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Abstract

Motivated by the rank-modulation scheme with applications to flash memory, we consider

Gray codes capable of detecting a single error, also known as snake-in-the-box codes. We

study two error metrics: Kendall’s τ -metric, which applies to charge-constrained errors,

and the ℓ∞-metric, which is useful in the case of limited-magnitude errors. In both

cases we construct snake-in-the-box codes with rate asymptotically tending to 1. We

also provide efficient successor-calculation functions, as well as ranking and unranking

functions. Finally, we also study bounds on the parameters of such codes.
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Notations

• [n] - The set of positive integers less than or equal to n, {1, 2, . . . , n}.

• Sn - The symmetric group of order n; the group of all permutations on the set [n].

Also denoted as Symn.

• [a1, a2, . . . , an] (where {ai}ni=1 = [n]) - The vector notation of the permutation σ

such that σ(i) = ai.

• (a1, a2, . . . , ak) (where k ≤ n and {ai}ki=1 ⊂ [n] are k distinct elements) - The cycle

notation of the permutation σ such that σ(ai) = a(i mod k)+1, i = 1, 2, . . . , k, and

σ(b) = b for b ∈ [n] \ {ai}ki=1.

• στ (where σ, τ ∈ Sn) - The composition of σ, τ , i.e., (στ)(i) = σ(τ(i)).

• An - The Alternating group of order n; the subgroup of even permutations in Sn.

• R(C) (where C ⊂ S is a code) - The Rate of C, defined R(C) = log|C|
log|S|

.

• ti : Sn → Sn - The “push-to-the-top” operation on the ith index:

ti ([a1, a2, . . . , ai−1, ai, ai+1, . . . , an]) = [ai, a1, a2, . . . , ai−1, ai+1, . . . , an].

• ti : Sn → Sn - The “push-to-the-bottom” operation on the (n+ 1− i)th index.

• (n,M,M)-snake - A Gray code over Sn, of size M , and minimal M-metric dis-

tance 2. Sometimes abbreviatedM-snake.

• Kendall’s τ -metric - the metric on Sn, denoted by dK(α, β), which is defined as the

minimal number of adjacent transpositions required to transform α to β.

• ℓ∞-metric - the metric on Sn defined by d∞(α, β) = max |α(i)− β(i)|.

• Gn = (Vn, En) - Kendall’s τ adjacency graph; Vn = Sn and {α, β} ∈ En if

dK(α, β) = 1.
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Chapter 1

Introduction

Flash memory is a non-volatile storage medium which is electrically programmable and

erasable. Its current wide use is motivated by its high storage density and relative low

cost. Among the chief disadvantages of flash memories is their inherent asymmetry

between cell programming (injecting cells with charge) and cell erasure (removing charge

from cells). While single cells can be programmed with relative ease, in the current

architecture, the process of erasure can only be preformed by completely depleting large

blocks of cells of their charge. Moreover, the removal of charge from cells physically

damages them over time.

This issue is exacerbated as a result of the ever-present demand for denser memory:

smaller cells are more delicate, and are damaged faster during erasure. They also contain

less charge and are therefore more prone to error. In addition, flash memories, at present,

use multilevel cells, where charge-levels are quantized to simulate a finite alphabet –

the more levels, the less safety margins are left, and data integrity is compromised.

Consequently, over-programming (increasing a cell’s charge-level above the designated

mark) is a real problem, requiring a costly and damaging erasure cycle. Hence, in a

programming cycle, charge-levels are usually made to gradually approach the desirable

value, making for lengthier programming cycles as well (see [1]).

Recent works have proposed to alleviate this concern by jointly storing information in a

group of cells, which allows for a trade-off between data capacity and rewriting capability

[2]. In generalization of the Write Once Memory model (first presented in [3]), the

Write Asymmetrical Memory model was discussed, applicable to flash memory (among
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other media). By representing several logical variables in a group of physical multilevel-

cells–rather than representing each separately–floating codes were presented in which a

programming cycle was limited to modifying a single logical variable, and were shown

( [4, 5]) to be asymptotically optimal in the number of rewriting cycles they guarantee

between erasure operations (dubbed deficiency) in the case of constant data alphabet.

Codes were also developed for representing recent entries in a data stream, named buffer

codes (see [2] and references therein). Both schemes have since been generalized in [6],

which also broadened the range of cases where asymptotically optimal deficiency can be

obtained. [7] also analysed the expected deficiency, as opposed to worst-case analysis, and

presents encoding-decoding schemes which improve known results in some cases.

Another effort to counter the effects of write-asymmetry in flash memories was recently

made in the introduction of the Rank-Modulation scheme [8]. This scheme represents the

data stored in a group of cells in the permutation suggested by their relative charge-levels

rather than the levels themselves. That is, if c1, c2, . . . , cn ∈ R represent the charge-levels

of n ∈ N cells, then that group of cells is said to encode the permutation σ ∈ Sn such

that:

cσ(1) > cσ(2) > . . . > cσ(n) > 0.

This scheme eliminates the need for discretization of charge-levels. Furthermore, it was

suggested in [8] that programming could be restricted to “push-to-the-top” operations,

under which constraint one only programs a group of cells by increasing the charge-level

of a single cell above that of all others. In this manner, over-programming is no longer

an issue.

In addition, storing data using this scheme also improves the memory’s robustness

against other noise types. Retention–the process of slow charge leakage from cells–tends

to affect all cells with a similar trend [1]. Since rank modulation stores information in

the differences between charge-levels rather than their absolute values, it offers more

resilience against that type of noise. It is also worth noting that the advantages of rank

modulation have been experimentally applied to phase-change memory (see [9]).

Gray codes using “push-to-the-top” operations and spanning the entire space of per-

mutations were also studied in [8]. The Gray code [10] was first introduced as a sequence
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of distinct binary vectors of fixed length, where every adjacent pair differs in a single

coordinate. It has since been generalized to sequences of distinct states s1, s2, . . . , sk ∈ S

such that for every i < k there exists a function in a predetermined set of transitions

t ∈ T such that si+1 = t(si).

Such codes have been found to be applicable to a wide range of problems (see [11] for a

survey), including permanent-computation [12], circuit-testing [13], image-processing [14],

hashing [15], coding [8,16,17] and data storing/extraction [18]. In particular, the existence

of such codes was put in context of the Lovász conjecture, a currently-open problem,

whereas their generation is cast into the problem of finding a Hamiltonian path (or cycle)

in Cayley digraphs, which is of notable interest in our work.

Specifically, when the states one considers are permutations on n ∈ N elements and the

allowed transitions are “push-to-the-top” operations, [8] referred to such Gray codes as n-

length Rank-Modulation Gray Codes (n-RMGC’s), and it presented such codes traversing

the entire set of permutations. In this fashion, a set of n rank-modulation cells could

implement a single logical multilevel cell with n! levels, where an increase of 1 in the

logical cell’s level corresponds to a single transition in the n-RMGC. This allows for a

natural integration of rank modulation with other multilevel approaches discussed above.

We also note that generating permutations using “push-to-the-top” operations is of

independent interest, called “nested cycling” in [19] (and references therein), motivated by

a fast “push-to-the-top” operation1 (cycling) available on some computer architectures.

Other recent works have explored error-correcting codes for rank modulation, where

different types of errors are addressed by a careful choice of metric. In [20–22], Kendall’s

τ -metric was considered to model errors caused by charge-constrained noise. In contrast,

the ℓ∞-metric was used in [23, 24], as it models limited-magnitude spike errors.

In this work, we explore Gray codes for rank modulation which detect a single error,

under both metrics mentioned above. The study of error-detecting Gray codes, known

as snake-in-the-box codes, was first proposed by Kautz in [25] in the context of the hy-

percube with the Hamming metric and with single-bit flips as allowable transitions, due

to applications for counters in asynchronous systems and for the coding of digitalized

1The operations described in [19] are actually mirror images of “push-to-the-top” . Furthermore, the
permutation-generation scheme there is not a Gray code since it repeats some of the previously generated
permutations, also making it inefficient.
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analog data. These codes, and in particular their maximal achievable lengths, have since

been studied extensively (see [26, 27]). They have also seen applications to other areas,

such as coding theory (see [28] and references therein).

The work is organized as follows: In Chapter 2 we present basic notation and def-

initions. In Chapter 3 we review properties of Kendall’s τ -metric, present a recursive

construction of snake-in-the-box codes over the alternating groups of odd orders with

rate asymptotically tending to 1, then present some upper-bounds on the size of such

snake-in-the-box codes in general, and conclude by presenting auxiliary functions needed

for the use of codes generated by this construction. In Chapter 4 we present a direct

construction of snake-in-the-box codes of every order in the ℓ∞-metric based on results

from [8], with rates that asymptotically tend to 1. We conclude in Chapter 5 with some

ad-hoc results, as well as some open questions.
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Chapter 2

Preliminaries

Given a permutation σ on n elements (i.e., a bijection from and into the set [n] =

{1, 2, . . . , n}), we shall denote it by σ = [σ(1), σ(2), . . . , σ(n)]. This form is called the

vector notation for permutations. We let Sn be the symmetric group on [n] (that is, the

group of all permutations on [n]). For σ, τ ∈ Sn, their composition, denoted στ , is the

permutation for which στ(i) = σ(τ(i)) for all i ∈ [n]. It is well known that |Sn| = n!.

Example 1. One has precisely 6 ways of organizing the elements of [3] in a row. These

are:

[1, 2, 3] , [1, 3, 2] , [2, 3, 1] , [2, 1, 3] , [3, 1, 2] , [3, 2, 1] .

These 6 permutations form the group S3.

A cycle, denoted (a1, a2, . . . , ak), is a permutation mapping ai 7→ ai+1 for all i ∈ [k−1],
as well as ak 7→ a1. We shall occasionally use cycle notation in which a permutation is de-

scribed as a composition of (usually disjoint) cycles. We also recall that any permutation

may be represented as a composition of cycles of size 2 (known as transpositions), and

that the parity of the number of transpositions does not depend on the decomposition.

Thus we have even and odd permutations, with positive and negative signs, respectively.

We let An be the subgroup of all even permutations on [n], called the alternating group

of order n. Again, it is well known that |An| = 1
2
|Sn|.

Example 2. Of the permutations presented in Example 1, only the following are even:

[1, 2, 3] , [2, 3, 1] , [3, 1, 2] .
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They form the group A3. Put in cycle notation, they are:

id, (1, 2, 3) , (1, 3, 2) ,

where id denotes the identity permutation.

Definition 1. Given an alphabet S and a set of functions T ⊆ SS = {f | f : S → S},
referred to as transitions, a Gray code over S, using transitions T , of size M ∈ N, is a

sequence C = (c0, c1, . . . , cM−1) of M distinct elements of S, called codewords, such that

for all j ∈ [M − 1] there exists t ∈ T such that cj = t(cj−1).

Example 3. In the classic example of a Gray code [10], the codewords one considers are

binary vectors (Z/2Z)n, and the allowable transitions are ti(c) = c + ei, i = 1, 2, . . . n,

where ei is the vector whose ith coordinate equals 1 and the rest equal 0. Thus, permitted

transitions are flips of a single coordinate.

Other examples which have seen use in literature (see [11] and references therein) include

generating all permutations on [n] such that consecutive permutations defer by composi-

tion with adjacent transitions (thus T = {ti : Sn → Sn | i ∈ [n− 1]; ti(σ) = σ(i, i+ 1)}),
generating all subsets A of [n] satisfying |A| = k such that consecutive subsets differ by a

single element (by abuse of the definition, ti,j(A) = A∆ {i, j}, since the set of codewords

isn’t invariant under ti : P([n]) → P([n])), or generating all spanning trees of a graph

such that consecutive trees differ by a single edge.

Alternatively, when the original codeword c0 is either known or immaterial, we use a

slight abuse of notation in referring to the sequence of transitions (tk1 , . . . , tkM−1
) gener-

ating the code (i.e., cj = tkj (cj−1)) as the code itself.

In the above definition, when M = |S| the Gray code is called complete. If there

exists t ∈ T such that t (cM−1) = c0 the Gray code is called cyclic, M is called its period,

and we shall, when listing the code by its sequence of transformations, include tkM = t

at the end of the list. The rate of C, denoted R(C), is defined as the ratio of bits of

information transmittable using the code to those carried by the entire alphabet, i.e.,

R(C) =
log2M

log2 |S|
.
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In the context of rank modulation for flash memories, the set of transformations T

comprises of “push-to-the-top” operations, first used in [8], and later also in [29,30]. We

denote by ti : Sn → Sn the “push-to-the-top” operation on index i, i.e.,

ti[a1, a2, . . . , ai−1, ai, ai+1, . . . , an] = [ai, a1, a2, . . . , ai−1, ai+1, . . . , an],

and we henceforth set T = {t2, t3, . . . , tn}. We also note that, in cycle notation,

tiσ = σ (i, i− 1, . . . , 1) . (2.1)

For ease of presentation only, we also denote by ti the “push-to-the-bottom” operation

on index n + 1− i, i.e.,

ti[a1, a2, . . . , an−i, an+1−i, an+2−i, . . . , an] = [a1, a2, . . . , an−i, an+2−i, . . . , an, an+1−i].

Restricting the transformations to “push-to-the-top” operations allows fast cell pro-

gramming, and eliminates overshoots (see [8]). In the context of flash memory, “push-to-

the-top” operations have also been used in [30–32].

Let M be a metric over S defined by d : S × S → N ∪ {0}. Given a transmitted

codeword c ∈ C and its received version c̃ ∈ S, we say a single error occurred if d(c, c̃) = 1.

We are interested in Gray codes capable of detecting single errors, which we now define.

Definition 2. Let M be a metric over S defined by a distance function d. A snake-in-

the-box code overM and S, using transitions T , is a Gray code C over S and using T ,

in which for every pair of distinct elements c, c′ ∈ C, c 6= c′, one has d (c, c′) ≥ 2.

Since throughout this work our ambient space is Sn, and the transformations we

use are the “push-to-the-top” operations T , we shall abbreviate our notation and call

the snake-in-the-box code of size M an (n,M,M)-snake, or an M-snake. We will be

considering two metrics in the next chapters: Kendall’s τ -metric, K, and the ℓ∞-metric,

with their respective K-snakes and ℓ∞-snakes.

It is interesting to note that the classical definition of snake-in-the-box codes (see the

survey [27]) is slightly weaker in the sense that d(c, c′) ≥ 2 is required for distinct c, c′ ∈ C,

7



unless c and c′ are adjacent in C. This, however, is a compromise due to the fact that

in the classical codes over binary vectors, the transformations (which flip a single bit)

always create adjacent codewords at distance 1 apart. This compromise is unnecessary

in our case since, as we shall later see, the “push-to-the-top” operations allow adjacent

words at distance 2 or more apart.
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Chapter 3

Kendall’s τ-Metric and K-Snakes

Kendall’s τ -metric [33], denoted K, is induced by the bubble-sort distance which mea-

sures the minimal amount of adjacent transpositions required to transform one permuta-

tion into the other. For example, the distance between the permutations [2, 1, 4, 3] and

[2, 4, 3, 1] is 2, as

[2, 1, 4, 3]→ [2, 4, 1, 3]→ [2, 4, 3, 1]

is a shortest sequence of adjacent transpositions between the two. More formally, for

α, β ∈ Sn, as noted in [20],

dK(α, β) = |{(i, j) | α(i) < α(j) ∧ β(i) > β(j)}| .

The metric K was first introduced by Kendall [33] in the study of ranking in statistics. It

was observed in [20] that a bounded distance in Kendall’s τ -metric models errors caused

by bounded changes in charge-levels of cells in the flash memory. Error-correcting codes

for this metric were studied in [20, 21, 34].

We let Kendall’s τ adjacency graph of order n ∈ N be the graph Gn = (Sn, En) whose

vertices are the elements of the symmetric group, and {α, β} ∈ En whenever dK(α, β) = 1.

It is well known that Kendall’s τ -metric is graphic [35], i.e., for every α, β ∈ Sn, dK(α, β)

equals the length of the shortest path between the two in the adjacency graph, Gn.

9



3.1 Construction

We begin the construction process by restricting ourselves to Gray codes using only “push-

to-the-top” operations on odd indices. The following lemma provides the motivation for

this restriction.

Lemma 1. A Gray code over Sn using only “push-to-the-top” operations on odd indices

is a K-snake.

Proof. According to Equation 2.1, a “push-to-the-top” operation on an odd index is

a composition with an odd-length cycle (which is an even permutation). Thus, the

codewords in a Gray code using only such operations are all with the same sign.

On the other hand, an adjacent transposition is an odd permutation, thus, flipping

the sign of the permutation it acts on. It follows that in a list of codewords, all with the

same sign, there are no two codewords which are adjacent in Gn, i.e., the Gray code is a

K-snake.

Lemma 1 saves us the need to check whether a Gray code is in fact a K-snake, at
the cost of restricting the set of allowed transitions (and the size of the resulting code,

although Theorem 3 and Theorem 4, presented below, work to mitigate this concern). In

particular, if n is even, the last element cannot be moved.

By starting with an even permutation, and using only “push-to-the-top” operations

on odd indices, we get a sequence of even permutations. Thus, throughout this part, the

context of the alternating group A2n+1 is assumed, where n ∈ N.

The construction we are about to present is recursive in nature. As a base for the

recursion, we note that three consecutive “push-to-the-top” operations on the 3rd index

of permutations in A3 constitute a complete cyclic (3, 3,K)-snake:

C3 = ([1, 2, 3], [3, 1, 2], [2, 3, 1]) .

We shall extend C3 to the next order as a running example alongside the general con-

struction below.

10



Now, assume that there exists a cyclic (2n− 1,M2n−1,K)-snake, C2n−1, and let

tk1, tk2 , . . . , tkM2n−1

be the sequence of transformations generating it, where kj is odd for all j ∈ [M2n−1]. We

also assume that k1 = 2n − 1 (this requirement, while perhaps appearing arbitrary, is

actually quite easily satisfied. Indeed, every sufficiently large cyclic K-snake over S2n−1

must, w.l.o.g., satisfy it. We shall make it a point to demonstrate that this holds for our

construction).

We fix arbitrary values for a0, a1, . . . , a2n−2 such that

{a0, a1, . . . , a2n−2} = [2n+ 1] \ {1, 3} . (3.1)

For all i ∈ [2n− 1] we define

σ
(i)
0 = [1, ai, 3, ai+1, . . . , ai+2n−2],

where the indices are taken modulo 2n − 1, and such that we indeed have σ
(i)
0 ∈ A2n+1,

i.e., σ
(i)
0 is an even permutation (one simple way of achieving this is to choose them in

ascending order).

Example 4. We recall that C3 is generated by the operations (t3, t3, t3), which satisfy our

requirement. As suggested above, we order [5] \ {1, 3} in ascending order, i.e.,

(a0, a1, a2) = (2, 4, 5) .

We define the following permutations as starting points for our construction

σ
(0)
0 = σ

(3)
0 = [1, 2, 3, 4, 5]

σ
(1)
0 = [1, 4, 3, 5, 2]

σ
(2)
0 = [1, 5, 3, 2, 4]

and readily verify that they are all even.
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We now define for all i ∈ [2n− 1] and j ∈ [M2n−1] the permutation

σ
(i)
j(2n+1) = tkj

(

σ
(i)
(j−1)(2n+1)

)

,

i.e., we construct cycles corresponding to a mirror view of C2n−1 on all but the two first

elements of σ
(i)
0 (which, as we recall, are (1, ai)).

Example 5. In our running example, we define the following permutations:

σ
(0)
5 = t3σ

(0)
0 = [1, 2, 4, 5, 3]

σ
(0)
10 = t3σ

(0)
5 = [1, 2, 5, 3, 4]

σ
(0)
15 = t3σ

(0)
10 = [1, 2, 3, 4, 5]

σ
(1)
5 = t3σ

(1)
0 = [1, 4, 5, 2, 3]

σ
(1)
10 = t3σ

(1)
5 = [1, 4, 2, 3, 5]

σ
(1)
15 = t3σ

(1)
10 = [1, 4, 3, 5, 2]

σ
(2)
5 = t3σ

(2)
0 = [1, 5, 2, 4, 3]

σ
(2)
10 = t3σ

(2)
5 = [1, 5, 4, 3, 2]

σ
(2)
15 = t3σ

(2)
10 = [1, 5, 3, 2, 4]

and resume our construction.

We now note the following properties of our construction:

Lemma 2. Let i, k ∈ [2n− 1] and j, l ∈ [M2n−1]. The following are equivalent:

1. The permutations σ
(i)
j(2n+1) and σ

(k)
l(2n+1) are cyclic shifts of each other.

2. σ
(i)
j(2n+1) = σ

(k)
l(2n+1).

3. i = k and j = l.

Proof. First, if σ
(i)
j(2n+1) is a cyclic shift of σ

(k)
l(2n+1), since

σ
(i)
j(2n+1)(1) = 1 = σ

(k)
l(2n+1)(1)

then necessarily

σ
(i)
j(2n+1) = σ

(k)
l(2n+1).

It then follows that

ai = σ
(i)
j(2n+1)(2) = σ

(k)
l(2n+1)(2) = ak,

12



hence i = k. Moreover, since the two permutations’ last n − 1 elements agree, and

tk1 , tk2, . . . , tkM2n−1
induce a Gray code, we necessarily have j = l.

Finally, that the last statement implies the first is trivial.

Lemma 3. For all i ∈ [2n− 1] it holds that

σ
(i)
M2n−1(2n+1) = σ

(i)
0 .

Proof. The transformations tk1, tk2 , . . . , tkM2n−1
induce a cyclic code, and the claim follows

directly.

Therefore we have constructed 2n − 1 cycles comprised of cyclically non-equivalent

permutations (although, at this point they are not generated by “push-to-the-top” oper-

ations).

It shall now be noted that

tk = t2n2n+1t2n+2−k.

Hence, if we define for all i ∈ [2n−1], 0 ≤ j < M2n−1, and 1 < m ≤ 2n, the permutations

σ
(i)
j(2n+1)+1 = t2n+2−kj+1

σ
(i)
j(2n+1)

σ
(i)
j(2n+1)+m = tm−1

2n+1σ
(i)
j(2n+1)+1,

then it holds that

σ
(i)
(j+1)(2n+1) = t2n+1σ

(i)
j(2n+1)+2n.

Our observation from one paragraph above means that at this point we have 2n− 1

disjoint cycles, which we conveniently denote

C
(i)
2n+1 =

(

σ
(i)
0 , σ

(i)
1 , . . . , σ

(i)
M2n−1(2n+1)−1

)

,

for all i ∈ [2n− 1] (for ease of notation, we let C
(0)
2n+1 = C

(2n−1)
2n+1 ).

Example 6. In our construction, the cycles we produced are shown in Figure 3.1.

Each of the cycles is of size (2n + 1)M2n−1, is generated by “push-to-the-top” oper-

ations, and contains all cyclic shifts of elements present in our previous version of that
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σ
(0)
0 = t5σ

(0)
14 = [1, 2, 3, 4, 5]

σ
(0)
1 = t3σ

(0)
0 = [3, 1, 2, 4, 5]

σ
(0)
2 = t5σ

(0)
1 = [5, 3, 1, 2, 4]

σ
(0)
3 = t5σ

(0)
2 = [4, 5, 3, 1, 2]

σ
(0)
4 = t5σ

(0)
3 = [2, 4, 5, 3, 1]

σ
(0)
5 = t5σ

(0)
4 = [1, 2, 4, 5, 3]

σ
(0)
6 = t3σ

(0)
5 = [4, 1, 2, 5, 3]

σ
(0)
7 = t5σ

(0)
6 = [3, 4, 1, 2, 5]

σ
(0)
8 = t5σ

(0)
7 = [5, 3, 4, 1, 2]

σ
(0)
9 = t5σ

(0)
8 = [2, 5, 3, 4, 1]

σ
(0)
10 = t5σ

(0)
9 = [1, 2, 5, 3, 4]

σ
(0)
11 = t3σ

(0)
10 = [5, 1, 2, 3, 4]

σ
(0)
12 = t5σ

(0)
11 = [4, 5, 1, 2, 3]

σ
(0)
13 = t5σ

(0)
12 = [3, 4, 5, 1, 2]

σ
(0)
14 = t5σ

(0)
13 = [2, 3, 4, 5, 1]

σ
(1)
0 = t5σ

(1)
14 = [1, 4, 3, 5, 2]

σ
(1)
1 = t3σ

(1)
0 = [3, 1, 4, 5, 2]

σ
(1)
2 = t5σ

(1)
1 = [2, 3, 1, 4, 5]

σ
(1)
3 = t5σ

(1)
2 = [5, 2, 3, 1, 4]

σ
(1)
4 = t5σ

(1)
3 = [4, 5, 2, 3, 1]

σ
(1)
5 = t5σ

(1)
4 = [1, 4, 5, 2, 3]

σ
(1)
6 = t3σ

(1)
5 = [5, 1, 4, 2, 3]

σ
(1)
7 = t5σ

(1)
6 = [3, 5, 1, 4, 2]

σ
(1)
8 = t5σ

(1)
7 = [2, 3, 5, 1, 4]

σ
(1)
9 = t5σ

(1)
8 = [4, 2, 3, 5, 1]

σ
(1)
10 = t5σ

(1)
9 = [1, 4, 2, 3, 5]

σ
(1)
11 = t3σ

(1)
10 = [2, 1, 4, 3, 5]

σ
(1)
12 = t5σ

(1)
11 = [5, 2, 1, 4, 3]

σ
(1)
13 = t5σ

(1)
12 = [3, 5, 2, 1, 4]

σ
(1)
14 = t5σ

(1)
13 = [4, 3, 5, 2, 1]

σ
(2)
0 = t5σ

(2)
14 = [1, 5, 3, 2, 5]

σ
(2)
1 = t3σ

(2)
0 = [3, 1, 5, 2, 4]

σ
(2)
2 = t5σ

(2)
1 = [4, 3, 1, 5, 2]

σ
(2)
3 = t5σ

(2)
2 = [2, 4, 3, 1, 5]

σ
(2)
4 = t5σ

(2)
3 = [5, 2, 4, 3, 1]

σ
(2)
5 = t5σ

(2)
4 = [1, 5, 2, 4, 3]

σ
(2)
6 = t3σ

(2)
5 = [2, 1, 5, 4, 3]

σ
(2)
7 = t5σ

(2)
6 = [3, 2, 1, 5, 4]

σ
(2)
8 = t5σ

(2)
7 = [4, 3, 2, 1, 5]

σ
(2)
9 = t5σ

(2)
8 = [5, 4, 3, 2, 1]

σ
(2)
10 = t5σ

(2)
9 = [1, 5, 4, 3, 2]

σ
(2)
11 = t3σ

(2)
10 = [4, 1, 5, 3, 2]

σ
(2)
12 = t5σ

(2)
11 = [2, 4, 1, 5, 3]

σ
(2)
13 = t5σ

(2)
12 = [3, 2, 4, 1, 5]

σ
(2)
14 = t5σ

(2)
13 = [5, 3, 2, 4, 1]

Figure 3.1: 3 disjoint cycles in A5: C
(0)
5 , C

(1)
5 , C

(2)
5 . The permutations in bold are those

from Example 5.

cycle. We merge these cycles into a single cycle in the following theorem.

Theorem 1. Given a cyclic (2n− 1,M2n−1,K)-snake using only “push-to-the-top” oper-

ations on odd indices, and such that its first transformation is t2n−1, there exists a cyclic

(2n+ 1,M2n+1,K)-snake with the same properties, whose size is

M2n+1 = (2n− 1)(2n+ 1)M2n−1.

Proof. Since k1 = 2n − 1, it holds for all i ∈ [2n − 1] that σ
(i)
1 = t3σ

(i)
0 , and we recall

σ
(i)
2 = t2n+1σ

(i)
1 . More explicitly,

σ
(i)
1 = [3, 1, ai, ai+1, . . . , ai+2n−2]

σ
(i)
2 = [ai+2n−2, 3, 1, ai, ai+1, . . . , ai+2n−3] ,

where, again, the indices are taken modulo 2n− 1. Thus for all i ∈ [2n− 2] we have

t3σ
(i)
1 = [ai, 3, 1, ai+1, . . . , ai+2n−2] = σ

(i+1)
2
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and t3σ
(2n−1)
1 = σ

(1)
2 .

Let E denote the left-shift operator, and so

E2C
(i)
2n+1 =

(

σ
(i)
2 , σ

(i)
3 , . . . , σ

(i)
M2n−1(2n+1)−1, σ

(i)
0 , σ

(i)
1

)

.

By the above observations we conclude that

C2n+1 = E2C
(0)
2n+1, E

2C
(1)
2n+1, . . . , E

2C
(2n−2)
2n+1

is a cyclic (2n+ 1,M2n+1,K)-snake, consisting of

M2n+1 = (2n− 1)(2n+ 1)M2n−1

permutations. The code C2n+1 obviously uses t2n+1, and so some cyclic shift of it has

it as its first transition (in fact, for every i ∈ [2n − 1] one has σ
(i)
3 = t2n+1σ

(i)
2 , and in

particular, E2C
(0)
2n+1 has t2n+1 as its first transition, and so does C2n+1). Finally, it is

easily verifiable that all “push-to-the-top” operations are on odd indices.

Example 7. Our running example ends with the full construction of a (5, 45,K)-snake,
C5, from Theorem 1, shown in Figure 3.2.

[5, 3, 1, 2, 4] σ
(0)
2

↓ ↓
[1, 2, 4, 5, 3] σ

(0)
5

[4, 1, 2, 5, 3] σ
(0)
6

↓ ↓
[1, 2, 5, 3, 4] σ

(0)
10

[5, 1, 2, 3, 4] σ
(0)
11

↓ ↓
[1, 2, 3, 4, 5] σ

(0)
0

[3, 1, 2, 4, 5] σ
(0)
1

[2, 3, 1, 4, 5] σ
(1)
2

↓ ↓
[1, 4, 5, 2, 3] σ

(1)
5

[5, 1, 4, 2, 3] σ
(1)
6

↓ ↓
[1, 4, 2, 3, 5] σ

(1)
10

[2, 1, 4, 3, 5] σ
(1)
11

↓ ↓
[1, 4, 3, 5, 2] σ

(1)
0

[3, 1, 4, 5, 2] σ
(1)
1

[4, 3, 1, 5, 2] σ
(2)
2

↓ ↓
[1, 5, 2, 4, 3] σ

(2)
5

[2, 1, 5, 4, 3] σ
(2)
6

↓ ↓
[1, 5, 4, 3, 2] σ

(2)
10

[4, 1, 5, 3, 2] σ
(2)
11

↓ ↓
[1, 5, 3, 2, 4] σ

(2)
0

[3, 1, 5, 2, 4] σ
(2)
1

Figure 3.2: A (5, 45,K)-snake constructed by Theorem 1. Down arrows stand for an
omitted sequence of t5 transformations. The transition from column to column uses a
single t3 transformation..

We now turn to consider the size and rate of the constructed codes, and show that

their rate asymptotically tends to 1.
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Theorem 2. The size of K-snakes constructed in Theorem 1 behaves asymptotically as

|C2n+1| = M2n+1 =
(2n)!(2n+ 1)!

n!2 · 22n ∼ 1√
πn
|S2n+1| ,

which leads to an asymptotic rate of 1.

Proof. Starting from our base case of a complete cyclic (3, 3,K)-snake, we define for all

n ∈ N the ratio

D2n+1 =
M2n+1

(2n+ 1)!
,

which is the size of our constructed code over the total size of S2n+1. We note that

D2n+1

D2n−1
=

M2n+1 · (2n− 1)!

(2n+ 1)! ·M2n−1
=

2n− 1

2n
.

Therefore, since D3 =
1
2
, we have for all 2 ≤ n ∈ N that

D2n+1 =
1

2

n∏

m=2

2m− 1

2m
=

(2n)!

n!2 · 22n .

Using Stirling’s approximation one observes

lim
n→∞

D2n+1

√
πn = lim

n→∞

(2n)!
√
πn

n!2 · 22n

= lim
n→∞

√
4πn

(
2n
e

)2n√
πn

(√
2πn

(
n
e

)n)2 · 22n
= 1.

Moreover, one can now readily verify that

lim
n→∞

R(C2n+1) = lim
n→∞

log2M2n+1

log2 |S2n+1|
= 1.

Section 3.2 will focus on exploring the possible size of K-snakes in general.

Before we conclude this part, we recall that flash memory cells suffer long-time damage

from erasure cycles, and therefore it is desirable to minimize the number of times such

cycles are required.
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A property of rank-modulation cell programming is that an erasure of an entire cell

block is required only when a specific cell is to exceed its maximal permitted charge level.

It is therefore of interest to analyze the rate with which our constructed codes increase

the charge level of any given cell.

Repeated “push-to-the-top” operations on a given cell will result in a fast increase in

that cell’s charge level, and growing gaps between it and the charge levels of other cells. It

is therefore most cost-economic, in the sense that it delays the need for a time-consuming

erasure and reprogramming cycle, to employ a programming strategy which retains the

charge levels of individual cells as balanced as possible. Such balanced Gray codes were

constructed in [8].

In this part’s context, this goal is achieved if and only if every two subsequent inci-

dents in a cyclic (2n+ 1,M,K)-snake where a “push-to-the-top” operation is applied to

a certain cell are separated by at most 2n + 1 operations on other cells. Our family of

codes nearly achieves this goal:

Proposition 1. For every permutation σ ∈ C2n+1, in the K-snake constructed in Theorem 1,

there exists another σ′ ∈ C2n+1 such that σ(1) = σ′(1), following it by no more than 2n+3

steps.

Proof. Recall that

C2n+1 = E2C
(0)
2n+1, E

2C
(1)
2n+1, . . . , E

2C
(2n−2)
2n+1 .

By the nature of our construction, for n ≥ 2, every “push-to-the-top” operation, on all

but the last rank in the code, appears either as part of the pattern

. . . , t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, ti, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, . . .

or as

. . . , t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, t3, t3, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, . . .

It is therefore the case that there exist 0 ≤ k ≤ 2n and j ∈ [n] such that the transforma-

tions used in C2n+1 after σ are of the following two forms:

1. t2n+1, . . . , t2n+1
︸ ︷︷ ︸

k

, t2j+1, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

17



2. t2n+1, . . . , t2n+1
︸ ︷︷ ︸

k

, t3, t3, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

In the second case, one notes:

σ(1) =







t2n−1
2n+1t

2
3σ(1) k = 0

t23t2n+1σ(1) k = 1

t3t
2
2n+1σ(1) k = 2

t2n+1−k
2n+1 t23t

k
2n+1σ(1) k > 2.

Finally, in the first case, we note that

σ(1) =







t2n−k
2n+1t2j+1t

k
2n+1σ(1) k < 2j + 1

t2j+1t
k
2n+1σ(1) k = 2j + 1

t2n+1−k
2n+1 t2j+1t

k
2n+1σ(1) k > 2j + 1.

It is of interest to note that, of all cases discussed in the last proof, the second case

where k > 2 is the only situation in which another instance of programming to the specific

cell fails to occur in 2n+ 2 steps, i.e., for the large majority of cases (in all but 2n−1
M2n+1

of

them), the construction of Theorem 1 yields optimally-behaving codes in this respect.

3.2 Bounds on K-Snakes

We now turn our attention to bounding the parameters of K-snakes. We begin by noting

a simple upper bound on the size of K-snakes.

Theorem 3. If C is an (n,M,K)-snake then

1. M ≤ 1
2
|Sn|.

2. M = 1
2
|Sn| if and only if for all {α, β} ∈ En it holds that α ∈ C or β ∈ C.
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Proof. Every α ∈ Sn has exactly (n − 1) neighbors in Gn. When we sum the edges for

every vertex in Gn, each edge in En is counted precisely twice, hence

|En| =
n− 1

2
· |Sn| =

n!(n− 1)

2
.

On the other hand, for every α, β ∈ C and e1, e2 ∈ En such that α ∈ e1 and β ∈ e2

clearly e1 6= e2. It follows that there are no less than M(n − 1) distinct edges in En.

Hence

M ≤ 1

2
|Sn| .

Finally, we note that M = 1
2
|Sn| iff M(n− 1) = |En|, iff every edge in En contains a

(unique) element of C.

It is worth mentioning, at this point, that this upper-bound might not be tight.

Indeed, we know by Theorem 2 that

M2n+1

1
2
|S2n+1|

∼ 2√
πn

,

and no constructions are currently known which attain the upper bound, except for the

trivial case of C3.

The codes we constructed in the previous part use only “push-to-the-top” operations

on odd indices. We would now like to show that using even a single “push-to-the-top”

operation on an even index can never result in a code attaining the bound of Theorem 3

with equality. We first require a simple lemma.

Lemma 4. Let C be a K-snake over Sn. If σ, σ′ ∈ C and there exists a path in Gn of

odd length between them, then that path contains an edge both of whose endpoints are not

in C.

Proof. Consider such a path of odd length in Gn, connecting σ and σ′. Now color the

vertices of C black, and those of Sn \ C white. Since C is a K-snake, no edge in En has

both its ends colored black. In the path above the vertices cannot alternate in color since

σ and σ′ are colored black and the path has odd length. It follows that there is an edge

in the path with both ends colored white, as claimed.
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With this lemma in hand, we can now further bound the size K-snakes employing a

“push-to-the-top” operation on an even index.

Theorem 4. If an (n,M,K)-snake C contains a “push-to-the-top” operation on an even

index then

M ≤ 1

2
|Sn| −Θ(n) <

1

2
|Sn| .

Proof. Let C = (σ1, . . . , σM). We take i ∈ [M − 1] such that σi+1 = t2m (σi), where

2m ∈ [n]. Then σi and σi+1 have different signs. We will also find it convenient to denote

r = σi(2m) ∈ [n].

We shall construct as many distinct paths in Kendall’s τ adjacency graph Gn con-

necting σi with σi+1, knowing they must all have odd lengths, and therefore by Lemma 4

they each contain an edge completely disjoint from C. We will then show that these

edges are all distinct, allowing us to improve upon the bound of Theorem 3.

One natural such path is generated by subsequently applying to σi the adjacent trans-

positions (j, j + 1) for j = 2m− 1, 2m − 2, . . . , 1. By taking more care before applying

these transpositions, we shall arrive at more paths.

Consider the set of adjacent transpositions that do not involve the index 2m, namely

T = {(j, j + 1) | j ∈ [n− 1] \ {2m− 1, 2m}} .

For every subset B ⊆ T of size |B| ≤ 2, we generate a new permutation ωB by applying

to σi the elements of B (in some arbitrary order, say from smallest to largest indices).

Naturally, for two distinct such subsets, B and B′, we have ωB 6= ωB′

, but still ωB(2m) =

r = ωB′

(2m).

We can now apply to ωB the aforementioned transpositions in the following way:

ωB
0 = ωB

ωB
j = ωB

j−1(2m− j, 2m− j + 1); j ∈ [2m− 1],

and for every choice of subset we have ωB
2m−1(1) = r. Clearly, we can generate σi+1
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from ωB
2m−1 by reversing the effect of B’s elements (the actual transpositions required are

altered by the change of index for r, but all other elements retain their relative positions

with respect to each other. Formally, we need to apply the elements of B in the reverse

order, but whenever (j, j + 1) ∈ B such that j < 2m we instead apply the adjacent

transposition (j + 1, j + 2)).

Now, note that if ωB
k = ωB′

l then in particular

2m− k = (ωB
k )

−1(r) = (ωB′

l )−1(r) = 2m− l,

hence k = l. Therefore, the induced permutation on [n]\{r} agrees as well. This, however,
is impossible unless B = B′. Hence, any two paths of this sort can only intersect in the

first step of obtaining ωB from σi (or the last step from ωB
2m−1 to σi+1), i.e., in the first

(or last) edge of the path.

Finally, by Lemma 4 each path hereby described contains an edge disjoint from C.

Note that it cannot be its first or last edge (since σi, σi+1 ∈ C), hence these edges are all

distinct. It follows (in the same manner used in the proof of Theorem 3) that, where N

denotes the number of subsets of T with cardinality 2 or less, we have

M(n− 1) ≤ |En| −N =
n− 1

2
|Sn| −N,

and naturally N =
(
n−3
2

)
+ (n− 3) + 1 = Θ(n2).

Before concluding this section, we note that the upper-bound of Theorem 4 is still

higher than M2n+1, the size of codes generated by the construction of Theorem 1. See

Chapter 5 for some ad-hoc results of codes with optimal sizes.

3.3 Successor Calculation and Ranking Algorithms

We now turn to present algorithms associated with the codes we constructed in the

previous sections. The algorithms are brought here for completeness of presentation, and

are straightforward derivations from the construction. We shall, therefore, only provide
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an intuitive sketch of correctness for them, as we shall later do in the section corresponding

to l∞-snakes.

In order to use the codes described in Theorem 1 in the implementation of a logic cell

(with M2n+1 levels), importance is known to the ability of efficiently increasing the cell’s

level. That is, one needs to know, for every given permutation in the code, the appropriate

“push-to-the-top” operation required to produce the subsequent permutation.

For the code C2n+1 from Theorem 1, the function SuccessorK (n, [b1, . . . , b2n+1]) takes

as input a permutation in the code, and returns as output the index i of the required

transformation ti. It is assumed throughout this part that the elements {ai}2n−2
i=0 from

Equation 3.1, used in our construction, are known, and we will denote them with super-

script (n) to indicate order when it is not clear from context. Furthermore, we require a

function

Indn(b) : [2n + 1] \ {1, 3} → [0, 2n− 2]

which returns the unique index such that aIndn(b) = b. We assume Indn runs in O(1)

time1. One possible way, among many, of achieving this is by defining:

a
(n)
i =







2 i = 0

i+ 3 i ≥ 1

Indn(b) =







0 b = 2,

b− 3 b ≥ 4.

Finally, we naturally assume validity of the input in all procedures.

Our strategy will be to identify the vertices in C2n+1 which require a transformation

other than t2n+1. Those are either permutations with leading 1’s (those on which we

initially performed “push-to-the-bottom” operations in our construction), or the last

permutation in each E2C
(j)
2n+1. In the latter case we need only apply t3, where the former

requires translation of the a
(n)
i ’s according to their respective positions in the originating

permutation of each C
(j)
2n+1, and a recursive run of SuccessorK to determine the correct

“push-to-the-bottom” operation to be performed.

It shall be noted at this point that a degree of freedom exists in the cyclic shift

of C2n−1 one applies to construct each C
(j)
2n+1 (one only needs to confirm that the first

1Though the integers used throughout are of magnitude O(n), and so may require O(log n) bits
to represent, we tacitly assume (as in [8]) all simple integer operations, e.g., assignment, comparison,
addition, etc., to take O(1) time.
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“push-to-the-top” operation shall be on the last index). This shift shall be denoted by

the following bijection for every order n ∈ N and index j ∈ [2n− 1]:

n
j ↓ : {3} ∪

{

a
(n)
i

}

i 6=j
−→ [2n− 1],

defined such that the “push-to-the-bottom” operation applied to

[

1, a
(n)
j , b1, . . . , b2n−1

]

∈ C
(j)
2n+1

matches the “push-to-the-top” operation applied in C2n−1 to

[
n
j ↓b2n−1,

n
j ↓b2n−2, . . . ,

n
j ↓b1

]
.

We shall further denote its inverse as n
j ↑. These two bijections can be implemented in

O(1) time, for example, by taking as a starting point C2n−1’s (2n−4)-ranked permutation

[

a
(n−1)
0 , . . . , a

(n−1)
2n−4 , 3, 1

]

,

and defining accordingly

n
j ↓b =







1 b = 3

3 Indn(b) = j + 1

a
(n−1)
(j−Indn(b)−1) mod (2n−1) otherwise,

(3.2)

where Indn(b) = j + 1 is checked modulo 2n− 1, as well as

n
j ↑b =







3 b = 1

a
(n)
(j+1) mod (2n−1) b = 3

a
(n)
(j−Indn(b)−1) mod (2n−1) otherwise.

(3.3)

Lemma 5. SuccessorK runs in O(1) amortized time.

Proof. We first note that by the nature of our construction the element 1 appears in the
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Function SuccessorK (n, [b1, . . . , b2n+1])

input : n ∈ N, A permutation [b1, . . . , b2n+1] ∈ C2n+1

output : An odd i ∈ {3, . . . , 2n+ 1} that determines the transition ti to the next
permutation in C2n+1

1 if n = 1 then

2 return 3

3 if b1 = 3 and b2 = 1 and ∀3 ≤ i ≤ 2n : (Indn (bi+1)− Indn (bi)) ≡ 1 (mod 2n− 1) then
4 return 3

5 if b1 = 1 then

6 j ← Indn (b2)

7 i← SuccessorK

(
n− 1,

[
n
j ↓b2n+1,

n
j ↓b2n, . . . , nj ↓b3

])

8 return 2n+ 2− i

9 return 2n+ 1

leading index precisely (2n− 1) ·M2n−1 times, which constitutes 1
2n+1

of the code’s size.

The pair (3, 1) leads no more (and in fact strictly less) permutations.

Therefore, if we let En denote the expected number of steps performed by SuccessorK

when called on input of length 2n+ 1, then we note the recursive connection

En ≤ O(1) +
1

2n+ 1
O(n) +

1

2n + 1
(O(n) + En−1)

= O(1) +
1

2n + 1
En−1.

Developing this inequality recursively, there exists L ∈ N such that

En ≤L+
1

2n− 1
En−1

≤
(

1 +
1

2n− 1

)

L+
1

(2n− 1)(2n− 3)
En−2 ≤

...

≤
(

1 +
1

2n− 1
+

n− 2

(2n− 1)(2n− 3)

)

L+
n!2n

(2n)!
E1,

and so En = O(1).

To use C2n+1 in the implementation of a logic cell, one also needs a method of comput-

ing a given permutation’s rank in the code. We implement the function RankK ([b1, . . . , b2n+1])
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Function RankK ([b1, . . . , b2n+1])

input : A permutation [b1, . . . , b2n+1] ∈ C2n+1

output : The rank k ∈ {0, . . . ,M2n+1 − 1} associated with the given permutation in C2n+1

1 if n = 1 then

2 return 3− b2

3 i← min {l ∈ [2n+ 1] | bl = 1}
4 j ← Indn

(
b(i mod (2n+1))+1

)

5 for l ← 1 to 2n− 1 do

6 cl ← n
j ↓b((i−l−1) mod (2n+1))+1

7 r ←
(

RankK ([c1, . . . , c2n−1])− r
(j)
2n+1

)

mod M2n−1

8 rn ← ((2n+ 1)(r − 1)− 1 + ((i− 2) mod (2n+ 1))) mod ((2n+ 1)M2n−1)

9 return (2n+ 1)M2n−1 · j + rn

which receives as input a permutation [b1, . . . , b2n+1] ∈ C2n+1 and returns its rank in

C2n+1 = E2C
(0)
2n+1, E

2C
(1)
2n+1, . . . , E

2C
(2n−2)
2n+1 ,

in the order indicated by that notation. The assumptions made in the previous part are

still in effect. Moreover, we will require knowledge of the cyclic shift of C2n−1 used in the

construction of each C
(j)
2n+1, which we retain in the form of r

(j)
2n+1, the rank of permutation

in C2n−1 which was chosen as a starting point. For example, in the method suggested by

Equation 3.2 and Equation 3.3, we have

r
(j)
2n+1 = 2n− 4

for all j ∈ [2n− 1].

We use the following method: first identify the position of 1 in the permutation, and

the following element, which gives us both the subcode the permutation belongs to and the

cyclic shift in our mock “push-to-the-bottom” operation. Armed with that information

we then scan the permutation backwards and translate the a
(n)
j ’s indices according to the

subcode in the same way we did in SuccessorK. After that, a recursive run of RankK will

give us the permutation’s position in its subcode, which we will combine with the cyclic

shift to produce the correct rank, taking r
(j)
2n+1 into account and remembering that C2n+1

is constructed of the E2C
(j)
2n+1’s rather than the C

(j)
2n+1’s.

Lemma 6. The function RankK operates in O(n2) steps.
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Proof. We note that RankK performs O(n) operations before calling upon itself with an

order reduced by one. It therefore operates in O(n2) time.

Unranking permutations, i.e., the process of assigning to a given rank in [0,M2n+1−1]
the corresponding permutation in the C2n+1, might also be needed if one requires the logic

cell to perform as more than a counter. We implement a function UnrankK(n, k) which

returns as output the k-ranked permutation in C2n+1.

Naturally, all assumptions made above still hold. We will follow the same general

method used for RankK, i.e., we shall compute j ∈ [2n − 1] such that the given rank

belongs to σ ∈ E2C
(j)
2n+1, then adjust the rank to indicate the correct position in C

(j)
2n+1.

It will then remain to compute the correct permutation in the “push-to-the-bottom” cycle

using a recursive run, and shift it the required number of times.

Function UnrankK (n, k)

input : n ∈ N; rank k ∈ [0,M2n+1 − 1]
output : The permutation [b1, . . . , b2n+1] which is kth in C2n+1

1 if n = 0 then

2 return [1]

3 j ←
⌊

k
(2n+1)·M2n−1

⌋

4 pos ← k mod ((2n+ 1)M2n−1)

5 perm ←
(⌊

pos+1
2n+1

⌋

+ 1 + r
(j)
2n+1

)

mod M2n−1

6 shift ← (pos + 2) mod (2n+ 1)
7 [c1, . . . , c2n−1]← UnrankK(n− 1, perm)

8 return t
shift
2n+1

[

1, a
(n)
j , nj ↑c2n−1,

n
j ↑c2n−2, . . . ,

n
j ↑c1

]

Lemma 7. The function UnrankK operates in O(n2) steps as well.

Proof. Follows exactly the same lines as our proof to Lemma 6.
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Chapter 4

The ℓ∞-Metric and ℓ∞-Snakes

The ℓ∞-metric is induced on Sn by the embedding in Z
n implied by the vector notation.

More precisely, for α, β ∈ Sn one defines

d∞(α, β) = max
i∈[n]
|α(i)− β(i)| .

We use the ℓ∞-metric to model a different kind of noise-mechanism than that modeled

by Kendall’s τ -metric, namely spike noise. In this model, the rank of each memory cell

is assumed to have been changed by a bounded amount (see [23]).

Error-correcting and -detecting codes in Sn for the ℓ∞-metric are referred to in [23] as

limited-magnitude rank-modulation codes (LMRM codes). In that paper, constructions of

such codes achieving non-vanishing normalized distance and rate are presented. Moreover,

bounds on the size of optimal LMRM codes are proven. In particular, it has been shown

[23, Th. 20] that if C is an (n,M, 2)-LMRM then

M ≤ n!

2⌊n/2⌋
.

Using a simple translation to an extremal problem involving permanents of (0, 1)-matrices

(see [36]), this is also the best possible bound using the set-antiset method. For our needs,

it follows that the size of every n-length ℓ∞-snake is bounded by this term. We shall

present a construction of ℓ∞-snakes achieving this upper-bound by a factor of
⌊
n
2

⌋
2⌈n/2⌉,

which we will show achieves an asymptotic rate of 1.
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4.1 Construction

In order to use the code constructions presented in [8], we first prove the following lemma.

Lemma 8. Both constructions in [8, Th. 4,7], when applied recursively, yield complete

cyclic n-RMGC’s containing both “push-to-the-top” operations t2 and tn.

Proof. The proposition was, while not fully stated, actually proven in [8, Th. 4].

For [8, Th. 7], we shall assume that the recursive process was applied to a length-

(n− 1) Gray code satisfying these conditions (as is the case with the base example given

in that article). The resulting code uses tn by definition. Moreover, since the original

code used tn−1, the resulting code uses tn−(n−1)+1 = t2.

This lemma now allows for the construction of a basic building block which we will

later use.

Lemma 9. Let {aj}nj=1, n ≥ 2, be a set of integers of the same parity. Let

σ = [x, a1, a2, . . . , an, bn+2, bn+3, . . . , bm] ∈ Sm

be a permutation such that the parity of x differs from that of the elements of {aj}nj=1.

Then there exists a (non-cyclic) (m,n + (n − 1)!, ℓ∞)-snake starting with σ and ending

with the permutation

t2t
n
n+1(σ) = [a2, a1, a3, a4, . . . , an, x, bn+2, bn+3, . . . , bm] .

Proof. Let σ0, . . . , σn+(n−1)!−1 denote the codewords of the claimed code, and denote by

tk1 , . . . , tkn+(n−1)!−1
the list of transformations generating it.

We set σ0 = σ. For all i ∈ [n] we let σi = tin+1(σ), i.e., tki = tn+1. Quite clearly, any

two of these n + 1 permutations are at ℓ∞-distance at least 2 apart, since the aj ’s share

parity.

Now, by Lemma 8 there exists a complete cyclic (n − 1)-RMGC starting with σn,

with its last operation being t2. We therefore let tkn+i
for i ∈ [(n − 1)!] represent that

code, hence tkn+(n−1)!
= t2 and σn+(n−1)! = σn (we then, obviously, omit the last trans-
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formation as well as the repeated codeword σn+(n−1)!). These (n − 1)! permutations,

σn, . . . , σn+(n−1)!−1, also represent an ℓ∞-snake, for the same reason.

Finally, take 0 ≤ k < n and 0 ≤ l < (n − 1)!, and observe σk and σn+l. Suppose

d∞(σk, σn+l) ≤ 1. Then in particular |an−k − x| = 1. Moreover, if k = n − 1 then

|x− an| = 1, but then an’s position in σk correlates to one of {aj}n−1
j=1 in σn+l, in contra-

diction. Therefore k ≤ n− 2, but then an’s position in σn+l (nth from left) correlates to

that of an−k−1 in σk, where 1 ≤ n− k− 1 ≤ n− 1, again in contradiction. This concludes

our proof.

Example 8. We shall start this example with the permutation

σ = [1, 2, 4, 6, 3, 5] .

We will also require a complete 2-RMGC, which clearly comprises of two subsequent t2

operations. We are now ready to present a (non-cyclic) (6, 3 + 2!, l∞)-snake:

[ 1
2
4
6
3
5

]

→
t4

[ 6
1
2
4
3
5

]

→
t4

[ 4
6
1
2
3
5

]

→
t4

[ 2
4
6
1
3
5

]

→
t2

[ 4
2
6
1
3
5

]

An additional t2 operation is called for by our complete 2-RMGC, but we omit it. We

also note that any permutation on the odd element in this example will not change its

properties as an l∞-snake.

Having this building block in hand, we continue to describe a construction of a cyclic

ℓ∞-snake. The construction follows by dividing the ranks in a length-n permutation into

even and odd elements, and covering permutations on each half separately.

Theorem 5. For all 4 ≤ n ∈ N there exists an (n,M, ℓ∞)-snake of size

M =
⌈n

2

⌉

!
(⌊n

2

⌋

+
(⌊n

2

⌋

− 1
)

!
)

.

Proof. To simplify notations, we start by noting that [n] has p =
⌈
n
2

⌉
odd elements and

q =
⌊
n
2

⌋
even ones. We shall use that notation throughout this proof.
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Using [8, Th. 4,7] we take a complete cyclic p-RMGC using the operations

tα(1), tα(2), . . . , tα(p!).

Moreover, we use Lemma 9 to come by a (q,Mq, ℓ∞)-snake of size Mq = q+(q − 1)! given

by the operations

tβ(1), tβ(2), . . . , tβ(q+(q−1)!−1).

As the origin for the code we construct we use

σ0 = [1, 2, 4, . . . , 2q, 3, . . . , 2p− 1] .

For all i ∈ [p!] and j ∈ [q + (q − 1)!− 1] we define the sequence of transformations

generating the code as

tk(i−1)(q+(q−1)!)+j
= tβ(j)

tki(q+(q−1)!)
= tα(i)+q

and where, naturally, the codewords satisfy σi = tki(σi−1).

We start by noting that, for all i ∈ [p!], the permutation σ(i−1)(q+(q−1)!) satisfies the

requirements of Lemma 9 as a simple matter of induction. It follows that for all i ∈ [p!]

the permutations

{
σ(i−1)(q+(q−1)!)+1, σ(i−1)(q+(q−1)!)+2, . . . , σi(q+(q−1)!)−1

}

are at ℓ∞-distance of at least 2 apart.

Furthermore, for i, i′ ∈ [p!], i < i′, since the code generated by tα(1), tα(2), . . . , tα(p!)

is indeed a Gray code, we are assured that for all 0 ≤ j, j′ ≤ q + (q − 1)! − 1 the last

p − 1 elements of both σ(i−1)(q+(q−1)!)+j and σ(i′−1)(q+(q−1)!)+j′ are all odd and represent

two distinct permutations, hence

d∞
(
σ(i−1)(q+(q−1)!)+j , σ(i′−1)(q+(q−1)!)+j′

)
≥ 2.
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σ0









1

2

4

6

3

5









⇒

σ4









4
2
6
1
3
5









→
t5
q

t3+2

σ5









3
4
2
6
1
5









⇒

σ9









2
4
6
3
1
5









→
t6
q

t3+3

σ10









5
2
4
6
3
1









⇒

σ14









4
2
6
5
3
1









→
t6
q

t3+3

σ15









1
4
2
6
5
3









⇒

σ19









2
4
6
1
5
3









→
t5
q

t3+2

σ20









5
2
4
6
1
3









⇒

σ24









4
2
6
5
1
3









→
t6
q

t3+3

σ25









3
4
2
6
5
1









⇒

σ29









2
4
6
3
5
1









→
t6
q

t3+3

σ30









1

2

4

6

3

5









Figure 4.1: A (6, 3!(3 + 2!), l∞)-snake constructed by Theorem 5. Double-arrows stand
for an omitted sequence of transitions generating Example 8, i.e., t4, t4, t4, t2.

Finally, we note that

tα(p!)
(
σp!(q+(q−1)!)−1

)
= σ0,

since the code provided by tα(1), tα(2), . . . , tα(p!) is cyclic and o(t2) = 2 divides p!.

Example 9. For this example, using an order of 6 as the last example (i.e., p = q = 3),

we refer to [8, Th. 4,7] for a complete cyclic 3-RMGC as well as the aforementioned

2-RMGC. One such is created by the transitions:

t2, t3, t3, t2, t3, t3.

Moreover, we have our (6, 3 + 2!, l∞)-snake from the last example, generated by (recall

that it’s not cyclic):

t4, t4, t4, t2.

In Figure 4.1 we start our cyclic (6, 3!(3 + 2!), l∞)-snake in the same permutation as we

did the last example, and use the generating transitions of the code presented in the last

example as a building block.

One sees that we indeed have a cyclic l∞-snake of size 30.

We note that by switching the roles of odd and even numbers in Theorem 5 we can

construct an (n,M, ℓ∞)-snake of size

M =
⌊n

2

⌋

!
(⌈n

2

⌉

+
(⌈n

2

⌉

− 1
)

!
)

.

However, the resulting code is strictly smaller for odd n.

Theorem 6. The ℓ∞-snakes constructed in Theorem 5 have an asymptotic-rate of 1.

31



Proof. Let Cn denote the ℓ∞-snake of length n constructed by Theorem 5. Using the

crude
(n

e

)n

≤ n! ≤ nn

the proof is a matter of simple calculation:

lim
n→∞

R(Cn) = lim
n→∞

log2
(⌈

n
2

⌉
!
(⌊

n
2

⌋
+
(⌊

n
2

⌋
− 1

)
!
))

log2 (n!)

≥ lim
n→∞

2 log2
((⌊

n
2

⌋
− 1

)
!
)

log2 (n!)

≥ lim
n→∞

(n− 4) log2
(
n−4
2e

)

n log2 n
= 1.

4.2 Successor Calculation and Ranking Algorithms

Finding the correct “push-to-the-top” operation to propagate a given permutation to the

following one is naturally dependent upon one’s ability to do the same with the
⌈
n
2

⌉
- and

(⌊
n
2

⌋
− 1

)
-RMGC’s used in our construction. We therefore assume to have the function

Succ ([a1, a2, . . . , an]) which accepts as input a permutation [a1, a2, . . . , an] ∈ Sn and

returns the correct transformation used in the codes we used. Furthermore, we assume

to have the function Rn ([a1, a2, . . . , an]) which returns the respective rank of the input

permutation in that code, where the identity permutation is assumed to have rank zero.

Finally, we shall use an auxiliary function sw : Sn → Sn defined by sw (σ) = (1, 2) ◦ σ
(which naturally operates in O(n) steps).

The function Successor∞ ([a1, . . . , an]) then returns as output the index i of the

required transformation ti to produce the subsequent permutation in the code from

[a1, . . . , an]. It operates by considering the following cases: in each block of Lemma 9

one computes the proper index by propagating the leading element of odd rank as long

as that is needed, then applying Succ to the permutation on the elements of even ranks

(where one distinguishes between blocks in which 2, 4 were switched). Only the last per-

mutation of each block calls for applying Succ to the permutation on the elements of odd

ranks.
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Function Successor∞ ([a1, . . . , an])

input : A permutation [a1, a2, . . . , an]
output : i ∈ {2, 3, . . . , n} that determines the transition ti to the next permutation in the

ℓ∞-snake from Theorem 5
1 q ←

⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 if aq+1 ≡ 0 (mod 2) then
3 return q + 1

4 if Rn(
[
aq+1+1

2 , . . . , an+1
2

]

) ≡ 0 (mod 2) then

5 if [a1, . . . , aq] = [4, 2, 6, . . . , 2q] then

6 return q + Succ

([
aq+1+1

2 , . . . , an+1
2

])

7 return Succ

([
a1

2 , . . . ,
aq

2

])

8 if [a1, . . . , aq] = [2, 4, . . . , 2q] then

9 return q + Succ

([
aq+1+1

2 , . . . , an+1
2

])

10 return Succ

(
sw

([
a1

2 , . . . ,
aq−1

2

]))

Lemma 10. If the functions Succ, Rn operate in Ln,Mn steps respectively in the average

case, then Successor∞ has an average runtime of O (n+ Lq−1 +Mp).

Proof. We partition our proof by return cases. Successor∞ exits at line 3 in precisely

q
q+(q−1)!

of cases, in which case it returns within a fixed number of operations.

It exits at lines 6, 9 in 1
q+(q−1)!

of cases, in which case it operates in at most (depending

on the data structures in use) O(n) +Mp + Lp steps in the average case.

Finally, Successor∞ returns from lines 7, 10 in (q−1)!−1
q+(q−1)!

of cases, after performing

O(n) +Mp + Lq−1 steps.

In every sensible implementation of Succ (i.e., where we assume
Lp−Lq−1

q+(q−1)!
→ 0) we

then have an amortized runtime of O (n+ Lq−1 +Mp).

We now note that by [8, Th. 7,10] we may assume Succ to operate in O(1) steps in

the average case, and by [8, Part III-C] (which also relies on [37]) we assume Rn runs in

O(n) steps, yielding an average runtime of O(n) for Successor∞.

We shall also present the function Rank∞(n, [a1, . . . , an]) that, given a permutation in

the ℓ∞-snake presented in Section 4.1, returns that permutation’s rank in the code. This

function uses the function Rn discussed above as well, and works by considering the same

cases discussed above.

Lemma 11. If the function Rn operates in Mn steps, then Rank∞ has a runtime of

O(n+Mp) (in the average or worst case respectively).
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Function Rank∞ ([a1, . . . , an])

input : A permutation [a1, a2, . . . , an] in the ℓ∞-snake from Theorem 5
output : k ∈ N that represents the given permutation’s rank in the code

1 q ←
⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 if aq+1 ≡ 0 (mod 2) then
3 i← min {j ∈ [n] | aj 6≡ 0 (mod 2)}
4 return i− 1 + (q + (q − 1)!) · Rn

([
ai+1
2 ,

aq+2+1
2 , . . . , an+1

2

])

5 R← Rn

([
aq+1+1

2 , . . . , an+1
2

])

6 if R ≡ 0 (mod 2) then
7 return q + (q + (q − 1)!) · R+ Rn

([
a1

2 , . . . ,
aq−1

2

])

8 return q + (q + (q − 1)!) · R+ Rn

(
sw

([
a1

2 , . . . ,
aq−1

2

]))

Function Unrank∞ (n, k)

input : 4 ≤ n ∈ N; rank k ∈ N

output : The permutation [a1, a2, . . . , an] which is kth in the (n,M, ℓ∞)-snake from
Theorem 5

1 q ←
⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 R←
⌊

k
q+(q−1)!

⌋

; r ← (k mod (q + (q − 1)!))

3 [b1, . . . , bp]← UnR(p,R)
4 if r ≥ q then

5 [a1, . . . , aq−1]← UnR(q − 1, r − q)
6 if R ≡ 1 (mod 2) then
7 [a1, . . . , aq−1]← sw ([a1, . . . , aq−1])

8 return [2a1, . . . , 2aq−1, 2q, 2b1 − 1, . . . , 2bp − 1]

9 if R ≡ 0 (mod 2) then
10 return

[

2, 4, 6, . . . , 2r, 2b1 − 1, 2(r + 1), . . . , 2q, 2b2 − 1, . . . , 2bp − 1
]

11 return
[

4, 2, 6, . . . , 2r, 2b1 − 1, 2(r + 1), . . . , 2q, 2b2 − 1, . . . , 2bp − 1
]

Proof. We partition our proof by return condition once more. If the program exits from

4 then it performed O(q) +Mp steps.

If it exits from 7 or 8 then it performed O(1) +Mp +Mq−1 steps.

Again, by results discussed above, we note that Rank∞ runs in O(n) steps in the

average case.

As mentioned before, unranking permutations in the code might also be required. For

that purpose we implement the function Unrank∞(n, k), accepting as input the length of

the code and a specific rank and returning the implied permutation. We will assume the

existence of a similar function UnR for the construction used in Section 4.1, where again

we assume the unit permutation to have rank zero.

Once more, our implementation and estimate of Unrank∞’s runtime relies heavily on
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that of its auxiliary functions.

Lemma 12. If the function UnR operates in Nn steps, then Unrank∞ runs in O(n+Np)

steps.

Proof. One notes that the only operations in Unrank∞ that take more than a fixed number

of steps are calls for sw (taking O(n)), calls for UnR, and, depending on the data structures

in use, concatenation of indices (at most O(n) as well). The claim follows.

Again, it shall be noted that, relying on Lemma 8 and [8, Part III-C], Unrank∞ can

be performed in O(n2) operations.
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Chapter 5

Conclusion

In this work we explored rank-modulation snake-in-the-box codes under both Kendall’s

τ -metric and the ℓ∞-metric. In both settings we presented a construction yielding codes

with rates asymptotically tending to 1, and presented auxiliary functions for the produc-

tion of the successor permutation, as well as ranking and unranking for permutations in

the codes, to facilitate implementation of the given codes for logical cells in flash memory.

We also proved upper-bounds on the size of K-snakes, and presented known bounds for

ℓ∞-snakes.

However, we note that despite their optimal asymptotic rates, the presented codes

fail to achieve the given bounds by a constant fraction. As it is not presently known

whether the upper-bounds presented and referenced in this work are achievable, we were

unable to show how close the codes generated by our constructions come to being op-

timal with respect to their sizes. A computer search for cyclic codes, performed on S5,

yielded (5,M,K)-snakes of maximal size M = 57 (for comparison, the construction from

Theorem 1 yields a (5, 45,K)-snake). While an abundance of such codes were found (well

over 500 nonequivalent codes), they all were in fact codes over A5. For completeness, we

present one of those codes in Figure 5.1.

It shall be noted that a complete (but not cyclic) (5, 60,K)-snake over A5 can easily

be constructed from each cyclic code we tested by generating the skipped coset of S3

with two t3 operations, followed by a t5 operation and the given code, in order. However,

we do not currently know whether (2n + 1, (2n+1)!
2

,K)-snakes over A2n+1 exist for every

length.
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σ1
︷ ︸︸ ︷[

1
2
3
4
5

]

t3→
[

3
1
2
4
5

]

t3→
[

2
3
1
4
5

]

t5→
[

5
2
3
1
4

]

σ1
 

[
4
2
3
5
1

]

t3→
[

3
4
2
5
1

]

t5→
[

1
3
4
2
5

]

t5→
[

5
1
3
4
2

]

︸ ︷︷ ︸

σ2

σ2
 

[
2
5
3
4
1

]

t5→
[

1
2
5
3
4

]

︸ ︷︷ ︸

σ3

σ3
 

[
1
2
4
5
3

]

σ3
 

[
1
2
3
4
5

]

Figure 5.1: A (5, 57,K)-snake generated by a computer search. Squiggly arrows stand
for a repetition of the transitions defined by the braces.

In a recent paper based on the work presented here, Horovitz and Etzion [38] were

able to improve upon these results, and recursively construct (2n + 1, M̃2n+1,K)-snakes
with limn→∞

M̃2n+1

|S2n+1|
≃ 0.4338. They did so by partitioning A2n+1 into 2n(2n+ 1) ‘copies’

of A2n−1, each containing an induced copy of a K-snake C2n−1. Constructing a (2n +

1, M̃2n+1,K)-snake by concatenation of some of these copies, they were able to cast the

problem into the framework of 3-uniform hypergraphs (studied in [39]), where nodes

represent the induced K-snakes. More precisely, they showed that a tree in such graphs

(a subgraph containing no cycles) induced a (non-unique) concatenation of the copies,

and were able to prove the existence of maximal sized trees, containing all but one of

these 2n(2n+1) nodes, thereby constructing C2n+1 with M̃2n+1 = [2n(2n+ 1)− 1] M̃2n−1.

For comparison, recall that in the construction presented in our work, one has M2n+1 =

[(2n− 1)(2n+ 1)]M2n−1. Note in particular that M̃5 = 57, the size of a maximal K-snake
in A5.

While computer searches in the symmetric group of a higher order appear to be

infeasible, we include one more peculiar result: each maximal code we tested in A5

skipped 3 permutations who all agree on 4, 5, i.e., it skipped a coset of S3 (of the same

kind forfeited by the construction of [38]). We earlier conjectured that this phenomenon

may persist, since the codes generated by Theorem 1 of lengths 7 and 9 display it as well

(several cosets of S5 and S7 were absent, respectively), but Horovitz and Etzion have

constructed (7, 2515,K)- and (9, 181433,K)-snakes, which disproves the notion. They

have conjectured that the maximal achievable size of a (2n + 1,M,K)-snake is M =

(2n+1)!
2
− (2n−1). The authors are unaware of any results either proving this as an upper

bound for K-snakes or demonstrating the existence of such codes for n > 4, as of yet.
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These results, along with the bounds we showed in Theorem 4 and Theorem 3 give

rise to the following conjecture: For all n ∈ N a cyclic K-snake exists over An whose size

is no less than that of every cyclic K-snake over Sn.

In addition, searches done in a computer for ℓ∞-snakes for lengths 4, 5, 6 returned

codes of size 6, 30, 90 respectively, suggesting that perhaps the upper-bound of [23, Th. 20]

is achievable. Moreover, in these cases we were able to find codes generated only by “push-

to-the-top” operations on the last two indices. A code for each length is presented in

Figure 5.2 in binary representation (conveniently written in octal notation), where zeroes

stand for tn’s and ones for tn−1’s. Searches for higher lengths again seem infeasible.

n Defining Transitions

4 55

5 0212206063

6 010204410222042124446130162347

Figure 5.2: (4, 6, ℓ∞)-, (5, 30, ℓ∞)- and (6, 90, ℓ∞)-snakes generated by a computer search.
All codes represented by a sequence of “push-to-the-top” operations, applied in order to
the identity permutation, where zeroes stand for tn’s and ones for tn−1’s. The binary
strings are given in octal notation and should be read from left to right.
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תקציר

המסוגלים גריי קודי בוחנים אנו ,flash לזכרונות שימושים עם 'rank-modulation' הקידוד סכמת לאור

τ מטריקת שגיאה: מטריקות שתי בוחנים אנחנו .snake-in-the-box כקודי המוכרים בודדת, שגיאה לזהות

המקרים בשני חסומה. עוצמה בעל רעש הממדלת ℓ∞ ומטריקת חסום, מטען בעל רעש הממדלת קנדל, של

אלגוריתמים מציעים גם אנחנו .1 ל- אסימפטוטית המתכנס קצב עם snake-in-the-box קודי בונים אנו

לגודל כלליים חסמים בוחנים אנו לבסוף, זו. בסכימה וגילוי לקידוד בנוסף בקוד, רמה לקידום יעילים

שכאלו. קודים
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