Control and Automation – An Introduction Part 1 Figure I.1: System and system environment Figure I.2: Control and automation Figure I.3: Lane-keeping by means of manual or automatic control Figure I.4: Block diagram of manual closed-loop control (human-machine) system Figure I.5: Transient response of lateral distance error during manual closed-loop control Figure I.6: Determination of control error a_d from camera image Figure I.7: Block diagram of an automatic control system for lane-keeping task Figure I.8: Basic elements of a feedback control loop Feedback control loop with model-based reconstruction of task variable by estimator (= soft-sensor) # Networked Control Systems **Figure 1.** A typical NCS setup and information flows. Frequency Figure I.22: Thermo-electric power generation. Set-up (a) and 2-input-2-output block diagram of turbo-generator (b). Control objectives: fixed frequency (50 Hz) and fixed voltage (230 V.) Load Voltage Figure I.9: Processing equipment and instrumentation scheme of a chemical plant Figure I.10: Production process with multiple control loops on lower level and SQC functions on higher level # Congestion Control in ATM Networks Figure 1. A generic ATM network with multiple bottlenecks. Figure I.14: Scheme of congestion avoidance control in an ATM switch, r_0 : nominal data stream of source, r_{out} : outgoing data stream from switch Figure I.15: Management und Controlling in an Enterprise from a CE viewpoint Figure I.16: Control scheme of portfolio management, passive fund management strategy #### Time-driven #### Event-driven Figure I.18: Typical speed profile of a vehicle test facility Figure I.19: State transition graph for desired operation of test facility Figure I.20: Block diagram of discrete event control system for test facility #### **Steps of Control System Development** ### Part 2 ## Greenhouse Effect: Retention of Energy A prominent example of a natural feedback process #### Climate Control to Counteract Greenhouse Effect IEEE Spectrum, May 2007 Figure II.2: Longitudinal vehicle motion Figure II.3: Graph of step response of I-system and liquid tank as example Figure II.4: Step response of 1st order (PT_1) -system Figure II.5: Step response of 2nd order (PT_2) -system for damping 0 < D < 1 Figure II.6: Step response of time-delay (T_t) system and conveyor belt as example Figure II.7: Feedback control system with time-delay plant, P-controller and sensor Figure II.8: Step responses of time delay control system Market Mechanism - A Feedback System: Explanation of Business or Economic Cycles Figure II.10: Vehicle queue with vehicle E to be (safely) distance controlled Figure II.11: Scheme of cascaded speed/distance control system for cruise control around operating point $v_{E_0} = v_{F_0}$, e.g. 75 km/h Figure II.12: Block diagram of open-loop control system Figure II.13: Block diagram of single loop feedback control system Figure II.15: Coordination of the 4 resources within a workcell for PCB manufacturing | XI | (=L) | Operation ON | XA3 | (=L) | NC Drill busy | |-----|------|-------------------------|-----|------|----------------------| | XP1 | (=L) | Location (1) occupied | XA4 | (=L) | Test St. busy | | XP2 | (=L) | Location (2) occupied | XA5 | (=L) | Unloading St. busy | | XP3 | (=L) | Location (3) occupied | XT | (=L) | Test ok | | XP4 | (=L) | Location (4) occupied | XM | (=L) | Manual Release | | XA1 | (=L) | Loading St. busy | XD | (=L) | Turn-table operating | | XA2 | (=L) | Fixturing busy | XS | (=L) | PCB fixed | Figure II.16: Input signals to coordination controller Figure II.17: Output signals from coordination controller Figure II.18: CIPN-model of coordination controller with initial marking 50 | p_i | Connotation | YZ | YS | YB | YT | YA | YD | YM | |----------|-------------|----|----|----|----|----|----|----| | p_1 | Standby | | | | | | | | | p_5 | Loading | L | | | | | | | | p_6 | Fixing | | L | | | | | | | p_7 | Testing | | | | L | | | | | p_8 | Waiting | | | | | | | | | p_9 | Drilling | | L | L | | | | | | p_{10} | Unloading | | | | | L | | | | p_{11} | Manual | | | | | | | 1 | | | Processing | | | | | | | | | p_{12} | Unfixing | | | | | | | | | p_{13} | Waiting | | | | | | | | | p_{14} | Waiting | | | | | | | | | p_{15} | Rotating | | | | | | L | | | p_2 | Preparation | | | | | | | | | p_3 | Preparation | | | | | | | | | p_4 | Preparation | | | | | | | | | t_j | Transition Conditions | t_{j} | Transition Conditions | |-------|-----------------------|----------|--| | t_0 | XI | t_9 | $\overline{XA3}$ | | t_1 | $\overline{XP1}$ | t_{10} | $\overline{XA4} \wedge XT \wedge \overline{XP4}$ | | t_2 | XP2 | t_{11} | $\overline{XA4} \wedge \overline{XT}$ | | t_3 | XP3 | t_{12} | $\overline{XA5}$ | | t_4 | XP1 | t_{13} | XM | | t_5 | $\overline{XP2}$ | t_{14} | $\overline{XA2} \wedge \overline{XS}$ | | t_6 | $\overline{XP3}$ | t_S | TRUE | | t_7 | $\overline{XA1}$ | t_{15} | \overline{XD} | | t_8 | $XA2 \wedge XS$ | | | Figure II.20: Transition table with logical conditions Figure II.21: Liquid level control system with US level sensor and on-off controller showing controller switching characteristic Figure II.22: Time response of level control loop with limit cycle in the steady state Figure II.23: Hardware-based redundancy schemes for sensing: simplex (a), duplex (b) and triplex configuration (c)