Control and Automation — An Introduction

Part 1
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Figure 1.1: System and system environment
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Figure 1.2: Control and automation
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Figure 1.3: Lane-keeping by means of manual or automatic control
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Figure 1.4: Block diagram of manual closed-loop control (human-machine) system
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Figure 1.5: Transient response of lateral distance error during manual closed-loop control
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Figure 1.6: Determination of control error a; from camera image
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Figure 1.7: Block diagram of an automatic control system for lane-keeping task
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Figure 1.8: Basic elements of a feedback control loop
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Figure 1. A typical NCS setup and information flows.
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Figure I.22: Thermo-electric power generation. Set-up (a) and 2-input-2-output block dia-
gram of turbo-generator (b). Control objectives: fixed frequency (50 Hz) and fixed voltage

(230 V)
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Figure 1.9: Processing equipment and instrumentation scheme of a chemical plant
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Figure I.10: Production process with multiple control loops on lower level and SQC' func-

tions on higher level
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Figure I.11: Scheme of multi-layer hierarchical control architecture
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Figure 1.12: Equipment and implementation aspects of control systems
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Figure 1. A generic ATM network with multiple bottlenecks.
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Figure 1.15: Management und Controlling in an Enterprise from a CE viewpoint
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Figure 1.18: Typical speed profile of a vehicle test facility
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Figure 1.19: State transition graph for desired operation of test facility
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Figure 1.21: Warehouse Inventory Control
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Steps of Control System Development

Understand Control Task and Specifications

l

Analyze Plant or Process

A\ 4

Model Process

A 4

Simulate Process

Select Contro ' Architecture,
incl. Sensor and Actuator Locations

A 4

Design Control Laws and Algorithms

A 4

Simulate Total Control System

Y

HW/SW Implementation of Control System

A 4

Test and Performance Evaluation

A 4

On-site Start-up and Fine-tuning
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Part 2
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Greenhouse Effect: Retention of Energy
A prominent example of a natural feedback process

Storage capacity of

Earth's surface
+ atmosphere

Average global
temperature ¢
& >

Sun's Net absorbed
energy energy _
- T Energy

Energy traEE?q _b_y_ E:_Q%-.
radiated E E
Into i '
space ; [ ;

; 1 —p :

0<p<l

Reradiated
IR energy

due to human contribution of COy

Reradiation <
from earth

31



Nine Ways to Cool the Planet

SPACE SHIELDS SPACE DUST

K refrac- icles in low
ould divert a partion sunlight and
y away from Earth cool the planet.
ooling the atmosphers. Tha A Closer orbit and I
ens would orbit between the manutacturing co
un and the Earth. make dust cheapar

A Mo pollution: can be turned on or

& launch- ¥ Costly to deplay and
, the 20 million i would require frequent
mash would cost roplonishment as solar

Climate Control
to Counteract
Greenhouse
Effect

IEEE Spectrum,

PARTICLES IN THE
STRATOSPHERE

Sulfate or ather reflective
particles injected at the equator
stay alaft in the stratosphere

for ane of twa yoars, roflecting
sunlight and cooling the plane!

A Principle proven by volcanic
eruptions: 5130 billion price tag is
relatively reasonabile,

W Increased acid rain, ozone
layer damage.

CLOUD COVER

Ships spray salt-water droplots
that make acean clouds more
long-lasting and refloctive,
cooling the planat,

A Pollution free.

¥ Would take same 5000
salt-water spraying ships,
at 52 million to $5 million
aplaca, to counter a carbon
dinxide doubling.

REFLECTIVE ROOFS

Simply painting roafs and roads white could cool
populated places by reflecting sunfight.

A Paint is cheap.

¥ A small offect becausa much of the sun's energy
iz absorbed in the air before it reaches the ground;
cooling is local and so could make the bocal

radiation drives dust down
toEarth

REFLECTIVE BALLOONS

Reflective balloons would bounce

a portion of the sun's enorgy away
from Earth bofore it had a chance

1o warm the surface or the

lawer atmasphere.

A Cheaper to launch than space
shickds or space dust.

¥ Wauld require millions of ballogns
that would eventually fall to Earth
as trash.

IRON DUST

Iron particles spread over
unproductive parts of the
ocean causa photosynthetic
plankton blooms. The plankton
absorh carbon dioxide. When
they die, they carry some car-
ban to the ocean bottom.

A Some experiments indicated
that thousands of motric tons
of carbon wara absorbed per
‘metric ton of iron.

W Unciear how much carbon is
permanently trappod; plankton
blooms can poison other
sealife.

REFORESTATION

Treas pull carbon dioxide out of the ait and use it 1o form wood.
& Uncontroversial and already accopted under the Kyata
Protocol.

¥ Most earbon uptake happens only in the carly part of a
forest's growth: new forests could compate with agriculture

May 2007 _ / SEQUESTRATION

A Alroady being intensaly investigated.
¥ Could bo oxpensive to deploy the tochnology
and store the carbon: carbon reservoirs could leak.




Figure I1.2: Longitudinal vehicle motion
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Figure 11.3: Graph of step response of I-system and liquid tank as example




Figure I1.4: Step response of 1st order (P1 )-system




Figure I1.5: Step response of 2nd order (P15 )-system for damping 0 < D < 1
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Figure I1.6: Step response of time-delay (') svstem and conveyor belt as example




Figure 11.7: Feedback control system with time-delay plant, P-controller and sensor
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Figure I1.8: Step responses of time delay control system

39



Delay

v

Producer
Price Bid

Supply

Consumer

Lag
A

CerELITET Producer

>
Price Bid

Market Mechanism - A Feedback System:
Explanation of Business or Economic Cycles

40



Target
Inventory
)

=/
¥ 3

v

Inventory
Manager

Manu-
facturing

Demand

l Customer

Sales
Depart-
ment

v

Transport

Out_

o
-

In

Warehouse

Actual
Inventory

P

Figure 11.9: Warehouse Inventory Control
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Figure I1.10: Vehicle queue with vehicle E to be (safely) distance controlled
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Figure II.11: Scheme of cascaded speed /distance control system for cruise control around

operating point vg, = vg,, e.g. 75 km/h
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Figure 11.12: Block diagram of open-loop control system
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Figure 11.13: Block diagram of single loop feedback control system

45



empty place p,

P2
P, - marked place p,
transition t,
t, Ps - t,
current 17
marking 0 .
vector m = 3 “— edge
— |1 P g
0

- P4

Figure I1.14: Example of single-token Petri net
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NC Drill:
Loading Station: on / off
load / return

Fixture:
fix / unfix

2

Location (1)
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(
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Turn-table Drive: 4)
rotate by 1200

Figure I1.15: Coordination of the 4 resources within a workcell for PCB manufacturing
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XI (= L) Operation ON XA3 (=L) NC Drill busy

XP1 (=1L) Location (1) occupied | XA4 (= L) Test St. busy

XP2 (=1L) Location (2) occupied | XA5 (= L) Unloading St. busy
XP3 (=L) Location (3) occupied | XT (= 1L) Testok

XP4 (=1L) Location (4) occupied | XM (= L) Manual Release
XAl (=1L) Loading St. busy XD (=L) Turn-table operating
XA2 (=1L) Fixturing busy XS (=L) PCB fixed

Figure 11.16: Input signals to coordination controller
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YZ
YS
YB
YT

(L = ON) Loading Station | YA (L = ON) Unloading Station

(L = ON) Fixturing YD (L= ON) Turn-table Drive (120")
(L =0ON) NC Drill YM (L= ON) Manual Operation (Call)
(L =ON) Test St.

Figure I1.17: Output signals from coordination controller
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Figure I1.18: CIPN-model of coordination controller with initial marking



P Connotation | YZ | YS | YB | YT | YA |YD | YM
p1 | Standby
ps | Loading L
pe | Fixing L
pr | Testing L
ps | Waiting
pg | Drilling L L
p1o | Unloading L
Manual
e Processing .
p12 | Unfixing
p13 | Waiting
p1a | Waiting
P15 | Rotating L
po | Preparation
p3 | Preparation
ps | Preparation

Figure I1.19: Output (actuator) table
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t; | Transition Conditions | ; | Transition Conditions
to | X1 to X A3

ty | XP1 tio | XA4AXT A XP4
ty | XP2 t11 | XA4 N XT

t3 | XP3 tio | XAD

ty | XP1 ti1s | XM

ts | X P2 t1a | XA2AXS

te | XP3 ts | TRUE

tr | XAl tis | XD

ts | XA2 AN XS

Figure I1.20: Transition table with logical conditions
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Figure I1.21: Liquid level control system with US level sensor and on-off controller showing
controller switching characteristic
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Figure 11.22: Time response of level control loop with limit cycle in the steady state




(a)

Sensor 1 T r1 = ¥, if sensor ok
xr = o .
b xy =7 . if sensor not ok
(b)
Sensor 1 Ty
o Ty Or 19 = 7, if Ty = T
] I r = . .
2 Ty Voter switch-off, if xy # x5
°
(<)
Sensor 1 Ty . L
° =19, ifri=x,=ua4
2 o ro =1, ifxy # 9 =13
° Voter b———— 1 = vy =10, it =1y # 23
3 I3 rg =10, ifry =ux3# 1
| switch-off, if @y # x5 # 23

Figure I1.23: Hardware-based redundancy schemes for sensing: simplex (a), duplex (b) and
triplex configuration (¢)
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