation is for a rate/2 code with constraint length 7 (trellis with 64 states) and uses soft decisions
with 16bit integer values for the metrics. The algorithm consists of two phasdise first phase, path
metrics through the trellis and information about the most likely predecessacbfnode are computed.

In the second phase, the minimum-weight path is traced back beginning feofeitiher predefined us-
ing tail-bits or most-likely) end node to obtain the information sequence. If ieeret enough memory
available to hold the trace back information for the complete packet, the twephas performed on
parts of the packet (truncated Viterbi), which potentially leads to a slightracg degradation {C04].
As example decoder parameters, the generator polynomials of the 80tddard, 174 and 133, are
used (binary representation is 1111001 and 1011011). In the implemaeritegiodefine the shiie mask

for branch metric generation and the fflmimasks for Add-Compare-Select (ACS) implementation. The

branch Q. : : P P P :
.°—'°<4’<5 \557“557"5
N : P VSN
P g, iifii AN
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Figure 8.14: Convolution trellis with packet sik& and constraint length [WKI08]

trellis contains two sorts of information: on the one hand the path metrics desctiie distance be-
tween the received coded sequence and paths through the trellis (ootk) vand on the other hand the
most likely predecessor of any node in the trellis. The latter can be thotightaoseparate predecessor

trellis and constitutes the trace back information. The path metrics are compugbdhyelevel (state

transitions) as sums of branch metrics.

Compute branch metrics: the squared Euclidean distance (regardingshiop® as dimensions)

between the received code symband every possible symbbl(branch word, Fig8.15 for code rate

1/N (here:N bits branch word) is:

N-

dE_Z(rn bn)? Zr — 2rnby + b3) (8.1)

n=
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Figure 8.15: Four state trellis (generator polynomial 7;5, code yajgWKI08].

Considering the constant value (energy) of the squared terms, fifisient to evaluate only the middle

(dot product) termslJC04]:

N-1
n=0
For code rate 22 this becomes:
d=-rgbg—rib; (83)

Thus, the branch metric can be computed with an Add operation. With codk/Batieere are only four
possible branch metrics, where two of them are just inverses of the otbeiltvese four branch values
have to be calculated per time instant. Afterwards they are distributed to ferforéimch word. The
structure of this mapping to the branch word can be precomputed. The impltineruses a stifie
mask as parameter for the SPE instructpa_shuffle to permute vectors. With 16bit metric values,
eight values can be stored in one SIMD vector (8*16b#8bit). For high SPE utilization, 16 received
symbolsr are computed in one call (the information word contains an integer numbsytef)b The
branch metric values are computed by equaBdh Afterwards an unrolled loop is used to perform
the following steps: distribute branch metric with precomputedishunask, perform ACS butterfly

operation to compute path metric, and store bit of most likely predecessor.

................................................................. data f|ow>

il /7 N\ m] /21 [fml /a0 Rl

0 0 ' 0 0

q[m-l] 1.1 Add gm] Shuffle/ g [m] Select R [m] eIen;ents

o aml” /22 gl /7
qs[m] Shuffle/Jq [m][ \Compare

register] 2 3
o

v 8

Figure 8.16: Implementation of ACS butterfly operation by Add4BeuCompare-Select instructions.
Calculation of path metrip of time instantm by sum of path metrip[m — 1] and branch metrid[m]
[WKIO08].

Compute path metrics, Add-Compare-Select operation: the path metrics afdtessor nodes are
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computed by summing the actual branch metric and the path metric of the supatlor The nec-
essary operations for each level are therefdkdd branch metrics to path metric€omparethe two
metrics of the arriving paths in each node a®electthe better one (survivor path). The path met-
rics are computed on the fly and kept in registers: there is only one vecpatio metrics necessary
which describes the actual computed time instant. The ACS butterfly operatitd {06] is imple-
mented as a\dd, Shyfle, Compare Selectoperation. Shyfle is a permute instruction and used for
permuting the path metrics in enumeration order. This allows for 4x SIMD phpatheessing of the
ACS butterfly operation. Path metrics are kept 8x parallel in the 128 bitteegisACS implementa-
tion with SPE intrinsics is illustrated in (Fig8.16): the branch metric is added witkgu_add(p,d))

to the path metric of the predecessor node. Since every node has twingutganches, two dierent
branch metrics are added to the predecessor path metric. They areisttwedlifferent vectors. The
two vectors are permuted witlBfu_shuffle (et Pright , pPattern)) to order them according to their
branch numbes, (enumeration order) and for the following constraint to be fulfilled: the efgmé
first returned vector and corresponding element of second retwewdr have the same state number
s = ssmod2-1). spu_shuffle has to be performed twice, because it returns just one vector. Both
vectors are compared with each otherspy_cmpgt (Pieft, Prignt) , Which returns a compare mask. Bits
of the returned vector are set to one if the corresponding elemeand;iris greater than the element in
Pright- sSpu_sel (Peft, Pright » compare mask) returns the elements with smaller path metric. This vector
represents the path metric of the actual time instant and replaces the path m#teqeevious time
instant. For the 64-state trellis, path metrics for one time instant are stored @& S82MD vectors.
This leads to high parallelization gain by reduced latencies: these eightvectindependent and so
is the ACS operation on them. Loop unrolling enables the compiler to exploit tiis @& course loop

unrolling also blows up the generated code and so the used memory in thsttoeal

Update trace back information (predecessor trellis): The result oS#lectoperation (survived
predecessor node) has to be stored in a predecessor trellis to latler eaed back. The information to
be stored is one bit for each node (since every node has just twocesstes). The predecessor trellis
is built in local store. 64 bits are used for all 64 states, so that in a 128tibvevo time instants of
the trellis are stored. This is the only data structure in LS, all other variat@egmporary and kept in
registers. The most likely predecessor node was already computed dmyntipare intrinsiGpu_cmpgt.
Elements with a zero indicate that the node with the smaller state nusib@y 2] is the survivor node.
Otherwise(Ls[m]/2] + 2-72) is the state number of the survivor nodepu_gather (compare mask)

extracts the LSB of every element and return them concatenated in onerietegent. This has to be
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Program Component SizeKiB] LS usage
data budifer for predeces- 48.3 188%
sor trellis

Viterbi decoder machine 13.3 52%
code

C runtime library 5.2 D%
path metric shfile masks 0.4 2%
free space 215.7 8%

Table 8.3: Local Store memory utilization of implemented decoder (802.11aguaighand MLD for
packet size of 6144 Bit)\W/KI08].

performed for all compare masks. The final vector with the information aheusurvivor nodes results
from merging the computed vectors to one SIMD vector. Two time instants amedsito one SIMD

vector (two time instants, 64bit*2128bit).

Path trace back: the decoded bits (information bits) are obtained as patighhttee predecessor
trellis. Trace back starts either when the trellis is built completely up to the ené pittket, or it starts
earlier due to limited (trace back information) memory or limited tolerable processilay in stream
processing. Trace back from the end of the packet starts in the defigedode when tail-bits are used.
Trace back starting somewhere in the middle of a packet starts from thewithdbe best path metric so
far (truncated Viterbi). This is suboptimal, but the trace back path coesdmthe optimal path after a
certain length. Therefore, the first decoded (traced back) bits atesad, and the subtrellises for stream
decoding overlap. It is common to trace back for around five times the edmsiength before using
the obtained information bitd {C04]. At the end of every decoder function call, the trellis memory is
checked. If the memory is full trace back is performed. Obtaining the ndttielre smallest path metric
is a compute-expensive operation. It can not be parallelized in vedtomatics. The available trellis
memory can be defined as parameter, but should fit in the local store.tB@loeal store is comparably

large, also large packet sizes with over 10kB can be supported with Miridrmance.

Implementation results: the performance of the decoder implementation depethdssize of mem-
ory used in the SPU local store. Usage of the LS shown in 8a®. Due to loop unrolling and inline
function usage, 13,3KiB are occupied by the decoder code. Thissimdes of course scalable. The
allocated memory for the predecessor trellis can vary between 3KiB aiR0@hich is influencing
the speed of the application and the MLD performance ftiedknt packet sizes. Fi@.17 gives a de-
tailed view on the dependence between predecessor trellis size andnzerée. At small local storage,

8 Mbit/s performance are lost, but already at around 20KiB memory for the tr20i48(data bits per
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trace back), almost the maximum throughput of 33 )b achieved (with 2.8GHz, on CAB). Assum-

340 T T T T T T T T T
decoder with trace back length of 40 bits —+—
330 b ‘ ‘ ‘ ‘

3000 ||

throughput (data bits) [Mbit/s]

Figure 8.17: Throughput of decoder de-
280 A A T pending on tr_ellls memory usage. (gener-
0 5 10 15 20 25 30 35 40 45 50 ator polynomials 174, 13%). Benchmark
used local storage [kB] for trellis on one SPE on CABWKIO08].

ing optimal parallelization without latencies and 16bit metric values, branch neetriputation takes 16
cycles per decoded bit, ACS-butterfly takedB+2 - 8, and predecessor trellis operationsdd-2+1. So
a minimum number of 79 cycles per decoded bit are requingID8]. Some operations like sfile can
be performed by both of the independendt SPE pipelisps_(s1 andspu_slqw instructions). So with
the additional hypothesis of optimal distribution of the operation on both SRlipgs, 40 cycles per de-
coded bit is the theoretical maximum performance on one SPU. The preésempiementation achieves
85 cycles per decoded bit by 50KiB local storage and 40 KiB trace lmmkh, which corresponds to
47% of the maximum. INFAFF0Z the hand optimized assembly Viterbi decoder takes 108 cyites
on a Pentium Ill with SSE optimization (128bit wide). Performance of thegmiesl implementation
could be further increased, for example by reducing the path metric nuioipeat to 8bit. This may
necessitate changes in normalization. Currently the path metrics are normalcathin distances by

subtracting the path metric of state O from the branch metric.
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Bit Error Rate (171g; 133%)) [WKIO8]
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Turbo Decoder

An 8-state Max-Log BCJR decoder and QPP Turbo (De-)Interleawemaplemented, with LTE
code parameters. The BCJR algorithm formulates the probability of statéitans the trellis from

states’ to sat time instant given received sequenceaising Bayes’ rulellC04):

p(s,sr) P(S, S, Mal, Fs1)
p(re11S)p(s. ri1s)p(s’, ri<r)

Bir1(syi(s, ai(s) (8.4)

with forward path metriar, backward path metrig and branch metri¢. The decoder traverses the
code trellis both in forward and backward direction, computing the fonaacdibackward path metrics
using Add-Compare-Select (ACS) operations. The presented implemeandgtin uses 16 bit integer
arithmetic, allowing to compute metrics for the 8 trellis states in parallel by using tBebit2vide
SIMD operations (816bit= 128hbit). The ACS operation using Add, Sia, Compare and Select SIMD
instructions is illustrated in Fig8.19 The implemented algorithm has two phases. In the first phase,
a loop concurrently computes forward path metrics for the first half of deket and backward path
metrics for the last half (using a forward moving window on the trellisdpand a backward moving
window for 8 computation). Normalization is performed by subtracting the path metric of stateD f
all states’ metrics in certain distances. At the end of the loop, forward ackinard traversal meet in
the middle of the packet. The maximum size LTE packet consists of 6144 infiomiats, which needs
6144 8 « 16bit = 98kB memory for path metrics in LS (48kB far and 48kB forg). In the second
phase, a loop continues the bidirectional traversals and computes AR®-ILLR reconstruction uses
Compare, Select, Skie and Subtract SIMD instructions.

With the same generator polynomials, the BCJR is around 3-times as complex \isetheé al-
gorithm (assuming about equal computation@t for forward metric computation, backward metric
computation and APP-LLR computatiobQ04]). When reconstructing also the parity bit APP-LLRs, it
is roughly 4-times as complex compared to Viterbi.

The implementation achieves 23 cy¢lesxcLLR on one SPE, which on the CAB corresponds to 140
MuncLLR/s.

The QPP interleaver implementation exploits the the fact that QPP interleaecke@brizable
[NimO08g]. It uses a window size of 8 LLRs, matching the 128-bit operand sizedMDSnstructions.

To output one interleaved window, 8 source windows are loaded, ufiset® computed from the QPP
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polymomial, implementing the inter-window permutation. Intra-window permutation is pleeformed
using Shifle and Select instructions using the constant intra-window permutation pH&&B09].
The (de-)interleaver implementation achieves 2.6 cytldR.

With 8 iterations, the resulting Turbo decoder achieves 17MuygBit one SPE on the CAB (com-

pare Tab8.4).

[P0 [ p1[p2]p3[p4]p5[p6[p7 [p0]pl[p2][p3]p4]p5][p6][p7]
+ Add
[b0 [ b2 [b4 [ b6 [ bs [b10]b12][b14] bl [b3 [ b5 [ b7 [ b9 [b11][b13]b15]

Shuffle
Compare Figure 8.19: ACS but-
Select te_rfly With SPE instrin-
[p0 [P p2]p3 | p4[p5 [p6 [p7] sics [bi0g].

8.4.3 Hybrid Iterative Reception

An iterative receiver is obtained by concatenating algorithms from thequegubsections: MMSE
channel estimation (1D Wiener Filter), MIMO MMSE stream separation (iBedvased) and demap-
ping, QRD-M MIMO demapping and Turbo decoding.

To achieve realtime throughput for a broadband configuration, a 'minbduweceiver with (only)
one outer iteration, a small number of turbo decoder iterations and a smalldéds u

In the first demapping step, there is no apriori information from the deca therefore MMSE
demapping is performed (as proposeddimj07]) — which has a very low complexity and performs well
at low SNR. The LLRs obtained by (Max-Log) soft demapping are thendrsat by two Turbo decoder
iterations. After that, another demapping step is run using breadth firstdaeeh with the M-algorithm
(with M=3), taking the obtained information from the decoder as apriori informatioreiccount. After
the M-demapper, four turbo decoder iterations are run.

The granularity of loop unrolling and parallelization in most algorithms is onesighl/ resource
block (12 subcarriers times 7 OFDM symbols). Multi-user MIMO witlffelient modulation levels on
the same resources is supported.

Performance of this receiver is illustrated for QPSK, 16QAM and 64QAdvigmission over 4x4
uncorrelated Rayleigh fading (for perfect synchronization and mélagstimation) in Fig.8.20 Per-

formance would of course increase with lardérlarger number of Turbo decoder iterations and larger
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Function Benchmark result

2048-FFT 118807 transforiis (3,4 MAG-
cycle)

Channel, SNR, CFO estimation, MMSE equalization, CFD42,6 Msymbgks  (78.52

compensation MAC/symbol)

Resource block demapping, soft demodulation (f@14,7 Msymbolgs

64QAM)

maxlogBCJR decoder 22.8 cyclescLLR, 140.0
MuncLLR/s

QPP (de)interleaver 2.6 cycled LR, 1210.2 MLLR/s

QRD-M algorithm, 4x4 QPSK M3 82.4 cycled LR; 38.75 MLLR/s

QRD-M algorithm, 4x4 QPSK M8 259.1 cycleA LR; 12.32 MLL-
R/s

QRD-M algorithm, 4x4 16QAM M3 (no set partitioning) 129.9 cyclkd R; 24.58 MLL-
R/s

QRD-M algorithm, 4x4 16QAM M8 (no set partitioning) 616,7 cyclkd R; 5.18 MLLR/s

Table 8.4: Benchmark results on one SPU on CA8YBO09].

number of outer iterations.

In the presented implementation, the QRD-M detector for QPSK wi#tB N4 computationally al-
most as expensive as 2 Turbo decoder iterations. The computatfforafer 16QAM with M=8 would
correspond to 12 turbo decoder iterations.

On the other hand especially the M-demapper cdtBr®room for improvement: it supports variable
number of antennas, variablé and variable modulation size. The demapper code could be accelerated
by hard coding a special case (like 4x4 QPSKs3), which would allow for optimized register us-
age. The complexity of the M demapper could also be reduced for higher#eodulation by using
modulation set partitioning (with a slight accuracy degradation).

Processing 10 MHz in this configuration requires at least 8 SPEs ruani@d3GHz, processing

20MHz requires around 13.

8.4.4 Medium Access Control and Radio Link Control

The protocol stack functionality implemented on the NPU allows for adaptive msgii-transmis-
sion with fair scheduling (adaptive to channel qualities and bandwidth déshamowards the physical
layer, a physical downlink shared channel (PDSCH), physical ugliaked channel (PUSCH), physical
downlink control channel (PDCCH), and physical uplink control aretPUCCH) are currently present.
On the MAC layer, transport blocks (data) are transferred betwee@ btities via the downlink shared

channel (DL-SCH) and uplink shared channel (UL-SCH). Finallgheaser has (at least) one logical
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4x4 uncorr. Rayleigh fading, K=1024
T T T T T T T T T
—o— QPSK
—e—16QAM
—a—64QAM

7 Figure 8.20: Accuracy of hy-

brid iterative receiver over

4x4 uncorr. Rayleigh chan-

6 18 20 nel Wlth perfect channel esti-
mation [KWBO09].

channel, the dedicated ff channel (DTCH), in both the uplink and the downlink to carry usefitra
between RLC entities. The control channels (PDCCH and PUCCH) addarsecheduling requests and

grants and channel quality feedback information.

The control plane schedules user data and processes the controelshalhe scheduler adapts to
channel conditions based on CQI feedback data from the user termii@snanagement plane allows

clients to connect to the live protocol stack via TEPe.g. to view the measured data rate for each user.

Data plane packets are assigned headers with logical channel identfieegttion identifier), ARQ
sequence number for repeat requests and reordering, as welgtsad@a framing bits for fragmentation
and packingconcatenation (to form transport blocks of adequate length choser lsglieduler, and to

allow data reconstruction).

The software is implemented in three branches: one is the base station pstag&dincluding e.g.
the MAC layer scheduler), the second one is the terminal protocol stakhitid is a multi-terminal

realtime emulator for testing of the base station implementation.

The software further has two modes: in the normal mode, trafrecgive queues (with in-band
control for the PHY) in DRAM are exported to PCle address space ande written by the Cell. In
standalone testing mode, instead of the PHY connection the physical tharmtinneled over Ethernet
beween MAC entities (physical channels are then separatedfieyedit ethertype field entries in the

Ethernet tunnel header).

The data plane is functionally decomposed into a pipeline of microengine threadntrol and

management plane are implemented (multi-threaded) in Linux user space o8d¢hkeX
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Worst Case Req. Parallel

Block ME Line Rate Threads

Network RX 0 550 Mbps 2

QM Enqueue 0 504 Mbps 2
Segment¢QM Dequeue M0 401 Mbps 3
PHY TX 1 369 Mbps 4
PHY RX 2 550 Mbps 2
Reordering 2 360 Mbps 2

Reassembly 3 213 Mbps 1
Network TX 3 369 Mbps 4

Table 8.5: Estimated worst case line rate for functional bloERK(Q9].

Design and Implementation

Performance considerations The multithreaded architecture of the microengines allows to divide the
data plane into a set of independent tasks. For example, one stagesd&epackets, the next stage
inserts them into queues, and a third stage forms packets of adequaterdimn$mission based on

a scheduling decision (segmentation, concatenation, fragmentation).lctata the processing time
available to each stage, first the packet arrival rate is defined. d@ievlae network side, Ethernet payload
size can vary from 46 bytes to 1500 bytes, leading to a total of 84 to 15&8 Ipgr frame including
preamble and interpacket gap. With 1 GBit line rate, maximum arrival rate edect to packet size
varies between /b7Msand Y/12us. This corresponds to a maximum number of 603 or 11070 cycles
per stage respectivelfH]K09].

The second major performance consideration is that of memory bandwidéhmitroengines have
shared access to three types of memory on the Double Espresso boardnyiitiy capacities and access
times (compare Fig8.100n pagel6l). 512MB of DRAM are intended to hold packetfbers, 8MB of
SRAM store packet handles and other frequently used data, and 168t gcratch memory primarily

support interthread communication.

Data Plane Functional Blocks and Thread Assignment The data plane’s tasks are broken down into

a set of processing stages to be implemented on the microengines. An estintatenofrst-case line

rate for each block is given in Tab&5 based on memory access time measurements, and the required
parallel thread count is mainly determined by dividing 1000 Mbps by thetveaise line rate. The blocks
communicate by scratch rings (circular FIFOs) except where notegadlkrare distributed as evenly as
possible among the microengines and as dictated by use of the next ndiglsbatich allows icient

transfer of data from microengiré to microengineN + 1.
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Ethernet Drivers  The gigabit Ethernet port used for base station communication with the rketwor
requires RXTX drivers which transfer network data to and from the microengines.sblurce code for
a simple pair of drivers is presented 03 and was adapted: in particular the TX driver was modified
to deal with the quadword alignment present in the DRAM where packetisiatared, enabling the
transmitter to #iciently access user packet data segmented at byte boundaries. lalat@nchode, a

second gigabit Ethernet port is also used.

Queue Manager User data sourced from the Ethernet receiver needs tofteréd prior to schedul-
ing. The queue manager block also performs packet classificationdangao IP address and BDServ
type field for QoS. The queue manager maintains a packet queue in SRAdA4dD logical channel,
and provides packets to the segmenter when requested. Separate #reeadplemented for enqueue
and dequeue operations, and a table of current queue sizes is maintagheded memory for access
by the scheduler. Enqueue and dequeue requests are transpostaetbii rings, while dequeue replies
are delivered to the segmenter by the next neighbor bus to reduce Idae soratch buses. Because
the SRAM controller handles a limited number of simultaneous FIFOs, the CAMeahtbroengines is
used as a cache to track which queues are currently active and to smajnthnd out of the controller

as needed.

Segmenter Segmentation (also concatenation and fragmentation) is performed onad@&tp

based on a table of transport block sizes maintained by the control pléeetable is double biered

in shared scratch memory, allowing the control plane to write orfiebwhile the data plane reads the
other. A microengine timer triggers the construction of a transport bloc&doh user with schedulable
data once per TTI (one millisecond). For each user, the segmentestegaekets from the queue man-
ager until it has sfiicient data to build a PDU. An Ethernet and MARL.C header is written and sent to
the transmitter, followed by the packets (SDUSs) to be included in the PDU. idlgofhcket is segmented
if necessary to fulfill the size requirement, with remaining datddrad by the segmenter for the user’s

next PDU.

Reordering As data is received, it is passed to the reordering block to correchfoouat-of-order
PDUs. A 512 PDU reception Ifiier for each user is maintained in SRAM, and the reordering timer is
implemented using a microengine timer. Because most PDUs are expecteddadraaider, the block
is optimized for that case, and the worst-case line rate of 360 Mbps giviabla8.5is correspondingly

improbable. For this reason, only one or two threads are needed fdiitdige rate. This block also
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performs demultiplexing of data and control channels (packets).

Reassembly Reordered PDUs have their SDUs reassembled into IP packets, undeimggiation
of the segmenter. If SDUs are segmented across multiple PDUs, they musidred by the reassembler
block until all SDUs belonging to the packet are received. The readsemiaintains a set of FIFO
gueues for incoming PDUs quite similar to the queue manager. Howevepadeats at higher data rates
will have been segmented into only a few SDUs. For this reason, the nelalssduters packet handles
in local memory before resorting to the much more expensive SRAM FIF@sacgiving the block a
worst-case rate of nearly 2 Gbps for largely unsegmented data. Higityesged packets requiring the

SRAM FIFO will have been scheduled at a lower rate, making the slower nyegicoess irrelevant.

Data Data
Dovxnlink Up*ink
Network - Network
RX XScale, Linux Tx
o i \ 0
Q Q
£ £
2 Queue Reassembly | &
c - Y| <
@ Manager Manage Control I::I o
o ment e
2 S
= Segmenter [< >| Scheduling [ Reorder =
PHY PHY
Tx RX
U A

Figure 8.21: Block diagram of downlink and uplink protocol processkidkp9].

Control and Management Plane The control and management plane are implemented as a Linux
userspace application on the XScale processor with separate threadbéduling, housekeeping and
management. A custom kernel module receives timing interrupts from the mignas and signals the
control plane when a new scheduling decision is to be made.

The scheduling algorithm currently implemented for OFDMA scheduling is a sipnolgortional
fairness heuristic, evenly dividing the physical resource blocks ofystem among users with schedu-
lable data. The average channel quality in frequency direction forrs RBs determines the modula-
tion index, which then gives the number of bits per PRB based on a looklgp tHie size of the user’s
transport block is thus determined and passed to the segmenter. Uplinkibepaakes place through
scheduling requests and grants via control channels. The XScalgi®icplane is responsible for con-
structing schedulin@ QI control packets, which are then transmitted and received by the mgires

through a high priority scratch ring. For testing purposes, the controkpiiers to manually override
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CQI values for uplink and downlink and to schedule dummghittgusing the client GUI over network).

The Linux kernel currently used here limits the control plane to respordisgheduling interrupts
every 10 ms. A scheduling granularity of 1 ms (1 TTI) is supported by makéngstbns for ten TTI at

once (into the future) — with the control plane latency still being 10 ms.

Implementation Results

Data plane goodput The data plane was set to multi-terminal emulation and tunnel mode on one side
of the tunnel, and the GUI was used to manually adjust the transport blecfosizach user. On the other
side of the tunnel the base station stack was running in tunnel mod&cTvas generated and goodput
measured using iperfde], a bandwidth measuring tool, in TCP mode. It was verified that the goodput
of any connection can be independently adjusted (tested with 480 kbps2d/bps) by varying the
transport block size (from 60 to 1900 bytes, one block per conneatiod @l). Up to fifty simultaneous
connections were active while performing this test. The maximum speed cath@ldne was tested by
setting the transport block size to 1900 for all users and starting multiple aestanfi iperf. The highest
measured goodput of the data plane is approximately 550 Mbps. AbovlB0$§), the data rate begins

to fluctuate significantly.

Microengine utilization and memory bus load For a processor load, the data plane was simulated in
Developer Workbench and performance statistics gathered for a péfied TTIs, or five milliseconds.
The threads involved in segmentation (MEE1) were sent IP packets at gigabit line rate using the
packet generator, and the tunnel packets transmitted from the segmergédhen logged. These logged
packets were then fed to the threads involved in reassembly MME2), simulating tunnel tiéic from

five TTls. To represent the worst case in terms of processing time pkefp®0-byte user packets were
used in the simulation. These were formed into 1500-byte PDUs, and 20% tirtheled PDUs were
set to arrive out of order, thus also testing the reordering block. EB@2 shows the thread execution
time. Most of the threads demonstrate relatively little activity with the exceptioneo§éigmenter and
reassembler. The total load on each microengine is illustrated in8F23 With the load below about
50% in all cases, the microengines show plenty of potential for increasitegpdane speed and incor-
porating additional functions. The memory bus usage further backs tims. ¢fégg. 8.23also shows the
bus utilization for the three main types of data plane memory. In all cases the issander 20%, again

indicating a possibility for expansion.
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Figure 8.22:
Microengine
thread execu-
tion time for
60-byte IP
packets and
1500-byte
transport
blocks
[HIKO9].
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Figure 8.23:
Microengine
and memory
bus load
[HIKO9].
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8.4.5 Testing and Visualization

Rather than dealing with software test cases, this subsection descresismonstrator test setups.
Base station protocol test, MAGRLC GUI A setup for base station protocol test in one host is illus-
trated in Fig.8.24 One NPU on the 'Double Espresso’ board is running the base statidnastdahe
other is running multi-terminal emulation, both in tunnel mode. An Ethernet switals@scontained in
the host chassis and connected in the middle of the tunnel. Tunffel t@ries the broadcast destination
address, so that the host canfBall packets on a third port.

For protocol stack visualization, status and control, a server is runmrtgeoXScale. It provides
gueue fillings and packet counts, channel feedback values andjiipoumeasurements. A client was

written in TCL/TK and run on the host. It allows to manually override scheduling param@Z€)s
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values in uplink and downlink and ressource allocations per logical @heamd also to schedule dummy
traffic. For an impression of the GUI compare Fi§1l on pagel51, where also the switch is visible.
To visualize scheduler operation, fita is generated with iperf on two external computers (assigning
multiple IP addresses to its NIC for multiple connections).

Using the GUI CQI controls, it can be verified that the data rate of the ations can be varied by
changing the channel conditions. By increasing the number of userschigdslable data either through
actual trdfic generation or by manually overriding the queue status, it can be odgbatethe goodput
of the connections varies according to the number of scheduled users.

Correct operation of all physical channels (including the control olk) is visualized using the

protocol analyzer software Wireshankif] on the host for the sffied tunnel tréfic with adequate filter-

ing.

Host Eth 1
(sniff transport blocks)

Server / Client 1 Host Eth 2 %

(internal booting)

GigEth 1 NPU 1
N GigEth 2 (base station)

[Gigkth1| NPU2 network
(multi-terminal
= GigEth 2 | emulation)

GigEth 1

Cell

CigEth 2 @ Figure 8.24: Base station protocol test

Boot images /
4

Server / Client 2 -~ in one host.

PS3 only test, PHY GUI To demonstrate only Cell software (PPE and SPE) without PCle components
the PS3 can be used. It can either transmit and receive over the U&Reni with USB connection,

or a physical layer loopback through a base band channel emulateftviligocan be used for defined
channel conditions. A dummy MAC layer is implemented on the PPE supportinguene (one logical
channel). A physical layer visualization GUI was written in TCL and usingpthbot library. Itis run on

the PPE (the window can of course also be exported over the netwdr)GUI includes a time domain
scope, sprectrum scope, scatter plot and LLR distribution plot. The PHNaftows for loopback test

to vary modulation, number of turbo decoder iterations and noise powdrageaband channel emulator

(run in an SPE). To visualize thdfect of PHY PER on a video codec, test videos were streamed using



182 Chapter 8. SDR Testbed

vic [Vid] server and client.

Software channel emulation A realtime base band AWGN channel emulator was implemented on
the SPE (single-precision float, 4xSIMD). It first generates uniforstriduted random numbers from

a 128bit register usinghift and xor operations. The uniform distributed numbers are then mapped to
Gaussian distributed numbers using the inverse distribution function — whinterpolated with line
segments. Interpolation with 8 line segments is illustrated in Big5 Gneration of the PRBS on an
SPE on the CAB achieves 38909 MBitand of the complex Gaussian noise 315Msarafilei08]. The

SNR is adjustable, and the software channel is used for visualization witPHNeGUI or to measure

BER/PER curves.

Figure 8.25: WGN density plo
of realtime Software emulate
channel, inversion method wit
8 line segmentdlhi08].

FPGA channel emulation Since an FPGA is available in the platform anyway, it was also used as
base band channel emulator — using the same PCle interface as the ®RRdrdballows for the same
tests and visualization as the software channel on SPE, but also incledesriiber conversion, PCle
bus, FPGA DMA controller and FIFO flow control into the loopback. Therfiatze number format is
16 bit fixed-point, with symbol rate- 125MHz (with n being variable, in SISO case = 2). The
implementation was pipelined to achieve the 125 MHz. Internally the emulator u@:isiefi¥ed-point
representation of both data and noise for calculati@h]l]. The interface fers 4 lanes PCle (v1.1),
with DMA controller in the FPGA. Signal and noise gain are adjustable (with $\ige more than
30dB) over registers mapped into PCle adress space.

For WGN generation, first uniformly distributed numbers are produceddgns of linear feedback
shift registers (LFSRs, Galois type, see BR7), which are in turn transformed into Gaussian distributed

samples using the inversion method:

U~unif. = FU)~F (8.5)
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If U is uniformly distributed, thefr~1(U) hasF as its CDF. Implementation uses a 128bit LFSR and
linear interpolation with 14 line segments of the inverse CDF (which results inpawsge constant
interpolation of the PDF, since the PDF is the CDF’s derivate). THereince between target and ap-
proximating function is an overall error of 5.2% and variance error d¥l.®oubling the number of
interpolation line segments roughly halves the error. Instantiation including Bishsfer logic and
FIFO registers for the PCle interface on the Xilinx Virtex 5 FPGA of the Mi5%Hoard (more specif-
ically an xc5vIx50t) consumes roughly 30% of its slices and 20% of the D®R&s (multipliers for
gains and Gauss transformation). The resource consumption on theRa@a (xc5vsx95t) in the radio

frontend uses less than half its slices.
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Figure 8.27: 7 bit Linear Feedback Shift Register (clock connectionshawn) EKKI]. Implementa-
tion uses 128bit LFSR.
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8.5 Suitability for Further Developments

8.5.1 Distributed Physical Layer

Motivation The approach is to increase the number of base station antennas sarsergg also us-
ing the antennas from neighbouring cells. Intercell interference istecethby multi-cell joint detection
(and possibly joint transmission) or intercell interference cancellatiomeoe Secl.5). The approach

is particularly interesting for cell-edge users, where the receivedygradmost equally splits between
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the neighbouring cells. High-throughput low-delay connections betlvasa stations are assumed. Dis-
tributed physical layer processing can be interpreted as an extensiemofe antenna heads or of the
soft handover applied in 3G systems. Remote antenna hé@igmconnect antennas to base stations
over a longer distance, where digital base band samples are transmittettheweaterface ¢bs cpr].
Distributed physical layer processing is also called cooperative trarisnjregeption, network MIMO

or coordintated multi-point transmissjoaception. Joint processing of multiple base stationsj/@nd

relays’ signals is in principle applicable in uplink and downlink.

Signal processing issues Signal processing issues with this approach concern channel estimation a
synchonization.

The MIMO pilot grid in a sector is designed to have no intra-cell interfezencpilot symbols (com-
pare Sec.1.4). For intercell channel estimation with the same grid, interference cancellzi® to be
performed on pilot symbols (this relates to MIMO APP channel estimation, canfec.3.1.3. The
alternative of adapting the pilot grid to the intercell setup (containing transi@haas from neighbour-
ing cells) runs into the pilot overhead problem: when increasing the nunibdiMO transmit antennas
with constant pilot density per antenna, the pilot symbol overhead (caupitot symbols and zero sym-
bols at other antenna’s pilot locations) grows quadratically, while the available symbols (pilots
data) only grows linearly. This leads to the traffed pilot overhead versus potential multiplexing gain
(or here interference cancellation gain) — limiting the number of MIMO transné@ranas.

For synchronization, propagation delayfdiences from dislocated transmitters cause timitggets.
Timing advance (like in normal uplink, Set&.4) can only be applied with respect to one receiver. The
OFDM cyclic prefix length is chosen to cope with delay spread — which is noveased by propagation
delay diference. With symbol raté€s and speed of light, one sample on the air has lengiiTs, and
a distance of translates intes/(cTs) samples delay. For OFDM signal processing at the receiver, the
cooperation area is limited by the sum of delay spread (regarding onetoditisenitters) and propagation
delay diference: intersymbol interference is inherent if this sum exceeds CEhIgMP8]. This leads
to the tradefi of CP overhead versus potential multiplexing gain (or here interferearoaedation gain).

Compare Fig8.28and Fig.8.29for an illustration.
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central unit

Figure 8.28: Example scenario of 2x2 coopera
tive MIMO-OFDM: two base stations with one [
antenna each (BS1 and BS2) are jointly pro-

cessed as a virtual station with two antennas |

uplink and downlink. A terminal T1 with two
antennas receives both data streams, but hg;g 1
cope with delay dferencesIMO08]. <

Tolerance for robust CP

removal in normal OFDM Cyclic prefix 2a
— A—
Oa OFDM symbol 1la OFDM symbol 2a
Propagation
delay differen¢e
Different same Different
OFDM OFDM OFDM
symbols: symbol symbols:
ISI ISI
ob [ oFbm symbol 1b [ 20
Decay of OFDM vector of this length is
symbol Ob | — 1 eutout for FET

Figure 8.29: Superposed receive sample streams of two transmit anfesmadgifferent transmit sta-
tions. In this case the cyclic prefix is long enough to guard against chdefey spread, but not
long enough to guard against delaytdiences. The result is intersymbol interference between the data
streams of the transmit antenn#€l(8].

System architecture Since network-wide central processing is not feasible, the questidmoate of
cooperation areas is raised. Joint processing wants to include theddsiginal(s) and the strongest
respective interferers. The base station grid with its antenna directionsnn#s receive power from
different transmitters. The areas of joint processing can be either chasieally (predefined) or dy-
namically. MC11] selects clusters of cooperating base stations based on receiveldstigngths. Static
predefined cooperation areas are described e.dJO8 [WY10], discussing the possiblity for joint se-
lection of cooperating stations, antenna directions and MIMO pilot grid.aDyo selection of possibly

overlapping cooperation areas is discussed e.dHi#08 RCP1Q.

Network requirements The network requirements between base station connections in terms gftthrou
put and delay largely increase for base band sample exchange, imdéege on the chosen system ar-
chitecture. A very rough estimation for static cooperation areas is givddQf[ For 'distributed joint
processing’, there is a choice between iterative sample transport dunadiant computation in fierent
stations. Available network infrastructure may require the system archigetwork scaleably with

variable bandwidth. A multicast sample exchange protocol for dynamidapg@ng cooperations areas
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is drafted in [HJO§|.

Computational requirements Another consequence from the chosen system architecture is an in-
creased computational requirment for the base stations: computational basvto increase to perform
multicell joint detection or sequential intercell interference cancellation.  weugh estimation for

static cooperation areas assuming linear MIMO stream separation is giMdo&h

Static cooperation areas Central processing (compared to distributed processing) for caopes-

eas minimizes network and computational load. Static cooperation areasdewjse central processing
are illustrated in Fig.8.30, based on a setup with 120 degree sectorization. The same base station po-
sitions are used as in the standard hexagonal grid, but rotating seitorizg 90 degrees (Fig8.30.

The resulting hexagonal cells are 3 times larger in area. Before, theee3neells (sectors) per base
station, with the mapping there is one cell per base station. In the new hetagimh a terminal nor-
mally receives strong signals from three base stations. The anteffedagmost performance gain
when cooperating thus belong to three sectors each frorffexetit base station. Each location in the
system can be mapped to such three sectors of thfiszatit base stations. Another mapping without
rotating the base stations and with the same old cell size can be done by imgpthare base stations
(Fig. 8.32. The same joint processing approach can be used. The whole amractby the system is
partitioned into disjunct areas, each consisting of three sectors belaogimge diferent base stations.
Joint signal processing is applied to each such three-sector-areaediiting partitioning is depicted in
Fig. 8.31 The processing for a service area is located in one base station. B.¥lghe processing for
service arean is located in base statian. Between the base station and its two remote sectors (hosted
by two neighbouring base stations) base band samples are exchangplinioand downlink. Between
neighbouring service areas the well-known approaches of intedemitigation can of course still be
applied. Now there are two types of Sectors: one base station still haratkespdotocol and signal
processing for three sectors, but for threfetent ones, of which two are remote. Signal processing for
the three sectors can now be done jointly to reduce inter-cell interfe(batre, the three local sectors
were separated by sectorized antennas). Each base statiorffamwtwo sectors and their network con-
nection for base band sample exchange to other base stations and joiodgg@® signals from the third

and two remote sectors.
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Figure 8.30: The current <:>>C<:>

hexagonal grid (left) can b
modified into a new hexag-
onal grid with exactly the
same base station position

(right) by rotating sector- <:>

ization 90 degrees, suited
for piecewise joint process-
ing [1JO§.

Figure 8.31: Mapping joint signal
processing areas into the hexagonal
grid: signals in area'SA m’ are jointly
processed by base station 'BS m’.
Each base station processes samples
from one local and two remote sectors,
and dfers the other two local sectors
for remote processindJ0§.

Figure 8.32: This architecture can also be imple-
mented with the current cell size and without ro-
tating sectorization, by introducing more base sta-
tions (red dots)Ip0g.
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Dynamic cooperation areas Dynamic cooperation areas can be formed in uplink, when base stations
dynamically request neighbouring base stations’s sample streams to aidrireomputation. Sample
streams can possibly be requested for certain subbands (in freqdemain). Protocol-wise this can
be seen as dynamic jojrieave of multicast groupdHlJ0g. Computation in this architecture is partly
redundant (if sample streams are mutually requested), because theaefgada@entral unit. Overlapping
areas of joint detection are formed, where each base station is a virtuedlaeit. This architecture is
scaleable in terms of network bandwidth (heterogeneous backhaulpemulitational power. Groups of

cooperating stations can dynamically form according to the actual intedesgtuation.

Testbed suitability For high-rate base band sample exchange with the demonstrator platfo@te a P
10BGit Ethernet interface card can be used, e.g. the Myri1l0G bayd [compare Fig8.2on pagel52).

It offers a fiber connection with pluggable XFP interface, has an x8 PCleectorrand is supported by
Linux. Samples can be streamed over YIPPWith interrupt coalescence (not for every received packet
an interrupt) and checksunffimad from the host into the NIC, more than 9.9G8ithrougput were
measured. An example 12x12 configuration for channel estimation armhnsgeparation on the Cell

(e.g. for three sectors with 4 antennas) is covered by&ijlon pagel62and in [KK *08].
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Abbreviations
3GPP 3rd Generation Partnership Project.
APP A Posteriori Probability
Csl Channel State Information.
FDD Frequency Division Duplex
FIR Finite Impulse Response.
ICI Intercarrier Interference
ISI Intersymbol Interference.
LS Least Squares
LTE Long Term Evolution.
LLR Log Likelihood Ratio
MAP Maximum A Posteriori
MIMO Multiple Input Multiple Output.
MISO Multiple Input Single Output.
ML Maximum Likelihood
MMSE  Minimum Mean Square Error.
MSE Mean Square Error.
OFDM  Orthogonal Frequency Division Multiplexing.
PDF Probability Density Function.
QAM Quadrature Amplitude Modulation.
SER Symbol Error Rate.
SIC Successive Interference Cancellation.
SINR Signal to Interference plus Noise Ratio.
SISO Single Input Single Output.
SNR Signal to Noise Ratio.
TDD Time Division Duplex.

WIMAX  Worldwide Interoperability for Microwave Access.

WLAN

Wireless Local Area Network.
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