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The Structure of General Interference Functions and
Applications

Holger Boche, Senior Member, IEEE, and Martin Schubert, Member, IEEE

Abstract—This paper provides a theoretical framework for
the analysis of interference-coupled multiuser systems. The fun-
damental behavior of such a system is modeled by interference
functions, defined by axioms “nonnegativity, ”scale-invariance,”
and “monotonicity.” It is shown that every interference function
has an interpretation as the optimum of a min-max problem,
where the optimization is over a closed comprehensive positive
coefficient set. This provides new insight into the structure of
general interference functions and its elementary building blocks.
Conversely, it is shown that every closed comprehensive positive
set can be expressed as a level set of an interference function.
This shows a close connection between the analysis of interference
functions and multiuser performance regions, which are typically
closed comprehensive. The generality of this framework allows for
a wide range of potential applications. As an example, we analyze
the problem of interference balancing.

Index Terms—Feasible set, interference functions, multiuser in-
terference, power control, wireless communications.

I. INTRODUCTION

T HE analysis of wireless multiuser systems is compli-
cated by interference between communication links.

The achievable performance of one link can depend on the
communication strategies of other links. Due to these addi-
tional degrees of freedom, established principles and results
for point-to-point links are not always transferable to multiuser
systems.

A useful concept for analyzing interference-coupled systems
is the set of jointly achievable link performances, often referred
to as the achievable region or feasible set. Here, the term
“performance” is used in a general sense, to describe different
utility or cost measures. An example is the capacity region
of the Gaussian multiple-input multiple-output (MIMO) mul-
tiple-access channel (MAC), and the dual broadcast channel
(BC) [1]–[4]. Another example, is the region of signal-to-inter-
ference ratios (SIR), which is often studied in a power control
and beamforming context (see, e.g., [5]–[12] and the references
therein). There are many other possible definitions of feasible
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regions, depending on the chosen performance measure and
possible systems constraints.

A thorough understanding of the underlying interference
tradeoffs and the resulting feasible region often provides guide-
lines for the development of multiuser algorithms. For example,
the analysis of the aforementioned MIMO broadcast region was
accompanied by a search for optimum transmission strategies.
A similar development could be observed in the power control
and beamforming literature, where efficient algorithms for joint
beamforming and resource allocation were derived.

Algorithms that are derived for a particular system layout
have the advantage of being efficient and well-adapted to the
system-specific structure. However, they are also quite specific
in scope, and it is often difficult to transfer the results to other
scenarios. For example, the results [1]–[4] hold for a Gaussian
MIMO broadcast channel with dirty paper coding, but not nec-
essarily for a other MIMO systems with practical system con-
straints, like imperfect channel knowledge or linear precoding
at the transmitter.

It therefore makes sense to also analyze multiuser perfor-
mance tradeoffs in a more abstract setting, by focusing on some
core properties. One such property is comprehensiveness, which
can be interpreted as “free disposability of utility” (cf. Definition
3 in Section II-B). Most resource allocation strategies implicitly
or explicitly assume that the underlying feasible region is com-
prehensive. Many examples exist in the context of cooperative
game theory [13]–[15].

In this paper, we analyze comprehensive feasible sets from
the perspective of a wireless communication system. A connec-
tion is established between comprehensive feasible sets and an
axiomatic framework of interference functions [16]. This frame-
work is closely connected with the concept of general interfer-
ence functions, which was introduced in [7] and extended in
[16]–[18].

In Section II, we analyze the elementary structure of interfer-
ence functions. It is shown that every interference function can
be expressed as a min-max optimum, where the optimization
variable is from a comprehensive set.

In Section III, we study the reverse approach: Certain com-
prehensive sets can be expressed as a sublevel set of an interfer-
ence function. The results show a one-to-one correspondence
between interference functions and certain comprehensive fea-
sible sets.

In Section V, we show how the results can be applied to the
problem of interference balancing.

Some notational conventions are as follows.
• is the set of users (communication

links).
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• The sets of nonnegative reals and positive reals are denoted
by and , respectively.

• Matrices and vectors are denoted by bold capital letters and
bold lowercase letters, respectively. Let be a vector, then

is the th component.
• A vector inequality means , for all . The

same definition applies to and the reverse directions.
Also, means component-wise greater zero.

A. Axiomatic Framework of Interference Functions

The term “interference function” was introduced by Yates [7]
in order to model interference in a power-controlled multiuser
wireless system. He introduced a framework of axioms (posi-
tivity, scalability, monotonicity) in order to model how interfer-
ence depends on the transmission powers.

Analyzing the basic building blocks of a theoretical model
often provides valuable new insight into its underlying struc-
ture. Axiomatic characterizations also have a long-standing tra-
dition in information theory. A famous example is the axiomatic
characterization of the Shannon entropy by Khinchin [19] and
Faddeev [20] (see, e.g., [21]).

In this paper, we build on the axiomatic framework [16],
which can be regarded as a generalization of the theory of stan-
dard interference functions [7].

Definition 1: We say that is an interference
function if the following axioms are fulfilled:

nonnegativity

scale invariance

monotonicity if

These properties are quite intuitive when we think of
as a vector of transmission powers, and

as the resulting interference. However, other interpreta-
tions are possible, as will be seen later.

Note, that A1 (nonnegativity) is a direct consequence of A2
and A3. In order to rule out the trivial case , we make
an additional assumption

There exists a such that (1)

It was shown in [16] that (1) implies for all .
This is needed in some parts of the paper, e.g., to ensure that
the SIR is well-defined. This additional requirement
is not much of a restriction, since it is natural for most practical
interference scenarios. Examples will be given in Section I-B.

The model A1–A3 differs slightly from the standard interfer-
ence function introduced in [7], where scalability was required
instead of scale invariance. Scalability is motivated by constant
noise power adding to the interference. This property was re-
quired in [7], because of the specific power control problem
under investigation.

In this paper, however, we are interested in some more general
aspects of interference coupling. Namely, we show how interfer-
ence functions can be used for the analysis of feasible regions.
In this context, the model [7] is generally not appropriate. This
will become clear in Section II.

B. Examples of Interference Functions

Now, we discuss some examples of interference functions
which fulfill the axioms A1–A3 in Definition 1.

a) Linear Interference Function: A classical model from
power control theory (see, e.g., [5], [6], [8]) is

(2)

where contains the interference coupling coefficients
of the th user. It can be observed that the function (2) fulfills
A1–A3.

b) Linear Interference Function With Noise: The model (2)
can be extended by a constant noise power . To this end, we
introduce the extended power vector .
The interference-plus-noise power is

(3)

If we only consider the dependency on the powers , with con-
stant , then we obtain a standard interference function in the
sense of [7]. Whereas, if we define as a function of the ex-
tended power vector , as in (3), then we obtain an interference
function in the sense of Definition 1.

A more detailed discussion on the aspects of noise can be
found in [16], [22]. For the results of this paper, it is sufficient
to know that the framework A1–A3 is general enough to incor-
porate noise.

c) Spectral Radius: Consider again the linear interference
functions (2). The coupling coefficients are collected in a matrix

(4)

which is nonnegative and irreducible by assumption.
The SIR of user is . The SIR feasible

region is (see, e.g., [6], [8], [16])

(5)

where is the spectral radius (here: maximum eigenvalue)
of the matrix . The function is an indicator
for the feasibility of an SIR vector . It fulfills
the axioms A1–A3, so it is an interference function.

Hence, the SIR region (5) is a sublevel set of an interfer-
ence function. The structure of the region is intimately con-
nected with the properties of . This was already exploited
in [23]–[25], where it was shown that is convex on a loga-
rithmic scale.

This is an example where the framework [7] is not appro-
priate. The function is scale invariant but not scalable as
required in [7].

d) Min-Max Balancing: The previous example can be
generalized to arbitrary interference functions characterized by
A1–A3. In this case, the SIR region is

(6)

where

(7)
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is an indicator function for the feasibility of SIR values (see,
e.g., [16] for details). The function fulfills the axioms
A1–A3, so it is an interference function.

e) Robustness: Linear interference functions (2) can be gen-
eralized by introducing parameter-dependent coupling coeffi-
cients . Assume that the parameter stands for an uncer-
tainty chosen from a compact uncertainty region . A typical
source of uncertainty are channel estimation errors. Then, the
worst case interference is given by

(8)

Performing power allocation with respect to the interference
functions (8) guarantees a certain degree of robustness. Robust
power allocation was studied, e.g., in [26], [27].

f) Adaptive Receivers: The linear model (2) can also be ex-
tended in the following way:

(9)

Here, a parameter is chosen from a compact set such
that interference is minimized. Since this is a typical aim of a
receiver, we refer to as a receive strategy. See [16] for a more
detailed discussion and an extension to transmit strategies.

g) Norms: Let be arbitrary and , ,
then

(10)

is an interference function.
h) Elementary Building Blocks of Convex Interference Func-

tions: It was shown in [28] that every convex interference func-
tion can be expressed as

(11)

where is a compact convex set depending on . A similar
representation exists for concave interference functions, where

is replaced by .
Notice, that the representation (11) has the same structure as

the robust interference function (8). That is, every convex inter-
ference function has an interpretation as a worst case optimiza-
tion over a set of possible interference values. Likewise, every
concave interference function can be interpreted as a minimum
over receive strategies, as in (9).

i) Elementary Building Blocks of Log-Convex Interference
Functions: We say that is a log-convex interference func-
tion if is convex on after a change of variable

(component-wise).
It was shown in [29] that an arbitrary log-convex interference

function can be expressed as

(12)

where

(13)

This result will be used later in Section IV.

II. ANALYSIS OF INTERFERENCE FUNCTIONS

The examples in the previous section show that interference
functions occur in many different contexts. The framework is
not restricted to power control problems. It is also observed
that certain elementary operations on interference functions
lead to new interference functions. For example, the geometric
mean of interference functions is an interference function. Any
sum of interference functions is an interference function. The
maximum/minimum of interference functions is an interference
function. This rich mathematical structure justifies the name
“interference calculus” used in the title of our paper.

The representations (11) and (12) are of particular interest.
They show that every (log-)convex or concave interference func-
tion can be expressed as a maximum over elementary interfer-
ence functions, where the optimization is over certain coeffi-
cient sets. This specific structure has proved useful for the anal-
ysis and development of resource allocation algorithms in [28],
[29]. It therefore makes sense to ask whether a similar structure
can be shown for general interference functions, which are not
necessarily (log-)convex or concave. In the remainder of this
section it will be shown that every interference function has a
min-max and max-min representation.

Another interesting aspect is observed from (6). The interfer-
ence function characterizes the structure of the SIR re-
gion . In the literature on resource allocation and game theory,
for example, it is common to assume that the achievable re-
gion is convex. In wireless communications, however, we are
often dealing with nonconvex achievable regions, like the SIR
region . By analyzing general interference functions, we will
also gain deeper insight into the structure of general (compre-
hensive) achievable regions.

A. Representation Theorem

We start with a simple but fundamental property.

Lemma 1: Let be an arbitrary interference function char-
acterized by A1–A3. For arbitrary , , we have

(14)

Proof: Defining , we have .
With A3, we have , which proves the right-hand
inequality (14). The left-hand inequality is shown analogously.

Another fundamental property is continuity [16].

Lemma 2: is continuous on .

Now, we show that every interference function satisfying
A1–A3 has a min-max representation. To this end, we introduce
level sets

(15)

(16)

(17)

Definition 2: A set is said to be relatively closed
in if there exists a closed set such that
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. For the sake of simplicity we will refer to such sets
as closed in the following.

With Lemma 2, we know that the sets , , and
are relatively closed in . This leads to our first theorem,
which will serve as a basis for most of the following results.

Theorem 1: Let be an arbitrary interference function. For
any , we have

(18)

(19)

Proof: We first show (18). Consider an arbitrary fixed
and . With Lemma 1 we have

(20)

where the last inequality follows from the definition (15). This
holds for arbitrary , thus

(21)

Now, we choose with , . With A2 we
have , so . This particular choice fulfills

. Thus, achieves the infimum (21)
and (18) holds. The second equality is shown analogously: With
Lemma 1, we have

(22)

for all and . In analogy to the first case, it can
be observed that (22) is fulfilled with equality for ,
with . Thus, (19) is fulfilled.

Theorem 1 says that every can be represented as an op-
timum over elementary building blocks

(23)

(24)

Assume that is an arbitrary fixed parameter, so (23) and (24)
are functions in . Both and fulfill the axioms A1–A3, so
they can be considered as elementary interference functions.

Note, that the existence of an optimizer in (18) is ensured
by the additional assumption (1). This rules out , so

cannot occur.
Next, consider the set , as defined by (17). In the proof

of Theorem 1 it was shown that .
That is, we can restrict the optimization to the boundary .

Corollary 1: Let be an arbitrary interference function. For
any , we have

(25)

(26)

Note, that the optimization domain in (19) cannot be
replaced by . Since , relation (26) implies

Likewise, and (25) implies

So by exchanging the respective optimization domain, we only
obtain trivial bounds.

B. Elementary Sets and Interference Functions

In this subsection, we will analyze the elementary interfer-
ence functions and for an arbitrary and fixed pa-
rameter . This approach helps to better understand the
structure of interference functions and corresponding level sets.

Definition 3: A set is said to be upward-compre-
hensive if for all and

(27)

A set is said to be downward-comprehensive if for
all and

(28)

We start by showing convexity.

Lemma 3: Let be arbitrary and fixed. The function
is convex on . The function is concave on

.
Proof: The maximum over convex functions is convex. The

minimum over concave functions is concave.

As an immediate consequence of Theorem 1, every interfer-
ence function can be expressed as a minimum over elementary
convex interference functions with . Alterna-
tively, can be expressed as a maximum over concave interfer-
ence functions. Note that this behavior is due to the properties
A1–A3 and cannot be generalized to arbitrary functions. Also,
the resulting function need neither be convex nor concave. The
special case of convex/concave interference functions is studied
separately in [28]. Some aspects will also be discussed later in
Section IV.

A sublevel set of a convex function is convex, so the set

(29)

is convex. We have , and
for all . Thus

(30)

The concave function is associated with a convex super-
level set

(31)
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Fig. 1. Illustration of the convex comprehensive sets and , as de-
fined by (29) and (31), respectively.

Every fulfills

(32)

Both sets and are illustrated in Fig. 1.
Let us summarize the results. Starting from an interference

function , we obtain the sublevel set , as defined
by (15). For any , there exists a sublevel set of the
form (29), which is contained in . So the region is
the union over convex downward-comprehensive sets. There-
fore, is downward-comprehensive (this also follows from
(15) with A3). However, is not necessarily convex. From
Theorem 1 we know that we can use (18) to get back the orig-
inal interference function .

There are analogous statements for the superlevel set .

Corollary 2: Let be an arbitrary interference function. The
sublevel set , as defined by (15), is closed and downward-
comprehensive. The superlevel set , as defined by (16), is
closed and upward-comprehensive.

For any , there is a set of interference functions
. The following theorem shows the special role

of the interference function .

Theorem 2: Consider an arbitrary and an interference
function , with , such that

(33)

then this can only be satisfied with equality.
Proof: Inequality (33) implies , or in other

words, every fulfills . This
can be written as , or equivalently . With

and A3, it follows that . Thus, the
set also belongs to . Consequently,

. With Theorem 1 we can conclude that
for all .

Theorem 2 shows that is the smallest interference
function from the set . Here “smallest” is used in the sense
of a relation , which means that for all

.
Analogously, we show the following result.

Theorem 3: Consider and an interference function ,
with , such that

(34)

then this can only be satisfied with equality.

The interference function is the greatest interference
function from the set .

Theorems 2 and 3 show that only the interference functions
and provide majorants1 and minorants for arbi-

trary interference functions. This is a property by which general
interference functions are characterized.

III. SYNTHESIS OF INTERFERENCE FUNCTIONS

In the previous section, we have analyzed the basic building
blocks of an interference function , and its connection with
level sets. Now, we study the converse approach, i.e., the syn-
thesis of an interference function for a given set .

A. Interference Functions and Comprehensive Sets

We start by showing that for any closed downward-compre-
hensive set , we can synthesize an interference func-
tion . By constructing the sublevel set we get back
the original set.

Theorem 4: For any nonempty, closed, and downward-com-
prehensive set , , there exists an interference
function

(35)

and .
Proof: For any nonempty set , the function

fulfills properties A1–A3. With the additional assumption
, we know that there exists a such that .

Therefore, for all . We only need to show
, then it follows from Theorem 1 that the infimum is

attained, i.e., the right-hand equality in (35) holds.
Consider an arbitrary , i.e., . Defining

, with , we have .
According to the definition (35), there exists a such that

(36)

Comprehensiveness implies and, therefore, .
Since is closed, implies . Thus

(37)

Conversely, consider an arbitrary , for which

(38)

This shows and therefore

(39)

Combining (37) and (39), we have .

It can be observed that the restriction is closely
linked with the assumption (1). In particular, there exists a
such that if and only if the corresponding set
fulfills .

Similar results exist for upward-comprehensive sets:

1An interference function is said to be a minorant of if
for all . It is said to be a majorant if for all .
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Theorem 5: For any nonempty, closed, and upward-compre-
hensive set , , there exists an interference
function

(40)

and .
Proof: The proof is similar to the proof of Theorem 4.

Every is also contained in , thus implying
. Conversely, it is shown that every is also contained in

the set , thus, .

The following corollary is an immediate consequence.

Corollary 3: Let , be two arbitrary closed comprehen-
sive sets, as defined in the previous theorems. If ,
then .

Proof: If the sets are downward-comprehensive, then this
is a direct consequence of Theorem 4, because

. For upward-comprehensive sets, the result fol-
lows from Theorem 5.

B. Comprehensive Hull

Next, assume that , , is an arbitrary
nonempty closed set which is not necessarily comprehensive.
In this case, (35) still yields an interference function. However,
the properties stated by Theorems 4 and 5 need not be fulfilled.
That is, and in general.

The next theorem shows that the level sets and
provide comprehensive hulls of the original set .

Theorem 6: Let be the downward-comprehensive
hull of , i.e., the smallest closed downward-comprehensive
subset of containing . Let be defined by (35), then

(41)

Proof: From Corollary 2, we know that is down-
ward-comprehensive. By assumption, is the smallest down-
ward-comprehensive set containing , so together with (39) we
have

(42)

We also have

(43)

From Theorem 4 we know that . Combining (42)
and (43), the result (41) follows.

To summarize, is fulfilled for any nonempty
closed set , . The set is the down-
ward-comprehensive hull of . The set is downward-compre-
hensive if and only if . Examples are given in Fig. 2.

Likewise, an upward-comprehensive hull can be constructed
for any nonempty closed set , .

Fig. 2. Two examples illustrating Theorem 6: The set is the
comprehensive hull of an arbitrary noncomprehensive closed set .

Fig. 3. Illustration of Theorem 8. Example a) leads to a nonstrictly monotone
interference function, whereas example b) is associated with a strictly monotone
interference function, i.e., no segment of the boundary is parallel to the coordi-
nate axes.

Theorem 7: Let be the upward-comprehensive hull
of , i.e., the smallest closed upward-comprehensive subset of

containing . Let be defined by (40), then

(44)

Proof: This is shown analogously to Theorem 6.

C. Strict Monotonicity

We now study interference functions with a special mono-
tonicity property. To this end we need some definitions.

Definition 4: means , , and
there exists at least one component such that .

Definition 5: An interference function is said to be
strictly monotone if implies .

The next theorem shows that strict monotonicity of cor-
responds to certain properties of the associated level sets
and , whose boundary is .

Theorem 8: An interference function is strictly mono-
tone if and only if no segment of the boundary , as defined
by (17), is parallel to a coordinate axis.

Proof: Assume that is strictly monotone. We will
show by contradiction that there is no parallel segment. To this
end, suppose that a segment of the boundary is parallel to a
coordinate axis. On this line, consider two arbitrary points ,

with . We have , i.e.,
is not strictly monotone, which is a contradiction. Conversely,
assume that there is no parallel segment. Consider a boundary
point with . An arbitrary does not belong to

. That is, , thus is strictly monotone.

This result is illustrated in Fig. 3.
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IV. CONNECTION WITH CONVEX INTERFERENCE FUNCTIONS

In this section, we assume that is a convex interference
function. For this special case, different elementary interference
functions can be used, as shown in [28]. In particular, there ex-
ists a compact downward-comprehensive convex set such that

has a representation (11). The function is uniquely de-
termined by the set (see [28] for details).

Next, we show a different way of connecting convex compre-
hensive sets with convex or concave interference functions. This
approach is less direct than the one in [28], but it allows for an
interesting interpretation in terms of level sets.

A. Convex Interference Functions and Level Sets

Consider the convex interference function (11), generated
from a nonempty convex compact downward-comprehensive
set , . From Corollary 2, we know that the
set is closed and downward-comprehensive. Exploiting
the convexity of , it can be shown that is upper-bounded.
The set is also convex, since it is a sublevel set of a
convex function. However, in general. The result of
Theorem 4 does not apply since is constructed from in a
different way.

In order to express as a sublevel set of a convex interference
function, we need to introduce another interference function

(45)

Unlike , the new function is constructed with the level set
, so it depends on the original set only indirectly. The

maximum (45) is guaranteed to exist since is a compact
set (relatively in ).

The function is also a convex interference function. The
next theorem shows that the sublevel set equals the orig-
inal set .

Theorem 9: Consider an arbitrary nonempty compact down-
ward-comprehensive convex set , , from
which we synthesize a convex interference function , as de-
fined by (11). Let be defined by (45), then

(46)

Proof: Let , then it can be observed from (11) that
for all . Thus

That is, is also contained in the sublevel set of , i.e.,
, thus implying . It remains to show the

converse, i.e., . Consider an arbitrary . It
can be observed from (45) that for all
such that . Now we choose such that .
This implies

Thus

(47)

Let be arbitrary. Because of the properties of the set ,
we have and . Defining
and exploiting A2, we have

(48)

The last inequality follows from and (47). Conse-
quently

The function is the conjugate of . It was shown in [28]
that implies . That is, every is
also contained in , which concludes the proof.

Theorem 9 shows that any convex compact downward-com-
prehensive set from can be expressed as a sublevel set of a
convex interference function. Conversely, it is clear from the re-
sults of Section II that any sublevel set of a convex interference
function is compact downward-comprehensive convex.

Similar results can be derived for concave interference func-
tions. Consider a nonempty convex closed upward-comprehen-
sive set , . This set is associated with a
concave interference function

(49)

The superlevel set is closed upward-comprehensive
convex. However, in general. In order to express
as a superlevel set, we need to introduce an additional interfer-
ence function

(50)

We have the following result.

Theorem 10: Consider an arbitrary nonempty closed upward-
comprehensive convex set , , from which
we synthesize a concave interference function , as defined by
(49). Let be defined by (50), then

(51)

Proof: The proof is similar to the proof of Theorem 9.

Theorem 10 shows that every closed upward-comprehensive
convex set from can be expressed as a superlevel set of a
concave interference function. Conversely, every superlevel set
of a concave interference function is closed downward-compre-
hensive convex.
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Theorems 9 and 10 have an interesting interpretation in terms
of resource allocation problems:

Every convex interference function has a representation (11).
This can be interpreted as the maximum weighted total network
utility from a utility set . Here, the
convex interference function can be seen as an indicator
function measuring the feasibility of the utilities . Likewise,
every concave interference function has a representation (49).
This can be interpreted as the minimum weighted total network
cost from a feasible set . The concave
interference function can be seen as an indicator function
providing a single measure for the feasibility of a given cost
vector .

The following example shows a possible application of these
results.

Example 1: The Nash bargaining strategy from cooperative
game theory (see, e.g., [14], [15]) is typically studied under
the assumption of a convex comprehensive utility set , as
specified in Theorem 9. Under this assumption, the Nash
bargaining solution , as a function of weighting factors

, with , is given as

(52)

From Theorem 9 we know that there is a convex interference
function such that

The bargaining solution (52) is attained on the boundary of
being characterized by . Thus, (52) can be rewritten
as [30]

(53)

It was shown in [28] that any convex interference function is
a log-convex interference function, so can be expressed as
(12). Comparing (53) with the function , as defined by (13),
we have

(54)

This provides an interesting link between the Nash bargaining
theory and the theory of (log-convex) interference functions.
Problem (52) can also be interpreted as a proportional fair op-
erating point [31] of a wireless system.

Note that there are other bargaining strategies which only rely
on downward-comprehensive utility sets. Also in this case the
set can be expressed as a sublevel set of an interference function,
as shown by Theorem 4.

B. Convex/Concave Bounds

Now, we return to our basic interference model A1–A3,
without requiring convexity or concavity. In this case, it is
generally not possible to express as an optimum over linear
functions, as in (11). However, we can use the previous results
to derive convex/concave bounds.

Introducing sets

there exists a and

there exists a and

and applying Theorem 1, an arbitrary interference function
can be expressed as

The set can be rewritten as

where we have used the definition

for (55)

It can be verified that is an interference function: Property
A2 follows from

Properties A1 and A3 are easily shown as well.
Defining , we have

for any

Hence, an arbitrary can be represented as

(56)

(57)

It can be observed from (57) that this representation has a similar
form as the convex function (11). For any given , a linear func-
tion is maximized over parameters . However, the interference
function (57) is generally not convex because of the additional
optimization with respect to , so the combined weights
are contained in a more general set. By choosing an arbitrary
fixed , we obtain a convex upper bound

(58)

Note, that this convex upper bound can be trivial, i.e., the right-
hand side of (58) can tend to infinity. Inequality (58) holds for
all , so

(59)

Similar results can be derived from (56), leading to a concave
lower bound. This bound can also be trivial (i.e., zero).

Another interesting problem is the construction of a minorant
, such that for some point , and for

all . For general interference functions , such a mino-
rant is provided by the elementary interference function ,
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as shown in Section II-B. For the special case of convex interfer-
ence functions (11), another minorant is obtained by choosing
an arbitrary , for which we have . How-
ever, such a linear minorant does not always exist, as shown by
the following example.

Example 2: Consider the log-convex interference function

(60)

We show by contradiction that no linear interference function
can be a minorant of (60). Assume that there is a such
that for all . Then we can construct a
vector , where the th component is set
to some . The position is chosen such that .
By assumption, . Dividing
both sides by we have . Letting

leads to the contradiction .

This discussion shows that in order to derive “good” mino-
rants or majorants, it is important to exploit the structure of the
interference function. Otherwise, trivial bounds can be obtained.
For a more detailed analysis of convex and concave interference
functions, the reader is referred to [28].

V. INTERFERENCE BALANCING

Thus far, we have studied a single interference function and
its connection with level sets. Next, we study the interaction
between interference functions . We focus on the
min-max balancing problem (7) discussed in the Introduction.

A. General Results

The min-max optimum , as defined by (7), provides a
measure for the feasibility of SIR values .
The feasible SIR region is the sublevel set , as defined by (6).
Since fulfills the axioms A1–A3, we can apply the results
of Section II. The following corollary is a consequence of The-
orem 1.

Corollary 4: The function can be represented as

(61)

Note, that the optimization in (61) is over the feasible set
directly, whereas a parameterization with respect to the power
allocation is used in (7). Analyzing the dependency on
the transmission powers is of practical interest, since this is the
way how the transmitter controls the quality of service (QoS)
values.

If , then the SIR point lies strictly in the interior
of the SIR region . In this case, there always exists a vector

such that

or, equivalently, for all .

Now, consider a on the boundary of the feasible set,
i.e., . Then for any there exists a vector
such that

(62)

or, equivalently, , for all
. That is, the point is achieved asymptotically for .

If (62) is fulfilled for , then we say that the boundary
is achievable. For a more detailed discussion on achievability
see, e.g., [16], [32]. For most practical scenarios, achievability
is ensured by the presence of noise and limited transmission
powers (see, e.g., [16]).

Using these results, the SIR feasible region can be defined
as

for every there exists a vector

such that (62) is fulfilled (63)

The interior of the set can be parametrized by the variable
. However, this does not always hold for the boundary

because a vector fulfilling
does not need to exist, but it can always be

approximated arbitrarily close. Thus, it is generally not possible
to replace the infimum in (7) by a minimum.

B. Max-min Fairness

The min-max optimization (7) is one possible approach
to fairness. In this definition, the value is the in-
fimum over the weighted inverse SIR . Note, that

. This optimization
strategy is also referred to as max-min fairness.

An alternative approach is min-max fairness. This can also be
formulated in terms of weighted inverse SIR, as the max-min
optimization problem

(64)

It is not obvious whether the max-min optimum and the
min-max optimum , as defined by (7), are identical. Both
strategies can be regarded as fair. Note that we do not only in-
terchange the optimization order, but also the domain, so Fan’s
minimax inequality cannot be applied here. Both values do not
necessarily coincide. The difference is sometimes referred to as
the fairness gap [8].

Example 3: Consider the linear interference model intro-
duced in Section I-B. If the coupling matrix is irreducible,
then always holds. But this need not hold true for
reducible coupling matrices. Consider the example

with
(65)

We have , but . If , then we have
two isolated subsystems with spectral radius and . In this
case, , which demonstrates that min-max
fairness and max-min fairness are generally not equivalent. But
also a different behavior can occur. For example,
is fulfilled if .
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In order to better understand these effects, notice that the
function fulfills the properties A1–A3. That is, is an
interference function, so we can use Theorem 1 to analyze and
compare both functions and .

The function was already used in the definition (5) of the
SIR region . With Theorem 1 it is clear that . Now,
we will show some interesting analogies between and

, defined as

(66)

From (64), we know that for every there exists a such
that

If , then

(67)

This can be used for the following characterization:

for every there exists a vector

such that (67) is fulfilled

With Theorem 1 we have

(68)

Again, we can generally not replace the supremum by a max-
imum since the boundary of cannot always be parame-
trized by .

It was shown in [16] that is always smaller than .
As mentioned before, this result is due to the specific properties
A1–A3, and does not follow from Fan’s minimax inequality.
Now, we can use the results of this paper to show this property
with a different approach, based on level sets.

Theorem 11: for all .
Proof: Consider an arbitrary from the interior of ,

i.e., . From (64), we know that there exists a
satisfying

(69)

Now, we show that also lies in the interior of . From the
definition of , it follows that for all there exists a
vector such that

(70)

The ratio is invariant with respect to a scaling of , thus
we can assume without affecting (70). In addition, we
can assume that there is an index such that . With
(69), (70), and property A3, we have

(71)

This inequality holds for all . Letting , it follows
that , so is also contained in the interior of .
Therefore

(72)
Example 3 shows that strict inequality can actually
occur.

C. Fixed-Point Characterization

We will now study under which condition the infimum (7) can
be attained. This question is closely connected with the achiev-
ability of the boundary of the SIR region , which was already
discussed in Section V-A.

From Theorem 1 and [16, Theorem 2.14] we know that there
exists a such that the balanced level is achieved by
all users, i.e.,

(73)

if and only if there exists a and a such that

(74)

where

With Theorem 1 it is clear that (73) implies (74). Conversely,
assume that (74) is fulfilled. By the uniqueness of the balanced
optimum [16], can be concluded, so (73) is fulfilled.

For the special case of monotone interference functions, as
studied in Section III-C, we have the following result.

Theorem 12: Let be interference functions such
that the boundaries of the corresponding sets do not con-
tain segments parallel to the coordinate axes, and there is no
self-interference, then for any there exists a vector
such that

(75)

where is defined by (7).
Proof: This is a consequence of Theorem 8 and the result

[16, Sec.2.5].

One practical example for which the achievability of the
boundary is important is the aforementioned problem of com-
bined beamforming and power allocation. Some algorithms,
like the ones proposed in [10], [12], require that the signal-to-in-
terference noise ratio (SINR) targets are feasible. This can be
tested by solving the min-max balancing problem (7), which
requires the existence of a fixed-point fulfilling (73).

A more general example is Yates’ fixed-point iteration for
power control [7], which also requires that the chosen SINR
target lies in the interior of the SIR feasible region . That
is, must be fulfilled, otherwise, the iteration diverges.
By computing , it can be checked whether this is fulfilled
or not. Again, this requires the existence of a fixed-point
fulfilling (73).
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VI. CONCLUSION

Interference functions were originally introduced in the con-
text of power control [7]. But their significance goes beyond this
application. In this paper, we introduce a general interference
calculus based on the axioms “scale invariance” and “mono-
tonicity.” The proposed theory provides an abstract framework
for modeling and analyzing interference in multiuser systems.

We show that every interference function can be expressed
as an optimum over elementary building blocks, optimized over
a closed comprehensive set. Moreover, any closed comprehen-
sive subset of can be expressed as a sublevel/superlevel set
of an interference function. This shows a direct connection be-
tween the theory of interference functions and the analysis of
achievable regions. A special case is the SIR region with the in-
dicator function , as discussed in Section I-B. Regions of
other performance measures, like Gaussian capacity, minimum
mean-square error (MMSE), bit-error rate (BER), etc., can be
derived as bijective mappings of the SIR region. This is a stan-
dard approach in the design of wireless systems.

The generality of the proposed framework makes it poten-
tially useful for the analysis of various resource allocation prob-
lems. In Section V, we have discussed the example of interfer-
ence balancing. Another example is cooperative game theory, as
discussed in Section IV-A.

The focus of this paper is on elementary properties of in-
terference functions and associated feasible sets. It should be
noted that this is the basis for more specific interference func-
tions, like the log-convex interference functions studied in [29],
or the convex/concave interference functions [28]. In [28], [29],
it is shown how convexity and the properties A1–A3 can be ex-
ploited to solve certain resource allocation problems. Other ap-
plications can be found in [33], [34]. These are all examples
which show that the basic properties A1–A3 often lead to re-
source allocation problems with a nice analytical structure, and
efficient algorithmic solutions.
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