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Pareto Boundary of Utility Sets
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Holger Boche, Senior Member, IEEE, Siddharth Naik, and Martin Schubert, Member, IEEE

Abstract—Pareto optimality is an important property in game
theory and mechanism design, which can be utilized to design
resource allocation strategies in wireless systems. We analyze the
structure of the boundary points of certain utility sets based on
interference functions. We particularly investigate the cases with
no power constraints, with individual power constraints, and with
a total power constraint. We display the dependency between
Pareto optimality and interference coupling in wireless systems.
An axiomatic framework of interference functions and a global
dependency matrix is used to characterize interference coupling in
wireless systems. The relationship between interference-balancing
functions and Pareto optimality of the boundary points is eluci-
dated. Among other results, it is shown that the boundary points
of utility sets with individual power constraints and with strictly
monotonic interference functions are Pareto-optimal if and only
if the corresponding restricted global dependency matrix is irre-
ducible. The obtained results provide certain insight when suitable
algorithms can be designed for network utility maximization.

Index Terms—Boundary points, feasible utility sets, interfer-
ence-coupled wireless systems, Pareto optimality.

I. INTRODUCTION

P ERFORMANCE tradeoffs in multiuser systems occur
when users share a common resource or if they are cou-

pled by mutual interference. This is typical for wireless systems
and also for certain wireline connections, e.g., twisted-pair
copper wires used for DSL transmission. Such tradeoffs are
commonly characterized by the utility set, sometimes referred
to as the utility region or quality-of-service (QoS) region. The
utility region is defined as the set of all achievable utility
vectors , where is the number of
users, . The task of resource allocation crucially depends
on the properties of . It especially depends on the boundary
points since the operating points of resource allocation strate-
gies usually are on the boundary. We investigate the structure
of the Pareto-optimal boundary points of utility sets, which are
frequently encountered in wireless systems.

A thorough understanding of the Pareto-optimal boundary
points is an important basis for many practical and theoretical
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concepts such as network utility maximization, game theory, ax-
iomatic bargaining theory, and mechanism design [1]. For ex-
ample, a classical result from mechanism design is that there
exists no social choice function, which simultaneously satisfies
the axioms of efficiency, strategy proofness, and nondictator-
ship for systems with two or more users and two or more re-
sources [2], [3]. In [2] and [3], Pareto optimality implies ef-
ficiency, and strategy proofness represents the property that a
resource allocation strategy cannot be manipulated by any user,
i.e., a user has no incentive to misrepresent its utility to a central
controller in a decentralized system. Pareto optimality provides
the system designer a tool to check for nonmanipulation of the
resource allocation strategy (strategy proofness).

Pareto optimality depends on the interference coupling in
the system and on power constraints. Under further restrictions
on the interference functions, e.g., the linear interference func-
tions frequently encountered in wireless systems, Pareto opti-
mality of the boundary points is a necessary condition to obtain
strict convexity of the region. In the case of total power con-
straints, Pareto optimality of the boundary points is a necessary
and sufficient condition for the strict convexity of the region.
This connection, particularly that of strict convexity of the re-
gion has been analyzed in [4] and [5]. As can be seen, there
exists a connection between the investigation of Pareto-optimal
boundary points and investigation of the convexity properties
of the region. Convexity can help to design at least numerically
simple algorithmic solutions to resource allocation problems for
utility sets. Furthermore, Pareto optimality of boundary points
implies there is always an inherent tradeoff between the perfor-
mance of the users if we would like to allocate resources at these
Pareto-optimal boundary points.

An axiomatic approach to interference functions was pro-
posed by Yates in [6] with extensions in [7] and [8]. The
Yates framework of standard interference functions is gen-
eral enough to incorporate cross-layer effects, and it serves
as a theoretical basis for a variety of algorithms. Certain
examples include: beamforming [9], code division multiple
access (CDMA) [10], [11], base station assignment, robust
design, and networking [12]. The framework can be used to
combine power control and adaptive receiver strategies. Certain
examples, where this has been successfully achieved are as
follows. In [13], it was proposed to incorporate admission
control to avoid unfavorable interference scenarios. In [14], it
was proposed to adapt the QoS requirements to certain network
conditions. In [15], a power control algorithm using fixed-point
iterations was proposed for a modified cost function, which
permits control of convergence behavior by adjusting fixed
weighting parameters. The Yates framework under certain
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natural assumptions is equivalent to the general interference
function framework [16] (explained in Appendix C). The Yates
framework has power control as its main application and is
useful in achieving a particular point, e.g., iterative convergence
of the distributed power update rule.

The general interference function framework [16] inherits
these properties and, being more general, can be utilized be-
yond power control problems. The general interference function
framework is particularly suited to analyzing regions and is one
of the main reasons why we use it to investigate Pareto-optimal
boundary points of regions. Such a framework is not limited
to cellular wireless networks. In a general multipoint-to-mul-
tipoint system, all users interfere with every other user. Related
work for the special case of log-convex interference functions
was considered in [17]. In our paper, we significantly extend
these results and utilize another technique to analyze the broader
class of general interference functions, where log-convex inter-
ference functions are a subclass. We elucidate the connection
between the interference function framework and the domain of
feasible utility sets through certain intuitive and natural proper-
ties of interference functions encountered frequently in wireless
systems. The contributions of the paper are as follows.

• In Section III, we characterize the structure of the boundary
points of utility regions without power constraints and de-
velop certain useful analytical tools, which are useful in
investigating the other cases.

• In Section IV, we characterize necessary and sufficient
conditions for the boundary points of utility sets with indi-
vidual power constraints to be Pareto-optimal.

• In Section V, we characterize the structure of the boundary
points of utility regions with a total power constraint. We
extend the results of [17], omitting the requirement of log-
convex interference functions.

• In Section VI, we characterize the boundary of these utility
sets in terms of the interference-balancing functions. With
the help of this analysis, we are in a position to comment on
the characteristics of certain power-constrained utility sets
either in terms of corresponding interference functions or
interference-balancing functions, which is a useful tool for
further analysis in multiuser wireless systems.

II. INTERFERENCE-COUPLED WIRELESS SYSTEMS

In this paper, we shall investigate the case of interference-cou-
pled wireless systems. Before we begin to describe our system
model and present the relevant definitions, we provide certain
notational conventions used in the paper in Section II-A.

A. Preliminaries and Notation

Matrices and vectors are denoted by bold capital letters and
bold lowercase letters, respectively. Let be a vector, then

is the th component. Likewise, is a com-
ponent of the matrix . Let , where
has elements. The notation implies that for all
components . implies component-wise inequality with
strict inequality for at least one component. Similar definitions
hold for the reverse directions. Let denote a set, and the
boundary of the set . Finally, implies that the vector

differs in at least one component. The set of nonnegative real
numbers is denoted as . The set of positive real numbers is
denoted as . Let be a -dimensional vector,
which is the all-zero vector with the th component set to one,
i.e.,

B. Interference Coupling

The signal-to-interference-plus-noise ratio (SINR) is an im-
portant measure for user performance in wireless systems. Many
other performance measures have a direct relationship with
SINR (refer to Section II-C for examples). Consider users
with transmit powers and .
The noise power at each receiver is . Hence, the SINR at
each receiver depends on the extended power vector

(1)

The resulting SINR of user is , where
is the interference (plus noise) as a function of . In order

to model interference, we shall follow the axiomatic approach
proposed in [6] and [11], explained in detail in Appendix C.
The structure of the SINR region depends on the interference
coupling in the system. We can define the system as coupled as
follows. For given , we define

if such that

is strictly monotone decreasing
for

otherwise

This condition can be further relaxed as follows. Instead of re-
quiring the above property for a specific power vector , we now
define the system as “coupled” if there is some arbitrary power
vector such that the matrix . Thereby, we ob-
tain the global dependency matrix, which is independent of the
choice of power vector .

Definition 1: Global dependency matrix: is the global
dependency matrix, given by

if there exists a such that

otherwise
(2)

Remark 1: We denote the matrix . We have denoted
it initially as in Definition 1 to display the interconnection
with the interference functions.

The nonzero entries in represent the transmitter/receiver
pairs, which are coupled by interference. Note that this coupling
model includes the widely used concept of a “link gain matrix”
as a special case. An intuitive interpretation of the dependency
matrix and the global dependency matrix is as follows: A zero
entry in row and column implies that no interference is
received by a user from user , irrespective of how large the
transmission power of user is. As an example, consider that
users are assigned to different orthogonal resources separated
by adaptive interference rejection techniques. An example due
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to natural causes, where a user might not cause interference
to another user , is when user experiences shadowing. In the
remainder of this paper, we shall use in order to analyze the
effects of interference coupling on the structure of the boundary.
We assume that is an irreducible matrix [18, pp. 360–361]
(see also the standard reference for nonnegative matrices [19]).
This implies that each user is interfered by at least one other
user. Irreducibility of is equivalent to strong connectivity
of the graph , which is defined to be the directed graph
of nodes, in which there is a directed edge
(or link) leading from node to if and only if

. The matrix is called the adjacency matrix of
the graph . This graph is said to be strongly connected
if, for each pair of nodes , there is an uninterrupted
sequence of directed edges leading from to . Note that
the direction matters in the definition of strong connectivity
for directed graphs. The following proposition is a standard
result [18, p. 362, Th. 6.2.24]. Matrix is irreducible if and
only if is strongly connected.

We now introduce certain important properties of interfer-
ence functions, namely strict monotonicity, strict positivity, and
the dependency set. These properties will be needed later in the
analysis.

Definition 2: Dependency set. Based on the global depen-
dency matrix as defined by (2), we say that is the dependency
set of user if

(3)

Remark 2: We assume that the dependency set is nonempty
throughout the paper.

This is the set of transmitters, which have an impact on user .
Our framework allows for systems, where each user experiences
interference from at least one other user. An example of the de-
pendency set when all users interfere with each other is given by

for the case of no self-interference. For
the case with self-interference, an example of the dependency
set is .

Definition 3: Strict monotonicity: is said to be strictly
monotonic on its respective dependency set if
with for some , implies .

In other words, is strictly increasing in at least one of
the first components. At certain times, we shall define our
domain for interference functions as , instead of , e.g.,
in Definition 4 to follow. However, we usually imply the do-
main of the interference function to be unless otherwise
specified.

Definition 4: Strict positivity: An interference function
is said to be strictly positive on the dependency set if, for any

, with and for , we have
that .

Remark 3: Throughout the paper, the following convention
is used.

• If is utilized, it means that there is no noise and we
consider only axioms to .

• If is utilized, it means that there is noise and we con-
sider axioms to .

We have in the presence of noise. However,
in Definition 4 we check for positivity of the interference

function with respect to the power vector independent of the
noise. are strictly positive on their dependency
sets , respectively. From a practical point of view,
strict positivity on the dependency set seems very natural in
wireless systems. Nonetheless, it is an important mathematical
restriction whose impact shall be noticed in Section III while
proving the desired results. Strict positivity of the interference
function on the dependency set is a stronger condition than
(refer to Appendix C).

Example 1: Consider the following two examples.
1) is a strictly

positive interference function on the dependency set.
2) is not a strictly

positive interference function on the dependency set.

C. Utility Sets Based on SINR

Until now, we have focused on interference coupling aspects,
where interference is a function of the powers of the various
users and noise. We shall now analyze the resulting utility set.
In this paper, “utility” can represent a certain arbitrary perfor-
mance measure, which depends on the SINR by a strictly mono-
tonic and continuous function defined on . The utility of
user is

(4)

An example of the above case is capacity: .
Related performance indicators when we would like to mini-
mize the objective function, which is a function of SINR, are:
1) minimum mean square error (MMSE): ;
2) BER: ; or 3) high-SINR approximation of
BER: with diversity order . We shall analyze the
Pareto-optimal boundary of certain sets for the following cases:

1) utility sets without power constraints;
2) utility sets with individual power constraints;
3) utility sets with total power constraints.

III. ANALYSIS OF THE PARETO-OPTIMAL BOUNDARY OF

UTILITY SETS WITHOUT POWER CONSTRAINTS

In this section, we shall analyze the properties of boundary
points of utility sets without power constraints.

Remark 4: In this case, we have the following power vector
, here , i.e., we have the case of interference

limited systems.
Analyzing the case in the high SINR regime helps to clearly

bring out the effects of interference coupling. Section III-A
will outline the structure of the QoS region without power
constraints and introduce weak Pareto optimality and Pareto
optimality of boundary points, which shall be used here and
in Section IV. The analytical results, methodology, and proof
technique developed in Section III-B is utilized to obtain results
also in Section IV-B.

A. Structure of the QoS Region Without Power Constraints

Consider the SIR (since we have no noise, we use SIR and
not SINR) feasible region for users , without
power constraints, which is defined as the sublevel set

(5)
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where is a vector of SIR values, whose fea-
sibility is determined by the min-max optimum (see, e.g., [20]
and [21]) and , and is
a vector of interference functions. We introduce the interfer-
ence-balancing function as follows:

(6)

The structure of the SIR set depends on the properties
of interference-balancing function , which in turn de-
pends on the properties of the underlying interference functions

. Let be the inverse function of , then
is the minimum SIR level needed by the th user to satisfy the
QoS target . Let be a vector of QoS values, then the
associated SIR vector is

(7)

QoS values are feasible if and only if the interference-
balancing function . The QoS feasible set is the
sublevel set

(8)

We are specifically interested in the boundary of , which
is characterized by . We recollect that the
boundary is denoted as . We shall now describe what we
mean by weak Pareto-optimal and Pareto-optimal boundary
points, respectively.

Definition 5: A point is weak Pareto-optimal if there
is no with .

From a practical point of view, this implies that it is not pos-
sible to collectively improve the performance of all the users in
the system.

Definition 6: A boundary point is Pareto-optimal if
there is no with .

From a practical point of view, this implies that it is not pos-
sible to improve the performance of one user without simulta-
neously decreasing the performance of another user.

Lemma 1: A boundary point is Pareto-optimal if and
only if is Pareto-optimal [17].

Proof: This is a direct consequence of the strict mono-
tonicity of the mapping in (4). Pareto-optimal points in are
mapped to Pareto-optimal points in , and vice versa. Weak
Pareto boundary segments in are parallel to the coordinate
axes. These segments are mapped to parallel segments in ,
and vice versa.

From a wireless communications perspective (physical-layer
perspective), choosing a Pareto-optimal boundary point in the
feasible utility region implies choosing an efficient operating
point. In social choice theory, a social choice function (SCF)
is said to be efficient if, , there is no power allocation

such that , for all users , and
for some user [22]. An example

of such a utility could be SIR .
From Lemma 1, we know that for any utility set according

to the above definition, we can analyze Pareto optimality by fo-
cusing on the underlying SIR set. The results transfer automati-

cally to the corresponding utility sets, where utility depends on
the SIR according to (4).

B. Pareto-Optimal Boundary of Utility Sets Without
Power Constraints

This section presents the main results in relation to boundary
points of utility sets without power constraints. The results pre-
sented here will also be later used in Section III-B, and the proof
technique of Theorem 1 will be used as foundation for further
research work. We begin by presenting certain preliminary re-
sults as a prelude to Theorem 1.

Lemma 2: Let be strictly positive interfer-
ence functions on their respective dependency sets . Let

be strictly monotonic on their respective depen-
dency sets . Let there be a sequence of power vectors

, which can be decreased as follows:

(9)

Then, for all users , with , we have that

(10)

Therefore, from (10), we have that

(11)

Proof: It is clear that (10) implies (11). For the sake of
obtaining a contradiction, let us assume that (10) is not true.
Therefore, there exists a such that

. Then, there must exist a subsequence of natural
numbers such that for all . Thus, for all

due to strict monotonicity and strict positivity, we have
that .
Therefore, we have that , which
is in contradiction of (9).

Remark 5: The decisive property used to obtain the above
result was the strict positivity of the interference functions.

We now present two results in relation to the interference-
balancing function . We shall see these two results used
later in the proof of Theorem 2.

Lemma 3: Let be strictly positive interference
functions on their respective dependency sets. Then, for all

, we have that

Proof: The proof is given in Appendix A.
The next result, Lemma 4, is an example of an impossibility

result, which states the following. Let us perform interference
balancing for a subset of users or for a subset of users ,
where and . The interference
balancing is performed by switching off the users in the other
set. Then, it is not possible to perform better than when all the

users are active.
To present this result, we introduce the following notation.

Let be the set of all vectors with power vector
and , for
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. Here, is an arbitrary number, i.e., the
two subsets of users and

are an arbitrary disjoint division of the users in the
set , i.e., .

We know that is a monotonic increasing function with
respect to ( , see Definition 8). Then, for power vectors

and , we have the following inequality:
. Hence, we have the fol-

lowing expression:

In Lemma 3 and throughout the paper, and have di-
mensions and and has dimensions , where

, with and ,
with . and are tuples of interference
functions. If we have a set , we can always split
this set into two separate disjoint sets in the case without power
constraint.

The users in the set do not see the users in the set
as interference, and vice versa. This is due to the fact that we fix
the powers of the users in the other set to zero, while analyzing
a particular set of users.

and correspond to the vector of interference func-
tions for the sets of users and , respectively.

Lemma 4: The interference-balancing function can
be written as

where are the interference-balancing functions
corresponding to a set of users , and
are the interference-balancing functions corresponding to a set
of users .

Furthermore, we can find a SIR vector such that
.

Proof: The proof is given in Appendix B.
Lemmas 2–4 assist us in proving the results, which char-

acterize the Pareto-optimal boundary points of feasible utility
sets. Equipped with these lemmas, we are now in a position to
present the main results of this section. The next theorem will
provide the conditions when any on the boundary can always
be achieved with equality, i.e., , for all .
Note that this need not be fulfilled in general. The set defined
by (5) corresponds to a SIR set without power constraints. In
general, it can be seen that a boundary point can be achieved
in an “asymptotic sense.” However, the following Theorem 1
states that such a point can always be achieved under the speci-
fied conditions.

Theorem 1: Let be strictly positive interference
functions on their respective dependency sets. Let
be strictly monotonic on their respective dependency sets, and
let the coupling matrix be irreducible. Then, for all ,
there exists a power vector such that

(12)

Proof: Here, we are analyzing the case without power con-
straints on the users. Hence, there is no noise present. The re-
striction of has been introduced for mathematical
convenience to obtain compactness of the concerned set. Now,
we have that

i.e., the condition does not alter the problem struc-
ture. We obtain from the axiom of scale invariance of
interference functions (see Definition 8) as follows. Since we
are in the noise-free case, we can scale the power vectors

. Then, we have the following expression:

For all , there exists a vector ,
with

Next, we show that there exists an and such that
for all , we have that

(13)

The proof shall be achieved through contradiction. For the sake
of obtaining the desired contradiction, let us assume that (13) is
not true. Then, there exists a sequence with
and , such that .
Then, there must exist a user and a subsequence of
natural numbers such that . This follows
from the fact that we are distributing an infinite number of nat-
ural numbers over a finite set (since there is a finite numbers of
users), and hence there exists such a subsequence and the pos-
sibility of finding a required index .1

We shall call , for . We know that
. Then, we have that

(14)

The interference function is strictly positive on its depen-
dency set. Then, from (14), we must have for all users
that . However, this leads us to the con-
clusions that for all users , we have

and . Therefore, for
all we have that .

Now, we select any . Since is an irre-
ducible matrix, then there exist indices with

, and . Here, is the dependency set
of user , i.e., the users in the set have the ability to inter-
fere with .

1This follows from the property of compactness, i.e., every cover has a finite
subcover.
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Then, we have that , where
and

(15)

Equation (15) holds for all users . From our assumptions,
we know that . Therefore, there must be an index

and an infinite sequence of natural numbers
such that for all . This, however, contradicts
(15). Therefore (13) must be true.

Since (13) is true, there must exist a null-sequence
(a null-sequence is a sequence that converges to 0) and a power
vector such that . This
follows from the compactness [23] of the following set:

. The fact that
follows from (13).

Furthermore, for all and for all users , we have
that . From the continuity
of the interference function , for all , we have that

Therefore, we obtain , for all .
We have to show that (12) is satisfied. For the sake of ob-

taining a contradiction, let us assume that (12) is not satisfied.
Then, there exists a user such that the following expres-
sion holds:

(16)

We now define a new power vector such that for
. Furthermore, we choose such that we always

have .
Let be any interference function corresponding to a user
such that , i.e., . We denote the set of all

users with as , i.e.,

The user is in (the dependency set of user ).
From the strict monotonicity of the interference function

and from , we have that

Therefore

(17)

Now, we can choose a new power vector such that
for . For , we shall choose

large enough, such that for the power vector
satisfies (17) for all .

Now, based on similar arguments, we can construct another
set , where

From our precondition that matrix is irreducible, we can re-
peat this process finitely many times till ,
where

Hence, we obtain power vector such that

(18)

Naturally, we have that . Furthermore, we have that

inequality follows from

We have our desired contradiction. Hence, there does not exist
an index such that (16) is valid. Therefore, for all users ,
we have that the expression must hold.
This proves our desired result.

Our second main result states that irreducibility of the ma-
trix is necessary and sufficient for Pareto optimality. This is
a very strong result and carries over to utility sets, which can be
obtained as a suitable mapping of the set using (4).

Theorem 2: Let be strictly positive and strictly
monotonic interference functions on their respective depen-
dency set. Then, all boundary points are Pareto-optimal if and
only if the global coupling matrix is irreducible.

Proof: “ ”: Let be any boundary point of a QoS
set, such that is not Pareto-optimal. Then, there
must exist a with

. Let be the corresponding vector from The-
orem 1. Therefore, we have that and

. Thus, we have that
, and from there must exist at least

a singular index with . Similarly as in the
proof of Theorem 1, we can find a vector , such that

. However then, similarly as
in the proof of Theorem 1, . Then, is not
a boundary point and contradicts our assumptions. Therefore,
every boundary point is Pareto-optimal.

“ ”: Now, to prove the converse, assume that is not irre-
ducible, i.e., is reducible. This implies that there are boundary
points, which are not Pareto-optimal, i.e., weak Pareto-optimal.
Since is reducible, through a simultaneous permutation of the
rows and columns of , we can achieve the following form:

where the matrix ( is a matrix) is irreducible.
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We assume that are prepared in the corresponding
required form. Therefore, , is dependent only
on . We now analyze the following equations:

and

with power vector , interference function
, and matrix .

The interference-balancing function can be
written as

(19)

From Lemma 3, we know that and that
. From Lemma 4, we know that

.
We now choose a vector such that

Therefore, we have that . For ,
we choose a vector with

for

and

for

Then, we have that

(20)

(21)

Then, from (20) and (21), we can conclude that

Therefore, we obtain that the SIR vector is a boundary
point. Naturally and for . Hence, we
are led to the conclusion that the SIR vector is only a weak
Pareto-optimal boundary point.

We present an example for a four-user case, where we identify
the set of Pareto-optimal and the set of weak Pareto-optimal
points.

Example 2: Consider the reducible coupling matrix given
by

and the corresponding global dependency matrix given by

(22)

This is an example of a system of four users with no self-inter-
ference. User 1 and user 2 see no interference except from each
other, while user 3 and user 4 see interference from all the other
three users, respectively.

We shall briefly utilize the matrix-based interference
model. For linear interference models , for

, the resulting SIR is given by

Let , and be the SIR values of users 1–4, respec-
tively, and let . For the boundary points,
we have that , where

where

Furthermore

We know that

Therefore, we have that and
(since . The Pareto-op-

timal boundary points are given by the set , where
.

The Pareto-optimal boundary points are displayed in
Fig. 1. The weak Pareto-optimal boundary points are
given by the set , where

and . The sets
and are depicted in Figs. 2 and 3, respectively, since

we have a four-dimensional region for four users. We have
depicted each set as two separate figures, as it is impossible to
draw a four-dimensional set.

For all interference functions with and with the
global dependency matrix as defined by (22), we have for
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Fig. 1. Pareto-optimal boundary points corresponding to coupling matrix .

Fig. 2. Weak Pareto-optimal boundary points corresponding to coupling ma-
trix and set . The shaded region corresponds to the inequality and the weak
Pareto-optimal points.

Fig. 3. Weak Pareto-optimal boundary points corresponding to coupling ma-
trix and set . The shaded region corresponds to the inequality and the weak
Pareto optimal points.

the case of user 1,
and , where is a scalar such that

, from . Then, we have that interference function
and . A similar analysis

can be carried out for user 2, where interference function
. Analyzing the interference functions for

users 3 and 4, we have that
, whose value is

. The resulting SIR vec-
tors are exactly the Pareto-optimal boundary
points.

We shall now state a generalization of the property of the
global dependency matrix, which was encountered in Ex-
ample 2. Let it be possible through an appropriate simultaneous
permutation of rows and columns to obtain the global depen-
dency matrix in the normal form

where the matrix , depicting only one user interfering with
any other user, is

and the matrix is

Then, we can calculate the Pareto-optimal boundary points as
shown in Example 2.

IV. ANALYSIS OF PARETO-OPTIMAL BOUNDARY OF UTILITY

SETS WITH INDIVIDUAL POWER CONSTRAINTS

In this section, we shall analyze the properties of boundary
points of utility sets with individual power constraints.

Remark 6: Here, we have that , where
are the individual power constraints. In this case,

we have the following power vector , here ,
i.e., we have that is a -dimensional matrix.

We shall utilize certain proof techniques developed in
Section III for obtaining the results in this section. We begin by
presenting the structure of the QoS region for individual power
constraints.

A. Structure of the QoS Region for Individual Power
Constraints

Consider the SINR feasible region for users
with individual power constraints , which is defined
as the sublevel set

(23)

where is a vector of SINR values, whose feasibility is deter-
mined by the min-max optimum (see, e.g., [20] and [21])

(24)

The structure of the SINR set depends on the prop-
erties of , which in turn depends on the properties
of the underlying interference functions as well as
on the chosen power constraints . The corresponding QoS
values are feasible if and only if .
The QoS feasible set is the sublevel set

(25)

We are now interested in the boundary of , which is charac-
terized by . The boundary is denoted as

. Since are strictly monotonic in , there ex-
ists a such that , for with

. We now introduce
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the restricted global dependency matrix, which shall be used to
obtain certain results in the following section.

Definition 7: Restricted global dependency matrix. , the
global dependency matrix, is a matrix, and the
dependency on noise is clear for every . Then

...

where is the restricted global dependency matrix of di-
mension and is representing the dependency
on noise.

Remark 7: measures the “crosstalk” in the system, i.e.,
the dependency between the users due to direct interference (as
opposed to indirect dependency due to power constraints).

B. Pareto-Optimal Boundary of Utility Sets With Individual
Power Constraints

As can be seen from Section IV-A, with individual power con-
straints, the structure of the SIR region, and in turn of certain
utility regions using (4), depends not only on the interference
coupling, but also on the noise. The following result describes
the conditions for the boundary points of utility sets with indi-
vidual power constraints to be Pareto-optimal, i.e., it specifies
the conditions on the interference coupling of multiuser systems
with individual power constraints such that any operating point
chosen by a resource allocation strategy on the boundary of the
utility set is efficient.

Theorem 3: Let interference functions be
strictly monotonic on their respective dependency sets. Then,
each boundary point is Pareto-optimal if and only if is
irreducible.

Proof: “ ”: Let be irreducible. Let SINR
vector be a boundary point, which is not Pareto-op-
timal. Then, there exists a SINR vector such that

, where
such that

.
Let there be a power vector such that

. The solution is
. There exists exactly one such vector. This follows from

[6, p. 1343, Lemma 1] and Lemma 2. Therefore, we have that
and that there exists at least one such that
. Then, one can carry out the same process

as in the proof of Theorem 1 with being our irreducible
matrix. We can construct a vector with such
that . The vector ful-
fills the power constraints, and we have ,
which gives us the desired contradiction. Hence, if is irre-
ducible, then every boundary point is Pareto-optimal.

“ ”: Conversely, we need to show that if is Pareto-op-
timal, then the restricted global dependency matrix is
irreducible. Suppose that is reducible and
is in Frobenius normal form [24], with irreducible ma-
trices along the main diagonal. Here,

have dimensions ,
respectively, and . Such a canonical form

Fig. 4. SINR feasible region for the two-user MAC channel described in
Example 3.

can always be achieved by an appropriate permutation si-
multaneously applied to row and column indices. Suppose
that the first (isolated) block has dimensions . That
is, the first interference functions only depend on the
first components of (and also strictly monotonic with
respect to the noise component). There exists a vector
with . Consider the vector ,
where . For all , we have

. Introducing
, we have that

. We can
now focus on . With

, we have

The right-hand side of this inequality equals 1. Hence,
. Thus, is a boundary point. How-

ever, all components can be increased
without affecting . That is, is not
Pareto-optimal, which is our required contradiction.

The above result says that for all SIR vectors , such that we
can find a power vector , we have that

, and there exists an index such that
, for all . Then, we can find a

power vector such that , if and
only if the matrix is irreducible. Furthermore, knowing
the properties when the boundary points are Pareto-optimal aid
us in designing appropriate algorithms for resource allocation
and utility maximization.

Example 3: Consider a two-user Gaussian multiple access
channel (MAC) with successive interference cancellation,
normalized noise , and a given decoding order

. The SINR of the users are and
. Assuming power constraints

and , we obtain an SINR region as depicted
in Fig. 4. Consider the boundary point depicted in Fig. 4.
This point is achieved by . Hence,

. This vector achieves the SINR with compo-
nent-wise minimum power. However, power vector is not
the only element of . Due to interference cancel-
lation, we can increase the power, hence the SINR of user 1,
without reducing the SINR of user 2. If both users transmit with
maximum power , then the corner point is achieved. In
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addition, this power vector is contained in since
, such that the SIR targets are still fulfilled. For an

arbitrary power vector , consider the fixed-point
iteration , for all . The
limit is special since it achieves the
SIR vector with component-wise minimum power.

V. ANALYSIS OF THE PARETO-OPTIMAL BOUNDARY OF

UTILITY SETS WITH A TOTAL POWER CONSTRAINT

In this section, we shall analyze the properties of boundary
points of utility sets with a total power constraint.

Remark 8: Here, we have that
, where is the total

power constraint. In this case, we have the following power
vector , here , with a total power constraint
on the vector of .

Here, we consider interference functions from the Yates
framework, which are strictly monotonic in the noise compo-
nent. These results have direct impact on practical resource
allocation strategies for utility sets of the specified type. We
shall utilize certain proof techniques developed in Section III
for obtaining the results in this section. We begin by presenting
the structure of the QoS region for a total power constraint.

A. Structure of the Qos Region With a Total Power Constraint

The SINR region under a sum power constraint (total power
constraint) is defined as

(26)

where

(27)

We shall see in the next section (Section V) that the sum-power
constrained region is relatively easy to handle since
the SINR tradeoffs are caused due to the sharing of a common
power resource.

B. Pareto-Optimal Boundary of Utility Sets With a Total
Power Constraint

Let us assume that the sum of all transmission powers is lim-
ited by . The next result shows that for arbitrary inter-
ference functions, which are strictly monotonic with respect to
noise, the boundary points of utility sets with a total power con-
straint and no self-interference are Pareto-optimal. The result
states that for the case of multiuser systems with a total power
constraint and no self-interference, all types of interference cou-
pling result in all boundary points of the utility set are efficient.

Theorem 4: Let be arbitrary interference func-
tions. Then, for all , all boundary points of

are Pareto-optimal.
Proof: Consider the case of a system with a total power

constraint such that and . Let for
all be interference functions. Hence, these functions ,
for all , are strictly monotonic with respect to .
Let and . Since we are in the

case with power constraints (there exists noise), our interference
function framework is equivalent to the Yates interference func-
tion framework. Then, from the fixed-point theorem in [6], we
know that there exists a power vector with

, for and . Assume that
there exists a SINR vector with and

(28)

From (28), we know that there exists a corresponding power
vector such that

The first equality above follows from the fact that is
a boundary point, and the second inequality follows from
our choice of SINR vectors as . We utilize the
power vector to construct a new power vector such that

and

(29)

as follows: We select an index such that and
. Such an index always exists since we

have selected with . Hence, the power
vector corresponding to can be strictly varied in at
least one component ( is greater than in at least one
component). One of these components could be the index .

We now define for that and
. This gives us that , and for , we have that

(30)

Equation (30) implies that and

for

We can now choose with .
We have that and for

(31)

where . In the last step in (31), we are scaling the
power vector and not scaling the noise. The last inequality in
(31) follows from the choice of the power vector and from the
property of strict monotonicity of the interference function with
respect to the noise component (axiom ; see Definition 8). We
can utilize since we are in the case with power constraints.
Equation (31) gives us that , giving us the
required contradiction.

Example 4: Consider a two-user Gaussian broadcast
channel (BC) with dirty paper coding normalized noise

. The SINRs of the users are
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Fig. 5. SINR feasible region for the two-user BC channel described in
Example 4, .

and . Then, we have that the powers of the individual
users are and . Assuming
a total power constraint , we obtain the SINR
region as depicted in Fig. 5. We have that the SINR of user 2 is
given by .

The characterization of the boundary points of feasible utility
sets for the special case of log-convex interference functions is
discussed in [25]. Next, we characterize the structure of the re-
gion, specifically the boundary points of the region with respect
to the behavior of the interference-balancing functions
and . We would like to segregate feasible utility
regions based on whether they have Pareto-optimal or weak
Pareto-optimal boundary points. We are aware that the func-
tions and are interference functions with
respect to , i.e., they satisfy axioms and .

VI. CHARACTERIZATION OF BOUNDARY POINTS WITH

RESPECT TO BEHAVIOR OF THE

INTERFERENCE-BALANCING FUNCTIONS

So far, we have characterized the Pareto optimality of the
boundary points of utility sets with respect to certain properties
of interference functions. In this section, we present the connec-
tion between the behavior of boundary points and the interfer-
ence-balancing functions ( functions) for SIR vectors .
These results complement the analysis by providing an alterna-
tive means of characterizing boundary points, namely via the
properties of the interference-balancing functions.

Theorem 5: All boundary points of feasible utility sets
without power constraints are Pareto-optimal if and only if
the corresponding interference-balancing function is a
strictly monotonic function on .

All boundary points of feasible utility sets with individual
power constraints are Pareto-optimal if and only if the corre-
sponding interference-balancing function is a
strictly monotonic function on .

Proof: If the function is strictly monotonic, then
all boundary points (due to the condition ) are
Pareto-optimal.

Conversely, for the sake of contradiction, assume that
is not strictly monotonic and all boundary points are Pareto-
optimal. Choose two SIR vectors such that

and with
(they exist since is not a strictly monotonic function). Now
choose and such that ,
i.e., . Then, and

are boundary points with and . Fur-
thermore, , i.e., is not Pareto-op-
timal. We have our desired contradiction, which proves our re-
sult that if all boundary points are Pareto-optimal, then the func-
tion is strictly monotonic.

Similar arguments could be used to prove the result for the
case of individual power constraints with strictly monotonic

functions.
It can be observed that the proof of Theorem 5 was quite

straightforward, and we have displayed that there is a simple
connection between the monotonic behavior of the
function and the Pareto-optimal boundary points. Now, we can
utilize Theorem 2 to completely describe all possible cases
when the function defined by (6) is strictly monotonic.

Corollary 1: Let be strictly positive interference
functions on their respective dependency sets. Let
be strictly monotonic on their respective dependency sets. The
interference-balancing function for the case without
power constraints is strictly monotonic if and only if the global
dependency matrix is irreducible.

Proof: The proof is a direct application of Theorems 2
and 5.

We assume that interference functions for all in
(6) are strictly monotonic on their respective dependency sets.
Corollary 1 displays the conditions on “user coupling” such that
we have strict monotonicity of the function for all variables.

Corollary 2: Let be strictly positive interference
functions on their respective dependency sets. Let
be strictly monotonic on their respective dependency sets. The
interference-balancing function for the case with
individual power constraints is strictly monotonic if and only if
the global dependency matrix is irreducible.

Proof: The proof is a direct application of Theorems 2
and 5.

Corollaries 1 and 2 describe the relationship between the in-
terference-balancing functions and the global dependency ma-
trix . As can be seen, we have an interplay between certain
properties of the interference-balancing functions, the combi-
natorial characteristics of the global dependency matrix and the
Pareto optimality of the boundary points of the feasible utility
regions.

VII. CONCLUSION

We have analyzed the structure of certain utility sets without
power constraints and with power constraints. The connection
between Pareto optimality and interference coupling has been
displayed. We have introduced an intuitive constraint in wire-
less systems (with mathematical implications), namely that of
strict positivity of the interference functions on the dependency
set. It was shown that boundary points of utility sets without
power constraints with strictly positive interference functions
on their respective dependency sets and strictly monotonic
interference functions on their respective dependency sets are
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Pareto-optimal if and only if the corresponding global depen-
dency matrix is irreducible. It was shown that the boundary
points of utility sets with individual power constraints and
interference functions, which are strictly monotonic on their
respective dependency sets, are Pareto-optimal if and only
if the corresponding restricted global dependency matrix is
irreducible. It was shown that the boundary points of utility sets
with a total power constraint for arbitrary interference functions
are Pareto-optimal. The relation between interference-bal-
ancing functions ( functions) and Pareto optimality of the
boundary points was elucidated. We have provided a complete
characterization of the Pareto optimality of the boundary points
of feasible utility sets, which can be used as a building block to
investigate other complex problems dependent on this property
of the boundary points.

APPENDIX A
PROOF OF LEMMA 3

Proof: We shall achieve this proof by contradic-
tion. Let be such that .
Then, for all , there exists a vector

and ,
i.e., . Let be an index with
with . Let be an index such that is an
interference function with . Then, we have that

.
Therefore, for all , we must have that and

, which gives us our required contradiction.

APPENDIX B
PROOF OF LEMMA 4

Proof: We have that the interference-balancing
function can be written as follows:

for . We
consider the following two cases.

Case (i): : For all we can
find a power vector and another power vector

, such that

We choose a power vector such that
, where is a vector

of zeros of dimensions and . We have for
that

From ( ), there exists a scalar such that

for all .
Furthermore, , for .

Therefore, we have that

Then, we have that , which is the de-
sired result.

Case (ii): : This case can be
analyzed in a similar fashion as the previous case. We now prove
the second part of the lemma. Let us assume that we always have

for all SIR vectors . Then, we
have that

(32)

Now, we choose an arbitrary SIR vector . Then, we have
that . We choose , for
all , and , for all

. Then, we have that for all by assumption (32) that
. We are

aware that . We now
have that , for all . We now have our desired
contradiction since we have that .

APPENDIX C
INTERFERENCE FUNCTION FRAMEWORK

Let be the set of all power vectors. In our paper, we have
unless explicitly mentioned otherwise.

Definition 8: We say that is an interference
function if the following axioms are fulfilled:

conditional positivity if

scale invariance for all

monotonicity if

strict monotonicity if

Note that we require that is strictly monotonic with re-
spect to the last component . An example is

, where is a vector of interference coupling coeffi-
cients. The axiomatic framework A1–A4 is connected with the
framework of standard interference functions [6]. For any con-
stant noise power , the function is
standard. Conversely, every standard interference function can
be expressed within the framework A1–A4. Let be a standard
interference function, then
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is an interference function fulfilling A1–A4. We have
for all . The details about the relation-

ship between the model A1–A4 and Yates’ standard interfer-
ence functions were discussed in [11] and further investigated
in [16]. For the purpose of this paper, it is sufficient to be aware
that there exists a connection between these two models, and
the results of this paper are applicable to standard interference
functions.
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