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Concave and Convex Interference Functions—General
Characterizations and Applications
Holger Boche, Senior Member, IEEE, and Martin Schubert, Member, IEEE

Abstract—Many resource allocation problems can be studied
within the framework of interference functions. Basic properties
of interference functions are non-negativity, scale-invariance, and
monotonicity. In this paper, we study interference functions with
additional properties, namely convexity, concavity, and log-con-
vexity. Such interference functions occur naturally in various
contexts, e.g., adaptive receive strategies, robust power control, or
resource allocation over convex utility sets. We show that every
convex (resp. concave) interference function can be expressed as a
maximum (resp. minimum) over a weighted sum of its arguments.
This analytical insight provides a link between the axiomatic
interference framework and conventional interference models
that are based on the definition of a coupling matrix. We show
how the results can be used to derive best-possible convex/concave
approximations for general interference functions. The results
have further application in the context of feasible sets of multiuser
systems. Convex approximations for general feasible sets are
derived. Finally, we show how convexity can be exploited to solve
the problem of signal-to-interference-plus-noise ratio (SINR)-con-
strained power minimization with super-linear convergence.

Index Terms—Adaptive receivers and transmitters, interference,
power control, resource allocation, robustness.

I. INTRODUCTION

T HE performance of interference-coupled multiuser sys-
tems can be significantly improved by adaptive strate-

gies, which are able to adjust to varying interference situations.
Some examples are multiuser beamforming [1]–[6], code di-
vision multiple access (CDMA) receiver design [7], base sta-
tion assignment [8]–[10], or robust reception under channel un-
certainties [11]–[13]. All these examples have in common that
the interference experienced by each user depends on the trans-
mission powers in a nonlinear way. Adaptivity introduces addi-
tional degrees of freedom, which complicate the task of resource
allocation.

An axiom-based framework for modeling interference under
such nonlinear dependencies was proposed in [14], with exten-
sions in [15]–[18]. In this paper, interference is only character-
ized by certain monotonicity and scalability axioms (as detailed

Manuscript received October 18, 2006; revised January 24, 2008. First pub-
lished July 9, 2008; current version published September 17, 2008. This work
was supported in part by the STREP under Project IST-026905 (MASCOT)
within the sixth framework program of the European Commission. The asso-
ciate editor coordinating the review of this paper and approving it for publica-
tion was Prof. Qing Zhao.

H. Boche is with the Fraunhofer Institute for Telecommunications, Heinrich-
Hertz Institut, 10587 Berlin, Germany, and also with the Fraunhofer German-
Sino Lab for Mobile Communications MCI and the Technical University Berlin,
10587 Berlin, Germany.

M. Schubert is with the Fraunhofer German-Sino Lab for Mobile Communi-
cations MCI, 10587 Berlin, Germany.

Digital Object Identifier 10.1109/TSP.2008.928093

in Section I-C). This model can be applied to various types of
interference scenarios, and it was successfully used as a basis
for the development of iterative resource allocation algorithms.
For example, the algorithms [1], [2], [8]–[10] can be regarded
as special cases of this framework. Many more application ex-
amples exist in the literature.

This axiomatic approach to interference modeling is quite at-
tractive, since it helps to better understand the effects of inter-
ference coupling. The results can be applied to all interference
scenarios falling under this framework. This is convenient since
it means that many resource allocation including adaptive de-
signs are globally solvable by the fixed-point iteration proposed
in [14]. However, the generality of the axiomatic framework
also means that more specific properties (if available) are not
exploited. For example, it was shown in [19]–[25]) that the con-
vexity of linear interference functions can be exploited in var-
ious ways for the development of efficient algorithmic solutions.
However, these results are based on the specific linear interfer-
ence model, which is the classical model in the context of power
control (see e.g., [26]–[30]). Unlike the axiomatic framework,
the linear model does not allow for adaptive designs.

The power control framework was extended to include
adaptive receivers [1]–[8], [10], [11], [13], [24], [31]–[34]).
These nonlinear interference models also allow for efficient
algorithms. Most of these approaches exploit convexity, either
explicitly [6], [24], [34], or implicitly [1]–[5], [8], [10], [13],
[31], as will be seen in the following.

In this paper, we propose a new axiomatic interference frame-
work that combines convexity with the properties of interfer-
ence functions [17], [18]. The proposed framework also pro-
vides a link between the axiomatic approach [14]–[18] and other
models based on the notion of a interference coupling matrix.
The advantage of the axiomatic approach is its generality and
wide range of applications, whereas efficient algorithms have
been reported for the matrix-based approach (see, e.g., [1]–[7],
[9]–[11], [13], [24], [31]–[33]). This paper provides a unifying
framework for all these individual models.

Some notational conventions are as follows. Matrices and
vectors are denoted by bold capital letters and bold lowercase
letters, respectively. Let be a vector, then is the th
component. The notation means that for all com-
ponents . Also, and denotes component-wise
exponential and logarithm, respectively. The set of non-nega-
tive reals is denoted as . The set of positive reals is denoted
as .

In Section I-A, we will discuss examples of concave inter-
ference functions. Some examples for convex interference func-
tions will be discussed in Section I-B.

1053-587X/$25.00 © 2008 IEEE
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A. Example: Adaptive Receive or Transmit Strategies

An abstract interference model for adaptive receive or
transmit strategies was proposed in [17] and [31]. The inter-
ference power experienced by the th user from a user set

can be written as

(1)

where
• is a vector of transmission powers (the

power allocation). In the presence of non-negligible noise
power , an extended power vector

(2)

can be used. In most parts of this paper, noise is an op-
tion but not an essential part of the model. In this way, the
framework differs from related work [14]. This will be dis-
cussed later in Section I-C.

• is a non-negative vector of interference coupling
coefficients, depending on a receive strategy from a
compact set . If one component of stands for noise
power, then the respective component of is strictly
positive.

This nonlinear interference model includes the interference
scenarios [1]–[10] as special cases.

Notice, that all the results of this paper can also be applied to
interference scenarios depending on transmit strategies. Sim-
ilar to the uplink/downlink duality observed in the context of
downlink beamforming [1]–[3], optimal transmit strategies can
be found by optimizing an equivalent system with “virtual re-
ceive strategies,” as discussed in [17] and [31].

In order to provide an example for a concrete realization of
the interference function (1), we will now discuss the interfer-
ence functions resulting from beamforming receivers. Consider
an uplink beamforming system with single-antenna trans-
mitters and an -element antenna array at the receiver. Inde-
pendent signals are transmitted over vector-valued
channels , with spatial covariance matrices

. The superimposed signals at the array output
are received by a bank of linear filters (the “beam-
formers”). The output of the th beamformer is

(3)

where is an additive white Gaussian noise (AWGN)
vector, with . The interference power coupling
coefficients of the th user are

,

.

(4)

With the commonly used normalization , the inter-
ference function for the beamforming case is

(5)

It can be observed that the interference coupling is not con-
stant. For any power vector , the beamformer adapts
to the interference in such a way that the signal-to-interference-
plus-noise ratio (SINR) is maximized. This optimization can be
solved efficiently via an eigenvalue decomposition [35]. For de-
terministic channels , we have , so the
interference resulting from optimum beamformers is obtained
in closed from [35]

(6)

This interference function is a special case of the more general
beamforming model (5). Both functions are special cases of the
generic interference function (1), which in turn is a special case
of the axiomatic framework of convex interference functions
which will be introduced in this paper.

For interference functions of the type (1), efficient algo-
rithmic solutions for max–min fairness [33] and SINR-con-
strained power minimization [31], [34] are known. In [34],
it was shown that the power minimization problem can be
solved with super-linear convergence rate. This behavior is due
to the special structure of the interference model (1). For the
more general axiom-based framework of “standard interference
functions” only a fixed-point iteration with linear convergence
is known [14], [16].

It should be noted that the interference function (1) can also
be used to model adaptive transmit strategies. By exploiting the
duality between receive and transmit strategies (see, e.g., the
discussion in [17] and [31]), the parameter can be interpreted
as a transmit strategy in a “dual channel.” This concept is closely
related to the “virtual uplink” proposed in the beamforming con-
text [1].

B. Example: Robust Designs

In (1), the parameter was chosen such that interference is
minimized. If we replace min by max, we obtain the worst case
interference function

(7)

Here, the parameter can be regarded as an uncertainty from
a compact uncertainty region . Optimizing the system with
respect to the worst case interference provides a certain degree
of robustness (see, e.g., [11], [13], and [24]).
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The source of uncertainty can be system imperfections or
channel estimation errors. As an example, consider again the
downlink beamforming scenario discussed in the previous sec-
tion. In the presence of imperfect channel estimation, the spatial
covariance matrices can be modeled as , where

is the estimated covariance, and is the estimation
error from a compact uncertainty region . In order to improve
the robustness, the system can be optimized with respect to the
worst case interference functions

(8)

Using a vector notation, as in (4), the interference function (8)
can be rewritten in the canonical form (7). Other types of uncer-
tainties, like noise uncertainty are straightforward extensions of
this model.

Note that in related work [36], [37], an additional optimiza-
tion with respect to the beamformers is performed.
This generally leads to a nonconvex max–min-type interference
function, which differs from the model (8). This more general
case is beyond the scope of this paper and will be studied else-
where [18]. Here, we focus on the aspects of convexity.

The worst case interference function (7), and thus (8), are
convex. Convex interference functions have some special prop-
erties which allow for efficient algorithmic solutions. For ex-
ample, it was shown in [13] that the problem of robust power
minimization subject to SINR constraints can be solved with
super-linear convergence rate for arbitrary interference func-
tions of the type (7), assuming a constant noise component.
Again, the same problem can be solved by the fixed-point it-
eration [14]. However, the fixed-point iteration is based on a
more general axiomatic framework and does not exploit the spe-
cial structure (7). Therefore, only linear convergence is achieved
[16]. This example provides further motivation for analyzing
and exploiting special properties of interference functions, if
available.

Another interesting property of the interference function (7)
is log-convexity after a change of variable , where

[17]. A function is said to be log-convex if the
logarithm of the function is convex [38].

If multiuser interference can be modeled by log-convex
interference functions , then the resulting
log-SIR region (the set of jointly achievable signal-to-inter-
ference ratios (SIRs) on a logarithmic scale) is convex. This
is of practical importance for resource allocation in a network
since it allows the application of standard convex optimization
strategies for finding an optimum on the boundary of the
region. This result can be extended to any other SIR-dependent
quality-of-service (QoS) measure with a log-convex inverse
mapping SIR QoS [17]. The change of variable
was already successfully used in the context of linear inter-
ference functions [19]–[25]. The linear case corresponds to
the above model (7) with a fixed parameter (nonadaptive
interference coupling coefficients). In this paper, we will use it
in the context of a more general axiomatic interference model,
which will be introduced in the next section.

C. Axiomatic Approach to Interference Modeling

The examples in the previous sections show that interfer-
ence under adaptive designs can often be expressed in canonical
forms (1) or (7). That is, a linear function is either minimized
or maximized over a set of “coupling coefficients.” Interference
functions of this kind are common in power control theory and
related areas (see, e.g., [23] and [39] and references therein). By
exploiting the special matrix structure of (1) and (7), efficient al-
gorithmic solutions were found in the literature for various types
of resource allocation problems, like SINR-constrained power
minimization [13], [31] or max–min fairness [31]–[33].

A conceptually different approach was introduced by Yates
[14], who proposed an axiomatic framework for characterizing
the effects of interference. A slightly different version of this
framework was proposed in [17]:

Definition 1: We say that is an interference
function if it fulfills the axioms

(non-negativity)
(scale invariance)
(monotonicity) if

This framework differs from Yates’ standard interference
function [14] in the way noise is handled. While noise was
implicitly assumed in [14], the model A1–A3 requires the
definition of an extended power vector , as defined by (2).
This explains property A2, which differs from the “scalability”
required in [14]. Thus, if noise is required as part of the model,
then it must be explicitly included by considering the extended
power vector . In addition, must be required to be strictly
monotone with respect to the noise component. In this case, the
model A1–A3 is equivalent to Yates’ framework of standard
interference functions (see [17] for more details).

The reason for choosing the axiomatic framework A1–A3
is the aim for a unifying canonical model, which allows the
analysis and comparison of different kinds of interference func-
tions, independent from possible noise requirements. Although
noise is mostly a reasonable assumption, there is strong practical
and theoretical motivation for interference functions without
noise. For example, there is a rich history of resource alloca-
tion problems in the absence of noise, ranging from classical
power control based on Perron–Frobenius theory [39], to beam-
forming [32], [40], [41], and max–min fair resource allocation
[33], where interference functions of the form (1) were assumed.

A second motivation for the framework A1–A3 is the analysis
of feasible utility regions, which can be expressed as sublevel
sets of interference functions. In this context, noise is meaning-
less. This aspect of interference functions will be discussed in
detail in Sections III-C, IV-D, and IV-E.

Finally, note that property A1 non-negativity turns into posi-
tivity under the additional requirement that there exists a
such that . Then, positivity holds for all , as
shown in [17]. This basically means that the trivial case

is ruled out. However, interference can be zero in some cases,
so it is important not to require positivity from the outset.

D. Problem Formulation and Contributions

The axiomatic approach described in the previous section
has proved useful for solving the problem of SINR-constrained
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power minimization [14]. Given interference functions
, which are strictly monotonic in the noise

component, the unique global optimum is obtained by a
fixed-point iteration with linear convergence [14], [16], [34].

It can be observed that the specific matrix-based interference
functions discussed in Sections I-A and I-B are special cases of
the axiomatic framework A1–A3. Hence, the fixed-point itera-
tion can be applied.

However, a better convergence rate can be achieved by ex-
ploiting the special matrix structure of (1) and (7), as proposed
in [13], [31]. Then, the same power minimization problem can
be achieved with super-linear convergence [13], [34]. This be-
havior is due to the convex (resp. concave) structure of the ma-
trix-based interference functions (1) and (7).

Another example is the SIR balancing problem [33], which
was solved by exploiting the properties of the concave matrix-
based interference functions (1).

Clearly, convexity/concavity is an important property which
should be exploited whenever possible. Now, an interesting
question is how convexity/concavity can be exploited when
starting from an axiomatic interference model, i.e., requiring
A1–A3 plus an additional convexity/concavity property. This
interference model is not based on a coupling matrix. No theory
exist for this general case.

In this paper, it will be shown that all the results discussed
so far can indeed be generalized to an axiomatic interference
model. This provides a unifying framework, which contains
many of the previous results as special cases. For example,
algorithms with super-linear convergence not only exist for
the particular matrix-based interference functions (1) and (7),
but for all convex and concave interference functions fulfilling
A1–A3. More aspects and advantages of having an axiomatic
framework for convex/concave interference functions will be
discussed throughout this paper.

In Sections II and III, we will start by analyzing the structure
of concave and convex interference functions, respectively. It
was already observed that (5) is a concave interference function.
Here, we show that every concave interference function can be
represented as a minimum over linearly weighted powers, as in
(5), and the coefficients are chosen from a closed comprehen-
sive convex set from . Similar results are shown for convex
interference functions, except that the maximum is taken, as
in (7). Thus, every convex/concave interference function can
be interpreted as an optimum over elementary linear interfer-
ence functions. In Section III-C, we study interference functions
which are convex on a logarithmic scale (log-convex). Such a
change of variable is often useful to reveal a “hidden convexity”
(see, e.g., [19]–[25]). In this paper, we show that log-convex in-
terference functions are an important generalization of convex
interference functions. Every convex interference function is a
log-convex interference function, but the converse is false.

In Section IV, we will discuss possible applications. Having
analyzed the elementary building blocks of convex and concave
interference functions, we now exploit this knowledge to derive
best possible convex/concave approximations of arbitrary inter-
ference functions. Then, we will discuss the close connection
between interference functions and SIR feasible regions, which
are sublevel sets of a min–max indicator function. This indicator

function is itself an interference function, so we can apply the
previous results to the analysis of the structure of the SIR re-
gion. Under the certain conditions, the region is convex. If the
region is not convex, then best-possible convex approximations
can be given.

Finally, in Section IV-F, we discuss how the results can be
applied to the problem of SINR-constrained power minimiza-
tion [14]. If convexity or concavity is added to the axiomatic
framework, then the representations (1) and (7) can be exploited
for the design of an iterative algorithm that solves the problem
with super-linear convergence. Without convexity, only the
fixed-point iteration [14] is known, which is known to have
linear convergence rate [16], [34].

II. CONCAVE INTERFERENCE FUNCTIONS

In this section, we analyze the structure of arbitrary concave
interference functions. Applications of the results will be dis-
cussed later in Section IV.

Definition 2: A function is said to be a con-
cave interference function if A1–A3 are fulfilled and in addition

is concave on .
Examples are the interference functions (1), (5), and (6).

A. Representation of Concave Interference Functions

A useful concept for analyzing general concave functions is
the conjugate function (see, e.g., [38] and [42])

(9)

For the special problem at hand, we can exploit that is
an interference function, i.e., properties A1–A3 are fulfilled in
addition to convexity. This leads to the following observations.

Lemma 1: For any given , the conjugate (9) is either
minus infinity or zero, i.e.,

(10)

Proof: The norm of in (9) is not constrained, thus for all

(11)

The second step follows from A2. Assume , then
(11) can only hold for all if .

Lemma 2: If has a negative component, then
. Proof: Assume for some arbitrary index . In-

troducing a power vector with , and
, , where , we have
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The first inequality follows from being the infimum over
all power vectors. The second inequality follows from axiom
A1. Letting , the right-hand side of the inequality tends
to .

From Lemmas 1 and 2, it can be concluded that the set of
vectors leading to a finite conjugate is

(12)

Next, it is shown that every is associated with a
hyperplane upper-bounding the interference function.

Lemma 3: For any , we have

(13)

Proof: With definition (12) we have

for all , thus (13) holds.
This leads to our first main result, which shows that every

concave interference function is characterized as a minimum
over a sum of weighted powers.

Theorem 1: Let be an arbitrary concave interference func-
tion, then

for all (14)

Proof: Consider an arbitrary fixed . Since is
concave, we know that (see, e.g., [38] and [42]), there exists a
vector such that

for all (15)

The vector must be non-negative, otherwise (15) cannot be
fulfilled for all . This can be shown by contradiction.
Suppose that for some index , and we choose such
that , , and , with . With A3
(monotonicity), we know that implies .
Thus, (15) leads to . This contradicts
the assumption . It was shown in [17] that the function

is continuous on , thus implies .
Therefore

(16)

Inequality (15) holds for all . Taking the infimum and
using (16), we have

(17)

Comparison with (9) shows that and therefore
. Lemma 3 implies

for all (18)

Now, (15) holds for all , so it holds as well for , with
. Because of property A2, we have , and

thus

(19)

Thus, . Comparison with (18) shows that this in-
equality can only be fulfilled with equality. It can be concluded
that for any , there exists a which minimizes

, such that the lower bound is achieved. Hence, (14)
holds.

The proof shows that every fulfilling (15) for a given point
, is a minimizer of (14). Conversely, any which

fulfills

(20)

also fulfills the inequality (15). This is a consequence of Lemma
3, which leads to

for all

Thus, for any given , the set of optimal coefficients
achieving the minimum (20), is identical to the set of

for which (15) is fulfilled.

B. Properties of the Set

Theorem 1 shows that an arbitrary concave interference func-
tion can be characterized as the minimum of a weighted sum
of powers, optimized over the set . In this section, we will
further analyze the relationship between and . The re-
sults will be needed later, e.g., in Section IV-B.

Definition 3: A set is said to be upward-compre-
hensive if for all and

(21)

Definition 4: A set is said to be UCCC if it is upward-com-
prehensive closed convex.

Lemma 4: Let be a concave interference function, then
, as defined by (12), is a nonempty UCCC set.

Proof: From the proof of Theorem 1 it is clear that
is nonempty. This is a consequence of the concavity of .

Now, we show convexity of . Let and
. Using ,

we have

(22)
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Fig. 1. Illustration of Lemma 4: the coefficient set is upward-compre-
hensive closed convex (UCCC). For any , all points (shaded
box) are also contained in .

(23)

Thus, , which proves convexity.
Now, we show that is closed. Let be an arbitrary

convergent Cauchy sequence in , i.e., there exists a
such that for all components . We
need to show that the limit is also contained in .

Since , also . For an arbitrary fixed
, we have

(24)

The last step follows from , which implies
for all . Since inequality (24) holds for all

, we have

(25)

Thus, , which proves that is closed. It re-
mains to show upward-comprehensiveness. Consider an arbi-
trary . If then

for all . Thus, .
Remark: The proof of Lemma 4 does not rely on concavity,

except for the comment on non-emptiness. Thus, is a
UCCC set for any interference function fulfilling A1–A3.

Thus far, we have analyzed the elementary building blocks of
concave interference functions. Lemma 4 shows that any con-
cave interference function is associated with a UCCC coeffi-
cient set , as illustrated in Fig. 1. This approach, and the
resulting representation (14), can be referred to as analysis.

Next, we study the converse approach, namely the synthesis
of a concave interference function. Starting from an arbitrary
nonempty UCCC set , we can construct a function

(26)

It can be verified that is concave and fulfills the properties
A1–A3. Thus, every UCCC set leads to a concave interference
function.

The next theorem shows that the operations analysis and syn-
thesis are reversible.

Theorem 2: For any nonempty UCCC set we have

(27)

Proof: Consider an arbitrary . With (26), we have

(28)

Thus, , and consequently . Next,
equality is shown by contradiction. Hence, we suppose

. This implies the existence of a with and
. Note, that can be assumed to be strictly positive

since , otherwise we would have the
contradiction

Now, we can exploit that the set is convex and its intersection
with is nonempty (this follows from comprehensiveness).
From the separating hyperplanes theorem (see, e.g., [38] or [42,
Theorem 4.1.1, p. 51]), we known that there is a such that

(29)

where the last equality follows from Theorem 1. This is a con-
tradiction, thus .

The next corollary shows a one-to-one correspondence be-
tween any concave interference function and its UCCC set

.
Corollary 1: Let and be two arbitrary UCCC sets

from . If for all , then
.
Proof: The assumption implies .

The result follows with Theorem 2, which shows
.

The results show a one-to-one correspondence between con-
cave interference functions and UCCC sets. Every concave in-
terference function is uniquely associated with an UCCC set

. Conversely, every UCCC set is uniquely associated
with an interference function . We have and

.
The UCCC set has an interesting interpretation in the

context of network resource allocation. Suppose that stands
for some QoS measure, like bit error rate, or delay. For certain
choices of system parameters the QoS region is convex (see,
e.g., [17]). The weights can be chosen such that individual
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Fig. 2. The concave interference function can be interpreted as the min-
imum of a weighted sum-cost function optimized over the convex set . The
“weighting vector” controls the tradeoff between the utilities .

user priorities are included. Then, is the minimum network
cost obtained by optimizing over the boundary of the QoS re-
gion , as illustrated in Fig. 2. This shows a connection
between the axiomatic framework of interference functions and
resource allocation problems. Further aspects will be discussed
in Section IV.

III. CONVEX INTERFERENCE FUNCTIONS

In this section, we analyze the structure of convex interference
functions.

Definition 5: A function is said to be a convex
interference function if A1–A3 are fulfilled and in addition is
convex on .

Most results can be derived in a similar way to the concave
functions studied in Section II. However, there are slight differ-
ences, which will be pointed out.

A. Representation of Convex Interference Functions

The conjugate function for the convex case is [38]

(30)

Exploiting the special properties A1–A3, we obtain the next
result.

Lemma 5: The conjugate function (30) is either infinity or
zero, i.e.,

(31)

Proof: This is shown in a similar way to the proof of
Lemma 1.

Furthermore, the monotonicity axiom A3 implies that we can
focus on non-negative coefficients. This will become clear later,
in the proof of Theorem 3. Therefore, the coefficient set of in-
terest is

(32)

Every is associated with a hyperplane which lower
bounds the interference function.

Lemma 6: For any

(33)

Proof: For all , we have

Thus, (33) holds.
Based on this lemma, we will now show that every convex

interference function can always be characterized as a maximum
sum of weighted powers.

Theorem 3: Let be an arbitrary convex interference func-
tion, then

for all (34)

Proof: Consider an arbitrary fixed . Since is
convex, there exists a vector such that [42, Theorem
1.2.1, p. 77]

for all (35)

The vector must be non-negative, otherwise (35) cannot be
fulfilled for all . This can be shown by contradiction.
Suppose that for some index , and we choose
such that , , and , with

. With A3 (monotonicity), we know that implies
. Thus, (35) leads to

. This contradicts the assumption . Because of the
non-negativity of , we have

(36)

Inequality (35) holds for all . Taking the supremum and
using (36), we have

(37)

Comparison with the conjugate (30) shows that
and therefore . Lemma 6 implies

(38)

Inequality (35) holds for all , so it holds as well for , with
an arbitrary . With A2, we have

(39)

By combining (38) and (39), it can be concluded that
. Thus, is the maximizer of (34).

From the proof of Theorem 3, it becomes clear that the max-
imizer of (34) is always non-negative. Also, the set is
nonempty.

B. Properties of the Set

We now investigate how the properties of an arbitrary convex
interference function influence the properties of the resulting
set . We begin with some definitions.
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Definition 6: A set is said to be downward-compre-
hensive if for all and

(40)

Definition 7: A set is said to be DCCC if it is downward-
comprehensive closed convex.

Lemma 7: Let be a convex interference function, then
the set , as defined by (32), is nonempty, bounded, and
DCCC.

Proof: First, convexity is shown. Let and
. Similar to (23), we can show

(41)

Thus, .
Next, we show that the set is upper-bounded. Consider an

arbitrary . With (34), we have

(42)

where is the all-ones vector. Property A3 implies
, thus is bounded.

Now, we show that is closed. Let be an arbitrary
convergent Cauchy sequence in , i.e., there exists a
such that for all components . We
need to show that the limit is also contained in .

Since , also . For an arbitrary fixed
, we have

(43)

The last step follows from , which implies
. Since inequality (43) holds for all , we

have

(44)

Thus, , which proves that is closed. In
order to show downward-comprehensiveness, consider an arbi-
trary . For any with , we have

for all , thus .
The proof of Lemma 7 does not rely on convexity, except

for showing nonemptiness and boundedness. Thus, is
a DCCC set for any interference function fulfilling A1–A3. The
result is illustrated in Fig. 3.

Fig. 3. Illustration of Lemma 7: the coefficient set is downward-com-
prehensive closed convex (DCCC). For any , all points
(shaded box) are also contained in .

Next, consider the converse approach, i.e., the synthesis of a
convex interference function from a bounded DCCC set. The
function

(45)

is a convex interference function which fulfills A1–A3.
Similar to the results of Section II, the operations analysis and

synthesis are shown to be reversible:
Theorem 4: For any nonempty DCCC set we have

(46)

Proof: Consider an arbitrary . Lemma 6 implies

(47)

With Lemma 5, we have , and consequently
. Similar to the proof of Theorem 2, we can show by

contradiction that this can only be fulfilled with equality. Sup-
pose that , then this implies the existence of a

with and . Applying the theorem of
separating hyperplanes, we know that there is a such that

(48)

where the last equality follows from (3). This is a contradiction,
thus .

The next corollary shows that there is a one-to-one correspon-
dence between any convex interference function and the re-
spective DCCC set .

Corollary 2: Let and , be two arbitrary DCCC sets
from . If for all , then .

Proof: The proof follows from Theorem 4.
The results show that every convex interference function
can be interpreted as the maximum of the linear function

over a bounded DCCC set . Any convex in-
terference function has an interpretation as a maximum of a
weighted “sum utility function,” as illustrated in Fig. 4.



BOCHE AND SCHUBERT: CONCAVE AND CONVEX INTERFERENCE FUNCTIONS—GENERAL CHARACTERIZATIONS AND APPLICATIONS 4959

Fig. 4. Every convex interference function can be interpreted as the max-
imum of a weighted sum-utility function optimized over the convex set .
The “weighting vector” controls the tradeoff between the utilities .

C. Log-Convex Interference Functions

In this section, we study the class of log-convex interference
functions. A function , with is said to be log-convex
if is convex. An equivalent condition is [38]

for all

Definition 8: A function is said to be a
log-convex interference function if fulfills A1–A3 and in
addition is log-convex on .

Here, we use a change of variable (component-wise
exponential). This technique was already used in [19]–[25] in
order to exploit a “hidden convexity” of functions which are
otherwise nonconvex.

Examples of log-convex interference functions are (7) and
(8). Another well-known example is the case of linear interfer-
ence functions (see, e.g., [26]–[30]). The log-convexity of linear
interference functions can be exploited for the analysis of the
SIR feasible set.

1) Example 1: Consider linear interference functions
, , where is an irreducible

matrix containing the interference coupling coefficients. The
SIR feasible region can be defined as

(49)

where is the spectral radius of the
weighted coupling matrix.

It was observed in [19], with extensions in [20], [22], and
[23], that the SIR set is convex on a logarithmic scale. This is
because the spectral radius is log-convex after a change of
variable , where is the logarithmic SIR.

Note, that also fulfills the axioms A1–A3. That is, the
spectral radius is a special case of the more general framework
of log-convex interference functions.

Some elementary properties of log-convex interference func-
tions are as follows.

• The sum of log-convex interference functions is a log-
convex interference function.

• Let and be log-convex interference functions,
then

is also a log-convex interference function.
• Let be a sequence of log-convex interference

functions, which converges to a limit
for all , then is also a log-convex

interference function.
It was already shown in [17] that every convex interference

function is log-convex after the change of variable .
The same result can be shown in a simpler and more direct way
by exploiting the structure result of Theorem 3.

Theorem 5: Every convex interference function is a
log-convex interference function in the sense of Definition 8.

Proof: Theorem 3 shows that every convex function
can be expressed as . The function

is log-convex, i.e., is convex.
Maximization preserves convexity, thus
is convex as well. The result follows from interchanging log
and max.

Theorem 5 shows that the class of log-convex interference
functions contains convex interference functions as a special
case.

Next, consider the function . The func-
tion is a log-convex interference function if and only if the
coefficients fulfill and .
Non-negativity is required for axiom A3 (monotonicity), and
unity norm is required for A2 (scale invariance). This
becomes clear when writing

The function is an elementary log-convex interference
function and can be regarded as a basic building block of every
log-convex interference function. This will become clear from
the following Theorem 6, which was proved in [43]. To this
end, we introduce the function

(50)

The function plays a similar role as the conjugate func-
tion which has been used in the context of convex/concave in-
terference functions. Using (50), we define the coefficient set

(51)

It can be shown that implies , so this
property is not explicitly required in (51).

The following theorem shows that every log-convex interfer-
ence function has an elementary product representation.
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Theorem 6: Every log-convex interference function , on
, can be represented as

(52)

The proof is given in [43]. Applications of Theorem 6 and
the connection with convex interference functions with will be
discussed in Section IV.

IV. APPLICATIONS

We begin by deriving convex/concave approximations for
general interference functions. By exploiting the equivalence
between interference functions and certain feasible sets, these
results can be used to derive convex approximations of other-
wise nonconvex feasible sets. This is potentially useful, e.g.,
for resource allocation algorithms operating on the boundary
of the set.

Later, in Section IV-F it will be shown how convexity/con-
cavity of underlying interference function can be exploited di-
rectly, in order to solve the power minimization problem [14]
with super-linear convergence rate.

A. Greatest Log-Convex Minorant

Minorants and Majorants are defined as follows:
Definition 9: An interference function is said to be a

minorant of if for all , where
is the domain of . An interference function is said to be
a majorant if for all .

Consider an arbitrary interference function , de-
fined on , which needs neither be (log-)convex nor concave.
Using Theorem 6, we can construct a log-convex approximation
of

(53)

It was shown in [43] that function is a log-convex mino-
rant of , i.e.,

for all (54)

The next theorem shows that it is not possible to find a tighter
log-convex minorant.

Theorem 7: Let be an arbitrary interference function, then
(53) is its greatest log-convex minorant. Precisely, let be a
log-convex interference function which fulfills

(55)

then . Proof: The functions , , and
are defined as in (50). Because of (55) we have

for all

This implies

(56)

from which we can conclude .

B. Least Concave Majorant and Greatest Convex Minorant

Consider again the general interference function , defined
on . We can use the results of Sections II and III to derive
concave and convex approximations. To this end, we construct
sets and , as defined by (12) and (32), respec-
tively. We know from Lemma 3 that for any we
have , thus

for all (57)

This means that the function

(58)

is a concave majorant of .
In a similar way, it follows from Lemma 6 that

(59)

is a convex minorant.
Now, it will be shown that these approximations are best-

possible.
Theorem 8: is the least concave majorant of , and

is the greatest convex minorant of .
Proof: We prove the first statement by contradiction. The

proof of the second statement follows in the same way.
Suppose that there exists a concave interference function ,

such that

(60)

Both and are concave interference functions, so we know
from Theorem 1 that they can be represented as (14).

If the conjugate of is finite for some , i.e.,
, then it follows from inequality (60) that also the conjugates

of and are finite. Thus

(61)

The set is UCCC, as shown Section II-B, so with The-
orem 2 we have

(62)
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Combining (61) and (62), we have . Hence,
for all .

In Section IV-C, the convex minorant will be compared with
the log-convex minorant.

C. Comparison of Convex and Log-Convex Minorants

In the previous sections it was shown that every general
interference function has a greatest convex minorant

and a greatest log-convex minorant . Now, an
interesting question is which class of functions provides the
tightest minorant.

From Theorem 5 we know that is also log-convex.
Thus, the set of log-convex interference functions is more gen-
eral as the set of convex interference functions. That is, every
convex interference function is log-convex, but the converse is
not true. This means that the greatest log-convex minorant is
better or as good as the greatest convex minorant, i.e.,

(63)

If the log-convex minorant is trivial, i.e., ,
, then also the convex minorant will be trivial. Conversely,

if is trivial, then this does not imply that is trivial as
well. This is shown by the following example.

1) Example 2: Consider the log-convex interference function

(64)

with the convex minorant

(65)

It was already shown that , . Suppose
that there is a such that for some index .
That is

for all

This would lead to the contradiction

Hence, . The only convex minorant of the
log-convex interference function (64) is the trivial function

.

D. Convex and Concave Approximations of SIR Feasible Sets

Now, we show how the results can be applied to the SIR fea-
sible region of a multiuser system. Consider users with inter-
ference functions for all . Certain SIR targets

are said to be feasible if there exists a
such that

for all

That is, the SIR targets can be achieved, at least in an asymp-
totic sense. Whether or not this condition can be fulfilled de-
pends on how the users are coupled by interference [17]. A point

is feasible if and only if , where

(66)

The feasible region is the sublevel set

(67)

This generalizes the region (49) to arbitrary interference func-
tions characterized by A1–A3.

If are log-convex, then is a log-
convex interference function [17]. Thus, the sublevel set is
convex on a logarithmic scale. We will refer to such sets as “log-
convex” in the following.

Now, consider general interference functions, with no further
assumption on convexity or concavity. The corresponding re-
gion need not be convex, which complicates the development
of algorithms operating on the boundary of the region. But with
the results from the previous sections, we can derive convex and
concave approximations.

For each , we have a log-convex minorant , as
defined by (53). This leads to a region , characterized
by . Because , for all , we
have . That is, the feasible region is contained
in the log-convex region . According to Theorem 7, this
is the smallest region associated with log-convex interference
functions. Moreover, the SIR region has a useful property.
For every mapping , with a log-convex inverse
function , the resulting QoS region is log-convex [17].

Instead of approximating the underlying interference func-
tions , it is also possible to approximate the function

directly. It can be verified that fulfills
the axioms A1–A3. Thus, the SIR feasible region can also
be regarded as a sublevel set of an interference function.

As shown in Section IV-B, we can construct the least concave
majorant and the greatest convex minorant . Consider the
sublevel sets

(68)

(69)

Because for all , the resulting
level sets fulfill

(70)

Sublevel sets of convex interference functions are downward-
comprehensive convex. Because is the greatest convex mino-
rant, the set is the smallest closed downward-comprehensive
convex subset of containing (the “convex comprehensive
hull”).

The other sublevel is generally not convex, but it has a
convex complementary set . The
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Fig. 5. Illustration: An arbitrary SIR feasible region can be approximated
by convex regions.

complementary set is a superlevel set of a concave interfer-
ence functions, so it is upward-comprehensive convex. The set

is downward-comprehensive. Thus, is the largest closed
downward-comprehensive subset of such that the comple-
mentary set is convex.

These regions provide best-possible convex approximations
of the original region. Of course, there can exist other bounds,
which are nonconvex, but tighter. For example, it is possible to
construct a log-convex minorant , which fulfills

. The resulting sublevel set

fulfills . This is illustrated in Fig. 5. Note that these
bounds need not be good. It can happen that only a trivial bound
exists, as shown in Section IV-C.

1) Example 3: Consider the SIR supportable region re-
sulting from linear interference functions , as
defined by (49). For , we have a coupling matrix

. The closure of the nonsupportable region is the

set , where . It can be veri-
fied that the function fulfills the axioms
A1–A3, thus is an interference function. The spectral ra-
dius is

(71)

thus if and only if , which shows
that the nonsupportable region is convex. Perhaps interestingly,
this set can be shown to be convex for users [44]. How-
ever, this property does not extend to larger numbers , as
shown in [45].

With the proposed theory, this problem can be understood in
a more general context. This result shows that certain properties
of the Perron root [44], [45] can be generalized to the min–max
optimum for arbitrary convex/concave interference func-
tions. The function is an indicator for feasibility of SIR
targets , and the level set (67) is the SIR region, i.e., the set of
jointly feasible SIR.

E. Convex Comprehensive Level Sets

In the previous section, we have discussed the SIR region,
which is a comprehensive sublevel set of the interference func-
tion . This can be generalized to other level sets. It was
shown in [18] that any closed downward-comprehensive subset
of can be expressed as a sublevel set of an interference
function. Also, any closed upward-comprehensive subset of

can be expressed as a superlevel set of an interference
function. Here, “closed” means relatively closed on .

In this section, we derive necessary and sufficient conditions
for convexity. Consider an interference function with the sub-
level set

(72)

and the superlevel set

(73)

Note, that the meaning of the vector depends on the con-
text. In the first part of the paper, was introduced as a “power
vector.” However, can stand for any other parameter, like the
SIR vector used in the previous section.

Theorem 9: The set is nonempty UCCC and
if and only if the interference function is concave and there
exists a such that .

Proof: Assume that the interference function is concave.
It was shown in [18] that the resulting superlevel set (73) is
upward-comprehensive (this follows from axiom A3), closed
(relatively on ), and . The set is also convex
since every superlevel set of a concave function is convex (see,
e.g., [38, p. 75]). Conversely, assume that the superlevel set
is a UCCC set. It was shown in [18] that implies
the existence of a such that . It remains to
show that the interference function is concave. Consider
arbitrary boundary points , such that

. Defining , we have for
all . For arbitrary , we define

and

which ensures the desired property . With property
A2, we have

(74)

Using and (74), we have

(75)

Next, consider arbitrary points , from which we
can construct boundary points and .
It can be observed from A2 that and holds.
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Defining and , and using (75), we
have

(76)

Inequality (76) holds for arbitrary and ,
thus implying concavity of .

A similar result can be shown for the set . The proof is sim-
ilar to the proof of Theorem 9, but the directions of the inequal-
ities are reversed.

Theorem 10: The set is nonempty DCCC and if
and only if the interference function is convex and there exists
a such that .

Applying the result to the nonsupportable SIR region intro-
duced in Example 3, it follows from Theorem 9 that the spec-
tral radius needs to be concave in order
for the nonsupportable SIR region to be convex. It was shown
[44] that is log-convex when using the substitution

. This does not imply that is concave.
Theorem 5 shows that every convex interference function

is log-convex when we substitute . However, this
does not mean that a concave function cannot be log-convex. For
example, the function , as defined by (71), is a concave in-
terference function, even though
is log-convex.

The following example shows a case where an interference
function is log-convex, but not concave. This discussion
shows that log-convex interference functions need neither be
convex nor concave. Both cases are possible, however.

1) Example 4: Consider two log-convex interference func-
tions and , where only depends on and

only depends on . We define

(77)

The maximum of log-convex interference functions is a
log-convex interference function. However, (77) is not concave.

In order to show this, let

and be two arbitrary

vectors such that and . Defining
, , we have

Thus

The super-level set is not convex and is
not concave. This example shows that log-convex interference
functions need not be concave.

The results can be further generalized by assuming a bijective
mapping between a QoS vector and the associated SIR values

. For a linear interference model
with a coupling matrix , the QoS region is defined as

(78)

Under which condition is the QoS region a convex set? This
question is probably difficult and only partial answers exist.
It was shown in [44] that if the function is log-convex,
then is convex for all irreducible ma-
trices . In this case, convexity of implies
convexity of the QoS feasible region . However, the converse
is not true. That is, convexity of does not imply convexity of

. Note, that is generally not
an interference function with respect to (except, e.g., for the
trivial case ), so Theorem 10 cannot be applied.

F. Super-Linearly Convergent Algorithm

We can exploit that every concave or convex interference
function can be expressed as (14) or (34), respectively. Assume
that the first powers are caused by users with
arbitrary concave interference functions . The last
power component is constant noise. All functions

are strictly monotonic with respect to . We
are interested in the global power minimum

(79)
where is a target SIR. Collecting all targets in a diagonal
matrix , the global optimum of (79) is
found by the following iteration. Superscript stands for the
iteration step, and an arbitrary “feasible” initialization is
assumed

(80)

(81)

where is the first block of the matrix
. The vector is the last column of this

matrix. The following result is an immediate consequence of
the results in [34].

Theorem 11: The sequence obtained by the iteration (80)
converges monotonically (component-wise) to the global op-
timum (79), with super-linear convergence.

For convex functions, the algorithm is similar, except that
“min” is replaced by “max” and the coefficient set is
used instead (see [13] for details).
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If the interference function is neither convex nor con-
cave, then the power minimization problem (79) can still be
solved by the fixed-point iteration proposed in [14] (see also
[17], [34]. In this case, the convergence is only linear [16],
[34]. Theorem 11 shows that a better convergence rate can be
achieved by exploiting convexity.

V. CONCLUSION

In this paper, we analyze the basic building blocks of con-
cave, convex, and log-convex interference functions. Every
such interference function can be expressed as an optimum
over elementary functions, with coefficients that adapt to the
current power allocation. This shows that previously proposed
axiomatic interference models are equivalent to matrix-based
models, which have evolved from practical problem formula-
tions, like interference mitigation or robust designs. This shows
the existence of a unifying framework connecting different
lines of research.

There are some potentially useful applications. Fundamental
results which were previously derived for matrix-based inter-
ference functions can now be generalized. For example, the
problem of minimizing the total power subject to QoS con-
straints can be solved by an iterative algorithm with super-linear
convergence. This has applications in the area of robust signal
processing (convex functions) and receiver optimization (con-
cave functions).

Another main result of the paper is to show a one-to-one
correspondence between convex/concave interference functions
and certain convex “feasible sets.” As an example, we have
studied the feasible SIR region, which can be expressed as a
sublevel set of an interference function. For arbitrary compre-
hensive feasible sets, best possible convex/concave approxima-
tions have been derived by exploiting the structure of interfer-
ence functions. This shows that the theory of interference func-
tions is useful beyond the area of power control, from which it
originated.

This paper has focused on deriving a theoretical basis. More
details on algorithmic aspects can be found in [13], [33], and
[34].
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