
1

On Codes for the Noisy Substring Channel
Yonatan Yehezkeally , Member, IEEE and Nikita Polyanskii , Member, IEEE

Abstract—We consider the problem of coding for the substring
channel, in which information strings are observed only through
their (multisets of) substrings. Due to existing DNA sequencing
techniques and applications in DNA-based storage systems,
interest in this channel has renewed in recent years. In contrast
to existing literature, we consider a noisy channel model where
information is subject to noise before its substrings are sampled,
motivated by in-vivo storage.

We study two separate noise models, substitutions or deletions.
In both cases, we examine families of codes which may be utilized
for error-correction and present combinatorial bounds on their
sizes. Through a generalization of the concept of repeat-free
strings, we show that the added required redundancy due to this
imperfect observation assumption is sublinear, either when the
fraction of errors in the observed substring length is sufficiently
small, or when that length is sufficiently long. This suggests that
no asymptotic cost in rate is incurred by this channel model in
these cases. Moreover, we develop an efficient encoder for such
constrained strings in some cases.

Finally, we show how a similar encoder can be used to avoid
formation of secondary-structures in coded DNA strands, even
when accounting for imperfect structures.

Index Terms—DNA storage, Sequence reconstruction, Error-
correcting codes, Insertion/deletion-correcting codes, Constrained
codes

I. INTRODUCTION

D
NA as a medium for data storage offers high density

and longevity, far greater than those of electronic media

[1]. Among its applications, data storage in DNA may offer

a protected medium for long-period data storage [2], [3].

In particular, it has recently been demonstrated that storage

in the DNA of living organisms (henceforth, in-vivo DNA

storage) is now feasible [4]; the envelope of a living cell

affords some level of protection to the data, and even offers

propagation, through cell replication. Among its varied usages,

in-vivo DNA storage allows watermarking genetically modi-

fied organisms (GMOs) [5]–[7] to protect intellectual property,
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or labeling research material [3], [8]. It may even conceal

sensitive information, as it may appear indistinguishable from

the organism’s own genetic information [9].

Similarly to other media, information stored over this

medium is subjected to noise due to mutations, creating errors

in data, which accumulate over time and replication cycles.

Examples of such noise include symbol insertions or deletion,

in addition to substitutions (point-mutations) [10], [11]; the

latter is the focus of the vast majority of classical error-

correction research, and the former have also been studied.

Interestingly, however, the very methods we currently use to

store and later retrieve data from DNA inherently introduce

new constraints on information reconstruction. While desired

sequences may be synthesized (albeit, while suffering from

errors, e.g., substitution noise), the process of DNA sequenc-

ing, i.e., retrieving the DNA sequence of an organism, only

observes that sequence as the (likely incomplete) multiset of its

substrings (practically, up to a certain substring length) [12].

Thus, information contained in the order of these substrings

might be irrevocably lost. As a result of these constraints,

conventional and well-developed error-correction approaches

cannot simply be applied.

To overcome these effects, one approach in existing lit-

erature is to add redundancy in the form of indexing, in

order to recover the order of substrings (see, e.g., [13]–[15]).

A different approach, potentially more applicable to in-vivo

DNA storage, is to add redundancy in the form of constraints

on the long information string, such that it can be uniquely

reconstructed by knowledge of its substrings of a given length

(or range of lengths). The combinatorial problem of recovering

a sequence from its substrings has attracted attention in

recent years [16]–[23], and coding schemes involving only

these substrings (including the incidence frequency of each

substring) were studied [12], [15], [24]–[26].

However, works dedicated to overcoming this obstacle,

inherent to the technology we use, have predominantly fo-

cused on storage outside of living cells (i.e., in-vitro DNA

storage). Likewise, works focused on error-correction for in-

vivo DNA data storage (e.g., [27]–[29]) have disregarded the

technical process by which data is to be read. However, in real

applications varied distinct noise mechanisms act on stored

data concurrently. Hence, in practice, both sets of challenges

have to be collectively overcome in order to robustly store

information using in-vivo DNA.

The aim of this work is to protect against errors in the

information string (caused by mutations over the replication

process of cells), when channel outputs are given by the multi-

sets of their substrings, of a predetermined length, rather than

entire strings. This models the process of DNA sequencing,

once information needs to be read from the medium. We shall

study the required redundancy of this model, and devise coding
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strategies, under the assumption of two different error types:

substitution and deletion noise.

Another application for this line of research is secondary-

structure avoidance. Secondary structures are complex spa-

tial structures that can form in a chemically active single-

stranded DNA, as a result of the strand folding upon itself

to allow two sub-segments to bond via complementary-base-

pair hybridization [30]. Their formation renders the DNA

strand chemically inactive and is therefore detrimental for

sequencing and DNA-based computation, hence a number of

recent works have looked to avoid them through coding [31]–

[34]. Herein we focus on relatively long structures, but unlike

recent works, we do not consider only perfect structures, but

also attempt to avoid ones which contain impairments, i.e.,

imperfect structures. We show that this problem is closely

connected to the above-described channel; thus, we are able

to also present an efficient encoder for this setting.

The paper is organized as follows. In Section II, we discuss

the main contribution of this paper, in context of related works.

In Section III we then present necessary notation. Then, in

Section IV we study the suggested model with substitution

errors, and in Section V with deletion errors. Finally, in

Section VI we develop an encoder for avoiding the formation

of even imperfect secondary structures.

II. RELATED WORKS AND MAIN CONTRIBUTION

Given a string of length n, the problem of reconstructing

it from the multiset of (all-, or, in some works, most-) its

substrings of a fixed length ℓ 6 n, has been studied in

literature. Assuming no errors occur in x prior to sampling

of its substrings, the problem of interest is identifying a set of

constraints on the information string, equivalent or sufficient,

for such reconstruction to be achievable.

It was observed in [16] that under certain circumstances,

distinct information strings in which repetitions of ℓ-substrings

appear in different positions, exhibit the same multisets of

(ℓ+ 1)-substrings. These observations indicate that care must

be taken when including code-words which contain repeating

ℓ-substrings (where observations are made via the multiset

of ℓ′-substrings, for some ℓ′ 6 ℓ + 1). On the other hand,

if every ℓ-substring of x is unique, then x is uniquely

reconstructible from the multiset of its (ℓ+1)-substrings (and

in fact, ℓ′-substrings, for all ℓ′ > ℓ), as evident from a greedy

reconstruction algorithm (which at each stage searches for

the next/previous character in the information string). This

observation motivates the study of repeat-free strings; x is

said to be ℓ-repeat-free if every ℓ-substring of x is unique

(put differently, if x is of length n, then it contains n− ℓ+ 1
distinct ℓ-substrings).

Focus on repeat-free strings is further justified by the

following results. It was observed in [19], via introduction

of profile vectors, that over an alphabet of size q, where

the length n of strings grows, if ℓ <
logq(n)

1+ǫ then the rate

of all possible ℓ-substring multisets vanishes. Conversely, it

was demonstrated in [21] using probabilistic arguments that

the asymptotic redundancy of the code-book consisting of

all ℓ-repeat-free strings of length n (which, as noted above,

is an upper bound for the redundancy of a code assuring

reconstruction from (ℓ + 1)-substrings), is O(n2−ℓ/ logq(n));
thus, when ℓ > (1 + ǫ) logq(n), the rate of repeat-free strings

alone is 1.

In this paper, we extend the setting of previous works by

allowing information strings to suffer a bounded number of

errors, prior to the sampling of their substrings. We study this

model under two separate error models: substitution (Ham-

ming) errors, and deletion errors. In both cases we show (see

Theorems 13 and 27) that when ℓ > (1 + ǫ) logq(n) and the

fraction of errors in the substring length ℓ is sufficiently small,

the rate of generalized repeat-free strings, dubbed resilient-

repeat-free, suffers no penalty from the process of sampling,

or from the presence of noise (when compared to the results

of [21]); i.e., the required added redundancy is sub-linear.

In the case of Hamming noise, we also show that when the

fraction of errors is too large, resilient-repeat-free strings do

not exist. However, it is left for future works to determine

the precise transition between the two regimes. Further, we

develop an efficient encoder for resilient-repeat-free sequences

(see Algorithm 1), although our encoder does not output

sequences of a fixed length n, but rather only guarantees that

the output is of length at most n.

It should be noted that [20] presented almost explicit

encoding/decoding algorithms for codes with a similar noise

model. However, in that paper’s setting, substitution noise

affects individual substrings after sampling; the codes it con-

structs are capable of correcting a constant number of errors in

each substring, but requires the assumption that errors do not

affect the same information symbol in a majority of the sub-

strings that reflect it. Therefore, its setting is incompatible with

the one considered herein, whereby each error occurring before

sampling affects ℓ consecutive substrings. [22] also developed

codes with full rate, capable of correcting a fixed number of

errors, occurring in substrings independently after sampling.

It replaced the aforementioned restriction by a constraint on

the number of total erroneous substrings, which is at most

logarithmic in the information string’s length. Hence, the total

number of errors in its setting remains asymptotically smaller

than the one incurred in the setting considered here.

Finally, as mentioned above we exploit the similarity be-

tween the aforementioned setting and channel model and

the problem of avoiding secondary structures. We focus on

hairpin-loop structures with long stems (scaling logarithmi-

cally in the length of the sequence), and unlike recent works

[31]–[34] the encoder we develop prevents the formation of

such structures even when the underlying complementary-

base-pair hybridization (in a region called the stem of the

structure) is imperfect, that is, it contains at most a δ-fraction

of mismatched nucleobases (which cannot stably hybridize),

while asymptotically achieving full rate.

III. PRELIMINARIES

Let Σ∗ be the set of finite strings over an alphabet Σ, which

for convenience we assume to be a finite unital ring of size q
(e.g., Zq). For x = x(0)x(1) · · · x(n−1) ∈ Σ∗, we let |x| = n
denote the length of x. We note that indices in the sequel
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are numbered 0, 1, . . .. For x,y ∈ Σ∗, we let xy be their

concatenation. For I ⊆ N (we follow the convention 0 ∈ N)

and x ∈ Σ∗, we denote by xI the restriction of x to indices

in I (excluding any indices |x| 6 i ∈ I), ordered according

to the naturally inherited order on I .
We let |A| denote the size of a finite set A. For a code

C ⊆ Σn, we define its redundancy red(C) , n − logq|C|,

and rate R(C) , 1
n logq|C| = 1− red(C)

n .

For n ∈ N, denote [n] , {0, 1, . . . , n− 1}. Although

perhaps confusable, for m 6 n ∈ N we use the common

notation [m,n] , {m,m+ 1, . . . , n}. We shall interpret xI

as enumerated by [|I|], i.e., xI(0) = x(min I), etc. Where it

is convenient, we will also assume I ⊆ N to be enumerated

by [|I|], such that the order of elements is preserved; i.e.,

I = {I(i) : i ∈ [|I|]}, and for all i ∈ [|I| − 1] one has I(i) <
I(i+1). Under this convention we have, e.g., xI(0) = x(I(0)).
We follow the standard group notation in denoting for j ∈ N

and I ⊆ N, the coset j + I , {j + i : i ∈ I}.

Example 1 Consider the string x = 0000111101100101 of

length n = 16, and the set I = [7, 10] = {7, 8, 9, 10} = 7 +
[4]. Then, xI = 1011, and in particular xI(1) = x(I(1)) =
x(8) = 0.

For x ∈ Σ∗ and i, ℓ ∈ N, where i + ℓ 6 |x|, we say that

xi+[ℓ] is the length-ℓ substring of x at index i, or ℓ-mer (at

index i) for short. Using notation from [16], for x ∈ Σ∗ and

ℓ ∈ N we denote the multiset of ℓ-mers of x by

Zℓ(x) ,
{{
xi+[ℓ] : 0 6 i 6 |x| − ℓ

}}
.

We follow [21] in denoting the set of ℓ-repeat-free strings

RF ℓ(n) ,
{
x ∈ Σn : i < j =⇒ xi+[ℓ] 6= xj+[ℓ]

}
.

We can now more formally state the objectives of Sec-

tions IV and V. Assuming an underlying error model, known

in context but yet to be determined, we let Bt(x), for some

x ∈ Σ∗, be the set of strings y ∈ Σ∗ which may be

the product of at most t errors occurring to x. Using this

notation, our aim shall be to study and design codes C ⊆ Σn,

such that given x ∈ C and y ∈ Bt(x), for some fixed

(or bounded) t, x can be uniquely reconstructed given only

Zℓ(y). We shall study constraints, generalizing the notion of

repeat-free strings, which allow unique reconstruction of y,

ascertain their required redundancy utilizing a probabilistic

method, devise explicit encoding/decoding algorithms when

possible, and state in Corollary 25 specific cases where this

in turn allows reconstruction of x.
Our analysis of the number of constrained sequences is

aided in both the Hamming-errors and deletions cases by the

following notation:

Definition 2 For positive ℓ 6 n, denote
(
[n]
ℓ

)
⊆ 2[n] the

collection of ℓ-subsets of [n]. A pair of subsets (I, J) ∈
(
[n]
ℓ

)2

is said to be observable if I(k) < J(k) for all k ∈ [ℓ].

Given a string x ∈ Σn, known from context, we will denote

for an observable pair (I, J) ∈
(
[n]
ℓ

)2

uI,J , xI − xJ ∈ Σℓ. (1)

We also denote ΓI , {(P,Q) : (P,Q) is observable,
(P ∪Q)∩ I 6= ∅}. To simplify notation, where some ℓ 6 n is

also given, we shall abbreviate ui,j , ui+[ℓ],j+[ℓ] and

Γi , {(p, q) : min(|i− p|, |i− q|) < ℓ}, (2)

for any 0 6 i < j 6 n− ℓ.

Then the following lemma will prove useful when bounding

the redundancy of constrained sequences:

Lemma 3 Take ℓ 6 n and an observable pair (I, J) ∈
(
[n]
ℓ

)2
.

Further, let x ∈ Σn be chosen uniformly at random. Then

uI,J is distributed uniformly and mutually independent of

{uP,Q : (P,Q) 6∈ Γ}I .

Proof: First, since uI,J is the image of x under a linear

map (more precisely, a module homomorphism), the pre-image

of any point is a coset of the map’s kernel and, thus, of equal

size; as a result, uI,J is distributed uniformly on the map’s

range. Since (I, J) is observable, the map is surjective onto

Σℓ, hence the first part is completed.

Second, observe that xI is independent of x[n]\I , hence

mutually independent of {uP,Q : (P,Q) 6∈ ΓI}. Since given

x[n]\I , there exist a bijection between xI and uI,J , the proof

is concluded.

Finally, our proof strategy for bounding the redundancy

of said constraints is based on Lovász’s local lemma (LLL),

which we slightly rephrase below.

Theorem 4 [35, Th. 1.1] Let {Ai,j}i,j be events in a proba-

bility space Ω. If for all i, j there exist constants 0 < fi,j < 1
such that

Pr(Ai,j) 6 fi,j
∏

(p,q)∈Γi,j

(1− fp,q),

where Γi,j is such that the event Ai,j is mutually independent

of events {Ap,q : (p, q) 6∈ Γi,j}, then

Pr
(
Ω \

⋃
i,j
Ai,j

)
>
∏

i,j

(1− fi,j).

To the best of authors’ knowledge, this application of the

lemma is novel to the conference version of this work; it then

also appeared in similar form in a concurrent journal version

of [21]. Before continuing, we derive a corollary of Theorem 4

which is less tight, but more easily utilized.

Corollary 5 Let {Ai,j}i,j be events in a probability space Ω.

If for all i, j there exist constants 0 < φi,j < 1 such that

Pr(Ai,j) 6 φi,j exp
(
−
∑

(p,q)∈Γi

φp,q − φi,j

)
,

where Γi is such that the event Ai,j is mutually independent

of events {Ap,q : (p, q) 6∈ Γi}, then

Pr
(
Ω \

⋃
i,j
Ai,j

)
> exp

(
−
∑

i,j

φi,j

)
.
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Proof: The proof follows from the inequality 1 − f >
e−f/(1−f) for 0 < f < 1. Then, denoting fi,j ,

φi,j

1+φi,j
and

Γi,j , Γi for all i, j we have, for all i, j:

fi,j
∏

(p,q)∈Γi,j

(1 − fp,q) = φi,j(1 − fi,j)
∏

(p,q)∈Γi,j

(1− fp,q)

> φi,j exp
(
−φi,j −

∑

(p,q)∈Γi

φp,q

)
> Pr(Ai,j).

It then follows from Theorem 4 that

Pr
(
Ω \

⋃
i,j
Ai,j

)
>
∏

i,j

(
1−

φi,j

1 + φi,j

)

=
∏

i,j

1

1 + φi,j
,

which, together with 1+φ 6 eφ for all φ, concludes the proof.

Our aim in the next two sections will be to give a precise

definition to the resilient-repeat-free constraint in the contexts

of Hamming-errors and deletions respectively, apply Corol-

lary 5 to bound their redundancies, then study explicit encoders

(in Section IV) and the cases in which error-correcting codes

can be embedded in these constraints.

IV. SUBSTITUTION NOISE

In this section we consider substitution noise, with error

balls Bs
t(x) , {y : dH(x,y) 6 t}, where dH(x,y) denotes

the Hamming distance between x and y. Observe that the

superscript s denotes substitution noise, and is not a parameter

in this notation.
We present and study a family of repeat-free strings which

are resilient to substitution errors:

Definition 6 We say that x ∈ Σ∗ is (t, ℓ)-resilient repeat free

if the result of any t substitution errors to x is ℓ-repeat-free.

More precisely, we define

RRF s
t,ℓ(n) , {x ∈ Σn : Bs

t (x) ⊆ RFℓ(n)}.

Throughout the paper, we shall abbreviate our notation to

RRF s(n), given that t, ℓ are known from context.

Example 7 The sequence x = 0000111101100101 from

Example 1 is 4-repeat-free, since all of its substrings of

length 4 are unique. It is not, however, (1, 4)-resilient-repeat-

free, since after a single substitution one may derive y =
0000111100100101, and y7+[4] = 1001 = y10+[4].

A. Rate of resilient-repeat-free strings

In the following section we dedicate ourselves to study

red(RRF s(n)), where t, ℓ are taken to be functions of n. In

particular, we will be interested in developing sufficient (and

to a lesser degree, necessary) conditions on t, ℓ that assure

R(RRF s(n)) = 1− on(1).
Recall that [21] showed that if ℓ = a log(n) + o(log(n)),

then

R(RFℓ(n)) =

{
on(1), a < 1;

1− on(1), a > 1.

Since RRF s
t,ℓ(n) ⊆ RRF

s
0,ℓ(n) = RF ℓ(n), then with

the above scaling of ℓ, having a < 1 implies that

R(RRF s
t,ℓ(n)) = on(1) as well, for all t; we shall see

that when a > 1, then for sufficiently small t we still have

R(RRF s
t,ℓ(n)) = 1− on(1).

A particular notion that will aid in our analysis is the

following: for 0 < k 6 ℓ, denote

Aℓ
t(k) ,

{
x ∈ Σℓ+k : ∃y ∈ Bs

t(x) : y[ℓ] = yk+[ℓ]

}
.

We let πℓ
t (k) , q−(ℓ+k)

∣∣Aℓ
t(k)

∣∣ (i.e., πℓ
t (k) = Pr

(
x ∈ Aℓ

t(k)
)

where x ∈ Σℓ+k is chosen uniformly at random). This notion

captures the pertinent range of k, since as k > ℓ grows, πℓ
t (k)

is clearly fixed and no longer changes with k. For convenience,

when ℓ, t are known from context, we also abbreviate:

π , πℓ
t (ℓ); π′ , max

0<k<ℓ
πℓ
t (k). (3)

The usefulness of the notation in (3) is substantiated in the

following theorem.

Theorem 8 Let ℓ = ℓ(n), t = t(n) be integer functions, and

assume t 6 ℓ 6 n. If for all sufficiently large n it holds that

3ℓ2π′ + 2ℓnπ 6 1/e, then

red(RRF s(n)) = O
(
n log(n)π′ + n2π

)
.

Proof: As mentioned above, we shall rely on Corollary 5,

for which we need to define the sets {Ai,j}, determine the

constants {φi,j} and establish the independence property for

the sets {Γi}. We define for all 0 6 i < j 6 n− ℓ the sets

Ai,j ,
{
x ∈ Σn : ∃y ∈ Bs

t (x) : yi+[ℓ] = yj+[ℓ]

}
.

Note that Σn \ RRF s(n) =
⋃

i,j Ai,j .

We let x ∈ Σn be chosen uniformly at random. Then

Pr(x ∈ Ai,j) = πℓ
t (min{ℓ, j − i}). Further,

|RRF s(n)| = qn · Pr(x ∈ RRF s(n)),

and hence

red(RRF s(n)) = − logq Pr(x ∈ RRF
s(n)).

Note that, in our notation, Pr(x ∈ RRF s(n)) =

Pr
(
x 6∈

⋃
i,j
Ai,j

)
.

Recalling (2), we claim for 0 6 i < j 6 n − ℓ that

the event {x ∈ Ai,j} is mutually independent of the events

{{x ∈ Ap,q} : (p, q) 6∈ Γi}. Indeed, Lemma 3 then implies

that ui,j is mutually independent of {up,q : (p, q) 6∈ Γi}.
By abuse of notation, consider the mapping Ui,j : x 7→ ui,j ;

then x ∈ Ai,j if and only if ui,j ∈ Ui,jB
s
t

(
U−1
i,j 0

)
,

where U−1
i,j 0 = {y : Ui,jy = 0}, Bs

t(A) =
⋃

y∈A Bs
t (y),

and Ui,jA = {Ui,jy : y ∈ A}. Since the sets Ui,jB
s
t

(
U−1
i,j 0

)

depend only on t, i, j but not x, the independence property

holds.

Observe that the number of pairs (p, q) ∈ Γi satisfying

|p− q| < ℓ is over-counted as all choices of α ∈ [i −
ℓ + 1, i + ℓ − 1] and β ∈ [α − ℓ + 1, α + ℓ − 1] \ {α}
(then, (p, q) = (min{α, β},max{α, β})); in fact, this way

one counts all pairs in [i − ℓ + 1, i], and all pairs in

[i, i + ℓ − 1], twice (in fact, more pairs are counted twice,



5

but the precise number is immaterial). I.e., that number is at

most (2ℓ − 1)(2ℓ − 2) − 2
(
ℓ
2

)
= (3ℓ − 2)(ℓ − 1) < 3ℓ2. The

number of pairs (p, q) ∈ Γi such that |q − p| > ℓ can also be

counted as above, allowing β ∈ [n] \ [α − ℓ + 1, α + ℓ − 1]
(which at worst, when α ∈ {0, n− 1}, allows for n − ℓ + 1
distinct choices), i.e., it is at most (2ℓ− 1)(n− ℓ+1) < 2ℓn.

We shall apply an almost symmetric version of Corollary 5,

where

φi,j =

{
eπ, j − i > ℓ,

eπ′, j − i < ℓ.

Then, for any i, j we observe

φi,j exp
(
−
∑

(p,q)∈Γi

φp,q − φi,j

)
> φi,je

−(3ℓ2π′+2ℓnπ)e

> πℓ
t (min{ℓ, j − i})

= Pr(x ∈ Ai,j),

where the last inequality is justified by 3ℓ2π′ + 2ℓnπ < 1/e,

for large enough n. It follows from Corollary 5 that

red(RRF s(n)) = − logq Pr(x ∈ RRF
s(n))

= − logq Pr
(
x 6∈

⋃
i,j
Ai,j

)

6 logq(e)
∑

i,j
φi,j

< e logq(e)
(
nℓπ′ + n2π

)
,

which concludes the proof.
Based on the last theorem, it is of interest to bound π, π′

from above. Our strategy will be twofold. First, we will

devise sufficient conditions for x ∈ RRF s(n); second, we

make tighten the resulting bounds by taking advantage of the

periodicity implied for y ∈ Bs
t(x), by y[ℓ] = yk+[ℓ]. To that

end, we note the following result.

Lemma 9 Take t 6 ℓ 6 n ∈ N, x ∈ Σn. If for all 0 6 i <
j 6 n− ℓ it holds that

dH
(
xi+[ℓ],xj+[ℓ]

)
> t+max{0,min{t, ℓ− j + i}},

then x ∈ RRF s(n).

Proof: The proof follows from applying the triangle

inequality by cases on (i + [ℓ]) ∩ (j + [ℓ]). Assume to the

contrary that there exist y ∈ Bs
t (x) and 0 6 i < j 6 n − ℓ

such that yi+[ℓ] = yj+[ℓ]. Note that

dH
(
xi+[ℓ],xj+[ℓ]

)
6 dH

(
xi+[ℓ],yi+[ℓ]

)
+

dH
(
yi+[ℓ],yj+[ℓ]

)
+

dH
(
yj+[ℓ],xj+[ℓ]

)

= dH
(
xi+[ℓ],yi+[ℓ]

)
+

dH
(
yj+[ℓ],xj+[ℓ]

)
.

We continue by cases.

If j − i > ℓ then, since (i + [ℓ]) ∩ (j + [ℓ]) = ∅, then

dH
(
xi+[ℓ],yi+[ℓ]

)
+ dH

(
yj+[ℓ],xj+[ℓ]

)
6 t, which contradicts

the theorem’s assumption.
On the other hand, if j − i 6 ℓ − t, then we may simply

bound dH
(
xi+[ℓ],yi+[ℓ]

)
+ dH

(
yj+[ℓ],xj+[ℓ]

)
6 2t, again in

contradiction.

Finally, suppose ℓ− t < j − i < ℓ. Note that

dH
(
xi+[ℓ],yi+[ℓ]

)
+ dH

(
yj+[ℓ],xj+[ℓ]

)

= dH
(
x[i,j−1],y[i,j−1]

)
+ 2dH

(
x[j,i+ℓ−1],y[j,i+ℓ−1]

)
+

dH
(
y[i+ℓ,j+ℓ−1],x[i+ℓ,j+ℓ−1]

)
.

Since [i, j − 1], [j, i + ℓ − 1], [i + ℓ, j + ℓ − 1] are pairwise

disjoint,

dH
(
x[i,j−1],y[i,j−1]

)
+ dH

(
x[j,i+ℓ−1],y[j,i+ℓ−1]

)
+

dH
(
y[i+ℓ,j+ℓ−1],x[i+ℓ,j+ℓ−1]

)
6 t.

Hence, denoting ∆ , dH
(
x[j,i+ℓ−1],y[j,i+ℓ−1]

)
, we have

dH
(
xi+[ℓ],xj+[ℓ]

)
6 t+∆ 6 t+ (ℓ − j + i),

once more in contradiction. This concludes the proof.

Observe in particular that Lemma 9 applies to n = ℓ + k,

and its proof can be applied specifically for (i, j) = (0, k).
That is, if wt(u0,k) = dH(x[ℓ],xk+[ℓ]) > t + min{t, ℓ− k}
then x 6∈ Aℓ

t(k). Vice versa, πℓ
t (k) = Pr

(
x ∈ Aℓ

t(k)
)

6
Pr(wt(u0,k) 6 t+min{t, ℓ− k}), which leads to the follow-

ing bound:

Corollary 10 πℓ
t (k) 6 q−ℓ

∑t+min{t,ℓ−k}
i=0

(
ℓ
i

)
(q − 1)i.

Proof: By Lemma 3 u0,k ∈ Σℓ is distributed uniformly,

hence from the above observation the proof is concluded.
The bound of Corollary 10 can be improved upon in some

cases, depending on k (thus improving the upper bound on π′):

Lemma 11

πℓ
t (k) > q−ℓ

t∑

i=0

(
ℓ

i

)
(q − 1)i,

and

πℓ
t (k) 6

{
q−ℓ

∑t
i=0

(
ℓ+k
i

)
(q − 1)i, k 6 ℓ

2 ;

q−ℓ
∑t

i=0

(
2ℓ−k

i

)
(q − 1)i k > ℓ

2 .

Proof: Take integers p > 2 and 0 6 r < k such that

ℓ + k = pk + r. For x ∈ Aℓ
t(k), there exists y ∈ Bs

t (x)
such that y[ℓ] = yk+[ℓ]. The method of our proof utilizes the

observation y[ℓ] = yk+[ℓ] implies that y is k-periodic, i.e., can

be determined by its first k coordinates:

y = (y[k], . . . ,y[k]︸ ︷︷ ︸
p times

,y[r]).

Observe for each y ∈ Σℓ+k, satisfying y[ℓ] = yk+[ℓ]

(of which we have seen there exist precisely qk distinct

possibilities, corresponding to a free choice of y[k]), that one

may form a unique x ∈ Aℓ
t(k) by changing at most t of the

symbols yk+[ℓ]. It follows that

∣∣Aℓ
t(k)

∣∣ > qk
t∑

i=0

(
ℓ

i

)
(q − 1)i.

On the other hand, it is also straightforward that

∣∣Aℓ
t(k)

∣∣ 6 qk
t∑

i=0

(
ℓ+ k

i

)
(q − 1)i,
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by changing up to t symbols of the whole of y.

When p = 2 or, equivalently, k > ℓ
2 , we shall improve the

above bound. Take x ∈ Ak and y ∈ Bs
t(x) satisfying y[ℓ] =

yk+[ℓ]. Define the intervals I1 , [ℓ − k], I2 , [ℓ − k, k − 1],

I3 , [k, ℓ − 1], I4 , [ℓ, 2k − 1], I5 , [2k, k + ℓ − 1]. Using

this notation, we have yI2 = yI4 and yI1 = yI3 = yI5 , i.e.,

y = yI1yI2yI1yI2yI1 .

Consider the string y′ , yI1xI2yI1xI2yI1 and note that

dH(x,y
′) = dH

(
xI1∪I3∪I5 ,y

′
I1∪I3∪I5

)
+

dH
(
xI2 ,y

′
I2

)
+ dH

(
xI4 ,y

′
I2

)

= dH(xI1∪I3∪I5 ,yI1∪I3∪I5) +

dH(xI2 ,xI2) + dH(xI4 ,xI2)

= dH(xI1∪I3∪I5 ,yI1∪I3∪I5) +

0 + dH(xI4 ,xI2).

Applying the triangle inequality on the last addend,

dH(x,y
′) 6 dH(xI1∪I3∪I5 ,yI1∪I3∪I5) +

dH(xI4 ,yI4) + dH(yI4 ,xI2)

= dH(xI1∪I3∪I5 ,yI1∪I3∪I5) +

dH(xI4 ,yI4) + dH(yI2 ,xI2)

= dH(x,y) 6 t.

Therefore, for any x ∈ Aℓ
t(k) there exists y′ ∈ Bs

t(x) of the

form

y′ = yI1xI2yI1xI2yI1 ,

and in particular xI2 = y′
I2

. This implies an improved upper

bound, by freely choosing yI1xI2 ∈ Σk and subsequently at

most t coordinates from [ℓ+ k] \ I2 to change, as follows

∣∣Aℓ
t(k)

∣∣ 6 qk
t∑

i=0

(
2ℓ− k

i

)
(q − 1)i.

With the results of Corollary 10 and Lemma 11, we can

now bound π, π′ to facilitate the application of Theorem 8.

Corollary 12

π = q−ℓ
t∑

i=0

(
ℓ

i

)
(q − 1)i 6 q−ℓ(1−Hq(min{ q−1

q , tℓ})),

and

π′ 6 q−ℓ
t∑

i=0

(
⌊3ℓ/2⌋

i

)
(q − 1)i

6 q−ℓ(1− 3
2Hq(min{ q−1

q , 2t3ℓ})),

where Hq(δ) = δ logq(q− 1)− δ logq(δ)− (1− δ) logq(1− δ)
is the q-ary entropy function.

Proof: First observe the equality on the first line follows

from the lower bound of Lemma 11, together with the upper

bound of either Corollary 10 or Lemma 11. Similarly, the first

inequality on the second line follows from the upper bound of

Lemma 11.

The second inequality on both lines follows from the

standard bound on the size of the q-ary Hamming ball (see,

e.g., [36, Lem. 4.7]); in particular observe that

t∑

i=0

(
⌊3ℓ/2⌋

i

)
(q − 1)i 6 q⌊3ℓ/2⌋Hq(min{ q−1

q , t
⌊3ℓ/2⌋}),

and since x 7→ xHq(1/x) is increasing for x > 1, the claim

follows.

We note before continuing that applying the upper bound of

Corollary 10 instead of Lemma 11 would result in an inferior

upper bound on π′.

Motivated by the discussion at the beginning of this section,

we fix the values of t, ℓ for the reminder of this paper.

Take a > 1 and a real number δ > 0; we let

ℓ ,
⌊
a logq(n)

⌋
;

t , ⌊δℓ⌋ =
⌊
δ
⌊
a logq(n)

⌋⌋
, (4)

as n grows.

Inspired by Corollary 12, we also denote by δ̃q the (unique)

real number 0 < δ̃q < q−1
q satisfying

Hq

(
2
3 δ̃q

)
= 2

3 .

We observe by substitution that δ̃q > q−1
2q , and provide δ̃q for

some small values of q:

q q−1
2q δ̃q

q−1
q

2 0.25 0.2609 0.5
3 0.3333 0.3723 0.6667
4 0.375 0.4375 0.75
5 0.4 0.4817 0.8
6 0.4167 0.5141 0.8333

Applying the result of Corollary 12 to Theorem 8, we can

now obtain the following result.

Theorem 13 Fix a > 1, 0 < δ < δ̃q. Then, as n→∞,

red(RRF s(n)) = O(n2−a(1−Hq(δ))).

Proof: If a 6 (1−Hq(δ))
−1

the proposition vacuously

holds.

Otherwise, let x ∈ Σℓ+k be chosen uniformly at random.

Based on Corollary 12 (recalling again that x 7→ xHq(1/x) is

increasing for x > 1), we observe for δ < δ̃q that

π 6 q · n−a(1−Hq(δ));

π′ 6 q · n−a(1− 3
2Hq(

2
3 δ)).

Hence, for sufficiently large n it holds that 3ℓ2π′ + 2ℓnπ <
1/e, satisfying the conditions of Theorem 8. Since we also

have n log(n)π′ = o
(
n2−a(1−Hq(δ))

)
, the claim follows from

Theorem 8.

Corollary 14 Take 0 < δ < δ̃q . If a > (1−Hq(δ))
−1

then

R(RRF s(n)) = 1 − o(1), and if a > 2(1−Hq(δ))
−1

, then

RRF s(n) incurs a constant number of redundant symbols.
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The last corollary can be viewed in the context of re-

lated works; as mentioned above, [21] demonstrated that if

a > 1 then R(RFℓ(n)) = 1 − on(1), and if a > 2 then

red(RFℓ(n)) = On(1). Corollary 14 demonstrates that if

a > 1 (respectively a > 2), then for all sufficiently small

δ > 0 it holds that R(RRF s(n)) = 1 − on(1) (respectively,

red(RRF s(n)) = On(1)). That is, resilient-repeat-free se-

quences for a number of substitutions errors logarithmic in the

string length (linear in the substring length) incur no additional

asymptotic cost.
Up until here, we have focused on demonstrating conditions

sufficient for the rate of resilient-repeat-free strings to be

asymptotically optimal. In the sequel, we pursue the converse,

or more precisely, necessary conditions for such strings to

obtain non-vanishing rate.

Definition 15 For a real δ, 0 6 δ < 1, and an integer ℓ > 0,

let Mq(ℓ, δ) be the maximum number of code-words in a code

C ⊆ Σℓ such that dH(x,y) > δℓ for any distinct x,y ∈ C.

For a given δ > 0, define the maximum achievable rate by

Rq(δ) , lim sup
ℓ→∞

1
ℓ logq Mq(ℓ, δ).

For completeness, we state the well-known Gilbert-Varshamov

and Elias-Bassalygo bounds (see, e.g., [36, Thm.4.9-12]) for

δ 6 q−1
q ,

1−Hq(δ) 6 Rq(δ) 6 1−Hq

(
q−1
q

(
1−

√
1− q

q−1δ
))

.

The following lemma states a converse bound to Corol-

lary 14.

Lemma 16 If a < Rq(δ)
−1, then for sufficiently large n ∈ N

RRF s(n) = ∅.

In particular, the statement holds if t > q−1
q ℓ, for all a.

Proof: Take, on the contrary, some x ∈ RRF s(n). By

Definition 6, the ℓ-mers
{
xiℓ+[ℓ] : 0 6 i 6 ⌊n/ℓ⌋ − 1

}
⊆ Σℓ

form a code of size ⌊n/ℓ⌋ and minimum distance d > t > δℓ.
By Definition 15 we obtain

log⌊n/ℓ⌋

ℓ
6 Rq(δ) + o(1).

Recalling ℓ = ⌊a logn⌋ yields that

1
a 6 Rq(δ) + o(1),

in contradiction to the assumption.
It should be noted that Lemma 16 specifically pertains

to resilient-repeat-free strings, which the reader will observe

are not necessarily required for successful reconstruction of

information. Nevertheless, it might be conjectured, based on

the noiseless case, that resilient-repeat-free sequences may

achieve optimum asymptotic rate.
Before concluding, we note that a twofold gap remains

between Theorem 13 and the converse of Lemma 16. First,

red(RRF s(n)) is not characterized when Rq(δ)
−1 6 a 6

(1−Hq(δ))
−1

; and second, it is not found when δ > δ̃q.

B. Encoding resilient-repeat-free codes

In this section, we present an explicit encoder of resilient-

repeat-free strings, in the hope that it may then be utilized

in constructing error-correcting codes for the noisy substring

channel.

We first discuss how elements of the ball Bs
t(0) (which

throughout this discussion we assume to contain length-ℓ
sequences; observe that we opt to use ℓ instead of n here since

our analysis will later be applied to ℓ-substring of a longer

length-n string) may be enumerated. Observe that given any

x[k] ∈ Σk with wt(x[k]) 6 t,

n(x[k]) ,
∣∣{y ∈ Bs

t(0) : y[k] = x[k]

}∣∣

=

t−wt(x[k])∑

j=0

(
ℓ− k

j

)
(q − 1)j .

Example 17 We take q = 2, ℓ = 7, t = 3, k = 4 and x =
0110010 ∈ Σ7 ∩ Bs

3(0). Then, the number of elements y ∈
Bs

3(0) such that y[4] = x[4] = 0110 equals

n(x[4]) =

3−wt(0110)∑

j=0

(
7− 4

j

)
(2− 1)j

=

1∑

j=0

(
3

j

)
= 1 + 3 = 4.

These elements are

{0110000, 0110001, 0110010, 0110100}.

Assuming a total order < on Σ, denote ‖x‖ ,
∣∣{y ∈

Σ : y < x}
∣∣ for all x ∈ Σ. It was shown in [37] that the

lexicographic index of x ∈ Bs
t (0) equals

i(x) =
∑

k∈[ℓ]

∑

α<x(k)

n(x[k−1]α), (5)

where we let x[0] be the empty string, with wt(x[0]) , 0.

Example 18 We use the natural order 0 < 1 with q = 2.

Then, using x = 0110010 from Example 17 we ascertain its

lexicographic index in Bs
3(0):

i(x) =

6∑

k=0

∑

α<x(k)

n(x[k]α)

= n(x[1]0) + n(x[2]0) + n(x[5]0)

= n(00) + n(010) + n(011000)

=

3−wt(00)∑

j=0

(
7− 2

j

)
+

3−wt(010)∑

j=0

(
7− 3

j

)
+

3−wt(011000)∑

j=0

(
7− 6

j

)

=
3∑

j=0

(
5

j

)
+

2∑

j=0

(
4

j

)
+

1∑

j=0

(
1

j

)

= (1 + 5 + 10 + 10) + (1 + 4 + 6) + (1 + 1) = 39.
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Lemma 19 The lexicographic index of x ∈ Bs
t (0) equals

i(x) =
∑

k∈[ℓ]

‖x(k)‖ · n(x[k+1]) +

wt(x(k)) ·

(
ℓ− k − 1

t− wt(x[k])

)
(q − 1)t−wt(x[k]).

Proof: Observe that if x(k) 6= 0, then

n(x[k]0) =

t−wt(x[k]0)∑

j=0

(
ℓ− (k + 1)

j

)
(q − 1)j

=

t−wt(x[k])∑

j=0

(
ℓ− k − 1

j

)
(q − 1)j,

hence

n(x[k+1]) =

t−wt(x[k+1])∑

j=0

(
ℓ− (k + 1)

j

)
(q − 1)j

=

t−wt(x[k])−1∑

j=0

(
ℓ− k − 1

j

)
(q − 1)j

= n(x[k]0)−

(
ℓ− k − 1

t− wt(x[k])

)
(q − 1)t−wt(x[k]).

It is also immediate that for any α ∈ Σ \ {0} it holds that

n(x[k]α) = n(x[k+1]). The claim now follows from (5).

Example 20 Repeating Example 18 with Lemma 19 we can

find

i(x) =
∑

k∈[7]

‖x(k)‖ · n(x[k+1]) +

wt(x(k)) ·

(
6− k

t− wt(x[k])

)
(q − 1)3−wt(x[k])

= n(x[2]) +

(
6− 1

3− wt(x[1])

)
+

n(x[3]) +

(
6− 2

3− wt(x[2])

)
+

n(x[6]) +

(
6− 5

3− wt(x[5])

)

= n(01) +

(
5

3

)
+

n(011) +

(
4

2

)
+

n(011001) +

(
1

1

)

=

2∑

j=0

(
5

j

)
+

(
5

3

)
+

1∑

j=0

(
4

j

)
+

(
4

2

)
+

(
1

0

)
+

(
1

1

)
= 39,

matching the result of Example 18.

Computationally, the most taxing expression to calculate

in the sum of Lemma 19 is n(x[k+1]); however, one might

employ a recursive approach to obtaining the sum. Indeed,

from the Pascal identity we observe

n(x[k])

=

t−wt(x[k])∑

j=0

(
ℓ− k

j

)
(q − 1)j

=

t−wt(x[k])∑

j=1

(
ℓ− k − 1

j − 1

)
(q − 1)j +

t−wt(x[k])∑

j=0

(
ℓ− k − 1

j

)
(q − 1)j

= (q − 1)

t−wt(x[k])−1∑

j′=0

(
ℓ− k − 1

j′

)
(q − 1)j

′

+

t−wt(x[k])∑

j=0

(
ℓ− k − 1

j

)
(q − 1)j

= q

t−wt(x[k])−1∑

j=0

(
ℓ− k − 1

j

)
(q − 1)j +

(
ℓ− k − 1

t− wt(x[k])

)
(q − 1)t−wt(x[k]).

By incrementing the upper limit of the sum through t −
wt(x[k]) and subtracting the corresponding addend separately,

the last line can also be restated

n(x[k]) = q

t−wt(x[k])∑

j=0

(
ℓ− k − 1

j

)
(q − 1)j −

(q − 1)

(
ℓ− k − 1

t− wt(x[k])

)
(q − 1)t−wt(x[k]).

Partitioning into cases by wt(x(k)), we find

n(x[k])

= q · n(x[k+1])−

(−1)wt(x(k))

(
ℓ− k − 1

t− wt(x[k])

)
(q − 1)t−wt(x[k+1])+1, (6)

where trivially n(x[ℓ]) = n(x) = 1.

Example 21 In Examples 17 and 20 we have found, in Bs
3(0),

n(01) =

2∑

j=0

(
5

j

)
= 16;

n(011) =

1∑

j=0

(
4

j

)
= 5;

n(0110) =

1∑

j=0

(
3

j

)
= 4.
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We can now confirm that indeed

n(011) = 2 · n(0110)− (−1)wt(0)

(
6− 3

3− 2

)

= 2 · 4− 3,

and

n(01) = 2 · n(011)− (−1)wt(1)

(
6− 2

3− 1

)

= 2 · 5 + 6.

It now follows from Lemma 19 and (6) that computing the

sum for the index i(x) can be done for k ∈ [ℓ] in descending

order, where at each addend it is required to:

1) Compute binomial coefficients of the form
(
ℓ−k
j

)
for

j 6 t (all of order at most
(
ℓ
t

)
6 ℓt

t! 6 ( eℓt )
t). Observe

each binomial coefficient requires log( eℓt )
t < t log(ℓ)

symbols, and at most t + 1 need to be stored at a time,

so that
{(

ℓ−k−1
j

)
: j 6 t

}
could be computed via the

Pascal identity from
{(

ℓ−k
j

)
: j 6 t

}
. This stage hence

requires O(t2 log(ℓ)) operations, and O(t2 log(ℓ)) space.

Further, obtaining
{(

ℓ
j

)
: j 6 t

}
for initialization requires

at most O(t2 log(ℓ)ℓ) operations, if it is performed sim-

ilarly.

2) Multiplying a binomial coefficient by at most qt, which

may practically be performed in O(t log(ℓ) log log(ℓ)
log log log(ℓ)) operations.

3) Computing n(x[k]), which has seen above requires

O(t log(ℓ)) space and O(t log(ℓ) log log(ℓ) log log log(ℓ))
operations.

4) Summing the results requires O(t log(ℓ)) operations

and O(t log(ℓ)) space.

The entire algorithm therefore requires at most O(t2 log(ℓ)ℓ)
operations and O(t2 log(ℓ)) space. That is, if t, ℓ = O(log(n)),
at most O((log(n))3 log log(n)) operations and O((log(n))2

log log(n)) space.

The inverse operation, obtaining x ∈ Bs
t (0) such that

i(x) = i, for some given i, is also due to [37]: starting

with the empty sequence for k = 0, assume x[k−1] has

already been constructed for some 0 < k 6 ℓ. Going over

α ∈ Σ in increasing order (assuming the same total order

as before), if i 6 n(x[k−1]α) then set x(k − 1) , α
and update i ← i − n(x[k−1]α); otherwise increase α and

repeat; the maximum element of Σ can be filled in without

comparison, if the algorithm arrives at it. Again, the lim-

iting step of the algorithm is obtaining the representation

of the binomial coefficients, and while the algorithm might

require tℓ steps in the worst case, these do not need to be

recalculated unless k is increased. Thus, calculating the in-

verse also requires at most O((log(n))3 log log(n)) operations

and O((log(n))2 log log(n)) space, for t, ℓ = O(log(n)).
In summary, we have obtained an explicit and invertible

enumerator of Bs
t(0), with the aforementioned complexity,

which we denote en(x). Recall that |Bs
t (0)| 6 qℓHq(t/ℓ), i.e.,

en: Bs
t (0)→ Σ⌈ℓHq(t/ℓ)⌉.

Equipped with an (efficient) enumeration algorithm

for Bs
t (0), we may now propose an explicit encoder of

Algorithm 1: Resilient-repeat-free Encoder

Input: x ∈ Σn containing no 0-run of length z
Output: Enc1(x) ∈

⋃
m6nRRF

s(m)
j ← 1
while j 6 |x| − ℓ′ do

for i = j − 1, . . . , 0 do

if ∃y ∈ Bs
t (x) : yi+[ℓ′] = yj+[ℓ′] then

Replace xj+[ℓ′] with s from (8)

j ← max{0, j − ℓ′ + 1}
break

end

end

j ← j + 1
end

return x

resilient-repeat-free sequences. Our encoder has the drawback

that it produces sequences in
⋃

m6nRRF
s
t,ℓ(m) (here, t, ℓ are

specified to stress that they are invariant in m, depending only

on n) rather than solely in RRF s(n); however, in practice

this does not seem too onerous for applications, were shorter

sequences may be stored just as easily, as long as data is

recoverable.

Our construction is summarized in Algorithm 1; its main

idea is a generalization of [21, Alg. 3], as follows. Assume

a(1 − Hq(δ)) > 1, and choose ǫ > 0 such that ζ , a(1 −
Hq(δ) − ǫ) − 1 > 0. Let z =

⌊
ζ logq(n)

⌋
. An information

string is first encoded into a length-n string x containing no

0-run of length z, which may be done in linear time using⌈
q

q−2n
1−ζ
⌉
= O(n2−a(1−Hq(δ)−ǫ)) redundant symbols [38,

Lem. 4]. Interestingly, this allows us to achieve redundancy

which is arbitrarily close, in orders of magnitude, to the result

of Theorem 13. Next, using

ℓ′ , 11 +
⌈
2 logq(ℓ) + a(1− ǫ) logq(n)

⌉
6 ℓ, (7)

where the last inequality holds for all sufficiently large n, it is

then iteratively checked whether x[ℓ′+j] ∈ RRF
s
t,ℓ′(ℓ

′ + j),
for j ∈ [n− ℓ′ + 1] in increasing order.

If in some iteration it is determined that x[ℓ′+j] 6∈
RRF s

t,ℓ′(ℓ
′ + j), then the algorithm deletes xj+[ℓ′] from x

and replaces it with a sequence with the following form:

s , 0z1 ◦ E(j − i) ◦ 10z
′

1 ◦ E(en(e)) ◦ 1, (8)

where

• j, i are the loop-indices at any specific iteration of Al-

gorithm 1, and by abuse of notation we take (j − i) to

represent the q-ary expansion of the difference, using only

as many symbols as required (since j > i, the all-zero

representation 0k would be taken to stand for 2k instead

of 0);

• e , xj+[ℓ′] − xi+[ℓ′] ∈ Σℓ′ when j − i > ℓ′, or e ,

xi+[ℓ′+k] − yi+[ℓ′+k] ∈ Σℓ′+k when j − i < ℓ′; recall,

however, that from the proof of Lemma 11 it follows that

we may always assume |supp(e)| 6 ⌊3ℓ′/2⌋ is known,

even for k > ⌊ℓ′/2⌋. In both cases wt(e) 6 t, and xj+[ℓ′]

is recoverable from e,xi+[j−i]; and
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• z′ ,
⌈
logq(ℓ)

⌉
+ 2 and E(·) is the explicit and effi-

cient encoder described in [39, Alg. 1]; it can accept

sequences of lengths at most qℓ, and returns an encoded

version containing no 0-runs of length z′, utilizing only

a single redundant symbol. Observe that both logq(j −
i), |en(e)| 6 3

2ℓ < qℓ.

We note that since E(·) may accept sequences of varying

(sufficiently small) lengths, so too is |s| not constant. Our

next aim is to bound |s| from above, as this affects the

correct operation of Algorithm 1, namely, its termination

condition. This behavior, and the operation of Algorithm 1,

are demonstrated in the next example.

Example 22 A complete run of Algorithm 1 will be tedious

to track. We therefore limit ourselves to demonstrate a single

step of the algorithm, for the follwing toy example: q = 2, n =
16384, a = 4, δ = 0.025. Then, ℓ = 56, t = 1. If we take ǫ =
0.41, then we have z = 9. Also note z′ = 8 and ℓ′ = 56 = ℓ.
Observe a sequence beginning with

x = 01010111010101110101011101010111

01010111010101110101011101011111...

which contains no run of zeros of length z = 9. Assume

Algorithm 1 reaches j = 8 to consider this prefix of x; also

observe that

y = 01010111010101110101011101010111

01010111010101110101011101010111...

satisfies y0+[ℓ′] = y0+[56] = y8+[56] = yj+[ℓ′]. Therefore,

Algorithm 1 replaces yj+[ℓ′] with a substring s composed of

s , 091 ◦ E(8) ◦ 1081 ◦ E(en(e)) ◦ 1,

where

• 8 is represented by 000, and E(000) = 0001 contains no

zero-run of length z′ = 8 and uses a single redundant

symbol (we refrain from tracing [39, Alg. 1] for brevity;

suffice to note that |E(000)| = 3+1 = 4, that it contains

no zero-run of length z′ = 8, and that 000 can be decoded

from it).

• e = x0+[56+8] − y0+[56+8] = 060103 ∈ Σ56+8, and

its indexing in Bs
1(0) is i(e) = 4. That is, en(e) ∈

Σ⌈
3
2 ℓ

′Hq(2t/3ℓ
′)⌉ = Σ8 is represented 00000100. Finally,

E(en(e)) = 000001001 (again, we do not trace [39,

Alg. 1]).

Finally,

s = 091 ◦ 0001 ◦ 1081 ◦ 000001001 ◦ 1,

and its length is 34 < 56 = ℓ′ (this fact is key to the

algorithm’s termination condition, as will be discussed next).

As a matter of convenience, we denote moving forward

H̄q(δ) = Hq

(
min

{
q−1
q , δ

})
. (9)

Theorem 23 If 3
2H̄q(

2
3δ) − Hq(δ) 6 1

a , then Algorithm 1

terminates, Enc1(x) ∈
⋃

m6nRRF
s
t,ℓ(m), and x can be

decoded from it.

Proof: First observe that if the last iteration of Algo-

rithm 1 terminates, then its output is resilient-repeat-free.

Next, we will show that the inserted substring in (8) is

strictly less than ℓ, hence each replacement that the algorithm

performs shortens x. As a consequence, the algorithm must

terminate. Indeed, observe that

|s| = 8 +
⌊
ζ logq(n)

⌋
+
⌈
logq(j − i)

⌉
+
⌈
logq(ℓ)

⌉
+ |en(e)|

< 10 + logq(ℓ) + ζ logq(n) + logq(j − i) + |en(e)|.

If j− i > ℓ′, then we bound log(j− i) 6 log(n), and we have

seen that

|en(e)| 6
⌈
ℓ′H̄q(t/ℓ

′)
⌉
6
⌈
ℓH̄q(t/ℓ)

⌉

6 ⌈ℓHq(δ)⌉ < aHq(δ) logq(n) + 1,

hence in this case

|s| < 11 + logq(ℓ) + (ζ + 1 + aHq(δ)) logq(n)

= 11 + logq(ℓ) + a(1− ǫ) logq(n) < ℓ′,

as required. Otherwise we bound logq(j − i) 6 logq(ℓ
′) 6

logq(ℓ) and

|en(e)| 6
⌈
(ℓ′ + k)H̄q(t/(ℓ

′ + k))
⌉

< 3
2ℓH̄q(

2
3δ) + 1,

where k , min{j − i, ⌊ℓ′/2⌋}. Hence,

|s| < 11 + 2 logq(ℓ) +
(
ζ + 3

2aH̄q(
2
3δ)
)
logq(n)

6 ℓ′ +
(
a(32H̄q(

2
3δ)−Hq(δ))− 1

)
logq(n).

Under the assumption of the theorem, it also holds in this case

that |s| < ℓ′.
Lastly, observe that, iterating over j ∈ [|Enc1(x)| − ℓ′] in

decreasing order, the first observed instance of 0z1 is always

the last to have been inserted by Algorithm 1; this holds

because after each replacement, j is decreased only by ℓ′− 1,

hence any later replacements, say at index j′, either satisfy

j′ > j or they overwrite the first 0 of 0z1 (observe that s

ends with a 1). Further, by observing the first instance of

0z
′

following that instance of 0z1, it is possible to uniquely

deduce the coordinates of E(j− i), and therefore to deduce i.
Now, given E(en(e)) one obtains e, and with e,xi+[j−i] is is

uniquely possible to reconstruct the removed segment xj+[ℓ].

Since every replacement of Algorithm 1 is reversible, and the

process can be tracked in reverse, x can be reconstructed.

Lemma 24 The run-time of Algorithm 1 is O(n2 log(n)2).

Proof: In any iteration, if there exists y ∈ Bs
t (x[ℓ′+j]) \

RFℓ′(ℓ
′ + j), and j is minimal such that this occurs, then

there necessarily exists i < j such that yi+[ℓ′] = yj+[ℓ′].

By Lemma 9, if i 6 j − ℓ′, the existence of such y is

equivalent to wt(xj+[ℓ′]−xi+[ℓ′]) 6 t, which may be verified

in at most ℓ′(j − ℓ′) operations. On the other hand, for each

0 < k < ℓ′ we check whether there exists y ∈ Bs
t (x[ℓ′+j])

with i = j − k; as seen in the proof of Lemma 11, this

implies that yi+[ℓ′+k] is k-periodic. The following proce-

dure verifies whether such y exists: denote for convenience

u , xi+[ℓ′+k]; for each p ∈ [k], we define the multiset
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Up , {{u(q) : q ≡ p (mod k)}}. If the most frequent element

in Up is some x ∈ Σ, denote by tp the number of occurrences

of all other elements in Up; clearly, there exists y with the

given i if and only if
∑

p∈[k] tp 6 t. This algorithm requires at

most O(ℓ log(ℓ)) operations for each k (due to the summation).

For ℓ = O(log(n)), any iteration requires at most O(n log(n))
operations in total, for both cases.

Finally, observe that there could be at most nℓ′ 6 nℓ
iterations of Algorithm 1, completing the proof.

C. Error-correcting codes for the noisy substring channel

Based on Corollary 14, we can demonstrate the existence of

error-correcting codes for the noisy substring channel, which

achieve at most a constant redundancy over that of classical

error-correcting codes for Hamming noise.

Corollary 25 Let C ⊆ Σn be an error-correcting code,

capable of correcting t substitution errors, and denote, for

some z ∈ Σn, C̄z , (z+C)∩RRF s(n). Then for any x ∈ C̄z

and y ∈ Bs
t (x), it is possible to uniquely decode x observing

only Zℓ+1(y). Further, decoding is possible through a greedy

algorithm for reconstruction of y, followed by application of

any decoding scheme for C.

Finally, in the cases indicated in Corollary 14, where

red(RRF s(n)) = O(1), there exists z satisfying red(C̄z) =
red(C) +O(1).

Note that Corollary 25 is unfortunately nonconstructive.

It is our hope that the encoder of Algorithm 1 may be

combined with error-correction techniques to yield explicit

code constructions for this channel. However, achieving this

goal seems to require new ideas, and we leave it for future

study.

V. DELETION NOISE

This section is dedicated to the study of resilient-repeat-

free sequences under deletion, rather than Hamming, errors.

We demonstrate that the same probabilistic tools can be used

to bound from above the redundancy of such sequences. We

remark that the same method can be used to study inser-

tion errors, even though the equivalence of insertion/deletion-

correction does not extend in a straightforward manner to our

setting.

For x ∈ Σn, let Sd
t (x) ⊆ Σn−t denote the set of strings

generated from x by t deletions. Again, superscript d marks

deletion noise, and does not serve as a parameter.

Definition 26 For integers t, ℓ 6 n, define a family of repeat-

free strings which is resistant to deletion noise:

RRFd
t,ℓ(n) ,

{
x ∈ Σn : Sd

t (x) ⊆ RF ℓ(n− t)
}
.

Again, we fix t, ℓ as in (4), and omit them from RRFd(n)
whenever possible. Then we have the following:

Theorem 27 For all a > 1 and δ > 0 it holds that

red
(
RRFd(n)

)
= O

(
n
2−a+ 2a(1+δ)

log2(q)
H2(δ/(1+δ))

/
log(n)

)
.

Proof: We follow a similar strategy as in Theorem 8, but

apply a symmetric bound in Corollary 5, i.e., utilizing a fixed

constant φI,J ≡ φ. Note that a sufficient condition for x ∈

RRFd(n) is that for every observable pair (I, J) ∈
(
[n]
ℓa

)2
,

such that

I(ℓ− 1)− I(0) < ℓ+ t (10)

(and similarly for J), it holds that xI 6= xJ . For such a pair,

denote

AI,J , {x ∈ Σn : xI = xJ} = {x ∈ Σn : uI,J = 0}.

Again, we let x ∈ Σn be chosen uniformly at random,

implying red
(
RRFd(n)

)
= − logq Pr

(
x ∈ RRFd(n)

)
.

In order to apply Corollary 5 we need to determine the con-

stant φ, the neighborhoods ΓI,J (establishing an independence

condition) and their sizes. For any observable pair (I, J), note

that Pr(x ∈ AI,J) = q−ℓ 6 q · n−a, and for convenience

denote πd , q · n−a and φ , eπd. Next, by Lemma 3 it

suffices that ΓI,J consists of all (P,Q) ∈ ΓI satisfying (10).

Thus, to determine P , it suffices to choose

1) a single element of I (which shall be a member of P ∩I);

2) an interval of length ℓ+ t containing the chosen element;

and

3) any ℓ− 1 < ℓ additional elements of the chosen interval.

Then Q can be chosen from any interval of length ℓ+ t. The

same holds for a suitable choice of Q∩ I 6= ∅. Thus, |ΓI,J | 6

ℓ(ℓ+ t)n
(
ℓ+t
ℓ

)2
.

Now, in order to satisfy the conditions of Corollary 5 we

observe from
(
s
r

)
6
√

s
r(s−r)2

sH2(r/s) (a relaxation of, e.g.,

[40, Ch.10, Sec.11, Lem.7]) that
(
ℓ+ t

t

)2

6
ℓ + t

ℓt
n

2a(1+δ)
log2(q)

H2(δ/(1+δ))
.

If
2(1+δ)
log2(q)

H2

(
δ

1+δ

)
> 1 or a <

(
1 − 2(1+δ)

log2(q)
H2

(
δ

1+δ

))−1
, the

theorem vacuously holds. Otherwise, we note that

(|ΓI,J |+ 1)πd 6 qn−a + q
(ℓ + t)2

t
n
1−a+

2a(1+δ)
log2(q) H2( δ

1+δ )

= on(1).

Then, we observe

φI,J exp
(
−
∑

(P,Q)∈ΓI,J

φP,Q − φI,J

)
= πde

1−e(|ΓI,J |+1)πd

> πd > Pr(x ∈ AI,J).

Finally, one needs also note that the number of observable

pairs (I, J) satisfying Eq. (10) is no more than
(
n−ℓ−t

2

)
·(

ℓ+t
ℓ

)2
< n2

(
ℓ+t
ℓ

)2
. From Corollary 5 it follows that

Pr

(
x 6∈

⋃

I,J

AI,J

)
> exp

(
−eπdn

2

(
ℓ+ t

ℓ

)2
)
,

and hence

red
(
RRFd(n)

)
= − logq Pr

(
x ∈ RRFd(n)

)

6 e log(e)πdn
2

(
ℓ+ t

ℓ

)2

6 e log(e)q
ℓ + t

ℓt
n
2−a+

2a(1+δ)
log2(q) H2(δ/(1+δ))

,
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Figure 1. Formation of a hairpin-loop secondary structure in an oligonucleo-
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Figure 2. Imperfect stem in a hairpin-loop structure.

which completes the proof.

Corollary 28 If a >
(
1 − 2(1+δ)

log2(q)
H2

(
δ

1+δ

))−1
, for any

δ > 0, then R(RRFd(n)) = 1 − on(1), and if a >

2
(
1− 2(1+δ)

log2(q)
H2

(
δ

1+δ

))−1
then red

(
RRFd(n)

)
= On(1).

Note again that if a > 1 (respectively a > 2), then for

all sufficiently small δ > 0 it holds that R(RRFd(n)) =
1 − on(1) (respectively, red

(
RRFd(n)

)
= On(1)). Before

concluding, we also note that a parallel statement to Corol-

lary 25 holds in this setting, as well.

VI. SECONDARY STRUCTURE AVOIDANCE

In this section, we leverage Algorithm 1 to protect against

the formation of secondary structures in coded DNA strands.

We focus on a special type of secondary structure, called

hairpin-loop (see Figure 1). Unlike recent works, our analysis

does not require a perfect binding in the stem region of the

hairpin structures (see Figure 2), and we show that Algorithm 1

can be utilized to avoid the formation of such structures.

However, we rely in this section on the Hamming metric rather

than the Levenshtein metric as was suggested in [30], thus we

do not consider the formation of so-called bulge-loops due

to the elasticity of the DNA sugar-phosphate backbone. We

remark that given an efficient enumeration of the Levenshtein

ball about any point, these methods can be extended to utilize

that metric, too.

In order to define hairpin-loop-avoiding sequences, we first

present some notation. An involution on Σ is a mapping x 7→ x̄
such that for all x ∈ Σ it holds that x̄ = x; we now assume Σ
to be equipped with such an involution (we allow fixed points,

in order to account for odd q, which shall not affect our

analysis). For example, DNA is composed of four nucleotide

Algorithm 2: Hairpin-avoiding Encoder

Input: x ∈ Σn containing no 0-run of length z
Output: Enc1(x) ∈

⋃
m6nRRF

s
tδ,ℓa

(m)
j′ ← 2(ℓa − tδ)
while j′ 6 |x| do

for i = j′ − 2(ℓa − tδ), . . . , 0 do

ℓ′ ← min
{
ℓa,
⌊
j′−i
2

⌋}

j ← j′ − ℓ′

if d
(
(x̄j+[ℓ′])

r,xi+[ℓ′]

)
6 tδ − (ℓa − ℓ′) then

Replace xj+[ℓ′] with s from (11)

j′ ← max{2(ℓa − tδ), j
′ − ℓ′ + 1}

break
end

end

j′ ← j′ + 1
end

return x

bases: the purines, adenine (A) and guanine (G), are re-

spectively the complements of the pyrimidines thymine (T )

and cytosine (C); when forming a double helix (or duplex)

structure, each base can only stably bond (hybridize) with its

complement. For x ∈ Σn, denote x̄ , x̄(0)x̄(1) · · · x̄(n− 1).
DNA strands are also oriented: each nucleotide is composed

of one of four nitrogenous bases, together with a pentose sugar

and a phosphate group; the phosphate groups connect the sugar

rings of adjacent nucleotides 5’-end to 3’-end (referring to

the five-carbon sites of the sugar rings) to form a long chain

(oligonucleotide), and thus the orientation can be observed

from any segment of the chain. Stable duplexes only form

between oligonucleotides of reverse orientations, and therefore

coiled-loop secondary structures cannot appear. To capture this

notion, we denote for x ∈ Σn the reverse sequence xr ,
x(n− 1) · · ·x(1)x(0).

For integers t 6 ℓ, we define the set of length-n (t, ℓ)-
hairpin avoiding strings to contain those strings that do not

have the potential for the formation of a loop with stem-

length ℓ, of which at least ℓ− t symbols are hybridized. More

precisely,

HAt,ℓ(n) ,

{
x ∈ Σn :

∀0 6 i < j < n
∀ℓ− t 6 ℓ′ 6 min{ℓ, j − i, n − j}

dH(xi+[ℓ′], (x̄j+[ℓ′])
r) > t − (ℓ − ℓ′)

}
.

Observe in the above definition, that for 0 < i < j < n− 1,

dH(xi−1+[ℓ′+1], (x̄j+[ℓ′+1])
r) > t− (ℓ− ℓ′) + 1

=⇒ dH(xi+[ℓ′], (x̄j+[ℓ′])
r) > t− (ℓ− ℓ′),

hence some conditions in the above definition are redundant.
As before, for fixed real numbers a > 1 and 0 < δ < 1,

we also make the notation HAδ,a(n). We will show that when

a > (1−H̄q(δ))
−1 (for δ < 1− 1

q ) then Algorithm 1 can, with

slight necessary adjustments, encode into
⋃

m6nHAtδ,ℓa(m)

with redundancy O(n2−a(1−Hq(δ)−ǫ)) for arbitrarily small ǫ >
0. We leave the interesting problem of stating an analogue of

Lemma 16 in this case for future study.
Indeed, the encoder presented in Algorithm 2 differs from

Algorithm 1 only in the type of condition in the inner loop

(ranges for j, i are adjusted accordingly); if a replacement is
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required, instead of necessarily replacing an entire ℓ-substring,

in the case i > j−ℓ (i.e., ℓ′ < ℓ) only the ℓ′-suffix is replaced,

with the substring

s , 0z1 ◦ E(j − i) ◦ 10z
′

1 ◦ E(en(e)) ◦ 1. (11)

For convenience we repeat the previous definitions for the

following expressions:

• ζ = a(1−Hq(δ)− ǫ)− 1 > 0;

• z =
⌊
ζ logq(n)

⌋
;

• j − i represents the q-ary expansion of the difference

(using only as many symbols as required),

and we adjust the following definitions:

• e , (x̄j+[ℓ′])
r − xi+[ℓ′];

• z′ ,
⌈
logq(ℓ)

⌉
+ 1; and, finally,

• E(·) is an explicit and efficient encoder into strings con-

taining no 0-runs of length z′, accepting inputs of lengths

at most ℓ and requiring a single redundant symbol [39,

Alg. 1]. We shall see below that both log(j−i), |en(e)| 6
ℓ.

The analysis of Algorithm 2 is much similar to that of

Algorithm 1 in Section IV-B. We summarize the result in the

following theorem.

Theorem 29 If (1−H̄q(δ))
−1 < a < δ−1(1−H̄q(δ))

−1, then

for sufficiently large n Algorithm 2 terminates, Enc2(x) ∈⋃
m6nHAt,ℓ(m), and x can be decoded from it.

Proof: We prove only the first part; the latter two follow

exactly as in the proof of Theorem 23. As before,

|s| < 9 + log(ℓ) + ζ logq(n) + logq(j − i) + |en(e)|.

Repeating the analysis of Theorem 23, if j−i > ℓ (i.e., ℓ′ = ℓ),
then (bounding logq(j − i) 6 logq(n)) we have

|en(e)| 6
⌈
ℓH̄q(t/ℓ)

⌉
6 ⌈ℓaHq(δ)⌉

< aHq(δ) logq(n) + 1,

as before, and hence again (for sufficiently large n)

|s| < 9 + logq(ℓ) + (ζ + 1 + aHq(δ)) logq(n)

= 9 + logq(ℓ) + a(1 − ǫ) logq(n) < ℓ.

It follows that such an iteration of Algorithm 2 also shortens x.

Otherwise, when ℓ′ < ℓ we again bound logq(j − i) 6
logq(ℓ

′) < logq(ℓ) and

|en(e)| 6
⌈
ℓ′H̄q

( t−(ℓ−ℓ′)
ℓ′

)⌉

6 ℓ′H̄q

( ℓ′−(1−δ)ℓ
ℓ′

)
+ 1

< ℓ′Hq(δ) + 1.

Hence,

|s| < 10 + 2 logq(ℓ) + ζ logq(n) +Hq(δ)ℓ
′

= 10 + 2 logq(ℓ)− (ǫa+ 1) logq(n)

+ (1−Hq(δ))a logq(n) +Hq(δ)ℓ
′

6 11 + 2 logq(ℓ)− (ǫa+ 1) logq(n)

+ (1−Hq(δ))ℓ +Hq(δ)ℓ
′

6 11 + 2 logq(ℓ)− (ǫa+ 1) logq(n)

+ (1−Hq(δ))(ℓ − ℓ′) + ℓ′

6 (11 + 2 logq(ℓ)− ǫa logq(n)) + ℓ′

+ ((1 −Hq(δ))δa − 1) logq(n) < ℓ′,

where the last inequality again holds for sufficiently large n,

and relies on the theorem’s assumption.

Corollary 30 For all a > 1 and sufficiently small δ > 0,

there exists an efficient (explicit) encoder from Σn−o(n) into⋃
m6nHAt,ℓ(m), for sufficiently large n.

The problems of encoding directly into HAt,ℓ(n), more

precisely bounding its redundancy, as well as generalization to

the Levenshtein metric (hence, considering also the formation

of bulge-loop secondary structures), are left for future study.
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