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Characterization of Convex and Concave Resource
Allocation Problems in Interference Coupled

Wireless Systems
Holger Boche, Fellow, IEEE, Siddharth Naik, and Tansu Alpcan, Member, IEEE

Abstract—This paper investigates the possibility of having
convex or concave formulations of optimization problems for in-
terference coupled wireless systems. An axiomatic framework for
interference functions proposed by Yates in 1995 is used to model
interference coupling in our paper. The paper shows that under
certain natural assumptions, the exponential transformation is
the unique transformation (up to a positive constant) for “convex-
ification” of resource allocation problems for linear interference
functions. Furthermore, it is shown that under certain intuitive
assumptions, it is sufficient to check for the joint concavity (con-
vexity) of sum of weighted functions of SINR (inverse SINR) with
respect to ( , where is the power vector of the users),
if we would like the resulting resource allocation problem to be
concave (convex). This paper characterizes the largest class of
utility functions and the largest class of interference functions
(respectively), which allow a convex and concave formulation of a
problem for interference coupled wireless systems. It extends pre-
vious literature on log-convex interference functions and provides
boundaries on the class of problems in wireless systems, which can
be algorithmically tackled by convex optimization techniques.

Index Terms—Concavity, convexity, exponential transformation,
interference coupled systems, resource allocation.

I. INTRODUCTION

T HERE is fair amount of general consensus, that it is
possible to classify problems into certain “categories”

of being solvable based on their convexity properties [1], [2].
In our paper we check for the joint (convexity) concavity of
functions, which are functions of the (inverse) signal-to-in-
terference (plus noise) ratio (SINR), which is an important
measure for link performance in wireless systems. Our paper
focuses on the topic of investigating convexity properties of
functions of inverse SINR and concavity properties of func-
tions of SINR. Such functions are frequently encountered as
loss minimization problems in wireless communications, e.g.
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minimum mean-square error (MMSE) and bit error rate (BER).
They are also encountered as utility maximization problems,
e.g. rate and capacity.

Wireless communication systems are often interference cou-
pled. We adopt an axiomatic approach to capture interference
coupling. An axiomatic approach was proposed by Yates in [3]
with extensions in [4]–[7]. The Yates framework of standard
interference functions (discussed in Section II-B) is general
enough to incorporate cross-layer effects and it serves as a
theoretical basis for a many algorithms.

Certain examples, where the interference function frame-
work has been utilized are as follows: beamforming [8]–[10],
CDMA [11], base station assignment, robust design [12], [13],
transmitter optimization [14], [15], and characterization of the
Pareto boundary [16]. The framework can be used to combine
power control [17] and adaptive receiver strategies. In [18], it
was proposed to incorporate admission control to avoid unfa-
vorable interference scenarios. In [19], it was proposed to adapt
the quality of service (QoS) requirements to certain network
conditions. In [20], a power control algorithm using fixed-point
iterations was proposed for a modified cost function, which
permits control of convergence behavior by adjusting fixed
weighting parameters.

Proving inherent boundaries on the problems, which can be
characterized as jointly convex problems could help in chan-
nelizing future research directions and help obtain practically
implementable resource allocation strategies utilizing the wide
gamut of convex optimization tools. We focus our attention on
a problem, namely that of characterizing the subclass of gen-
eral interference functions for which we can get a meaningful
convex optimization problem from a wireless systems perspec-
tive. Solving problems with real time constraints is a critical
issue in current wireless systems. In general, interference co-
ordination and management is an important research topic and
has potential to address problems in future generations of wire-
less systems, e.g., indoor interference problem, possibility to en-
hance capacity by utilizing interference positively via relaying
in overlay cognitive radio systems. The papers [21] and [22]
discuss the structure and modeling of interference via inter-
ference functions. References [21] and [22] essentially focus
on the properties of interference functions and characterization
of interference coupling in wireless systems. The paper [23]
proves that there exists no SINR based utility functions, which
are convex or concave in the power domain. Furthermore, [23]
showed, that the weighted sum of such functions can never be
convex or concave in the power domain.
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Hence, we investigate for possible transformations to other
domains to exploit hidden convexity and concavity properties,
respectively. One such transformation is the exponential trans-
formation. Such an exponential transformation has been utilized
earlier in [24]–[29]. References [30] and [31] exploit hidden
convexity in the context of utility maximization using geometric
programming. In [32], a majorization technique is used to com-
pute the optimal solution over a logarithmic utility function. In
[33], hidden convexity is exploited to provide robust resource al-
location and certain distributed implementation have been pro-
vided.

Such a change of variable is an additional motivation for the
utilization of the log-domain in communication systems. Our
list is by no means comprehensive and the reader is requested
to refer to the listed papers and the references therein for further
literature on the topic. We differentiate ourselves from previous
work by checking the following: let a transformation to ex-
ploit hidden convexity or concavity properties exist. Then,
is this transformation unique? Furthermore, we search for the
largest class of utility functions and the largest class of inter-
ference functions, which permit such transformations to exploit
hidden convexity. This paper sets limitations on the class of
utility functions, types of interference coupling in wireless sys-
tems and in turn resource allocation problems, which can have
desirable concavity and convexity properties. Problems outside
these characterized classes of functions can never be trans-
formed into suitable concave or convex characterizations.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

In this section, we precisely state the problems addressed in
the paper and follow it up with the main contributions of the
paper. We begin by providing certain notational conventions
used in our paper in Section II-A below.

A. Preliminaries and Notation

Matrices and vectors are denoted by bold capital letters and
bold lowercase letters, respectively. Let represent a matrix.
Let represent a matrix with in the
diagonal positions, respectively and zero entries in all other po-
sitions. Let be a vector, then is the component.
The notation implies that for all components .

implies for all components . Similar definitions
hold for the reverse directions. implies that the vector dif-
fers in at least one component. Let represent a transpose of
the vector . Let calligraphic letters, i.e., imply a set, with the
exception that is used to represent a function. Let
imply that is a proper subset of . The set of real numbers is
denoted as . The set of non-negative real numbers is denoted as

. The set of positive real numbers is denoted as . Let
and denote component-wise exponential and logarithm,
respectively. The symbols will represent , , , and func-
tions throughout the paper.

B. Interference Functions

In a wireless system, the utilities of the users can strongly
depend on the underlying physical layer. An important measure
for the link performance is the SINR ratio. Consider users
with transmit powers and .

The noise power at each receiver is . Hence, the SINR at
each receiver depends on the extended power vector where

. The resulting SINR of user
is

(1)

where is the interference (plus noise) as a function of . In
order to model interference coupling, we shall follow the ax-
iomatic approach proposed in [3] and [7]. The general interfer-
ence functions possess the properties of conditional positivity

, scale invariance and monotonicity with respect to
the power component , and strict monotonicity with respect
to the noise component . For further details, kindly refer to
the Appendix. We will also utilize the class of log-convex inter-
ference functions, which we introduce below. Log-convexity is
a useful property that allows one to apply convex optimization
techniques to certain non-convex problems.

Definition 1: Log-convex interference function: An interfer-
ence function is said to be a log-convex in-
terference function if are fulfilled and is
log-convex on .

Let . A function is
log-convex on , if and only if is convex or equiv-
alently , for all ,

, where ,
. Note that the log-convexity in Definition 1 is based on

a change of variable (component-wise exponen-
tial). Such a technique has been previously used to exploit a
“hidden convexity” of functions [24]–[27], which are otherwise
non-convex. It was also utilized in a different context in [28].

C. Impact of Interference Coupling

Users in a wireless systems coupled by interference are in-
trinsically competitive. Each of them is principally interested in
maximizing their own utility. Such a characterization is accom-
panied by a precondition that there must be at least one user

who sees interference from another user and
, i.e., it must not be possible to completely orthogonalize

all the users in the system. If the users are completely orthog-
onalized, then they are coupled only by the constraints on the
resource allocation strategy and there is no “competition” in the
sense as we describe in this section. The example below high-
lights this point and displays the impact of interference cou-
pling. Let represent an utility function corresponding to a
user , where .

Example 1: Consider the utility function
. The function

(2)

for all weight vectors is never jointly concave with re-
spect to . Furthermore the function (2) is not a convex op-
timization problem even for linear interference functions, e.g.

, where is the link-gain between
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transmitter and receiver . This holds for all non-orthogonal
system of users, i.e., there exists at least one such that
for , i.e., each users sees at least one other user as interfer-
ence.

Similarly, the problem of minimizing the function

for all weight vectors is not jointly
convex with respect to .

Reference [23] shows that if is the rate of user , then the
following sum of weighted rate maximization problem cannot
be jointly concave in its current form. Similarly, if we have that

is the minimum-mean-square-error (MMSE) of user , then
the following sum of weighted MMSE minimization problem
cannot be jointly convex in its current form. None the less,
through appropriate substitution of variables, the above formu-
lation can be converted into a convex or concave optimization
problem.

D. Problem Statement

Based on the observations from Section II-C, the following
important questions arise immediately.

Problem 1: Can the function be jointly convex after
a suitable transformation (where is a transformation)
for linear interference functions?

1) Under what conditions is such a transformation unique?
2) Can these results be extended beyond linear interference

functions?

Certain examples of linear interference functions beyond the
case of linear interference functions are as follows:

• convex interference functions: interference functions uti-
lized to model worst-case models, e.g.

(3)

where the parameter , chosen from a closed bounded set
can stand for the impact of error effects. Examples of

error effects could be channel estimation and prediction
errors. Performing power allocation with respect to worst
case interference such as (3) guarantees a certain degree of
robustness (see, e.g. [10] and references therein.) and

• concave interference functions: interference functions
representing interference coupling in uplink beamforming
with single-antenna transmitters and an -element
antenna array at the receiver [22, Sec. I-A and Sec. II].

There are many such examples frequently encountered in prac-
tical wireless systems The Problem 1 has been formulated for
the convex case. We can formulate a similar problem for the
concave case as follows:

Problem 2: Can the function be jointly concave
after a suitable transformation for linear interference functions?

1) Under what conditions is such a transformation unique?
2) Can these results be extended beyond linear interference

functions?

In Problems 1 and 2, we have taken the perspective of an arbi-
trary user . To address these problems, we shall formulate
certain requirements. For formulating these requirements, we

shall briefly review the concepts of feasible SINR regions and
feasible quality-of-service (QoS) regions. The feasible SINR re-
gion is the set of all feasible SINR vectors , that can be sup-
ported for all users by means of power control, with interference
being treated as noise. We define a set as the set of vectors,
which satisfy certain power constraints, e.g.,

• for the case of total power constraints:
, where is the total

power constraint;
• for the case of individual power constraints:

, where are the individual power con-
straints; and

• for the case of individual and total power constraints:
.

The feasible SINR region can be written as follows:

(4)

and the corresponding feasible QoS region is

(5)

Example 2: Consider the function , which is con-
cave with respect to and convex with respect to . The func-
tion in neither jointly convex nor jointly concave
with respect to .

We know from [34] and the references there in, that the fea-
sible SINR region is in general not convex.

Example 3: Consider an example with two users, where the
SINR of user 1 is and the SINR of
user 2 is , where is the channel gain
between the receiver and transmitter.

The feasible signal-to-interference ratio (SIR) region
can also be defined as , where

is the Perron root of the weighted
coupling matrix, where and is a
restricted weighted coupling matrix containing the interference
coupling coefficients (without the dependency on noise). Fur-
thermore, we also know from [23], that we can never have joint
convexity of the inverse SINR in the power domain. Hence, we
would like to investigate the possibility of finding a suitable
transformation (or ), which:

1) transforms the problem from the power domain to the -do-
main, i.e., , where , and
the inverse SINR and functions of inverse SINR are jointly
convex with respect to ;

2) transforms the feasible SINR region into a convex feasible
QoS set , where , for all and .

While looking for our transformation , we make the
following assumption: Transformation is strictly
monotonic increasing and twice continuously differentiable
throughout the paper.

The feasible SIR region and the feasible SINR region are
convex after the transformation and ,
respectively (see Fig. 1 for an example of the convexity of
the transformed SINR region). The convexity of the fea-
sible SINR region is a direct consequence of the Perron root
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Fig. 1. Depiction of a feasible SINR region for individual power con-
straints and the corresponding feasible QoS region after a transformation

.

being log-convex after a change of variable ,
where is the logarithmic SIR. Note that ful-
fills the axioms to , i.e., the Perron root is a special
case of the more general interference functions. This does
not imply that is jointly convex, nor that

is jointly
convex, where .

Remark 1: Even though the feasible QoS region is a convex
set (see Fig. 1) after a logarithmic transformation, the function

, for is not jointly convex with respect to .

Linear interference functions are the simplest type of inter-
ference functions and they are frequently encountered in com-
munication systems. Hence, expecting the feasible QoS region

to be convex (see condition 2 above, before the introduction
of the transformation ) for all linear interference functions, is
a natural requirement for communication systems.

We now return to the problem of finding a suitable transfor-
mation . Let , where .
From [34] we know that, is convex for all coupling ma-
trices and for all users , if and only if is
log-convex. Furthermore, this implies that the feasible QoS
region resulting from the transformation , for
all users without power constraints is convex. Now, to
formalize the conditions 1) and 2) we introduce the following
requirement.

Requirement 1: For all linear interference functions, the
is convex for all for all users , where

is the link gain matrix.

Remark 2: If Requirement 1 is satisfied, we have that the fea-
sible QoS region is convex for all linear interference functions.
Then, from [34, Theorem 1] we have that is log-convex.

The function is one such function satisfying
Requirement 1. We further introduce another requirement,
which expects joint convexity of the inverse SINR, which can
be thought of as loss minimization in wireless systems and joint
convexity of the inverse SINR raised to for all .

Requirement 2: For all scalars the function
is jointly convex with respect to .

Expecting the function , with to be convex
with respect to , implies that we expect the expression of the

-order diversity of a system with a certain inverse SINR to be
convex. Reference [35] provides a characterization of the mul-

tiplexing rate tuples of the users as a function of the common
diversity gain for each user. It characterizes the diversity mul-
tiplexing trade-off in multiple access channels, when all users
have the same diversity requirements. We now introduce the
families of functions and below which will help
us introduce our last requirement.

Definition 2: is the family of all strictly monotonic
increasing, continuous and convex functions . is the
family of all strictly monotonic increasing, continuous function

, such that is convex.

The inclusion order of the classes of utility sets is
. In fact, is much larger the . If a utility func-

tion is in the class , then it has the property that
is convex. The example , which is frequently en-
countered in wireless communication systems shows that even a
concave function could be transformed into a convex function.
Hence, we would like to investigate the possibility of ensuring
convexityfor the largerclassof functions.For thispurpose
we introduce our last requirement, which expects joint convexity
of functionsof inverseSINR,whichare frequentlyencountered in
wireless systems, e.g. MMSE: and high-SNR
approximation of BER with diversity order .

We are now in a position to formulate the problems from
a system level perspective, e.g. a weighted sum of minimum
square error minimization problem from the perspective of a
base station or a central controller.

Problem 3: Let be strictly monotonic increasing,
convex and continuous functions. Consider the function

(6)

1) For linear interference functions, can the function (6) be
jointly convex after a suitable transformation?

2) Under what conditions is such a transformation unique?
3) If we relax the condition of linear interference functions,

then for what kind of interference coupling can we extend
the above results?

We now present our final requirement.
Requirement 3: For all functions , the function

(6) with is jointly convex with respect to .

The function is one such function satisfying Re-
quirement 3.

We formulate a similar problem for the concave case. For this
purpose we formally introduce two classes of utility functions.

Definition 3: is the family of all strictly monotonic
increasing, continuous and concave functions . is the
family of all strictly monotonic increasing, continuous functions

, such that is concave.

The concavity of the function is a stronger requirement,
i.e., .

Problem 4: Let be strictly monotonic increasing,
concave and continuous functions. Consider the function

(7)
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1) For linear interference functions, can the function 7 be
jointly concave after a suitable transformation?

2) Under what conditions is such a transformation unique?
3) If we relax the condition of linear interference functions,

then for what kind of interference coupling can we extend
the above results?

While answering the above problems in the paper, we shall
have proved, that , with , is the only
family of transformations, which satisfies our requirement.
Hence, we shall utilize this transformation while analyzing
problems 5 and 6.

Problem 5: Let us assume, that are linear inter-
ference functions. What is the largest class of utility functions,
i.e., functions , which are not necessarily convex,
such that we can ensure the joint convexity of

(8)

Problem 6: What is the largest possible class of interference
functions, such that for all utility functions , the
function (6) is jointly convex with respect to , for all weight
vectors .

E. Contributions

The main contributions of this paper are as follows:
• Linear interference functions are the simplest and most

frequently encountered class of interference functions.
Theorem 1 shows, that under certain natural assump-
tions for linear interference functions, the transformation

, where is the power of an
arbitrary user and , is the unique transformation
for “convexification” of resource allocation problems.

• If we would like the resulting resource allocation problem
to be convex, then Theorems 1 and 3 show that under nat-
ural assumptions, it is sufficient to check for the joint con-
vexity of the function (6) with respect to .

• Theorem 4 and Remark 8 extend the above analysis beyond
linear interference functions. Theorem 4 and Remark 8
characterize the largest class of interference functions (
interference functions), which allow a problem in interfer-
ence coupled wireless systems to be formulated as a convex
optimization problem. interference functions (see Def-
inition 4), include log-convex interference functions, ex-
tending previous literature on the topic of convex charac-
terization of resource allocation problems.

• Under certain natural assumptions, we present an impossi-
bility result (Theorem 5), which states that there exists no
transformation , such that the function
for all users is jointly concave with respect to .

• Theorem 7 establishes the largest class of utility functions
, which are functions of SINR in the -domain

and are concave. Due to a certain requirement of Theorem
(explained in detail in Lemma 2), such a class of utility
function is a restricted class. Furthermore, it is shown that
the family of exponential functions is the unique family
of functions, such that relevant and frequently encoun-

tered functions in interference coupled wireless systems
are jointly concave for all linear interference functions and
for all utility functions in the class .

• Theorem 8 proves that the largest class of interference
functions, which preserves concavity of resource alloca-
tion strategies of interference coupled wireless systems
is the family of log-convex interference functions. Fur-
thermore, it provided a complete characterization of the
class of log-convex interference functions, with respect to
convexity and concavity properties of resource allocation
problems.

III. ANALYSIS OF RESOURCE ALLOCATION PROBLEMS:
CONVEX CASE

We now analyze the convexity properties of functions of in-
verse SINR for linear interference functions.

A. Analysis of Convexity Properties of Resource Allocation
Problems for Linear Interference Functions

We check for a transformation of the problem from the
power domain to the -domain, with the hope that the resulting
problem is convex, for all linear interference functions.

We now present a result, which shows that if we expect the
supportable QoS region to be convex for all linear interference
functions, then the only transformation (from the -domain to
power domain) permitted under certain conditions, is the family
of exponential transformations (up to certain scalar ).

Theorem 1: Transformation satisfies Requirements 1 and
2, if and only if there exists a , such that

, , for .

Proof: “ ”: This direction can be easily verified as fol-
lows. Let . Let ,
for , where is a vector of in-
terference coupling coefficients with the component
of each vector being . For a given power vector , the inter-
ference (plus noise) in the system is determined by the

interference coupling matrix . Since
is a log-convex function and the point-wise product of two

log-convex functions is log-convex, we have that for any user

We have shown the joint convexity of the function
with respect to . Hence, Requirement 2 is

satisfied.
Now to show, that Requirement 1 is satisfied. We have

to consider the feasible SINR region without power con-
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straints. Hence, we can analyze the SIR region instead of
the SINR region. Let is a vector of interference
coupling coefficients without noise and the interference in
the system is determined by the interference cou-
pling matrix . The feasible SIR region can
be written as, , where

is the spectral radius of the interference
coupling matrix. The spectral radius is log-convex after a
change of variable , where is the logarithmic SIR. It is
observed, that the SIR set is convex on a logarithmic scale.
Hence, satisfying Requirement 1. Then, we have our desired
result.

“ ”: From the assumptions of the theorem, we have that
for all linear interference functions, the supportable QoS re-
gion (without power control) is convex with respect to , i.e.,

, is a convex function with respect to
. We shall investigate the two-user case, without

any loss of generality. Therefore, we check for the convexity
of , for a certain fixed . We fix the power of
user 2. Hence, we fix the value and check for the convexity
of , for all . Then, we have that

. Taking the limit of , we obtain

(9)

Since, Requirement 1 is satisfied, is log-convex and

(10)

From (9) and (10) we have that

(11)

If is a solution of (11), with for , then we
have that . This gives us

, i.e., . Since, is strictly monotonic
increasing (from our assumptions) we have that . There-
fore, , i.e., .

Remark 3: Theorem 1 has addressed point 1 of the Problem 1.

We have that . Hence,
we can choose , The constant in the statement of The-
orem 1 has the role of an initialization in the differential equa-
tion in the proof and has no impact on the SINR.

Historically, there have been a number of different motiva-
tions for utilizing the log-scale for measuring power in commu-
nication systems, e.g., the logarithmic nature allowing a repre-
sentation of a very large range of ratios can be represented by
a convenient number. Theorem 1, provides another reason as to
why it is advantageous to work in the log-domain, instead of the
power domain. Theorem 1 has been proved for the case, when
we can scale the noise. We now analyze the case, when we have
noise and we do not scale the noise.

Theorem 2: Function satisfies Requirements 1 and 2, if
and only if there exists a , such that ,

, , for .

Proof: “ ”: Since, we are analyzing the case, when we
do not allow the scaling of noise, let and

, where . Let
. Then,

(12)

where . The rest of the proof follows exactly as
the proof of Theorem 1 (the converse direction).

“ ”: From the assumptions of the theorem, we have that for
all linear interference functions, is jointly
convex with respect to , for all . Now,
consider the function

(13)
As , the function (13) tends to the noise free case,

i.e., . The noise free case is identical to the case,
when we can scale the noise. Furthermore, we know that the
limit function of a sequence of convex functions is convex. Now
we can follow the same steps as in the proof of Theorem 1 (the
forward direction).

Remark 4: Since, we can apply the same proof technique
as in the proof of Theorem 2, w.l.o.g. we prove all theorems
throughout the paper with noise scaling.

Remark 5: The composition of a convex and a concave func-
tion need not be convex. A function is convex, if and only if
the function is concave. Hence, it is important to check for
the convexity of a function of inverse SINR.

Theorem 1 presents a result, from the perspective an arbitrary
user . We now extend the result to a system level perspective
in Theorem 3 below.

Theorem 3: Function satisfies Requirements 1 and 3, if
and only if there exists scalars , such that

, where , for .
Function satisfies Requirements 1 and 3, if and only if there

exists a such that , where , for
all .

Proof: We know that under Requirement 1, the function
is convex, if and only if

for (from Theorem 1). Therefore, it is sufficient to prove
that the function (6), with is convex, if and only
if is convex.

“ ”: with , is a convex func-
tion. We know that the concatenation of convex functions is
convex. Hence, this direction can be easily verified. Hence, we
skip the proof.

“ ”: We know that Requirements 1 and 3 are satis-
fied. We can choose , for all . Then,

with and is jointly
convex with respect to , for all . Let us choose weight
vectors as follows:
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Taking the limit as tends to , we obtain

. The limit function of
a sequence of convex function is convex. Therefore,

is jointly convex in . Therefore, Re-
quirements 1 and 2 are satisfied. Then, from Theorem 1, we
have our desired result.

Remark 6: Theorem 3 has addressed point 1 and point 2 of
the Problem 3.

From Theorems 1 and 3, we have an equivalence between
Requirements 2 and 3. We have established that for linear in-
terference functions the unique transformation that satisfies our
requirements and allows us to obtain convex optimization prob-
lems is the exponential function , with ,

. This will be utilized in Section III-B. Furthermore,
we have shown that the exponential function is the unique map-
ping if we would like the natural and practical requirement (3)
to be satisfied. We would now like to extend our intuition to the
case beyond the framework of linear interference functions.

B. Analysis of Convexity Properties of Resource Allocation
Problems Beyond Linear Interference Functions

In this section, we shall extend certain results obtained for
linear interference functions to a larger class of interference
functions. We are interested in finding the largest class of in-
terference functions, which allow us to apply convex optimiza-
tion techniques to certain non-convex problems. We shall as-
sume that , with , . Then, (6) is a
weighted sum of functions of inverse SINR in the domain.
Hence, it plays the role of a loss function in wireless systems.
Intuitively, while tackling such a problem we would like to min-
imize such a function so as to optimize the satisfaction of the
users in the system. We now present a result, that clarifies when
such a function can be optimized by means of a convex opti-
mization techniques.

Theorem 4: Let , with , . Then, (6)
is jointly convex with respect to for all weight vectors

and for all convex, continuous and increasing functions
, if and only if the functions for all

are jointly convex with respect to .
Let , with , . Then, the function (6)

is jointly convex with respect to for all weight vectors
and for all convex, continuous and increasing functions

, if and only if the functions for all
are jointly convex with respect to .

Proof: “ ”: This direction can be easily verified.
When and are convex functions, we know that

is convex. Furthermore, since the weighted
sum of convex functions is convex, we obtain our desired result.

“ ”: We have that (6) is convex for all weight vec-
tors and for all convex, continuous and increasing
functions . Choose for all users

. Let us choose weight vectors as in the proof
of Theorem 3. Taking the limit as , we have

. The limit
function of a sequence of convex function is convex. Therefore,

is jointly convex with respect to .

Remark 7: Theorem 4 has addressed point 3 of the Problem 3.

The largest class of interference functions, resulting in convex
resource allocation problems would be equal to or larger than
log-convex interference functions.

If interference functions are log-convex interfer-
ence functions, then
is jointly concave [36].

From Theorems 1 and 3, we know that for all strictly mono-
tonic increasing, continuous and convex functions and for all
weight vectors , it is sufficient to check for the joint con-
vexity of the function with respect to
. Hence, we define a new class of interference functions below:

Definition 4: interference functions: A general interference
function is said to a be interference function if the func-
tion is jointly convex with respect to , where

, for , with .

The inclusion of the different families of interference func-
tions is as follows: Convex interference functions Log-convex
interference functions interference functions General
interference functions. We now define the following function,
which we shall utilize in analyzing the convexity of the func-
tion .

(14)

The function defined by (14) is log-concave, for all
users . A function is log-con-
cave on , if and only if is concave or equiva-
lently , for all ,

, where ,
.

Lemma 1: Let the function , where is
defined in (14). Then, the sum of the weight vectors

.

The proof of Lemma 1 can be found in [37]. From [37], we
have the following remarks, which along with Theorem 4 help
us obtain a complete characterization of the convexity properties
of resource allocation problems for interference coupled sys-
tems beyond the case of linear interference functions. These re-
marks along with Theorem 4 characterize the largest class of
interference functions ( interference functions), which allow a
problem in interference coupled wireless systems to be formu-
lated as a convex optimization problem.

Remark 8: For all the function
is convex, if and only if

(15)

For all the function is convex,
if and only if
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It can be seen in Lemma 1, that the weight vectors can
be less than zero. Although this might seem surprising at first
glance, it is justified from the fact, that we are now concerned
with the optimization of function , which has the SINR as
an inverse argument. We are investigating the case in the -do-
main . Hence, a more negative weight implies a larger
SINR in the power domain.

We notice in Remark 8, that is convex, which
is stronger than the condition that it is log-convex, since

is convex. We see that log-convexity plays a signifi-
cant role in the analysis. Remark 8 has characterized the class
of interference functions , which leads to the inverse SINR
function to be convex in the -domain, for all users

. has been introduced for the purpose of investigating
the convexity properties of SINR.

From Theorem 4 and Remark 8, we make the following ob-
servation: The function (6) is jointly convex with respect to

for all weight vectors and for all convex, con-
tinuous and increasing functions , if and only if the
functions for all possess the structure defined
by (15).

Remark 9: Theorem 4 and Remark 8 have together answered
point 2, of the Problem 1.

If is a log-convex interference function, then
the corresponding function is convex, i.e.,

, where and
. If is a interference function, then

we have that the corresponding function is convex. Let
, be a convergent sequence on log-convex inter-

ference functions and . Then, is also a
log-convex interference function. Hence, we have that the class
of log-convex interference functions is closed with respect to
point wise convergence. However, they (the class of log-convex
interference functions) are not dense with respect to the class
of interference functions.

The class of interference functions is much larger than the
class of log-convex interference functions. These results extend
the class of interference coupled systems to which convex opti-
mization techniques can be successfully applied. The class of
interference functions is the largest class of interference func-
tions, permitting the use of convex optimization techniques to
solve certain non-convex problems.

Example 4: Consider the function , for . We
are interested in minimizing the function ,
with , for all users . Such a problem is met in the
form of minimizing the weighted probability of errors. Here, the
probability of error for user with diversity order for
user can be approximated as . We see an ex-
ample of such a function in [38]. A strategy for system resources
by joint optimization of transmit powers and beamformers for
minimizing the sum of weighted inverse SIR was considered. In
[35], a method for choosing weighting factors so that the sum
optimization approach achieves optimal max-min fairness was
provided.

We now investigate the possibility of obtaining a similar char-
acterization for the concave case in Section IV.

IV. ANALYSIS OF RESOURCE ALLOCATION PROBLEMS:
CONCAVE CASE

In this section, we check for a transformation of the
problem from the power domain to the -domain, with
the hope that the resulting function is jointly concave with
respect to . The feasible SINR region is convex on the loga-
rithmic scale (similar to the convex case displayed in Fig. 1,
we can have a figure for the concave case). This does not
imply that is jointly concave, nor that

is jointly con-
cave, where .

A. Analysis of Concavity Properties of Resource Allocation
Problems for Linear Interference Functions

We now present an impossibility result (Theorem 5), which
has implications on the concavity properties of resource alloca-
tion strategies. These resource allocation strategies aim to max-
imize functions of SINR in interference coupled wireless sys-
tems. We recollect that , always leads to
jointly convex behavior with respect to , for all linear interfer-
ence functions (Theorem 1).

Theorem 5: There exists no transformation , such that for
all linear interference functions, the function ,
for is jointly concave with respect to .

Proof: For the sake of obtaining a contradiction, assume
that the statement of Theorem 5 is not true, i.e., there exists
such a function. Choose and fix ,
for all and . Then, the function

is concave with respect to , i.e., the
transformation is itself concave.

Now fix (w.l.o.g) and consider the following expression
, with . This implies, that is a con-

cave function. Now, choose , such that
arbitrarily. We have that . Let

. Then, we have

(16)

On the other hand, we have
(since is concave). This gives us the following ex-

pression:

The strict inequality (above) follows from the fact that the func-
tion is strictly convex and we have our required contradic-
tion with (16).

We have proved the statement of Theorem 5 for the case,
when we can scale the noise. Similarly, we can easily prove The-
orem 5 for the noise free case.

Theorem 6: There exists no transformation , such
that for all linear interference functions, the function
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, for all is jointly concave with
respect to .

Proof: The proof follows the same direction as the proof
of Theorem 2 and Theorem 5. We consider the function

(17)

As , we have that (17) tends to the noise free
case, which is the same as the case with noise scaling (Theorem
2). Furthermore, we know that the limit function of a sequence
of concave functions is concave. Since, here we have that the
limit function is not concave, we can conclude that there exist
individual sequences, which are not concave either. Hence, we
have our desired result.

We have observed, that the concavity of , e.g.
is not sufficient to ensure the joint concavity of

, with respect to for a certain
transformation. Hence, we need to restrict the utility functions

, such that we can further investigate the joint concavity of our
desired function . The necessary condition,
which ensures joint concavity will be presented in Lemma 2
below.

Lemma 2: Let a strictly monotonic increasing and twice con-
tinuously differentiable function satisfy Requirement 1. Let
be a monotonic increasing function. Let for

be jointly concave with respect to for all linear
interference functions . Then, is concave.

Let a strictly monotonic increasing and twice continuously
differentiable function satisfy Requirement 1. Let be a mono-
tonic increasing function. Let for all

be jointly concave with respect to for all linear in-
terference functions . Then, is concave.

Proof: Choose arbitrarily. Then, for
and from the log-convexity of

the function , we obtain the following inequality:
. Since, is a monotonic increasing

function, we have that .
Furthermore, from the concavity of , we have that

. Now,
let be arbitrarily chosen. We choose such
that , for . This is possible due to our
assumption on the function . Let .
Then, we have that , i.e.,

is concave.
It can be seen that

. We have observed that the concavity
of is a necessary condition to ensure the joint concavity
of the function with respect to , for all

.
We have seen in Lemma 2, the existence of a function such

that the function , for all is jointly
concave with respect to , for all functions . We now
show in Theorem 7, that the function , is up
to two constants the unique transformation, which ensures
the joint concavity of , for all linear inter-
ference functions and for all utility functions . We

briefly compare this situation with the convex case, i.e., mini-
mizing the function , where is the exponential
function. For the case of linear interference functions and for all
strictly monotonic increasing, continuous and convex functions

, we have that is jointly convex with respect to
. In the convex case we did not require any further restrictions.

Theorem 7: Let a strictly monotonic increasing and
twice continuously differentiable function satisfy Require-
ment 1. The function is jointly concave
with respect to for all linear interference func-
tions and for all , if and only if

, with .
For all linear interference functions and for all

, is jointly concave with
respect to , if and only if , with

.

Proof: “ ”: Consider such that
, with . Let be a linear interfer-

ence function for all users . It can be easily verified that
is jointly concave with respect to .

Hence, we skip the proof.
“ ”: Let . Then, is in the class .

Now, let . Hence, is concave.
Furthermore, the function is log-convex, i.e., is also
convex. Therefore, we choose and
choose , . Then, we have that

(18)

Let . Then, we have , where
.

Remark 10: Theorem 5 and Theorem 7 has addressed point
1 and point 2 of the Problem 2.

We now extend our insight obtained from Theorem 5 and the
Lemma 2, beyond the case of linear interference functions.

B. Analysis of Concavity Properties of Resource Allocation
Problems Beyond Linear Interference Functions

In this section, we shall analyze the concavity properties of
resource allocation problems for interference functions, beyond
the class of linear interference functions. We shall be particu-
larly interested in investigating Problem 4. It has been estab-
lished in Section IV-A, that , with
satisfies our requirements. Now, we check for the joint concavity
of for all weight vectors
and for all utility functions for the largest possible
class of interference functions. Then, we have the following re-
sult.

Theorem 8: Let , with . The
function (7) is jointly concave with respect to for
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all and for all , if and only if are
all log-convex interference functions.

Proof: “ ”: We choose the weight vectors as follows:

Taking the limit as , we

have that . We
achieve that is jointly concave with
respect to , for all . Since, the limit function of a se-
quence of concave function is concave. Choose .
Then, for we have , i.e.,

is log-convex.
“ ”: If interference functions are log-convex,

then for arbitrarily chosen and
, we have that

Then, for a fixed , we have

(19)

Inequality in (19) follows from the concavity of . Hence,
we have that , for all is jointly concave
with respect to . Hence, we have that
for all weight vectors and for all is jointly
concave with respect to .

Remark 11: Theorem 8 has completely addressed the
Problem 4.

Theorem 9: Let , with . The
function is jointly concave with
respect to for all and for all , if and only if

are log-convex interference functions.

Proof: “ ”: If interference functions
, for all are log-convex

with respect to , then with a similar arguments
as in the proof of Theorem 6, we have the concavity of

, for all .
“ ”: With similar arguments as in the proof of Theorem 6,

we can prove that is log-convex with respect to
. Then from Theorem 8 in [7], we have that is

also jointly log-convex.
We contrast the result obtained from Theorem 8 to the

convex case. In the convex case, i.e., minimization of (6),
where is a strictly monotonic increasing, continuous and

convex function, it can be observed that with log-convex inter-
ference functions (have been discussed in [39]) the function

is jointly convex with respect to .
We shall investigate the possibility of obtaining a larger class
of utility functions, which preserves convexity properties of
functions of inverse SINR for interference functions, which are
not log-convex in Section V.

V. LARGER CLASS OF UTILITY FUNCTIONS

We have seen from Theorem 8 and from [36], that log-convex
interference functions play a special role in the characteriza-
tion of concavity properties of resource allocation problems. In
[36] the main focus was clarifying the importance of log-convex
interference functions. In our paper, we attempt to obtain the
largest class of utility functions such that the considered re-
source allocation problem still possesses convexity properties.
We explore the trade-off between the generality of the class of
utility functions and the generality of the class of interference
functions. We now return to the convex case and present the fol-
lowing result.

Lemma 3: Let , with . Function
(8) is jointly convex with respect to for all linear
interference functions, if and only if the function is convex.

Let , with . Function (8) is jointly
convex with respect to for all linear interference func-
tions, if and only if is convex.

Proof: “ ”: Let . Then . Then, for
arbitrarily chosen and we

obtain , i.e., the function
is convex.

“ ”: We have for all linear interference functions and
arbitrarily chosen and that

. This give us, that

(20)

is jointly convex with respect to .
Based on Lemma 3 we are now in a position to answer

Problem 5.

Theorem 10: The function is
jointly convex with respect to for all monotonic
increasing and continuous functions , , for
and for all linear interference functions, if and only if is
convex.

The function is jointly convex
with respect to for all monotonic increasing and con-
tinuous functions , , for and for all linear inter-
ference functions, if and only if is convex.
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Proof: “ ”: Can be proved in a similar manner as in the
proof of Theorem 7.

“ ”: This direction follows from Lemma 3.
Remark 12: Theorem 10 has completely addressed the

Problem 5.
We now utilize the additional requirement obtained from The-

orem 10, namely that of the utility functions being in the class
.

Theorem 11: The function is
jointly convex with respect to , for all and
for all with , if and only if are
log-convex interference functions.

The function is jointly convex
with respect to , for all and for all
with , if and only if are log-convex interfer-
ence functions.

Proof: “ ”: We know that is
jointly convex for all functions . We choose,

, then we have that , i.e., ,
i.e., is convex. This give us that the function is
log-convex.

“ ”: Can be proved as in the proof if Theorem 8.
Remark 13: Theorem 11 has completely addressed the

Problem 6 and point 3 of the Problem 3. Hence, Problem 3 has
been completely addressed.

Each convex function has the property that is convex.
However, the example that shows that even a
concave function could be transformed into a convex function.
Theorem 11 is very interesting, since we observe that there is a
trade-off between the generality of the following two families
(classes) of functions:

1) family of utility functions; and
2) family of interference functions.

Theorem 11 has shown that we can obtain convexity for a large
class of utility functions, however for a smaller class of interfer-
ence functions. We have established that

1) log-convex interference functions are the largest class of in-
terference functions, such that the weighted sum of func-
tions of inverse SINR are jointly convex in the -do-
main, for all , with for all weight vec-
tors , and

2) log-convex interference functions are the largest class of
interference functions, such that the weighted sum of func-
tions of SINR are jointly concave in the -domain, for
all , with for all weight vectors .

The inclusion order of the families of utility functions are as fol-
lows: convex case: , and concave case:

.
Example 5: Consider the function

(with domain ), which is concave function. Then, the
corresponding function (with domain

), is neither concave nor convex. Hence, we can see
that the family of utility functions is smaller, than the
family of utility functions, which are concave.

VI. CONCLUSION

This paper has investigated the possibility of obtaining joint
convexity or joint concavity of resource allocation problems.

For the convex case, it has been shown that the exponential
transformation is the unique transformation resulting in “con-
vexification” of the resource allocation problem (function of
inverse SINR) for linear interference functions. However, in
the concave case, for linear interference functions there exists
no transformation, which achieves joint concavity. The paper
has characterized certain requirements, which expect the trans-
formed feasible SINR region, i.e., the feasible QoS region to
be a convex set. Under these natural requirements, the paper
has characterized the largest class of utility functions and the
largest classes of interference functions, respectively, which in-
dividually ensure either joint convexity or joint concavity of
the resource allocation problem. In general, convex quadratic
programs are globally solvable in polynomial time, whereas
non-convex quadratic problems are NP-hard, even when the fea-
sible set is a box or a simplex [40]. The paper has elucidated
that the largest class of interference functions, which ensure
joint concavity for resource allocation strategies are the log-
convex interference functions. The paper has extended previous
literature on log-convex interference functions and established
boundaries on the class of problems in wireless systems, which
are jointly convex or jointly concave. Furthermore, it is note-
worthy to observe that the interesting paper [41] states the fol-
lowing. For certain examples of objective functions in wireless
networks, e.g. weighted sum of utility maximization problems
(where utility is a function of SINR and the objective function
subject to certain constraints, e.g. individual power constraints)
the resulting problem is NP-hard. Now, let us choose utility
functions . Furthermore, let be
linear interference functions. Then, there exists examples such
that maximizing the function defined in (2) can be transformed
into a convex problem. This example lies outside the framework
presented in our paper. However, as can be observed it could still
be converted into a convex problem. Hence, it would be inter-
esting to better understand the structure of NP-hard problems
and in turn invest further thought into understanding the demar-
cation between the classes of “convexificable” and “non-con-
vexificable” resource allocation problems in interference cou-
pled systems and the possible modifications in interference cou-
pling constellations, which transition a problem from one class
to the other.

APPENDIX

INTERFERENCE FUNCTIONS

Definition 5: Interference functions: We say that
is an interference function if the following

axioms are fulfilled:

conditional positivity if
scale invariance
monotonicity if
strict monotonicity if

Note that we require that is strictly monotone with re-
spect to the last component . An example is

, where is a vector of interference coupling coeffi-
cients. The axiomatic framework A1–A4 is connected with the
framework of standard interference functions [3]. The details
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about the relationship between the model to and Yates’
standard interference functions were discussed in [7]. For the
purpose of this paper it is sufficient to be aware that there exists
a connection between these two models and the results of this
paper are applicable to standard interference functions.
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