Control and Automation – An Introduction

Part 1

Figure I.1: System and system environment

Figure I.2: Control and automation

Figure I.3: Lane-keeping by means of manual or automatic control

Figure I.4: Block diagram of manual closed-loop control (human-machine) system

Figure I.5: Transient response of lateral distance error during manual closed-loop control

Figure I.6: Determination of control error a_d from camera image

Figure I.7: Block diagram of an automatic control system for lane-keeping task

Figure I.8: Basic elements of a feedback control loop

Feedback control loop with model-based reconstruction of task variable by estimator (= soft-sensor)

Networked Control Systems

Figure 1. A typical NCS setup and information flows.

Frequency

Figure I.22: Thermo-electric power generation. Set-up (a) and 2-input-2-output block diagram of turbo-generator (b). Control objectives: fixed frequency (50 Hz) and fixed voltage (230 V.)

Load

Voltage

Figure I.9: Processing equipment and instrumentation scheme of a chemical plant

Figure I.10: Production process with multiple control loops on lower level and SQC functions on higher level

Congestion Control in ATM Networks

Figure 1. A generic ATM network with multiple bottlenecks.

Figure I.14: Scheme of congestion avoidance control in an ATM switch, r_0 : nominal data stream of source, r_{out} : outgoing data stream from switch

Figure I.15: Management und Controlling in an Enterprise from a CE viewpoint

Figure I.16: Control scheme of portfolio management, passive fund management strategy

Time-driven

Event-driven

Figure I.18: Typical speed profile of a vehicle test facility

Figure I.19: State transition graph for desired operation of test facility

Figure I.20: Block diagram of discrete event control system for test facility

Steps of Control System Development

Part 2

Greenhouse Effect: Retention of Energy A prominent example of a natural feedback process

Climate Control to Counteract Greenhouse Effect IEEE Spectrum, May 2007

Figure II.2: Longitudinal vehicle motion

Figure II.3: Graph of step response of I-system and liquid tank as example

Figure II.4: Step response of 1st order (PT_1) -system

Figure II.5: Step response of 2nd order (PT_2) -system for damping 0 < D < 1

Figure II.6: Step response of time-delay (T_t) system and conveyor belt as example

Figure II.7: Feedback control system with time-delay plant, P-controller and sensor

Figure II.8: Step responses of time delay control system

Market Mechanism - A Feedback System: Explanation of Business or Economic Cycles

Figure II.10: Vehicle queue with vehicle E to be (safely) distance controlled

Figure II.11: Scheme of cascaded speed/distance control system for cruise control around operating point $v_{E_0} = v_{F_0}$, e.g. 75 km/h

Figure II.12: Block diagram of open-loop control system

Figure II.13: Block diagram of single loop feedback control system

Figure II.15: Coordination of the 4 resources within a workcell for PCB manufacturing

XI	(=L)	Operation ON	XA3	(=L)	NC Drill busy
XP1	(=L)	Location (1) occupied	XA4	(=L)	Test St. busy
XP2	(=L)	Location (2) occupied	XA5	(=L)	Unloading St. busy
XP3	(=L)	Location (3) occupied	XT	(=L)	Test ok
XP4	(=L)	Location (4) occupied	XM	(=L)	Manual Release
XA1	(=L)	Loading St. busy	XD	(=L)	Turn-table operating
XA2	(=L)	Fixturing busy	XS	(=L)	PCB fixed

Figure II.16: Input signals to coordination controller

Figure II.17: Output signals from coordination controller

Figure II.18: CIPN-model of coordination controller with initial marking 50

p_i	Connotation	YZ	YS	YB	YT	YA	YD	YM
p_1	Standby							
p_5	Loading	L						
p_6	Fixing		L					
p_7	Testing				L			
p_8	Waiting							
p_9	Drilling		L	L				
p_{10}	Unloading					L		
p_{11}	Manual							1
	Processing							
p_{12}	Unfixing							
p_{13}	Waiting							
p_{14}	Waiting							
p_{15}	Rotating						L	
p_2	Preparation							
p_3	Preparation							
p_4	Preparation							

t_j	Transition Conditions	t_{j}	Transition Conditions
t_0	XI	t_9	$\overline{XA3}$
t_1	$\overline{XP1}$	t_{10}	$\overline{XA4} \wedge XT \wedge \overline{XP4}$
t_2	XP2	t_{11}	$\overline{XA4} \wedge \overline{XT}$
t_3	XP3	t_{12}	$\overline{XA5}$
t_4	XP1	t_{13}	XM
t_5	$\overline{XP2}$	t_{14}	$\overline{XA2} \wedge \overline{XS}$
t_6	$\overline{XP3}$	t_S	TRUE
t_7	$\overline{XA1}$	t_{15}	\overline{XD}
t_8	$XA2 \wedge XS$		

Figure II.20: Transition table with logical conditions

Figure II.21: Liquid level control system with US level sensor and on-off controller showing controller switching characteristic

Figure II.22: Time response of level control loop with limit cycle in the steady state

Figure II.23: Hardware-based redundancy schemes for sensing: simplex (a), duplex (b) and triplex configuration (c)