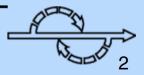


Robots for the Benefit of Humans Contributions of our Lab and its Cooperation Partners

Professor Günther Schmidt

Faculty of Electrical Engineering and Information Technology Technische Universität München Munich, Germany

Lecture at Takamatsu High School, 19 September 2007




Contents

Introduction and Motivation

Robots for Amusement Autonomous Mobile Robots Robots and Robotic Approaches in Medicine Telepresence and Teleoperation Humanoid Robots

Final Remarks

2nd CALL FOR PAPERS

SICE Annual Conference 2007

International Conference on Instrumentation, Control and Information Technology

September 17 (Mon.) - 20 (Thurs.), 2007 Kagawa University, Takamatsu, Kagawa, JAPAN

http://www.sice.or.ip/sice2007/

Advisory Board -Chair

Akira Nagashima (President of SICE)

-Members

Charles W. Einolf, Jr. (President of IEEE/IES, USA) Stephen Huffman (President of ISA, USA) Doug Young Joo (President of ICASE, Korea) Li-Chen Fu (President of CACS, Taiwan) Zhuang Songlin (President of CIS, China) Dai Touren (President of CAA, China) Fumio Harashima (Tokyo Denki Univ., Japan) Chongkug Park (Kyung Hee Univ., Korea) Günther Schmidt (Tech, Univ. of Munich, Germany) Hyung Suck Cho (KAIST, Korea) Alain Bourjault (LAB, France)

Steering Committee -Chair

Fumitoshi Matsuno (Univ. of Electro-Commu., Japan)

Organizing Committee -General Chair Seiji Hata (Kagawa Univ., Japan)

-General Vice-Chairs Kojiro Hagino (Univ. of Electro-Commu., Japan) Min-Jea Tahk (KAIST, Korea)

The SICE Annual Conference 2007, an international conference on instrumentation, control and information technology, will be held at Kagawa University, Takamatsu City, Kagawa, Japan on September 17-20, 2007, Takamatsu City, the capital of Kagawa Prefecture, is located in the northeast part of Shikoku, two and a half hours by super express train from Osaka, and one hour by airplane from Tokyo. The conference covers a wide range of fields from measurement and control to system analysis and design. from theory to application and from software to hardware. Newly developed interdisciplinary ideas and concepts transferable from one field to another are especially welcome. All submitted papers must be written and presented in English. Organized Sessions are welcome. Topics of the conference will cover but are not limited to:

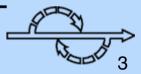
Measurement

- Sensors and Transducers
- Signal and/or Image Processing
- Identification and Estimation
- Opto-Electronic Measurement
- Remote Sensing
- Mass and Force Measurement
- Temperature Measurement
- Ultra-High Precision Measurement
- Analytical Measurement
- Standard of Measurement
- Flow Measurement and Control
- Networked Sensor System

Control

- Multivariable Control
- Nonlinear Control
- Robust Control
- Adaptive and Optimal Control

Neural Networks


- Autonomous Decentralized Systems
- Discrete Event Systems

System Integration

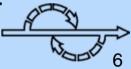
- Mechatronics Systems Robotic and Automation Systems
- Human Interfaces
- Virtual Reality Systems
- Entertainment Systems
- Medical and Welfare Systems
- Safety, Environment and Eco-Systems
- Agricultural and Bio-Systems
- Rescue Systems
- Simulation of Large Systems
- Network System Integration

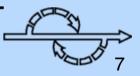
Industrial Applications

Process Automation Factory Automation

The SICE Conference


München: "Weltstadt mit Herz" "The Cosmopolitan City with a Heart"


The Annual Beer Festival



City Campus of TU München

The Cloverleaf Logo of TU München

香川大学工学部及び大学院工学研究科とミュンヘン工科大学工学系学部との 学術交流協定書に関する実施細則

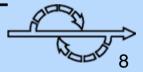
第I部 目的

香川大学工学部及び大学院工学研究科とミュンヘン工科大学の土木工学・調量学. 建築学、機械工学、電気工学、情報技術及び情報工学の諸学部(以下「工学系学部」 という)は、「香川大学とミュンヘン工科大学との学術交流協定書」に基づき. 両機関の親密な関係を確立することを切望し、この関係が相互の教育研究性系の 理解、共同研究プロジェクト及びその他の共同事業を推進することを希望する。

第Ⅱ部 協力分野

- 上記目的を促進するために、両機関は以下の事項に同意する。
- 1. 教育研究目的での相手方機関の教員の受入れ
- 2. 学生の交流
- 3. 両機関のリソース及び両機関の利益になる範囲での公式交流

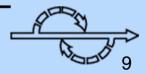
第Ⅲ部 教員交流


- 教員の交流は、各種規定の許す範囲で、教育効果及び学生の興味を促進する 観点から、相手機関のカリキュラムの導入と評価を目的として、定期的に実践 する。
- 両大学の教員は、可能な範囲で適宜、共同研究を行い、学術情報を交換する ことができる。
- 両大学の教員は、学術専門会議への招聘、国内会議や国際会議への参加準備の 援助をすることができる。

第Ⅳ部 学生交流

「香川大学とミュンヘン工科大学との学生交流プログラムの実施細則」に基づき、 それぞれ1年に2名を超えない学生を交流できるものとする。ただし、2名を超える 場合には、あらためて両大学で協議の上、交流できるものとする。

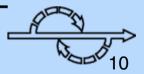
Renewal of Academic Cooperation Agreement in February 2007



Leibniz Gymnasium

Abitur – Graduation, March 1955

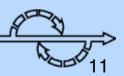
My High School



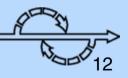
Gottfried Wilhelm Leibniz 1646 – 1716 Philosopher and Mathematician

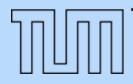
Inventor of

- Determinants,
- Differential & Integral Calculus
- Binary Number System
 - Chinese sources



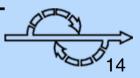


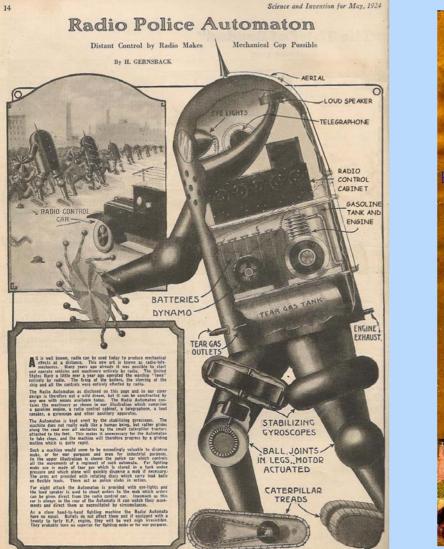


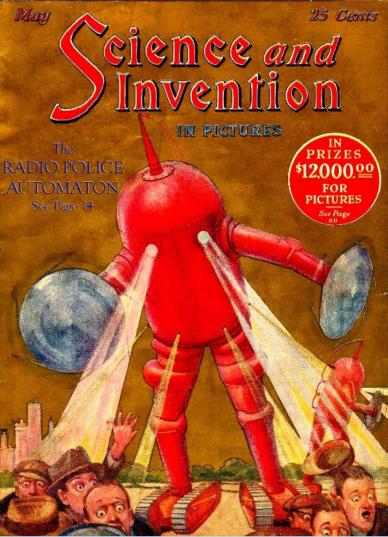

Hand Prosthesis, Goetz von Berlichingen "The Knight with the Iron Hand", 1504

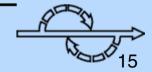
Mechanical Trumpet Players

Friedrich Kaufmann, Dresden, 1810

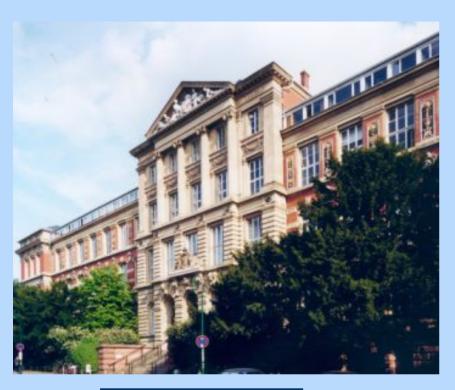




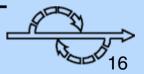

Tea-serving Puppets, 18th & 19th century



Karakuri ningyo - Mechanized Puppets



Science Fiction: Robocop 1924



Engineering Education and Research Positions

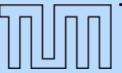


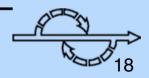
Dornier Do 31E

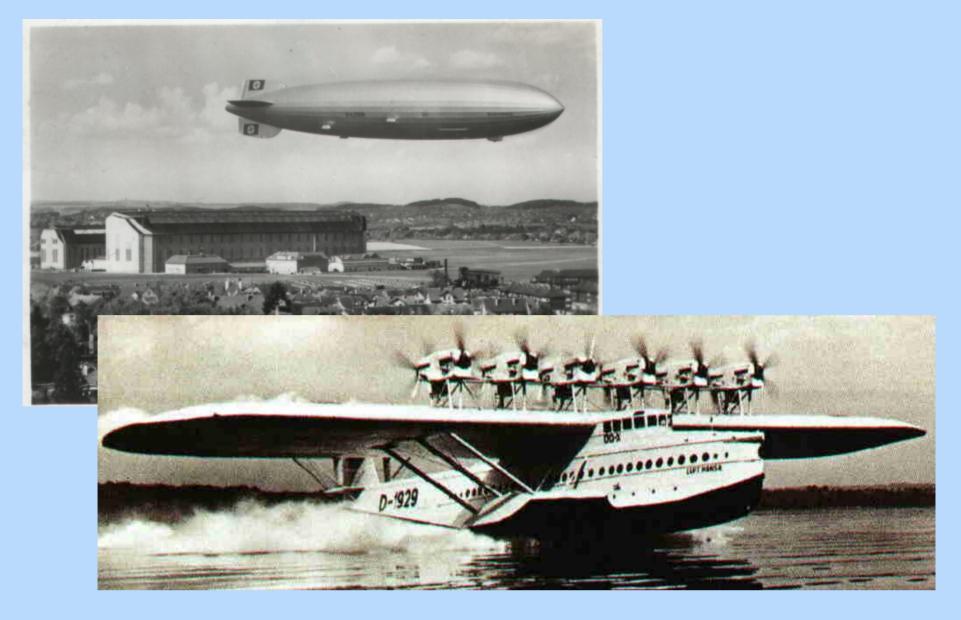
<u>Vertical Take-Off</u> and <u>Landing – VTOL</u> Transport Aircraft,

Friedrichshafen, Germany 1968

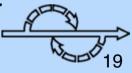
Engagement in Aerospace Projects



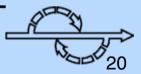

KIEBITZ – peewit


Teleoperated Helicopter with Reconnaisance Radar,

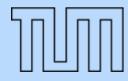
Friedrichshafen, Germany, 1970

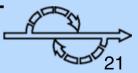


Engagement in Aerospace Projects

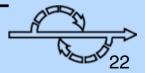


Introduction and Motivation

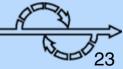

Robots for Amusement Autonomous Mobile Robots Robots and Robotic Approaches in Medicine Telepresence and Teleoperation Humnoid Robots


Final Remarks

The KUKA Robocoaster KUKA Co., Augsburg, Germany, 2004

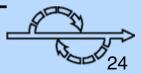


Productivity

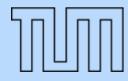


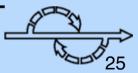
From the Factory-floor to the Amusement Park

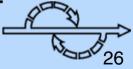
Excitement by a Ride with the Robocoaster

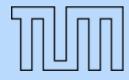


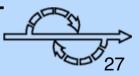
Introduction and Motivation


Robots for Amusement <u>Autonomous Mobile Robots</u> Robots and Robotic Approaches in Medicine Telepresence and Teleoperation Humanoid Robots


Final Remarks

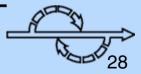

* Mobile Robots on the Factory-floor, 1990 - 1998

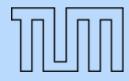


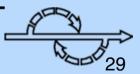


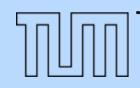
* Mobile Manipulator in Fetch-and-Carry Task, 2000

Information Processing in Autonomous Mobile Systems


Exemplary scenarios

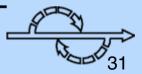

Production

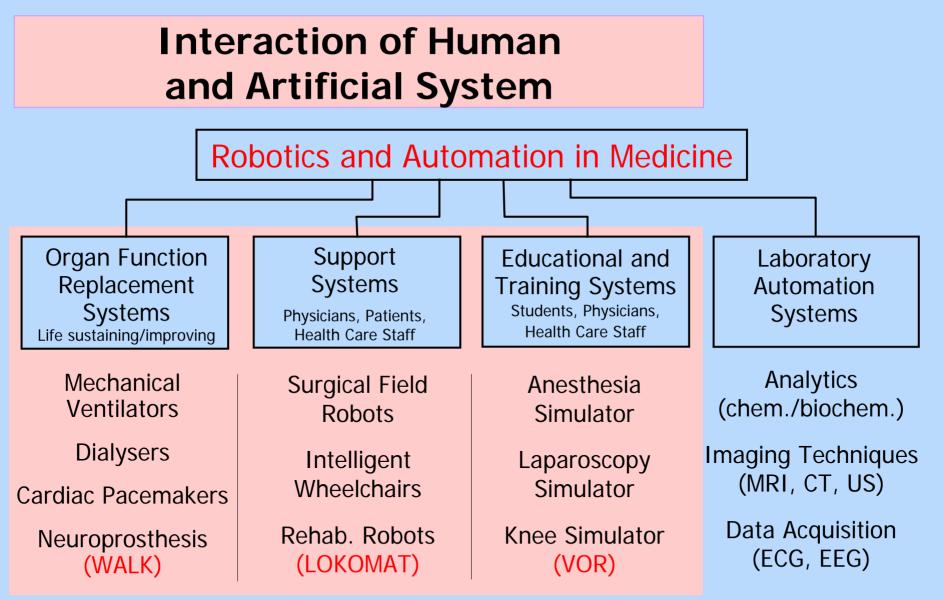

Service

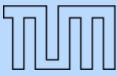


* Mobile Manipulator in Hospital Environment, 2001

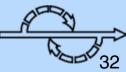
*

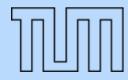


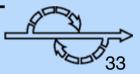

Introduction and Motivation


Robots for Amusement Autonomous Mobile Robots <u>Robots and Robotic Approaches</u> <u>in Medicine</u> Telepresence and Teleoperation Humanoid Robots

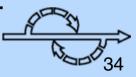
Final Remarks

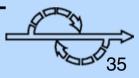


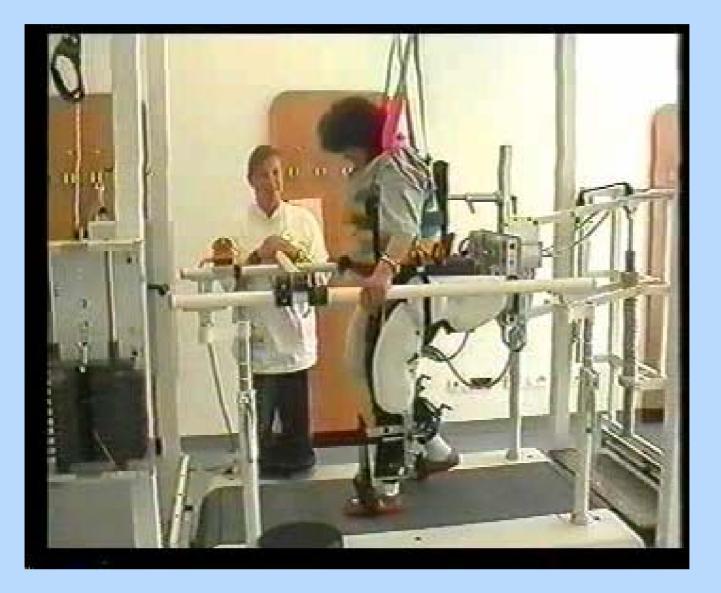




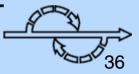
Biomedical Engineering Systems

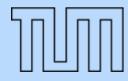

LOKOMAT - A Driven Robotic Gait Orthosis HOCOMA Co. Zürich, Switzerland, 2006

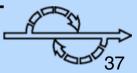




LOKOMAT Systems for Adults and Kids



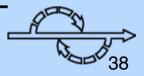



Functional Locomotion Therapy

with Robotic Gait Trainer

* A Patient-driven Gait Neuroprosthesis, 2000-2004

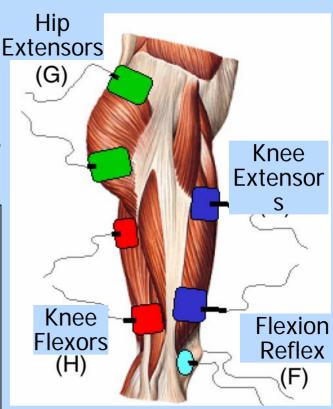
WALK! - A Patient-driven Gait Neuroprosthesis

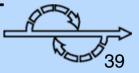

 Generation of motion patterns relevant for locomotion by means of
 Functional Electrical Stimulation (FES) of paralyzed limbs

Neurologische Klinik Klinikum Großhadern

Target Group

 Patients with complete spinal cord injury (thoracic lesions)

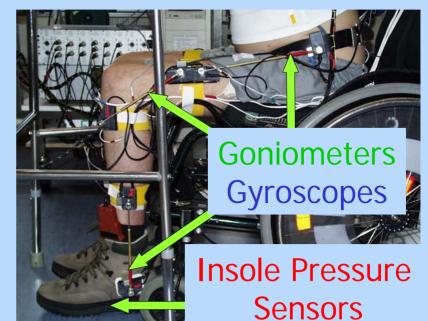

Method

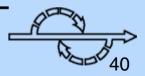

 Electrical stimulation of peripheral motor neurons by surface electrodes

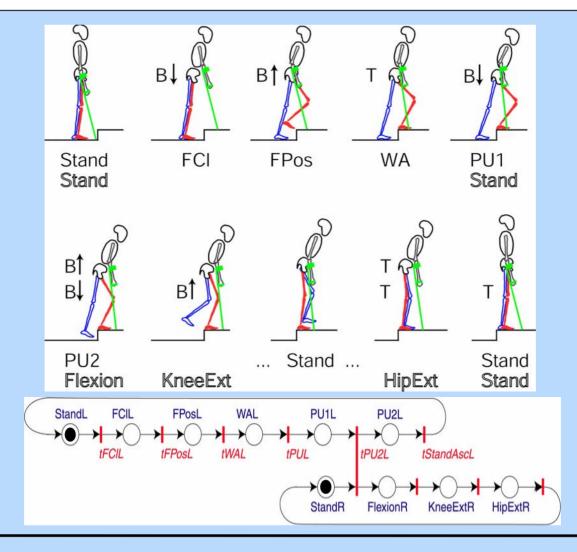
Relevant Motion Tasks

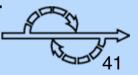
- Standing: *Standing up, Standing, Sitting down*
- Gait: Step Forward
- Climbing: Stair ascent and descent

Muscle activation

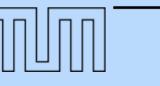


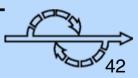



Patient mounted Sensors and Actuators

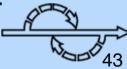

- Knee angles + angular velocities
- Force sensing soles
- Electrodes + Neurostimulator + Muscles

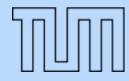
Synthesis of Motion Task : Stair Ascent

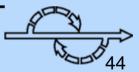

Welcome to


A Closed-loop Controlled Neuroprosthesis to Restore Ambulation

© 2000 Thomas Fuhr Lehrstuhl f. Steuerungs- und Regelungstechnik Technische Universität München

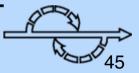




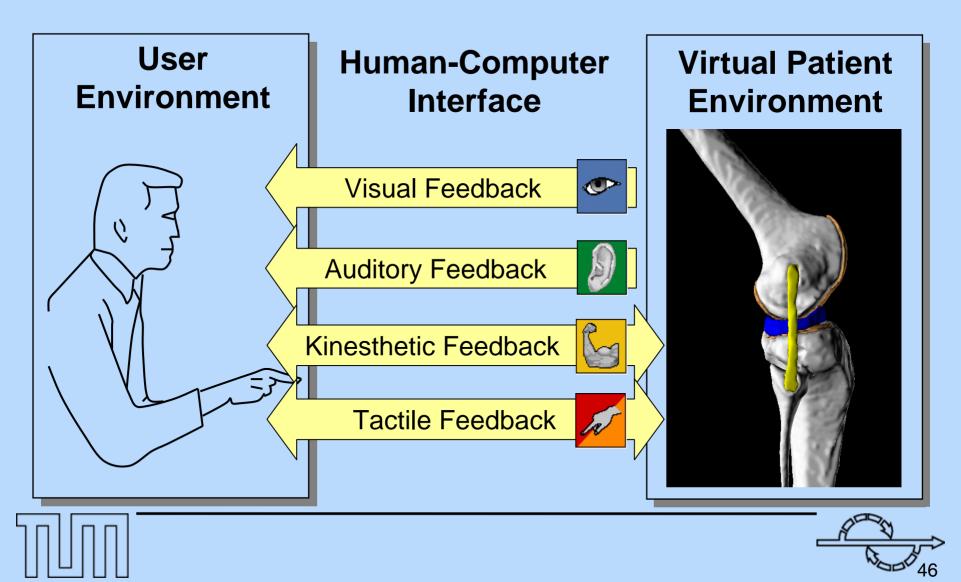


Stair-climbing by Means of FES

Virtual Orthopaedic Reality - VOR, 2003

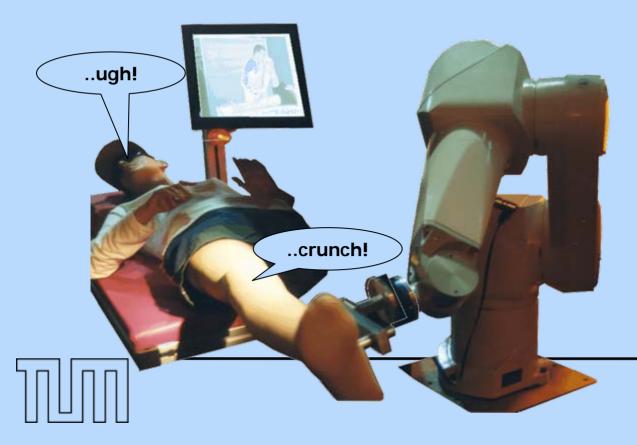

Novel Approach to Orthopaedic Education

- Joint diagnosis requires high level of experience and sensitivity
- Training with patients is cumbersome and time-consuming

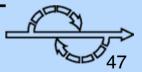


Example

McMurray Test for diagnosis of meniscus injuries

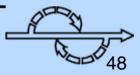

Principle of Multimodal VR

The Munich Knee Joint Simulator


... a multimodal platform for interactive training

• Industrial robot for *kinesthetic* feedback

• Artificial leg for *tactile* feedback


- Realistic examination environment
- Visual feedback
- Auditory feedback

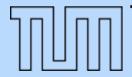
The Knee Joint Simulator in Action

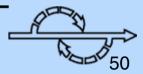
Delivery Training Simulator

for medical students and midwives

Cooperation Partners

- Orthopedic Clinic
- Clinic for Gynaecology

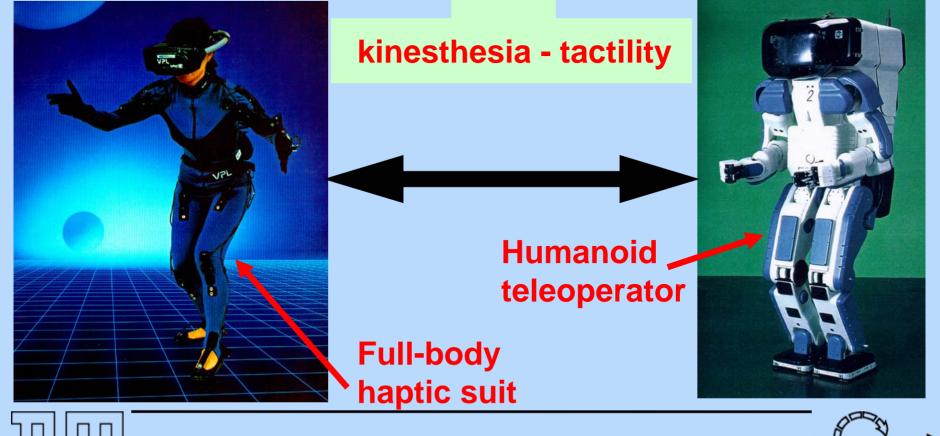

Baby passing through cervix without and with (right) doctor's intervention



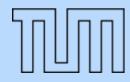
Introduction and Motivation

Robots for Amusement Autonomous Mobile Robots Robots and Robotic Approaches in Medicine <u>Telepresence and Teleoperation</u> Humanoid Robots

Final Remarks



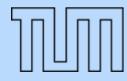
Long-Term Goal for Telepresence Research: Multi-Modal Full-Body Immersion in RE?


Modalities of Human Perception audition, vision, haptic, taste, smell


local

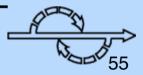
remote

Guiding of a Remote Mobile Teleoperator by Visual Telepresence, 2003

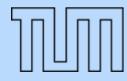


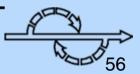


Walking About a Virtual Museum, 2002

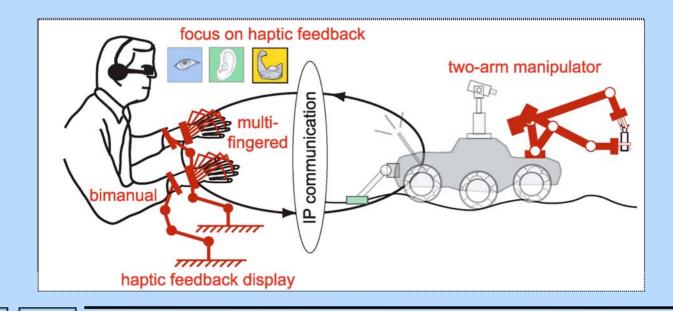


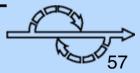
Motion Compression Walking About a Virtual Museum


N. Nitzsche, Uwe D. Hanebeck, G. Schmidt


Institute of Automatic Control Engineering TU München, 80290 München, Germany

Disposal of Explosives and Demining, 2003

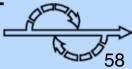


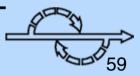


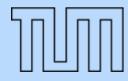
Remote Disposal of Explosives . . .

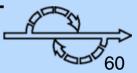
needs an increased sensation of operator immersiveness via

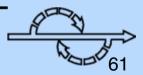
- multimodal perceptional feedback: stereo vision, audition and haptics = touch and force,
- two-arm manipulator system
- intuitive human system interface (HSI)



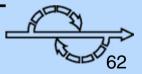

Manual Disposal of Mine


*


gripping mine and retaining element

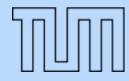

Advanced Virtual Prototying, 2001

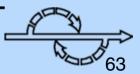
Inserting a Radio into Instrument Panel

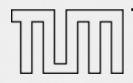


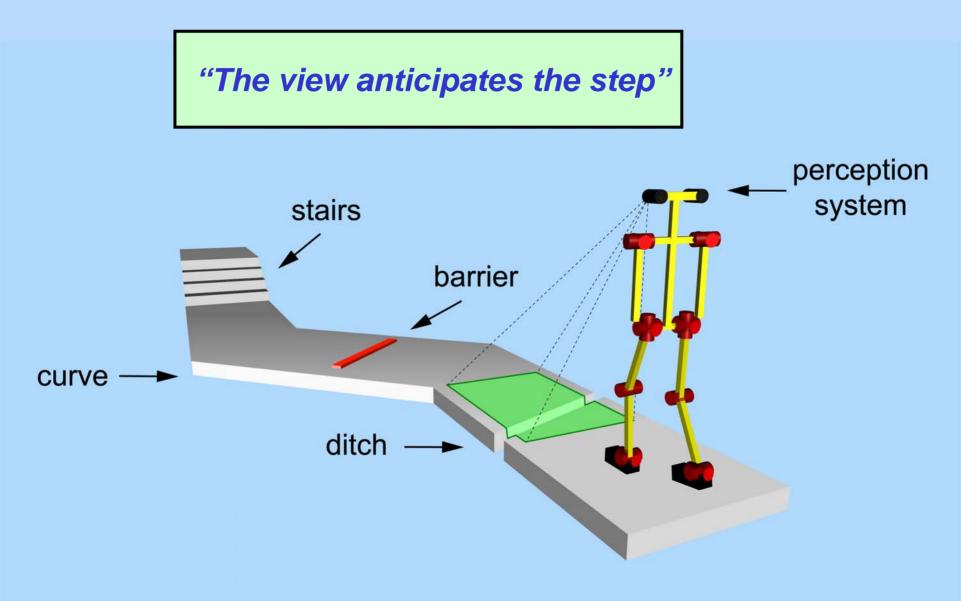


Introduction and Motivation


Robots for Amusement Autonomous Mobile Robots Robots and Robotic Approaches in Medicine Telepresence and Teleoperation <u>Humanoid Robots</u>

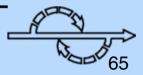

Final Remarks

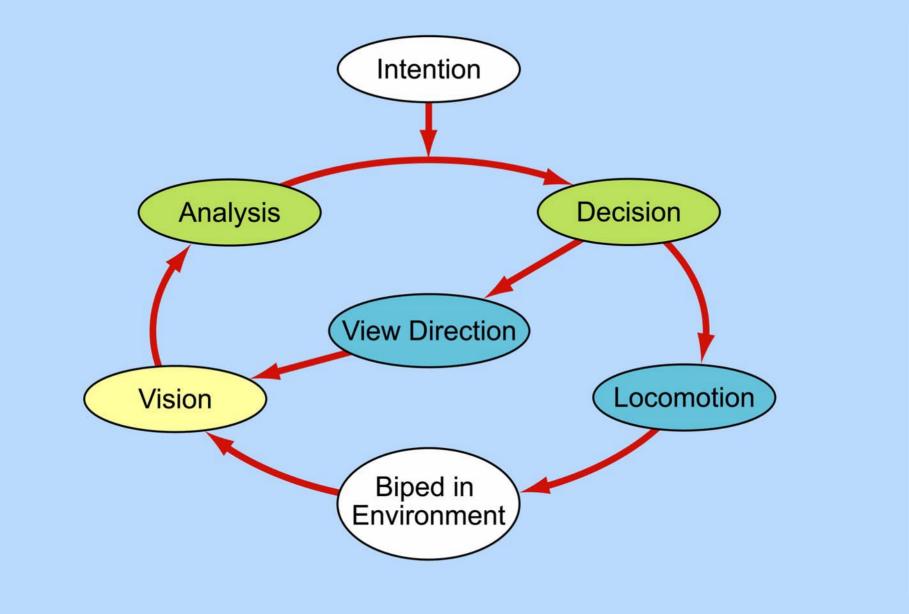

Intelligent Humanoid Robot Walking, 1998 – 2005



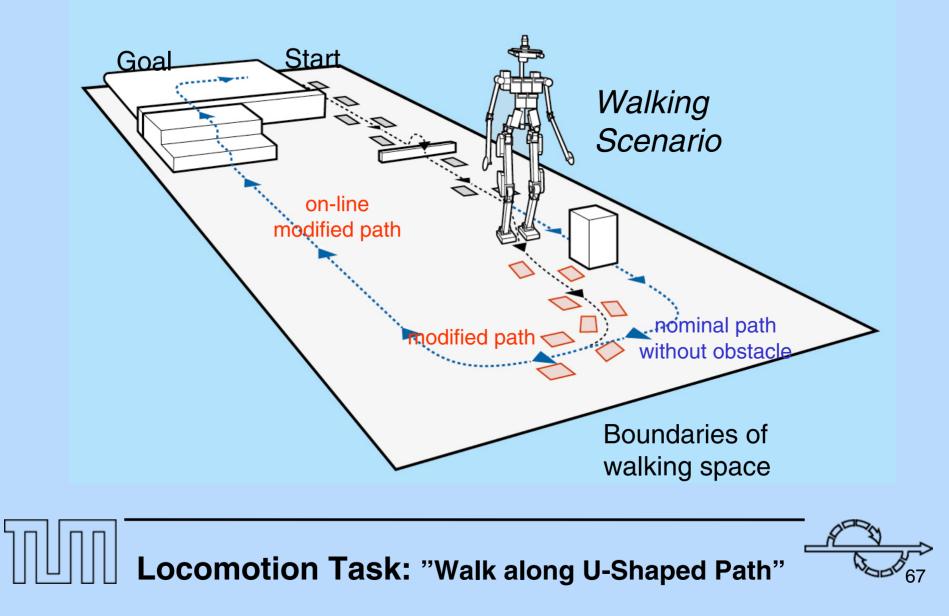
Basis of Locomotion Autonomy in Humans and Robots ?

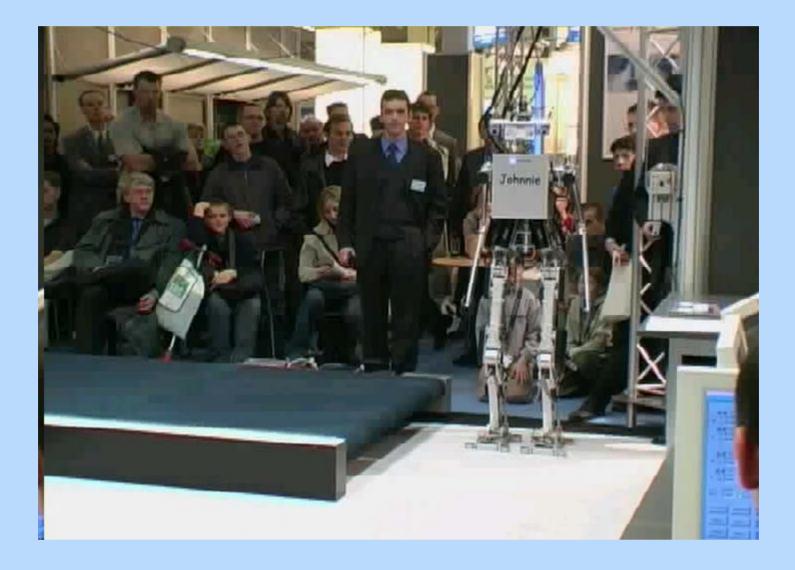
Cognitive Functionalities, "interplay of perceptional and locomotion behaviours"



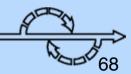


Pedestrian Walk Scenario

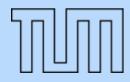


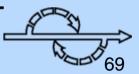


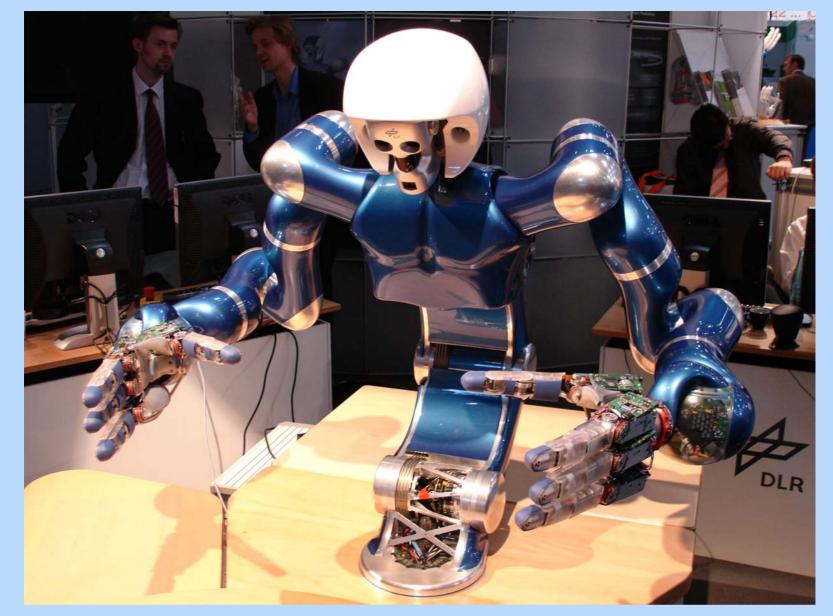
IIIIInformation Flow in Vision-Guided Locomotion

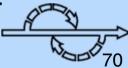

66

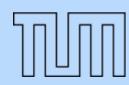
Demonstration of Intelligent Humanoid Robot Walking

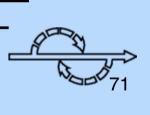





Obstacle Avoidance and Self-Localization

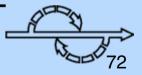

An Advanced Humanoid Two-arm Robot German Aerospace Establishment (DLR), 2007

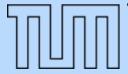




JUSTIN – A Humanoid Robot Torso

*

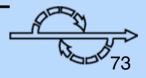




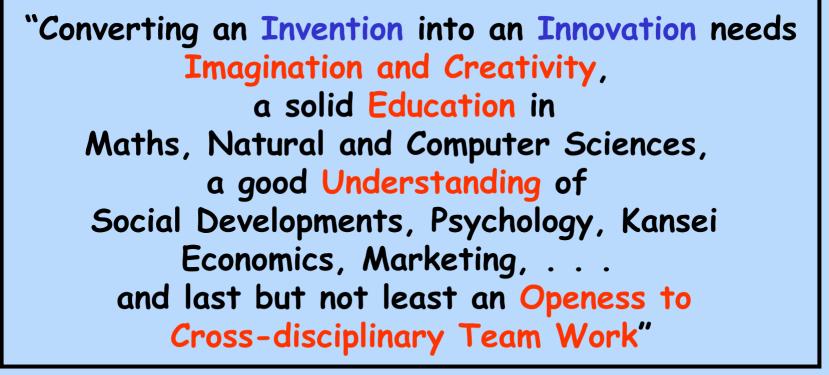
Introduction and Motivation

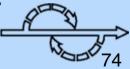
Robots for Amusement Autonomous Mobile Robots Robots and Robotic Approaches in Medicine Telepresence and Teleoperation Intelligent Walking Robot

Final Remarks



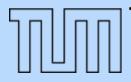
Spektrum

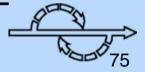



Bill Gates Article, March 2007 "Robotic Helpers for Everybody"

"To invent you need a good imagination and a pile of junk"

- Thomas A. Edison

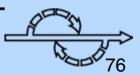

Past:


Economic Development driven by Technology

Future:

- Shift to Awareness of Customer Demands/Needs, Aging Society
- Emergence of Novel Assistance Business
- Excellent Opportunities for Macro-scale and Micro-scale Robots

Conclusions



Thank you for your kind attention

????

