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Abstract—Nanopore sequencing, superior to other sequencing
technologies for DNA storage in multiple aspects, has recently
attracted considerable attention. Its high error rates, however,
demand thorough research on practical and efficient coding
schemes to enable accurate recovery of stored data. To this
end, we consider a simplified model of a nanopore sequencer
inspired by Mao et al., incorporating intersymbol interference
and measurement noise. Essentially, our channel model passes
a sliding window of length ℓ over a q-ary input sequence that
outputs the composition of the enclosed ℓ bits, and shifts by δ
positions with each time step. In this context, the composition of a
q-ary vector x specifies the number of occurrences in x of each
symbol in {0, 1, . . . , q − 1}. The resulting compositions vector,
termed the read vector, may also be corrupted by t substitution
errors. By employing graph-theoretic techniques, we deduce that
for δ = 1, at least log log n symbols of redundancy are required
to correct a single (t = 1) substitution. Finally, for ℓ ≥ 3, we
exploit some inherent characteristics of read vectors to arrive
at an error-correcting code that is of optimal redundancy up to
a (small) additive constant for this setting. This construction is
also found to be optimal for the case of reconstruction from two
noisy read vectors.
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I. INTRODUCTION

The advent of DNA storage as an encouraging solution to

our ever-increasing storage requirements has spurred signif-

icant research to develop superior synthesis and sequencing

technologies. Among the latter, nanopore sequencing [1]–[3]

appears to be a strong contender due to low cost, better

portability, and support for longer reads. In particular, this

sequencing process comprises transmigrating a DNA fragment

through a microscopic pore that holds ℓ nucleotides at each

time instant and measuring the variations in the ionic current,

which are influenced by the different nucleotides passing

through. However, due to the physical aspects of this process,

multiple kinds of distortions corrupt the readout. Firstly, the

simultaneous presence of ℓ > 1 nucleotides in the pore

makes the observed current dependent on multiple nucleotides

instead of just one, thus causing inter-symbol interference

(ISI). Next, the passage of the DNA fragment through the pore

is often irregular and may involve backtracking or skipping a

few nucleotides, thereby leading to duplications or deletions.

Furthermore, the measured current is accompanied by random

noise, which might result in substitution errors.

Several attempts have been made to develop a faithful

mathematical model for the nanopore sequencer. In particular,

[4] proposed a channel model that embodies the effects of ISI,

deletions, and random noise while establishing upper bounds

on the capacity of this channel. The authors of [5] focused on

a more deterministic model incorporating ISI and developed

an algorithm to compute its capacity. Efficient coding schemes

for this abstracted channel were also suggested. More recently,

a finite-state Markov channel (FSMC)-based approach was

adopted to formulate a model that accounts for ISI, dupli-

cations, and noisy measurements [6].

In this work, we adopt a specific variation of the model

proposed in [4], which is also interesting owing to its resem-

blance with the transverse-read channel [7], which is relevant

to racetrack memories. Expressly, we represent the process of

nanopore sequencing as the concatenation of three channels,

as depicted in Fig. 1. We may view the first stage as a

sliding window of size ℓ passing through an input sequence

and shifting by δ positions after each time instant, thereby

producing a sequence of strings of ℓ consecutive symbols, or

ℓ-mers. This component is parameterized by (ℓ, δ) and models

the ISI effect, i.e., it reflects the dependence of the current

variations on the ℓ consecutive nucleotides in the pore at any

given time. Next, a memoryless channel converts this sequence

of ℓ-mers into a sequence of discrete voltage levels according

to a deterministic function, specifically the composition. (Note

that this model for the DMC does not entertain the possibility

that mapping of the ℓ-mers to voltage levels might depend on

https://orcid.org/0000-0003-2285-1482
https://orcid.org/0000-0003-1652-9761
https://orcid.org/0000-0002-5174-1947
https://orcid.org/0000-0002-9851-5234


2

Nucleotides

x

ISI

(ℓ, δ) DMC Substitution
ℓ-mers

z

Discrete

voltage levels

y
ŷ

Fig. 1. Simplified model of a nanopore sequencer

the order of the bases in the nanopore.) Finally, the substitution

channel captures the effect of random noise by introducing

possible substitution errors into the sequence of voltage levels.

This work aims to design efficient error-correcting codes for

nanopore sequencing. More specifically, as a starting point for

future analysis, the channel mentioned above model is treated

where at most one substitution occurs and δ = 1. The problem

is stated more formally as follows.

Let Rℓ,δ(x) represent the channel output for an input

x ∈ Σn
q , given that no substitution affected the ℓ-mers. Now

we seek to find a code C ⊆ Σn
q such that for any x1,x2 ∈ C,

the Hamming distance betweenRℓ,δ(x1) andRℓ,δ(x2) strictly

exceeds 2. In other words, one can uniquely deduce the

channel input despite ISI and the subsequent occurrence of

at most one substitution, provided it belongs to the code C.

The rest of the manuscript is organized as follows. We

establish relevant notation and terminology while discussing

the underlying properties of read vectors in Section II. The

results that follow, hold for all (ℓ, 1)-read vectors, where ℓ ≥ 3.

In Section III, we employ graph-theoretic techniques from [8]

to determine the minimum redundancy required by any code

that corrects a single substitution error in an (ℓ, 1)-read vector.

Section IV describes a redundancy-optimal instantiation of

such a code. Subsequently, owing to the particular applicability

of the reconstruction schema to DNA-based storage [9]–[15] in

Section III-C, we find that this instantiation is also redundancy-

optimal when reconstructing x from two distinct noisy copies

of Rℓ,δ(x), each of which has suffered at most 1 substitution.

Concluding remarks concerning future work are offered in

Section V.

II. PRELIMINARIES

A. Notations and Terminology

In the following, we let Σq indicate the q-ary alphabet

{0, 1, . . . , q − 1}. Additionally, [n] is used to denote the set

{1, 2, . . . , n}. All uses of the log operator consider base q.

Element-wise modulo operation on a vector, say y ∈ Σn
q , is

represented as

y mod a ,
(
y1 mod a, y2 mod a, . . . , yn mod a

)
. (1)

For any vector x = (x1, . . . , xn), we refer to its sub-

string (xi, xi+1, . . . , xj) as x
j
i . The composition of a vec-

tor x is denoted by c(x) , 0i0 . . . (q − 1)iq−1 , such

that x contains i0 ‘0’s, i1 ‘1’s and so on. We also de-

fine the L1-weight of the composition c(x) as |c(x)|1 ,

i1 + 2i2 + · · ·+ (q − 1)iq−1= |x|1. This operator may also

be applied to a vector of compositions in the same spirit

as in (1). By abuse of notation, when n is known from

the context, we omit from c(x) any symbol x ∈ Σq such

that ix = 0. Further, when convenient, we treat c(x) as a

formal monomial by using expressions of the form c(x) ·
(c(y))−1, and allow formal cancellations of the form, e.g.,

0i01i1 · (0j01j1)−1 = 0i01i1 · 0−j01−j1 = 0i0−j01i1−j1 .

We also extensively use the Hamming distance, which is

defined for any two vectors x,y ∈ Σn, for any alphabet Σ, as

dH(x,y) = |{ i : i ∈ [n], xi 6= yi }|.

Throughout this paper, we assume existence of integers n, ℓ,
and δ that satisfy the relation n+ℓ ≡ 0 (mod δ). The explicit

definition of the channel output is now laid out as follows.

Definition 1. The (ℓ, δ)-read vector of any x ∈ Σn
q is of length

(n+ ℓ)/δ − 1 and is denoted by

Rℓ,δ(x) , (c(xδ
δ−ℓ+1), c(x

2δ
2δ−ℓ+1), . . . , c(x

n+ℓ−δ
n−δ+1)),

where for brevity of notation we let xi = φ for any i < 1
or i > n, i.e., a null element such that c(y ◦ φ) = c(y).
Rℓ,δ(x)i is used to denote the i-th element of Rℓ,δ(x), i.e.,

Rℓ,δ(x)i = c(xiδ
iδ−ℓ+1) = c(x

min(iδ,n)
max(1,iδ−ℓ+1)).

Remark: The above definition of an (ℓ, δ)-read vector

appears similar to that of the (ℓ, δ)-transverse-read vector

introduced in [7], except that the L1-weights are replaced by

compositions and Rℓ,δ(x) begins and ends with the composi-

tions of substrings xδ
1 and xn

n−δ+1 respectively, even though

its intermediate elements signify compositions of length-ℓ
substrings. This is motivated by obtaining a current reading

even when the DNA strand has only partially entered the

nanopore as demonstrated in Figure 2.

In the following, we introduce some technical notation

which will play an instrumental role in demonstrating the key

properties of read vectors, namely the notion of derivatives

and sub-derivatives of read vectors.

Definition 2. Let R = (c1, . . . , ck) where for each 1 ≤ i ≤ k,

ck is a composition of some vector in Σℓ
q. Then the derivative

of R is the length-(k+1) formal-monomial-vector defined as

∆ ,
(
c1c

−1
0 , c2c

−1
1 , . . . , ck+1c

−1
k

)
,

where c0, ck+1 = φ are included for uniformity. Observe that

the differentiation R 7→ ∆ is invertible.

Example 1. Consider x = (1, 2, 0, 1, 2, 2). As we demonstrate

in Fig. 2, the (3, 1)-read vector of x is thus R3,1(x) =
(1, 12, 012, 012, 012, 122, 22, 2). Evidently, R3,1(x)3 = 012.

The derivative of this read vector, as illustrated in Fig. 3, is

∆ = (1, 2, 0, φ, φ, 20−1, 1−1, 2−1).

Definition 3. For any ℓ, δ where ℓ ≥ δ, the α-th read

sub-derivative, is used to indicate a specific subsequence

of the derivative of Rℓ,δ(x), and is defined for any α ∈
{0, 1, . . . , ⌊ ℓδ ⌋ − 1} as

∆α
ℓ,δ(x) , (R(x)α+1 · R(x)

−1
α ,R(x)α+⌊ ℓ

δ
⌋+1 · R(x)

−1
α+⌊ ℓ

δ
⌋
,

. . . ,R(x)α+k⌊ ℓ
δ
⌋+1 · R(x)−1

α+k⌊ ℓ
δ
⌋
)

= (c(x
(α+1)δ
αδ+1 ) · c(x

(α+1)δ−ℓ
αδ−ℓ+1 )−1,

. . . , c(x
(α+k⌊ ℓ

δ
⌋+1)δ

(α+k⌊ ℓ
δ
⌋)δ+1

) · c(x
(α+k⌊ ℓ

δ
⌋+1)δ−ℓ

(α+k⌊ ℓ
δ
⌋)δ−ℓ+1

)−1),
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φ φ φ φ01 12 2 2

φ φ φ φ01 12 2 2

...

ISI + DMC

(ℓ = 3, δ = 1) 1 12 012 012 012 122 22 2

R(x)

Fig. 2. Demonstration of Example 1 for the ISI (sliding window) + DMC (composition function) channel. Notice the leading and trailing (ℓ − 1) = 2 φs
(marked in gray) are not a part of the input vector x.

φ φ φ φ01 12 2 2

φ φ φ φ01 12 2 2

φ φ φ φ01 12 2 2

...
Derivative 1 2 0 φ φ 2 0−1 1−1 2−1

∆

Fig. 3. Demonstration of a derivative of a vector of compositions (Definition 2) in Example 1. On the left, the compositions with positive exponents have
been marked in blue, while those with negative exponents were marked in red.

where k = ⌊n+ℓ−(α+1)δ
δ⌊ℓ/δ⌋ ⌋ and for brevity of notation we let

R(x)p = φ and xm = φ for any p 6∈ [n+ℓ−δ
δ ] and m 6∈ [n].

We let ∆α
ℓ,δ(x)i indicate the i-th element of ∆α

ℓ,δ(x), i.e.,

∆α
ℓ,δ(x)i = R(x)α+(i−1)⌊ ℓ

δ
⌋+1 · R(x)−1

α+(i−1)⌊ ℓ
δ
⌋
.

Example 2. Reconsidering x = (1, 2, 0, 1, 2, 2) from Exam-

ple 1, we note that ∆0
3,1(x) = (1, φ, 1−1), ∆1

3,1(x) =
(2, φ, 2−1) and ∆2

3,1(x) = (0, 0−12, 2−1). Observe that when

interleaved together, these sub-derivatives compose ∆ (Fig-

ure 3).

When clear from the context, ℓ and δ will be removed from

the preceding notations.

As mentioned earlier, [7] investigated a similar model

designated as the transverse-read channel in connection with

racetrack memories. Therein, the information limit of this

channel was derived for different parameters, and several codes

enabling unique reconstruction were proposed. Certain error-

correcting codes were also presented for ℓ = 2 and δ = 1.

B. Properties of the Read Vectors

A closer look at the definitions in the last section reveals that

not every vector of ℓ-compositions represents the read vector

of some x ∈ Σn
q , i.e., is valid. In this section, we first observe

which vectors are valid and deduce specific properties that

often enable us to detect errors, thereby assisting in designing

error-correcting constructions of improved redundancies. To

lucidly introduce these properties, we require the following

notation. We will see in Lemma 1 that these allow us to

determine precisely the set of valid read-vectors.

Definition 4. For x ∈ Σn
q and any α ∈ {0, 1, . . . , ⌊ ℓδ ⌋ − 1},

let

Cα
ℓ,δ(x) , (c(x

(α+1)δ
αδ+1 ), . . . , c(x

(α+k⌊ ℓ
δ
⌋+1)δ

(α+k⌊ ℓ
δ
⌋)δ+1

)),

where k = ⌊n+ℓ−(α+1)δ
δ⌊ℓ/δ⌋ ⌋, be a sequence of compositions.

Observe that for δ = 1 each Cα
ℓ,δ(x) is a subsequence of x,

composed of the positions at indices i ≡ α + 1 (mod ⌊ ℓδ ⌋),

and in particular there exists a bijection between Σn and the

set of ⌊ ℓδ ⌋-tuple of length-(k + 1) vectors.

Example 3. Reconsidering x = (1, 2, 0, 1, 2, 2) from Exam-

ple 1, we observe that C0
3,1(x) = (1, 1), C1

3,1(x) = (2, 2)
and C2

3,1(x) = (0, 2), which are evidently subsequences of x.

Under δ > 1, these transform into composition vectors; for

instance C0
4,2(x) = (12, 22) and C1

4,2(x)(x) = (01).

We now employ Definition 4 to state a necessary and

sufficient condition for the existence of a unique x ∈ Σn
q

that corresponds to a given vector of compositions for ℓ, δ,

satisfying ℓ mod δ = 0.

Lemma 1. Take ℓ, δ satisfying ℓ ≡ 0 (mod δ), and let

{Cα : α ∈ {0, 1, . . . , ℓ
δ − 1}} be any (ℓ/δ) arbitrary vectors

of compositions, each belonging to vectors in Σδ
q , such that

the length of Cα is (⌊n+ℓ−(α+1)δ
ℓ ⌋ + 1). Let their respective

derivatives be {∆α : α ∈ {0, 1, . . . , ℓ
δ −1}}. Then there exists

x ∈ Σn
q such that ∆α = ∆α(x) and Cα = Cα

ℓ,δ(x), for

all α ∈ {0, 1, . . . , ℓ
δ − 1}. Further, when δ = 1 this x is

unique.

Proof: Recall that owing to xi = φ for all i 6∈ [n], the

following holds for any α ∈ {0, 1, . . . , ℓ
δ − 1}.

∆α(x) = (c(x
(α+1)δ
αδ+1 ), c(x

(α+1)δ+ℓ
αδ+ℓ+1 ) · c(x

(α+1)δ
αδ+1 )−1, . . . ,

c(x
(α+1)δ+kℓ
αδ+kℓ+1 )c(x

(α+1)δ+(k−1)ℓ
αδ+(k−1)ℓ+1 )−1, c(x

(α+1)δ+kℓ
αδ+kℓ+1 )−1),

where k = ⌊n−(α+1)δ
ℓ ⌋ + 1. Evidently, by left-to-right (or

right-to-left) reconstruction, we observe that Cα
ℓ,δ(x) can be

uniquely deduced from ∆α(x). The other direction follows

from the observation that ∆α(x) is essentially the derivative

of Cα
ℓ,δ(x), in accordance with Definition 2.

Corollary 1. If ℓ ≡ 0 (mod δ), then for any x ∈ Σn
q and

α ∈ {0, 1, . . . , ℓ
δ − 1}, the cumulative product of the first

m + 1 elements of ∆α(x) is c(x
mℓ+(α+1)δ
mℓ+αδ+1 )1. Thus, ∆α(x)

1Analogous result exists for sum of last m + 1 elements.
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determines Cα
ℓ,δ(x), which in the special case of δ = 1, is

effectively (xα+1, xα+ℓ+1, . . .).

Since R(x) is in bijection with the set

{∆α(x)}α∈{0,1,...,⌊ ℓ
δ
⌋−1}, it follows that when ℓ ≡ 0

(mod δ) (and, in particular, when δ = 1) the set of valid

read vectors is isomorphic to the set of ⌊ ℓδ ⌋-tuple of

appropriately-long composition-vectors.

Corollary 2. For δ = 1 and any x ∈ Σn
q , let R(x) be either

R(x) or |R(x)|1 mod q. Then x ∈ Σn
q , x

j
i can be uniquely

determined, either from

1) x
i−1
i−ℓ+1 and (R(x)i, R(x)i+1, . . . , R(x)j); or

2) x
j+ℓ−1
j+1 and (R(x)i+ℓ−1, R(x)i+ℓ, . . . , R(x)j+ℓ−1),

where for all k 6∈ [n], xk = φ. Since for p ∈ {1, n},
xp = R(x)p, the first or last n elements of R(x) suffice to

reconstruct x.

Proof: We restrict our attention to R(x) =
|R(x)|1 mod q since it can readily be obtained from

R(x) itself. By successively applying the fact that for

i ≤ p ≤ j, one can recover xp from the combined knowledge

of x
p−1
p−ℓ+1 and |Rℓ,1(x)p|1 mod q = (

∑p
h=p−ℓ+1 xh) mod q,

we arrive at the statement of the corollary. The same argument

also holds for right-to-left reconstruction.

Example 4. We reconsider R(x) =
(1, 12, 012, 012, 012, 122, 22, 2) from Example 1 and

now wish to reconstruct x from it. Recall that ℓ = 3
and δ = 1. Firstly, we observe that x1 = R(x)1 = 1.

Next, c(x2
1) = R(x)2 = 12, implying x2 = 2. Such

a left-to-right reconstruction of R(x) leads us to

x = (1, 2, 0, 1, 2, 2), as in Example 1. Similarly, when

given |R(x)|1 mod 3 = (1, 0, 0, 0, 0, 2, 1, 2), one can infer

from Definition 1 that x1 = |R3,1(x)1|1 mod 3 = 1,

(x1 + x2) mod 3 = |R(x)2|1 mod 3 and so on, thereby

leading to x = (1, 2, 0, 1, 2, 2) once again. Right-to-left

reconstruction will yield the same result.

For ℓ, δ satisfying ℓ ≡ 0 (mod δ) and x ∈ Σn
q , R(x) and

each ∆ ∈ {∆α(x)}α∈{0,1,..., ℓ
δ
−1} bear some useful properties

that assist us in the design of error-correcting constructions,

regarding the products over a read vector and a read sub-

derivative.

Lemma 2. For any ℓ, δ such that ℓ ≡ 0 (mod δ), and all

x ∈ Σn
q , it holds that

∏n+ℓ
δ

−1
i=1 R(x)i =

(
c(x)

)ℓ/δ
. Further,

∏⌊n−(α+1)δ
ℓ

⌋+2
i=1 ∆α(x)i = c(φ) for any α ∈ {0, 1, . . . , ℓ

δ − 1}.

Proof: Observe that for all α ∈ {0, 1, . . . , ℓ
δ−1}, we have

⌊
n−(α+2)δ

ℓ

⌋
+1∏

i=0

R(x)α+i ℓ
δ
+1 = c(x). (2)

This naturally leads us to

n+ℓ
δ

−1∏

i=1

R(x)i =

ℓ/δ−1∏

α=0

⌊n−(α+2)δ
ℓ

⌋+1∏

i=0

R(x)α+i ℓ
δ
+1 = c(x)ℓ/δ.

While one can arrive at
∏⌊

n−(α+1)δ
ℓ

⌋+2
i=1 ∆α(x)i = c(φ)

directly from the definition, we may also use (2) to prove

this as follows, denoting k , ⌊n−(α+1)δ
ℓ ⌋+ 1 for simplicity.

k+1∏

i=1

∆α(x)i =

k∏

i=0

R(x)α+i ℓ
δ
+1 · R(x)−1

α+i ℓ
δ

=
( k∏

i=0

R(x)α+i ℓ
δ
+1

)
·
( k∏

i=0

R(x)α+i ℓ
δ

)−1

= c(x) · c(x)−1 = φ,

where we let R(x)p = φ for all p 6∈ [n+ℓ−δ
δ ].

Example 5. Recall from Example 1, that for ℓ = 3, δ = 1
and x = (1, 2, 0, 1, 2, 2), we had the following read sub-

derivatives: ∆0(x) = (1, φ, 1−1), ∆1(x) = (2, φ, 2−1)
and ∆2(x) = (0, 0−12, 2−1). Observe that

∏3
i=0 ∆

0(x)i =∏3
i=0 ∆

1(x)i =
∏4

i=0 ∆
2(x)i = φ.

The aforementioned properties lead to an important conse-

quence regarding the minimum Hamming distance between

two distinct, error-free read vectors.

Theorem 1. When ℓ > 1 and δ = 1, for any two distinct

x,y ∈ Σn
q , dH(R(x),R(y)) ≥ 2.

Proof: Assume that dH(R(x),R(y)) = 1, and let i
denote the unique index where R(x) and R(y) differ, i.e.,

R(x)i 6= R(y)i. From Lemma 2, we infer that

(
c(x) · c(y)−1

)ℓ
=

n+ℓ
δ

−1∏

j=1

R(x)j · R(y)−1
j = R(x)i · R(y)−1

i .

Since the left-most equality suggests that each positive and

negative degree should be divisible by ℓ, and we know that the

sum of degrees in each of R(x)i and R(y)i must be ℓ, the

only possibility involves R(x)i · R(y)−1
i = aℓb−ℓ for some

a, b ∈ Σq, a 6= b.
However, denoting α , (i − 1) mod ℓ it also follows that

∆α(x) and ∆α(y) differ in a unique index, at which R(x)i ·
R(x)−1

i−1 = (R(y)ia
ℓb−ℓ) · R(y)−1

i−1 6= R(y)i · R(y)−1
i−1.

Hence, by Lemma 2

c(φ) =

⌊n−(α+1)δ
ℓ

⌋+2∏

i=1

∆α(x)i

= aℓb−ℓ

⌊n−(α+1)δ
ℓ

⌋+2∏

i=1

∆α(y)i = aℓb−ℓc(φ),

in contradiction.

C. Error Model

Similar to [7], we study the occurrence of substitution

errors in read vectors and design suitable error-correcting

constructions. To suitably define what constitutes an error-

correcting construction in our framework, we first define the

set of vectors that may result from at most t substitutions on

a vector u ∈ Σn, for any alphabet Σ, as

Bt(u) , {v ∈ Σn : dH
(
u,v

)
≤ t}. (3)
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In our application, we will only be interested in Bt(R(x)),
for some x ∈ Σn

q . Under this framework, we define an error-

correcting code as follows.

Definition 5. A code C is said to be a t-substitution read code

for the parameters ℓ, δ, if for any two distinct x,y ∈ Σn
q , it

holds that Bt(R(x)) ∩Bt(R(y)) = ∅.

In words, C is a t-substitution read code if obtaining any

noisy version of any codeword, where at most t substitutions

occur, allows one to uniquely reconstruct that codeword. The

redundancy of C is given by n− log |C|, where |C| denotes the

code size, i.e., the number of codewords in C.

This work focuses on the case when δ = 1 and t = 1. To

this end, we seek to find a code that can correct a single sub-

stitution error in the read vectors of its constituent codewords,

i.e., a single-substitution read code. In the upcoming sections,

we deduce that the redundancy of any such code is bounded

from below by log logn − log
(
q
2

)
− o(1). Subsequently, we

also construct a code that is near-optimal.

III. MINIMUM REDUNDANCY OF SINGLE-SUBSTITUTION

READ CODES

To establish a lower bound on the redundancy required by a

single-substitution read code, we first attempt to characterize

the relationship between any two non-binary vectors x,y ∈
Σn

q , that might be confusable after a single substitution in their

respective read vectors.

A. Characterization of Confusable Read Vectors

To proceed in this direction, we first note from Theorem 1

that there exists no two distinct vectors x,y ∈ Σn
q that satisfy

dH(R(x),R(y)) = 1 for any ℓ > 1. Thus, we attempt to

ascertain the conditions under which dH(R(x),R(y)) = 2
may occur, since x and y are confusable if and only if

dH(R(x),R(y)) ≤ 2.

Lemma 3. For ℓ ≥ 3, any two distinct vectors x,y ∈ Σn
q

satisfy dH(R(x),R(y)) = 2 if and only if there exist distinct

i, j ∈ [n+ℓ−1], for which R(x)i ·R(y)−1
i = R(x)−1

j ·R(y)j
6= c(φ), j ≡ i (mod ℓ) and R(x)r = R(y)r for all r 6∈
{i, j}.

Proof: Let i < j represent the indices at which R(x) and

R(y) differ, i.e., R(x)i 6= R(y)i and R(x)j 6= R(y)j . As

(R(x)i−1
1 ,R(x)n−ℓ+1

j+1 ) = (R(y)i−1
1 ,R(y)n−ℓ+1

j+1 ), we may

infer from Corollary 2 that xi−1
1 = yi−1

1 and xn
j−ℓ+2 =

yn
j−ℓ+2. As a consequence, we obtain xi · y

−1
i = R(x)i ·

R(y)−1
i 6= c(φ), i.e., xi 6= yi.

Similarly, xj−ℓ+1 · y
−1
j−ℓ+1 = R(x)j · R(y)−1

j 6= c(φ). On

account of Lemma 2, we also have

(xi · y
−1
i )(xj−ℓ+1 · y

−1
j−ℓ+1) =

n+ℓ−1∏

i=1

R(x)i · R(y)−1
i

= c(x)ℓc(y)−ℓ,

hence the degree in (xi ·y
−1
i )(xj−ℓ+1 ·y

−1
j−ℓ+1) of each symbol

in Σq is a multiple of ℓ. Since ℓ ≥ 3, it follows that (xi ·
y−1
i )(xj−ℓ+1 · y

−1
j−ℓ+1) = c(φ). Because xi 6= yi, we have

xi = yj−ℓ+1 and yi = xj−ℓ+1 (i.e., c(x) = c(y)), or, put

differently, R(x)j · R(y)−1
j = x−1

i yi = R(x)−1
i · R(y)i.

Finally, if j 6≡ i, i + 1 (mod ℓ) then under Lemma 2 we

observe (denoting α , i mod ℓ)

c(φ) =
∏

k

∆α(x)k

=
(∏

k

∆α(y)k

)
(R(x)−1

i R(y)i)

= R(x)−1
i R(y)i,

in contradiction. Similarly, if j ≡ i+ 1 (mod ℓ) then

c(φ) =
∏

k

∆α(x)k

=
(∏

k

∆α(y)k

)
(R(x)−1

i R(y)i)(R(x)jR(y)−1
j )

= R(x)−2
i R(y)2i ,

again in contradiction. Hence, i ≡ j (mod ℓ), concluding the

proof.

The proof of Lemma 3 demonstrates that if

dH(R(x),R(y)) = 2 and i < j are the two indices

at which R(x),R(y) differ, then xi−1
1 = yi−1

1 and

xn
j−ℓ+2 = yn

j−ℓ+2. In what follows we demonstrate that

x
j−ℓ+1
i ,yj−ℓ+1

i are also necessarily constrained by this

assumption, to a specific structure.

Lemma 4. For ℓ ≥ 3, any two vectors x,y ∈ Σn
q that satisfy

dH(R(x),R(y)) = 2, i.e., R(x)i · R(y)−1
i = R(x)−1

j ·
R(y)j for some i, j ∈ [n+ ℓ−1] such that i < j, it must hold

that (yi, yi+1) = (xi+1, xi).

Proof: From Corollary 2 and R(x)i−1
1 = R(y)i−1

1 , we

infer that xi−1
1 = yi−1

1 and xn
j−ℓ+2 = yn

j−ℓ+2. It directly

follows from R(x)i ·R(y)−1
i = xi · y

−1
i 6= c(φ) that xi 6= yi.

Note that Lemma 3 suggests j − i ≥ ℓ ≥ 3. Thus, we

must have R(x)i+1 = R(y)i+1, or equivalently, R(x)i+1 ·
R(y)−1

i+1 = c(φ). Since x
i−1
i−ℓ+2 = y

i−1
i−ℓ+2, the preceding re-

quirement essentially translates to c(xi+1
i )·c(yi+1

i )−1 = c(φ).
Since xi 6= yi, we conclude that xi+1 = yi and yi+1 = xi.

Example 6. We return to x = (1, 2, 0, 1, 2, 2) from

Example 1, and recall that ℓ = 3, δ = 1. Also recall that we

observed that R(x) = (1, 12, 012, 012, 012, 122, 22, 2).
Now also consider y = (2, 1, 0, 2, 1, 2) for which

R(y) = (2, 12, 012, 012, 012, 122, 12, 2). Evidently,

dH(R(x),R(y)) = 2 and i = 1, j = 7 are the

indices at which R(x),R(y) differ. Note that, indeed,

R(x)i · R(y)−1
i = 112−1 = R(y)j · R(x)−1

j and j ≡ i
(mod ℓ), in keeping with Lemma 3. Also, as suggested by

Lemma 4, it holds that (xi, xi+1) = (1, 2) = (yi+1, yi).
Before concluding, also observe, peculiarly, that

(xi+ℓ, xi+ℓ+1) = (yi+ℓ+1, yi+ℓ) and x
i+ℓ−1
i+2 = y

i+ℓ−1
i+2

(note that, here, j − ℓ = i + ℓ, hence the pattern connecting

x
j−ℓ+1
i ,yj−ℓ+1

i is fully found). The forthcoming analysis

demonstrate that this is not a coincidence.

Further inspection reveals how this pattern of symbol al-

ternation in the q-ary vectors may carry over to subsequent

indices.
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Lemma 5. For ℓ ≥ 3, consider two vectors x,y ∈ Σn
q , such

that for some i, j ∈ [n+ ℓ− 1], i < j, R(x)i · R(y)−1
i =

R(x)−1
j · R(y)j , and for all p 6∈ {i, j}, R(x)p = R(y)p.

Assume for some t ≥ i that xt−1
t−ℓ+2 = y

t−1
t−ℓ+2, (xt, xt+1) =

(yt+1, yt). Then, one of the following conditions will hold.

1) xn
t+2 = yn

t+2 and j = t+ ℓ; or

2) x
t+ℓ−1
t+2 = y

t+ℓ−1
t+2 , (xt+ℓ, xt+ℓ+1) = (xt, xt+1),

(yt+ℓ, yt+ℓ+1) = (yt, yt+1) and j > t+ ℓ+ 1.

Proof: Let m indicate the smallest index strictly greater

than t + 1 for which xm 6= ym; if xn
t+2 = yn

t+2, con-

sider m =∞. Further recall throughout the proof that from

R(x)p = R(y)p for j < p < n + ℓ and Corollary 2, it

follows that xn
j−ℓ+2 = yn

j−ℓ+2.

We start by noting that m ≥ t + ℓ; indeed, if m < t + ℓ
then R(y)m · R(x)−1

m = ym · x−1
m 6= c(φ), hence j = m but

xn
j−ℓ+2 = yn

j−ℓ+2 contradicts xt+1 6= yt+1. We continue this

proof by cases.

Case 1) If m > t+ ℓ, we deduce that R(y)t+ℓ ·R(x)−1
t+ℓ =

yt+1 · x
−1
t+1 6= c(φ). Thus, j = t + ℓ, implying xn

t+2 = yn
t+2

(in particular, this case is only possible when m =∞).

Case 2) If m = t+ ℓ, then xn
j−ℓ+2 = yn

j−ℓ+2 implies that

j ≥ t+ 2ℓ− 1 > t+ ℓ+ 1.

Observe that R(y)t+ℓ · R(x)−1
t+ℓ = (yt+ℓyt+1) ·

(xt+ℓxt+1)
−1 = c(φ), and hence (xt+ℓ, yt+ℓ) = (yt+1, xt+1).

In turn, R(y)t+ℓ+1 ·R(x)−1
t+ℓ+1 = c(yt+ℓ+1

t+ℓ )·c(xt+ℓ+1
t+ℓ )−1 =

c(φ) now implies (xt+ℓ+1, yt+ℓ+1) = (yt+ℓ, xt+ℓ).

Example 7. We refer back to Example 6 to demonstrate the

implications of Lemma 5, and note that when t ∈ {1, 4}, we

have xt−1
t−ℓ+2 = yt−1

t−ℓ+2, xt+1
t = (1, 2) and yt+1

t = (2, 1). As

before, let j denote the last index where R(y)j · R(x)−1
j 6=

c(φ). Now when t = 4, it holds that xn
t+2 = yn

t+2 and

j = t+ ℓ. On the other hand, when t = 1, we observe that

xt+ℓ−1
t+2 = yt+ℓ−1

t+2 , xt+ℓ+1
t+ℓ = (1, 2) and yt+ℓ+1

t+ℓ = (2, 1) and

j = t+ 2ℓ.

Upon successive applications of Lemma 5 in conjunction

with Lemma 3 and Lemma 4, we arrive at the following

theorem.

Theorem 2. For ℓ ≥ 3 and any x,y ∈ Σn
q , the following

statements are equivalent:

1) dH(R(x),R(y)) = 2.

2) There exist distinct i, j ∈ [n + ℓ − 1], j ≡ i (mod ℓ),
such that R(x)i · R(y)−1

i = R(x)−1
j · R(y)j 6= c(φ)

and R(x)r = R(y)r for all r 6∈ {i, j}.
3) There exist p ≥ 1 and i ∈ [n− (p−1)ℓ−1] such that for

all m ∈ {0, 1, . . . , p− 1} it holds that xi+mℓ+1
i+mℓ = (a, b),

y
i+mℓ+1
i+mℓ = (b, a) where a, b ∈ Σq and a 6= b, and xr =

yr for all r 6∈
⋃

m∈{0,1,...,p−1}{i+mℓ, i+mℓ+ 1}.

Further, if these conditions hold, then j = i+ pℓ in the above

notation.

B. An Upper Bound on the Code Size

We derive a lower bound on the redundancy required by

a single-substitution read code by adopting the approach

employed in [8]. More precisely, we consider a graph G(n)

containing vertices corresponding to all vectors in Σn
q . Any

two vertices in G(n) that signify two distinct q-ary vectors,

say x,y ∈ Σn
q , are considered to be adjacent if and only if

dH(R(x),R(y)) = 2. Therefore, any independent set (i.e.,

a subset of vertices of G(n), wherein no two vertices are

adjacent) is a single-substitution read code. Before further

detailing our proof approach, we introduce some relevant

definitions.

Definition 6. A clique in a graph G is a subset of vertices

of G, wherein any two vertices are adjacent. A clique cover

Q is then a collection of cliques, such that every vertex in G
belongs to at least one clique in Q.

The following graph-theoretic result is well-known [16].

Theorem 3. If Q is a clique cover, then the size of any

independent set is at most |Q|.

For the remainder of this section, we seek to define a clique

cover Q by utilizing Theorem 2. By Theorem 3, the size

of such a clique cover will serve as an upper bound on the

cardinality of a single-substitution read code.

Definition 7. Let G′(n) be the graph whose vertices are all

vectors in Σn
q , and an edge connects x,y ∈ Σn

q if and only if

{x,y} = {u◦ (ab)j ◦v,u◦ (ba)j ◦v}, for some j, sub-strings

u,v and a, b ∈ Σq where a 6= b.

Observe that when q = 2, the preceding definition is

identical to that in [8, Sec. IV].

Our method of proof would be to pull back a clique-cover

from G′ based on the non-binary extension of [8, Lem. 7], i.e.,

Lemma 6, into G. To do that, we have the following definition.

Definition 8. For a positive integer p, define a permutation πp

on Σn
q as follows. For all x ∈ Σn

q , arrange the coordinates

of x
pℓ⌊n/(pℓ)⌋
1 in a matrix X ∈ Σ

p⌊n/(pℓ)⌋×ℓ
q , by row (first

fill the first row from left to right, then the next, etc.). Next,

partition X into sub-matrices of dimension p × 2 (if ℓ is

odd, we ignore X’s right-most column). Finally, going through

each sub-matrix (from left to right, and then top to bottom),

we concatenate its rows to obtain πp(x) (where unused

coordinates from x are appended arbitrarily).

More precisely, for all 0 ≤ i < ⌊ npℓ⌋, 0 ≤ j < ⌊ ℓ2⌋ and

0 ≤ k < p denote

x(i,j,k) , x(ip+k)ℓ+2j+1x(ip+k)ℓ+2j+2;

then

x(i,j) , x(i,j,0) ◦ · · · ◦ x(i,j,p−1)

and

x(i) , x(i,0) ◦ · · · ◦ x(i,⌊ℓ/2⌋−1).

Then πp(x) = x(0)◦· · ·◦x(⌊n/pℓ⌋−1)◦x̃, where x̃ is composed

of all coordinates of x not previously included.

Example 8. Recall from Example 6 that for x =
(1, 2, 0, 1, 2, 2) and y = (2, 1, 0, 2, 1, 2) it holds that

dH(R(x),R(y)) = 2. To obtain πp(x) and πp(y) for p = 2,

note that

X =

[
1 2 0
1 2 2

]
, Y =

[
2 1 0
2 1 2

]
.
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y = (

x = (

1

2

1

2

0

0

2

1

2

1

2

2 )

)

ISI+DMC

ISI+DMC

R(x) = (

R(y) = (

1

2

12

12

012

012

012

012

012

012

122

122

22

12

2

2

)

)

ℓ j − i = 6 ≡ 0 (mod ℓ)

i = 1 j = 7

Fig. 4. Demonstration of Theorem 2 through Examples 6 and 7. For ℓ = 3, δ = 1, we observe that dH (R(x),R(y)) = 2. The vectors x,y differ in pairs
of indices that are separated by ℓ positions (Lemma 4), while the mismatching indices in R(x) and R(y) are always spaced apart by a multiple of ℓ

Since ℓ is odd, we ignore the last column in X and Y
and partition the respective results into 2 × 2 sub-matrices

to ultimately obtain πp(x) = (1, 2, 1, 2, 0, 2) and πp(y) =
(2, 1, 2, 1, 0, 2) (here, unused coordinates were appended in

the order of their indices).

Next, we detail the non-binary extension of the clique-cover

used in [8, Section IV].

Definition 9. For a positive integer p, let

Λp,a,b ,
{
(v)j(t)p−j : j ∈ [p], {v, t} = {ab, ba}

}
,

where v0 = t0 is the empty word, and Λ̃p,a,b , Σ2p
q \ Λp,a,b.

Further, let

Γ ,

{
(u,w, a, b) : i ∈ [m],u ∈ Λ̃i−1

p,a,b,w ∈ Σ2p(m−i)
q ,

a, b ∈ Σq, a 6= b
}
,

where m = ⌊ ℓ2⌋⌊
n
pℓ⌋, and Λ̃0

p is the singleton containing the

empty word. Then, for all γ = (u,w, a, b) ∈ Γ define

Q(0)
γ ,

{
u(ab)h(ba)p−hw : h ∈ [p]

}
,

Q(1)
γ ,

{
u(ba)h(ab)p−hw : h ∈ [p]

}
.

Finally, let

Q(m, p) ,
{
{x} : x ∈ Λ̃m

p

}
∪
{
Q(0)

γ , Q(1)
γ : γ ∈ Γ

}
,

where Λ̃p = Σ2p
q \ ∪a,b∈Σq

a 6=b

Λp,a,b.

Example 9. For p = 2, a = 1 and b = 2, we obtain

Λp,a,b = {(1, 2, 2, 1), (1, 2, 1, 2), (2, 1, 1, 2), (2, 1, 2, 1)}. Re-

visiting Example 8, we observe that for γ =
(
u,w, 1, 2

)
∈ Γ,

where u = Λ̃0
p,a,b and w = (2),

Q(0)
γ = {(1, 2, 0, 2, 1, 2), x = (1, 2, 0, 1, 2, 2)},

Q(1)
γ = {(2, 1, 0, 1, 2, 2), y = (2, 1, 0, 2, 1, 2)}.

It follows from Theorem 2 that Q
(0)
γ ∪Q

(1)
γ forms a clique.

Lemma 6. Q(m, p) is a clique-cover of G′(2pm), where

m = ⌊ ℓ2⌋⌊
n
pℓ⌋.

This is the non-binary analogue of [8, Lemma 7], and the

proof is relegated to the appendix. We now define a clique-

cover for the graph G(n) in the theorem below.

Theorem 4. Let

Qp ,
{
π−1
p (Q× {z}) : Q ∈ Q(m, p), z ∈ Σn−2pm

q

}
,

where π−1
p (A) ,

{
u ∈ Σn

q : πp(u) ∈ A
}

. Then, Qp is a

clique-cover in G(n).

Proof: First, observe that it readily follows from⋃
Q(m, p) = Σ2pm

q that
⋃
Qp = Σn

q . It is therefore left to

prove that every element of Qp is a clique of G(n).
Next, observe for all Q ∈ Q(m, p) and z ∈ Σn−2pm

q that

either Q is a singleton, or all elements y ∈ Q × {z} agree

on all coordinates yk except 2(i − 1)p < k ≤ 2ip for some

i ∈ [m], and y
2ip
2(i−1)p ∈

{
(ab)h(ba)p−h, (ba)h(ab)p−h

}
for

some h ∈ [p] and a, b ∈ Σq where a 6= b. That is, either

π−1
p (Q×{z}) is a singleton, or all elements x ∈ π−1

p (Q×{z})
agree on all coordinates except, in the notation of Definition 8,

x(i,j) for some 0 ≤ i < ⌊ npℓ⌋, 0 ≤ j < ⌊ ℓ2⌋, and

x(i,j) ∈
{
(ab)h(ba)p−h, (ba)h(ab)p−h

}
for some h ∈ [p].

That is, x(i,j,k) = ab (ba) for all 0 ≤ k < h, and x(i,j,k) = ba
(respectively, ab) for all h ≤ k < p. By Theorem 2, it holds

that dH(R(x1),R(x2)) = 2 for all x1,x2 ∈ π−1
p (Q× {z}).

Finally, we can obtain a lower bound on the redundancy of

a single-substitution read code from the following result on

the size of a clique-cover.

Lemma 7.

|Qp| = qn
[(

1−

(
q

2

)
2p

q2p

)m

+

1

p

(
q

2

)(
1−

(
1−

2p

q2p

)m
)]

,

where m = ⌊ ℓ2⌋⌊
n
pℓ⌋.

Proof: Since the number of singletons is given by

|Λ̃m
p | =

(
q2p −

(
q

2

)
2p

)m

,

while the number of cliques of size p evaluates to

2|Γ| = 2

(
q

2

) m∑

i=1

|Λ̃p,a,b|
i−1 · q2p(m−i)

= 2

(
q

2

) m∑

i=1

(q2p − 2p)i−1q2p(m−i)

= 2q2p(m−1)

(
q

2

) m∑

i=1

(
1−

2p

q2p

)i−1

= q2pm
1

p

(
q

2

)(
1−

(
1−

2p

q2p

)m
)
.
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Hence,

|Q(m, p)| = q2pm
[(

1−

(
q

2

)
2p

q2p

)m

+

1

p

(
q

2

)(
1−

(
1−

2p

q2p

)m
)]

,

and the claim follows.

By using
(
1− 2p

q2p

)
≥

(
1−

(
q
2

)
2p
q2p

)
, it readily follows that

for any positive integer p,

log|Qp| ≤ n− log(p) + log

(
p
(
1−

2p

q2p

)m

+

(
q

2

))
.

Based on m ≥ ⌊ n
2p⌋ − ⌊

ℓ
2⌋ we may further bound

log|Qp| ≤ n− log(p) +

log

(
p
(
1−

2p

q2p

)⌊n/2p⌋−⌊ℓ/2⌋

+

(
q

2

))
.

By employing the non-binary extension of [8, Lemma 9],

as stated in Appendix B, we find that letting p = ⌈ 12 (1 −

ǫ) log(n)⌉ for any 0 < ǫ < 1 yields p
(
1− 2p

q2p

)⌊n/2p⌋
= o(1),

hence based on Theorem 3 we arrive at the following theorem.

Theorem 5. The minimum redundancy of any single-

substitution read code is at least

log log(n)− log

(
q

2

)
− o(1).

C. Error correction with multiple reads

It is well known that existing DNA synthesis technologies

tend to produce many duplicates of each strand and that

the process of PCR amplification, used during sequencing,

augments the number of copies even more, albeit at the

cost of introducing errors [17]–[20]. As a consequence, the

problem of reconstructing the channel input from multiple

noisy versions at the receiver is of immense practical relevance

[9]–[15]. Investigating how the availability of multiple noisy

reads could lower the minimum redundancy required by an

error-correcting code is similarly pertinent [8], [21].

With this in mind, we first consider the following lemma

to see if and how multiple noisy reads might be leveraged to

construct more efficient codes for correcting errors in (ℓ, δ)-
read vectors.

Lemma 8. Exactly one of the following conditions holds for

ℓ ≥ 3 and any two distinct x,y ∈ Σn
q .

1) dH(R(x),R(y)) = 2 and |B1(R(x))∩B1(R(y))| = 2;

or

2) dH(R(x),R(y)) > 2 and |B1(R(x))∩B1(R(y))| = ∅.

Proof: Since Theorem 1 already precludes the possi-

bility of dH(R(x),R(y)) = 1 and the case of dH(R(x),
R(y)) > 2 follows from the triangle inequality, we proceed

to prove the remaining case wherein dH(R(x),R(y)) = 2,

i.e., x,y satisfy the conditions stated in Theorem 2.

More specifically, there exist distinct i, j ∈ [n+ ℓ− 1] such

that R(x)i · R(y)−1
i = R(y)j · R(x)−1

j 6= φ and for all

k 6∈ {i, j}, R(x)k = R(y)k. This implies that B1(R(x)) ∩
B1(R(y)) is exactly the following.

{(R(x)1, . . . ,R(x)i−1,R(y)i,R(x)i+1, . . . ,R(x)n+ℓ−1),

(R(x)1, . . . ,R(x)j−1,R(y)j ,R(x)j+1, . . . ,R(x)n+ℓ−1)}

= {(R(y)1, . . . ,R(y)j−1,R(x)j ,R(y)j+1, . . . ,

R(y)n+ℓ−1), (R(y)1, . . . ,R(y)i−1,R(x)i,R(y)i+1,

. . . ,R(y)n+ℓ−1)}.

Hence, the first case directly follows.

As in Section III-B, we wish to derive a lower bound on the

redundancy required by a code that can reconstruct the channel

input given two distinct noisy versions of its read vector. Such

a code requires that for any two distinct codewords x,y ∈ Σn
q

it holds that |B1(R(x)) ∩B1(R(y))| < 2.

Nevertheless, Lemma 8 suggests that such codes are in

fact identical to single-substitution read codes as defined in

Definition 5. As a consequence, we arrive at the following

lemma.

Lemma 9. The minimum redundancy of any code able to

correct a single substitution given two distinct noisy copies

is at least

log log(n)− log

(
q

2

)
− o(1).

Remark: Although this result mirrors that of the standard

substitution channel [9], it is nevertheless unexpected that the

minimum redundancy requirement remains the same, unlike

the single deletion channel or single edit channel [8], [21],

owing to the different spaces over which the channel outputs

are defined and especially the special characteristics imbued

in the outputs of the ISI channel that aid in error correction.

However, Lemma 8 also implies the following: given three

distinct noisy copies of the (ℓ, 1)-read vector of any x ∈ Σn
q ,

one can uniquely reconstruct R(x) and thereby x. Therefore,

no redundancy at all is required in this case.

IV. SINGLE SUBSTITUTION READ CODES

It is already implied by Corollary 2 that a redundancy of

t logn symbols suffices to correct at most t substitutions in

the (ℓ, 1)-read vector. However, according to Theorem 5, a

more efficient code may exist for the t = 1 case. This section

introduces such a construction that is of optimal redundancy

up to an additive constant.

We define a specific permutation for any x ∈ Σn
q as well

as its (ℓ, 1)-read vector R(x) as

xπ , C0
ℓ,1(x) ◦ C

1
ℓ,1(x) ◦ · · · ◦ C

ℓ−1
ℓ,1 (x),

Rπ(x) , R0(x) ◦ R1(x) ◦ · · · ◦ Rℓ−1(x),

where Ri−1(x) = (R(x)i,R(x)i+ℓ, . . . ,R(x)i+kℓ) and k =
⌊n+ℓ−1−i

ℓ ⌋ for all i ∈ [ℓ]. Recall from Definition 4 that

Cα
ℓ,1(x) refers to a subsequence of x.

Example 10. Reconsidering x = (1, 2, 0, 1, 2, 2) from Exam-

ples 1 and 3, we may verify that

xπ = (1, 1, 2, 2, 0, 2),

Rπ(x) = (1, 012, 22, 12, 012, 2, 012, 122).
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To simplify presentation, we also define the following.

Definition 10. Let a-RLLq(n) be the set of all length-n q-ary

vectors whose runs are of length at most a.

Definition 11. For n, a > 0 where n ≥ a, and a code C ⊆ Σn
q ,

we say that C is an a-bounded single-substitution-correcting

code, and denote C ∈ BSq(n, a), if a decoder of C can correct

a single substitution given knowledge of the error location

within a segment of length a.

We defer the construction of BSq(n, a) codes, and the study

of their respective redundancies, to the end of this section.

Finally, we propose the following code to correct a single

substitution in (ℓ, 1)-read vectors for ℓ ≥ 3.

Construction 1.

C(n, ℓ) =
{
x ∈ Σn

q : Ci
ℓ,1(x) ∈ ⌈log qn⌉-RLLq(ki)

∀i ∈ {0, 1, . . . , ℓ− 1};

|Rπ(x)|1 mod q ∈

BSq(n+ ℓ− 1, 2⌈log(qn)⌉+ 2)
}
,

where ki = ⌊
n−i−1

ℓ ⌋+ 2.

To prove that C(n, ℓ) is a single-substitution read code, we

first show how the inherent characteristics of read vectors

reveal some information on the substitution error, particularly

in regard to its composition and its location.

Lemma 10. If a substitution error affects the (ℓ, 1)-read vector

of some x ∈ Σn
q where ℓ ≥ 3, thus producing a noisy copy

R(x)′, then there exist α, β ∈ Σℓ where α ≡ (β + 1) mod ℓ,

such that
∏

i ∆
β(x)′i =

(∏
i ∆

α(x)′i
)−1
6= c(φ), and for all

γ 6∈ {α, β},
∏

i∆
γ(x)′i = c(φ). This implies that

1) the composition error is

∏

i

(
R(x)′i · R(x)−1

i

)
=

∏

i

∆β(x)′i

=
(∏

i

∆α(x)′i
)−1

;

2) the error occurred at an index k ∈ [n+ ℓ− 1], where

k ≡ α (mod ℓ).

Proof: Suppose the concerned substitution error occurs

at index k ∈ [n + ℓ − 1]. Thus, the noisy read vector can

be expressed as R(x)′ = (R(x)′1, . . . ,R(x)′n−ℓ+1), where

R(x)′k 6= R(x)k and R(x)′p = R(x)p for all p 6= k.

Denoting α , k mod ℓ, β , (k − 1) mod ℓ, observe that

∆β(x)′ and ∆α(x)′ no longer uphold Lemma 2. Instead,

∏

i

∆β(x)′i =
∏

i

∆α(x)′i
−1

= R(x)′k · R(x)−1
k ,

which is the composition error. The preceding equation sug-

gests that the error occurred somewhere in Rβ(x)′, which is a

subsequence of R(x)′. Alternatively, we say that the decoder

can only infer the error position up to the modulo class of k.

Next, we show that some composition substitutions are

trivial to correct.

Lemma 11. Say a composition substitution corrupts the i-th
index of R(x) to R(x)′i. This error is readily correctable if

any of the following conditions holds

1) Denoting R(x)′i = 0i0 · · · (q − 1)iq−1 , if it does not

hold that 0 ≤ ij ≤ ℓ for all j ∈ Σq , and
∑q−1

j=0 ij =
min{i, ℓ, n− i+ 1}.

2) At least one of R(x)′iR(x)−1
i−1 or R(x)i+1R(x)

′−1
i is

neither φ nor of the form a · b−1 for any a, b ∈ Σq .

Proof: Suppose the error occurred at index k. Then,

we may express the noisy read vector as R(x)′ =
(R(x)′1, . . . ,R(x)′n+ℓ−1), where R(x)′k 6= R(x)k and

R(x)′p = R(x)p for all p 6= k.

Since in the first case, it follows directly from Definition 1

that the error can be detected and corrected by Corollary 2, we

direct our attention to the second case. On account of δ = 1,

we know that for any p ∈ [n + ℓ − 2], it should hold that

R(x)p+1 · R(x)−1
p = xp+1x

−1
p+1−ℓ, which is either evaluates

to φ or stays in the form a · b−1, where a, b ∈ Σq and a 6= b.
Say R(x)′iR(x)−1

i−1 violates this. As a result, we immediately

infer that k ∈ {i− 1, i}. However, since R(x)′i ·R(x)−1
i−1 and

i mod ℓ can be deduced due to Lemma 10, we are able to

conclude that k = i, and thereby correct the error.

Example 11. R3,1(v)
′ = (1, 12, 012, 012, 23, 122, 22, 2)

arises from a single substitution in the (3, 1)-read vector

of some v ∈ Σ6
3. Since R(v)′5R(v)

′−1
4 = 0−1221−1, we

know that either R(v)′4 or R(v)′5 is erroneous. Also, since∏
i ∆

1(v)′i =
(∏

i∆
2(v)′i

)−1
= 0−11−122, we use Lemma 10

to conclude that the composition error is 0−11−122 and

that the error location, say k, satisfies k mod ℓ = 2. Thus

k = 5, and we can reverse the substitution error by applying

R(v)5 ←R(v)′5 · (0
−11−122)−1, to finally obtain R3,1(v) =

(1, 12, 012, 012, 012, 122, 22, 2), which corresponds to v =
(1, 2, 0, 1, 2, 2) = x from Example 1.

Due to Lemma 11, we focus for the rest of the section on

proving that C(n, ℓ) can correct a single substitution that is

not readily correctable by Lemma 11. Next, we demonstrate

that the index of such substitutions may be narrowed down.

Example 12. R3,1(v)
′ = (1, 12, 012, 022, 012, 122, 22, 2)

arises from a substitution in the (3, 1)-read vector of some

v ∈ Σ6
3. As

∏
i∆

0(v)′i =
∏

i ∆
1(v)

′−1
i = 1−12,

Lemma 10 suggests that the erroneous composition differs

from the true composition by a factor of 1−12 and oc-

curred somewhere in (R(v)′1,R(v)′4,R(v)′7). Now assign-

ing R(v)′1 ←R(v)′1 · 12
−1 yields an invalid read vector

since by definition, R(x)1 ∈ Σq. On the contrary, assign-

ing R(v)′4 ←R(v)′4 · 12
−1 or R(v)′7 ←R(v)′7 · 12

−1 alters

R(v)′ into the (3, 1)-read vector of v = (1, 2, 0, 1, 2, 2) or

v = (1, 2, 0, 2, 1, 2) respectively.

Henceforth, we represent the subsequence

reconstructed using Corollary 1 from left to right

with a noisy read sub-derivative, say ∆β(x)′, as

Ĉβ(x) , (x̂β+1, x̂β+1+ℓ, . . . , x̂β+1+⌊n−β−1
ℓ

⌋ℓ). Analogously,
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C̃β(x) corresponds to right to left reconstruction. The

following lemma outlines how a single substitution in a read

vector, say R(x), affects the estimate of the input x, obtained

via left-to-right reconstruction.

Lemma 12. Let a substitution at index k on (ℓ, 1)-read

vector of x ∈ Σn
q where ℓ ≥ 3, produce R(x)′. For

β , (k − 1) mod ℓ, if there exists i > 0 such thatR(x)′k+iℓ 6=
R(x)′k+iℓ−1, then {x̂k, x̂k+iℓ} 6⊆ Σq , where x̂k, x̂k+iℓ are

elements of Ĉβ(x).

Proof: Since R(x)′k alone is erroneous, we infer that

(x̂β+1, x̂β+ℓ+1, . . . , x̂k−ℓ) = (xβ+1, xβ+ℓ+1, . . . , xk−ℓ) and

x̂k+iℓ · x
−1
k+iℓ = R(x)′k · R(x)−1

k for all i ≥ 0.

Assume x̂k ∈ Σq and i > 0 is minimum such

that R(x)′k+iℓ 6= R(x)′k+iℓ−1. Note that, equivalently,

R(x)k+iℓ 6= R(x)k+iℓ−1; i.e., for all 0 < j < i,

∆β(x)′k−β−1
ℓ

+j+1
= ∆β(x) k−β−1

ℓ
+j+1 = c(φ)

and ∆β(x)′k−β−1
ℓ

+i+1
= ∆β(x) k−β−1

ℓ
+i+1 = xk+iℓx

−1
k ,

where xk+iℓ 6= xk. It follows that

x̂k+iℓ =

k−β−1
ℓ

+i+1∏

j=1

∆β(x)′j

= x̂k ·
i∏

j=1

∆β(x)′k−β−1
ℓ

+j+1

= x̂k · (xk+iℓx
−1
k ),

and since by assumption x̂k ∈ Σq \ {xk} and xk 6= xk+iℓ, we

have x̂k+iℓ 6∈ Σq .

Corollary 3. Let R(x)′ arise from a substitution at index

k on (ℓ, 1)-read vector of x ∈ Σn
q where ℓ ≥ 3. For β ,

(k − 1) mod ℓ, if there exists j > 0 such that R(x)′k−jℓ 6=
R(x)′k−jℓ−1, then {x̃k, x̃k−jℓ} 6⊆ Σq , where x̃k, x̃k−jℓ are

elements of C̃β(x).

A consequence of Lemma 10 and the preceding results is

that reconstruction with any corrupted read subderivative from

left to right and right to left might help us narrow in on the

position of the substitution error. This is stated more formally

as follows (for an illustration of the following lemma, see

Figure 5).

Lemma 13. For ℓ ≥ 3, let R(x)′ be a noisy (ℓ, 1)-read

vector of x ∈ Σn
q , such that for some α, β ∈ Σℓ, where

α ≡ β + 1 (mod ℓ),
∏

i ∆
β(x)′i =

∏
i∆

α(x)′i
−1 6= c(φ).

Reconstruction by Corollary 1 with ∆β(x)′ from left to right

(respectively, right to left) yields Ĉβ(x) (C̃β(x)) for which

we define i (j) as the minimum (maximum) index at which

x̂β+iℓ+1 6∈ Σq (x̃β+jℓ+1 6∈ Σq), or i = ⌊n−β−1
ℓ ⌋+1 (j = −1)

if no such index exists. Then, it holds that for all j+1 < h < i,
R(x)′β+hℓ+1 = R(x)′β+hℓ and the error position in R(x)′,

say k, satisfies k−β−1
ℓ ∈ {j + 1, j + 2, . . . , i}.

Example 13. We reconsider R3,1(v)
′ from Example 12. From

∆0(v)′ = (1, 1−12, 1−1), we reconstruct Ĉ0(v) = (1, 2) and

C̃0(v) = (122−1, 1). Since Ĉ0(v) ∈ Σ2
3 and ṽ1 6∈ Σ3, we set

i = 2 and j = 0 in accordance with Lemma 13. Thus, either

R(x)′4 or R(v)′7 is noisy, implying that v = (1, 2, 0, 1, 2, 2)
or v = (1, 2, 0, 2, 1, 2) respectively.

Lemma 13 suggests that attempting reconstruction with a

noisy read sub-derivative may help narrow down the error

location even further. This finally allows us to arrive at

Theorem 6. For ℓ ≥ 3, C(n, ℓ) is a single-substitution read

code.

Proof: Let R(x)′ arise from a single substitution on

(ℓ, 1)-read vector of some x ∈ C(n, ℓ). In light of Lemma 11,

this proof is dedicated to composition errors of the form ab−1.

Upon identifying α, β ∈ Σℓ where α ≡ β + 1 (mod ℓ),

such that
∏

i∆
β(x)′i =

∏
i ∆

α(x)
′−1
i 6= c(φ), we attempt re-

construction with ∆β(x)′ from left to right and from right

to left to obtain Ĉβ(x) and C̃β(x) respectively, and de-

fine indices i and j according to Lemma 13. Since for all

j + 1 < h < i, R(x)′β+hℓ+1 · R(x)
′−1
β+hℓ = φ, and a run of

‘φ’s in ∆β(x)′ can be of length at most 2⌈log(qn)⌉ − 1
as a consequence of the run-length constraint in C(n, ℓ) and

Lemma 1, we infer that i− j − 2 ≤ 2⌈log(qn)⌉ − 1.

From Lemma 13, we know that the error exists

somewhere in (R(x)′β+(j+1)ℓ+1,R(x)′β+(j+2)ℓ+1, . . . ,

R(x)′β+iℓ+1), which is evidently a substring of Rπ(x)′ and

has a length of at most 2⌈log(qn)⌉+ 1. Since an error of the

form ab−1, where a 6= b, surely reflects as a single substitution

in |Rπ(x)′|1 mod q, which belongs to a code that corrects a

substitution error localized to a window of 2⌈log(qn)⌉ + 1
symbols, we can uniquely recover |Rπ(x)|1 mod q, and by

Corollary 2, also x.

Since the preceding theorem establishes C(n, ℓ) as a single-

substitution read code, we now propose a specific instantiation

of it, by means of the following realization of an a-bounded

single-substitution-correcting code.

Definition 12. For any p > 0 define

H =
[
Hp Hp · · · Hp

]
︸ ︷︷ ︸

n(q−1)
qp−1 times

,

where Hp represents the parity-check matrix of a Hamming

code2 of order p. Here, if qp−1
q−1 does not divide n, we append

as many additional columns of Hp from the right, so that

H ∈ Σp×n
q . Then, for any s ∈ Σp

q , let

Cs ,
{
x ∈ Σn

q : Hx = s
}
.

Theorem 7. For every s ∈ Σp
q , Cs ∈ BS(n, a) where a =

qp−1
q−1 (i.e., Cs is an a-bounded single-substitution-correcting

code).

Proof: Let v ∈ Σn
q denote an erroneous received word

that results from a single substitution in a codeword of Cs.

In particular, the substitution error is known to have occurred

at one of the indices in {i, i + 1, . . . , i + a − 1}, where i ∈
[n− a+ 1].

2
Hp forms a projective representative (up to a scalar multiple) of all non-

zero vectors in Σp
q .
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∆β(x)′ = (

Ĉβ(x) = (

C̃β(x) = (

Left-to-right
reconstruction

Right-to-left
reconstruction

ba−1 φ φ db−1 φ φ cb−1

a b b b d d d dcb−1

b2d−1 b b c

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · · )

· · · )

· · · )

i

j

Error

Fig. 5. Illustration of Lemma 13. The red entry in ∆β(x)′ indicates the location of the composition substitution that replaced φ with db−1. Thus attempts
at reconstructing (xβ+1, xβ+ℓ+1, . . .) leads to erroneous estimates. In particular, left-to-right and right-to-left reconstruction via Corollary 1 yields symbol
estimates 6∈ Σq , at the indices i and j respectively, that are marked in blue.

Consider the matrix H
′ formed by extracting the columns of

H at indices i, i+1, . . . , i+a−1. While for i mod qp−1
q−1 = 1

it evidently holds that H
′ = Hp, in all other cases, H

′

is simply a permutation of the columns of Hp. Hence, H
′

always corresponds to a q-ary Hamming code of order p,

implying that the decoder can correct a single substitution in

v in the aforementioned length-a window. More precisely, if

H
′v

i+a−1
i − s is a scalar multiple of the j-th column of H′,

then the decoder concludes that the error location is i+ j − 1
and its value is given by said multiple.

Remark: Note that for q = 2, Construction 1 with Cs as

the a-bounded single-substitution-correcting code, is similar

to that defined in Construction 1 of the conference version of

this work.

This particular choice of an a-bounded single-substitution-

correcting code in C(n, ℓ) implies the following upper bound

on its minimum required redundancy.

Lemma 14. The minimum required redundancy of C(n, ℓ) is

at most

log logn+ log
(
2(q − 1) +

5q − 4

logn

)
+ 2.

Proof: Observe that the a-RLLq(n) constraint as speci-

fied in Definition 10 is equivalent to the (d, k)-RLL constraint

[22], i.e., restricting each zero run to be of length at least d = 0
and at most k = a−1 (see [23]). Now since the first constraint

in Construction 1 implies that C0
ℓ,1(x)◦ · · ·◦C

ℓ−1
ℓ,1 (x) belongs

to a superset of ⌈log qn⌉-RLL(n), we deduce that this run-

length restriction necessitates a redundancy of at most one

symbol, as indicated by [23, Section III-B].

Next, set p =
⌈
log

(
2(q − 1)⌈log(qn)⌉+ q

)⌉
and observe

qp−1
q−1 ≥ 2⌈log(qn)⌉ + 1. For any s ∈ Σp

q , then, we may

use Cs as a (2⌈log(qn)⌉ + 1)-bounded single-substitution-

correcting code of length n + ℓ − 1 in Construction 1, and

denote the resulting code by Cs(n, ℓ). In particular, Cs corrects

a single substitution error in any contiguous window of length

2⌈log(qn)⌉+ 1 symbols in |Rπ(x)|1 mod q.

Note that for all choices of s ∈ Σp
q , the respective codes

Cs are pairwise disjoint and collectively, they partition the

entire space Σn+ℓ−1
q . Thus, using the pigeonhole principle,

we observe that

qn−1 ≤ |⌈log qn⌉-RLL(n)|

≤
∣∣∣
{
x ∈ Σn

q : Ci
ℓ,1(x) ∈ ⌈log qn⌉-RLLq(ki)

∀ i ∈ {0, 1, . . . , ℓ− 1}
}∣∣∣

=
∣∣∣
⋃

s∈Σp
q

Cs(n, ℓ)
∣∣∣ =

∑

s∈Σp
q

|Cs(n, ℓ)|,

and therefore there exists a choice of s ∈ Σp
q for which

|Cs(n, ℓ)| ≥ qn−1−p, i.e., it requires at most p+ 1 redundant

symbols. Finally, since we have

p =
⌈
log

(
2(q − 1)⌈log(qn)⌉+ q

)⌉

= log
(
2(q − 1) log(q2n) + q

)
+ 1

= log
(
2(q − 1) logn+ 4(q − 1) + q

)
+ 1

= log logn+ log
(
2(q − 1) +

5q − 4

logn

)
+ 1,

the statement of the lemma follows.

V. CONCLUSION

The primary objective of this work was to initiate a line

of research dedicated to error-correcting codes that attempt

to incorporate the dominant physical aspects of nanopore

sequencing. The channel model we adopted incorporates the

intersymbol interference aspect of the sequencer as a window

that slides over the incoming DNA strand and outputs the

composition of the corresponding substrings in this strand.

The measurement noise in the current readout is modeled as

substitution errors in the resulting vector of compositions. We

observed how, in doing so, the correction of a single substi-

tution can be accomplished with log logn + O(1) redundant

symbols instead of logn symbols necessitated by the standard

case, i.e., when the decoder is agnostic to the channel model.

This result understandably encourages us to further investigate

this channel model under multiple substitution errors as well

as more error settings, e.g., deletions and duplications. Exam-

ining this channel in the context of Levenshtein’s sequence

reconstruction problem is also an exciting avenue to pursue.
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APPENDIX

A. Proof of Lemma 6, non-binary extension of [8, Lemma 7]

Proof: Since all singletons are cliques, we endeavor to

show that for all γ = (u,w, a, b) ∈ Γ, Q
(0)
γ is a clique. The

proof for Q
(1)
γ follows similarly.

For any two vectors in Q
(0)
γ , say x = u(ab)i(ba)p−iw and

y = u(ab)j(ba)p−jw, we may assume i < j without loss of

generality, and observe that

x = u(ab)i(ba)j−i(ba)p−jw,

y = u(ab)i(ab)j−i(ba)p−jw.

By Definition 7, x and y are clearly adjacent, implying that

Q
(0)
γ is a clique.

Now to show that each vector x ∈ Σ2pm
q belongs to at least

one clique in Q(m, p), note that we either have x ∈ Λ̃m
p , or

one of the m subblocks of x lies in Λp,a,b, for some a, b ∈ Σq.

In the former case, x constitutes a singleton and is accounted

for by Q(m, p), while in the latter case, assuming that the

ith subblock is the first that lies in Λp,a,b, we deduce that x

belongs to the clique Q
(0)
(u,w,a,b) where x

2p(i−1)
1 = u ∈ Λ̃i−1

p,a,b,

while x
2pm
2pi+1 = w ∈ Σ

2p(m−i)
q .

B. Non-binary extension of [8, Lemma 9]

Lemma 15. For p = ⌈ 12 (1 − ǫ) log(n)⌉, we have

limn→∞ p
(
1− 2p

q2p

)⌊ n
2p ⌋

= 0.

Proof: Based on 1− x ≤ e−x we observe

p
(
1−

2p

q2p

)⌊n/2p⌋

≤ p exp

(
−

2p

q2p

( n

2p
− 1

))

= p exp

(
−

n− 2p

q2⌈
1
2 (1−ǫ) log(n)⌉

)

≤ p exp

(
−
n− 2p

q2n
nǫ

)

≤ log(n) · exp

(
−
n− log(n)

q2n
nǫ

)
−→
n→∞

0.
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