Cooperative and Interactive Control Approaches in Biomedical Engineering Systems

Günther Schmidt Thomas Fuhr and Robert Riener Interactive Systems and Control Group (ISAC)

Institute of Automatic Control Engineering, Technische Universität München Univ.-Professor Dr.-Ing. Dr.-Ing. h.c. Günther Schmidt

Abstract

Systems of modern biomedical engineering are characterized by a growing content of functions depending on concepts and techniques taken from well-proven approaches in fields such as systems, control, and automation. In this presentation we will discuss in some detail two projects, where an artificial control system is physically coupled with a human being.

The first project is concerned with a *cooperative, feedback controlled neuroprosthesis* for motion restitution of patients with a spinal cord injury. Key of this system is a multi-layer hybrid (discrete event – continuous) control approach. The second project focuses an *interactive model-based control approach* for the design and operation of multimodal (involving many human senses) knee joint simulator for 'hands-on' training of medical students in orthopaedics. The system comprises an industrial robot, a force/torque sensor, and multi-DoF biomechanical knee models. For both examples, conceptual details as well a experimental results will be presented.

Biomedical Engineering Systems

Definitions

Context: Human-Centered Controls/Robotics

Cooperativity

Human operator is supported by the technical system in executing his/her intentions, but is not enforced to do so.

Interactivity

Exchange of Information and Energy between human and technical system is determined by the human.

Research Project #1

Cooperative Gait Neuroprosthesis

Fuhr, T.; Quintern, J; Riener, R.; Schmidt, G.: Walk with WALK! - A Cooperative, Patient-Driven Neuroprosthetic System.

IEEE Engineering in Medicine and Biology (EMB) Magazine, January/February 2008, pp. 38-48

A Cooperative Gait Neuroprosthesis

Generation of motion patterns relevant for locomotion by use of Functional Electrical Stimulation (FES) of paralyzed limbs

und Regelungsteichnik

Neurologische Klinik Klinikum Großhadern

at-Automatisierungstechnik 50 (2002), pp. 307-316

Gait Neuroprosthesis

Target Group

 Patients with complete spinal cord injury (thoracic lesions)

Method

 Electrical stimulation of peripheral motor neurons, surface electrodes

Relevant Motion Tasks

- Standing: Standing up, Standing, Sitting down
- Gait: Step Forward
- Stair Climbing: Stair ascent and descent

Muscle activation

Gait Neuroprosthesis

Patient mounted sensors

- Knee angles and angular velocities
- Force sensing soles

Actuators

- Technical: neurostimulator, tactile displays
- Biological: leg muscles, voluntary upper body contributions

Sensors

- Patient mounted sensor systems: angles, velocities, forces
- Motion control and supervision, monitoring
 - Control system, signal processing and data acquisition, user interface

Control System Challenges

Plant: Human Motor System

- Nonlinear, time-variant: muscle fatigue
- Underactuated: few, coupled stimulation channels
- Unknown plant characteristics
- Competition with voluntary upper body forces
- Control sampling rate: 20 Hz, due to stimulation rate limits

Requirements:

- Cooperativity: neuroprosthesis supports patient
- Maximum safety and reliability
- Minimum complexity

Hierarchical Hybrid Control Architecture

- Intention level
 - Selection of motion task for a specific motion
- Coordination level
 - Discrete event specification of motion tasks by means of a set of motion phases
- Activation level
 - Muscle activation via lowlevel open-loop and closedloop controllers

Motion Task Synthesis

Knee Extension Control

- Closed-loop control of knee extensor activation (Q):
- (1) Unloaded swing leg is slightly flexed prior to step
- (2) Stand leg supports> 75% of body load
- (3) Knee is slightly flexed during contralateral step

Supervisor

- CIPN Model
- Resulting from fusion of intention level and coordination level

Elements

- Sensor or switchtriggered transitions
- Actions represented by places
- Lower-level controllers

14

Cooperative Neuroprosthesis XWALK!

- Neurostimulator (ProStim8, FRA)
- Multisensory system
- Sensory substitution system
- Process supervision & control

Welcome to

A Closed-loop Controlled Neuroprosthesis to Restore Ambulation

© 2000 Thomas Fuhr Lehrstuhl f. Steuerungs- und Regelungstechnik Technische Universität München

Stair ascending with closed-loop controlled neuroprosthesis

(a)

Step height Platform: 12.0 & 16.5 cm

Step height Staircase: 17.0 cm

(e)

Ascending a Staircase with **XWALK**!

Résumé

- Prerequisite of cooperativity:
 - Merging of methods from area of systems & control, biomechatronics and IT
- Cooperativity of a neuroprosthesis
 - Improves control of movements
 - Releases patients from tasks that can be automatized
 - Reduces muscle fatigue and stimulation intensity
 - Improves patient's quality of life

Research Project #2

VR Knee Joint Simulator

Riener, R., Hoogen, J., Burgkart, R., Buss, M., Schmidt, G.:
Development of a Multi-modal Virtual Human
Knee Joint for Education and Training Orthopaedics.
Technology and Informatics, 81,
Medicine Meets Virtual Reality 2001, pp. 410-416.

Hoogen, J.; Schmidt, G.; Riener, R.: Haptic Environment for Analysis of Smooth Arm Movements.

Proc. of the 11th International Conference on Advanced Robotics, ICAR2003. Univ. of Coimbra, Portugal, pp. 173-178

Virtual Orthopedic Reality

Multimodal simulator for intensive and realistic medical education and training of clinical treatment methods

at-Automatisierungstechnik 50 (2002), pp. 296-303

Anatomy of the Knee Joint

New Methods in Orthopedic Education

- Joint diagnosis requires high level of experience and sensitivity
- Training with patients is cumbersome, time consuming and expensive
- Result of survey with > 50 orthopedic doctors:
 - " training methods need to be improved "

McMurray Test for diagnosis of meniscus injuries

The Munich Knee Simulator

... a *multimodal* platform for the interactive training

Industrial robot with F/T sensor for kinesthetic feedback (highly dynamic)

 Artificial leg for tactile feedback

- Realistic examination environment
- Visual feedback
- Auditory feedback

24

Principle of Multimodal VR

Operational Modes

#1 Teaching Mode: Artificial leg performs desired motion

Operator learns appropriate test movements in 6 DoFs through motion playback

Data Acquisition for Teaching Mode

Analysis of 60 functional tests, executed by an experienced orthopedian

Motion tracking system

- 3 video cameras
- 4 electromagnetic position sensors

Operational Modes

#1 Teaching Mode: Aritificial leg performs desired motion

Operator learns appropriate test movements in 6 DoFs

#2 Interactive Mode: Artificial leg reacts to operator interaction

Operator perceives (simulated) physiological/pathological properties of knee joint mechanics in 6 DoFs

Interactive Mode A

Patella tendon reflex

Interactive Mode B

Admittance control enables force reflection in 6 DoFs

Network Model of Kinesthetics

Admittance Control System and Robot Kinetics

Robot Model $M(q)\ddot{q} + F(\dot{q}) + G(q) = \tau_A - J^T f_H$ + $\tau_A = r + k$

k

$$= \hat{F}(\dot{q}) + \hat{G}_{g}(q) + \hat{G}_{s}(q_{2}) + J^{T}f_{S}$$
$$\hat{F}_{i}(\dot{q}_{i}) = c_{v}\dot{q}_{i} + c_{c}sign(\dot{q}_{i}) , \ f_{S} = f_{H}$$

 $\begin{array}{ll} & \text{SFB/FF} \\ & \text{Controller} \\ & \text{Rinematics} \end{array} \quad x_d = x_E = X(\dot{q}_d - \dot{q}) + K_b(d^d - d)) \\ & \text{Rinematics} \quad x_d = x_E = X(f_E) \\ & \text{Biomechanics} \quad x_d = x_E = Y(f_E) \end{array}$

Prototype of the Knee Simulator

Presentation at Medical Congress in Berlin 33

Acquisition of Biomechanical Knee Data

Résumé

- Prerequisite of interactivity:
 - Blending of methods from area of systems & control, biomechatronics and IT, VR
- Interactivity of the knee simulator supports
 - realistic, multimodal simulation of knee pathologies
 - more intensive and practical medical training

Outlook

Transfer of technological know-how into related application fields, e.g.

Delivery Training Simulator

for medical students and midwives

Baby passing through cervix without and with doctor's intervention

Cooperation partners at TUM

- LSR: R. Riener, F. Frey
- Orthopedic Clinic: R. Burgkart, T. Obst
- Clinic for Gynaecology:
 E. Ruckhäberle, K.
 Schneider

Conclusions from both Projects

- Prerequisite for achieving cooperativity or interactivity:
 - Blending of methods from areas of automation, systems & control, biomechatronics, VR and IT
- Cooperativity of a neuroprosthesis
 - Improves control of movements
 - Releases patients from tasks that can be automated
 - Reduces muscle fatigue and stimulation intensity, ...
- Interactivity of the knee simulator supports
 - Realistic, multimodal simulation of knee pathologies
 - More intensive and practical medical training

Thank you for your attention

