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Abstract—Nash bargaining and proportional fairness are pop-
ular strategies for distributing resources among competing users.
Under the conventional assumption of a convex compact utility set,
both techniques yield the same unique solution. In this paper, we
show that uniqueness is preserved for a broader class of logarithmi-
cally convex sets. Then, we study a scenario where the performance
of each user is measured by its signal-to-interference ratio (SIR).
The SIR is modeled by an axiomatic framework of log-convex in-
terference functions. No power constraints are assumed. It is shown
how existence and uniqueness of a proportionally fair optimizer
depends on the interference coupling among the users. Finally, we
analyze the feasible SIR set. Conditions are derived under which
the Nash bargaining strategy has a single-valued solution.
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a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords.

I. INTRODUCTION

W IRELESS communication systems use cooperative re-
source allocation in order to efficiently exploit the avail-

able power and bandwidth. Cooperation is often facilitated by
centralized architectures like cellular systems. However, coop-
eration can also be useful between decentralized system compo-
nents. By letting users cooperate, they can efficiently distribute
their resources while trying to avoid interference.

Consider a wireless system, with users from an index
set . If the users are coupled by interfer-
ence, then there is a general tradeoff between the users’ utilities

. By , we denote the set of all feasible utility vec-
tors . A fundamental problem is to find a
suitable operating point on the boundary of . Toward this end,
there are various different resource allocation strategies, aiming
at different “fairness” or “efficiency” goals.

In this paper, we focus on the particular strategy of propor-
tional fairness[1], which is closely linked to the game-theoretic
concept of Nash bargaining[2]–[4]. While the conventional ap-
proach is based on the assumption of a convex utility set, we
will extend these theoretical frameworks to certain nonconvex
sets, which are convex after a logarithmic transformation.
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Our approach is motivated by the particular needs of a wire-
less communication system, where the utility set can crucially
depend on the way users are coupled by interference. In most
of this paper, we use the framework of interference functions
[5] to explicitly model the interuser interference as a function
of the transmission powers. The utility of each user is given by
its signal-to-interference ratio (SIR). The utility set is deter-
mined by the underlying interference functions. No power con-
straints are assumed.

Such a “physical-layer-aware” approach complicates the task
of resource allocation. For example, the SIR often depends on
dynamic interference mitigation techniques. Therefore, the in-
terference can depend on the transmission powers in a compli-
cated, nonlinear way. Standard properties of utility sets, like
convexity or compactness, cannot be taken for granted. Time-
sharing or randomization arguments are typically invoked to jus-
tify convexity (e.g., [6] and [7]). However, this argumentation
does not hold for performance measures like the SIR.

Our analysis will be carried out under the assumption of no
power constraints. This leads to an unbounded SIR set, which is
only limited by the effects of mutual interference. We will show
how existence and uniqueness of a proportionally fair optimizer
depend on the structure of the interference coupling. Studying
the problem in the absence of power constraints provides valu-
able insight into how the behavior of the system depends on the
structure of the interference coupling. This knowledge is also
useful for certain power-constrained systems, as shown in [8].

Before giving a detailed problem formulation, we briefly
summarize some known results and concepts from the litera-
ture.

A. Nash Bargaining and Proportional Fairness

We begin with some definitions. Matrices and vectors are de-
noted by bold capital letters and bold lowercase letters, respec-
tively. Let be a vector, then is the th component. The
notation means that for all components . Also,

means component-wise inequality, and means that
inequality holds for at least one component. Component-wise
vector multiplication is denoted by . The set of nonnegative
reals is denoted by , and the set of positive reals is denoted
by .

Definition 1: A set is said to be (downward) com-
prehensive if for any and

implies

A bargaining solution is the unanimous agreement on utilities
from a utility set . The Nash bargaining so-

lution (NBS) corresponds to a Pareto-optimal point char-
acterized by a set of axioms (Nash axioms). A more detailed
description is given in Section II-A.
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If the region is compact1 convex comprehensive,
then the unique NBS fulfilling the Nash axioms is obtained by
maximizing the product of utilities, i.e.,

(1)

Since ,
the optimizer of (1) can be found equivalently by solving

(2)

If is not compact convex, then it is a priori unclear whether
the maximum (2) or (1), respectively, exists. If it exists, then it
is unclear whether this optimum really is the Nash bargaining
solution characterized by the axiomatic framework.

In the following, we will show that it is indeed possible to ex-
tend the concepts of Nash bargaining and proportional fairness
to certain nonconvex noncompact sets while preserving their
main properties like existence and uniqueness of an optimizer.
One such set is the SIR region, which will be introduced in the
next section.

In the following, we will refer to strategy (2) as proportional
fairness (PF). In its original definition [1], a vector is said
to be proportionally fair if, for any other feasible vector , the
aggregate of proportional changes is nonpositive
(see also [9]). For convex sets, this unique point is obtained as
the optimizer of (2). In this case, Nash bargaining and propor-
tional fairness are equivalent [1], [10] (see also [11]–[13]).

In this paper, we are interested in certain nonconvex sets that
are strictly convex after a logarithmic transformation. It will be
shown that this property is sufficient to ensure a unique opti-
mizer of (2). This optimizer is also the proportionally fair oper-
ating point.

B. Wireless Utility Model—The Feasible SIR Set

In a wireless system, the users’ utilities can strongly depend
on the underlying physical layer, so the SIR is an important mea-
sure for the link performances. In most of the paper (except for
Section II), the utility under consideration is

(3)

The function yields the interference power experienced
by the th user. It depends on the transmission powers

. Many common performance measures, like ca-
pacity or bit error rate, can be modeled as a monotonic function
of the SIR. Note that the effective path gain of user can be in-
corporated in as an additional scaling factor. Then, (3) is
the ratio of the received power to interference power.

In order to model the interference, we use the axiomatic
framework proposed in [5].

1In this paper, compact and closed are defined relatively in . A set
is said to be relatively closed in if there exists a closed set

such that . Focusing on positive sets will simplify the following
analysis, which is based on logarithmic transformations of utilities. Note that
this does not restrict the generality of the results since, for the problem under
consideration, there cannot be a solution including zeros.

Definition 2: A function is said to be an
interference function if it fulfills the axioms

if

In order to rule out the trivial case we make an
additional assumption

There exists a such that (4)

This means that each interference function depends on at least
one transmitter. The notion of dependency will be introduced
later in Section III-B. Also, we assume that each transmitter has
impact on at least one interference function.

The axioms A1, A2, A3 are similar to Yates’ framework of
standard interference functions [14]. However, there are some
important differences. In [14], scalability , for

, was required in order for to be a standard interfer-
ence function. This property was motivated by the presence of
a constant noise power . A simple example is the linear
function , where is a vector of interfer-
ence coupling coefficients.

In order to model noise with the framework A1, A2, A3, a
more explicit approach is required. Defining an extended power

vector , the interference-plus-noise power can be

modeled by an interference function . If is strictly mono-
tonic with respect to and is constant, then
is a standard interference function. Any standard interference
function can be modeled this way.

In this paper, we assume that transmission powers are uncon-
strained, so noise has no impact and can be ignored. This not
only simplifies the problem, it also has the advantage of bringing
out clearly the effects of interference coupling. The results will
help to better understand the analytical structure of the problem,
thereby providing a basis for future research that includes noise
and power constraints.

The axiomatic framework A1, A2, A3 was motivated by spe-
cific power control problems, like [15]. However, it is also useful
for characterizing other types of coupling effects. An example
is the min-max optimum

(5)

The function is an indicator for the feasibility of SIR
values . We have if and only if for
any , there exists a such that ,
for all (see, e.g., [5] for more details). The feasible SIR
region is the sublevel set

(6)

Boundary points of are characterized by . If the
infimum (5) is not attained, then the boundary point is only
achievable in an asymptotic sense, as discussed in Section VII.

Observe that the function fulfills the axioms A1, A2,
A3, so it can formally be regarded as an “interference function.”
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Note that this notion of interference abstracts away from its orig-
inal physical meaning. Because of the properties A1, A2, A3,
the set is downward comprehensive (cf. Definition 1). It was
shown in [16] that in fact every compact comprehensive utility
set from can be expressed as a sublevel set of an interfer-
ence function.

C. Problem Formulation and Contributions

Consider the problem of proportionally fair resource alloca-
tion (2), where the utility set is the SIR region . Exploiting

, the problem can be formulated as

(7)

Using the parametrization (3), this can be rewritten as

(8)

where is the set of power vectors. Since the SIR (3) is invariant
with respect to a scaling of , we can define as

(9)

Note that the optimization (7) is over the SIR region directly,
whereas (8) is over the set of power vectors. This approach al-
lows to model the impact of the physical layer on the interfer-
ence. For example, can depend on in a nonlinear way.
Some examples will be given later in Section III-A.

Remark 1: For certain systems operating in a high-SIR
regime, it is customary to approximate the data rate as

(see, e.g., [17]. Then, our problem
(8) can be interpreted as the maximization of the sum rate

.
The SIR region is generally nonconvex and noncompact

(because no power constraints are assumed), so it is not clear
whether the frameworks of Nash bargaining and proportional
fairness can be applied or not. It is even not clear whether the
infimum (8) is actually attained.

Nash bargaining for nonconvex regions was studied, e.g., in
[6] and [18]–[24]. However, these papers either deal with dif-
ferent types of regions (typically, only comprehensiveness is
required, in which case uniqueness may be lost) or additional
axioms are introduced in order to guarantee uniqueness. Also,
most of this work was done in a context other than wireless com-
munications.

In Section II, we will extend the conventional Nash bar-
gaining framework to a certain class of logarithmically convex
(log-convex) utility sets. This is motivated by the special needs
of a wireless communication system, where such regions can
occur (examples will follow). In this respect, our approach is
not directly linked to the previous game-theoretic literature [6],
[18]–[24].

Note that the results of Section II apply to arbitrary
log-convex utility sets. In Section III and in what follows,
we will focus on a particular log-convex utility. Namely, we
will study the SIR region resulting from log-convex interference
functions. This section builds on recent results [25], where the
structure of log-convex interference functions was investigated.
We exploit that the interference coupling in the system can

be characterized by a dependency matrix (see
Section III-B)

Assuming log-convex interference functions, we will study
the existence and uniqueness of a proportionally fair optimizer
(8). The following fundamental questions will be addressed:

1) Boundedness: When is fulfilled?
2) Existence: When does an optimizer exist such that

?
3) Uniqueness: When is the unique optimizer?

Property is necessary for the existence of , but
not sufficient. This justifies a separate treatment of problem 1)
in Section IV. It is shown that implies the exis-
tence of a row or column permutation such that the dependency
matrix has a strictly positive main diagonal. An additional
condition is provided under which the converse holds as well.

In Section V, the existence of an optimizer is studied.
Under certain monotonicity conditions, an optimizer exists if
and only if there exist row and column permutations such that
the resulting matrix is block-irreducible [26] and its main diag-
onal is positive. Otherwise, no Pareto-optimal operating point
can be found.

In Section VI we show that the uniqueness of an existing op-
timizer depends on the structure of the matrix . This ex-
tends recent results [27], which were carried out in the context
of linear interference functions.

Finally, in Section VII, we study under which condition the
SIR feasible set is strictly log-convex. If this is fulfilled, and if
an optimizer exists, then it follows from the results of Section II
that the proportionally fair operating point is obtained as the
single-valued Nash bargaining solution.

II. NASH BARGAINING FOR LOG-CONVEX UTILITY SETS

We start by briefly reviewing some fundamentals of Nash
bargaining for compact comprehensive convex utility sets from

. Then, we will extend this framework to certain noncom-
pact log-convex utility sets.

A. Conventional Nash Bargaining Solution (NBS)

One of the most popular bargaining strategies is the (sym-
metric) Nash bargaining solution (NBS), which was proposed
by Nash [2] (see also [3], [4], and [28]). The applicability of
the NBS for resource sharing in communication networks was
studied in [7], [10]–[12], [29], and [30].

Let denote the family of all compact comprehensive
convex utility sets from . For any , the NBS is the
unique (single-valued) solution outcome that fulfills the
following axioms.

• Weak Pareto Optimality (WPO). The users should not be
able to collectively improve upon the solution outcome,
i.e.,

there is no with

• Symmetry (SYM). If is symmetric, then the outcome only
depends on the bargaining strategy and not on the identities
of the users, i.e., . This does not
mean that the game is necessarily symmetric, but rather
that all users have the same priorities.

• Independence of Irrelevant Alternatives (IIA). If the fea-
sible set shrinks, but the solution outcome remains feasible,
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then the solution outcome of the smaller set should be the
same, i.e.,

with

• Scale Transformation Covariance (STC). The optimiza-
tion strategy is invariant with respect to a component-wise
scaling of the region. That is, for any and
with and , we have

For any convex set , these four axioms are fulfilled by
a unique solution, obtained by solving (1) or (2).

Nash introduced the bargaining problem in [2] for convex
compact sets and two players. Later, in [31], he extended this
work by introducing the concept of a disagreement point (also
known as threat point), which is the solution outcome in case
the players are unable to reach a unanimous agreement. Some
“nonstandard” variations of the Nash bargaining problem exist,
including nonconvex regions (see, e.g., [6], [18], [21], and [22])
and problem formulations without a disagreement point (see,
e.g., [4] and the references therein).

In this paper, we formulate the Nash bargaining problem
without disagreement point. Therefore, the axiom STC differs
slightly from its common definition used in game-theoretical
literature (e.g., [3]), where an additional invariance with respect
to a translation of the region is required. Omitting the disagree-
ment point is justified by the special structure of the problem
under consideration. We are interested in utility sets for which
the existence of a solution is always guaranteed. From a math-
ematical point of view, zero utilities must be excluded because
of the possibility of singularities (SIR tending to infinity).
However, from a technical perspective, this corresponds to a
bargaining game with disagreement point zero. The results
are also relevant for certain games with nonzero disagreement
point: If the zero of the utility scales does not matter, then
we can reformulate the game within a transformed coordinate
system.

B. Extension of Nash Bargaining to Log-Convex Sets

In the remainder of this paper, we will drop the customary
assumption that is compact convex. We will extend the above
framework to a broader class of log-convex sets. Consider the
bijective continuous mapping ,
where .

Definition 3: We say that a set is log-convex if the
image set

(10)

is convex.
Definition 4: By , we denote the family of all closed com-

prehensive utility sets such that is a strictly
convex set in . By , we denote the family of all
that are additionally bounded, thus compact.

For bounded sets from , it was shown in [8] that the
unique solution fulfilling the Nash axioms is always the opti-
mizer of (1) and (2), respectively. Here, we consider a possibly
unbounded set , for which the results [8] cannot be ap-

plied directly. We first need to study under which condition an
optimizer exists. To this end, we introduce an auxiliary set

(11)

where

(12)

Unlike , the set is always contained in . Thus, there
is a unique Nash bargaining solution , given as the op-
timizer of the Nash product [8]. The associated utilities are de-
noted by .

The following theorem provides a necessary and sufficient
condition for the existence of a unique solution. The result will
be needed later in Section VII.

Theorem 1: Let . Problems (1) and (2), respectively,
have a unique solution if and only if there exists a such that
for all

(13)

Then, .
Proof: Assume that there is a such that (13) holds for any

. Then, is the solution of (1) for the set . The
solution is unique because . Thus, is also the
unique optimizer of the larger set .

With , we have

(14)

We show by contradiction that the supremum is finite. If
, then for any , there is a such

that . There always exists a such that
. Thus, the value could become

arbitrarily large, which contradicts the assumption that (13)
holds for arbitrary . This implies . Inequality
(14) is satisfied with equality for all . Since ,
we have . That is, the maximum
(1) is attained by .

Conversely, assume that is the solution of the product max-
imization (1). For any , we have

(15)

There exists a for which this inequality is fulfilled with
equality, with the maximizer . This solution is also
contained in any larger set where .

Theorem 1 shows that the Nash bargaining framework out-
lined in Section II-A also holds for certain noncompact non-
convex sets, provided that an optimizer exists.

We can even further extend this result by allowing that has
boundary segments parallel to some coordinate axis. Such seg-
ments are irrelevant for the solution outcome because no point
on a parallel segment can be the solution of the product opti-
mization (1). Parallel boundary segments translate to parallel
segments in the log-transformed image set, which means that
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the image set is not strictly convex. Yet, Theorem 1 still holds
since this irrelevant part of the boundary can be safely excluded.

Hence, the proposed framework extends the classical Nash
bargaining framework to a broader family of utility sets. Any
conventional (i.e., convex compact comprehensive) set from

has a log-convex image set with the required properties.
However, the converse is not true.

III. LOG-CONVEX INTERFERENCE FUNCTIONS
AND INTERFERENCE COUPLING

In this section and in the remainder of this paper, we will
focus on a particular set from . Namely, we will study
the SIR feasible region (cf. Section I-B) resulting from
log-convex interference functions. By exploiting properties of
the interference coupling, we will characterize boundedness
and existence of an optimizer, as discussed in Section I-C.

We will begin by introducing log-convex interference func-
tions along with some examples.

A. Log-Convex Interference Functions

It was shown in [32] that the SIR region defined in (6) is
a compact comprehensive convex set if and only if is a
convex interference function, i.e., A1, A2, A3 are fulfilled and

is convex on .
However, is generally not convex, so can be non-

convex. It can also be unbounded. It is therefore unclear whether
or not the conventional Nash bargaining theory can be applied
to the feasible SIR set . However, we can exploit that is log-
convex since the underlying interference functions
are log-convex by assumption. This allows us to exploit results
from Section II.

For the next definition we introduce a change of variable
(component-wise exponential).

Definition 5: An interference function is
said to be a log-convex interference function if
is convex on .

Let . Then, a necessary and sufficient
condition for log-convexity is [33]

(16)

where

(17)

The change of variable was already used by Sung
[34] in the context of linear interference functions (see the fol-
lowing example), and later in [17] and [35]–[38].

In the following, we will discuss some examples of
log-convex interference functions.

Example 1: Linear interference function:

(18)

where is a vector of coupling coefficients. All coupling
vectors can be collected in a coupling matrix

(19)

The function (18) is a log-convex interference function in the
sense of Definition 5.

Example 2: The coefficients can adapt to the current inter-
ference situation. An example is the worst-case interference

(20)

The parameter can stand for some uncertainty, chosen from a
compact uncertainty set . The source of uncertainty can be
system imperfections or channel estimation errors. Examples
can be found in the literature on robust power allocation [39].

Example 3: It was shown in [32] that is a convex inter-
ference function if and only if there exists a compact compre-
hensive convex set such that

(21)

This is a maximum over linear (thus log-convex) interference
functions, so is a log-convex interference function in the
sense of Definition 5. Hence, any convex interference function
is a log-convex interference function. The converse, however, is
not true. Therefore, the class of log-convex interference func-
tions is broader than the class of convex interference functions.

At first glance, this might seem contradictory since any log-
convex function is convex, but not the other way round [33].
This apparent contradiction is explained by the special defi-
nition of a log-convex interference function (Definition 5) in-
volving the change of variable .

The previous example (20) is a convex (thus log-convex) in-
terference function, so it is a special case of representation (21).
Other interpretations are possible. For example, (21) can be re-
garded as the optimum of a weighted sum-utility maximiza-
tion problem over a utility region with individual weights

. This supports the discussion in Section I-B, where
it was claimed that the applicability of the axiomatic framework
A1, A2, A3 is not restricted to interference in a physical sense.

Example 4: Consider the indicator function defined
in (5). If the underlying interference functions are
log-convex, then is a log-convex interference function
in the sense of Definition 5. This means that is
log-convex with respect to the substitute variable ,
which is the SIR on a logarithmic scale. Since every log-convex
function is convex, it follows that the resulting log-SIR region
(6) is a convex set. This result was shown in [5]. It generalizes
previous results on linear interference functions [34] (see also
[35]–[38]).

Example 5: Consider a matrix . The matrix is assumed
to be stochastic, i.e., , where is the all-ones vector.
Defining and some constants , we can
construct log-convex interference functions

(22)

It was shown in [40] that any log-convex interference function
can be expressed as a maximum over elementary functions of
the form (22). Hence, (22) can be regarded as a basic building
block of log-convex interference functions.



1458 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

B. Characterization of Interference Coupling

Now, we return our attention to the existence and unique-
ness of a proportionally fair operating point, as discussed in
Section I-C. To this end, consider a -user system character-
ized by log-convex interference functions . The re-
sulting SIR region and possible operating points depend on
the interference coupling in the system.

Interference coupling is a well-known concept in the context
of linear interference functions (18), where the mutual cross-talk
of transmission powers is characterized by a nonnegative cou-
pling matrix . Modeling interference coupling by such a non-
negative link gain matrix is common in power control theory.
For this case, the problem of proportional fairness was already
successfully analyzed, e.g., in [41], [42].

However, the axiomatic framework A1, A2, A3 is more gen-
eral and allows for adaptive strategies, where interference is
rejected depending on (see the examples in Section III-A).
Therefore, a new approach is required for the characterization
of interference coupling.

Independent of the actual choice of the power allocation, the
interference coupling can be characterized by an asymptotic ap-
proach.

Definition 6: The asymptotic coupling matrix is

if there exists a such that

otherwise
(23)

where is the all-zero vector with the th component set to one,
i.e.,

(24)

The 1-entries in the th row of mark the positions of the
power components on which depends. Notice that because
of property A2, we have the following property [25].

Lemma 1: If there exists a such that
, then

for all (25)

Hence, the condition in (23) does not depend on the choice
of . That is, provides a general characterization of interfer-
ence coupling for interference functions fulfilling A1, A2, A3.
The matrix can be regarded as a generalization of the link
gain matrix (19) commonly used in power control theory. In par-
ticular, and .

This can be further extended to arbitrary convex interference
functions, as discussed in Example 3. Since every convex inter-
ference function can be expressed as (21), it follows that there
exists a , with , such that

for all . Among all possible matrices , if there
exists only one matrix such that , then this implies

.
Another interesting interpretation of is obtained for the

special log-convex interference function (22) in Example 5. The
coefficient matrix can be regarded as a coupling matrix. In
particular, .

For the special case of log-convex interference functions, the
condition in (23) can be weakened [25].

Lemma 2: For log-convex interference functions, we have
, where

if there exists a such that
is not constant

for some values
otherwise.

(26)

The dependency matrix will play a central role in the
following analysis of the proportionally fair operating point (8).

IV. BOUNDEDNESS OF THE COST FUNCTION

Having characterized the interference coupling, we are now
in a position to study the existence of the proportionally fair in-
fimum defined in (8). That is, we want to show under
which conditions . The following simple ex-
ample shows that can be unbounded.

1) Example 6: Consider linear interference functions
, , with a coupling matrix

(27)

Without loss of generality, we can scale such that
. Then, the cost function becomes

(28)

Choose and , with . Since ,
we have . Thus,

Before deriving the first result, we need to discuss an im-
portant property of our objective . Consider
an arbitrary row permutation applied to the
matrix . This corresponds to a reordering of the indices of

, but without changing the indices of the transmis-
sion powers . Such a reordering does not affect the
objective function in problem (8). For an arbitrary , we
have

(29)

(30)

This follows from the fact that the summands in (29) can be
arranged and combined arbitrarily.

This means that the optimization problem (8) is invariant
with respect to permutations of powers or interference func-
tions. Defining arbitrary permutation matrices , , the
permuted dependency matrix can equiva-
lently be used in order to characterize the behavior of propor-
tional fairness. This fundamental observation is the basis for the
following results.

The next Lemma, which will be needed later for the proof of
Theorem 2, shows a connection between boundedness and the
structure of the dependency matrix .
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Definition 7: We say that interference functions
with indices depend on a power component with
index if at least one of these functions depends on this power,
i.e., there exists a such that .

Lemma 3: If , then for every , arbi-
trary log-convex interference functions depend on
at least components of the power vector .

Proof: The proof is by contradiction. Assume that there
is a number and interference functions , which
only depend on powers , with . From (30), we
know that interference functions and powers can be permuted
such that only depend on , with .
Consider the vector , defined as

where , i.e., . Axiom A3 implies
, so we have

Therefore

This holds for all , thus letting ; we obtain the contradic-
tion , thus concluding the proof.

A. Necessary and Sufficient Condition for Boundedness

Using Lemma 3, the following result is shown.
Theorem 2: Let be arbitrary log-convex interfer-

ence functions. If

(31)

then there exists a row permutation such that
for all . That is, the permuted matrix has a

positive main diagonal.
Proof: Assume that (31) is fulfilled. Consider the func-

tion , which depends on powers, with indices
. The trivial case is ruled out by (4).

Consider the th component . The set contains
the indices on which depend. More
precisely, is the set of indices such that
there exists a with . Let

denote the cardinality of this set. It follows from
Lemma 3 that there exists at least one , , such that

(32)

Otherwise, interference functions could not depend on
powers. Note that (32) need not be fulfilled for all indices .
If (32) is fulfilled for multiple indices, then we can choose one.
Because of (30), the powers can be arbitrarily permuted. Thus,
we can choose a permutation such that . That is,
the interference function depends on , thus

. This component is now kept fixed. It remains to consider
the remaining functions which depend on powers

. These powers can still be permuted arbitrarily.
We continue with the interference function , which

depends on powers, with indices
. We denote by the set

of indices (excluding and ) such that there exists
a with . There exists at least
one , (no matter which one) such that

(33)

The remaining powers (except for ) can still be per-
muted arbitrarily, so we can choose . Thus,

. This component is also kept fixed, and we
focus on the remaining functions which depend
on .

By repeating this procedure for all remaining interference
functions, the result follows.

Next, we are interested in the converse of Theorem 2. Under
which condition does the existence of a permuted matrix with
positive main diagonal imply the boundedness of ? In
order to answer this question we introduce an additional prop-
erty

implies for any (34)

where is defined in (24).
Theorem 3: Under the additional property (34), the condition

in Theorem 2 is necessary and sufficient.
Proof: Assume that there exists a such that

for all . With (34) and properties A2, A3, we have

(35)

for all , where are some positive values. The cost
function is invariant with respect to a permutation of the indices
of the interference functions, as can be seen from (29), so we
have

which completes the proof.
Note that property (34) is always fulfilled, e.g., for linear in-

terference functions (18) or worst-case interference functions
(20). However, there exist log-convex interference functions that
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do not fulfill (34). An example is the elementary log-convex in-
terference function (22), for which .

In the following, it will be shown that the additional require-
ment (34) is justified. It is not possible to derive a sufficient con-
dition for boundedness from alone, without further assump-
tions.

B. Elementary Log-Convex Interference Functions

It was shown in [25] that the elementary functions (22) play
an important role in the analysis of log-convex interference
functions. Therefore, in the remainder of this section, we
will study boundedness for this special case. For some given
coefficient matrix , our cost function can be rewritten as

(36)

The matrix is row stochastic, i.e., . This is an im-
mediate consequence of axiom A2, as shown in [25]. The fol-
lowing theorem shows that in order for (36) to be bounded,
also needs to be column stochastic.

Theorem 4: For interference functions (22), the infimum (8)
is bounded if and only if is doubly stochastic, i.e.,

(37)

Proof: Assume , i.e., for all .
Then, it can be observed from (36) that, independent of the
choice of , we have

Conversely, assume that . The proof is by contra-
diction: Assume that . Since , we have

. Therefore, implies
the existence of a column index such that .
Consider a sequence , defined as

otherwise.
(38)

Using (36), (38), and , we have

(39)

Letting , it can be observed that the argument of the log-
function tends to zero, so (39) tends to . This contradicts the
assumption, thus concluding the proof.

Theorem 4 provides a necessary and sufficient condition for
boundedness for a special log-convex interference function for
which (34) is not fulfilled. It becomes apparent that in this case
the boundedness does not depend on the structure of . If

is chosen such that , then the cost function is un-
bounded, even if for . Hence, it is not possible
to show the converse of Theorem 2 without additional assump-
tions. This is illustrated by a simple example.

Example 7: Consider log-convex interference functions (22)
with a coefficient matrix

(40)

We have , so the condition in
Theorem 4 is not fulfilled. With ,

, and , we have

(41)

The infimum is not bounded, even though there exists a column
permutation such that the main diagonal of is
nonzero.

V. EXISTENCE OF A PROPORTIONALLY FAIR OPTIMIZER

In the previous section, it was shown that boundedness
is connected with the positivity of the main di-

agonal of a permuted dependency matrix. Now, we investigate
under which condition the infimum is actually
attained by a power allocation . The next example shows
that this is not always fulfilled, not even for the simple linear
interference functions (18).

1) Example 8: Consider linear interference functions
, , with a coupling matrix

(42)

We have

(43)

Next, we will show that this inequality is fulfilled with equality.
Choosing , , and , we have

This tends to zero as . Thus

(44)

Combining (43) and (44), it follows that .
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Now, we study whether this infimum is attained. Assume that
there exists an optimizer , then

(45)

This is a contradiction, so the infimum is not at-
tained.

Now, consider arbitrary log-convex interference functions
. The mutual coupling is characterized by the de-

pendency matrix defined in (26). We may assume, without
loss of generality, that is in canonical form [26, p. 75]

For any given dependency matrix , there always exists a per-
mutation matrix such that has canonical
form. This symmetric permutation preserves the relevant prop-
erties that will be exploited, so in the following, we can simplify
the discussion by assuming that has the form (46). The ma-
trix has irreducible blocks along its main
diagonal (shaded in gray). Recall that is irreducible if and
only if its associated directed graph is strongly connected [26].
If is irreducible, then it consists of one single block. We say
that is block-irreducible if

. . .

where all subblocks are irreducible.
Before stating the main result of this section (Theorem 5), we

need some more definitions.
Definition 8 (Dependency Set): The dependency set is

the index set of transmitters on which user depends, i.e.,

(47)

Definition 9 (Strict Monotonicity): is said to be strictly
monotonic (on its dependency set) if , with

for some , implies .
In other words, is strictly increasing in at least one

power component. Given this property, we can derive a neces-
sary and sufficient condition for the existence of a proportionally
fair optimizer.

Theorem 5: Let be strictly monotonic log-convex
interference functions. We assume that (34) is fulfilled. There
exists a proportionally fair optimizer if and only
if there exist permutation matrices , such that

is block-irreducible and its main diagonal
is strictly positive.

Proof: The proof is given in the Appendix.
In the next section, we will study whether the optimizer char-

acterized by Theorem 5 is unique.

VI. UNIQUENESS OF THE SOLUTION

In the remainder of the paper, we assume that the interfer-
ence functions are log-convex in the sense of Def-
inition 5. By the log-transformation, the line segment de-
fined in (17) is transformed to

(48)

With (16), it is clear that is log-convex if and only if

(49)

Assume that there exists an optimizer for the problem of pro-
portional fairness (8). Is this optimizer unique or not? In order
to answer this question, we analyze the cost function

on (50)

where we have used the substitution .
It is sufficient to show that the cost function is strictly

convex. Since is a one-to-one mapping, uniqueness of
an optimizer implies uniqueness of the original problem (8).
Note, that it is not necessary to show strict convexity of the SIR
region, this will be done later in Section VII.

We start with the following lemma, which will be needed later
for Theorem 6.

Lemma 4: The function defined in (50) is strictly
convex if and only if for arbitrary vectors , with

, , there exists a and at least one
index such that

(51)

Proof: Assume that (51) holds for . With and
, we have

(52)

where the first inequality follows from the convexity of
[25], and the second strict inequality is due to (51).
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Conversely, assume that is strictly convex. The proof is by
contradiction: Suppose that there is and ,
such that for all ,

(53)

With (53), we have

(54)

which contradicts the assumption of strict convexity, thus con-
cluding the proof.

Note that if (51) holds for a , then it holds for all
. This is a direct consequence of log-convexity (49).

In order to show the next Theorem 6, we need the
Lemmas 5–7. Using the dependency set (47), we introduce the
following definition.

Definition 10 (Strict Log-Convexity): A log-convex interfer-
ence function is said to be strictly log-convex if for all

, with for at least one , we have

(55)

where is defined in (48).
We have the following result.
Lemma 5: Let be a strictly log-convex interference func-

tion in the sense of Definition 10. For all , we have

(56)

if and only if for all

(57)

Proof: Assume that (57) holds. We have

(58)

and thus

(59)

With , we have

(60)

Conversely, assume that (56) is fulfilled. Then, strict log-con-
vexity implies for all .

Based on Lemma 5, we can show the following result.
Lemma 6: Let be strictly log-convex interfer-

ence functions. Assume that is irreducible. For arbitrary
and , the equality

(61)

holds for all , if and only if there exists a such
that

(62)

Proof: If (62) is fulfilled, then (61) is fulfilled for all .
Conversely, assume that (61) is fulfilled, then it follows from

Lemma 5 that

(63)

where is associated with the user. If
, then (63) is fulfilled for both and , i.e.,

Since is irreducible, for each there is a sequence of
indices , such that

(64)

for . It can be concluded that

(65)

which shows (62).
With Lemma 6 we can show the following result.
Lemma 7: Let be strictly log-convex interference

functions. There is at least one such that the strict in-
equality (51) is fulfilled for , if and only if is
irreducible.

Proof: From Lemma 6, we know that if is irre-
ducible, and , for arbitrary , then there exists
a and a such that (51) holds.

Conversely, assume that (51) is fulfilled. The proof is by con-
tradiction. Suppose that is not irreducible. Then, there
are at least two indices , which are not connected
(see [27, Definition 4 and Theorem 3 ]). Let and de-
note the sets of indices connected with and , respectively.
We have . All other indices are collected in the
(possibly) nonempty set .

Consider a vector , and positive scalars , , where
. We define a vector such that

if
if
if .

(66)

Since , we have . Now, consider

(67)

For , we have and .
Therefore, , and thus

(68)
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For , we have for all , thus

(69)

The corresponding result can be shown for . Thus, (69)
holds for all . However, this contradicts the assumed strict
convexity of the interference function. Hence, must be
irreducible.

This leads to the following result.
Theorem 6: Let be strictly log-convex interfer-

ence functions. The cost function defined in (50) is strictly
convex if and only if is irreducible.

Proof: This follows from Lemma 4 and Lemma 7.
Hence, if a proportionally fair optimizer exists, and if

is irreducible, then we know from Theorem 6 that the solution is
unique. However, alone is not sufficient for the existence
of an optimizer. This is shown by the next example.

Example 9: Consider the coupling matrix defined in (42).
The matrix is irreducible. The product

is irreducible as well. The function is strictly
convex if we substitute . The resulting SIR region is
strictly log-convex according to Theorem 6. However, the pre-
vious Example 8 shows that no optimizer exists. This is because
the requirements in Theorem 5 are not satisfied.

Lemma 8: Consider an arbitrary dependency matrix with
a positive main diagonal. If is irreducible, then is
irreducible as well.

Proof: Defining , we have

(70)
Consider the summand . We have

. By assumption of a positive main di-
agonal, we have . Thus, implies that

for an arbitrary choice of indices . Hence,
irreducibility of implies irreducibility of .

Lemma 8 leads to the following Theorem 7, which comple-
ments Theorem 5. It provides a necessary and sufficient condi-
tion for the existence of a unique optimizer.

Theorem 7: Let be strictly monotonic log-convex
interference functions. We assume that (34) is fulfilled. Then,
problem (8) has a unique optimizer , , if and only
if there exist permutation matrices , such that

is irreducible and its main diagonal is strictly pos-
itive.

Proof: Assume that a unique optimizer exists.
Theorem 5 implies the existence of permutations such that

is block-irreducible with strictly positive main diagonal.
That is, is block-diagonal with irreducible blocks

. The optimization
is reduced to independent subproblems with the respective
dependency matrices. This leads to proportionally fair power
allocations . Uniqueness of implies , i.e.,

consists of a single irreducible block. To show this, suppose
that . Since each power vector can be arbitrarily scaled,
every vector

... with

is proportionally fair. Thus, is not unique. This contradicts the
hypothesis and implies irreducibility.

Conversely, assume that there is an irreducible matrix
with a positive main diagonal. Since the requirements of The-
orem 5 are fulfilled, we know that problem (8) has an optimizer

. It remains to show that , with , is unique.
From Lemma 8, we know that is irreducible. We have

Thus, is irreducible as well. It follows from Theorem 6
that the cost function defined in (50) is strictly convex.
Since the function is strictly monotonic, it can be con-
cluded that the optimizer is unique.

VII. EQUIVALENCE OF NASH BARGAINING
AND PROPORTIONAL FAIRNESS

In the previous section, we have studied the existence and
uniqueness of a proportionally fair optimizer directly, without
analyzing the underlying SIR region.

In this section, we use the results of Section II-B, where the
Nash bargaining theory was extended to the class of noncompact
sets . Next, we investigate conditions under which the SIR
region is contained in . If this is fulfilled, and if an optimizer
exists, then we know that it is the unique NBS.

For the problem at hand, boundary points with
need not be achievable. In order to guarantee the existence of a

such that

(71)

we need the additional requirement that is irreducible. This
ensures the existence of a power allocation such that
(71) is fulfilled [25]. Note that this solution is not required to
be unique. An SIR boundary point may be associated with dif-
ferent power vectors. However, different SIR boundary points
will always be associated with different power vectors.

Theorem 8: Let be strictly log-convex and strictly
monotonic interference functions. If and are irre-
ducible, then the SIR region defined in (6) is contained in

.
Proof: Consider arbitrary boundary points , with

(at least one component). Since is irreducible, the points ,
are attained by power vectors , , with for all ,

such that (71) is fulfilled. Next, consider defined by (48).
Defining , we have [25]

(72)

It can be observed that is feasible, i.e., . Next,
consider the image set , with boundary points and
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. Since is contained in , all convex combinations
are contained in .

Thus, is log-convex. It remains to show strictness.
From Lemma 7, we know that there is at least one for

which inequality (72) is strict. Following the same reasoning
as in [27], we can successively reduce the powers of users for
which strict inequality holds. Since is irreducible, this
reduces interference of other users, which in turn can reduce
their power. The irreducibility of ensures that all users
benefit from this approach, so after a finite number of steps, we
find a power vector such that

(73)

Thus, , which proves strict log-convexity.
Note that strict convexity of the SIR set does not imply that

the PF problem (8) has an optimizer . Example 9 in
the previous section shows that and can both be
irreducible; however, no optimizer exists if the conditions in
Theorem 5 are not fulfilled.

The following theorem links the previous results on the exis-
tence and uniqueness of a proportional fair optimizer with the
Nash bargaining framework derived in Section II-B.

Corollary 1: Let be strictly log-convex and
strictly monotonic interference functions, and let and

be irreducible. There is a unique optimizer to
the problem of proportional fairness (8), with an associated
SIR vector , if and only if there is a single-valued solution
outcome satisfying the Nash axioms WPO, SYM, IIA, STC,
and .

Proof: This follows from Theorems 1 and 8.

VIII. CONCLUSION

The classical requirement for Nash bargaining and propor-
tional fairness is a compact comprehensive convex utility set. In
this paper, we show that this can be generalized to certain strictly
log-convex and noncompact sets. This result broadens the class
of utility sets to which the framework of Nash bargaining and
proportionally fairness can be applied.

A focus of the paper is on the SIR region resulting from log-
convex interference functions. This region is log-convex, but not
always strictly log-convex. Moreover, existence and uniqueness
of a proportionally fair optimizer is generally not guaranteed.

Different aspects of this problem are studied. It turns out that
existence and uniqueness is completely determined by the struc-
ture of the dependency matrix , which characterizes the in-
terference coupling for given axiomatic interference functions.
The results show that only the “combinatorial structure” of
matters, not the actual strength of the coupling coefficients.

An open problem for future work is to investigate the impact
of additional power constraints. First results [8] already show
that also in this case the dependency matrix plays an impor-
tant role.

APPENDIX
PROOF OF THEOREM 5

Assume that there exist permutation matrices , such
that is block-irreducible with a nonzero

main diagonal. We show that this implies the existence of an op-
timizer for problem (8). To this end, we first discuss the simpler
case where is irreducible. Then, this is extended to block-ir-
reducibility.

Since (34) is fulfilled by assumption, Theorem 3 implies
, so for every there exists a vector

such that

(74)

Since is invariant with respect to a scaling of , it can
be assumed that . Therefore, there exists a null
sequence and a , with , such that

We now show by contradiction that . Assume that this
is not fulfilled, then has zero components. Without loss of
generality, we can assume that the user indices are chosen such
that

. (75)

The assumption of such an ordering is justified because for any
permutation matrix , the product still has the proper-
ties of interest (irreducibility, existence of a positive main diag-
onal after row or column permutation). The first components
of tend to zero, so for any and , we have
that tends to infinity. Therefore

for all

can only be fulfilled if

(76)

Consider , as defined in (24). For any we have

(77)

Combining (75)–(77) yields

Since for , and , it fol-
lows that for and .
Consequently, do not depend on . This
means that is reducible, which contradicts the assumption,
thus proving . Since interference functions are contin-
uous on [5], we have
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Hence, the infimum is attained by .
Next, we extend the proof to the case where is block-irre-

ducible. The th block on the main diagonal has the dimension
, and . By , we denote the th in-

terference function of the th block, where . We
have

(78)

where

(79)

By assumption, there exists a row or column permutation such
that has a positive main diagonal. The same holds for each
block on the main diagonal. Since is also irreducible,
we know from the first part of the proof that there exists a

such that

Defining , we have

(80)

which completes the first part of the proof.
In order to show the converse, assume that there exists an

optimizer that attains the infimum . The
proof is by contradiction. Assume that there are no permutation
matrices , , such that is block-irreducible
with strictly positive main diagonal. From Theorem 2, we know
that there is a permutation matrix such that has
a nonzero main diagonal. There exists a permutation matrix
such that takes the canonical form (46), i.e.,

...
. . .

Since has a positive main diagonal, also has a pos-
itive diagonal. Let and

, then

Consider the first block with interference func-
tions , depending on a power vector , given as
the first components of . This block does not receive inter-
ference, so

Next, consider the second block . If
, then

(81)

If , then at least one of the interference functions
, , depends on at least one ,

. By scaling , , the optimum
remains unaffected. However, the interference to the

second block would be reduced because of the assumed strict
monotonicity. Therefore, it would be possible to construct a new
vector , with , which achieves a better value

However, this contradicts the assumption that is an optimizer.
It can be concluded that is block-irreducible, with a strictly
positive main diagonal.
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