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A Generalization of Nash Bargaining and Proportional
Fairness to Log-Convex Utility Sets

With Power Constraints
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Abstract—Many solutions and concepts in resource allocation
and game theory rely on the assumption of a convex utility set. In
this paper, we show that the less restrictive assumption of a log-
arithmic “hidden” convexity is sometimes sufficient. We consider
the problems of Nash bargaining and proportional fairness, which
are closely related. We extend the Nash bargaining framework to a
broader family of log-convex sets. We then focus on the set of fea-
sible signal-to-interference-plus-noise ratios (SINRs), for the cases
of individual power constraints and a sum power constraint. Under
the assumption of log-convex interference functions, we show how
Pareto optimality of boundary points depends on the interference
coupling between the users. Finally, we provide necessary and suffi-
cient conditions for strict log-convexity of the feasible SINR region.

Index Terms—Game theory, interference, multiuser channels,
Nash bargaining, power control, proportional fairness.

I. INTRODUCTION

P ERFORMANCE tradeoffs in multiuser systems occur
when users share a common resource or if they are coupled

by mutual interference. This is typical for wireless systems, and
also for certain wireline connections, e.g., twisted-pair copper
wires used for DSL transmission. The achievable performance
is commonly characterized by the utility set, sometimes re-
ferred to as utility region or quality-of-service (QoS) region.
The utility region is defined as the set of all achievable utility
vectors , where is the number of
users.

Many resource allocation strategies crucially depend on
the structure of the set , so a thorough understanding of
its boundary is needed. Some often-made assumptions are
comprehensiveness, convexity, and Pareto optimality. Compre-
hensiveness can be interpreted as free disposability of utility.
Convexity allows the application of well-known concepts from
optimization and game theory. Pareto optimality is a notion
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of efficiency, requiring that one cannot make someone better
off without making someone else worse off. A Pareto optimal
operating point is “efficient” in the sense that the available
system resources are fully utilized.

Whether these properties are fulfilled or not depends on many
factors, including the choice of the performance measure, and
system constraints. If the users are coupled by mutual interfer-
ence then interference mitigation techniques play an important
role. This can lead to complicated “cross-layer” dependencies
with intractable problem formulations. In order to analyze the
utility tradeoffs between the users, we need to make some as-
sumptions regarding the underlying system. In this paper, the
following cases will be studied.

Strictly log-convex utility sets (Section II). This class is
broader than the class of convex sets, which is contained as a
special case. It is shown that the core properties of the game-the-
oretic framework of Nash bargaining [1] are preserved under
strict log-convexity. In this case, the Nash bargaining solution
is equivalent to proportional fairness [2].

Log-convex interference functions (Sections III and IV).
The utilities are assumed to be strictly monotone and contin-
uous functions of the signal-to-interference-plus-noise ratios
(SINRs). The interference coupling between the users is mod-
eled by means of axiomatic log-convex interference functions
[3]. Power constraints are assumed. Based on the system de-
pendency matrix, we derive a necessary and sufficient condition
for Pareto optimality of boundary points.

In Section V we provide a sufficient condition for an SINR
set from Section III to be strictly log-convex. If this is fulfilled,
then we known from the results of Section II that a unique Nash
bargaining solution exists. These results extend previous work
[3], where only log-convexity was shown and [4] where strict
log-convexity was only shown for linear interference functions.

These results have in common that they all rely on a loga-
rithmic convexity. In Section II the utility set itself is assumed
to be log-convex, while in Sections III–V we assume log-convex
interference functions.

Note, that the requirement of log-convexity is weaker than the
customary assumption of convexity. Thus the results are appli-
cable to a broader class of problems. Log-convexity is a useful
property that allows the application of convex optimization tech-
niques to certain nonconvex problems. This is sometimes re-
ferred to as “hidden convexity.” Log-convexity was already suc-
cessfully exploited in different other contexts, e.g., [5]–[11].

An important aspect of our work is the presence of power con-
straints. Without power constraints, strict log-convexity follows
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easily from the results [3] if the underlying interference func-
tions are strictly log-convex. However, with power constraints,
and especially individual power constraints, proving strictness
requires a different mathematical approach involving combina-
torial arguments.

We use the following notational conventions. Matrices and
vectors are denoted by bold capital letters and bold lowercase
letters, respectively. The th component of a vector is denoted
by or, equivalently, by . The notation means that

for all components , and means component-
wise inequality with strict inequality for at least one component.
Similar definitions hold for the reverse directions. Finally,
means that the vectors differ in at least one component. The set
of nonnegative reals is denoted as , and the set of positive
reals is denoted as .

II. EXTENSION OF NASH BARGAINING TO

LOG-CONVEX UTILITY SETS

Strategies for distributing the system resources are usually
based on certain notions of “fairness” or “efficiency.” In this
section, we focus on the game-theoretic strategy of Nash bar-
gaining [1], [12], [13], which is closely related to proportional
fairness [2]. This approach is cooperative, i.e., users (or players)
unanimously agree on some solution outcome . This out-
come is generally better than the Nash equilibrium resulting
from a noncooperative approach. The gain from cooperation can
be substantial (see, e.g., [14] and [15]). Nash bargaining was
successfully applied to various multiuser communication sce-
narios, e.g., [16]–[21].

In this section, we will show that the conventional Nash bar-
gaining framework can be extended to certain log-convex utility
sets.

Our approach is based on a change of variable ,
where is the utility of the th user. This is a common tech-
nique for exploiting hidden convexity (see, e.g., [5]–[11]).

A. The Conventional Nash Bargaining Solution (NBS)

We begin by briefly reviewing the NBS, which was intro-
duced by Nash [1] and extended later (see, e.g., [12], [13], [22]
and references therein). The NBS in its standard form requires
that the utility set is convex. In this section we will generalize
these results to certain nonconvex sets.

Definition 1: A bargaining game for users is defined as a
pair , where

• is a nonempty compact subset of .
• is (downward)-comprehensive. That is, for all and

, the component-wise inequality implies
.

• is the disagreement point, which
is the outcome in case that no agreement can be found.

The class of sets with these properties is denoted by .

Definition 2: Let be convex, then the NBS is the
unique (single-valued) solution that fulfills the following ax-
ioms.

• Weak Pareto Optimality (WPO). The users should not be
able to collectively improve upon the solution outcome,
i.e.,

• Symmetry (SYM). If is symmetric,1 then the outcome
does only depend on the employed strategies and not on
the identities of the users, i.e., .
This does not mean that the utility set is symmetric, but
rather that all users have the same priorities.

• Independence of Irrelevant Alternatives (IIA). If is
the solution outcome of some utility set , then is
also the solution outcome of every subset containing ,
i.e.,

• Scale Transformation Covariance (STC). The optimiza-
tion strategy is invariant with respect to a component-wise
scaling of the region.2 That is, for every , and all

with and , we have

If the utility set is compact convex comprehensive, then
the single-valued NBS fulfilling the four axioms is obtained by
maximizing the product of utilities (Nash product).

(1)

In this paper, . This assumption is often made if the choice
of the zero of the utility scales does not matter. This also makes
sense in a wireless system which is subject to channel fluctu-
ations, so no minimum performance can be guaranteed. This
leads to the problem formulation

(2)

Since ,
the optimum (2) can be found by solving

(3)

In the following, we will refer to strategy (3) as proportional
fairness (PF). In its original definition [2], a vector is said to
be proportionally fair if for any other feasible vector the
aggregated proportional change is nonpositive
(see also [23]). For convex sets, this unique point is obtained as
the optimizer of (3). In this case, Nash bargaining and propor-
tional fairness are equivalent [2], [16]. This relates the NBS to

1A game is said to be symmetric if , and in addition,
, for an arbitrary

permutation .
2We use the component-wise Hadamard product , and the notation

.
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a known fairness criterion (see also [16], [17], [19], [20], and
[24]).

In this paper we are interested in certain nonconvex sets
which are strictly convex after a logarithmic transformation
(strict log-convexity). Because of nonconvexity, it remains to be
shown whether (3) is still equivalent to the original definition of
proportional fairness [25]. We will refer to (3) as “proportional
fairness.” It will be shown that the property of strict log-con-
vexity is sufficient to ensure a unique optimizer of (3).

B. Logarithmic Transformation

For every compact convex set from , the product max-
imizer (2) is the single-valued NBS characterized by the ax-
ioms WPO, SYM, IIA, and STC. However, convexity does not
need to be fulfilled. An example is the SINR region discussed
in Section III.

A standard approach is to convexify the utility set based on
randomization arguments (see, e.g., [21] and [26]), or by re-
source sharing. However, such a strategy is not always possible
or even relevant. Again, the SINR region provides an example of
a performance measure for which convexification is difficult to
justify. Extensions and modifications of the NBS to nonconvex
utility sets have been studied in the literature, e.g., [26]–[29].
However, the motivation of these papers is quite different from
our approach.

In this section we will show that the key properties of
the standard Nash bargaining framework extend to cer-
tain nonconvex sets. To this end, consider the function

, where . The
image set of is

(4)

Definition 3: We say that a set is a log-convex set if
is convex.

The boundary of the utility set is denoted by .

Definition 4: A boundary point is said to be Pareto
optimal if there is no with . The set of all Pareto
optimal boundary points (the Pareto boundary) is denoted by

.
From a practical point of view, Pareto optimality means that it

is not possible to improve the performance of one user without
decreasing the performance of another user.

Definition 5: By we denote the family of all closed down-
ward-comprehensive utility sets such that the image
set is convex and the following additional prop-
erty is fulfilled: For any , the connecting line

, with , is contained in the
interior of . By we denote the family of all ,
which are additionally bounded, thus compact.

Definition 5 is illustrated in Fig. 1.
Note that compactness and comprehensiveness are preserved

by the log-transformation. That is, is compact compre-
hensive if and only if is compact comprehen-
sive. Every convex set from is contained in , but not
conversely. Thus, is more general than the class of stan-
dard sets described by Definition 1. In the following we show

Fig. 1. Illustration of an image set for . The set is
strictly convex with the exception of possible boundary segments parallel to the
axes (dashed lines). These segments are irrelevant for the Nash solution.

that for any , product maximization (2) yields the
single-valued NBS characterized by axioms WPO, SYM, IIA,
and STC. This extends the classical Nash bargaining framework
to certain nonconvex sets.

The properties of play an important role for the proof
of uniqueness. We also exploit that the axioms WPO, SYM,
IIA, and STC have direct counterparts for the image set

. This is straightforward for axioms WPO, SYM, and
IIA, which are not affected by the logarithmic transformation.
That is, axiom WPO in the utility set corresponds directly to
WPO in the image set . The same holds for axioms SYM and
IIA. We will denote the axioms associated with the image set by

, , and .
Axiom STC in the utility set also has a direct cor-

respondence for the image set . Consider an ar-
bitrary translation , leading to a translated set ,
defined as

Also, let be the log-transformed Nash bargaining solution,
i.e., . Since the disagreement point is zero in
our case, axiom STC becomes . In the
log-transformed domain, this corresponds to

(5)

We will refer to (5) as .
It is now shown that the transformed axioms are associated

with a unique solution outcome in the transformed set.

Theorem 1: For an arbitrary set , the solution out-
come in the transformed set satisfies axioms

, , , and if and only if it is the unique
maximizer

(6)

Proof: Non-Pareto-optimal boundary segments parallel
to the axes can be safely excluded from the proof, since such
points cannot be the solution of the product maximization (2).
Thus, without loss of generality we can assume that is strictly
convex.

Given the properties of the region and its image
set , it is clear that the solution (6) satisfies the axioms

, , , and .
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Fig. 2. Illustration of the proof of Theorem 1. The NBS in the transformed set
is the unique solution that satisfies the transformed axioms.

It remains to show the converse. Consider a bargaining
strategy on , that satisfies the axioms ,

, , . We now show that these axioms are
fulfilled by a unique solution, which is the optimizer of (6).
This is illustrated by Fig. 2.

Consider the set

Because of the property (5), we know that the strategy
is invariant with respect to a translation of the region. Thus,
without loss of generality we can assume , and

That is, is the unique point which is on the boundaries of both
sets and . Since is upper-bounded by definition, there is
a such that

Thus, is a subset of the set

(7)

The set is symmetric and strictly convex. Let be the
smallest symmetric and strictly convex closed set that fulfills

(8)

Since is upper-bounded, the set is compact. It is
also strictly convex comprehensive, thus it is contained in

, which is the class of all sets such that
. Because of axiom , it follows that

describes a supporting hyperplane for , i.e., is
an optimizer of

Now, and . Because of axiom , we have

(9)

which concludes the proof.

Consequently, for all the optimization (9) in the
transformed domain leads to the unique optimum

. Because of the one-to-one logarithmic mapping be-
tween the sets and , we have the following result.

Corollary 1: Let . Then axioms WPO, SYM, STC,
and IIA are satisfied by the unique solution

(10)

This result holds for arbitrary utility sets from , including
the conventional case of convex sets. In the remainder we will
study a wireless communication scenario where such a non-
convex set from occurs. This will be discussed later in
Section V.

III. INTERFERENCE-COUPLED WIRELESS SYSTEMS BASED ON

LOG-CONVEX INTERFERENCE FUNCTIONS

In this section we study the SINR region of an interfer-
ence-coupled multiuser system with power constraints. It will
be shown how Pareto optimality of boundaries points (see
Definition 4) depends on the interference coupling between the
users.

Consider users with transmit powers .
The noise power at each receiver is . Hence, the SINR at each
receiver depends on the extended power vector

(11)

The resulting SINR of user is , where
is the interference (plus noise) as a function of .

A. Interference Functions

An axiomatic approach to interference modeling was pro-
posed by Yates in [30], and extended in [31], [32]. In this work,
mutual interference was modeled by a framework of axioms

Definition 6: A function is said to be a stan-
dard interference function if the following axioms are fulfilled:

Y1 (positivity): for all ,
Y2 (scalability): for all ,
Y3 (monotonicity): if .

This model is sufficiently general to incorporate cross-layer
effects and it serves as a theoretical basis for many algorithms.
Examples include beamforming [33]–[36], CDMA [37], [38],
base station assignment [39], [40], and robust designs [41], [42].

In this paper we use a different axiomatic framework that was
introduced in [43].

Definition 7: The function is an interfer-
ence function if the following axioms are fulfilled:

A1 (positivity): There is a with ,
A2 (scale invariance): for all ,
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A3 (monotonicity): if .
In addition, we require strict monotonicity with respect to the
noise component.

A4 (strict monotonicity): if and
.

A simple example is

(12)

where is a vector of interference coupling coefficients.
The axiomatic framework A1–A4 is closely connected with

the standard interference functions. For any constant noise
power , the function is standard.
Conversely, any standard interference function can be ex-
pressed within the framework A1–A4 [44]. Let be a standard
interference function, then

(13)

is an interference function fulfilling A1–A4.
For more details about the relationship between the frame-

work A1–A4 and Yates’ standard interference functions, the
reader is referred to [43]. For the purpose of this paper it is suf-
ficient to know that there is such a connection and that all the
results of this paper are also applicable to standard interference
functions. The reason for using A1–A4 is that it enables us to use
previous results [3], where logarithmic convexity was studied.
Some of the following results use this property.

B. The SINR Region Under Power Constraints

Consider the feasible SINR region for users
, with individual power constraints

, which is defined as the sublevel set

(14)

where and is a vector of SINR values.
A point is feasible if , where

(15)

The structure of the SINR set depends on the prop-
erties of the indicator function , which in turn de-
pends on the properties of the underlying interference functions

, as well as on the chosen power constraints .
It can be observed that itself is an “interfer-

ence function” fulfilling the core axioms A1, A2, A3. This was
exploited in [45], where it was shown that any comprehensive
subset of can be expressed as a sublevel set of an inter-
ference function. Sublevel sets of convex functions are convex,
thus is a closed convex set from if
is convex. However, convexity of does generally
not hold, so SINR regions are typically nonconvex.

The SINR region under a sum power constraint is defined as

(16)

where

(17)

Both regions and will be analyzed in the
following, where it will turn out that the sum-power constrained
region is relatively easy to handle because the users
are connected via a shared power budget. The region
is more complicated in that tradeoffs generally depend on in-
terference coupling. Therefore, a large part of our analysis will
focus on the effects of interference coupling.

In this paper we focus on log-convex interference functions,
which will be introduced in the following section. Log-convex
interference functions are rich in terms of analytical possibili-
ties. This will be exploited in the remainder of this paper, where
we will study conditions for Pareto optimality and strict loga-
rithmic convexity of the SINR regions.

C. Log-Convex Interference Functions

We will now discuss the important subclass of log-convex
interference functions. Throughout this paper, all interference
functions are assumed to be log-convex.

For an explanation, consider the function
, which is said to be log-convex on if is

convex, or equivalently [46]

(18)

for arbitrary .

Definition 8: The interference function is a log-convex in-
terference function if is log-convex on .

Note that the log-convexity in Definition 8 is based on a
change of variable (component-wise exponential).
Such a technique was already used by Sung [5] in the context
of linear interference functions, and later in [6]–[11].

Some examples of log-convex interference functions are as
follows.

Example 1: The linear function (12) is a log-convex interfer-
ence function in the sense of Definition 8.

Example 2: The coefficients in (12) can adapt to the current
interference situation. An example is the “worst-case interfer-
ence”

(19)

The parameter can stand for some uncertainty, chosen from a
compact uncertainty set . Such worst-case interference func-
tions are used, e.g., in the context of robust power control [41],
[42]. The function (19) is a log-convex interference function.

Example 3: It was shown in [44] that any convex interfer-
ence function is log-convex in the sense of Definition 8. That is,
if is convex, then is log-convex. The converse is not
true, however. Therefore, the class of log-convex interference
functions is broader than the class of convex interference func-
tions. Special cases of convex interference functions include the
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Fig. 3. Feasible SINR region for the 2-user MAC channel described in Example
4.

linear function (12) and the worst-case function (19). Hence, the
requirement of log-convexity is relatively weak in comparison
to many other existing interference models.

If the interference functions are linear, e.g., ,
with coupling coefficients , and with an unconstrained
power set , then the resulting SINR region is known to be
log-convex. This was shown in [5], and extended in [6]–[8]. Re-
cent work [4] provides conditions under which the transformed
set is strictly convex, as required by Nash bargaining. However,
all these results are restricted to linear interference functions.
In this paper we consider the more general interference frame-
work A1–A4 (see Definition 7). For this model, convexity of the
SINR region on a logarithmic scale was shown in [3]. However,
the characterization of Pareto optimality and strict convexity is
still an open problem, which will be addressed in the following
sections.

IV. SINR REGION WITH INDIVIDUAL POWER CONSTRAINTS

Consider log-convex interference functions and individual
power limits . Let be any boundary point of the
resulting region . The set of all power vectors
achieving is

(20)

For the following analysis, it is important to note that the set
can contain multiple elements. This is most easily

explained by an example, as follows.

Example 4: Consider a 2-user Gaussian multiple access
channel (MAC) with successive interference cancellation,
normalized noise , and a given decoding order 1, 2. The
SINR of the users are

Assuming power constraints and
, we obtain an SINR region as depicted in Fig. 3.

A. Properties of Boundary Points

Consider the boundary point depicted in Fig. 3. This
point is achieved by , and therefore

. This vector achieves with component-wise
minimum power. However, is not the only element of

. Because of the assumed interference cancellation,
we can increase the power (and thus the SINR) of User 1,
without reducing the SINR at User 2. If both users transmit
with maximum power then the corner point is achieved.
This power vector is also contained in because

, so the SINR targets are still fulfilled.
The following fixed point iteration will play an important role

in our analysis.

(21)

Lemma 1: Let be an arbitrary boundary point, then the
limit achieves with component-wise
minimum power. That is, for all .

Proof: This lemma follows from [30]. A proof for the in-
terference framework A1–A4 was given in [43].

The next lemma shows that the inequality constraint in (20)
is always fulfilled with equality for at least one component, oth-
erwise could not be a boundary point.

Lemma 2: For any boundary point , consider an arbi-
trary . There always exists a such that

.
Proof: The proof is by contradiction. Suppose

for all . Then

(22)

This is a contradiction because for any boundary point we
have .

Sometimes we can find a power vector such that one or more
components of are surpassed, as illustrated in Fig. 3. The cor-
responding indices are collected in an index set defined as
follows.

Definition 9: For any boundary point , let be the set
of all such that there exists a with

.
For the point , in Fig. 3, this is the first user, whose power can

be increased without decreasing the performance of User 2. We
are only interested in the case where is nonempty. Otherwise
the fixed point is the unique solution, which is trivial. Also, we
know from Lemma 2 that .

The next theorem shows that there always exists a vector
for which strict inequality holds for all simultaneously.

Theorem 2: Let be log-convex interference func-
tions. Assume that is an arbitrary boundary point such that
is nonempty. Then there exists a vector such
that

(23)
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and for all we have

(24)

Proof: Inequality (24) is a consequence of Definition 9. In
order to show (23), consider arbitrary , with ,
and vectors as in Definition 9. We define a vector

with components

Log-convexity implies (18). Since , we have

(25)
The last inequality holds because implies
that , and the same holds for . It can be
observed from (25) that for . For
indices or , at least one factor on the right hand
side of (25) is strictly less than one, and therefore

In the same way, we can combine with another vector
with . This leads to a new vector which

fulfills

Repeating this procedure for all , we obtain the desired
vector fulfilling (23).

The following corollary is an immediate consequence of The-
orem 2.

Corollary 2: Let be the fixed point defined in Lemma 1.
All other quantities are defined as in Theorem 2. We have
(Lemma 1) and thus for all

(26)

That is, the inequality is strict for all components from
. In the following we will refer to as “oversized users.”
The following theorem shows that the oversized users have

no impact on the interference experienced by the other users
. That is, the interference is the same as if we would use

the minimum-power vector . Also, the powers of users
cannot be oversized.

Theorem 3: Let and be defined as in Theorem
2. Consider an arbitrary . For all , we
have and .

Proof: We are interested in the nontrivial case .
Defining , the fixed point iteration (21) can be
written as . By choosing the initialization

, we obtain a monotonically decreasing sequence [30].
Since , we have

(27)

Thus . For any we have

(28)

Likewise, we have for ,

(29)

By induction, we have for all

With we have

thus proving the second statement. From the definition of , we
have

which concludes the proof.

Corollary 3: Consider an arbitrary . Then for
all with we have

(30)

Proof: This follows from Theorem 3 and the monotonicity
axiom A3.

Note that and are both contained in , so the
resulting SINR values are contained in the feasible SINR region.
However, we cannot infer from Corollary 3 that the same holds
for .

For from we can reduce this component without af-
fecting the interference power. This holds for but
not necessarily for vectors outside this area. This is because we
cannot rely on strict monotonicity, as later in this section. We
know that for the interference functions for such do
not depend on the indices for which .

B. Interference Coupling

The structure of the SINR region depends on how the users
are coupled by interference. In order to model the coupling be-
tween the axiomatic log-convex interference functions, we use
the approach in [3].

We begin with the definition of the local dependency matrix,
which does depend on the choice of . We define as the all-
zero vector with the th component set to one.

if there exists a such that the
function is
strictly monotonically decreasing for

.
otherwise.

(31)
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We say that an interference function depends on a power
if there exists an arbitrary such that . The inter-
ference coupling between users is characterized by the global
dependency matrix defined as follows.

if there exists a such that
,

otherwise.
(32)

The nonzero entries in mark the transmitter/receiver pairs
which are coupled by interference. A zero entry means that no
interference is received, no matter how large the transmission
power is. As an example, consider users that are assigned to dif-
ferent orthogonal resources, or separated by adaptive interfer-
ence rejection techniques.

In this paper, we assume that there is no self-interference.
That is, the elements of the main diagonal are zero.

Note, that this coupling model includes the widely used con-
cept of a “link gain matrix” as a special case. In the remainder
of this paper we will use in order to analyze how the inter-
ference coupling affects the structure of the boundary.

C. Analysis of the Pareto Boundary

Thus far, we have focused on the interference coupling as-
pects. Now, we will analyze QoS sets resulting from these inter-
ference models. In this paper, QoS can stand for some arbitrary
performance measure, which depends on the SINR by a strictly
monotone and continuous function defined on . The QoS
of user is

(33)

Common examples are MMSE, BER, delay, or capacity [43].
Let be the inverse function of , then is the min-

imum SINR level needed by the th user to satisfy the QoS
target . Let be a vector of QoS values from some QoS re-
gion , then the associated SINR vector is

(34)

QoS values are feasible if and only if .
The QoS feasible set is the sublevel set

(35)

We are now interested in the boundary of , which is character-
ized by .

Lemma 3: A boundary point is Pareto optimal if and
only if is Pareto optimal.

Proof: This is a direct consequence of the strictly mono-
tonic mapping (33). Pareto optimal points in are mapped to
Pareto optimal points in and vice versa. Non-Pareto boundary
segments in are parallel to the coordinate axes. Those seg-
ments are mapped to parallel segments in and vice versa.

From Lemma 3 it follows that we can analyze Pareto opti-
mality of by focusing on the underlying SINR set instead.

As an example, we discuss the capacity region resulting from
Example 4.

Fig. 4. Capacity region of a 2-user MAC with fixed decoding order 1, 2 and
individual power limits.

Example 5: Consider the capacity region of the 2-user MAC
with individual power limits as specified in Example 4. For a
given decoding order 1, 2, the capacities of the users are

capacity user 1:

capacity user 2:

Assuming that no time-sharing or rate-splitting can be per-
formed, we obtain the capacity region depicted in Fig. 4. Note,
that a part of the boundary is not Pareto optimal.

With Theorem 2 we show the following result.

Theorem 4: Consider an arbitrary boundary point
, with a fixed point as de-

fined in Lemma 1. Then is Pareto optimal if and only if

(36)

Proof: We will prove the contrapositive statement. Sup-
pose that consists of multiple vectors. Then there is
a nonempty set and a vector as in Theorem 2. For any
we have

Thus , and therefore is not Pareto optimal.
Conversely, assume that a boundary point is not Pareto op-

timal, then there exists a with . This point is achieved
by the power vector fulfilling . We have

and . We now show that any element of
is also contained in . To this end, con-

sider an arbitrary . We have

Thus , i.e., . There-
fore, we have determined two vectors that are both con-
tained in .

Next, we show how Pareto optimality is connected with the
structure of the dependency matrix. To this end, consider again
an arbitrary boundary point and as defined in The-
orem 2. The following Lemma 4 states that if has
multiple elements, then cannot be irreducible. A non-
negative square matrix is said to be irreducible if its directed
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graph is strongly connected. Lemma 4 will be needed later for
the proof of Theorem 7.

Lemma 4: Consider an arbitrary boundary point
, with a fixed point as defined in

Lemma 1. If , then for any defined in
Theorem 2, the local dependency matrix is reducible.

Proof: The proof is by contradiction. Suppose that
is irreducible. Assumption implies the exis-
tence of an oversized user. Consequently, there are two comple-
mentary sets and . Because of irreducibility there exists
a connecting path between both sets. That is, there exist indices

and such that

(37)

We can reduce the power of the oversized user without vio-
lating the feasibility condition. That is, there exists a and
a such that

(38)

By keeping all the other components fixed, we ob-
tain a new vector . Because of monotonicity A3 we
have , and with (38) we know that

.
From (37) we know that by reducing the power of user we

reduce the interference of user . Thus

This contradicts (24) from Theorem 2, thus concluding the
proof.

D. Concept of Strongly Coupled Users

We will now introduce the new concept of strongly coupled
users. This will prove useful in further characterizing the Pareto
optimal boundary. It will turn out (Theorem 7) that this is an
equivalent way of expressing Pareto optimality.

Definition 10: A -user system is said to be strongly coupled
with power limits , if for any point , for which there is a

with

(39)

there exists a vector such that

(40)

The condition (40) reflects a practically relevant property: If
it is possible to fulfill SINR requirements , and one
user gets more than required, then all users are strongly coupled
if and only if all users benefit from reducing the oversized user’s
power. This is an important aspect of “fairness” because it pro-
vides a mechanism for trading off resources between users.

Theorem 5: If interference functions with power
limits are strongly coupled, then every boundary point
is Pareto optimal.

Proof: Assume that are strongly coupled. The
proof is by contradiction. Suppose that there is a boundary point

that is not Pareto optimal. Then there is a such that we

can find a with . Consider the indicator function
, as defined by (22). Because , the vector

is associated with a such that . Therefore

(41)

Because the interference functions are strongly coupled by as-
sumption, there is a such that

(42)

This would imply

(43)

which is a contradiction. Thus, every boundary point is Pareto
optimal.

An obvious question is: does the converse of Theorem 5 hold?
That is, does a Pareto optimal boundary imply a strongly cou-
pled system? This will be shown in Section IV-F under the addi-
tional assumption of strict monotonicity. Without strict mono-
tonicity we only have the following result.

Theorem 6: Assume that every boundary point is Pareto op-
timal. Consider an arbitrary point . If there exists a

such that

(44)

with strict inequality for at least one component, then there ex-
ists a with

(45)

Proof: From assumption (44) it follows that is contained
in the feasible region. However, it cannot be a boundary point
because of the assumed strict inequality for one component.
This would contradict the assumption of Pareto optimality.
Thus, must be contained in the interior of the region, for
which . So there exists a vector
that fulfills the fixed point equation

(46)

where .

Note that Theorem 6 is not the converse of Theorem 5. The
result only holds for interior points, not for the boundary. In the
following Section IV-F we will make the additional assumption
of strict monotonicity. Under this additional condition the con-
verse will be shown. Also, the connection with the dependency
matrix will be explained.

E. Strict Monotonicity on the Dependency Set

We now introduce the additional property of strict mono-
tonicity on the dependency set. The definition of the dependency
set is based on the dependency matrix . The dependency set
of user is

(47)
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This is the set of transmitters which have impact on user . The
set is always nonempty because axiom A1 rules out the trivial
case , .

Definition 11 (Strict Monotonicity): is said to be
strictly monotonic (on its dependency set ) if for arbitrary

, , the inequality , with for some
, implies .

So is strictly increasing in at least one power compo-
nent.

The assumption of strict monotonicity enables us to prove the
converse of Theorem 5. In addition, it provides a link between
the dependency matrix and Pareto optimality. This is sum-
marized by the next theorem.

Theorem 7: Consider a -user system with individual power
limits and interference functions that are strictly
monotonic on their respective dependency sets. Then the fol-
lowing statements are equivalent:

• The system is strongly coupled (Definition 10).
• The dependency matrix is irreducible.
• Every boundary point is Pareto optimal.

Proof: We first show that the dependency matrix is irre-
ducible if and only if every boundary point is Pareto optimal.

The first part is by contradiction. Suppose that is irre-
ducible but some boundary point is not Pareto optimal (see
Definition 4). Then has multiple elements and there
is a vector as defined in Theorem 2. From Lemma 4 it fol-
lows that is reducible. However, this is a contradiction
because irreducibility of implies irreducibility of .
This is shown as follows. The proof is again by contradiction.
We need to show that implies for any

. Suppose that , then we know from (31)
that is constant for all . This means
that does not depend on the th component, which contradicts
the assumption of strict monotonicity, thus proving that
is irreducible. Thus, we have shown that an irreducible depen-
dency matrix implies a Pareto optimal boundary.

Conversely, we need to show that if an arbitrary boundary
point is Pareto optimal then is irreducible. The proof
is by contradiction. Suppose that is reducible. Without
loss of generality we can assume that has Frobenius
normal form [47], with irreducible matrices
along the main diagonal. Such a canonical form can always
be achieved by a symmetric permutation of rows and columns
of . Suppose that the first (isolated) block has a dimension

. This means that the first interference functions
do not depend on the components . Thus, the
vector leads to SINR values

for . We introduce the set
. For

arbitrary we define

(48)

Consider such that . Because of
the noise and power constraints, we know from [30] that this
point is feasible, i.e., there exists a with

such that

Here, acts like additional noise. The com-
plete -dimensional vector of SINR values is

, and the vector
achieving this point is . Using (14) we
obtain

(49)

This can only be fulfilled with equality since we also have

Thus, .
Next, consider an arbitrary with , and

We have . Sim-
ilar to (49) it is shown that . Thus,

holds, which means that both and
are boundary points. That is, we can minimize components of
without leaving the boundary, which contradicts the assumption
of Pareto optimality.

Next, we show that the system is strongly coupled if and only
if the dependency matrix is irreducible.

Assume that is irreducible. Consider an arbitrary
boundary point such that there is a with

. This inequality is strict for at least on component
, so we can decrease without violating the inequality.

Because of the assumed strict monotonicity, decreasing de-
creases the interference of the users in the dependency set .
These users can in turn reduce their powers without without
violating the above inequality. Irreducibility means that, in the
graph of there is a path from any point to any other point.
Thus, by successively decreasing the components of , we
obtain a vector with

(50)

That is, the users are strongly coupled.
Having shown that irreducibility implies a strongly coupled

system, it remains to show that if is reducible then the
system cannot be strongly coupled. To this end, we use the
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SINR vectors and that were already introduced earlier
in the proof. The point is achieved by , thus

However, there is no vector with

Because then could not be a boundary point.

Theorem 7 will be needed in the next section.

V. STRICT LOG-CONVEXITY OF SINR FEASIBLE SETS

In this section we will address another important property,
namely strict log-convexity. A connection between log-convex
interference functions and log-convex SINR regions was al-
ready observed in previous work, e.g., [3]. In this section we
will complement and extend previous work by adding power
constraints. In particular, we will derive conditions for strict
log-convexity of the SINR regions and ,
defined by (14) and (16), respectively. It will turn out that strict
log-convexity depends on how users are coupled.

A. Total Power Constraint

Assume that the sum of all transmission powers is limited
by . The next theorem shows that the resulting SINR set is
strictly convex after log-transformation.

Theorem 8: Let be arbitrary log-convex interfer-
ence functions. Then for all the logarithmic
transformation of the SINR region is strictly
convex, the entire boundary of is Pareto optimal, and

.
Proof: In order to show strict convexity, consider arbitrary

points , with , from the boundary of .
This set is strictly convex if the line segment

, with , is in the interior of the region. This is shown
in the SINR domain, where and are the
corresponding boundary points, with . The line segment
is transformed to the curve (all operations are component-wise)

(51)

A point on the line segment is in the interior of
if and only if . We

exploit that for any there exists a unique power vector
such that

(52)

This can be shown in a similar way as in [30], by exploiting
the strict monotonicity A4, and the fact that is a
boundary point. Let us define , where

, and , are the power vectors that

achieve the boundary points and , respectively. Because of
uniqueness, implies . By exploiting log-convexity
of the interference functions , we have

(53)

for all . Combining (17) and (53), we have

Since and are boundary points, we have
, and thus

(54)

It remains to show that inequality (54) is strict. Since ,
Hölder’s inequality leads to

(55)

where . This expression is simplified by
choosing and . Since the sum-power
constraint is active for points on the boundary, we have

. Thus,

(56)

Since inequality (56) is strict, there exists a , and a new
vector that also fulfills the inequality. By ex-
ploiting axioms A2 and A4, we have

(57)

From A3 it follows that inequality (53) is strict. Thus,
, which means that for any ,

the point is in the strict interior of the region, thus proving
strict log-convexity of the SINR region.

Strict log-convexity implies Pareto optimality. It re-
mains to show that . The transformed
set is closed. This can be observed from
definition (16). It is also upper-bounded because of the power
constraint and the assumption of noise. Finally, the entire
boundary is Pareto optimal, thus is fulfilled.

As a consequence of Theorem 8, the solution of (3), respec-
tively, (2), is the single-valued NBS. The SINR region is a com-
pact set, and therefore the existence of the unique optimizer is
guaranteed.

B. Individual Power Constraints

The previous section has shown that the possible occurrence
of interference-free users does not matter under a sum-power
constraint, because the users are always coupled by sharing a
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common power budget. However, in order to analyze the be-
havior under individual power constraints, we need to take into
account the interference coupling characterized by .

We now study under which conditions the SINR region
, defined by (14), is strictly log-convex. Then, we

study under which conditions the SINR region is contained in
.

We begin by defining strictly log-convex interference func-
tions.

Definition 12 (Strict Log-Convexity): A log-convex interfer-
ence function is said to be strictly log-convex if for all ,
for which there is some with , the following in-
equality holds:

(58)

where .
The following lemma shows that strict log-convexity implies

strict monotonicity.

Lemma 5: Every strictly log-convex interference function
is strictly monotonic on its dependency set (see Definition 11).

Proof: Consider an arbitrary fixed vector , and an
arbitrary . We define

(59)

and

(60)

Since , strict log-convexity implies

(61)

By (60) we have

(62)

Also, implies

(63)

With A3 (monotonicity) we know that implies
. With (61) we have

thus

(64)

which shows strict monotonicity.

Note that the converse of Lemma 5 is not true. The following
example shows a strictly monotone interference function which
is not strictly log-convex. That is, strict monotonicity is weaker
than strict log-convexity.

Example 6: Consider the interference function

(65)

Using the same notation as in Definition 12 we have
. Thus, (65) is log-convex but not strictly log-

convex. However, (65) is strictly monotone.
Under the assumption of strict log-convexity we can derive

a necessary and sufficient condition for strict convexity of the
transformed SINR region. To this end, we need the following
result.

Lemma 6: Let be strictly log-convex interference
functions, and each user affects the interference function of at
least one other user, i.e., each column of has at least one
nonzero entry off the main diagonal. Then for arbitrary
there exists at least one such that

(66)

Proof: If (66) is fulfilled for one then it is fulfilled for
all . This follows from the strict log-convexity of the
interference functions. Next, we prove Lemma 6 by contradic-
tion. Suppose that there is a such that for all

This can only be fulfilled if for all there exists a
such that

where is the extended dependency set, which
always contains the noise index . Both vectors have the
same last component , thus for all .
By assumption, each user depends on at least one other user,
thus for each index , there exists a such that .

Thus, we have equality for all components, which leads to the
contradiction .

Note that the constant noise component plays a crucial
role in the proof of Lemma 6. Axiom A4 implies strict mono-
tonicity with respect to . We can use Lemma 6 to derive a
necessary and sufficient condition for strict log-convexity.

Theorem 9: Let be strictly log-convex interference
functions. The transformed SINR region is
strictly convex if and only if is irreducible.

Proof: are strictly log-convex and thus they
are also strictly monotonic on their respective dependency set
(see Lemma 5). If the region is strictly convex, then the entire
boundary is Pareto optimal. Theorem 7 implies that is
irreducible.

It remains to show that irreducibility implies a strictly convex
region. Consider arbitrary boundary points and with cor-
responding power vectors and . As in the proof of The-
orem 8, we use and . We have

. In [3, Appendix B] it was shown
that . We now exploit that is irre-
ducible, thus each column of has at least one nonzero entry
outside the main diagonal. From Lemma 6 we know that for any
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there is at least one component such that (66) is ful-
filled. It follows that there exists a such that

(67)

From Theorem 7 we know that the system is strongly coupled,
so there exists a such that for all

(68)

With (15) we have

Thus, is in the interior of the region.

Next, consider the function

(69)

where we have used the change of variable . The
weights account for possible user priorities. Note that mini-
mizing (69) is equivalent to maximizing . For
equal weights, this is a special case of the optimization problem
(3), where the utility is the SINR.

Convexity of was already shown in [3]. However, in
order to show that the SINR region is contained in , we need
strict convexity.

Theorem 10: Let be defined as in Lemma 6. Then
is strictly convex for all . That is, for all ,

we have

(70)

where , as defined in the proof of Theorem 8.
Proof: Assume an arbitrary . For any

there exists a such that (66) is fulfilled. Thus

Here we have exploited (66) and log-convexity of .

The next corollary is an immediate consequence of Theorem
10.

Corollary 4: The optimization problem

(71)

has exactly one minimizer.
It was shown in Section II that for any set the

properties of the classical Nash bargaining framework are pre-
served. The following theorem shows a sufficient condition for
the SINR region to be contained in . The result
builds on Theorem 10.

Note that sets from do not need to be strictly log-convex
(see Fig. 1). Thus, irreducibility of , which was required in
Theorem 9, is not necessary in this case.

Theorem 11: Let be defined as in Lemma 6. Then
the SINR region is contained in .

Proof: The region is (relatively) closed and upper-bounded
because of the power constraints. The image set

is closed and upper-bounded. We need
to show that for two arbitrary Pareto optimal boundary points

, any point , with , is
contained in the interior of the set. This is illustrated in Fig. 1.

The proof is by contradiction. Suppose that there is a such
that is not in the interior. Since is convex comprehensive
[3], this can only be fulfilled if

(72)

Because of (72) there exists a vector such that

(73)

The set of maximizers of (73) is a convex set. For every max-
imizer there is a corresponding vector
which fulfills the power constraints, and is a solution of

(74)

That is, (74) has no unique optimum. This is a contradiction
because is strictly convex.

VI. CONCLUSIONS

In this paper we have analyzed log-convex utility regions, re-
sulting from different assumptions and power constraints and in-
terference coupling. This “hidden convexity” is useful for devel-
oping resource allocation strategies that operate on the boundary
of the region. As an example, we have analyzed the Nash bar-
gaining problem. We have shown that the properties of the clas-
sical Nash bargaining solution are preserved for certain non-
convex utility sets. This paper provides a theoretical basis for
exploiting log-convexity in interference-coupled multiuser net-
works and extends previous results in [4].

The results are potentially useful for different kinds of re-
source allocation problems. Nash bargaining is just one possible
operating point. Other types of fairness can be studied in future
work.
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