
1

Adversarial Torn-paper Codes
Daniella Bar-Lev, Student Member, IEEE, Sagi Marcovich, Student Member, IEEE

Eitan Yaakobi, Senior Member, IEEE, and Yonatan Yehezkeally, Member, IEEE

Abstract—We study the adversarial torn-paper channel. This
problem is motivated by applications in DNA data storage where
the DNA strands that carry information may break into smaller
pieces which are received out of order. Our model extends the
previously researched probabilistic setting to the worst-case. We
develop code constructions for any parameters of the channel for
which non-vanishing asymptotic rate is possible and show our
constructions achieve asymptotically optimal rate while allowing
for efficient encoding and decoding. Finally, we extend our results
to related settings included multi-strand storage, presence of
substitution errors, or incomplete coverage.

Index Terms—Sequence reconstruction, DNA sequences, Error
correction codes, Worst-case analysis

I. INTRODUCTION

High density and extreme longevity make DNA an ap-

pealing medium for data storage, especially for archival pur-

poses [4], [9], [10], [36]. Advances in DNA synthesis and

sequencing technologies and recent proofs of concept [5], [9],

[13], [16], [17], [25] have ignited active research into the

capacity and challenges of data storage in this medium.

An aspect of this medium is that typically only short DNA

sequences may be read; information molecules are therefore

broken up into pieces and then read out of order, such as

in shotgun sequencing [6], [14], [23], [27]. Multiple channel

models have recently been suggested and studied based on

this property. An assumption of overlap in read substrings

Manuscript received 26 August 2022; revised 20 February 2023; accepted
29 June 2023. This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No. 801434). It was also funded
by the European Union (ERC, DNAStorage, 865630). Views and opinions
expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council
Executive Agency. Neither the European Union nor the granting authority can
be held responsible for them. The work of Daniella Bar-Lev, Sagi Marcovich,
and Eitan Yaakobi was supported in part by the U.S.-Israel Binational Science
Foundation (BSF) under Grant 2018048. The work of Yonatan Yehezkeally
was supported the Alexander von Humboldt Foundation under a Carl Friedrich
von Siemens Post-Doctoral Research Fellowship. An earlier version of this
paper was presented in part at the 2022 IEEE International Symposium
on Information Theory (ISIT) [DOI: 10.1109/ISIT50566.2022.9834766].
(Daniella Bar-Lev, Sagi Marcovich, and Yonatan Yehezkeally contributed

equally to this work.) (Corresponding author: Yonatan Yehezkeally.)
Daniella Bar-Lev, Sagi Marcovich, and Eitan Yaakobi are with the

Department of Computer Science, Technion—Israel Institute of Technology,
Haifa 3200003, Israel (e-mail: daniellalev@cs.technion.ac.il;
sagimar@cs.technion.ac.il; yaakobi@cs.technion.ac.il).
Yonatan Yehezkeally is with the Institute for Communications
Engineering, School of Computation, Information and Technology,
Technical University of Munich, 80333 Munich, Germany (e-mail:
yonatan.yehezkeally@tum.de).

Copyright (c) 2023 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works.

and (near) uniform coverage leads to the problem of string

reconstruction from substring composition [3], [6], [15], [22],

[23], [29], [31]; on the contrary, assuming no overlap in read

substrings leads to the torn-paper problem [24], [26], [32],

a problem closely related to the shuffling channel [18], [19],

[30], [35]. This problem is motivated by DNA-based storage

systems, where the information is stored in synthesized strands

of DNA molecules. However, during and after synthesis, the

DNA strands may break into smaller segments and due to the

lack of ordering among the strands in these systems, all broken

segments can only be read out of order [32]. Thus, the goal

is to successfully retrieve the data from this collection of read

segments of the broken DNA strands.

In the torn-paper channel [26], [32], also known as the

chop-and-shuffle channel [24], a long information string is

segmented into non-overlapping substrings and their length

has some known distribution. The channel outputs an un-

ordered collection of these substrings, preserving their left-

to-right orientation. Given the lengths’ distribution, the goal

is to determine the channel capacity and devise efficient

coding techniques. The geometric distribution was first studied

in [32], and later in [24] using the Varshamov-Tenengolts (VT)

codes [34]. Subsequently, [26] considered almost arbitrary

distributions while, additionally, extending the problem by

introducing incomplete coverage, i.e., assuming some of the

substrings are deleted with some probability.

The torn-paper channel was studied so far only in the

probabilistic setting. The goal of this paper is to extend

this channel to the worst case, referred to herein as the

adversarial torn-paper channel. Namely, it is assumed that

an information string is adversarially segmented into non-

overlapping substrings, where the length of each substring is

between Lmin and Lmax, for some given Lmin and Lmax. We

show that the capacity of this channel is determined by Lmin,

whereas the capacity of the probabilistic channel was shown

to depend on the average substring length; nevertheless, we

choose this adversarial model here for ease of analysis, and

observe that under this setting the average substring length

might indeed approach Lmin. For further discussion of an

average-restricted adversary, see Section V.

We study the noiseless adversarial torn-paper channel for a

single information string, as well as multiple strings, which

is motivated by DNA sequencing technologies where multi-

ple strings are sequenced simultaneously [8], [21], [28]. We

also extend the model to either allow for substitution errors

affecting the information string prior to segmentation, or for

incomplete coverage due to deletion of several segments after

the segmentation. In all cases we investigate the values of

Lmin and Lmax that permit codes with non-vanishing asymp-

totic rates, and develop constructions of codes with efficient

2

encoding and decoding algorithms, asymptotically achieving

optimal rates.

The rest of this paper is organized as follows. In Section II,

the definitions and notations that will be used throughout the

paper are presented, as well as a lower bound on Lmin required

for the existence of codes for the adversarial torn-paper

channel with non-vanishing asymptotic rates. In Section III we

first study the application of a known code construction to the

adversarial channel, and observe its limitations in that setting;

then, we present the basic construction used throughout the

paper for the noiseless case of the single-strand adversarial

torn-paper channel, and extend it to the multi-strand case.

In Section IV we extend our construction to two noisy

settings, including substitution errors or incomplete coverage.

We conclude with a summary and remarks in Section V.

II. DEFINITIONS AND PRELIMINARIES

Let Σ be a finite alphabet of size q. For convenience of

presentation, we assume Σ is equipped with a ring structure,

and in particular identify elements 0, 1 ∈ Σ. For a positive

integer n, let [n] denote the set [n] , {0, 1, . . . , n− 1}. Let

Σ∗ denote the set of all finite strings over Σ. The length of

a string x ∈ Σ∗ is denoted by |x|. We also denote, for x =
(xi)i∈[n] ∈ Σn, its support supp(x) , {i ∈ [n] : xi 6= 0},
and ‖x‖ , |supp(x)|. For strings x,y ∈ Σ∗, we denote

their concatenation by x ◦ y. We say that v is a substring,

or segment, of x if there exist strings u,w (perhaps empty)

such that x = u◦v◦w. If |v| = ℓ, we specifically say that v is

an ℓ-substring (ℓ-segment) of x. If |u| = i then it is said that v

is the substring (similarly, ℓ-substring) of x at location i. We

say that v appears cyclically in x, at location i, if x = u ◦w
and v is the substring of w ◦ u at location (i − |u|). For

example, 010 is the 3-substring of 00101 at location 1, and

also its 3-substring at location 3, where the latter is a cyclic

appearance. We avoid using the term index as it is reserved to

elements of presented constructions.

In our setting, information is stored in an unordered col-

lection of strings over Σ; it might be allowed for the same

string to appear with multiplicity in the collection, which is

encapsulated in the following formal definition:

Xn,k , {S = {{x0, . . . ,xk−1}} : ∀i,xi ∈ Σn}.

Here, {{a, a, b, . . .}} denotes a multiset; i.e., elements appear

with multiplicity (but no order). Note that |Xn,k| =
(
k+qn−1

k

)
.

It is assumed that a message S ∈ Xn,k is read by seg-

menting all elements of S into non-overlapping substrings

of lengths between some fixed values Lmin and Lmax, and

all segments are received, possibly with multiplicity, with-

out order or information on which element they originated

from. More formally, a segmentation of the string x is a

multiset {{u0,u1, . . . ,um−1}}, where x can be presented as

x = u0 ◦ u1 ◦ · · · ◦ um−1. In case Lmin 6 |ui| 6 Lmax

for 0 6 i < m − 1 and |um−1| 6 Lmax, then the segmen-

tation is called an (Lmin, Lmax)-segmentation. The set of all

(Lmin, Lmax)-segmentations of x is denoted by T Lmax

Lmin
(x) and

is referred as the (Lmin, Lmax)-segmentation spectrum of x.

For example,

T 3
2 (00101) =

{
{{001, 01}}, {{00, 101}}, {{00, 10, 1}}

}
.

These definitions are naturally extended for a multiset S ∈
Xn,k, so a segmentation of S is a union (as a multiset)

of segmentations of all the strings in S (and the same

holds for an (Lmin, Lmax)-segmentation), and T Lmax

Lmin
(S), the

(Lmin, Lmax)-segmentation spectrum of S, is the set of all

(Lmin, Lmax)-segmentations of S.

Note that our channel model only restricts the length of

the last segment to be at most Lmax. Such a relaxation is

motivated in applications where segmentation of the strings

occurs sequentially, so that it might happen that the last

segment is shorter than Lmin, but not larger than Lmax.

A code C ⊆ Xn,k is said to be an (Lmin, Lmax)-multistrand

torn-paper code if for all S, S′ ∈ C, S 6= S′, it holds that

all possible (Lmin, Lmax)-segmentations of S, S′ are distinct.

That is, T Lmax

Lmin
(S) ∩ T Lmax

Lmin
(S′) = ∅. For k = 1, we simply

refer to (Lmin, Lmax)-single strand torn-paper codes.

In case Lmin = Lmax = ℓ, then for convenience, we

let Tℓ(x) , T ℓ
ℓ (x) and Tℓ(S) , T ℓ

ℓ (S) and note that

in this case |Tℓ(x)| = |Tℓ(S)| = 1. For example, if

S = {{01010, 00101, 11101}} (which may be thought of as

a multiset), then

T2(S) =
{
{{01, 01, 0, 00, 10, 1, 11, 10, 1}}

}
.

Note that Tℓ(S) is only one possible channel output given

input S. Nevertheless, TLmin(S) ⊆ T Lmax

Lmin
(S) for all S and

Lmin 6 Lmax, hence every (Lmin, Lmax)-multistrand torn-

paper code C ⊆ Xn,k satisfies

|C| 6 |{TLmin(S) : S ∈ Xn,k}|. (1)

For all C ⊆ Xn,k we denote the rate, redundancy of C by

R(C) , log|C|
log|Xn,k|

, red(C) , log|Xn,k| − log|C|, respectively.

Throughout the paper, we use the base-q logarithms.

For two non-negative functions f, g of a common variable n,

denoting L , lim supn→∞
f(n)
g(n) (in the wide sense, i.e., L =

∞ if
f(n)
g(n) is unbounded) we say that f = on(g) if L = 0,

f = Ωn(g) if L > 0, f = On(g) if L <∞, and f = ωn(g) if

L = ∞. If f is not positive, we say f = On(g) (f = on(g))
if |f | = On(g)) (respectively, |f | = on(g)). We say that f =
Θn(g) if f = Ωn(g) and f = On(g). If clear from context,

we omit the subscript from aforementioned notations.

We conclude this section by observing a lower bound on

the required segment length Lmin for multi-strand torn-paper

codes to achieve non-vanishing rates, and in particular rates

approaching one.

Lemma 1 If log(k) = o(n) and Lmin = a log(nk) +Onk(1)
for some a > 1, then

log|Xn,k| − log|{TLmin(S) : S ∈ Xn,k}|

> nk

(
1

a
− a

log(k)

n
−O

(
log log(nk)

log(nk)

))
.

3

Proof: First, note that

|Xn,k| =
(
k + qn − 1

k

)
>

qnk

k!
>

qnk

kk
,

and hence log|Xn,k| > (n − log(k))k. Next, since

|{TLmin(S) : S ∈ Xn,k}| is monotonically non-decreasing

in n, we have that

|{TLmin(S) : S ∈ Xn,k}| 6
(
k⌈n/Lmin⌉+ qLmin − 1

qLmin − 1

)

6

(
k⌈n/Lmin⌉+ qLmin

qLmin

)
.

Now, for v > u > 0 we observe

log

(
u+ v

u

)
6 log

1

u!
(u+ v)u 6 u log

(
e(1 +

v

u
)
)

6 u
((

1 +
u

v

)
log(e) + log(

v

u
)
)

6 u(2 log(e) + log(
v

u
)),

where we used log(1 + x) 6 log(e)
x + log(x). Setting u ,

k⌈n/Lmin⌉ 6 nk
Lmin

+ k and v , qLmin = Θ((nk)a), we have
v
u = Θ

(
(nk)a−1Lmin

)
= Θ

(
(nk)a−1 log(nk)

)
, and therefore

log
(
v
u

)
= (a − 1) log(nk) + log log(nk) + O(1). We then

conclude

log|{TLmin(S) : S ∈ Xn,k}|

6

(
nk

Lmin
+ k

)(
(a− 1) log(nk) + log log(nk) +

O(1)
)

= (a− 1)
nk log(nk)

Lmin
+ k(a− 1) log(nk) +

(
nk

Lmin
+ k

)
(log log(nk) +O(1))

= (a− 1)
nk log(nk)

Lmin
+ k(a− 1) log(nk) +

O

(
nk log log(nk)

log(nk)

)

= nk

(
(a− 1)

log(nk)

Lmin
+ (a− 1)

log(k)

n
+

O

(
log(n)

n

)
+O

(
log log(nk)

log(nk)

))

= nk

(
a− 1

a+O(1/ log(nk))
+ (a− 1)

log(k)

n
+

O

(
log log(nk)

log(nk)

))

= nk

(
a− 1

a
+ (a− 1)

log(k)

n
+O

(
log log(nk)

log(nk)

))
,

which verifies the lemma’s statement.

We note that throughout this paper, we perform redundancy

analysis to the second-most-significant term, and retain the

order or magnitude for the reminder; since proofs demonstrate

that this asymptotic notation does not in fact hide significant

coefficients, we believe this representation is faithful for the

purpose of finite-length analysis, as well.

The implications of Lemma 1 are more clearly stated in the

next corollary.

Corollary 2 Let C be any (Lmin, Lmax)-multistrand torn-

paper code. Assuming log(k) = o(n), if Lmin = (a +
onk(1)) log(nk), for some a > 1, then R(C) 6 1− 1

a+onk(1).

Proof: From Eq. (1) and Lemma 1 we have

R(C) 6 log|{TLmin(S) : S ∈ Xn,k}|
log|Xn,k|

6 1− nk

log|Xn,k|

(
1

a
− a

log(k)

n
−O

(
log log(nk)

log(nk)

))
,

which, together with log|Xn,k| 6 nk, justifies the claim.

III. CONSTRUCTIONS OF TORN-PAPER CODES

In this section we study constructions of torn-paper codes,

in context of the bound of Corollary 2.

A. Related works: pilot-based construction

An explicit and efficient coding scheme was presented

in [32] for the probabilistic torn-paper channel. Therein, it

was argued that an indexing approach to coding is challenging

due to the a priori unknown locations of segmentation by the

channel, hence this construction relied on interleaving a pilot

(or phase-detection sequence). We describe this scheme below

to study its performance in the adversarial channel.

Construction P [32, Sec. VII] Fix an integer m > 1. Let n
be a multiple of m, to be determined later, and s an integer

satisfying s > log(n/m). Let p ∈ Σn/m be any (n/m)-
segment of a de Bruijn sequence [11] of order s, which we

refer to as the pilot.

For x,y ∈ Σn/m, denote x ⊥s y if x,y have no common

s-segment, i.e., if for all i, j ∈ [n/m − s + 1] it holds

that x
(i) 6= y

(j), where x
(i) (y(j)) is the s-segment of x

(respectively, y) at location i (respectively, j). Then, we denote

Op ,
{
c ∈ Σn/m : c ⊥s p

}
.

For any code C ⊆ Σn/m, we construct a code Cpilot ⊆ Σn

as follows: for every choice of m−1 elements (cj)j∈[m−1] ⊆
C ∩ Op (allowing for repetition), we interleave a single

symbol from each p, c0, c1, . . . , cm−2, in order, to construct

a codeword c ∈ Cpilot. �

Example 3 Let q = 2,m = 2, n = 12, s = 3. We choose

00010111 as the binary de Bruijn sequence of order s, and

let p , 000101 be its (n/m)-prefix. Then,

Op =
{
011100, 011110,

011111, 111100,

111110, 111111
}
.

Letting C , Σ5, and for any choice of m− 1 = 1 element of

C ∩Pp = Op, we interleave p with that element to derive the

code

Cpilot =
{
000101110010, 000101110110,

000101110111, 010101110010,

010101110110, 010101110111
}
.

4

Lemma 4 [32, Sec. VII-B] For all s > log(n/m) it holds

that Cpilot is an (ms,Lmax)-single strand torn-paper code, for

any Lmax > ms.

Proof: We replicate the proof for completeness. Observe

that every (ms)-segment u of c ∈ Cpilot contains s consec-

utive symbols from each p, c0, c1, . . . , cm−2; since cj ⊥s p

for every j ∈ [m − 1], the s-segment of p can be uniquely

identified. Since p is a segment of a de Bruijn sequence of

order s, the location in p of the observed segment can be

deduced, and hence the location of u in c can readily be

obtained.

Example 5 Continuing Example 3, assume 010101110110 ∈
Cpilot is passed through an adversarial torn-paper channel

with Lmin = ms = 6 and, say, Lmax = 8. The received

segments are

010101, 110110.

Taking the first segment, we decompose the two interleaved

strings

c̄0 = 000, c̄1 = 111;

we identify c̄0 as the s-substring of p at location 0, implying

that c̄1 is the substring of c0 at location 0. Similarly, we

decompose the second segment into

c̃0 = 101, c̃1 = 110;

since 101 is the s-substring of p at location 3, we also have

that c̃1 is the substring of c0 at location 3, i.e., c0 = 111110 ∈
Op, confirming 010101110110 ∈ Cpilot was the transmitted

sequence.

For the probabilistic channel studied in [32], C in Construc-

tion P was chosen to be an error-correcting code. Note from the

proof of Lemma 4 that in our chosen adversarial setting, this is

redundant; that element of the construction is preserved in our

presentation to support the discussion in Section V regarding

alternate models.

Next, we turn to find the achievable rates of Construction P.

Corollary 6 R(Cpilot) =
(
1− 1

m

)
R(C ∩ Op).

Proof: Observe that |Cpilot| = |C ∩ Op|m−1
=

qn(1−
1
m) log(|C∩Op|)/

n
m = qn(1−

1
m)R(C∩Op).

The following lemma was implied by [32, Sec. VII-A].

Lemma 7 For all C ⊆ Σn/m there exists z ∈ Σn/m such that

R((z + C) ∩ Op) > R(C)− (1−R(Op)),

where z + C , {z + c : c ∈ C}.

Proof: Observe that
∑

z∈Σn/m

|(z + C) ∩ Op| =
∑

z∈Σn/m

∑

c1∈C
c2∈Op

1z+c1=c2

=
∑

c1∈C
c2∈Op

∑

z∈Σn/m

1z=c2−c1

=
∑

c∈C
o∈Op

1 = |C| · |Op|.

It follows from the pigeonhole principle that there exists z ∈
Σn/m such that |(z + C) ∩ Op| > q−n/m|C| · |Op|, which

concludes the proof.

In the rest of the section, it remains to analyze what values

of s assure that 1 − R(Op) = on(1); we also discuss the

implications of these available choices.

Lemma 8 [32, Sec. VII-A] If s , ⌈(2 + δ) log(n/m)⌉ for

some δ > 0, then, using C , Σn/m in Construction P,

R(Cpilot) > 1− 1

m
− m− 1

n
· 1

(n/m)δ − 1

= 1− 1

m
− on(1).

Proof: Again, we replicate the proof here. Denote for a

uniformly chosen c ∈ Σn/m the event Ai,j that c(i) = p
(j).

Clearly Pr(Ai,j) = q−s; using the union bound, Pr(c ⊥s p) >
1− (n/m)2q−s > 1− (n/m)−δ, i.e.,

|Op| > qn/m
(
1− (n/m)−δ

)
.

It follows from Corollary 6 that

R(Cpilot) =
(
1− 1

m

)
R(Op)

>

(
1− 1

m

)(
1 +

m

n
log
(
1− (n/m)−δ

))

> 1− 1

m
− (m− 1)(n/m)−δ

n(1− (n/m)−δ)
.

Unfortunately, Lemma 8 doesn’t match the upper bound

of Corollary 2; asymptotically, it produces rate 1 − 2+δ
a ,

where a , ms
log(n) . Further, the construction may only be

applied when a is (approximately) an even integer > 4. The

former can be remedied by replacing the union bound in the

analysis of [32, Sec. VII-A] with the Lovász local lemma [33]

(similarly to techniques used independently in [38] and [12]),

as follows.

Lemma 9 Let s , ⌈log(n/m) + log log(n/m) + log(3e)⌉.
Then, using C , Σn/m in Construction P,

R(Cpilot) >
(
1− 1

m

)
·
(
1− log(e)

2 log(n/m)

)

= 1− 1

m
−O

(
1

log(n)

)
.

Proof: Denote for a uniformly chosen c ∈ Σn/m the event

Ai,j that c(i) = p
(j). Clearly p , Pr(Ai,j) = q−s, and Ai,j

5

is jointly independent of {Ai′,j′ : |i− i′| > s}, i.e., all except

(n/m− s)(2s− 1)− 1 6 2sn/m− 1 distinct events.

For sufficiently large n, observe that

sq−s 6
log(n/m) + log log(n/m) + log(3e)

(n/m) log(n/m)3e

=
m

2en
· 2
3

(
1 +

log log(n/m) + log(3e)

log(n/m)

)
<

m

2en
,

where the first inequality is justified by (s+r)q−(s+r) 6 sq−s

for r > 0 and s > log(e). Rearranging, we have m > 2epsn.

Therefore, letting x , ep
1+ep (hence, x

1−x = ep), and recalling

for all x ∈ (0, 1) that 1− x > exp(−x
1−x), we have

x(1− x)2sn/m−1 = ep(1− x)2sn/m

> p exp

(
1− 2epsn/m

)
> p.

It therefore follows from the local lemma that

Pr(c ⊥s p) > (1− x)(n/m)2 > exp
(
−ep(n/m)2

)

= e−e(n/m)2q−s

> e−n/2sm,

where again we used the fact that m > 2epsn. That is, |Op| >
qn/me−n/2sm =

(
qe−1/2s

)n/m
, and

R(Op) > 1− log(e)

2s
.

Hence, Corollary 6 concludes the proof.

Based on Lemma 9, Construction P achieves 1− 1
a − on(1)

rate, where a , ms
log(n) , asymptotically matching the bound

of Corollary 2. It also expands the values of a for which the

construction may be applied; however, unfortunately a is still

restricted to be (approximately) an integer > 2. Moreover,

encoding Cpilot(n) involves a choice of p, and the authors

are not aware of a straightforward way to make this choice

while optimizing R(Op); it further requires encoding into

(potentially, a sub-code of) Op, which is also, to the best of

our knowledge, not readily done in an efficient manner. To

bridge that gap, we present in the next section a construction

based on an indexing approach, which can be applied for any

a > 1, asymptotically matching Corollary 2 for all choices.

B. Index-based construction

In this section, an index-based construction of single-strand

torn-paper codes is presented and is then extended for multiple

strands.

It is assumed from here on out that Lmin = ⌈a log(n)⌉,
for some a > 1 which is fixed throughout this section. We

propose the following construction of length-n (Lmin, Lmax)-
single strand torn-paper codes. The construction is based on

the following components.

Definition 10 For an integer I , let (ci)i∈[qI], ci ∈ ΣI be

codewords of a q-ary Gray code, in order. Denote by c
′
i the

concatenation of ci with a single parity symbol (i.e., the sum

of the entries in c
′
i is zero). Further, denote by c

′′
i the result

of inserting ‘1’s into c
′
i at every location divisible by f(n)

(since the locations of substrings start with 0, the first bit of

Figure 1. Index generation (best viewed in online colored version)

c
′′
i is always ‘1’). The process is illustrated in Figure 1. Note

that α , |c′′i | =
⌈

f(n)
f(n)−1 (I + 1)

⌉
for all i ∈ [qI]. We refer to

ci (or simply i) as an index in the construction and to c
′′
i as

an encoded index.

This index structure is motivated by the property indicated

in the following lemma.

Lemma 11 Let c be an α-substring of c
′′
i ◦ c′′i+1, for some

i ∈ [qI − 1]. Then i can uniquely be recovered from c.

Proof: Since c
′′
i and c

′′
i+1 differ only at the parity symbol

and one additional coordinate (which corresponds to the only

position where ci and ci+1 differ), c is either c′′i or a copy of

c
′′
i+1 with an erroneous parity symbol. To obtain i it suffices to

distinguish these two cases, which may be done by calculating

the parity symbol of c
′′; If the parity symbol is correct then

i equals to the decoding of c (with the Gray-code decoder),

and otherwise i equals to the decoding of c minus one.

Definition 12 Let f,N be integers. The Run-length limited

(RLL) encoder ERLL
N receives strings of length m(N) and

returns strings of length N that do not contain zero runs of

length f . Constructions of such encoders can be taken from

[20] or [37, Lem. 4].

Construction A The main idea of the construction is that

every codeword should constitute a concatenation of length-

Lmin segments with the following structure: an index, followed

by a marker, then encoded data. Let f(n) be any integer-

valued function satisfying f(n) = ω(1) and f(n) = o(log(n))
(see Theorem 18 for a choice optimizing the redundancy

of this construction). Further assume n > Lmin > α +
f(n) + 2. Let I , ⌈log(n/Lmin)⌉, K , ⌊n/Lmin⌋ − 1 and

N , Lmin − α − f(n) − 2. The constructed (Lmin, Lmax)-
single strand torn-paper code, denoted by CA(n), is defined

by the encoder EncA : ΣKm(N) → Σn in Algorithm 1, and

illustrated in Figure 2. �

In the rest of the paper, we call the strings xi (respectively,

yi) in the constructions an information block (encoded block);

the strings 10f(n)1 are called markers; finally, a string zi will

6

Algorithm 1: Encoder for Construction A

Input: x = (x0, x1, . . . , xKm(N)−1) ∈ ΣKm(N)

Output: EncA(x)
for i← 0 to K − 1 do

xi ← (xim(N), xim(N)+1, . . . , x(i+1)m(N)−1)
// |xi| = m(N)

yi ← ERLL
N (xi) // yi contains no zero runs

of length f(n)

zi ← c
′′
i ◦ 10f(n)1 ◦ yi // |zi| = Lmin

end

zK ← c
′′
K ◦ 10f(n)10N // |zK | = Lmin

z ← z0 ◦ z1 ◦ · · · ◦ zK ◦ 0n mod Lmin // |z| = n

return z

Figure 2. Illustration of Algorithm 1 (best viewed in online colored version)

simply be referred to as a segment of z. Note that the last

segment zK of z deliberately does not contain data, to account

for the possibility that a part of zK ◦ 0n mod Lmin might be

partitioned by an adversarial channel in such a way that it

does not contain, at its suffix, a prefix of an index. We observe

that once the encoded blocks yi’s are obtained, encoding

(including the generation of the Gray code) then requires a

number of operations linear in n. By [20], [37], encoding

each xi into yi may also be achieved with a linear number of

operations. Hence, the complexity of Construction A is linear

with n.

Example 13 We demonstrate the operation of EncA. Let q =
2, n = 45, Lmin = 14, f(n) = 2. For index generation, we

utilize the binary Gray code (00, 01, 11, 10), whose encoded

indices are (in order)

(101010, 101111, 111110, 111011)

(observe α = 6). Let N = Lmin − f(n) − 2 − α = 4, and

observe an encoder ERLL
N exists with m(N) = 3, defined

by the lexicographic ordering of the f(n)-run-length-limited

sequences of length N
{
0101, 0110, 0111, 1010,

1011, 1101, 1110, 1111
}
.

Noting that K = 2, we demonstrate, e.g., the encoding of the

information sequence 001110. Observe, x0 = 001,x1 = 110,

hence y0 = 0110,y1 = 1110. We then have

z0 = 101010 1001 0110

z1 = 101111 1001 1110

z2 = 111110 1001 0000,

and z = z0 ◦ z1 ◦ z2 ◦ 000.

Next, it is shown that the constructed code CA(n) is an

(Lmin, Lmax)-single strand torn-paper code.

Theorem 14 For all Lmax > Lmin, CA(n) is an

(Lmin, Lmax)-single strand torn-paper code with a linear-run-

time decoder.

The proof of Theorem 14 is carried by presenting an explicit

decoder to CA(n) as follows. Let z ∈ CA(n) and let z = u0 ◦
u1◦· · ·◦us−1 so that {{u0,u1, . . . ,us−1}} is an (Lmin, Lmax)-
segmentation of z. The main task of the decoding algorithm

is to successfully retrieve the location within z of each of

the s segments of the (Lmin, Lmax)-segmentation. For every

segment uj , j ∈ [s], the decoder first finds the location i such

that the first (maybe partial) occurrence of an encoded index

in the segment uj is of c′′i (see below for a proof that this is

possible). Given i and the location of c′′i in uj , the location of

the segment uj within z can be calculated. Then, according

to the location in z for each segment in the (Lmin, Lmax)-
segmentation, one can simply concatenate the segments in the

correct order to obtain the codeword z. Finally, by removing

the markers and the encoded indices and applying the RLL

decoder for each of the strings yi’s, the information string x

is retrieved.

Consider the case where a segment u is a proper substring

of the suffix of z of length (n mod Lmin) + N + f(n), i.e.,

zK0n mod Lmin (note that this does not imply that u is itself

a suffix of z). Then, u does not intersect yi for any i ∈ [K],
and may safely be discarded. We see next that these cases may

be identified efficiently.

Lemma 15 Let z ∈ CA(n) and let u be a proper substring of

zK0n mod Lmin . If n is sufficiently large (specifically, if (a −
1)⌈log(n)⌉ > 2f(n) + 1), then this fact can efficiently be

identified.

Proof: Observe that either |u| < Lmin or u contains a

suffix of ‘0’s of length at least

Lmin − α− f(n)− 1 > (a− 1)⌈log(n)⌉ − f(n)− 1,

i.e., longer than f(n), which can easily be identified.

By Lemma 15, it is sufficient to retrieve the location of any

segment which is not a substring of the suffix of length (n mod
Lmin)+N+f(n) of z. For any such u, the calculation of the

index i such that c′′i is the first (perhaps partial) occurrence of

an encoded index within u, is given in Algorithm 2.

Any L-segment u of z ∈ CA(n), such that L > Lmin,

contains at least part of one of the encoded indices c′′i . If c′′i is

the first encoded index to intersect u, we denote by Ind(u) , i

7

Algorithm 2: Index retrieval from a segment

Input: An L-segment u of a codeword of CA(n),
where L > Lmin.

Output: The index of u within z, Ind(u)
u
′ ← the Lmin-length prefix of u

j ← the starting index of the unique occurrence of

10f(n)1 within u
′; if none exists, of the cyclic

occurrence

c
′′ ← the (cyclic) α-substring of u strictly preceding j

c
′ ← the non-padded subsequence of c′′

c← the I-prefix of c′

Ind← the index of c in the Gray code

if the last symbol of c′ is not the parity of c then
Ind← Ind−1

end

return Ind

the index of u. Note that this index does not depend on the

information that was encoded in the construction, but rather,

only on the location of u in z. Algorithm 2 ensures that it is

possible to determine the index of every L-segment u of z,

where L > Lmin.

The correctness of Algorithm 2 follows from the next

lemma.

Lemma 16 Let z ∈ CA(n), L > Lmin, and let u be an L-

segment of z which is not a substring of the suffix of length

(n mod Lmin)+N+f(n) of z. Then, Algorithm 2 successfully

returns the index Ind(u) of u.

Proof: Let u be a substring of z and w.l.o.g. assume

that |u| = Lmin. From the RLL encoding of the strings xi’s,

observe that u does not contain any occurrences of 10f(n)1
except those explicitly added to the encoded indices by Con-

struction A. Since |zj | = Lmin for all j, either u contains

an occurrence of 10f(n)1 or it has a suffix-prefix pair whose

concatenation is 10f(n)1 (this follows from Construction A

and the assumption that u does not begin with a proper suffix

of zK0n mod Lmin). In both cases, we will show that the precise

location of the (perhaps incomplete) occurrence of c′′i in u can

be deduced, for some i.

Let j be the (unique) location in u of the substring 10f(n)1.

If j > α, then u contains a complete occurrence of the

encoded index c
′′
i , and so the index ci, and therefore i, are

readily obtained. Otherwise, j < α and let c′′ be the cyclic α-

substring of u strictly preceding the substring 10f(n)1 which

starts at location Lmin− (α− j). The substring c
′′ is obtained

by the concatenation of the (α−j)-suffix of u with the j-prefix

of u. The proof is now concluded by Lemma 11.

We remark that the described procedure operates in run-time

which is linear in the substring length. In addition, if z can

be reconstructed from its non-overlapping substrings, then the

strings yi’s are readily obtained, and x may be decoded (again,

see [20], [37]). These algorithms also require a linear number

of operations. This completes the proof of Theorem 14.

Example 17 We return to Example 13, to demonstrate the

operation of Theorem 14. Recall, for q = 2, n = 45, Lmin =
14, f(n) = 2, that we have constructed the following code-

word

z = 101010100101101011111001111011111010010000000.

Suppose that we receive the following (14, 20)-segmentation

of z:

{{10101010010110101, 1111001111011111, 010010000000}}.
Note since |010010000000| = 12 < Lmin, it might readily

be inferred that it is the suffix of z. We therefore only need

identify the locations of the other two segments.

• The segment 101010 1001 0110101 contains the marker

10f(n)1 = 1001, and we therefore conclude that 101010
(given α = 6) is an encoded-index, which as we recall

corresponds to the Gray-code element c0 = 00. It follows

that y0 = 0110, and 101 is a prefix of z1 (observe that the

following segment of z1 could not have been immediately

identify, if more segments were received).

• Next, the segment 111 1001 111011111 also contains

a marker, implying that 111 is the suffix of c′′i , and

111 the prefix of c′′i+1. Concatenating, we have the

index c
′′ = 111111 and c

′ = 11 1, which is an instance

of c2 containing an erroneous parity symbol. Hence we

deduce i = 1, and y1 = 1110.

Together, the decoding x0 = 001 and x1 = 110 may now be

performed, reconstructing the original information sequence.

Lastly the redundancy of Construction A is analyzed.

Theorem 18 Using the RLL encoders of [20], [37] in Con-

struction A, it holds that

red(CA(n)) 6
n

a

(
1 +

f(n)

log(n)
+

1

f(n)− 1
+

9 + 2/(f(n)− 1)

log(n)
+

4a

qf(n)
+

2a2 + 2

n

)

=
n

a

(
1 + (1 + o(1))

(
f(n)

log(n)
+

1

f(n)

))
.

In particular, the redundancy is optimized for f(n) = (1 +
o(1))

√
log(n), i.e.,

red(CA(n)) 6
n

a

(
1 +

2 + o(1)√
log(n)

)
.

Proof: From Construction A, observe that red(CA(n)) =
(n mod Lmin) + Lmin +K(Lmin −m(N)) and

Lmin −N = α+ f(n) + 2

=

⌈
f(n)

f(n)− 1
(I + 1)

⌉
+ f(n) + 2

6
f(n)

f(n)− 1
(I + 1) + f(n) + 3

6
f(n)

f(n)− 1
(log(n/Lmin) + 2) + f(n) + 3

6 log(n) + f(n) +
log(n)

f(n)− 1
+ 5 +

2

f(n)− 1
.

8

Further, by [37, Lem. 4] one may efficiently encode x 7→
y such that N − m(N) 6

⌈
q

q−2 · N
qf(n)

⌉
(For q = 2 [20,

Sec. III] showed N −m(N) 6 2
⌈
N/qf(n)−1

⌉
), and we shall

use the overly zealous upper bound N −m(N) 6 4N
qf(n) +2 6

4a log(n)
qf(n) + 4

q + 2 6 4a log(n)
qf(n) + 4.

Finally, we get that

red(CA(n)) = K(Lmin −m(N)) + Lmin + (n mod Lmin)

6
n

a log(n)

(
log(n) + f(n) +

log(n)

f(n)− 1
+

9 +
2

f(n)− 1
+

4a log(n)

qf(n)

)
+

2Lmin

6
n

a

(
1 +

f(n)

log(n)
+

1

f(n)− 1
+

9 + 2/(f(n)− 1)

log(n)
+

4a

qf(n)
+

2a2 + 2

n

)
,

which completes the proof of the first part. The second part

follows by substitution of f(n) = (1+ o(1))
√

log(n) into the

former.

By Theorem 18 and Corollary 2, efficient encoding and

decoding is possible at asymptotically optimal rates. In com-

parison to Construction P (by Lemma 9), Construction A

asymptotically achieves rate 1− 1
a−O

(
f(n)
log(n) +

1
f(n)

)
instead

of 1− 1
⌈a⌉−O

(
1

log(n)

)
, for any channel parameter a > 1 (here,

the integer value is used since Construction P must be operated

at m , ⌈a⌉ to produce an (Lmin, Lmax)-torn-paper code). For

completeness, we also include specific construction parameters

for several arbitrary choices of n, Lmin, and compare resulting

rates, in Tables I to III (all for q = 4). It should however be

stressed that, for Construction P, the choice of s,m optimizing

the resulting rate R(Cpilot(n)) >
(
1− 1

m

)
· R(Op) is not

straightforward, even given the lower bounds of Lemmas 8

and 9; indeed, R(Op) cannot easily be computed, for an

optimal choice of p. We rely in our comparison on the lower-

bounds of Lemmas 8 and 9 instead; note in particular that even

for the same choice of n,m, s, i.e., for a specific code, these

might provide distinct lower-bounds on the rate. As mentioned

above, even then it is not immediately clear how to efficiently

encode and decode Cpilot(n).
Next, we consider the case of k > 1 and log(k) = o(n).

We know from Corollary 2 that if lim sup Lmin

nk 6 1 then

any family of (Lmin, Lmax)-multistrand torn-paper codes will

only achieve vanishing asymptotic rate; hence we assume

Lmin = ⌈a log(nk)⌉ for some a > 1. The following the-

orem summarizes our main results regarding (Lmin, Lmax)-
multistrand torn-paper codes.

Theorem 19 Take n, k such that k > 1, log(k) = o(n), and

let Lmin = ⌈a log(nk)⌉, for a > 1. There exists a linear

run-time (in the substrings length, i.e., nk) encoder-decoder

pair for (Lmin, Lmax)-multistrand torn-paper codes achieving

1− 1
a − onk(1) asymptotic rate.

Proof: Theorem 19 is justified by a simple amendment of

Construction A. We encode x ∈ ΣkKm into
{
{z(j) : j ∈ [k]

}
},

where
∣∣z(j)

∣∣ = n for all j ∈ [k], as follows. We modify

I , ⌈log(k⌈n/Lmin⌉)⌉ (recall, also, α ,
⌈ f(n)
f(n)−1 (I + 1)

⌉
)

and Lmin = ⌈a log(nk)⌉. We then denote x = x
(0) ◦ x(1) ◦

· · · ◦ x(k−1), where
∣∣x(j)

∣∣ = Km for all j ∈ [k], and apply

Algorithm 1 to (x(j))j∈[k] in succession; observe that every

operation requires only ⌈n/Lmin⌉ distinct indices, and we

utilize available indices in order throughout the k operations.

We observe that the proofs of Lemmas 15 and 16 hold

without change, hence this amendment encodes into an

(Lmin, Lmax)-multistrand torn-paper code, which we denote

CA(n, k) ∈ Xn,k. Finally, following the proof of Theorem 18

we have

red(CA(n, k)) = k
(
K(Lmin −m(N)) + Lmin +

(n mod Lmin)
)

6
nk

a

(
1 + (1 + o(1))

(
f(nk)

log(nk)
+

1

f(nk)

))
;

As in Theorem 18, for f(n) = (1 + o(1))
√

log(nk) we have

red(CA(n, k)) 6
nk

a

(
1 +

2 + o(1)√
log(nk)

)
.

From Lemma 1 we have log|Xn,k| > (n− log(k))k, conclud-

ing the proof.

Again, by Corollary 2 and Theorem 18 the rate of the

construction is asymptotically optimal.

IV. ERROR-CORRECTING TORN-PAPER CODES

In this section, we extend the study of torn-paper codes to

a noisy setup. We consider two models of noise. The first

one assumes that the encoded string, before segmentation,

suffers at most some t substitution errors. The second model

corresponds to the case where some of the segments are

deleted during segmentation.

A. Substitution-Correcting Torn-paper Codes

For a string x, its t-error torn-paper ball, denoted

by BT Lmax

Lmin
(x; t), is defined as the set of all possible

(Lmin, Lmax)-segmentations after introducing at most t errors

to x, that is,

BT Lmax

Lmin
(x; t) ,

⋃

y∈Bt(x)

T Lmax

Lmin
(y),

where Bt(x) = {y : dH(x,y) 6 t} is the radius-t Hamming

ball centered at x. A code C is called a t-error single-strand

torn-paper code if for all x1,x2 ∈ C, x1 6= x2, it holds that

BT Lmax

Lmin
(x1; t) ∩ BT Lmax

Lmin
(x2; t) = ∅.

Our goal in this section is to show how to adjust Con-

struction A in order to produce t-error single-strand torn-

paper codes. We first explain the main ideas of the required

modifications. Let z = EncA(x) ∈ CA(n) (encoded with

Algorithm 1) and let U ∈ BT Lmax

Lmin
(z; t) be an (Lmin, Lmax)-

segmentation of some word z
′, where dH(z, z′) 6 t. The main

task of the noiseless decoder of CA(n) was to first calculate

the index, and thus the location in z, of every segment u ∈ U .

9

TABLE I
CONSTRUCTION P (LEMMA 8): SPECIFIC PARAMETERS (m, s,R(Cpilot(n))).

Lmin

∖

n 60 250 4000 60, 000 400, 000 6, 000, 000
10 2, 5, 0.379 n/a n/a n/a n/a n/a
50 15, 3, 0.856 10, 5, 0.844 5, 10,0.798 3, 16, 0.667 2, 25, 0.5 2, 25, 0.5

100 n/a 10, 10, 0.9 10, 10, 0.9 6, 16, 0.833 5, 20, 0.8 4, 25, 0.75
300 n/a n/a 32, 9,0.968 25, 12, 0.96 20, 15, 0.95 15, 20, 0.933
1000 n/a n/a 125, 8, 0.992 100, 10, 0.989 64, 15, 0.984 50, 20, 0.98

(Bold-face indicates Lemma 8 provides highest lower-bound on rate.)

TABLE II
CONSTRUCTION P (LEMMA 9): SPECIFIC PARAMETERS (m, s,R(Cpilot(n))).

Lmin

∖

n 60 250 4000 60, 000 400, 000 6, 000, 000
10 2, 5, 0.45 n/a n/a n/a n/a n/a
50 15, 3, 0.778 10, 5, 0.81 5, 10, 0.76 5, 10, 0.76 4, 12, 0.719 3, 16, 0.646

100 n/a 10, 10, 0.855 10, 10, 0.855 10, 10, 0.855 8, 12, 0.839 6, 16, 0.807
300 n/a n/a 25, 12, 0.92 25, 12, 0.92 25, 12, 0.92 20, 15, 0.918
1000 n/a n/a 50, 20, 0.956 50, 20, 0.956 50, 20, 0.956 50, 20, 0.956

(Bold-face indicates Lemma 9 provides highest lower-bound on rate. Background pattern indicates that the choice of m, s is only guaranteed by Lemma 9.)

TABLE III
CONSTRUCTION A (THEOREM 18): SPECIFIC PARAMETERS (f, I,N,K,R(CA(n))).

Lmin

∖

n 60 250 4000 60, 000 400, 000 6, 000, 000
10 n/a n/a n/a n/a n/a n/a
50 n/a 2, 2, 40, 4, 0.56 3, 4, 38, 79, 0.711 3, 6, 35, 1199, 0.659 4, 7, 34, 7999, 0.66 4, 9, 31, 119999, 0.6

100 n/a 2, 1, 92, 1, 0.32 3, 3, 89, 39, 0.839 3, 5, 86, 599, 0.829 4, 6, 85, 3999, 0.84 4, 8, 82, 59999, 0.81
300 n/a n/a 3, 2, 291, 12, 0.843 3, 4, 288, 199, 0.925 4, 6, 9, 285, 1332, 0.939 4, 8, 282, 19999, 0.93
1000 n/a n/a 3, 1, 992, 3, 0.721 3, 3, 989, 59, 0.942 4, 5, 986, 399, 0.976 4, 7, 984, 5999, 0.976

(Bold-face indicates Theorem 18 provides highest lower-bound on rate.)

However, in the presence of errors, calculating the index

of a segment u ∈ U based on the first (perhaps partial)

occurrence of an encoded index within u might result with the

misplacement of all the (perhaps partial) information blocks

yi that are contained in u. Hence, a more careful approach is

necessary for index decoding.

Before presenting our construction for t-error single-strand

torn-paper codes, we introduce several additional required def-

initions. For a string u, define T +
Lmin

(u) to be the multiset of

non-overlapping Lmin-segments of u, where the last segment

is of length ℓ, Lmin 6 ℓ < 2Lmin. A segment w ∈ T +
Lmin

(u)
is called A-decodable if, informally, Algorithm 2 returns

(perhaps erroneous) output when given w as input. More

formally, if w satisfies one of the following conditions.

1) w either contains a unique complete occurrence of

10f(n)1, or it doesn’t contain complete occurrences but

contains a cyclic occurrence (if Lmin < |w| < 2Lmin,

require instead that either the Lmin-prefix or the Lmin-

suffix of w contain a cyclic occurrence).

2) w contains precisely two complete occurrences of

10f(n)1, and there exist a unique pair of occurrences

(either complete or complete-to-suffix/prefix) whose loca-

tions are at distance precisely Lmin. Recall that w cannot

contain more than two complete occurrences of 10f(n)1,

except in the presence of errors, hence those cases can

safely be discarded (see part 1 in the proof of Theorem 20

for a formal proof).

Let w be an A-decodable segment. Then, by definition,

there is at least one occurrence (perhaps cyclic) of 10f(n)1
within w and, if there is more than a single occurrence, then

there is exactly one pair of occurrences such that the difference

between their locations is Lmin. Consider the α-segments of w

preceding these occurrences as encoded indices; if the (first)

occurrence of 10f(n)1 in w is at location ℓ < α, concatenate

the (α − ℓ)-segment of w at location Lmin + ℓ − α, to the

ℓ-prefix of w, and consider the resulting length-α string to be

a cyclic encoded index.

An A-decodable segment w is called valid if, informally,

there appears at least one ‘valid’ encoded index in w, and

no conflicting pair of such indices. More formally, a valid

segment w is an A-decodable segment that satisfies one of

the following conditions:

1) w contains no complete encoded index, hence it contains

only a cyclic encoded index.

2) w contains a single complete encoded index, and its

parity symbol is correct.

3) w contains two complete encoded indices, and either

exactly one of their parity symbols is correct, or both

are correct and the indices are consecutive in the applied

Gray code.

Construction B We construct a concatenated code, us-

ing Construction A as inner-code, and an arbitrary

(K, qm(N)M , 2t + 1)qm(N) error-correcting code CEC, with

an encoding algorithm EncEC : (Σm(N))M → (Σm(N))K ,

as outer-code (here, K,N are the parameters of Construc-

tion A). The resulting t-error (Lmin, Lmax)-single-strand torn-

paper code is denoted CB(n), with the associated encoder

EncB : Σm(N)M → Σn. �

10

We observe the following property of Construction B.

Assume one retrieves a noisy version z
′ of z = EncB(x),

e.g., from any reconstruction algorithm; further assume that

z, z′ agree on all locations containing encoded indices c
′′
i or

markers 10f(n)1 (as their locations in z are known a priori

and do not depend on the information x). Thus, one extracts

from z
′ (perhaps erroneous) encoded information blocks,

denoted y
′
i. Denote by e the number of encoded information

blocks that were not recovered (e.g., due to conflicts in the

reconstruction algorithm), and by s the number of encoded

blocks that were recovered incorrectly (i.e., y′
i 6= yi). Since

the information string (xi)i∈[M] ∈ Σm(N)M is encoded using

a (K, qm(N)M , 2t + 1)qm(N) error-correcting code, it suffices

that 2s+ e 6 2t to guarantee correct decoding.

In order to reconstruct a noisy version z
′ of z, we define

a modification of Algorithm 2, as follows. First, given an

(Lmin, Lmax)-segmentation U ∈ BT Lmax

Lmin
(z; t) we apply the

reconstruction algorithm not directly to U , but rather to valid

segments in

T +
Lmin

(U) ,
{
{T +

Lmin
(u) : u ∈ U

}
}.

Secondly, in case a valid w ∈ T +
Lmin

(U) contains multiple (per-

haps cyclic) occurrences of an encoded index, the algorithm

selects one to decode by prioritizing complete occurrences

over cyclic ones, and in the case of complete occurrences,

accepting the first containing a correct parity symbol (since

w is valid, such occurrence exists in this case). Decoding of

the selected encoded index is then performed as described in

Algorithm 2, and denoted by Ind′(w).
For an (Lmin, Lmax)-segmentation U ∈ BT Lmax

Lmin
(z; t), we

define the set

Z(U) ,
{
(Ind′(w),w) : w ∈ T +

Lmin
(U) is valid

}
.

If (j,w), (j,w′) ∈ Z(U) for some j and w 6= w
′, we define

a restriction Z ′(U) of Z(U) by including only the shortest,

lexicographically-least, segment (i.e., Z ′(U) defines a proper

function).

Given the set Z ′(U) we decode a string z
′ as follows.

1) Fill the encoded indices and the markers in z
′ in the

correct locations as defined in Algorithm 1 (note again

that these locations do not depend on the information).

2) Next, we iterate over any pair (Ind′(w),w) ∈ Z ′(U) and

update z
′ with the symbols of the encoded blocks yi’s

within w; If there is a collision of symbols in the same

position within an encoded block y
′
i for some i, i ∈ [K],

we erase y
′
i completely from z

′.

3) If an encoded block y
′
i is partially filled at the end of

the process (i.e., there are missing symbols within y
′
i)

we erase the encoded block y
′
i.

The output z′ of this decoding procedure over the segmenta-

tion U ∈ BT Lmax

Lmin
(z; t) is denoted by DecB(U) , z

′.

We now prove that CB(n) is a t-error single-strand torn-

paper code.

Theorem 20 Let z = EncB(x), U ∈ BT Lmax

Lmin
(z; t), and let

z
′ = DecB(U) be the noisy version of z reconstructed by the

aforementioned algorithm. Then, it holds that 2s + e 6 2t,

where e, s are defined as previously explained; i.e., any inner-

channel error propagates as, at most, either one outer-channel

error or two outer-channel erasures.

Proof: By definition, U is obtained by first introducing

up to t errors to z, and then performing an (Lmin, Lmax)-
segmentation to the obtained word. For the rest of the proof,

we fix an arbitrary (Lmin, Lmax)-segmentation pattern, and

for z ∈ Σn we denote U ∈ T Lmax

Lmin
(z) obtained from this

pattern by U = T (z). In particular, observe for ‖v‖ 6 t that

T (z + v) ∈ BT Lmax

Lmin
(z; t).

For convenience, we denote by z
′
v

, DecB(T (z + v)),
and by ev (respectively, sv) the number of encoded informa-

tion blocks y
′
i in z

′
v

which were not recovered (recovered

erroneously). We shall prove the following proposition, which

justifies the claim. Let z , EncB(x), v ∈ Σn such that

‖v‖ 6 t. Then ev + 2sv 6 2‖v‖.
The proof is done by induction on ‖v‖. First observe by

Lemma 16 that e0 = s0 = 0 (here, 0 is the all-zero string).

For the induction step, assume that the claim holds for any

v
′ ∈ Σn, ‖v′‖ < t. Let v ∈ Σn, ‖v‖ = t. Take any u

′ ∈
T +
Lmin

(T (z + v)) affected by t′ > 0 errors. Decompose v =
v
′ + v

′′ such that ‖v′‖ = t′, ‖v′′‖ = t − t′, and u
′ contains

the support of v
′. Consider the decoder output z′

v′′ ; by the

induction assumption,

ev′′ + 2sv′′ 6 2(t− t′).

We denote by u the segment corresponding to u
′ in z

′
v′′ . Note

that u contains no errors and its index is recovered correctly

by the decoder. Hence, each encoded block that intersects u

is either correct in z
′
v′′ , or it is erased due to errors in other

segments.

Denoting by δ the number of encoded information blocks

intersecting u, we let (i) ρ1 be the number of those recovered

correctly in z
′
v′′ ; (ii) ρ2 be the number of those erased in z

′
v′′

due to to collisions resulting from incorrect index-decoding

in other segments; and (iii) ρ3 be the number of those

erased in z
′
v′′ due to erasures of other, intersecting, segments.

Observe that δ = ρ1 + ρ2 + ρ3 ∈ {1, 2, 3}, depending on |u|
and its location).

The rest of the proof is done by cases.

1) If u
′ is not valid, then all encoded information blocks

intersecting u
′ are erased at the decoder. Hence, the ρ1

correctly recovered blocks in z
′
v′′ which intersect u are

erased in z
′
v

.

In addition, each of the ρ2 blocks corresponding to blocks

intersecting u which are erased due to collisions, might

instead cause incorrect recovery of encoded information

blocks in u
′. Hence, ev 6 ev′′ + ρ1 − ρ2 and sv 6

sv′′ + ρ2, and we note

ev + 2sv 6 (ev′′ + 2sv′′) + ρ1 + ρ2

6 2(t− t′) + δ = 2‖u‖ − (2t′ − δ).

Since t′ > 1, we have ev + 2sv 6 2‖u‖ unless δ = 3;

however, in that case u contains two complete instances

of 10f(n)1 whose locations are at distance Lmin, both

preceded by complete occurrences of encoded indices,

11

and since u
′ is not valid we have t′ > 1, which also

concludes the proof.

2) If u
′ is valid but its index is incorrectly decoded, then

the ρ1 encoded information blocks that are recovered

correctly in z
′
v′′ are erased in z

′
v

, and ρ2 encoded

information blocks, corresponding to those intersecting

u which are erased in z
′
v′′ due to collisions, might be

recovered incorrectly in z
′
v

.

Furthermore, the placement of u
′ at an incorrectly de-

coded location causes δ additional encoded information

blocks to be either erased (due to collisions) or incorrectly

recovered (where the correct blocks appear in invalid

segments, i.e., are erased in z
′
v′′). Denoting the number of

blocks of the former type by δ1, and the latter δ2, we then

have ev = ev′′+ρ1−ρ2+δ1−δ2 and sv 6 sv′′+ρ2+δ2.

Hence,

ev + 2sv 6 (ev′′ + 2sv′′) + ρ1 + ρ2 + δ1 + δ2

6 2(t− t′) + 2δ = 2‖v‖ − 2(t′ − δ).

To conclude, we require t′ > δ. Indeed, observe that

if δ = 2 then u contains a complete occurrence of an

encoded index followed by 10f(n)1, requiring t′ > 2 for

incorrect recovery. Likewise, if δ = 3 then u contains two

complete occurrences of encoded indices whose locations

are at distance Lmin, each followed by 10f(n)1; incorrect

recovery of the index therefore requires at least two errors

in one of them in addition to further errors in the other

index or 10f(n)1 marker, or an error in each 10f(n)1
marker in addition to further errors to generate such a

marker at an alternative location, hence t′ > 3 as well.

3) Finally, if the index of u
′ is decoded correctly (and, in

particular, u′ is valid), then recalling that the index of u is

also decoded correctly, we clearly have ev = ev′′ . Since

any error in u
′ can cause an error in at most a single

encoded information block, we have that sv 6 sv′′ + t′.
Hence,

ev + 2sv 6 ev′′ + 2(sv′′ + t′)

= (ev′′ + 2sv′′) + 2t′ 6 2t = 2‖v‖.

Theorem 21 Denote the redundancy of the outer-code CEC

used in Construction B by ρEC , K −M . Then, operating

EncA as in Theorem 18, with f(n) = (1+ o(1))
√
log(n), we

have

red(CB(n)) 6
n

a

(
1 +

f(n)

log(n)
+

1

f(n)− 1
+

9 + 2/(f(n)− 1)

log(n)
+

4a

qf(n)
+

2a2 + 2

n

)
+

ρEC

(
(a− 1) log(n)− 2

√
log(n)−

11− 3√
log(n)− 1

− 4a log(n)

q
√

log(n)

)

=
n

a

(
1 +

2 + o(1)√
log(n)

)
+

ρEC

(
(a− 1) log(n)− (2 + o(1))

√
log(n)

)
.

Furthermore, when a > 2 then the outer-code CEC can be an

MDS code and hence ρEC = 2t.

Proof: By Construction B, red(CB(n)) = red(CA(n)) +
ρEC ·m(N).

We recall from the proof of Theorem 18 that for f(n) =⌈√
log(n)

⌉
it holds that

m(N) > Lmin − log(n)− f(n)− log(n)

f(n)− 1
−

9− 2

f(n)− 1
− 4a log(n)

qf(n)

> (a− 1) log(n)− 2
√
log(n)−

11− 3√
log(n)− 1

− 4a log(n)

q
√

log(n)
,

satisfying the former part of claim.

Next, for a > 2 we observe that m(N) > log(n) −
log log(n)+On(1) = log(K), implying that an RS code may

be used in Construction B, satisfying the latter part.

Before concluding the section, we outline an extension of

Construction B to the case k > 1, i.e., to t-error multi-strand

torn-paper codes.

Corollary 22 Take n, k such that k > 1, log(k) = o(n);
let Lmin = ⌈a log(nk)⌉, for a > 1, and take some Lmax >
Lmin. Amend Construction B as was done in Theorem 19 to

Construction A, using a (kK, qm(N)M , 2t + 1)qm(N) error-

correcting code CEC, with redundancy ρEC , kK − M .

Then the resulting code CB(n, k) is a t-error (Lmin, Lmax)-
multistrand torn-paper code, satisfying

red(CB(n, k)) 6
nk

a

(
1 +

2 + o(1)√
log(nk)

)
+

ρEC

(
(a− 1) log(nk)−

(2 + o(1))
√

log(nk)
)
.

Proof: The proof of Theorem 20 applies without change.

As in Theorem 19, we have

m(N) = (a− 1) log(nk)− (1 + o(1))

(
f(nk) +

log(nk)

f(nk)

)
,

and following the steps of Theorem 21, we have the claimed

upper bound on redundancy, for f(n) = (1+ o(1))
√
log(nk).

B. Deletion-Correcting Torn-paper Codes

For a string x, its t-deletion torn-paper ball, DT Lmax

Lmin
(x; t),

is defined as all the subsets with at most t missing segments

of all the possible (Lmin, Lmax)-segmentations of x, that is,

DT Lmax

Lmin
(x; t) ,

⋃

S∈T Lmax
Lmin

(x)

{S′ ⊆ S : |S| − |S′| 6 t}.

A code C is called a t-deletion torn-paper code if for all

x1,x2 ∈ C it holds that DT Lmax

Lmin
(x1; t)∩DT Lmax

Lmin
(x2; t) = ∅.

In this section, we utilize burst-erasure-correcting (BEC)

codes in our constructions, which are defined next. For a string

12

x, its t-burst L-erasures ball, denoted by BL
BE(x; t), is defined

as the set of all strings that can be obtained from x by at most t
burst of erasures, each of length at most L. A code C is called

a t-burst L-erasure correcting code if for all x1,x2 ∈ C,

BL
BE(x1; t) ∩ BL

BE(x2; t) = ∅.
Next, we present a generic construction of t-deletion torn-

paper codes. Let L̂max , Lmax −
⌈
Lmax

Lmin

⌉
(α + f(n) + 2).

This construction is based on Construction A and assumes

the existence of a systematic linear t-burst L̂max-erasure

correcting code, denoted by CBEC.

Construction C Let ρ > 0 be an integer that is determined

next. This construction uses the following family of codes:

Systematic BEC encoding. Let EncBEC : Σ(K−ρ)N →
ΣρBEC denote the systematic encoder of the code CBEC, such

that for any string v ∈ Σ(K−ρ)N , v ◦ EncBEC(v) ∈ CBEC

(for convenience we assume that EncBEC(v) returns only the

encoded systematic redundancy symbols). The redundancy of

this encoder is denoted by ρBEC. The parameter ρ is defined

ρ ,
⌈

1
N

⌊
ρBEC · f(n)

f(n)−1

⌋⌉
.

Next, we utilize a generalized concatenated coding ap-

proach, where Construction A is used as inner-code for K−ρ
information blocks, and with a slight adjustment also for the

ρ redundant blocks, as follows:

1) The length of the input string x. The input of this con-

struction is x ∈ Σ(K−ρ)m(N). That is, this construction

has additional redundancy of ρm(N) symbols compared

to Construction A. The input string is divided to K − ρ
information blocks each of length m(N), denoted by

x0, . . . ,xK−ρ−1.

2) The generation of the encoded blocks yi’s. The first

K − ρ blocks are generated from the corresponding xi’s

using the RLL encoder ERLL
m similarly to Construction A.

Let y
∗ , y0 ◦ · · · ◦ yK−ρ−1 ∈ Σ(K−ρ)N denote

their concatenation. Next, we apply EncBEC to obtain

w , EncBEC(y
∗), and denote by w

∗ the result of

inserting ‘1’s into w at every location divisible by f(n)
(in particular, y∗ ◦ w∗ does not contain a length-f(n)
zero-run). Then, w∗ is divided to the remaining segments

yK−ρ, . . . ,yK−1 ∈ ΣN (if |w∗| is not a multiple of N ,

yK−1 is padded with 1’s to length N). Note that the pa-

rameter ρ satisfies ρN >
⌊
ρBEC · f(n)

f(n)−1

⌋
= |w∗|, hence

one may continue to follow the steps of Construction A

without change.

We now indeed continue identically to Construction A. That

is, an index and a marker are appended to the beginning

of each encoded block yi to construct a segment zi of

length Lmin. Then, z0, . . . , zK−1 are concatenated along with

zK ◦0n mod Lmin = c
′′
K ◦10f(n)10N+(n mod Lmin) to obtain the

encoded output string z ∈ Σn. �

Let Cdel(n) denote the constructed code. The correctness of

Construction C and redundancy calculation are proved in the

next theorem.

Theorem 23 Cdel(n) is a t-deletion torn-paper code. Further-

more, it holds that

red(Cdel(n)) = red(CA(n)) +

m(N)

⌈
1

N

⌊
ρBEC ·

f(n)

f(n)− 1

⌋⌉
.

Proof: Let z ∈ Cdel(n) be the encoded codeword of the

input string x, and take U ∈ DT Lmax

Lmin
(z; t). We shall prove

that one can uniquely decode x.

From Lemma 16, for every u ∈ U which is not a substring

of the suffix of length (n mod Lmin) + N + f(n) of z, its

index Ind(u) can be decoded using Algorithm 2. The string z

can then be reconstructed by the locations of each received

segment, with some segments erased (at identifiable locations).

Let z′ ∈ (Σ∪{?})n denote this partially reconstructed string,

where ‘?’ stands for erased symbols.

From the definition of DT Lmax

Lmin
(z; t), at most t segments of

z are missing from U . Therefore, z′ ∈ BLmax

BE (z; t). By remov-

ing coordinates of z′ corresponding to indices or markers (in-

cluding ’?’ symbols), a string y
′ ∈ BL̂max

BE

(
y0 ◦ · · · ◦ yK−1; t

)

is obtained, since there are at most Lmax − L̂max =⌈
Lmax

Lmin

⌉
(α + f(n) + 2) symbols in any Lmax-segment of z

belonging to either index or marker.

Finally, we remove from y
′ coordinates corresponding to

‘1’s inserted into w
∗; thus, we obtain a string ŷ ∈ BL̂max

BE (y∗◦
w; t). A decoder for CBEC may be invoked on ŷ to retrieve

y
∗ = y0 ◦ · · · ◦ yK−ρ−1, and consequently x is obtained by

applying the RLL decoder to each yi, i ∈ [K − ρ].
To conclude the proof we observe that the asserted re-

dundancy follows by definition, as precisely ρm(N) less

information symbols are input at the encoder, in comparison

to Construction A.

Next, we note that an extension to the case k > 1, i.e., to

t-deletion multi-strand torn-paper codes, is again straightfor-

ward.

Corollary 24 Amending Construction C, one constructs a t-
deletion multi-strand torn-paper code Cdel(n, k) with redun-

dancy

red(Cdel(n, k)) = red(CA(n, k)) +

m(N)

⌈
1

N

⌊
ρBEC ·

f(n)

f(n)− 1

⌋⌉
.

Proof: Here, an information string x ∈ Σ(kK−ρ)m(N) is

encoded with ERLL
m into y

∗, and w
∗ is obtained utilizing a

systematic BEC encoder on strings in Σ(kK−ρ)N . It is seg-

mented into ykK−ρ, . . . ,ykK ∈ ΣN ; again, observing ρN >
ρBEC assures that this is possible. Then, each K segments yj

are encoded, in order, with the remaining steps of Algorithm 1,

where again I , ⌈log(k⌈n/Lmin⌉)⌉ and Lmin = ⌈a log(nk)⌉,
and indices are utilized by each operation in succession. It is

straightforward that the proof of Theorem 23 can be followed

to show that Cdel(n, k) is a t-deletion multi-strand torn-paper

code, with the above redundancy.

Before concluding the section, we discuss the cases of t ∈
{1, 2}, in which more is known on the construction of BEC

codes.

13

For t = 1, we use a systematic interleaving parity BEC

code as the code CBEC. Namely, the redundancy string w =
EncBEC(y

∗) is of length ρBEC = L̂max, and

wi ,
∑

k∈
[⌈

(K−ρ)N−i

L̂max

⌉]y∗
i+kL̂max

for all i ∈ [L̂max], i.e., wi is a single parity symbol for(
y∗i , y

∗
i+L̂max

, . . .
)

. Denote this code by Cdel,1.

For t = 2, we state for completeness the following basic

proposition which draws the connection between burst-error-

correcting codes and burst-erasure-correcting codes. We note

that this fact has been mentioned before in [7], for a single

burst of errors.

Lemma 25 For 0 < ℓ 6 n and x,y ∈ Σn, it holds that x,y
are confusable under t bursts of errors of lengths at most ℓ if

and only if they are confusable under 2t bursts of erasures of

lengths at most ℓ.

Proof: Denote x = (xj)j∈[n], y = (yj)j∈[n], and Ii ,⋃
j∈[t](k

(i)
j + [ℓ]), for i = 0, 1 and some

{
k
(i)
j

}
j∈[t]

⊆ [n].

Assume there exist e
(0), e(1) ∈ Σn such that x + e

(0) =
y + e

(1), and supp(e(i)) ⊆ Ii, i = 1, 2. Then, one observes

that x[n]\(I0∪I1) = y[n]\(I0∪I1).

Conversely, assume x[n]\I = y[n]\I , where I ⊆⋃
j∈[2t](kj + [ℓ]) for some

{
kj
}
j∈[2t]

⊆ [n], and without loss

of generality
{
kj
}
j∈[2t]

are increasing, and kj 6 kt+1− ℓ for

all j 6 t. Let Ii ,
⋃

j∈(it+[t])(kj + [ℓ]) for i = 1, 2, and

observe that I0∪I1 = I , I0∩I1 = ∅. For i = 1, 2 and j ∈ [n],
let

e
(i)
j ,

{
(−1)i(yj − xj), j ∈ Ii;

0, otherwise.

Then, denoting e
(i) = (e

(i)
j)j∈[n] for i = 1, 2, we have x +

e
(0) = y + e

(1), which completes the proof.

A construction of 2-deletion torn-paper codes is derived

from Construction C, using a BEC code for t = 2. Hence, by

Lemma 25 one may use an L̂max-burst error-correcting code.

Observe that Construction C requires a systematic encoder,

which is guaranteed by several prior works with redundancy

at most log((K − ρ)N) + L̂max; see, e.g. [1], [2]. These

constructions require the alphabet Σ to be a field, and are

linear and cyclic, which ensures the existence of a systematic

encoder. For simplicity of derivation we bound this redundancy

(from above) by L̂max + log(n). Let Cdel,2 denote this code.

The next corollary summarizes these results. For conve-

nience, denote the difference

∆red(C(n)) , red(C(n))− red(CA(n)),

for a t-deletion torn-paper code C(n) ⊆ Σn.

Corollary 26 For a prime power q and all admissible values

of n and f(n) in Construction A, where f(n) = ω(1), f(n) =

o(log(n)) and with the RLL encoders of [20], [37], it holds

that

∆red(Cdel,1(n)) 6 L̂max ·
f(n)

f(n)− 1
,

∆red(Cdel,2(n)) 6 (L̂max + log(n)) · f(n)

f(n)− 1
.

In particular, for f(n) = (1 + o(1))
√

log(n),

∆red(Cdel,1(n)) 6 L̂max

(
1 +

1− o(1)√
log(n)

)
,

∆red(Cdel,2(n)) 6 (L̂max + log(n))

(
1 +

1− o(1)√
log(n)

)
.

Note that if Lmax = o(n) the asymptotic rate of Cdel,1(n)
and Cdel,2(n) is asymptotically equal to the rate of CA(n).
Thus, efficient encoding and decoding of t-deletion torn-paper

codes, t = 1, 2, is possible at rates arbitrarily close to the

optimum.

V. CONCLUSION

In this paper, we study the adversarial torn-paper chan-

nel, for which we present fundamental bounds and code

constructions. We further study several extensions of this

model, including multi-strand storage, substitution errors, or

incomplete coverage. Importantly, our proposed constructions

have linear-run-time encoders and decoders, and the resulting

codes achieve asymptotically optimal rates.

We mention again that the adversarial model we assume

in this work is chosen to enable analysis in the worst-case.

More realistically, an adversarial channel where the average of

the received segments’ lengths is bounded from below might

be analyzed; unfortunately, this channel turns out to be hard

to analyze in the worst-case, and such analysis is left for

future works. It will be remarked that by the same methods

of Lemma 1, it can be shown that the capacity of such an

adversarial channel is bounded from above by 1 − 1
a , where

the lower bound on the average segment length is chosen

to be a log(n). Coding for this channel appears to be more

challenging; we point to the fact that an adversary is able to

segment a non-vanishing fraction of the channel input into

short substrings as a likely reason for that difficulty.

A naive solution, where the lower bound on the average

segment length is a log(n) and a > q
q−1 , is to apply Con-

struction C with parameter a′ satisfying 1 < a′ < (1 − 1
q)a;

the decoder then discards any received segment shorter than

a′ log(n), creating at most n
a log(n) bursts of erasures of lengths

at most (a′ − 1) log(n) (in the reconstructed information

sequence). To recover the information, a BEC code CBEC

is used; since 1
Km(N)(a

′ − 1) log(n) n
a log(n) = (a′−1)/a

Km(N)/n =
a′

a + o(1) < 1 − 1
q , a positive-rate BEC code exists for

all a′ in the permissible range (since positive-rate a′−1
a n-

erasure-correcting codes exist in ΣKm(N)); hence a′ can be

optimized according to Theorem 23, i.e., to maximize the

achieved rate of (1 + on(1))
(
1− 1

a′

)
· R(CBEC). (Naively,

one might utilize codes correcting n
a log(n) · (a′ − 1) log(n)

14

erasures; by the GV bound, the achievable rate of this

construction is at least (1 + on(1))
(
1− 1

a′

)(
1 − Hq(

a′

a)
)
.)

Alternatively, if any integer a′ falls within the given range,

Construction P can also be used with parameter a′, where

again segments shorter than (a′ + o(1)) log(n) are discarded

at the decoder, and reconstructed based on a BEC code CBEC

correcting up to n
a log(n) bursts of erasures of lengths at most

(1 + o(1)) log(n) in Σn/a′

; however, the achieved rate of this

construction is similarly
(
1− 1

a′

)
· R(CBEC), and applicable

BEC codes are equivalent (i.e., they correct the same number

of bursts, of length (1+o(1)) log(n) in Σn/a′

instead of length

(a′ − 1) log(n) in ΣKm(N) = Σ(1−1/a′+o(1))n).

Finally, for future research, we believe that applying

our methods to a generalized channel, including multiple

sources of noise concurrently, one may achieve similar re-

sults. Studying the channel under edit-errors, including in-

sertions/deletions in addition to substitutions, is also of great

interest for applications to DNA data storage.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the valuable insight and

advice offered to us by the two anonymous reviewers and

associate editor, which were instrumental in streamlining the

presentation of this paper.

REFERENCES

[1] K. A. S. Abdel-Ghaffar, “On the existence of optimum cyclic burst
correcting codes over GF(q),” IEEE Trans. on Inform. Theory, vol. 34,
no. 2, pp. 329–332, Mar. 1988.

[2] K. A. S. Abdel-Ghaffar, R. J. McEliece, A. M. Odlyzko, and H. C. A.
van Tilborg, “On the existence of optimum cyclic burst-correcting
codes,” IEEE Trans. on Inform. Theory, vol. 32, no. 6, pp. 768–775,
Nov. 1986.

[3] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” SIAM J. Discrete Math.,
vol. 29, no. 3, pp. 1340–1371, 2015.

[4] F. Balado, “Capacity of DNA data embedding under substitution mu-
tations,” IEEE Trans. on Inform. Theory, vol. 59, no. 2, pp. 928–941,
Feb. 2013.

[5] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” ACM SIGPLAN
Notices, vol. 51, no. 4, pp. 637–649, Mar. 2016.

[6] G. Bresler, M. Bresler, and D. Tse, “Optimal assembly for high
throughput shotgun sequencing,” BMC Bioinformatics, vol. 14, no. 5,
p. S18, Jul. 2013.

[7] R. T. Chien, L. R. Bahl, and D. Tang, “Correction of two erasure bursts
(corresp.),” IEEE Trans. on Inform. Theory, vol. 15, no. 1, pp. 186–187,
Jan. 1969.

[8] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake,
C. Heiner, A. Clum, A. Copeland, J. Huddleston, E. E. Eichler, S. W.
Turner, and J. Korlach, “Nonhybrid, finished microbial genome assem-
blies from long-read SMRT sequencing data,” Nature Methods, vol. 10,
no. 6, pp. 563–569, Jun. 2013.

[9] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628,
2012.

[10] Contributing Members, “Preserving our digital legacy: an
introduction to DNA data storage,” The DNA Data Storage
Alliance, White Paper, Jun. 2021. [Online]. Available:
https://dnastoragealliance.org/dev/wp-content/uploads/2021/06/
DNA-Data-Storage-Alliance-An-Introduction-to-DNA-Data-Storage.
pdf

[11] N. G. de Bruijn and T. van Aardenne-Ehrenfest, “Circuits and trees in
oriented linear graphs,” Simon Stevin, vol. 28, pp. 203–217, 1951.

[12] O. Elishco, R. Gabrys, M. Médard, and E. Yaakobi, “Repeat-free codes,”
IEEE Trans. on Inform. Theory, vol. 67, no. 9, pp. 5749–5764, Sep.
2021.

[13] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, Mar.
2017.

[14] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Trans. on Inform. Theory, vol. 65,
no. 12, pp. 7682–7696, Dec. 2019.

[15] S. Ganguly, E. Mossel, and M. Racz, “Sequence assembly from cor-
rupted shotgun reads,” in Proceedings of the 2016 IEEE International

Symposium on Information Theory (ISIT), Barcelona, Spain, Jul. 2016,
pp. 265–269.

[16] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77–80, Feb. 2013.

[17] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552–2555, 2015.

[18] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fun-
damental limits of DNA storage systems,” in Proceedings of the 2017

IEEE International Symposium on Information Theory (ISIT), Aachen,

Germany, Jun. 2017, pp. 3130–3134.

[19] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “An upper bound
on the capacity of the DNA storage channel,” in Proceedings of the 2019
IEEE Information Theory Workshop (ITW), Visby, Sweden, Aug. 2019.

[20] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA
storage,” IEEE Trans. on Inform. Theory, vol. 65, no. 6, pp. 3671–3691,
Jun. 2019.

[21] N. J. Loman, J. Quick, and J. T. Simpson, “A complete bacterial
genome assembled de novo using only nanopore sequencing data,”
Nature Methods, vol. 12, no. 8, pp. 733–735, Aug. 2015.

[22] A. Motahari, K. Ramchandran, D. Tse, and N. Ma, “Optimal DNA
shotgun sequencing: Noisy reads are as good as noiseless reads,” in
Proceedings of the 2013 IEEE International Symposium on Information

Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 1640–1644.

[23] A. S. Motahari, G. Bresler, and D. N. C. Tse, “Information theory of
DNA shotgun sequencing,” IEEE Trans. on Inform. Theory, vol. 59,
no. 10, pp. 6273–6289, Oct. 2013.

[24] S. Nassirpour, I. Shomorony, and A. Vahid, “Reassembly codes for the
chop-and-shuffle channel,” arXiv preprint arXiv:2201.03590, 2022.

[25] L. Organick, S. D. Ang, Y.-J. Chen et al., “Random access in large-scale
DNA data storage,” Nature Biotechnology, vol. 36, no. 3, pp. 242–248,
Mar. 2018.

[26] A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of the torn paper
channel with lost pieces,” in Proceedings of the 2021 IEEE Interna-

tional Symposium on Information Theory (ISIT), Melbourne, Victoria,

Australia, Jul. 2021, pp. 1937–1942.

[27] ——, “Coded shotgun sequencing,” IEEE Journal on Selected Areas in

Information Theory, vol. 3, no. 1, pp. 147–159, Mar. 2022.

[28] S. L. Salzberg, “Mind the gaps,” Nature Methods, vol. 7, no. 2, pp.
105–106, Feb. 2010.

[29] I. Shomorony, T. Courtade, and D. Tse, “Do read errors matter for
genome assembly?” in Proceedings of the 2015 IEEE International

Symposium on Information Theory (ISIT), Hong Kong, China, Jun. 2015,
pp. 919–923.

[30] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” in Proceedings of the 2019 IEEE International Symposium on
Information Theory (ISIT), Paris, France, Jul. 2019, pp. 762–766.

[31] I. Shomorony, G. M. Kamath, F. Xia, T. A. Courtade, and D. N. Tse,
“Partial DNA assembly: A rate-distortion perspective,” in Proceedings of

the 2016 IEEE International Symposium on Information Theory (ISIT),

Barcelona, Spain, Jul. 2016, pp. 1799–1803.

[32] I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Trans. on

Inform. Theory, vol. 67, no. 12, pp. 7904–7913, Dec. 2021.

[33] J. Spencer, “Asymptotic lower bounds for Ramsey functions,” Discrete

Mathematics, vol. 20, pp. 69–76, 1977.

[34] R. R. Varshamov and G. M. Tenengolts, “Code correcting single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 26,
no. 2, pp. 288–292, 1965.

[35] N. Weinberger and N. Merhav, “The DNA storage channel: Capacity
and error probability bounds,” IEEE Trans. on Inform. Theory, vol. 68,
no. 9, pp. 5657–5700, Sep. 2022.

[36] P. C. Wong, K.-k. Wong, and H. Foote, “Organic data memory using
the DNA approach,” Communications of the ACM, vol. 46, no. 1, pp.
95–98, Jan. 2003.

15

[37] Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi, “Generalized
unique reconstruction from substrings,” IEEE Trans. on Inform. Theory,
2023.

[38] Y. Yehezkeally and N. Polyanskii, “On codes for the noisy substring
channel,” in Proceedings of the 2021 IEEE International Symposium on

Information Theory (ISIT), Melbourne, Victoria, Australia, Jul. 2021,
pp. 1700–1705.

Daniella Bar-Lev (S’20) received the B.Sc. degree in computer science
and the B.Sc. degree in mathematics in 2019, and the M.Sc. degree in
computer science in 2021, from the Technion—Israel Institute of Technology,
Haifa, Israel, where she is currently pursuing the Ph.D. degree with the
Computer Science Department. Her research interests include algorithms,
discrete mathematics, coding theory, and DNA storage.

Sagi Marcovich (S’20) received the B.Sc. degree in software engineering
and the M.Sc. degree in computer science from the Technion—Israel Institute
of Technology, Haifa, Israel, in 2016 and 2021, respectively, where he is
currently pursuing the Ph.D. degree with the Computer Science Department.
His research interests include algorithms, information theory, and coding
theory with applications to DNA based storage.

Eitan Yaakobi (S’07–M’12–SM’17) received the B.A. degree in computer
science and the B.A degree in mathematics in 2005, and the M.Sc. degree in
computer science in 2007, from the Technion—Israel Institute of Technology,
Haifa, Israel, and the Ph.D. degree in electrical engineering in 2011, from
the University of California at San Diego, San Diego, CA, USA. From 2011
to 2013, he was a Post-Doctoral Researcher with the Department of Electrical
Engineering, California Institute of Technology, and the Center for Memory
and Recording Research, University of California at San Diego. Since 2016,
he has been with the Center for Memory and Recording Research, University
of California at San Diego. Since 2018, he has been with the Institute of
Advanced Studies, Technical University of Munich, where he holds a four-
year Hans Fischer Fellowship, funded by the German Excellence Initiative and
the EU 7th Framework Program. He is currently an Associate Professor with
the Computer Science Department, Technion—Israel Institute of Technology.
He also holds a courtesy appointment with the Electrical and Computer
Engineering (ECE) Department, Technion—Israel Institute of Technology. His
research interests include information and coding theory with applications to
non-volatile memories, associative memories, DNA storage, data storage and
retrieval, and private information retrieval. He was a recipient of several grants,
including the ERC Consolidator Grant. He received the Marconi Society
Young Scholar in 2009 and the Intel Ph.D. Fellowship during 2010-2011.
Since 2020, he has been serving as an Associate Editor for Coding and
Decoding for the IEEE TRANSACTIONS ON INFORMATION THEORY.

Yonatan Yehezkeally (S’12–M’20) received the B.Sc. degree (cum laude)
in mathematics and the M.Sc. (summa cum laude) and Ph.D. degrees in
electrical and computer engineering from Ben-Gurion University of the Negev,
Beer-Sheva, Israel, in 2013, 2017, and 2020 respectively. He is currently a
Carl Friedrich von Siemens Post-Doctoral Research Fellow of the Alexander
von Humboldt Foundation, with the Associate Professorship of Coding and
Cryptography (Prof. Wachter-Zeh), School of Computation, Information and
Technology, Technical University of Munich. His research interests include
coding for novel storage media, with a focus on DNA-based storage and
nascent sequencing technologies, as well as combinatorial structures and finite
group theory.

