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Abstract—The behavior of certain interference-coupled mul-
tiuser systems can be modeled by means of logarithmically convex
(log-convex) interference functions. In this paper, we show fun-
damental properties of this framework. A key observation is
that any log-convex interference function can be expressed as
an optimum over elementary log-convex interference functions.
The results also contribute to a better understanding of certain
quality-of-service (QoS) tradeoff regions, which can be expressed
as sublevel sets of log-convex interference functions. We analyze
the structure of the QoS region and provide conditions for the
achievability of boundary points. The proposed framework of
log-convex interference functions generalizes the classical linear
interference model, which is closely connected with the theory
of irreducible nonnegative matrices (Perron–Frobenius theory).
We discuss some possible applications in robust communication,
cooperative game theory, and max-min fairness.

Index Terms—Achievable region, interference function,
log-convex, max-min fairness, multiuser wireless communica-
tion, quality-of-service (QoS).

I. INTRODUCTION

T HE performance limits of wireless point-to-point links are
quite well understood. However, these results cannot al-

ways be transferred to multiuser wireless networks, which are
more difficult to analyze because of possible interference be-
tween the communication links. In general, the achievable per-
formance of one link can depend on the transmission strategy
of other users. This leads to the notion of the achievable region,
which characterizes the performance tradeoffs between the links
or users.

An example is the region of signal-to-interference ratios
(SIR) which was studied in the context of power control (see,
e.g., [1]–[4] for an overview). Another example is the capacity
region of the Gaussian multiple-input multiple-output (MIMO)
broadcast channel, which was characterized in an informa-
tion-theoretical context [5]–[7]. There are many more examples
of multiuser systems where interference plays an important
role for the design of optimal transmission.

Even though some achievable regions are relatively well-un-
derstood, there is no general theory for analyzing interfer-
ence-coupled systems. For example, most results on the MIMO
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broadcast channel were derived under the assumption of an
ideal encoding strategy and time-sharing. If these assumption
are not fulfilled, e.g., because of practical implementation con-
straints, then the resulting capacity region can be nonconvex,
and it is generally unclear how to achieve operating points on
the boundary [8]. There are many further examples of interfer-
ence-coupled systems for which the resulting achievable region
is unknown. In order to analyze and optimize such systems, it
therefore makes sense to aim at a fundamental understanding
of performance tradeoffs and the resulting achievable regions.

In this paper, we propose a general and abstract framework for
analyzing certain types of interference-coupled systems based
on log-convex interference functions (as explained later). This
theory is closely connected with the analysis of certain achiev-
able regions.

We will start by discussing some motivating examples from
the literature in the following section. These examples are
mainly focused on power control theory because this is the his-
torical background which has led to the theory of interference
functions [3], [9], [10]. Power control theory also provides
some intuitive examples which help to better understand the
behavior of interference functions.

However, the proposed framework is more general and not
confined to power control. The term “interference” should be
understood as an abstract concept for modeling certain behav-
iors of multiuser systems. Examples of nonconventional inter-
ference functions will be discussed in Section II-C (spectral ra-
dius) and Section IV-E (cooperative game theory). The connec-
tion between our framework and Yates’ standard interference
functions [3] will be discussed in Section II-B. For an outline of
our results see Section II-D.

II. AXIOMATIC FRAMEWORK OF LOG-CONVEX INTERFERENCE

FUNCTIONS

Some notational conventions are as follows: Matrices and
vectors are denoted by bold capital letters and bold lowercase
letters, respectively. Let be a vector, then is the th
component. Likewise, is a component of the
matrix . The notation means that for all com-
ponents . Also, and denotes component-wise
exponential and logarithm, respectively. The set of nonnegative
reals is denoted as . The set of positive reals is denoted as

.

A. Linear Interference Functions and Perron–Frobenius
Theory

We begin by discussing the conventional linear interference
model. This is a special case of the axiomatic interference model
which will be introduced in Section II-B.

Consider a multiuser system, with independent users
simultaneously transmitting on the same resource. The set of
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user indices is . If each of the uncorrelated
data streams is received by a single-user receiver (e.g., matched
filter), then the interference power at user can be written as

(1)

where
• is a vector of transmission powers,
• is a vector of interference coupling coefficients.

The linear interference model (1) has a long-standing tradition
in power control theory (see, e.g., [1], [2], [4] and the references
therein). For given powers , the interference in the system is
determined by the coupling matrix

(2)

Consider a vector of requested SIR

(3)

The point is said to be feasible if and only if

(4)

where , and is the spectral radius of the
matrix . For further details on the theory of nonnegative ma-
trices and the Collatz–Wielandt type characterization (4), see,
e.g., [11]–[13].

The set of all feasible SIR vectors is

(5)

By we denote the boundary of , for which . If
the matrix is irreducible (i.e., the associated connected graph
is fully connected), then the Perron–Frobenius theorem can be
used to show that the infimum (4) is attained for any .
In other words, there exists a power vector such that

for all .
For linear interference functions, the SIR region is gener-

ally not a convex set (see, e.g., [14]). However, it was observed
in [15] that the SIR region (5) is convex on a logarithmic scale.
Later, this was extended in [16]–[19], where it was shown that
convexity holds for arbitrary quality-of-service (QoS) measures

for which the inverse mapping is log-convex.
In summary, it can be said that the linear interference model

(1) has some interesting properties. With the typical assumption
of a nonnegative irreducible coupling matrix , standard results
from the Perron–Frobenius theory can be used. In the past, this
framework has proved useful for the analysis of interference-
coupled networks and it has provided the basis for many results
and algorithms. For an overview see e.g., [1], [2], [4] and the
references therein.

In this paper, we will extend many of these results to the more
general model of log-convex interference functions, which will
be introduced in the remainder of this section.

B. Axiomatic Approach to Interference Modeling

An axiomatic approach to interference modeling was pro-
posed by Yates [3]. Instead of using a coefficient matrix, as in
(1), the interference coupling was characterized by a framework

of axioms. A function is said to be a standard
interference function if the following properties are satisfied:

• Positivity: for all power vectors ;
• Monotonicity: If , then ;
• Scalability: For all .

Note, that the scalability property is motivated by the presence
of a constant noise power . For example, the function

is a standard interference function, whereas the linear
interference function (1) is not standard.

The assumption of noise or scalability is often necessary. For
example, the problem of signal-to-interference-plus-noise ratio
(SINR)-constrained power minimization [3] would be meaning-
less without noise. However, there are other problems for which
we would like to have a more general model. For example, the
connection between the min-max balancing problem (4) and
the Perron–Frobenius theory discussed in Section II-A would
be more difficult to see with noise. Therefore, early classical
results in power control theory (e.g., [20]–[22]) were derived
without noise. This has eventually led to a deeper understanding
of the subject. This proved useful, not only from a theoretic per-
spective, but also for the development of algorithmic solutions,
where noise was included.

This need for a more general interference model has moti-
vated the following axiomatic framework [10].

Definition 1: We say that is an interference
function if it fulfills the axioms:

nonnegativeness
scale invariance
monotonicity if

In order to rule out the trivial case , we make an
additional assumption:

There exists a such that (6)

It was shown in [10] that (6) implies for all .
Comparing A1–A3 to Yates’ model, it is observed that “scal-

ability” is replaced by “scale invariance.” This allows to model
interference functions of the type (1). But it can also be used to
model interference plus noise . To this end,
we introduce an extended power vector

(7)

In order to appropriately model the impact of the noise on the
resulting interference, we need to require strict monotonicity
with respect to the last component in addition to
A1–A3. That is,

if and (8)

Keeping constant, we obtain a model which has similar
properties as the standard interference functions used in [3]. In
particular, if is a standard interference function, then there
exists a such that . Note, that property (8) is not
required for most results of this paper, except for Section III-B,
where some QoS regions will be studied with noise and power
constraints.
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This discussion shows that the axiomatic framework A1–A3
can be used as a fundamental basis for different types of interfer-
ence-coupled systems. The standard interference functions [3]
can be regarded as a special case. The linear interference model
(1) is another special case. Further examples can be found in
the literature, e.g., in the context of beamforming [23]–[25],
[10], [26], code-division multiple access (CDMA) [27], [28],
base-station assignment [29], [30], and robust designs [31].

More recently, there has been renewed interest in the ax-
iomatic approach itself. Convergence properties of standard in-
terference functions were studied in [9]. Properties of the frame-
work A1–A3 were analyzed in [10]. A one-to-one correspon-
dence between interference functions and comprehensive utility
sets was shown in [32]. In [33], the framework A1–A3 was ex-
tended by the additional requirement of convexity (resp., con-
cavity). Examples of convex or concave interference functions
are [23]–[30].

Convexity is a useful property which should be exploited if
possible. For example, Yates’ power minimization problem [3]
can be solved with superlinear convergence if the interference
functions are convex or concave [34], [35]. The fixed-point it-
eration [3], which only exploits the properties of standard inter-
ference functions, only achieves linear convergence [36], [34].

In this paper, we study the class of log-convex interference
functions, which will be introduced in the following section. It
will be seen that some of the aforementioned interference func-
tions are included as special cases. For example, any linear or
convex interference function is log-convex, but the converse is
not true. So the class of log-convex interference functions is
broader than the discussed examples.

C. Log-Convex Interference Functions

Having introduced general interference functions in the pre-
vious section, we will now focus on the particular subclass of
log-convex interference functions. To this end, we introduce a
change of variable (component-wise exponential).

Definition 2: We say that is a log-convex
interference function if A1–A3 are fulfilled and in addition

is log-convex on .

Let . The function is
log-convex on if and only if is convex, or equivalently
[37]

(9)
Note, that the change of variable was already used
by Sung [15] for linear interference functions (1), and later in
[16], [18], [19], [4]. It was also used in [38] in a different context.

Some examples of log-convex interference functions are as
follows.

Example 1: The linear function (1) is a log-convex interfer-
ence function in the sense of Definition 2.

Example 2: The coefficients can adapt to the current inter-
ference situation. An example is the “worst case interference”

(10)

The parameter can stand for some uncertainty, chosen from a
compact uncertainty set . Such worst case interference func-
tions are used, e.g., in the context of robust power control [31],
[35]. The function (10) is a log-convex interference function.

Example 3: It was shown in [10] that any convex interfer-
ence function is log-convex in the sense of Definition 2. That is,
if is convex, then is log-convex. The converse is not
true, however. Therefore, the class of log-convex interference
functions is broader than the class of convex interference func-
tions. Special cases of convex interference functions include the
linear function (1) and the worst case function (10). Hence, the
requirement of log-convexity is relatively weak, as compared to
many other existing interference models.

Examples of convex (thus log-convex) interference functions
are found in [31], [35]. However, concave interference functions
are generally not log-convex, so the examples [23]–[30] do not
fall within the framework of this paper.

Example 4: Consider the spectral radius , as defined by
(4). Assume that the desired quality of service is the logarithmic
SIR, i.e., , then the spectral radius as a function of

is . It was shown in [16] (see also the related work
[15], [18], [19], [4]), that the spectral radius is log-convex with
respect to the variable . Every log-convex function is convex,
so the log-SIR feasible region

(11)

is a convex set. Moreover, fulfills A1–A3, so the spectral
radius is a log-convex interference function.

Note that this is an example where Yates’ framework [3] is not
appropriate. The interference function is scale invariant
but not scalable as required in [3].

Example 5: The function

(12)

is a log-convex interference function. It will be shown in Sec-
tion IV that (12) is a basic building block, which can be used to
construct any other log-convex interference function.

D. Outline of Contributions

In Section III, we will discuss the connection between
log-convex interference functions and certain QoS regions.
Any comprehensive QoS region from can be expressed
as a sublevel set of an interference function [32]. An example
is the SIR region (5) for linear interference functions, which
was discussed in Section II-A. In the following, we will gener-
alize these ideas to the framework of log-convex interference
functions. For example, it will be shown in Section III-A that
the spectral radius is a special case of a min-max type
log-convex interference function (16).

In Section IV, it will be shown that any log-convex interfer-
ence function has an elementary structure (34). An interesting
special case is the linear model (1), which leads to a decom-
position involving the Kullback–Leibler distance, as shown in
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Section IV-D. In Section IV-E, it will be shown that the ele-
mentary structure (34) occurs naturally in the context of coop-
erative game theory. This shows that log-convex interference
functions are not only useful in the context of power control.
The proposed framework is abstract enough to be applicable to
various types of resource allocation problems. The results will
also help to better understand the structure of log-convex com-
prehensive QoS regions, which can be expressed as sublevel sets
of log-convex interference functions (see Section III).

In Section V, the results will be used for analyzing the interac-
tions between multiple interference-coupled users in a network.
Conditions will be derived under which weighted interference
functions have a positive fixed point. This is closely connected
with the question of whether a point on the boundary of the
QoS region can be attained or not. In the context of linear in-
terference functions, this problem is well-understood because
of its close relationship with the theory of nonnegative matrices
(e.g., Perron–Frobenius theorem). This paper extends many re-
sults and concepts known from the linear model to the more
general axiomatic framework of log-convex interference func-
tions.

III. QOS REGIONS OF LOG-CONVEX INTERFERENCE

FUNCTIONS

In Example 4 it was observed that the spectral radius (4) is a
log-convex interference function, so the SIR region (5) is a level
set of a log-convex interference function.

This can be extended to QoS regions based on the more gen-
eral axiomatic framework A1–A3. Consider communication
links (users) with log-convex interference functions
depending on the same power vector . The SIR of the

users are

(13)

The quality-of-service (QoS) is defined as a strictly monotonic
and continuous function of the SIR, i.e.,

(14)

Let be the inverse function of , then
is the minimum SIR level needed by the th user to satisfy the
QoS target . Let be a vector of QoS values, then the
associated SIR vector is

(15)

We will also use the notations and in
the following.

A. Max-Min SIR Balancing

Consider the weighted min-max optimum

(16)

Note, that this problem formulation involves the inverse SIRs.
Equivalently, the problem could be formulated as the supremum
over the minimum (worst case) SIR. Thus, problem (16) corre-
sponds to the problem of max-min SIR balancing, sometimes
referred to as max-min fairness.

Similar to the spectral radius (4), the function provides
a single measure for the feasibility of SIR values . That
is, QoS values are feasible if and only if .
The QoS feasible region is defined as the sublevel set

(17)

In the following, we will analyze QoS regions of the type (17),
with underlying log-convex interference functions .
Thanks to the one-to-one mapping between SIR and QoS values,
most of the discussion, like the analysis of the boundary in Sec-
tion V, can be confined to the SIR region. The results can im-
mediately be transferred to the respective QoS region. It will
turn out that the underlying log-convexity leads to a beneficial
structure, and there are many parallels to the linear interference
model.

In the remainder of this section, we will focus on the inter-
esting special case of QoS functions for which the in-
verse function is log-convex. Examples are

• capacity in the high signal-to-noise ratio (SNR) regime:
, with ;

• bit-error rate (BER) in the high SNR regime:
, with coding gain and diversity order

.
In this case, the function is log-convex on . The
proof is given in Appendix A. Since every log-convex function
is convex [37], the QoS region , as defined by (17), is a sub-
level set of a convex function. Hence, is a convex set [10].

Moreover, fulfills the properties A1–A3, so it is an in-
terference function itself. Since is log-convex, it fol-
lows that is a log-convex interference function in the sense
of Definition 2.

This example shows that certain operations are closed within
the framework of log-convex interference functions. That is, the
properties of log-convex interference functions are preserved
when these functions are combined to a new function. Starting
with log-convex interference functions we obtain
a new log-convex interference function . Later, in Sec-
tion IV, it will be shown that every log-convex interference func-
tion can be decomposed into elementary log-convex interfer-
ence functions (12).

B. Power-Constrained QoS Regions

As discussed in Section II-B, the proposed framework of log-
convex interference functions can also be applied to the analysis
of SIR regions in the presence of noise and power constraints.
This provides a link to the framework of standard interference
functions introduced by Yates [3].

In order for transmit power constraints to have any effect on
the SIR, we need to incorporate noise in our model. To this end,
we use the -dimensional extended power vector , as
defined by (7). We also assume that the interference functions

are log-convex in the sense of Definition 2, and strict
monotonicity (8) holds. Under this assumption, it will now be
shown that the QoS region resulting from log-convex mappings

is a convex set.
We start by considering a sum-power constraint

, which leads to a restricted QoS region .
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Since is constant, we can redefine as a function of the
first power variables, i.e., . Let be the
set of power vectors that achieve a given target , i.e.,

(18)

Because of the noise component, the set is nonempty if
and only if . That is, lies in the interior of
(denoted as ). If is nonempty, then there is a unique
vector

(19)

achieving with minimum total power. This is a consequence
of being standard [10], so the results [3] can be applied.
The QoS region under a total power constraint is

(20)
Next, consider individual power limits

The vector achieves the targets not only with min-
imum total power, but also with individually minimum powers,
as shown in [3]. Thus, we can use the function also to
characterize the QoS region under individual power limits

(21)

Both regions and depend on the under-
lying interference functions which are assumed
to be log-convex in the sense of Definition 2. If are
log-convex in addition, then the function is com-
ponent-wise log-convex on , as shown in Appendix B.
Since the sum of log-convex functions is log-convex, also the
sum power is log-convex on . Thus, both
regions (20) and (21) are sublevel sets of log-convex indicator
functions. Since every log-convex function is convex, it fol-
lows that the sum-power constrained region and the
individually constrained region are convex sets [10].

This discussion shows that the log-convex interference func-
tions introduced in Section II-C can also be used to model in-
terference with noise, thereby providing a link to standard in-
terference functions [3]. However, it should be emphasized that
log-convexity is the key property on which we focus here. Al-
though most results readily extend to the special case of noise
and power constraints (like the convexity of certain QoS re-
gions), a more detailed discussion of this aspect is beyond the
scope of this paper.

C. Weighted Utility and Cost Optimization

In this subsection, we consider another application example
for the framework of log-convex interference functions. Assume
that the SIR is related to the QoS by a function ,
i.e.,

The function is assumed to be monotonically increasing and
is convex with respect to , like or

. We are interested in the optimization problem

s.t. (22)

where is a log-convex interference function. The weights
can model individual user requirements

and possibly depend on system parameters like priorities, queue
lengths, etc. By appropriately choosing it is possible to trade
off overall efficiency against fairness.

We have the following result.

Theorem 1: Suppose that is log-convex for all
and is monotonic increasing. Then problem (22) is convex if
and only if is convex on .

Proof: This is shown in the Appendix C.

If the optimization problem (22) is convex, then it can be
solved by standard convex optimization techniques. Note, that
the optimization is over the noncompact set , thus even if the
problem is convex, it is not obvious that the optimum is achieved
(e.g., might occur). However, this case can be ruled
out for a practical system with receiver noise , in which
case can never happen, since otherwise the objective
would tend to infinity, away from the minimum. Without noise,
however, it can happen that one or more power components tend
to zero, in which case the infimum is not achieved (see, e.g., the
discussion in [10]).

A special case of problem (22) is (weighted) proportional
fairness [39]

(23)
Note that this problem (23) is also related to the problem of
throughput maximization (see, e.g., [40], [38]). In the high SIR
regime, we can approximate , so (23)
can be interpreted as the weighted sum throughput of the system.

Similar to the cost minimization problem (22), we formulate
a utility maximization problem

s.t. (24)

In this case, the function is required to be monotonic de-
creasing instead of increasing. As in Theorem 1, convexity of

can be shown to be necessary and sufficient for (24) to be
convex.

Notice that the supremum (24) can be written as a convex
function of the weights . Moreover,

fulfills the properties A1–A3, so it can be regarded as
an “interference function.” Using a substitution ,
the function is a log-convex interference function in the
sense of Definition 2. This is a further example, which shows
that log-convex interference functions arise naturally in many
different contexts. Even though our discussion is motivated by
power control, the proposed theoretical framework provides a
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general tool, which is not limited to interference in a physical
sense.

Also, (24) provides another example for a combination of
log-convex interference functions resulting in a log-convex in-
terference function. Again, it can be observed that certain oper-
ations are closed within the framework of log-convex interfer-
ence functions.

IV. STRUCTURE AND REPRESENTATION OF LOG-CONVEX

INTERFERENCE FUNCTIONS

In this section, we study elementary building blocks of
log-convex interference functions. Every function can be
expressed as a maximum of elementary interference functions
(12). Conversely, log-convex interference functions can be
synthesized from certain utility sets. The results allow for some
interesting interpretations. For example, connections with the
Kullback–Leibler distance and cooperative game theory will be
shown. Some of the properties will be used later in Section V,
where the boundary of the QoS region (17) will be analyzed.

A. Basic Properties

Consider the log-convex interference function
, with fixed nonnegative coefficients

and . Using the substitu-
tion , it can be verified that is log-convex on

. In addition, fulfills property A1 (nonnegativeness)
because . Property A2 (scale-invariance) follows from
the assumption , which leads to

(25)

Finally, property A3 (monotonicity) follows from . The
property is even necessary since otherwise A3 would be
violated. Also, is necessary for A2 to hold, as can be
seen from (25). So, is a log-convex interference function if
and only if and .

Now, it will be shown that is a basic building block of
any log-convex interference function. To this end, consider the
function

(26)

The function has an interpretation in the context of
convex analysis.

Lemma 1: The function is the conjugate of the
convex function .

Proof: By monotonicity of the function, we have

(27)

which is the definition of the conjugate [37], [41].

In the following we will need . This will become
clear later from the first main result Theorem 2.

We begin by characterizing the set of coefficients for which
is fulfilled. The function was defined on .

This is justified by the following lemma, which shows that only
nonnegative coefficients are allowed.

Lemma 2: Let be an interference function. If has a neg-
ative component then .

Proof: Consider an arbitrary , with a negative
component for some index . Defining a power vector

with and , with , we
have

Because for all , we have

This can only be fulfilled with equality.

With property A1, the function is always nonnegative.
But we are only interested in the nontrivial case where

is fulfilled.

Lemma 3: Let be an interference function, and . If
then .

Proof: The proof is by contradiction. Suppose that
and . From (26) we know that for an

arbitrary constant and a scalar we have

(28)

with a constant . Inequality (28) holds for
all , thus

This leads to the contradiction , thus implying
.

From Lemmas 2 and 3 we know that the coefficients of in-
terest are contained in the set

(29)

The structure of can be further characterized.

Lemma 4: The function , as defined by (26), is log-
concave on .

Proof: The function is log-convex and log-
concave in , and so is its inverse. Point-wise minimization pre-
serves log-concavity, so is log-concave.

This can be used to prove the following result.

Lemma 5: The set , as defined by (29), is convex.
Proof: Consider two points , and the line

We have . The function is log-concave on
, thus

(30)

Because and , we have ,
thus .
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Another property will be needed later.

Lemma 6: The function is upper semi-continuous.
That is, for every sequence , with and

, we have

(31)

Proof: By definition (26), we have

(32)

The denominator in (32) is a continuous function of , thus

(33)

This holds for all . The right side of this inequality is
independent of , thus

To summarize, any strictly positive log-convex interference
function is associated with a function , with the
following properties.

• is log-concave and upper semi-continuous. The re-
sulting superlevel set is convex.

• implies , so all elements of
have this property.

Additional properties and interpretations of the function
will be discussed later in Sections IV-D and IV-E.

B. Analysis of Log-Convex Interference Functions

With the results of the previous section, we are now in a po-
sition to state the main representation theorem.

Theorem 2: Every log-convex interference function , on
, can be represented as

(34)

Proof: According to (26), we have for all and

(35)

Thus

(36)

It will turn out later that the supremum (36) is actually attained.
The function is convex, so for any , there is

a finite such that (see, e.g., [41, Theorem 1.2.1, p. 77])

for all

Using , this can be rewritten as

(37)

with a constant . With (26) we have
, thus, . We can rewrite (37) as

(38)

Inequality (38) holds for all , thus

(39)

which shows that inequality (36) must be fulfilled with equality,
thus

(40)

It remains to show that this supremum is attained. Consider an
arbitrary . From (40) we know that there is a sequence

, such that

(41)

There is a subsequence , which converges to
a limit . Now, we show that is also
contained in . With we can bound (41)

(42)

Exploiting , we have

for all (43)

The function is positive by assumption (6), thus

(44)

By combining Lemma 6 and (44) we obtain , thus
. With (40) we have

(45)

where the last inequality follows from (41). Hence

Theorem 2 shows that every log-convex interference func-
tion can be represented as (34). From Lemma 4 we know that

is log-concave. The product of log-concave functions is
log-concave, so is log-concave in . Thus,
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problem (34) consists of maximizing a log-concave function
over a convex set .

C. Synthesis of Log-Convex Interference Functions

In the previous section we have analyzed log-convex inter-
ference functions. Any log-convex interference function can be
broken down into elementary building blocks. Now we will
study the reverse approach: the synthesis of a log-convex inter-
ference function.

To this end, consider the coefficient set

(46)

and an arbitrary nonnegative bounded function
. We can synthesize a function

(47)

Notice, that is log-convex in for any choice
of . Maximization preserves log-convexity, so is a log-
convex interference function in the sense of Definition 2.

Lemma 7: The convex function is the conjugate of
the function .

Proof: Because of the monotonicity of the logarithm, we
can exchange the order of and , thus

(48)

which is the definition of the conjugate function [41].

Now, consider the analysis of the function , for which
there exists a function , as defined by (26). An interesting
question is: when does hold? In other words, are anal-
ysis and synthesis reverse operations?

Theorem 3: if and only if is log-concave on
and upper semicontinuous.
Proof: The function is a log-convex interference func-

tion, thus is log-concave and upper semicontinuous. The
result follows from Corollary 1.3.6 in [41, p. 219].

In the remainder of this section, we will show application
examples and additional interpretations of .

D. Connection With the Kullback–Leibler Distance

In Section II-A we have discussed the example of the linear
interference function . For this special log-convex
interference function, we will now show that the function
has an interesting interpretation. With the definition (26) we
have

(49)

If two or more components of are nonzero, then the optimiza-
tion (49) is strictly convex after the substitution , as
shown in [42]. Thus, there exists a unique optimizer , which
is found by computing the partial derivatives and setting the re-
sult to zero. A necessary and sufficient condition for optimality
is

(50)

With (50), the minimum (49) can be written as

(51)

Exploiting , we have

(52)

It can be observed that is the Kullback–Leibler dis-
tance between the vectors and . This connects the function

with a known measure. For related results on the connec-
tion between the Kullback–Leibler distance and the Perron root
of nonnegative matrices, see [43].

Next, consider users with coupling coefficients
, and a spectral radius , as defined by (4).

The SIR region is defined in (5). Since is a log-convex
interference function (see the discussion in Example 4 in
Section II-C), all properties derived so far can be applied. The
following corollary follows directly from the structure result
Theorem 2.

Corollary 1: Consider an arbitrary square irreducible matrix
with interference functions , as defined by (1). Then

there exists a log-concave function , defined on , with
, such that

(53)

As an example, consider the two-user case, with

(54)

The spectral radius of an irreducible nonnegative matrix is given
by its maximal eigenvalue. For , we obtain the function
(54), which is log-convex after a substitution [19].
Here, we assume that there is no self-interference, so the main
diagonal is set to zero. Comparing (53) with (54) we have

otherwise.
(55)

This shows how (54) can be understood as a special case of the
more general representation (53).
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E. Connection With Cooperative Game Theory

The function , as defined by (26), has another inter-
esting interpretation in the context of the asymmetric Nash bar-
gaining problem [44], [45]

(56)

where is a utility vector from a convex
utility set , and are weighting
factors, with .

It was shown in [32] that for any convex compact downward-
comprehensive utility region , there exists a convex
interference function , such that

(57)

The function fulfills A1–A3 and it is convex on
(see [33] for details). Every convex interference function
is log-convex in the sense of Definition 2. The bargaining
optimum (56) is attained on the boundary of , which is char-
acterized by . Thus, (56) can be rewritten as [46]

(58)

For given weights , the asymmetric Nash bargaining optimum
is determined by the function , as defined by (26).

This shows an interesting connection between cooperative game
theory and the theory of log-convex interference functions.

V. ANALYSIS OF THE BOUNDARY OF QOS REGIONS BASED ON

LOG-CONVEX INTERFERENCE FUNCTIONS

We now show how the results of the previous sections can
be applied to the analysis of QoS regions with no power con-
straints, as introduced in Section III. While the discussion in
Section III has focused on convexity properties, we will now
focus on the achievability of the boundary.

A. Fixed-Point Characterization and Achievability

The QoS is assumed to be a bijective mapping of the SIR,
as in (14), so we can confine the discussion to the feasible SIR
region

(59)

where is a vector of SIR values, and is the min-max
optimum as defined by (16). The function is an indicator
for the feasibility of a point . The boundary is

(60)

By definition, is feasible, at least in an asymptotic sense.
That is, for any there exists a such that

for all . If this holds for , then we say that
is achievable.

Achievability is important, e.g., to ensure numerical stability
for resource allocation algorithms operating on the boundary
of the region. Algorithms are usually derived under the premise
that the boundary is achievable. However, wireless systems are
often parametrized with respect to the transmission powers,
which can result in a QoS region with a complicated structure.
It is thus important to analyze the boundary and to show under
which conditions achievability holds.

A general characterization of achievability is complicated, as
shown in [47]. Thus, in this paper we will focus on the prac-
tically relevant special case when is achieved with
equality, i.e.,

for all (61)

If there exists a such that (61) is fulfilled, then is
the optimizer of the min-max balancing problem (16), with an
optimum .

In the remainder of this paper, we will use a slightly more
general definition of achievability. An arbitrary is said to
be “achievable” (with equality) if there exists a such that

for all (62)

Introducing the vector notation
and , the system of (62) can be rewritten as

(63)

Definition 3: A positive power vector is said to be
a fixed point if it satisfies (63), i.e., if it is a fixed point of the
function .

For any boundary point we have , in which
case (63) is equivalent to (61). For arbitrary , the existence
of a fixed point implies that the infimum (16) is attained,
and scaled SIR values are achieved for all . To
simplify the discussion and to be consistent with previous work,
we say that the (scaled) “targets” are “achievable” if (63)
is fulfilled.

For general interference functions characterized by A1–A3,
which are not necessarily log-convex, the existence of a fixed
point was studied in [10]. For this general case, only a few basic
properties were shown.

Lemma 8: Let be interference functions charac-
terized by A1–A3, then

1) there always exists a , such that (63) is
fulfilled;

2) if for some and , then
and is an optimizer of (16).

The existence of a positive fixed point is best understood for
linear interference functions (1). In [47] conditions were de-
rived based on the theory of nonnegative matrices [12]. Also
in [47], this was extended to the more general class of interfer-
ence functions with adaptive receiver designs. Both models have
in common that the interference is characterized by means of a
coupling matrix.
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The axiomatic framework of log-convex interference func-
tions is not based on a coupling matrix. Only axioms A1–A3
plus log-convexity is required, so it is a priori unclear under
which conditions achievability is ensured, and whether previous
results can be extended to this model.

Fortunately, log-convex interference functions have a rich an-
alytical structure, and it will turn out that most of the proper-
ties known for the linear case can be extended to the axiomatic
framework. Based on the structure result derived in Section IV,
we will show in the remainder of this section that the interfer-
ence coupling can be characterized by means of the coefficient
vectors . Thereby, conditions for the existence of a fixed point

fulfilling (63) can be derived.

B. Existence of a Fixed Point for Constant

It was shown in Section IV that every log-convex interference
function can be represented as (34), based on coupling coeffi-
cients , with . Now, we study the interactions
between log-convex interference functions. By we denote
a coefficient vector associated with user . All coefficients are
collected in a matrix

with

Only in this section, it will be assumed that is constant. This
approach simplifies the analysis and reveals some characteristic
properties. Arbitrary log-convex interference functions will be
studied later in Sections V-E and V-F.

Because of the property , the matrix is (row)
stochastic. Let be the all-one vector, then

(64)

For arbitrary constants , we obtain interference functions

(65)

The resulting min-max optimum for a constant is

(66)

We are now interested in the existence of a fixed point
fulfilling

(67)

The next lemma provides a necessary and sufficient condition
for strict positivity of the fixed point. This basic property will
be used later, e.g., in the Proof of Theorem 4.

Lemma 9: Let . Equation (67) has
a solution if and only if an additive translation of
(component-wise logarithm) lies in the range of the matrix

. That is, iff there exists a
such that we can find an with

(68)

where (component-wise).
Proof: Suppose there exists an and a such

that (68) is fulfilled. Taking of both sides of (68), we
have for all

With (65) it follows that is a fixed point of
(67), i.e., the infimum is achieved.

Conversely, assume that there exists a solution such
that (67) is fulfilled. By taking the logarithm of both sides we
obtain (68).

To conclude, if there exists a such that lies
in the range of , then there is an such that (68)
holds. Thus, the existence of a fixed point depends on
the subspace structure of .

Corollary 2: If there exists a such that (68) holds, then
is unique.

Proof: This follows from Lemmas 8 and 9.

Next, we show how the existence of a strictly positive fixed
point depends on the structure of the nonnegative square row
stochastic matrix . We may assume, without loss of gener-
ality, that after simultaneous permutations of rows and columns,

is reduced to the canonical form shown in (69) at the bottom
of the page (see e.g., [12, p. 75]), with irreducible blocks along
the main diagonal.

The dimension of each square block along
the main diagonal is equal or greater than two. This is a con-
sequence of (6), which implies that each user is interfered by
at least one other user. If is irreducible, then it consists of
one single block. Note that the off-diagonal blocks need not be
square.

. . .

...
...

...
. . .

(69)
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Definition 4: A diagonal block is called isolated if
for . We assume, without

loss of generality, that the first blocks are isolated.

Definition 5: A diagonal block is called maximal if its spec-
tral radius equals the overall spectral radius .

From the results of Section IV we know that the matrix
is stochastic, i.e., (64) is fulfilled. Therefore we have the fol-
lowing.

• , which is a consequence of (64) and
the Perron–Frobenius theorem. We have

.
• A diagonal block is maximal if and only if it is isolated.

This follows from (64) and the results [47]. For all noniso-
lated blocks, we have .

• is singular, which becomes evident when rewriting
(64) as .

We begin with the simple case where consists of a single
irreducible block.

Theorem 4: Let be row-stochastic and irreducible,
then there exists a unique (up to a scaling) fixed point
fulfilling (67).

Proof: The proof is given in the Appendix D.

Next, we will address the more general case where can be
reducible. Without loss of generality, the canonical form (69)
can be assumed. We exploit the special properties of stochastic
matrices. In particular, each isolated block has a spectral radius
one, and the nonisolated blocks have a spectral radius strictly
less than one.

Let denote the number of users belonging to the th block
, and is the set of associated user indices. Also,
is the vector of SIR targets associated with this block.

For each isolated block , with , we define

(70)

(71)

This inequality is a consequence of definition (66), where a
larger set is used instead of . Each isolated block only
depends on powers from the same block, so the users associated
with this block form an independent subsystem.

The next lemma shows that only depends on the
isolated blocks. Inequality (71) is fulfilled with equality for at
least one isolated block.

Lemma 10: Let be a row-stochastic matrix in canonical
form (69), and be the isolated irreducible
blocks on the main diagonal, then

(72)

Proof: The proof is given in the Appendix E.

The Proof of Lemma 10 shows that there always exists a
vector such that

(73)

That is, the infimum (66) is always achieved.

Theorem 5: There exists a fixed point satisfying (67)
if and only if

(74)

Proof: Suppose that there exists a such that (67)
holds. Then, for all isolated blocks , with , we
have

(75)

Because of uniqueness (Lemma 8, part 2) we know that
holds for all with .

Conversely, assume that (74) holds. Then the Proof of Lemma
10 shows that there is a such that (67) is fulfilled. For
the isolated blocks, this follows from Theorem 4. For the non-
isolated blocks, a vector can be constructed as in the Proof of
Lemma 10.

The results show that the existence of a fixed point only
depends on the isolated blocks. However, is generally not
unique since different scalings are possible for the isolated
blocks. Arbitrary SIR can be achieved by users with noniso-
lated blocks, as shown in the Proof of Lemma 10.

C. Min-Max and Max-Min Balancing

In the previous section we have exploited that the min-max
optimum characterizes the boundary of the SIR region
(59). Now, an interesting question is whether an equivalent in-
dicator function is obtained by max-min balancing, i.e.,

(76)

In general, we have [10]

(77)

Note that (77) is not a simple consequence of Fan’s minimax
inequality since we do not only interchange the optimization
order, but also the domain. Inequality (77) was derived in [10]
by exploiting the special properties of interference functions.
Even for simple linear interference functions, equality does not
need to hold [10].

Now, we extend these results by showing special properties
for log-convex interference functions.

Theorem 6: Consider an arbitrary row-stochastic matrix
with resulting log-convex interference functions

. We have

(78)

if and only if for all isolated blocks

(79)

Proof: If (79) holds, then it follows from Theorem 5 that
there is a fixed point fulfilling (67), thus implying
(78). Conversely, assume that (78) holds. With (71) we have

for all isolated blocks .
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In a similar way, we can use definition (76) in order to show
. With (77) we have

With (78) this is fulfilled with equality, so (79) holds.

The following corollary is a direct consequence of Theo-
rems 5 and 6.

Corollary 3: Consider an arbitrary row-stochastic matrix
. There exists a strictly positive fixed point

satisfying (67) if and only if .
Note that Corollary 3 is derived under the assumption of par-

ticular interference functions (65), where and are con-
stant. The result cannot be transferred to general log-convex in-
terference functions with adaptive . Even for simple linear
interference functions (1), the condition does not
always ensure the existence of a fixed point (63), as shown in
[48], [49].

In the next section, we will study a more general class of log-
convex interference functions where is chosen adaptively.
It will be shown (Theorem 7) that holds if all
possible are irreducible.

D. Generalization to Adaptive

In the previous subsection we have considered a special class
of log-convex interference functions (65), which depend on a
fixed coefficient matrix . Now, the results will be extended
by maximizing with respect to . The coefficients are still
assumed to be constant. General log-convex interference func-
tions will be addressed later in Sections V-E and V-F.

Consider a coefficient set

(80)

where is an arbitrary closed and bounded set such
that any fulfills . The set is also closed
and bounded.

Based on and (65), we define log-convex interference
functions

(81)

Note, that only depends on , so we have
independent optimization problems. We will also use the vector
notation

... (82)

Theorem 7: Consider a set , as defined by (80), with the ad-
ditional requirement that all elements are irreducible,
with resulting interference functions (82). Then
and there exists a fixed point satisfying (63).

Proof: The proof is given in the Appendix G.

The next theorem provides a necessary and sufficient condi-
tion for the existence of a strictly positive fixed point.

Theorem 8: Let be defined as by (82). A vector is
a fixed point satisfying (63) if and only if there exists a stochastic
matrix and a such that

(83)

(84)

Then

(85)

Proof: If is a fixed point satisfying (63) then (83)
and (84) are fulfilled. From (84) we know that is also a fixed
point of . Because , we known from Lemma 8
(part 2) that (85) is fulfilled.

Conversely, assume that (84) and (83) are fulfilled. Then

(86)

That is, is a fixed point of . Lemma 8 (part 2)
yields (85).

For the special case that all are irreducible, we have the
following result.

Theorem 9: Consider a the set , as defined by (80), such
that all are irreducible. Then

(87)

and there is a such that , where is
defined by (82).

Proof: The proof is given in the Appendix F.

E. Characterization of Interference Coupling

Thus far, the interference coupling between the users has
been characterized by a coefficient matrix . The
structure of determines whether there is a fixed point or not.
This shows some similarities to the conventional power control
model, where a link gain matrix is often used to characterize
interference coupling.

In the remainder of this paper, we will return our attention
to the general log-convex interference functions introduced in
Section II. For this axiomatic model, there is no clear definition
of the notion of interference coupling. We will therefore begin
by introducing an asymptotic definition. The results will be used
later in Section V-F, where conditions for the existence of a
fixed point will be derived.

Let be the all-zero vector with the th component set to one,
i.e.,

We have the following result.

Lemma 11: Assume there exists a such that
, then

for all (88)
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Proof: Let be arbitrary. There exists a such
that . Thus, A3 implies

(89)

With A2 we have . This implies
, from which (88) follows. The in-

terference function is unbounded and monotonic increasing
(axiom A3), hence the existence of the limits is guaranteed.

For arbitrary interference functions satisfying A1–A3, condi-
tion (88) formalizes the notion of “user causing interference to
user .” With Lemma 11 we obtain a relatively simple definition
of interference coupling by means of a matrix.

Definition 6: We refer to as the asymptotic matrix of

if there exists a such that

otherwise.
(90)

The matrix characterizes the way users are connected by
interference. Notice that because of Lemma 11, the condition in
(90) does not depend on the choice of .

In addition to the asymptotic matrix , we introduce a fur-
ther definition based on a weaker condition.

Definition 7: is called dependency matrix. We define
in

if there exists a such that
is not constant for some values

otherwise.
(91)

Evidently, implies , but the con-
verse is generally not true. However, both characterizations are
indeed equivalent if the underlying interference functions are
log-convex.

Theorem 10: Let be log-convex interference
functions, then both characterizations are equivalent, i.e.,

.
Proof: The proof is given in the Appendix H

Finally, we will derive a condition under which the asymp-
totic matrix is irreducible. To this end we introduce the set

(92)

Note that is based on the sets , as defined by (29). So
it depends on the log-convex interference functions ,
which are arbitrary. In this respect it differs from the previously
used set . Any is stochastic because of Lemma 3.

Theorem 11: The asymptotic matrix (equivalently, )
is irreducible if and only if there exists an irreducible stochastic
matrix , and constants , such that for
all

(93)

Proof: The proof is given in Appendix I

Theorem 11 links irreducibility with the existence of nonzero
lower bounds for the interference functions . This
will be used in the next section.

F. Fixed-Point Analysis for General Log-Convex Interference
Functions

In this subsection, we will study the existence of a fixed point
satisfying (63) for general log-convex interference func-

tions as introduced in Definition 2. Consider the coefficient set
as defined by (92). The Theorem 12 shows that the existence

of one irreducible coefficient matrix from is sufficient.

Theorem 12: Let be a vector of log-
convex interference functions, such that there exists a stochastic
irreducible matrix . Then for all there exists a
fixed point such that

(94)

Proof: The proof is given in the Appendix J.

In Theorem 12 we have required , which means that
is stochastic and for all . In this case, we

know from (81) that

(95)

Conversely, consider a stochastic matrix such that (93) is
fulfilled for some . Then

(96)

Thus, , which implies . Both
conditions are equivalent, so Theorem 12 leads to the following
corollary.

Corollary 4: Assume there exist and a sto-
chastic irreducible matrix such that (93) holds, then
for all there exists a fixed point such that (94)
holds.

With Theorem 11 we can reformulate this result as another
corollary, which shows that irreducibility of the dependency ma-
trix is always sufficient for the existence of a fixed point.

Corollary 5: If the dependency matrix (equivalently, )
is irreducible, then for all there exists a fixed point
such that (94) holds.

The next theorem addresses the case where the dependency
matrix is not irreducible. Without loss of generality, we can
choose the user indices such that has the canonical form
(69). If an additional assumption is fulfilled, then there is at least
one SIR vector which is not achievable.

Theorem 13: Assume that the dependency matrix (equiv-
alently, ) is reducible, so it can be written in canonical form
(69). Let be the user indices associated with the iso-
lated blocks. If

(97)
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then there exists a such that there is no fixed point
fulfilling (94).

Proof: The proof is given in the Appendix K.

Note that condition (97) in Theorem 13 is not redundant. In
the remainder of this subsection we will discuss examples of
log-convex interference functions with reducible where all

have a corresponding fixed point (94). But in these cases
we have a trivial lower bound . In this sense, The-
orem 13 is best possible.

A result corresponding to Theorem 13 is known from the
theory of nonnegative matrices [12], which is closely connected
with the linear interference functions. For example, consider
linear interference functions (1) based on a nonnegative cou-
pling matrix . Without loss of generality, we can assume that
has canonical form (69). This is a special case of the log-convex
interference model studied in this paper. We have . Let

be the spectral radius of the th (weighted) block
on the main diagonal, then it can be shown that

(98)

where is the number of isolated blocks.
Consider the example

(99)

The isolated block is zero, so . The overall spectral
radius is . It can easily be checked that for any

there is a such that . This also
follows from [47], where it was shown that an arbitrary
is associated with a positive fixed point if and only if
the set of maximal blocks equals the set of isolated blocks, i.e.,

(100)

and (101)

These conditions are fulfilled for the example (99), because
and .

With (100) and (101) we can also derive simple sufficient
conditions for the nonexistence of a fixed point. For example, we
can choose a reducible matrix such that a nonisolated block

, is maximal. Or we can choose such that an
isolated block , is not maximal. In both cases,
there is no solution to the fixed-point equation .
Note that both cases require that at least one nonisolated block
has a nonzero spectral radius, so .

Discussing linear interference functions helps to better un-
derstand Theorem 13. However, the actual value of the the-
orem—as well as the other results—lies in its applicability to
a broader class of interference functions. All results hold for ar-
bitrary log-convex interference functions as introduced by Def-
inition 2.

As a further illustration, consider the log-convex interference
functions , as defined by (65), based on an arbitrary re-
ducible stochastic matrix . We assume that there is at least one
nonisolated block and a single isolated block. Every nonzero

entry in corresponds to a nonzero entry in and with
the same position. From Lemma 10 and Theorem 5 we know
that for any we have and
there is a fixed point . This is a consequence of having
a single isolated block. Arbitrary can be achieved by the non-
isolated users (see Proof of Theorem 5), so for all

. That is, can be reducible and all are associated
with a fixed point, but in this case . This is another
example showing that the requirement is generally
important and cannot be omitted.

The results of this section show that the special properties of
log-convex interference functions are very useful for the anal-
ysis of the fixed point (94), which is closely connected with the
achievability of boundary points of the QoS region. In partic-
ular, the irreducibility of the dependency matrix is sufficient
for the achievability of the entire boundary. This shows an in-
teresting analogy to the theory of linear interference functions
(Perron–Frobenius theory), where an irreducible “link gain ma-
trix” is typically assumed to ensure the existence of a min-max
optimal power vector. Linear interference functions are a spe-
cial case of the axiomatic framework of log-convex interference
functions. Note, that log-convexity is the key property which is
exploited here. A similar characterization of the boundary can
be more complicated for other classes of interference functions
(see, e.g., [10]). This is still an open problem for general inter-
ference functions being solely characterized by A1–A3.

VI. CONCLUSION

This paper provides an axiomatic framework for log-convex
interference functions. Log-convexity is a useful property with
interesting applications in multiuser communications. We have
discussed the examples of robust designs, utility optimization,
cooperative game theory, and max-min fairness. The results are
also useful for the analysis of QoS regions: many QoS regions
can be expressed as a sublevel set of a log-convex interference
function. By analyzing the structure of interference functions,
we are able to better understand the structure of the associated
QoS region.

It has been shown that properties of log-convex interference
functions are closed under certain operations. For example, if
the underlying functions are log-convex interfer-
ence functions then the min-max optimum is a log-convex
interference function as well. The same holds for the sum of log-
convex interference functions. The results in Section IV show
that every log-convex interference function can be expressed as
an optimum over elementary log-convex interference functions.
This justifies the name “calculus” used in the title.

Finally, the results show that log-convex interference func-
tions offer rich analytical possibilities, similar to linear inter-
ference functions. For example, the achievability of the entire
boundary of the SIR region (existence of a fixed point) can be
completely characterized by means of a single “dependency ma-
trix.” Similar results are known from the theory of linear inter-
ference functions, which is based on an irreducible link gain ma-
trix. In this case, the Perron–Frobenius theorem states the exis-
tence of a positive eigenvector (fixed point). Hence, log-convex
interference functions can be regarded as a natural generaliza-
tion of linear interference functions.
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APPENDIX

A. Log-Convexity of , Used in (17)

Proof: Consider two arbitrary points , being
connected by a line

(102)

Consider the point . The definition (16) implies the existence
of an and a vector such that

(103)

A similar inequality holds for the point , with . Next, we
introduce the substitutions and , with

(104)

Now, we can exploit that the functions and are
log-convex by assumption. Since is log-convex and log-con-
cave, and the point-wise product of two log-convex functions is
log-convex [37], the function is log-convex. Thus

where the last inequality follows from (103). Consequently

(105)

This holds for any . The left-hand side of (105) does not
depend on , so letting it can be concluded that
is log-convex on .

B. Log-Convexity of , as Defined by (19)

Proof: Consider two arbitrary feasible QoS points
, connected by a line , as defined by (102). Log-con-

vexity implies

(106)

By and we denote the power vectors
solving the power minimization problem (19) for given targets

and , respectively. It was shown in [3] that these vectors are
characterized by fixed-point equations

(107)

(108)

Now, we introduce substitutions (component-wise)
and . The points and are connected by a line ,
as defined by (104). Because is log-convex on by
assumption

(109)

Defining

(110)

inequality (109) can be rewritten as

(111)

With (106), (110), and (111), we have

(112)

Exploiting (107) and (108), inequality (112) can be rewritten as

That is, for any , the power vector achieves the
QoS targets . We know that , as defined by (19),
achieves with component-wise minimal power [3], thus

(113)

With (110) it can be concluded that

This shows that is log-convex on for all .

C. Proof of Theorem 1

Assume that is convex, then for any , with
, we have

(114)

The function is log-convex for all , i.e.,

(115)

where is defined in (104). Exploiting (114), (115), and the
monotonicity of , we obtain

The sum of convex functions is convex, thus the objective func-
tion in (22) is convex on .
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Conversely, assume that (22) is convex. We want to show
that this implies convexity of . To this end, consider the
set , which is the set of all such that (22) is convex for all
log-convex interference functions . Also, consider the set ,
which is the set of all such that (22) is convex for the specific
linear interference functions and .
These functions are also log-convex, thus, . We now
show that all are convex. For an arbitrary , the
function

(116)

is convex in by assumption. Convexity is preserved when we
set . Let . A convergent series of convex
functions is a convex function [37], thus

(117)

is convex, and therefore, is convex. It can be concluded
that all are convex.

D. Proof of Theorem 4

For the Proof of Theorem 4 we will need the following result.

Lemma 12: Let be the principal left-hand eigenvector of
an irreducible stochastic matrix , then the set

equals the range of .
Proof: Every row stochastic fulfills , so is an

eigenvector of . Since is irreducible by assumption, it fol-
lows from the Perron–Frobenius theorem (see, e.g., [11], [12])
that only the maximum eigenvalue, which equals the spectral
radius , can be associated with a nonnegative eigenvector.
Thus, has a maximal eigenvalue . Be-
cause is irreducible as well, the left-hand principal eigen-
vector , is unique up to a scaling. We can assume
without loss of generality. We have , or equivalently,

. Thus

for all (118)

Consider the range . For all
, there exists a with . From

(118) we know that thus, lies in the -
dimensional hyperplane . That is,

(119)

For vector spaces and such that , it is known
that implies (see, e.g., [13, p. 198]).
From (119) we have . So in order to
prove the lemma, it remains to show ,
thus implying .

Because is irreducible and stochastic by assumption, there
exists a decomposition such that is
nonsingular [50]. For any , we have

. Thus

(120)

The hyperplane has dimension . Since is
nonsingular, we have , and with (120)
we have . Also,

implies

which concludes the proof.

We will now use Lemmas 12 and 9 to prove Theorem 4.
The matrix is irreducible, so Lemma 12 implies

, where . That is, for
every , there exists an , such that .
Consider the special choice , with .
It can be verified that , thus, . The associated
vector solves

(121)

From Lemma 9 we know that with the substitutions
and , we have

(122)

The vector is a fixed point of . It
was shown in [10] (see also Lemma 8) that this implies

. Thus, is a solution of the fixed point (67),
for given .

It remains to prove uniqueness. Suppose that there are two
vectors and , with substitute variables and ,
respectively, which fulfill

Then

Since the power vectors can be scaled arbitrarily without af-
fecting the optimum (66), we can assume
without loss of generality. Since is a stochastic irreducible
matrix, there is only one possible positive eigenvector

, thus

This shows uniqueness up to a scaling.

E. Proof of Lemma 10

Consider the isolated blocks , which are ir-
reducible by definition. We know from Theorem 4 that each of
these isolated subsystems is characterized by a fixed-point equa-
tion of the form (67), where all quantities are confined to the re-
spective subsystem, with a unique (up to a scaling) power vector

and a min-max level , as defined by
(70). Exploiting that the users do not depend on powers of
other blocks, we can use instead of
for all , as in (70). So for all isolated blocks , with

, we have

(123)
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The -dimensional power vector of the complete system is

(124)

With (123), the first vectors are determined up to
a scaling. For all users belonging to the isolated blocks, we have

(125)

Next, consider the first nonisolated block . From the
structure of the matrix , it is clear that the interference

, for any , can only depend on the power
vectors . The vectors have already
been determined. It will now be shown that for an arbitrary

there is a unique power vector such that

(126)

Here, is defined as by (124). The last components
can be chosen arbitrarily because (126) does not depend on
them. They will be constructed later.

Taking the logarithm of both sides of (126) and using
, we obtain (see Lemma 9)

(127)

Since , the matrix is invertible, so
we can solve (127) for . For given and ,
the power vector is unique and it achieves
the targets with equality.

By induction, it follows that unique vectors are obtained
for all nonisolated blocks . This is ensured be-
cause for all nonisolated blocks. Arbitrary levels

can be achieved. We can choose
such that the resulting vector fulfills

for all

Hence

(128)

With (71), we can conclude that this is fulfilled with equality.

F. Proof of Theorem 9

For any and we have

thus

for all

The set is compact by definition and the function
is continuous with respect to . So there exists a such
that

Because is irreducible by assumption, we know from The-
orem 4 that there is a such that

(129)

The proof is by contradiction. Suppose . The
vector fulfills (129). Because of uniqueness (Lemma 8,
part 2), cannot be a fixed point of . There
is an index such that

(130)

The maximization in (130) would lead to another stochastic ma-
trix with a balanced level

This is a contradiction, thus, and fulfills
.

G. Proof of Theorem 7

A simple way to prove this result is based on Theorem 9,
which shows that there is a such that

With (77) we have .

H. Proof of Theorem 10

Consider arbitrary such that . Then there
exists a and such that

(131)

Now, consider an arbitrary such that . We have
, so there is a such that

(132)

That is, we have

(133)

The value for which (132) holds is given by

(134)
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Because is log-convex, (9) is fulfilled. With (133) we have

This can be rewritten as

Thus, there is a constant such that

(135)

Combining (134) and (135) we can conclude that

which implies . The converse proof follows imme-
diately from the definition.

I. Proof of Theorem 11

Assume that there is an irreducible such that (93)
holds. We need to show that is irreducible. For all
such that , we have

(136)

Thus, every nonzero entry in translates to a nonzero entry in
. Because is irreducible by assumption, is irreducible

as well.
Conversely, assume that is irreducible. For any we

define an index set

For all (136) is fulfilled. This is a consequence of
definition (90) and Lemma 11. The matrix is irreducible
by assumption. Thus, is nonempty. The set is also
nonempty because the trivial case , is ruled
out by (136) and the assumption of irreducibility.

Next, consider an arbitrary index . For some arbitrary
we show by contradiction that there is a

with . Suppose that there is no such vector, then for all
and , we would have

where is some constant independent of . Thus,
would be bounded, which contradicts the

assumption . It can be concluded that for all
there is a such that . From Lemma 5,
we know that is a convex set, so any convex combination

is also contained in . This way, we can construct a
such that for all . This holds for any

, so there is a matrix having

nonzero entries at the same positions as . Because is ir-
reducible by assumption, is irreducible as well. Also

where because . Hence, (93) is fulfilled.

J. Proof of Theorem 12

Consider the set

(137)

For the Proof of Theorem 12 we will need the following result.

Lemma 13: Let be a fixed irreducible stochastic
matrix, and a fixed constant. If the set
is nonempty, then there exists a constant
such that

for all (138)

Proof: Consider an arbitrary . Defining
, we have

(139)

For an arbitrary fixed we define a dependency set

(140)

and bounds

(141)

(142)

Consider an index , for which . We
have

Defining and exploiting and
(139), we have

(143)

Because is irreducible by assumption, every user causes in-
terference to at least one other user, which means that every
index is contained in at least one dependency set. Thus
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Let be an index such that . Using
, inequality (143) leads to

(144)

We define the set

(145)

For all we have

(146)

where the first inequality follows from (143) and the second
from (144). Again, using , inequality
(146) leads to

(147)

There exists a such that

(148)

Here we have exploited . Inequality (148) implies
. With the index we define the set

(149)

Similar to the derivation of (146), we can use (143) and (147)
to show that for all

Using we have for all

If is nonempty, then there is a such that

(150)

The inequality in (150) follows from . With we
define the set

(151)

Inequality (150) implies .
The above steps are repeated until there is an such

that . Then we have

(152)

and

(153)

By assumption, the powers are upper-bounded by so we
have . We now show by contradition that

. Suppose that this is not true, i.e., , then the set
cannot contain all indices , because otherwise

. Thus, there is a nonempty set

(154)

For any and any we always have

(155)

because otherwise which would contradict
. We now show by contradiction that inequality (155) implies

. Suppose that this is not true, then , thus
. With (155) we would have

This contradiction shows that for arbitrary
and . That is, the directed graph of has no paths be-
tween nodes from the nonintersecting sets and . Thus,

would be reducible, which contradicts the assumption that
is irreducible. Hence, holds.

Setting in (153) we obtain

(156)

with a constant .

The Proof of Lemma 13 characterizes the constant

Now, we will use this result to prove Theorem 12. To this end,
consider an arbitrary . From (16) it can be observed that
there always exists a vector , with
(because can be scaled arbitrarily) and

(157)

where .
For arbitrary we define

We have

Thus, for all . By assumption,
there exists an irreducible . We have

Consider the set (137). We have . This follows
from the irreducibility of , which implies the existence of
a such that (see
Theorem 4). Thus, the set is nonempty, and
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because , the set is nonempty as
well.

Lemma 13 implies the existence of a constant
such that

(158)

The bound is monotonically decreasing in be-
cause the set is enlarged by increasing . Thus

(159)

Because of (34) (representation theorem), we have
. With (157) we know that

. Combining (158) and (159), we have

(160)

The family of vectors is bounded. There exists a zero se-
quence and a vector from the compact set

such that . With (160) we have

It was shown in [10] that every interference function is contin-
uous on , so

(161)

where the inequality follows from (157). Defininig
, we have

(162)

Next, consider the set

(163)

With (162) we know that is nonempty. Consider an arbitrary
. We define the index set

(164)

and its complement

(165)

The set is nonempty. In order to show this, suppose that
there is a with , i.e., for all

. This would imply the contradiction

(166)
where is the min-max optimum for the normalized in-
terference functions .

From (162) we know that . Let be the vector with
components . If , then is
a fixed point fulfilling (94). In this case, the proof is completed.
Otherwise, axiom A3 yields ,
thus . That is, the set has at least two elements. In

what follows, we will show that there always exists a
such that .

Consider two arbitrary vectors and
(component-wise), with . For any we have

(167)

The first inequality follows from and ,
similar to (166). The second inequality follows because is
log-convex by assumption. From (167) we know that .
For any , at least one of the factors in (167) is
strictly less than one thus, , which implies

. Therefore

(168)

Note that we have assumed for all vectors under
consideration. Because would mean that is a fixed
point, in which case the proof would be completed.

Next, let denote the set of all such that there is a
vector with , that is, .
With (168) we can construct a vector such that

. Thus, for all vectors we have .
Next, consider the fixed-point iteration

with (169)

where the superscript , with , denotes the th iteration
step. Because we have for all

. Exploiting A3, this leads to

Thus, . We also have . This follows
by contradiction: suppose that there exists a and

is not contained in . This would imply
, thus leading to the contradiction . For the

complementary sets, this implies

For any we have

Thus, for all .
In a similar way, we show , which implies

. Thus, any is contained in . This im-
plies . By induction, we have for all

Thus, for any we have

for all (170)

The fixed-point iteration (169) converges to a limit
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A finite limit exists because the sequence is monotonic de-
creasing and for all . Independent of the choice
of , we have

where is constant. The sequence converges as well,
so there is another constant such that

(171)

Because of the monotonic convergence of we have

for all

The ratio of two convergent sequences is convergent if the de-
nominator sequence has a nonzero limit, so

is convergent as well. We have . Also, we have
shown for all and . We have

Thus, there is a constant such that ,
as defined by (137). With Lemma 13 we know that all fulfill

for all and (172)

Next, consider the limit

Because of (172) we have . For all we have

Because of , we have

That is, fulfills for all .

K. Proof of Theorem 13

The proof is by contradiction. Suppose that for any
there exists a such that

for all (173)

where is defined as by (16).
In order to simplify the discussion, we assume that has a

single isolated block on its main diagonal. The proof for
several isolated blocks is similar. The block is associated

with users . The superscript will be used in the
following to indicate that the respective quantity belongs to the
first block. The interference functions and powers

are collected in vectors and , respectively.
For arbitrary we define

(174)

The last inequality holds because the maximum is restricted to
the indices . Also, because belongs
to an isolated block.

We will now show that . To this end, suppose
that . Because is irreducible, Corollary 5
implies the existence of a such that

(175)

This is compared with (173). We focus on the indices .
These users belong to the isolated block, so can be replaced
by the vector , which is the subvector of consisting of the
first components. That is,

(176)

Comparing (175) and (176), and using Lemma 8 (part 2), it can
be concluded that . The same can be shown for
any isolated block.

For arbitrary , we define SIR targets

(177)

which are collected in a vector .
The -dimensional vector contains the targets as-
sociated with the users of the first block .

From (173) we know that for any there is a
such that

for all (178)

Introducing a subvector , defined by

the first components of (178) can be written as

For arbitrary , we have

(179)

By assumption (97), we have , so

(180)
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Here we have exploited that for . Combining
(179) and (180) we obtain

This inequality holds for all . By letting , we obtain
a contradiction, thus concluding the proof.
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