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Abstract—The paper addresses the problem of interference mod-
eling for wireless networks. Two axiomatic approaches are known
from the literature: 1) “standard interference functions” proposed
by Yates in 1995, and 2) “general interference functions” proposed
by the authors in their previous work. In this paper, both frame-
works are thoroughly analyzed and compared. It is shown that
every function from framework 1) can be expressed in terms of
framework 2). This means that recent structure results for convex
interference functions, which were derived for 2), can also be ap-
plied to 1). The results provide a bridge between the frameworks 1)
and 2), which were studied separately in the literature. Also, new
structure results are shown in this paper. For the example of QoS
balancing, it is shown that analyzing the structure of interference
functions can lead to interesting algorithmic opportunities. The re-
sults are potentially useful for the development of physical-layer
aware resource allocation algorithms.

Index Terms—Interference, power control, wireless communica-
tion.

I. INTRODUCTION

I NTERFERENCE modeling is important for the develop-
ment of dynamic strategies for joint interference filtering

and resource allocation. The performance of algorithms cru-
cially depends on the choice of the underlying interference
model.

Proposals for interference models date back to the early sev-
enties (see, e.g., [1] and the references therein), where signal-to-
interference ratios (SIR) were studied under the assumption of
a simple linear interference model based on a constant link gain
matrix. This linear model facilitated the application of the rich
mathematical theory of nonnegative matrices, in particular the
Perron-Frobenius theory, leading to many theoretical results and
power control algorithms.

However, interference typically depends on the transmis-
sion powers in a nonlinear way, because adaptive receive
and transmit strategies are employed to avoid or mitigate
interference. Linear models are often not appropriate for the
“cross-layer” problems arising from modern system architec-
tures. While nonlinear models offer better performance, they
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are also more difficult to handle. So it is important to efficiently
exploit the underlying mathematical structure.

Convexity was successfully exploited for the development of
optimal multiuser receivers and transmitters. Many examples
exist in the context of multiple-input-multiple-output (MIMO)
systems and robust signal processing [2]–[8]. For example,
equivalent convex reformulations exist for the downlink beam-
forming problem, as observed in [4]–[6]. When investigating
a problem, a common approach is to first look whether the
problem is convex or not.

Another useful property is monotonicity. A well-known ex-
ample is the framework of standard interference functions, pro-
posed by Yates [9] and extended in [10] and [11]. In this paper,
a power control problem was solved by a fixed point iteration
relying on monotonicity and scalability axioms. An applica-
tion example is the downlink beamforming problem [4]–[6],
[12], [13].

Monotonicity is also a key property of another axiomatic in-
terference model that was proposed by the authors in [14]. In
this work, scale invariance is proposed instead of scalability.
This new axiomatic framework has also applications in power
control theory, as shown in [14]. But it can also be used for the
analysis of quality-of-service (QoS) regions, where the system
performance can often be measured in terms of a scale-invariant
indicator function (see Example 2 at the end of Section II).

These lines of research were carried out independently. To
our best knowledge there has been no attempt to study convexity
within the framework of standard interference functions. Also,
it is not clear how standard interference functions are related to
the new axiomatic approach [14]. Some connections were ob-
served in [14], but a rigorous comparison is missing. This paper
provides a unifying theory that fills this gap. The following con-
tributions are made:

In Section II we revisit the problem of QoS balancing, which
was already solved for some special cases, like beamforming
or robust signal processing. Here, we formulate the problem
in a very general form, based on axiomatic interference func-
tions. By exploiting monotonicity and convexity, we show that
the problem can be rewritten in an equivalent convex form. This
result demonstrates that a thorough understanding of the under-
lying structure is very important for the design of efficient algo-
rithms. This motivates the analytical approach presented in the
following sections.

In Section III, we compare the new axiomatic framework of
general (scale-invariant) interference functions with the frame-
work of standard interference functions [9]. It is shown that
any standard interference function can be expressed in terms
of a scale-invariant interference function. This provides a new
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understanding of problems that were previously investigated
within the framework of standard interference functions. An
example is given in Section III-B, where we discuss how con-
cavity can be exploited for solving Yates’ power minimiziation
problem with superlinear convergence.

In Section IV, we analyze the structure of interference func-
tions. A new fundamental max-min decomposition is derived.
Knowledge of the structure of functions is of great importance
for the design of algorithms. So the results of this section pro-
vide a more complete understanding of interference functions.

In Section V, we show that the structure results from
Section IV can be transferred to standard interference func-
tions. This is useful since many power allocation problems are
naturally formulated in terms of standard interference func-
tions. In this case, the results can be applied directly, without
the need of changing from one framework to another.

Some notational conventions are: Matrices and vectors are
denoted by bold capital letters and bold lowercase letters, re-
spectively. Let be a vector, then is the com-
ponent. Likewise, is a component of the ma-
trix . The notation means that for all com-
ponents . Also, means and there is at least
one component such that . The set of nonnegative
reals is denoted as . The set of positive reals is denoted as

. The notation and means component-wise
exponential and logarithm, respectively. Let , then

.

II. INTERFERENCE MODELING, MOTIVATING EXAMPLES, AND

FIRST RESULTS

Consider a coupled multiuser system with resources
, where is an arbitrary dimen-

sion. Also, let . We use the concept of in-
terference functions to model the impact of on certain system
state measures, like interference. We begin with the definition,
then examples will be discussed.

Definition 1: Let . We say that is a general
interference function (or simply interference function) if the fol-
lowing axioms are fulfilled:

positivity There is an such that

scale invariance for all

monotonicity

The axioms A1, A2, A3 were proposed in [14] for modeling
interference in wireless networks, hence, the name “interfer-
ence function.” The connection with Yates’ well-known frame-
work of standard interference functions [9] will be studied in
Section III.

The following two examples show possible applications of
the framework A1, A2, A3. Example 1 is on classical inter-
ference modeling. Example 2 shows that interference functions
also provide a more abstract and general way of modeling de-
pendencies between users.

1) Example 1: Consider a wireless multiuser channel
with users, with index set .
The users’ transmission powers are collected in a vector

. Each link is corrupted by noise
with power . We define the extended power vector

(1)

Let be a vector of interference coupling coefficients
that determines the power crosstalk in the system, then the re-
sulting interference at user is

(2)

In the Appendix I-A we show how the model (2) can be ex-
tended by multiuser beamforming, which leads to a nonlinear
interference function.

2) Example 2: Consider the interference functions from Ex-
ample 1. The resulting signal-to-interference-plus-noise ratios
(SINR) are

SINR (3)

Let be a vector of SINR targets, and a set
of possible transmission powers, then

(4)

is an indicator for feasibility [14]. That is, the targets are fea-
sible if and only if . The feasible SINR region is de-
fined as

(5)

The function fulfills the axioms A1, A2, A3, so it is an
interference function.

This demonstrates that interference functions do not just
occur in the classical power control context. They rather provide
a general framework, which is useful for modeling different
kinds of dependencies between users. Further motivation for
using the framework A1, A2, A3 will be provided in Section III.
These three axioms provide the basis for what we understand
as “interference functions”.

General properties of interference functions will be studied in
Section IV. Most other parts of the paper will focus on the par-
ticular class of strictly monotone interference functions, which
will be introduced in the next subsection.

A. Strict Monotonicity and Convexity

Parts of this paper are focused on the particular case of power
control, where the interference function depends on the

-dimensional power vector (1). In order to model the impact
of noise adequately, we require additional strict monotonicity

strict monotonicity

(6)

Axiom A4 is explained most easily by Example 1. The inter-
ference function (2) fulfills A4. Also the interference function
resulting from beamforming (Appendix I-A) fulfills A4.
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Axiom A4 is a key property that is important for the analysis
of wireless systems with receiver noise and power constraints.
If , then A4 ensures that . This will be
exploited in Section II-B. In Section III, it will be shown that
A4 is the property that links the framework A1, A2, A3 with the
framework of standard interference functions [9].

Besides monotonicity, there are other properties which can
be exploited, if available. In the following we will also study
convex and concave interference functions, which are defined
on a convex domain . Examples of concave interference
functions are again (2) and the beamforming interference from
Appendix I-A.

Finally, we will study logarithmically convex (log-convex)
interference functions. The following definition is based on a
change of variable .

Definition 2: We say that is a log-convex in-
terference function if A1, A2, A3 are fulfilled and in addition

is convex on .
It was shown in [15] that every convex interference function

is a log-convex interference function, however the converse is
not true. Thus the class of convex interference functions is con-
tained in the broader class of log-convex interference functions.
Log-convex interference functions offer interesting analytical
possibilities similar to the convex case, while being less de-
manding. For certain nonconvex problems the logarithmic trans-
formation leads to an equivalent convex reformulation. For an
overview, see, e.g., [16] and the references therein.

B. The Quality-Of-Service (QoS) Balancing
Problem—Revisited

We begin with an example that demonstrates the impor-
tance of exploiting strict monotonicity. Consider the common
problem of achieving QoS targets

with minimum use of transmission powers.

(7)

Here, is defined as an abstract performance measure de-
pending on the SINR via a strictly monotone and continuous
function .

(8)

Problem (7) is closely connected with the max-min formulation

(9)

If the power set is bounded, then both problems (7) and (9)
are equivalent in a sense that the solution of one problem can
be found indirectly via a bisection strategy involving the other
problem. If is a point on the boundary of the feasible set,
then both problems yield the same optimizer. This is the unique
fixed point described by Yates [9]. So both problems can be
comprehended under the name “QoS balancing.”

We will now focus on problem (7) which is more convenient
to analyze. Let be the inverse function of , then

is the minimum SINR level needed by the th user

to achieve some feasible target . So the optimizer of (7) is
obtained by solving the SINR balancing problem

s.t. for all (10)

Under the assumption of strict monotonicity A4, this problem
can be solved by a globally convergent fixed point iteration,
which will be discussed later in Section III-A. The iteration has
linear convergence [10], [17], regardless of the actual choice of

.
More efficient solutions are available if the interference func-

tions are convex. We can rewrite (10) in equivalent form

(11)

If the power set is convex, which is typically fulfilled,
then (11) is a convex optimization problem. Property A4 ensures
the existence of a nontrivial solution, provided that the targets

are feasible.
Next, consider the case where is strictly monotonic

and concave. An example is the beamforming problem in
Appendix I-A, with either individual power constraints or
a total power constraint. Then, problem (11) is nonconvex
because the constraints are concave, but not convex.

This observation is in line with the literature on mul-
tiuser beamforming [4]–[6], where it was observed that the
corresponding problem is nonconvex in its direct form, but
equivalent convex reformulations exist. So an interesting ques-
tion is: does an equivalent convex reformulation also exist for
the more general problem (11), which is only based on the
axiomatic framwork with the additional assumptions of strict
monotonicity and concavity? This is answered by the following
theorem.

Theorem 1: Let be concave and strictly mono-
tonic interference functions, then the optimizer of problem (11)
is equivalently obtained by the convex problem

(12)

Proof: First, we observe that (11) is feasible if and only if
(12) is feasible. Assume that (12) is feasible. Because of strict
monotonicity A4 there must exist a vector such that
all inequalities in (12) are fulfilled with equality. This implies
feasibility of (11). The converse is shown likewise.

Let . The vector is the
unique fixed point that satisfies . This is the
optimizer of (11), as shown in [9]. The same fixed point is
achieved by (12). This can easily be shown by contradiction.
If there would exist a such that the optimizer fulfills

, then we could increase without vio-
lating the constraints. This would mean that we could achieve
a point larger than the global maximum. Therefore, (12) yields
the fixed point which also solves (11).

Problem (12) is convex and can be solved by applying
standard solutions from convex optimization theory. This also
sheds some new light on the problem of multiuser beamforming
[4]–[6], [12], [13], which is contained as a special case. It turns
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out that this problem has a generic convex form (12) which can
be used as a basis for the development of algorithms.

However, general purpose solvers can be inefficient. A better
performance is typically achieved by exploiting the analytical
structure of the problem at hand. Later, in Section III-B we will
discuss how the properties A1 to A4 can be exploited for the
design of a generic algorithm with superlinear convergence.

Next, consider the class of log-convex interference functions
(see Definition 2). Examples are worst-case interference designs
used in the context of robust optimization (see, e.g., [7] and [8]).
Every convex interference function is a log-convex interference
functions, as mentioned before, so the following result also ap-
plies to convex interference functions.

Theorem 2: Let be log-convex and strictly
monotonic interference functions, then the optimizer of
problem (11) is obtained as , where is the
optimizer of

(13)

Proof: Exploiting the strict monotonicity of the logarithm,
we can rewrite the constraints in (11) as

Introducing the change of variable , this can be
rewritten as

Using the same argumentation as in the proof of Theorem 1, it
follows from A4 that the constraints in (13) are fulfilled with
equality in the optimum, so the optimizer is the unique fixed
point in the transformed domain.

The constraints in (13) are convex because is
convex by definition. Also, the domain is convex if

is a downward-comprehensive convex set. Comprehen-
siveness is defined as below. It is fulfilled for many cases of
interest (e.g., unconstrained powers, per-user power constraints,
sum-power constraint).

Definition 3: A set is said to be upward-compre-
hensive if for all and

(14)

If the inequality is reversed, then is said to be downward-
comprehensive.

III. COMPARISON BETWEEN GENERAL AND STANDARD

INTERFERENCE FUNCTIONS

In the previous section we have shown that the general
axiomatic framework A1, A2, A3, in combination with strict
monotonicity A4, can be used to find equivalent convex refor-
mulations for certain resource allocation problems which are
nonconvex in its original form.

In this section we will address the following questions:
• Yates’ framework of standard interference functions [9] is

an established interference model, so what is the motiva-
tion for the framework A1, A2, A3?

• Both axiomatic frameworks are similar, so how exactly are
they connected?

We begin by introducing standard interference functions.

A. Standard Interference Functions

In [9], Yates introduced an axiomatic framework of standard
interference functions, with extensions in [10], [11]. This frame-
work was motivated by the SINR balancing problem discussed
in Section II-B.

Definition 4: A function is said to be a
standard interference function if the following axioms are ful-
filled:

positivity for all

scalability for all

monotonicity

A simple example for a standard interference function is the
linear interference model (2), which can be written as

. Other examples can be found, for example, in the
context of multiuser beamforming [4]–[6], [12], [13], CDMA
[18], [19], base station assignment [20], [21], and robust designs
[7], [8].

If the targets are feasible, then the fixed point
iteration

converges globally to the unique optimizer of the power mini-
mization problem (10), as shown in [9]. Convergence properties
of this iteration were investigated in [10], [11], and [17].

B. Exploiting the Structure of Interference Functions

In Section II-B we have used the framework A1, A2, A3, plus
strict monotonicity A4, although the same conclusions could
have been achieved by using standard interference functions
characterized by Y1, Y2, Y3. We will now discuss some reasons
for favoring A1, A2, A3 over standard interference functions.

One advantage is its generality. It will be shown in the fol-
lowing Section III-C that any standard interference function can
be expressed by an equivalent interference function fulfilling
A1, A2, A3. Thus, any problem involving standard interference
functions can be reformulated in terms of the framework A1,
A2, A3. Moreover, the framework is suitable for modeling var-
ious other kinds of multiuser performance measures, including
indicator functions for feasibility, and combinations of user util-
ities (see, e.g., Example 2 in Section II and [14]–[16], [22]). This
generalized notion of interference abstracts away from its orig-
inal physical meaning. It contributes to a better understanding of
multiuser QoS/utility sets, and also provides a bridge to game-
theoretical strategies (see, e.g., [23]).

Another benefit of the framework A1, A2, A3 is its
amenability to structural analysis. Any interference func-
tion can be expressed as a maximum or minimum of certain
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elementary interference functions [22]. More structure results
are available if the interference functions has additional prop-
erties, like convexity, concavity [15], or logarithmic convexity
[16]. Knowledge about this structure can lead to interesting
analytical opportunities. This will now be demonstrated by an
example.

Consider the QoS balancing problem from Section II-B
with concave and strictly monotonic interference functions.
The problem can be solved with superlinear convergence if we
exploit the structure results shown in [15]. In particular, we
use the following lemma, which holds for arbitrary concave
interference function fulfilling A1, A2, A3.

Lemma 1: An interference function is concave if and only if
there exists a nonempty upward-comprehensive closed convex
set such that

(15)

This result opens up new perspectives for a more general un-
derstanding of interference functions. For example, (15) can
be regarded as the optimum of a weighted cost minimization
over some strategy set , with weighting factors . One can
imagine many other possible interpretations of the variable .
However, in order to keep the discussion simple, we will confine
ourselves to the aformentioned QoS balancing example. The
following discussion shows that Lemma 1 is useful for devel-
oping an algorithmic solution for problem (11).

Consider the -dimensional vector defined by (1).
The interference functions are associated with
coefficient sets . From Lemma 1 we
know that for any given , we have

(16)

The coefficients determine the interference cou-
pling between the users, while amplifies the noise. This
is a typical structure for many interference scenarios involving
adaptive receive or transmit strategies. An example is the afore-
mentioned beamforming problem (see Appendix I-A).

Let be the coupling vector resulting from some unspec-
ified receive strategy , chosen from a compact set . Then,
(16) can be rewritten as

(17)

Here, is an arbitrary system parameter that determines the in-
terference coupling. A special case is the beamforming example
from Appendix I-A. Each beamformer is constrained to a com-
pact set , which is typically the unit sphere.1 It was shown in
[15] that this leads to a convex comprehensive set of coupling
vectors , each of which is associated with a concave interfer-
ence function (16).

Lemma 1 shows the converse direction: for any concave in-
terference function there is a representation (17). Thus, we can

1Arbitrary constraints can be imposed on the beamformers, like the shaping
constraints in [5]. We only require that is compact, to ensure that the min-
imum exists.

use the results [17], where an iterative “Newton-type” algo-
rithm with superlinear convergence was proposed for solving
problem (11). While this algorithm was only derived for inter-
ference functions of the form (17), an immediate consequence
of Lemma 1 is that such an iteration also exists for arbitrary con-
cave interference functions. The details of this iteration can be
found in [17]. To summarize: the QoS balancing problem from
Section II-B can be solved with superlinear convergence if the
underlying interference functions are concave or convex.

This example shows that analyzing the structure of A1, A2,
A3 can be very useful for the development of algorithms. How-
ever, no corresponding results exist for standard interference
functions. It will be one contribution of this paper (Section V)
to show that certain structure results like Lemma 1 can be trans-
fered to standard interference functions. We will also derive new
structure results in Section IV, which complement the results al-
ready shown in [15].

It remains to answer the second question: How are these re-
sults connected with standard interference functions? The struc-
ture results for convex/concave interference functions were de-
rived for the framework A1, A2, A3. It is not obvious whether
these results can be transfered to the framework Y1,Y2,Y3 or
not. Later, in Section V we will show that the results indeed ex-
tend to standard interference functions. To this end, we first need
to establish a link between both frameworks. This will be done
in the remainder of this section.

C. Comparison Between Both Axiomatic Frameworks

When comparing the two axiomatic frameworks in Defini-
tions 1 and 4, it can be observed that the main difference is
between Y2 and A2. In order to establish a link between both
frameworks, we introduce the following definition.

Definition 5: A function is said to be a
weakly standard interference function if the following axiom
Y2’ is fulfilled together with Y1 (positivity) and Y3 (mono-
tonicity).

The following theorem shows how general interference func-
tions and standard interference functions are related. To this
end, we introduce the power set

(18)

In a power control context, is a vector of transmission powers
and is the noise power. For notational convenience, we
define .

Theorem 3:
1) Let be a weakly standard interference

function, then the extended function

(19)

is a general interference function on . We have

(20)
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2) Let be a general interference function,
then for any given , the reduced function

(21)

is a weakly standard interference function on .
3) Let be defined as in (19). Then is a standard interfer-

ence function if and only if fulfills A1, A2, A3, and for
all , the function fulfills A4 (strict
monotonicity with respect to ).
Proof: We begin by proving 1). Axiom A1 is fulfilled be-

cause for all . Axiom A2 (scale invariance) is
fulfilled because for all

It remains to show A3 (monotonicity). Consider two arbi-
trary vectors such that . With

, we have

(22)

The first inequality follows from (monotonicity) and the
second from (weak scalability).

We now prove 2). Axiom Y3 follows directly from A3.
Axiom Y1 holds on because for all . This
is a consequence of A1, as shown in [14]. Axiom Y2’ follows
from

Note that this inequality need not be strict because we did not
made any assumption on whether depends on or not.

We now prove 3). Let be standard. From 1) we know
that fulfills A1, A2, A3. We now show strict mono-
tonicity. For arbitrary , with and

the second inequality (22) is strict.
This follows from Y2 (which holds for because of
continuity). Thus, is strictly monotone with respect to

the component . Conversely, let be strictly monotone
and A1, A2, A3 are fulfilled. Then

(23)

for all , thus Y2 holds. Property Y3 follows directly from
A3. Finally, we show Y1 by contradiction. Suppose that there
exists a such that . Strict monotonicity of
implies

Letting we obtain a contradiction, thus proving Y1.
Theorem 3 shows that any standard interference function has

an equivalent representation in terms of the extended model. The
next corollary is an immediate application of Theorem 3.

Corollary 1: Any (weakly) standard interference function
is continuous on .

Proof: This is a direct consequence of Theorem 3, which
states that, for any exists a general interference function
such that for all . Any general interference
function is continuous on , as shown in [14].

This property was implicitly assumed in [9]. Corollary 1 jus-
tifies this assumption in hindsight. The proof in [9] is only rig-
orous with the continuity stated by Corollary 1. Note that Corol-
lary 1 only states continuity on not on . This is suf-
ficient for the fixed point iteration [9] because the limit of this
iteration is always strictly positive. Continuity on will be
shown in the following Section III-D.

D. Continuation on the Boundary

Parts of this paper build on our previous work [15], [16],
[22], where properties of interference functions were ana-
lyzed. Some of these results, like the aforementioned continuity,
were only shown for a restricted domain instead of .
This technical assumption was made for the sake of mathemat-
ical tractability. By requiring we ensure . This
is sometimes needed to avoid singularities, e.g., when dealing
with signal-to-interference ratios .

Sometimes, the assumption is not very restrictive,
like in the case of the SINR balancing problem (10), which has
a strictly positive solution. However, there are many other re-
source allocation problems that require , meaning that
user is inactive. One way of handling this case is to let tend
to zero.

In the remainder of this section, we will study the conse-
quences that this axiomatic approach has on the interference
functions. Assume that is defined on . Let
be an arbitrary sequence with limit .
We define the continuation

(24)

The following theorem states that for any interference function,
the properties A1, A2, A3 are preserved on the boundary of the
power set, where powers are zero.

Theorem 4: Let be an arbitrary interference function de-
fined on . Then, the continuation defined on ful-
fills the axioms A1, A2, A3.
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Proof: We need the lemmas shown in Appendix I-B.
Axiom A3 (monotonicity) follows from Lemma 9. Axiom A2
(scale invariance) follows from Lemma 6. Axiom A1 is also
fulfilled since for all .

We can use this continuation to extend results that were pre-
viously shown for . As an example, consider Corollary 1,
which states continuity on . This is now extended to by
the following theorem. More examples will follow.

Theorem 5: is continuous on . For an arbitrary se-
quence with we have

(25)

Proof: The proof is based on the results from
Appendix I-B.

We need to show that is a continuous
function, i.e., (25) holds for any sequence with

.
Consider and , defined as in the proof of Lemma 8,

with (94) and (95). Combining and
(94) we have

(26)

We introduce the vector with

if
if

(27)

Since we have

(28)

From Lemma 9 we know that the right-hand side limit of (28)
exists, so

(29)

Combining (26), (28), and (29) we have

Thus, (25) is fulfilled.

IV. THE STRUCTURE OF INTERFERENCE FUNCTIONS

In this section we will study the structure of interference func-
tions defined by A1, A2, A3. Other properties are optional. For
example, it will be shown later in Section V that the result can
be transferred to standard interference functions, by exploiting
strict monotonicity A4.

In order to simplify the discussion, we will first confine the
discussion to power vectors from . Later, we will use The-
orem 4 to show that the results extend to .

We begin with some fundamental observations. Consider an
arbitrary interference function on , characterized by A1,
A2, A3. Here, is an arbitrary finite dimension, so we can

possibly include noise power as in Section II. From [22], Lemma
1, we know that for

(30)

(31)

These inequalities are fulfilled with equality if . Thus

(32)

(33)

We can further exploit the following identities [24]:

(34)

(35)

For , , we introduce functions

(36)

(37)

The next theorem is a direct consequence of (32) and (33).
Theorem 6: Consider an arbitrary interference function .

For all we have

(38)

(39)

Theorem 6 shows that any interference function has a sup-inf
and inf-sup characterization, involving functions
and . These functions fulfill the axioms A1, A2,
A3 (with respect to the variable ), so they can be regarded
as elementary interference functions. This result stands in an
interesting relationship with recent results [22], where different
max-min and min-max representations were shown.

Note, that (38) and (39) are not saddle point characteriza-
tions, because we do not only interchange the optimization
order, but also the domain. Representation (38) will be used
in the following Sections IV-A and IV-B, where we analyze
convex and concave interference functions. Representation
(39) will be needed later in Sections IV-C, where log-convex
interference functions will be analyzed.
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We begin by focusing on (38). By exchanging and ,
we obtain for all

(40)

(41)

The resulting functions and are minorants and majo-
rants, respectively, according to the following definition.

Definition 6: An interference function is said to be a
minorant of if for all , where is
the domain of . An interference function is said to be a
majorant if for all .

The minorant (40) and the majorant (41) will play an im-
portant role for the analysis of convex and concave interfer-
ence functions, respectively. This will be shown in the next
Sections IV-A and IV-B.

A. Convex Interference Functions

The following lemma was derived in [15].
Lemma 2: An interference function is convex if and

only if there exists a nonempty bounded downward-comprehen-
sive closed convex set such that

(42)

The corresponding version for concave interference functions
was already discussed in Section III-B. Here, similar conclu-
sions can be drawn from Lemma 2. That is, the power minimiza-
tion problem (10) can be solved with superlinear convergence,
by exploiting that any convex interference function can be ex-
pressed as a maximum of linear functions.

In this section, we will derive an alternative way of expressing
a convex interference function as a maximum of linear func-
tions. This new representation differs from (42) in that the op-
timization is not over a specific coefficient set. The behavior of

is instead captured by a function defined as follows.

(43)

We begin by showing that the infimum (43) is attained.
Lemma 3: For any , there is a , with

, such that

(44)

Proof: Since , we have for all .
So we can take the infimum (43) over the compact domain

. The inverse of a continous positive function is
continuous. Also, is continuous on [14]. Theorem 5
shows that has a unique continuation on the boundary, so

continuity extends to . Any continuous real-valued function
attains a minimum over a compact set, thus (44) holds.

Consider the minorant (40). With (43), we can rewrite (40) as

(45)

Any pointwise supremum of linear functions is convex, so the
minorant is a convex interference function.

The next theorem and the following corollary show that the
convex minorant is best possible, and any convex interfer-
ence function has a saddle-point characterization.

Theorem 7: is a convex interference function if and only if
for all , i.e.,

(46)

Proof: see Appendix I-C.
Corollary 2: Let be an arbitrary interference function, then

is the greatest convex minorant of .
Proof: see Appendix I-D.

Note, that the greatest convex minorant was also studied in
[15]. However, [15] uses a different approach, based on the rep-
resentation (42). The alternative representation provided here
helps to better understand the structure of such functions. The
convex minorant (resp. concave majorant) is also interesting
from a practical point of view, because convex/concave interfer-
ence functions typically lead to efficient algorithmic solutions
(see, e.g., [17]). These results provide best-possible convex/con-
cave approximations for any (possibly nonconvex) interference
function.

Next, we show that the inverse

(47)

is an interference function. Note, that is always defined
because of the following property: If there exists a such
that , then for all .

For arbitrary and we have

(48)

If , then , so fulfills ax-
ioms A2, A3.

Now, we show positivity (A1). For any , with ,
Lemma 3 implies

That is, is bounded from above by some constant ,
and we have
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Thus, is lower bounded for any . With Theorem 4 we can
define for , with . Then, is
continuous on .

Thus, the function fulfills the axioms A1,
A2, A3. We also have

The pointwise supremum of linear functions is convex. Hence,
is a convex interference function.

Theorem 8: Let be an arbitrary interference function,
then is continuous on , and there exists a nonempty
bounded downward-comprehensive closed convex set
such that

(49)

Proof: Since is a convex interference function, we
know from Lemma 2 that (49) holds for any . The
denominator in (49) is strictly positive, so is continuous as
the pointwise minimum of continuous functions. From Theorem
5 we know that continuity extends to .

With the continuity shown by Theorem 8 and property (45),
we know that the minorant can be rewritten as

(50)

That is, the supremum can be replaced by a maximum over a
compact set, and is defined as in (43). With Theorem 7 and
(50), the following result is shown.

Theorem 9: is a convex interference function if and only if

(51)

Comparing (51) with (42), we observe two different ways of
expressing a convex interference function as the maximum of
linear functions. In (42), the coefficient set is used to incor-
porate the properties of (see [15] for details), while (51) uses
the function .

B. Concave Interference Functions

Next, similar results are shown for concave interference
functions. Such functions result, for example, from adaptive
receive strategies, like the beamforming interference discussed
in Appendix I-A.

First, recall Lemma 1, which shows that any concave inter-
ference function can be expressed as the minimum over affine
functions, where the optimization is over a closed comprehen-
sive convex coefficient set.

We will now derive a different characterization based on the
function

(52)

The supremum (52) is always attained, as shown by the next
lemma.

Lemma 4: For any , there is a , with
, such that

(53)

The proof is similar to the proof of Lemma 3.
With (52) we can rewrite the majorant (41) as

(54)

The infimum of linear functions is concave, so is a con-
cave interference function. The next theorem and the following
corollary show that the concave majorant is best possible,
and any concave interference function has a saddle-point char-
acterization.

Theorem 10: is a concave interference function if and only
if for all , i.e.,

(55)

The proof is similar to the proof of Theorem 7 in
Appendix I-C.

Corollary 3: Let be an arbitrary interference function, then
is the least concave majorant of .

Corollary 3 stands in interesting relation to the analysis of the
least concave majorant in [15], similar to the convex case. The
proof is similar to the proof of Corollary 2.

Next, consider the function

(56)

Similar to the convex case, it can be shown that is a
concave interference function. This is used for proving the fol-
lowing result. The proof is similar to the proof of Theorem 8.

Theorem 11: Let be an arbitrary interference function, then
is continuous on , and there exists a nonempty up-

ward-comprehensive closed convex set such that

(57)
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With the continuity shown by Theorem 11 and (54) we know
that the majorant can be rewritten as

(58)

With (58) and Theorem 10 we obtain the following result.
Theorem 12: is a concave interference function if and only

if

(59)

Comparing (59) with (15) in Lemma 1, we observe two dif-
ferent ways of expressing a concave interference function as the
minimum of linear functions. In (15), the coefficient set is
used to incorporate the properties of (see [15] for details),
while (59) uses the function .

C. Log-Convex Interference Functions

Logarithmically convex (log-convex) interference functions
(see Definition 2) are an interesting generalization of convex in-
terference functions, which in turn include the often-used linear
interference functions. Many well-known concepts from power
control, like the Perron-Frobenius theory of nonnegative ma-
trices, have counterparts in the framework of log-convex inter-
ference functions [16].

In this section we analyze the structure of log-convex interfer-
ence functions on the basis of the sup-inf characterization (39).
This approach complements the results [16], where a different
approach was chosen.

We begin by introducing the function

(60)

The function plays a similar role for log-convex interference
functions as did for the convex case. It was observed in [16]
that is log-concave on . However it is not an interfer-
ence function.

By exchanging and in (39) we obtain for all

(61)

The function is a minorant of . It was shown in [16] that the
infimum (61) is attained.

(62)

Note, that this property is enabled by the assumed log-convexity
of . For general interference functions it is not clear whether
the supremum is attained.

Theorem 13: is a log-convex interference function if and
only if , i.e.,

Proof: This follows from the results [16]. An alternative
proof is based on the max-min characterization (39), similar to
the proof of Theorem 7.

Corollary 4: Let be an arbitrary interference function, then
is the greatest log-convex minorant.

Proof: This also follows from the results [16]. Alterna-
tively, it can be shown in a similar way as Corollary 2.

V. APPLICATION TO STANDARD INTERFERENCE FUNCTIONS

We now show how the structure results from Section IV
can be applied to standard interference functions as defined
in Section III-A. In particular, we show that convexity and
log-convexity, which were studied within the framework A1,
A2, A3 in [15], [16], and [22], is preserved when switching to
the framework of standard interference functions.

As in the previous section we focus on strictly positive power
vectors from . This is a technical restriction compared to
the previously used , as defined in (18), where transmission
powers are allowed to be zero. However, we can extend the fol-
lowing results to sets by using the continuity result found in
Section III-D.

A. Characterization of Weakly Standard Interference
Functions

We now use Theorem 3 in order to transfer the structure re-
sults from Section IV to weakly standard interference functions.
To this end, consider the function as defined by (43). Assume
that a weakly standard interference function is given. With
(19) we obtain an interference function with dimension

, where the last component stands for constant
noise. We have

(63)

Using the structure results from Section IV, we can provide nec-
essary and sufficient conditions for the convexity of standard in-
terference functions:
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Theorem 14: A weakly standard interference function is
convex on if and only if one of the following equivalent
statements hold.

• The interference function , as defined by (19), is convex.
• There exists a nonempty bounded downward-comprehen-

sive closed convex set such that for all

(64)

• There is a function , as defined by (63), such that

(65)

Proof: We have , so the second statement
follows directly from Theorem 2, and the last statement follows
from Theorem 9.

It remains to prove the first statement. If is convex then
is convex on , since one coordinate is con-

stant. Conversely, we need to show that any convex weakly stan-
dard interference function leads to a convex interference func-
tion , as defined by (19). To this end, we introduce the con-
jugate function

(66)

Corollary 1 states that is continuous on and the results
of Section III-D show that it has a unique continuation on the
boundary. The conjugate is lower semi-continuous as the
pointwise supremum of continuous functions. It is also convex
on the domain

(67)

For arbitrary and we have

(68)

Thus . This can only be fulfilled if .
So, can be expressed as the set of all such that

. Using similar arguments as in [15], it can also be
shown that implies .

Since is convex and continuous, the conjugate of the con-
jugate (the biconjugate) of is again, i.e.,

(69)

With (69) and (19) we have

(70)

The supremum of linear functions is convex, thus is a convex
interference function.

The property is important since otherwise mono-
tonicity would not be fulfilled and would not be an interfer-
ence function. Showing this property is actually not required for
the proof because Theorem 3 already states that is an inter-
ference function. However, the proof shows this result directly.
It thereby provides a better understanding of the fundamental
structure of interference functions. For a more detailed analysis
of convex and concave interference functions, the reader is re-
ferred to [15].

For concave interference functions similar results can be de-
rived. To this end we introduce

(71)

(72)

Theorem 15: A weakly standard interference function is
concave on if and only if the following equivalent state-
ments hold.

• The interference function , as defined by (19), is con-
cave.

• There exists a nonempty closed upward-comprehensive
convex set such that for all

(73)

• There is a function , as defined by (71), such that

(74)

Proof: The proof is similar to the proof of Theorem 14.
Similar to the functions and discussed in Section IV, we

can show that the functions and are weakly
standard interference functions. This implies that they are con-
tinuous on .

Next, we consider the log-convex case. As in Section II-A,
log-convexity is defined with respect to the variable
(component-wise). The second part of the following theorem
builds on previous results [16], where a function

(75)
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was used for analyzing the structure of of log-convex inter-
ference functions. The function is the conjugate of

[16].
Theorem 16: Let be a weakly standard interference func-

tion and be defined by (19). Then is log-convex if
and only if is log-convex. In this case, we have

(76)

Proof: If is log-convex then must be log-convex as
well. Conversely, we need to prove that is log-convex. Con-
sider two arbitrary . We define

(77)

(78)

Because is log-convex by assumption, we have

Thus, is convex on .

B. Characterization of Standard Interference Functions

Consider Theorem 14, which shows that a weakly standard
interference function is convex if and only if there exists a
set such that (64) is fulfilled. In this section we show corre-
sponding results for the case that the function is standard instead
of weakly standard.

Theorem 17: is a convex standard interference function if
and only if for any the optimization problem (64) has a
maximizer such that .

Proof: Suppose that such a maximizer always exists, then
for any and any we have

(79)

That is, is a standard interference function.

Conversely, assume that is a standard interference function,
and there is a such that for all maximizers (which is a
convex subset of ) we have . Then

(80)

For we have

Thus, for all . Consider an
arbitrary . We have

Thus, is not a standard interference function, which is a con-
tradiction. Thus, if is a standard interference function then for
any there is an optimizer such that .

In a similar way, the corresponding result is shown for con-
cave standard interference functions.

Theorem 18: is a concave standard interference function
if and only if for any problem (73) has a minimizer

such that .
Finally, we study the case of log-convex standard interference

functions.
Theorem 19: is a log-convex standard interference func-

tion if and only if for any problem (76) has a maximizer
such that .

Proof: Assume that is a log-convex standard interfer-
ence function, and there is a such that for all maximizers

we always have . For all we
have . Exploiting , we have

Thus, is not a standard interference function. This contradic-
tion shows that .

Conversely, assume that for any there is always a max-
imizer such that . For a given , we
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study , where . The maximizer is , with
. With (see [16]), we have

(81)

because and . Thus, is standard.

VI. CONCLUSION

Convexity and monotonicity are two important design prin-
ciples, which have proven useful for the development of algo-
rithms for joint interference reduction and resource allocation.

• Monotonicity was exploited in the context of axiomatic
standard interference functions [9], where a globally con-
vergent fixed point iteration was derived.

• Convexity is widely used, e.g., in the context of multiuser
beamforming and robust signal processing. It was also an-
alyzed within the more general axiomatic framework of
scale-invariant interference functions [14].

Most existing research is focused on either the first or the second
case. In this paper we propose a unifying framework that pro-
vides a bridge, allowing to choose the best of both worlds.

The paper shows that certain key properties are preserved
when changing from one axiomatic framework to another. Thus,
for any given problem we can use the model which is most ap-
propriate. All the structure results shown in [15], [16], and [22]
can be transfered to standard interference functions. Conversely,
strict monotonicity can be included in the framework A1, A2,
A3.

This opens up new analytical possibilities for the design of al-
gorithms for joint transceiver optimization and resource alloca-
tion. An example was already given in this paper: By exploiting
strict monotonicity, we have shown that the SINR balancing
problem has an equivalent convex formulation if the underlying
interference functions are convex, concave, or log-convex. This
extends the existing literature, where such reformulations are
only known for special cases, like the multiuser beamforming
problem. The chosen axiomatic approach generalizes this ob-
servation to a broader class of resource allocation problems.

APPENDIX I

A. Beamforming Example

Consider an uplink system with single-antenna trans-
mitters and an -element antenna array at the receiver. Inde-
pendent signals are transmitted over vector-valued
channels , with spatial covariance matrices

. The superimposed signals at the array output

are received by a bank of linear filters (the ’beam-
formers’). The output of the th beamformer is

(82)

where is an AWGN vector, with . The
coupling coefficients of the th user are

,

.

(83)

With the commonly used normalization , the inter-
ference function for the beamforming case is

(84)

It can be observed that the interference coupling is not con-
stant. For any power vector , the beamformer adapts
to the interference in such a way that the signal-to-interference-
plus-noise ratio (SINR) is maximized. This optimization can be
solved efficiently via an eigenvalue decomposition. For deter-
ministic channels , we have , so the in-
terference resulting from optimum beamformers is obtained in
closed form

(85)

For a downlink scenario, we can exploit the reciprocity between
uplink and downlink channels. So optimal downlink beam-
formers can be found indirectly via a “virtual uplink” channel
[12], [13].

B. Continuity on the Boundary—Lemmas and Proofs

We begin by considering an arbitrary vector

(86)

where for and for . We
introduce an arbitrary sequence , with

and . With the nonzero compo-
nents of , we define

(87)

Note, that there are many possible choices of null sequences
. They all converge to the same limit .
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The first lemma shows that the limit of the resulting interference
function is always the same, irrespective of the choice of .

Lemma 5: Consider an arbitrary interference function
defined on . For any there is a value

such that for all possible positive sequences
, , with , we have

(88)

Proof: We define

For all we have . With

we have , thus
. There exist limits

We have

(89)

Next, we show that this is fulfilled with equality. Consider an
arbitrary . By assumption we have

, thus there exists an such that
for all . Thus, , and with A3

we have , implying . This in-
equality holds for any , thus

(90)

Combining (90) with (89) we have . From (89) we
know that there exists . This limit does
not depend on the choice of the null sequences.

Based on Lemma 5 we can show scale invariance (A2) on the
boundary:

Lemma 6: Consider an arbitrary interference function
defined on . Let . For all we have

(91)

Proof: For any we have .
The result follows from (88) and

.
Also based on Lemma 5 we can prove the following Lemma

7, which shows monotonicity under the restrictive assumption
that the compared vectors have zero entries at the same posi-
tions.

Lemma 7: Consider an arbitrary interference function
defined on . Let and be two arbitrary vectors from

with for and for
. Then

(92)

Proof: Let be an arbitrary null sequence, and

From Lemma 5 we know that and
. Inequality im-

plies (92).
Note, that Lemma 7 does not show monotonicity for arbitrary

. This is because Lemma 5 and Lemma 7 assume that the
positions of the nonzero entries are fixed. So in order to show
A3 we need to extend the results to the case of an arbitrary
sequence . Based on the previous Lemmas 5, 6,
and 7, we show the following result. It extends Lemma 5 to the
case of arbitrary sequences from . This provides a basis for
Theorem 5, where general continuity of is shown.

Lemma 8: Let be arbitrary. For an arbitrary
sequence , with , and

, we have

(93)

Proof: Consider and
, where is the all-ones vector. With Lemma 7 we have

(94)

(95)

Thus,

(96)

(97)

(98)

Consider an arbitrary and
. There exists a such that for all we

have . We define

.

The complement of is . For all we
have

(99)

and thus

(100)

With Lemma 5 we have

(101)
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Combining (100) and (101) yields

(102)

The function is an interference function (Lemmas 6 and
Lemmas 7) . It is thus continuous with respect to components
from . Relation (102) holds for all , thus letting ,
we know that (102) can only be fulfilled with equality. We thus
have

(103)

By definition, , thus
. Combining (98) and (103) yields

(104)

Now, consider the vector , defined as

.
(105)

We have . Again, we exploit that is an
interference function, so it is continuous with respect to compo-
nents from . Thus, we have . So
with and (104) we obtain

We have
, so the above inequality is fulfilled

with equality. That is, .
With Lemma 8 we can prove that monotonicity (A3) holds on

the extended domain , which includes the boundary of .
Lemma 9: Consider arbitrary , with . Then

(106)

Proof: Exploiting Lemma 8, the proof is similar to the
proof of Lemma 7.

C. Proof of Theorem 7

With (40) we have for all . Assume that
is convex. From Lemma 2 we know that there exists a

such that

Thus, for all .
Conversely, assume that holds. Because is

convex, also is convex.

D. Proof of Corollary 2

Let be the greatest convex minorant of . For all ,
we have , and thus

(107)

Consequently,

(108)

Thus, for all .
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