
1

Generalized Unique Reconstruction from Substrings
Yonatan Yehezkeally, Member, IEEE, Daniella Bar-Lev, Student Member, IEEE,

Sagi Marcovich, Student Member, IEEE and Eitan Yaakobi, Senior Member, IEEE

Abstract—This paper introduces a new family of reconstruc-
tion codes which is motivated by applications in DNA data storage
and sequencing. In such applications, DNA strands are sequenced
by reading some subset of their substrings. While previous works
considered two extreme cases in which all substrings of pre-
defined lengths are read or substrings are read with no overlap
for the single string case, this work studies two extensions
of this paradigm. The first extension considers the setup in
which consecutive substrings are read with some given minimum
overlap. First, an upper bound is provided on the attainable rates
of codes that guarantee unique reconstruction. Then, efficient
constructions of codes that asymptotically meet that upper bound
are presented. In the second extension, we study the setup where
multiple strings are reconstructed together. Given the number of
strings and their length, we first derive a lower bound on the
read substrings’ length ℓ that is necessary for the existence of
multi-strand reconstruction codes with non-vanishing rates. We
then present two constructions of such codes and show that their
rates approach 1 for values of ℓ that asymptotically behave like
the lower bound.

I. INTRODUCTION

String reconstruction refers to a large class of problems
where information about a string can only be obtained in
the form of multiple, incomplete and/or noisy observations.
Examples of such problems are the reconstruction problem by
Levenshtein [20], the trace reconstruction problem [3], [6],
and the k-deck problem [8], [9], [23], [32].

Notably, when observations are comprised of unordered
consecutive substrings, two distinct models have received
significant interest in the past decade due to applications
in DNA- or polymer-based storage systems, resulting from

Manuscript received October 10, 2022; revised February 23, 2023; accepted
April 16, 2023. This work was supported in part by the European Research
Council (ERC) through the European Union’s Horizon 2020 Research and
Innovation Programme under Grant 801434 and by the Israel Innovation
Authority Grant 75855. Y. Yehezkeally was supported by a Carl Friedrich
von Siemens postdoctoral research fellowship of the Alexander von Humboldt
Foundation. D. Bar-Lev, S. Marcovich, and E. Yaakobi were supported in
part by the United States-Israel BSF grant no. 2018048. This article was
presented in part at the 2021 IEEE Information Theory Workshop [DOI:
10.1109/ITW48936.2021.9611486], and at the 2022 International Sympo-
sium on Information Theory and Its Applications. (Corresponding author:
Yonatan Yehezkeally)

Y. Yehezkeally is with the Institute for Communications
Engineering, School of Computation, Information and Technology,
Technical University of Munich, 80333 Munich, Germany (e-mail:
yonatan.yehezkeally@tum.de). D. Bar-Lev, S. Marcovich,
and E. Yaakobi are with the Department of Computer Science,
Technion—Israel Institute of Technology, Haifa 3200003, Israel (e-mails:
{yaakobi,daniellalev,sagimar}@cs.technion.ac.il).

The first three authors contributed equally to this work.
Copyright (c) 2023 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works.

contemporary sequencing technologies [4], [13], [27]. The first
is the reconstruction from substring-compositions problem [1],
[4], [11], [15], [18], [24], [26], [27], [33], [35], [39] (including
extensions for erroneous observations [5], [13], [24], [39]),
which arises from an idealized assumption of full overlap
(and uniform coverage) in read substrings; the second is the
torn-paper problem [2], [28], [29], [36] (a problem closely
related to the shuffling channel [16], [19], [34], [38]), which
results from an assumption of no overlap. In applications,
the distinction models the question of whether the complete
information string may be replicated and uniformly segmented
for sequencing, or if segmentation occurs adversarially in the
medium prior to sequencing.

Motivated by these two paradigms, we study in this paper
a generalized (or intermediate) setting where an informa-
tion string is observed through an arbitrary collection of
its substrings, where the minimum length of each retrieved
substring, as well as the length of overlap between consecutive
substrings, are bounded from below. A similar setting was
recently studied in [30], where both substrings’ lengths and
overlap were assumed to be random; we study the problem in
the aforementioned worst-case regime.

Further, in both sequencing and tandem-mass-spectrometry
technologies, used for DNA and polymer-based storage sys-
tems respectively, it is typical that not a single string is read
alone, but multiple strings simultaneously [7], [14], [17], [22],
[31]. We therefore study a setting where retreived substrings
are taken from a collection of information strings stored
together, with no information on the string from which they
originated. We remark that this extension was already studied
by the authors for the torn-paper problem, in [2].

Our problem setting is therefore given as follows: a multiset
of k length-n strings is transmitted, and substrings of all
information strings are retrieved, such that the length of each
substring is at least ℓmin, and consecutive substrings of the
same information string overlap in at least ℓover positions. We
are interested in the minimum value of ℓmin, as a function
of k and n, for which there exist codes allowing for unique re-
construction in this channel with asymptotically non-vanishing
rates, and then what is the asymptotically optimal obtainable
rate given the value of ℓover. In these cases, we seek to develop
efficient coding schemes which asymptotically attain optimal
rates.

The rest of this paper is organized as follows. In Section II,
we present notation and definitions which are used throughout
the paper. In Section III, we overview and extend results in
existing literature which already solve our problem setting
in specific end-cases. In Sections IV and V, we present a
solution to the aforementioned problem in the private case
of a single string (k = 1), by respectively bounding from

2

above the asymptotically attainable rate of codes for unique
reconstruction as a function of ℓmin, ℓover, and then developing
efficient encoding and decoding algorithms for such codes,
asymptotically meeting this bound. Then, in Section VI, we
study solutions to the problem in a different private case,
where ℓover = ℓmin − 1 (i.e., a multi-strand extension of the
reconsturction from substrings problem); we likewise present
bounds and two efficient constructions of multiset-codes for
this case, whose rates asymptotically approach 1 for values
of ℓmin asymptotically equivalent to the lower bound. We
conclude in Section VII with a summary and closing remarks.

II. DEFINITIONS AND PRELIMINARIES

Let Σ be a finite alphabet of size q. Where advantageous, we
assume Σ is equipped with a ring structure, and in particular
identify elements 0, 1 ∈ Σ. For a positive integer n, let [n]
denote the set [n] ≜ {0, 1, . . . , n − 1}. We denote a multiset
by S = {{a, a, b, . . .}}; i.e., elements are allowed to appear
with multiplicity. For convenience we let ∥S∥, for a multiset S,
denote the number of unique elements in S.

For two non-negative functions f, g of a common variable n,
denoting L ≜ lim supn→∞

f(n)
g(n) (in the wide sense) we say

that f = on(g) if L = 0, f = Ωn(g) if L > 0, f = On(g)
if L < ∞, and f = ωn(g) if L = ∞. We say that f =
Θn(g) if f = Ωn(g) and f = On(g). If f is not positive,
we say f = On(g) (f = on(g)) if |f | = On(g) (respectively,
|f | = on(g)). If clear from context, we omit the subscript from
aforementioned notations.

Let Σ∗ denote the set of all finite strings over Σ. The length
of a string x = (x0, x1, . . . , xn−1) ∈ Σ∗ is denoted by |x| =
n. For strings x,y ∈ Σ∗, we denote their concatenation by
x ◦ y. We say that v is a substring of x if there exist strings
u,w such that x = u◦v ◦w. If u (respectively, w) is empty,
we say that v is a prefix (suffix) of x. If the length of v is ℓ, we
specifically say that v is an ℓ-substring of x (similarly, an ℓ-
prefix/suffix). For I ⊆ [|x|], we let xI denote the subsequence
of x obtained by restriction to the coordinates of I (i.e., when
x is considered as a function from [|x|] into Σ); specifically,
for i ∈ [|x| − ℓ+ 1] we denote by xi+[ℓ] the ℓ-substring of x
at location i (we reserve the term index for a different use),
where i+ [ℓ] = {i+ j : j ∈ [ℓ]}.

We define

Xn,k ≜ {S = {{x1, . . . ,xk}} : ∀i,xi ∈ Σn},

and observe that |Xn,k| =
(
k+qn−1

k

)
. We consider in this paper

the problem of multi-string reconstruction from substrings
with partial overlap. That is, we assume that a message
S ∈ Xn,k is observed only through a multiset of substrings of
its elements, without order or information on the substring
from which they originate, with the following restrictions:
(i) all observed substrings are of length at least ℓmin; and
(ii) succeeding substrings of the same x ∈ S overlap with
length at least ℓover (in particular, every symbol of x is
observed in some substring).

More formally, a substring-trace of x ∈ Σn is a multi-
set

{{
xij+[ℓj] : 1 ⩽ j ⩽ m

}}
, for some m ∈ N, such that

i1 < i2 < · · · < im and ℓj ∈ [n − ij + 1]. A substring-
trace is complete if i1 = 0, ij+1 < ij + ℓj for all j < m,

1 1 1 1 1 1 1 1 1 1 10 0 0

Figure 1. A (6, 2)-trace of x.

1 1 1 1 1 1 1 1 1 1 10 0 0

Figure 2. A complete substring-trace of x (not a (6, 2)-trace).

1 1 1 1 1 1 1 1 1 1 10 0 0

Figure 3. An incomplete substring-trace of x.

and im + ℓm = n. A complete substring-trace of x ∈ Σn is
called an (ℓmin, ℓover)-trace if ℓj ⩾ ℓmin ⩾ ℓover for all j,
and ij + ℓj − ij+1 ⩾ ℓover for all j < m. For example, for
x = 11101110101111

• {{1110111, 111010, 101111}} is a (6, 2)-trace of x;
• {{111011, 110101, 101111}} is a complete substring-

trace of x which is not a (6, 2)-trace; and
• {{110111, 110101, 01111}} is a substring-trace of x

which is not complete (since i1 > 0).
See Figures 1 to 3 for an illustration if these substring-traces.

The (ℓmin, ℓover)-trace spectrum of x ∈ Σn, denoted
T ℓover
ℓmin

(x), is the set of all (ℓmin, ℓover)-traces of x. We extend
the definition to S ∈ Xn,k by T ℓover

ℓmin
(S) ≜

⋃
x∈S T ℓover

ℓmin
(x),

where the union respects multiplicity (i.e., multiset union), and
similarly extend the definitions of traces. Our channel accepts
S ∈ Xn,k and outputs a single arbitrary (ℓmin, ℓover)-trace of
S.

For all C ⊆ Xn,k, we denote the rate, redundancy of C
by R(C) ≜ log|C|

log|Xn,k| , red(C) ≜ log|Xn,k| − log|C|, respec-
tively. Throughout the paper, we use the base-q logarithms.
Motivated by the above channel definition, a code C ⊆ Σn

is called an (ℓmin, ℓover)-trace code if for all c1 ̸= c2 ∈ C,
T ℓover
ℓmin

(c1)∩T ℓover
ℓmin

(c2) = ∅. We likewise define a multi-strand
(ℓmin, ℓover)-trace code C ⊆ Xn,k. The main goal of this work
is to find, for ℓmin, ℓover as functions of n, k, the maximum
asymptotic rate of (multi-strand) (ℓmin, ℓover)-trace codes. We
will also be interested in efficient constructions of codes with
rate asymptotically approaching that value.

For convenience of analysis we denote by Lℓover
ℓmin

(x) ∈
T ℓover
ℓmin

(x), for x ∈ Σn, the (ℓmin, ℓover)-trace of x containing
specifically its ℓmin-prefix, and subsequent ℓmin-substrings
overlapping in precisely ℓover coordinates. For example, if
x = 11101110101111 then

L2
4(x) = {{1110, 1011, 1110, 1010, 1011, 1111}}.

(Here, if ℓmin − ℓover does not divide n − ℓmin we allow the
ℓmin-suffix to contain a longer overlap with its preceding ℓmin-
substring.) We likewise let Lℓover

ℓmin
(S) ≜

⋃
x∈S Lℓover

ℓmin
(x).

III. REPEAT-FREE STRINGS

In this this section, we discuss the special case of (ℓ, ℓ−1)-
trace codes, which has been studied in literature in the context

3

of reconstruction from substring compositions. To that end,
we introduce the pertinent notion of repeat-free strings [11],
which we denote herein for all ℓ ⩽ n by

RFℓ(n) ≜
{
x ∈ Σn :

∥∥Lℓ−1
ℓ (x)

∥∥ = n− ℓ+ 1
}
,

That is, the set of all length-n strings whose ℓ-substrings are
all distinct. It was observed in [37] that if x ∈ RFℓ(n), then
Lℓ
ℓ+1(x) ̸= Lℓ

ℓ+1(y) for all y ∈ Σn, y ̸= x. A straightfor-
ward generalization of the arguments therein demonstrates the
following lemma.

Lemma 1 Given ℓmin > ℓover, for all x ∈ RFℓover(n),
there exists an efficient algorithm reconstructing x from any
(ℓmin, ℓover)-trace of x.

Proof: Let T be any (ℓmin, ℓover)-trace of x. For any u ∈
T , suppose by negation that there exist v1,v2 ∈ T , v1 ̸= v2,
such that the ℓi-suffix of vi equals the ℓi-prefix of u, where
ℓi ⩾ ℓover, for i ∈ {1, 2}. Since v1 ̸= v2, they occur in distinct
locations in x, and in particular their min{ℓ1, ℓ2}-suffix occurs
in distinct locations; this in contradiction to x ∈ RFℓover(n).
The same argument proves that there do not exist v1,v2 ∈ T ,
v1 ̸= v2, such that the ℓi-prefix of vi equals the ℓi-suffix of
u, where again ℓi ⩾ ℓover, for i ∈ {1, 2}.

Hence, matching prefix to suffix, of lengths at least ℓover,
one reconstructs x from T . Equivalently, for each u ∈ T ,
finding the unique v ∈ T that contains the ℓover-prefix of u
as a substring (which exists unless u is itself a prefix of x)
results with complete reconstruction. A naive implementation
requires O(n2ℓover) run-time.

We also denote multi-strand ℓ-repeat-free strings

RFℓ(n, k) ≜
{
S ∈ Xn,k :

∥∥Lℓ−1
ℓ (S)

∥∥ = k(n− ℓ+ 1)
}
,

and observe the following corollary of Lemma 1.

Corollary 2 For all S ∈ RFℓover(n, k) there exists an effi-
cient algorithm reconstructing S from any (ℓmin, ℓover)-trace
of S.

Proof: Observe that S is a set, S ⊆ RFℓover(n), and
that

{
Lℓover−1
ℓover

(x) : x ∈ S
}

are pairwise-disjoint, hence the
reconstruction algorithm of Lemma 1 may operate on all
elements of S in parallel without interference.
As a consequence of Corollary 2, RFℓover(n, k) forms a multi-
strand (ℓmin, ℓover)-trace code in Xn,k (likewise, RFℓover(n)
in Σn).

Further, we note for k = 1 that if lim inf ℓover/ log(n) > 1,
then [11] showed that RFℓover(n) forms a rate 1−on(1) code
in Σn with an efficient encoder/decoder pair. Before summa-
rizing their results, we will require the following notation; let

RLLs(n) ≜ {u ∈ Σn : u has no length-s run of zeros}.

This is the well-understood run-length-limited constraint (see,
e.g., [25, Sec. 1.2]).

Then, from [11] we have the following lemma.

Lemma 3 1) [11, Sec. IV] There exists an efficient en-
coder/decoder pair into RF2⌈log(n)⌉+2(n), requiring a
single redundant symbol.

2) [11, Sec. V] There exists an efficient encoder/decoder
pair into RFs′(n) ∩RLLs′′(n), where

s′ ≜ ⌈log(n)⌉+ 10⌈log log(n)⌉+ 10;

s′′ ≜ 4⌈log log(n)⌉+ 2.

The required redundancy is

s′′ + 1 + red
(
RLL2⌈log log(n)⌉(n− s′′ − 1)

)
.

Analysis of the asymptotic rate achieved by the encoder of
Lemma 3, part 2 is given in the following lemma.

Lemma 4 There exist efficient encoders into RLLs(n) re-
quiring 2⌈2n/2s⌉ redundant symbols for q = 2 [21, Sec. III],
or
⌈

q
q−2n/q

s
⌉

for q > 2.

Proof: The claim for q = 2 is proven in [21, Sec. III].
Hence, we need only extend it when q > 2, and to do so
we rely on the concept of the encoder in [21, Alg. 1]. First,
the information string x ∈ Σm is divided into blocks of
length N (where the last block is permitted to be shorter),
to be determined later. Then, in each block:

1) Append a 1 to the block.
2) From left to right, search for zero-runs of length s; if

one is encountered, remove it, and append the index of
its incidence to the block using s symbols, such that the
last symbol is restricted not to be either {0, 1}.

3) Continue, until no further zero-runs of length s exist.
Note that this process concludes in finite time (since in each

iteration of part 2 it advances by at least s locations of the
original block, and appended symbols contain no zero-run of
length s). Further, with the given restriction, s symbols may
index a total of qs−1(q− 2) locations for the beginning of the
zero s-substring. It is therefore required to set N ≜ qs−1(q−
2) + s− 1.

Also observe that a possible decoder can use the last symbol
to indicate whether a zero-run of length s was removed
and indexed (which it can then inject in the correct place,
discarding the index), or if the process is concluded (in which
case the suffix ‘1’ should also be discarded).

Next, since every encoded block ends with a nonzero
symbol, these blocks can be concatenated without violating
the constraint. Observe, then, that a single redundant symbol
is added per block, hence the claimed overall redundancy.

Finally, note that both encoder and decoder operate in
polynomial time in the input length.
Lemma 4 provides efficient encoders/decoders into RLLs(n);
to complete the picture, we observe that their redundancy has
asymptotically optimal order of magnitude; indeed, by [21,
Lem. 3] we have that red(RLLs(n)) ⩾

log(e)
2

(
1− 1

q

)2 n−2s
qs .

Next, although the encoder of part 2 of Lemma 3 asymptot-
ically achieves rate 1, it is of interest to encode into RFℓ(n)
using less redundancy, for any ℓ < 2 log(n). We will show
that the approach of [11, Sec. V] can be generalized to this
end.

Theorem 5 For integers ℓ(n), t satisfying

⌈log log(n)⌉+ 4 ⩽ t ⩽ ⌊(ℓ(n)− ⌈log(n)⌉)/3⌋

4

(for q = 2, require ⌈log log(n)⌉ + 5 ⩽ t ⩽
⌊(ℓ(n)− ⌈log(n)⌉)/3⌋) there exists an efficient
encoder/decoder pair into RFℓ(n)(n) ∩ RLLt(n), requiring
at most t + 1 +

⌈
q4

q−2n/q
t
⌉

redundant symbols (for q = 2,
this is t+ 1 + 2⌈16n/2t⌉), i.e., rate 1−On

(
t
n + q−t

)
.

Proof: The proof follows the steps of [11, Sec. V],
with some amendments; where their arguments hold without
change, we shall clearly cite the relevant proposition while
reproducing its proof (when possible, we prioritize intuition
over formality in our proof, without sacrificing rigour). The
rest of the proof is organized in stages, to improve readability.

1) In the first stage, an information string x ∈ Σm is
encoded into y ∈ RLLt−3(n − t − 1), where m is
determined by, e.g., Lemma 4.

2) Next, we wish to eliminate from y repeated substrings of
length s ≜ ⌈log(n)⌉+t+2. The elimination stage requires
an indexing function h : [n] → RLLt−3(N) (i.e., an
integer N satisfying |RLLt−3(N)| ⩾ n). By Lemma 4
an explicit function exists if

⌈
q

q−2N/qt−3
⌉
⩽ N− log(n)

(for q = 2 that is 2
⌈
2N/2t−3

⌉
⩽ N − log(n)), or

equivalently
(
1− q4−t

q−2

)
N ⩾ ⌈log(n)⌉. With the assumed

lower bound on t, this requirement is satisfied by N ≜
⌈log(n)⌉+ 1, for sufficiently large n.

3) In the elimination stage (based on [11, Alg. 3]), y is
processed from left to right; whenever j > i are found
such that yj+[s] = yi+[s] (and again, j is minimal
satisfying this requirement), the segment yj+[s] is deleted
and replaced with

1 0t−3 1 ◦ h(i) ◦ 1,

where we consider 10t−31 to be a marker, indicating the
replaced segment (based on the first step, this marker
does not appear elsewhere in y). Based on the fact that
any elimination reduces the string length by 1, this stage
is concluded in O(n2) steps. We denote the resulting
string by w, of length n′ (for some n′ ⩽ n − t − 1,
depending on how many eliminations were performed).
Trivially, the only instances of 0t−3 in w are the markers
used in replaced substrings (and w ∈ RLLt−2(n

′)). By
following the same approach as in [11, Lem. 19] (which
in turn was based on [13, Cla. 10]) one observes that
w ∈ RFs(n

′) and that the process can be reversed;
the former is trivial since the process only terminates
when no repeated sequences remain. The latter is done by
decoding from right to left, where replaced substrings are
identified by the presence of markers, and the eliminated
substrings are restored based on h(i). To prove this is
possible, one needs only show that after any iteration of
the process, the right-most instance of a marker is the one
injected in that iteration. Indeed, since the process scans
for j from left to right, if j is the location identified (i.e.,
yj+[s] was replaced) in the last iteration, and j′ in the
iteration before that, then by necessity j ⩾ j′ − s + 1;
clearly, then, if j < j′ then the marker injected at
location j′ was overwritten in the last iteration. I.e., the
marker injected at any iteration either overwrites the last

injected marker, or appears in the replaced string to its
right.

4) The process is concluded in an expansion stage, meant
to output strings of length n from which w (hence also
x) can be decoded. For that purpose, an arbitrary string
v ∈ RFs(n)∩RLLt−2(n) is generated in a fashion to be
described below, and interleaved with 1 0t−2 1 marker-
segments after every s positions; i.e., if v = v0 ◦ v1 ◦
· · · ◦ v⌈n/s⌉−1, where |vi| = s for all i ∈ [⌊n/s⌋] and∣∣v⌈n/s⌉−1

∣∣ ⩽ s, then

w′ ≜ v0 ◦ 1 0t−2 1 ◦ v1 ◦ 1 0t−2 1 ◦ · · · ◦ v⌈n/s⌉−1.

Clearly, w′ ∈ RFs+t(n
′′) ∩ RLLt−1(n

′′), where n′′ ≜
|w′| ⩾ n. It is straightforward that the only instances
of 0t−2 in w′ are the markers interleaved into it. Based on
these observations, it is proven similarly to [11, Lem. 23]
that

ŵ ≜ w ◦ 1 0t−1 1 ◦w′

is (s + 2t − 2) = (⌈log(n)⌉ + 3t)-repeat-free and t-
run-length-limited; this is done by observing that any
substring of this length of ŵ contains markers (potentially
unless it is a substring of w, in which case the absence
of markers indicates that fact), their length ((t − i) for
i ∈ {1, 2, 3}) indicates which portion of of ŵ it is taken
from, and if it does not cover the unique instance of 0t−1

in ŵ then it contains s consecutive symbols of either w
or v, hence is unique.
Observe that by the upper bound on t, ŵ is ℓ(n)-repeat-
free. Also, the n-prefix of ŵ contains w ◦ 1 0t−1 1,
hence w can uniquely be extracted from it. That prefix
is therefore output as the encoded information.

5) Finally, it remains to describe how any arbitrary v ∈
RFs(n) ∩ RLLt−2(n) might be generated (a single
example suffices). To achieve this, any total order on Σ
is chosen where 0 is the minimum, and 1 the maximum.
For a string u ∈ Σs, let its necklace be the lexi-
cographic least cyclic rotation of u, and its periodic-
reduction be the minimum period of u. It was shown
in [12] that concatenating in lexicographic order periodic-
reductions of necklaces of length s produces a de Bruijn
sequence b ∈ Σqs (in fact, this is the lexicographically
least de Bruijn sequence of that length).
The last instance of 0t in b is in the necklace 0t 1s−t

(since only the “0” necklace ends with 0, and the longest
zero-run in any necklace appears at its beginning). Hence,
letting i ∈ [qs] be the unique location such that bi+[s] =

0t 1s−t, we let v ≜ bqs−n+[n] and to conclude we need
only show that qs − n > i.
This was done in [11, Lem. 20] in case that s is prime,
and we generalize for all s; we do so by counting∣∣{bj+[s] : i < j ⩽ qs − s

}∣∣ = qs − s − i. By the proof
of [12, Th. 4] every u ∈ Σs appears in b in a location
intersecting the appearance of the periodic-reduction of
its necklace, potentially unless u0 = 1.
Observe that it is sufficient that u ∈ RLLt(s) satisfies
us−1 ̸= 0 for its necklace to be greater than 0t 1s−t;

5

therefore for all u ∈ RLLt(s − 2) and u′, u′′ ∈ Σ
satisfying u′ ̸= 1, u′′ ̸= 0 there exists j > i such that
bj+[s] = u′ ◦ u ◦ u′′. It follows that

qs − s− i =
∣∣{bj+[s] : i < j ⩽ qs − s

}∣∣
⩾ (q − 1)2|RLLt(s− 2)|
(∗)
⩾ (q − 1)2q(s−2)(1−2q−t)

⩾ (q − 1)2n(1+t/ log(n))(1−2q−t),

where (∗) is justified by [21, Lem. 3] for sufficiently
large t. Since t > ⌈log log(n)⌉, for sufficiently large n
we have (1 + t/ log(n))(1− 2q−t) > 1, as required.

Finally, redundancy of this construction is t + 1, plus the
redundancy of encoding into RLLt−3(n − t − 1); Lemma 4
now concludes the proof.

In summary, we have the following corollary:

Corollary 6 By Lemma 1, RFℓover(n) forms an (ℓmin, ℓover)-
trace code in Σn, which by Theorem 5 has 1 − on(1) rate
whenever ℓover ⩾ ⌈log(n)⌉+ 3⌈log log(n)⌉+ 12.

In the sequel, we therefore focus on the complement, unsolved
case of lim sup ℓover/ log(n) ⩽ 1.

IV. BOUNDS

In this section we demonstrate an upper bound on the
achievable asymptotic rate of (ℓmin, ℓover)-trace codes.

Lemma 7 Any multi-strand (ℓmin, ℓover)-trace code C ⊆ Xn,k

satisfies

|C| ⩽

(
k
⌈

n−ℓover
ℓmin−ℓover

⌉
+ qℓmin

qℓmin

)
.

Proof: Since Lℓover
ℓmin

(x) ∈ T ℓover
ℓmin

(x) for all x ∈ Σn, we
have

|C| ⩽
∣∣∣{Lℓover

ℓmin
(S) : S ∈ Xn,k

}∣∣∣.
Similarly to the argument used in [5], we count the inci-

dences of each possible u ∈ Σℓmin in Lℓover
ℓmin

(S), resulting in
fS : Σ

ℓmin → N (dubbed a profile-vector in [5]). Observe that∑
u∈Σℓmin fS(u) = k

(
1 +

⌈
n−ℓmin

ℓmin−ℓover

⌉)
= k

⌈
n−ℓover

ℓmin−ℓover

⌉
;

thus, we have an embedding of
{
Lℓover
ℓmin

(S) : S ∈ Xn,k

}
intof ∈ Nqℓmin

:
∑

i∈[qℓmin]

f i = k

⌈
n− ℓover

ℓmin − ℓover

⌉,

and therefore

|C| ⩽

(
k
⌈

n−ℓover
ℓmin−ℓover

⌉
+ qℓmin − 1

qℓmin − 1

)
,

which concludes the proof.

Lemma 8 For k = 1, if ℓmin = a log(n)+On(1) and ℓover =
γℓmin + On(1), for some a > 1 and 0 ⩽ γ ⩽ 1

a , then any
(ℓmin, ℓover)-trace code C ⊆ Σn satisfies

R(C) ⩽ 1− 1/a

1− γ
+O

(
log log(n)

log(n)

)
.

(Note that γ is a linear scaling of the required overlap between
consecutive segments, in proportion to their required minimum
length. We scale that minimum length linearly with log(n)
(where the constant a indicates the ratio), a decision informed
by the statement of this lemma, and the succeeding corollary.
Finally, observe that in this notation, 1−1/a

1−γ ⩽ 1 if and only
if lim ℓover/ log(n) = γa ⩽ 1.)

Proof: From the known bound u! > (u/e)u we observe
for all v ⩾ u > 0 that

log

(
u+ v

u

)
⩽ log

(u+ v)u

u!
< log

((
e
u (u+ v)

)u)
= u

(
log(e) + log

(
1 + v

u

))
= u

(
log(e) + log

(
u
v + 1

)
+ log

(
v
u

))
< u

(
2 log(e) + log

(
v
u

))
,

where the last inequality holds since u
v + 1 ⩽ 2 < e.

Letting v ≜ qℓmin and u ≜
⌈

n−ℓover
ℓmin−ℓover

⌉
< v, we observe

that log(vu) = O(log(n)) and log(u) ⩾ log(n − ℓover) −
log log(n) +O(1); observing

log(n− ℓover) = log(n) + log
(
1− ℓover

n

)
⩾ log(n)− log(e)ℓover

n− ℓover

= log(n)−O

(
log(n)

n

)
,

where we used ln(1 − x) ⩾ −x
1−x , we summarize log(u) ⩾

log(n)− log log(n) +O(1).
Next, by Lemma 7 |C| ⩽

(
u+v
u

)
, hence we have

log|C| ⩽
(

n− ℓover
ℓmin − ℓover

+ 1

)(
log
(
v
u

)
+ 2 log(e)

)
=

n
(
log
(
v
u

)
+ 2 log(e)

)
ℓmin − ℓover

+O
(
log
(
v
u

))
= n

log(v)− log(u)

ℓmin − ℓover
+O

(
n

log(n)

)
+O(log(n))

= n

(
log(v)− log(u)

ℓmin − ℓover
+O

(
1

log(n)

))
⩽ n

(
ℓmin − log(n)

ℓmin − ℓover
+O

(
log log(n)

log(n)

))
= n

(
1− 1/a

1− γ
+O

(
log log(n)

log(n)

))
.

In particular, Lemma 8 implies the following lower bound
on ℓmin for the existence of codes with asymptotically non-
vanishing rates.

Corollary 9 Take (ℓ
(n)
min)n>0, (ℓ

(n)
over)n>0, and let Cn ⊆ Σn be

(ℓ
(n)
min, ℓ

(n)
over)-trace codes. If lim supn ℓ

n
min/ log(n) ⩽ 1, then

R(Cn) = on(1).

6

Proof: Since Cn are also (ℓ′min
(n), 0)-trace codes for

ℓ′min
(n) ⩾ ℓ

(n)
min, it follows from Lemma 8 that R(Cn) ⩽

1−1/a
1−0 + o(1) for all a > 1, hence the claim follows.

V. A CONSTRUCTION OF TRACE CODES

In this section we present an efficient encoder for
(ℓmin, ℓover)-trace codes (i.e., in the case k = 1),
achieving asymptotically optimal rate, for the case
lim sup ℓover/ log(n) ⩽ 1 (complementing the results
of Section II). Throughout the section, we let

ℓmin ≜ ⌈a log(n)⌉;
ℓover ≜ ⌈γℓmin⌉, (1)

for some a > 1 and 0 < γ ⩽ 1/a. Further, we let f be
any integer function satisfying f(n) = o(log(n)) and f(n) ⩾
log log(n) + 4, and finally

I ≜

⌈
1− γa

1− γ
log(n) + (log(n))0.5+ϵ

⌉
, (2)

for some small ϵ > 0. In our construction, I is the number
of symbols dedicated to (unencoded-)indices, which are then
partitioned into length-f(n) fragments, as described below.
When analyzing the redundancy of our construction, we shall
optimize it by a proper choice of f(n), in Theorem 15.

The main idea of the construction presented below of an
(ℓmin, ℓover)-trace code CA(n) is to encode an information
string x into (zi)i∈[qI] so that the following two proper-
ties are satisfied: (i) the index i can be decoded from any
ℓmin-substring of zi; and (ii) the string zi can be uniquely re-
constructed from an (ℓmin, ℓover)-trace of zi. This is performed
by interleaving segments of indices in appropriate locations in
the encoded strings. Then, we let

EncA(x) ≜ z = z0 ◦ · · · ◦ zqI−1 ∈ CA(n).

Before presenting the construction, we describe the method
of index-generation.

Definition 10 Let (ci)i∈[qI], ci ∈ ΣI be indices in ascend-
ing lexicographic order. We encode each ci independently
as follows (see Figure 4). Denoting F ≜ ⌈I/f(n)⌉, we
partition ci into F non-overlapping segments of equal lengths{
c
(h)
i

}
h∈[F]

; here and in the sequel, we say a string is
partitioned into non-overlapping segments of equal lengths if
c
(0)
i ◦ c(1)i ◦ · · · ◦ c(F−1)

i = ci and

∣∣c(h)i

∣∣ = {⌈I/F ⌉, h < I mod F ;

⌊I/F ⌋, otherwise.

Observe that
∣∣c(h)i

∣∣ ⩽ f(n) for all h ∈ [F]. We then denote
c′i

(h) ≜ 1 ◦ c(h)i ◦ 1. We refer to ci (or simply i) as an index
in the construction, and to

{
c′i

(h)
}
h∈[F]

as segments of an
encoded index.

Further, for N ⩽ n to be defined later, and ℓ > ⌈log(N)⌉+
3f(n), we denote the encoder of Theorem 5

ERF
N,ℓ : Σ

m(N) → RFℓ(N) ∩RLLf(n)+1(N).

!!

!

! "

"!
"#$%

! !

% ! "

"!
"#&%

! !

% ! "

"!
"#'(&%

!
!

!!

"!
#$%

"!
#&%

"!
#'(&%

! " % ! " % ! "
!

!

Figure 4. Index generation. Each index ci is first partitioned into F + 1
non-overlapping segments of length f(n). Then, each of the segments is
concatenated with a single 1 in each edge.

Here,

m(N) ≜ N − red(ERF
N,ℓ)

⩾ N

(
1− f(n) + 2

N
− q3

q − 2
q−f(n)

)
. (3)

(For q = 2, m(N) ⩾ N
(
1− f(n)+4

N − 24−t
)

.)

Construction A The encoding into zi, for all i ∈ [qI], is
performed as follows (see Figure 5). We denote

r ≜ I + 2F + f(n) + 4

= I +
2I

f(n)
+ f(n) +O(1), (4)

then define

ℓ ≜

⌈
ℓover − 2f(n)− 6

1 + (f(n) + 2)
/⌊

ℓmin−r
F

⌋⌉. (5)

(see Lemmas 11 and 12, respectively, for the reason for these
definitions). Also, for all i ∈ [qI]

Ni ≜

{⌈
q−In

⌉
−
⌈
n/(qIℓmin)

⌉
r, i < n mod qI ;⌊

q−In
⌋
−
⌈
n/(qIℓmin)

⌉
r, otherwise.

(6)

Now, for all i ∈ [qI] define yi ≜ ERF
Ni,ℓ

(xi) ∈ ΣNi , where
xi ∈ Σm(Ni) and

x = x0 ◦ x1 ◦ · · · ◦ xqI−1

is an arbitrary information string (see the proof of Theorem 15
for a choice of f(n) satisfying the conditions of Theorem 5,
hence assuring the existence of ERF

Ni,ℓ
).

Next, for all i ∈ [qI]

1) Partition yi into
⌈
n/(qIℓmin)

⌉
non-overlapping segments

of equal length

yi = yi,0 ◦ yi,1 ◦ · · · ◦ yi,⌈n/(qIℓmin)⌉−1.

2) For all j ∈ [
⌈
n/(qIℓmin)

⌉
]:

a) Partition each yi,j into F non-overlapping segments of
equal lengths

yi,j = y
(0)
i,j ◦ y(1)

i,j ◦ · · · ◦ y(F−1)
i,j .

7

Figure 5. Encoding xi into zi, as detailed in Construction A.

b) Combine
{
y
(h)
i,j : h ∈ [F]

}
with segments of the

encoded index i, as follows. Define for all h ∈ [F]

z
(h)
i,j ≜ y

(h)
i,j ◦ c′i(h),

then

zi,j ≜

{
1 0f(n)+1 1 1 ◦ z(0)

i,j ◦ · · · ◦ z(F−1)
i,j , j = 0;

1 0f(n)+1 0 1 ◦ z(0)
i,j ◦ · · · ◦ z(F−1)

i,j , j > 0

(we refer to the substrings 10f(n)+111, 10f(n)+101 as
synchronization markers).

3) Concatenate

zi ≜ zi,0 ◦ · · · ◦ zi,⌈n/(qIℓmin)⌉−1. □

First, we prove the correctness of Construction A. We begin
with two technical lemmas which are key to the proof of
correctness in Theorem 13.

Lemma 11 Every ℓmin-substring u of z ∈ CA(n) contains as
subsequences at least an (I − µ)-suffix of an index ci (see
Definition 10), and an µ-prefix of either ci or ci+1, for some
i ∈ [qI] and µ ∈ [I], in identifiable locations.

Proof: Note that

ℓmin − qIℓ2min/n ⩽
ℓmin

1 + qIℓmin/n
=

n/qI

n/(qIℓmin) + 1

⩽
n/qI

⌈n/(qIℓmin)⌉
⩽

⌈n/qI⌉
⌈n/(qIℓmin)⌉

⩽ ℓmin

Observing from Eq. (2) that qIℓ2min = o(n), and by sub-
tracting r from the above inequality, it holds from Eq. (6)
for sufficiently large n and all i ∈ [qI] that ℓmin − r −
1 ⩽ Ni/

⌈
n/(qIℓmin)

⌉
⩽ ℓmin − r. Hence also for all

j ∈ [
⌈
n/(qIℓmin)

⌉
] it holds that

ℓmin − r − 1 ⩽
∣∣yi,j

∣∣ ⩽ ℓmin − r. (7)

By part 2 of Construction A it follows that |zi,j | = |yi,j |+r ∈
{ℓmin, ℓmin − 1}.

Next, observe that instances of synchronization markers
only appear in z at the beginning of {zi,j}i,j . From the

last paragraph, either u contains a complete synchronization
marker as substring, or it contains a suffix-prefix pair whose
concatenation is an instance of a synchronization marker; in
both cases, the exact locations in which symbols of the indices{
c′i

(h)
}

appear can be determined. Extracting
{
ci

(h)
}

, these
contain a suffix of ci and a prefix of either ci, ci+1 (depending
on whether u is a substring of zi for some i) whose combined
lengths is I , again since for all i, j, |zi,j | ⩽ ℓmin and zi,j

contains all symbols of ci. Taking µ ∈ [I] to be the length of
the prefix (µ = 0 indicates the possibility that all symbols of
the same index appear in u) concludes the proof.

Lemma 12 Every ℓover-substring v of z ∈ CA(n) contains
at least ℓ consecutive symbols of y ≜ y0 ◦ · · · ◦ yqI−1 (see
Eq. (5)).

Proof: At worst, v either begins or ends with a complete
instance of a synchronization marker; hence the remaining
ℓover−f(n)−4 symbols are sampled from

{
z
(h)
i,j

}
, and again,

at worst end with a complete segment of an encoded index.
Since from Definition 10

∣∣c′i(h)∣∣ ⩽ f(n) + 2 and by Eq. (7)∣∣y(h)
i,j

∣∣ ⩾ ⌊ ℓmin−r
F

⌋
for all i, j, h, v contains at least⌈
ℓover − 2f(n)− 6

1 + (f(n) + 2)
/⌊

ℓmin−r
F

⌋⌉ = ℓ

consecutive symbols of y.
Combining both lemmas, we have the following theorem.

Theorem 13 For all admissible values of n, the code CA(n)
is an (ℓmin, ℓover)-trace code.

Proof: Take z ∈ CA(n) and let T ∈ T ℓover
ℓmin

(z), i.e., any
(ℓmin, ℓover)-trace of z.

For u ∈ T , we extract the (I − µ)-suffix of ci, and
an µ-prefix of either ci or ci+1, for some i, guaranteed by
Lemma 11. Observe that if this prefix belongs to ci+1, then
u also contains a complete synchronization marker 10f (n)11
(the instance appearing as prefix of zi+1), hence these two
cases may be distinguished. Further, note that the µ-prefix of
ci+1 equals the µ-prefix of ci, unless every symbol of the
(I − µ)-suffix of ci is (q − 1), in which case it is the q-ary
expansion of the successor natural number to that prefix. In
both cases, one can correctly deduce that the location of u in
z begins in the segment zi. It is therefore possible to partition
T by index i (corresponding to the starting location of each
substring).

For each substring u of index i, intersecting both yi,yi+1,
u must contain a complete synchronization marker 10f (n)11
(the instance appearing as prefix of zi+1); hence its location in
u implies the exact location of u in z. For all other substrings
of index i, it holds by Lemma 12, and since each yi is ℓ-
repeat-free, that there exist a unique way to concatenate these
substrings (excluding overlap) as shown in Lemma 1.

Finally, once z is reconstructed we may extract {yi}i∈[qI],
then decode {xi}i∈[qI] with the decoder of ERF

N,ℓ .
Next, we analyze R(CA(n)). First, we require a simplified

(asymptotic) expression for ℓ, used in Construction A for
repeat-free encoding, which we derive in the next lemma.

8

Lemma 14 Denoting λ ≜ 1− I
ℓmin

, we have

ℓ = λℓover −O

(
f(n) +

log(n)

f(n)

)
.

Proof: Recall the definition ℓ =
⌈

ℓover−2f(n)−6

1+(f(n)+2)
/⌊

ℓmin−r

F

⌋⌉
in Eq. (5), where F = ⌈I/f(n)⌉ and r is defined in Eq. (4).
We begin by observing

f(n) + 2⌊
ℓmin−r

F

⌋ =
F (f(n) + 2)

ℓmin − r −O(F)

=
I +O(f(n))

ℓmin − I − 2I
f(n) −O

(
f(n) + log(n)

f(n)

)
=

I

ℓmin − I
·

1 +O
(

f(n)
log(n)

)
1−O

(
1

f(n) +
f(n)
log(n)

)
=

I

ℓmin − I
+O

(
1

f(n)
+

f(n)

log(n)

)
=

1− λ

λ
+O

(
1

f(n)
+

f(n)

log(n)

)
,

where the second to last equality is justified by 1
1−x = 1 +

x + x2

1−x for x ̸= 1, and since from Equations (1) and (2)
I

ℓmin−I = O(1). Finally,

ℓ =
ℓover − 2f(n)− 6

1 + 1−λ
λ +O

(
1

f(n) +
f(n)
log(n)

) +O(1)

=
λℓover −O(f(n))

1 +O
(

1
f(n) +

f(n)
log(n)

) +O(1)

= (λℓover −O(f(n)))

(
1−O

(
1

f(n)
+

f(n)

log(n)

))
= λℓover −O

(
log(n)

f(n)
+ f(n)

)
,

where again the second to last equality is based on 1
1−x =

1 + x+ x2

1−x .
Based on this property, we show that Construction A

asymptotically meets the bound of Lemma 8.

Theorem 15 Letting f(n) ≜
⌈√

log(n)
⌉

, the use of Theo-
rem 5 in Construction A is justified, and we have

R(CA(n)) ⩾
1− 1/a

1− γ
− (log(n))ϵ

a
√
log(n)

−O

(
1√

log(n)

)
.

Proof: We start by noting from Equations (1), (2) and (4)

I

ℓmin
=

1−γa
1−γ + (log(n))ϵ−0.5 +O

(
1

log(n)

)
a+O

(
1

log(n)

)
=

1−γa
1−γ + (log(n))ϵ−0.5

a

(
1 +O

(
1

log(n)

))
=

1/a− γ

1− γ
+

(log(n))ϵ

a
√
log(n)

+O

(
1

log(n)

)
,

and

r

ℓmin
=

I
(
1 +O

(
1

f(n) +
f(n)
log(n)

))
ℓmin

=
I

ℓmin
+O

(
1

f(n)
+

f(n)

log(n)

)
=

1/a− γ

1− γ
+

(log(n))ϵ

a
√
log(n)

+O

(
1√

log(n)

)
.

Now, from Eq. (6)

Ni ⩾
⌊
n/qI

⌋
−
⌈
n/(qIℓmin)

⌉
r

⩾ q−In(1− r/ℓmin)− (r + 1)

= q−In
(
1− r

ℓmin
− qI(r+1)

n

)
= Ω(q−In),

hence

log(Ni) ⩾ log(n)− I +O(1)

=
(a− 1)γ

1− γ
log(n)− (log(n))0.5+ϵ +O(1).

In particular for sufficiently large n we have

f(n) ⩾ ⌈log log(Ni)⌉+ 5. (8)

Next, by Lemma 14,

ℓ =

(
1− I

ℓmin

)
ℓover −O

(
f(n) +

log(n)

f(n)

)
=

(
1− 1/a

1− γ
− (log(n))ϵ

a
√
log(n)

)
γa log(n)−O

(√
log(n)

)
=

(a− 1)γ

1− γ
log(n)− γ(log(n))0.5+ϵ −O

(√
log(n)

)
.

Hence

ℓ− ⌈log(Nn,ℓ(m))⌉ = (1− γ)(log(n))0.5+ϵ −O
(√

log(n)
)

> 3f(n) (9)

for sufficiently large n. Together, Equations (8) and (9) satisfy
the conditions of Theorem 5, allowing us to efficiently encode
yi = ERF

Ni,ℓ
(xi) ∈ RFℓ(Ni) (and vice versa, decode xi) while

attaining from Eq. (3) m(Ni)
Ni

⩾ 1 − f(n)+2
Ni

− q3

q−2q
−f(n) =

1−O(q−f(n)), where the coefficient of the asymptotic notation
does not depend on i. Hence,∑

i∈[qI]

m(Ni) ⩾
(
1−O(q−f(n))

) ∑
i∈[qI]

Ni

=
(
1−O(q−f(n))

)(
n− qI

⌈
n/(qIℓmin)

⌉
r
)

⩾ n
(
1−O(q−f(n))

)(
1− r

ℓmin
− qIr

n

)
,

where the equality on the second line follows from Eq. (6),
which concludes the proof.
From the proof of Theorem 15 we note that ϵ in Construc-
tion A must satisfy ϵ ⩾ max

{
log(f(n))
log log(n) , 1−

log(f(n))
log log(n)

}
− 0.5;

it follows that the choice f(n) =
⌈√

log(n)
⌉

is optimal, in
the sense that log(f(n))

log log(n) =
1
2 + o(1).

9

VI. MULTI-STRAND RECONSTRUCTION FROM
SUBSTRING-COMPOSITIONS

In this section, we study an extension of the reconstruction
from substring-compositions problem, i.e., (ℓ, ℓ − 1)-trace
codes, to multisets of strings, i.e, to codes over Xn,k for k > 1.
For a string x ∈ Σn we denote for brevity an (ℓ, ℓ− 1)-trace
of x, T ℓ−1

ℓ (x) and Lℓ−1
ℓ (x) by an ℓ-trace, Tℓ(x) and Lℓ(x),

respectively. We say Lℓ(x) in particular is the ℓ-profile of x,
the multiset of all of its ℓ-substrings.

We shall assume throughout in asymptotic analysis that
as n grows, lim sup log(k)

n < 1, which is most relevant
in applications (see, e.g., [10] for an overview of typical
string-lengths in applications); the complement case is of
independent theoretical interest, and is left for future work.
Hence, we have the following lemma.

Lemma 16 log|Xn,k| = k(n− log(k/e)) + o(k) = Θ(nk).

Proof: From Stirling’s approximation we have (k/e)k ⩽
k! ⩽ e

√
k(k/e)k, implying

1

e
√
k

(
qn

k/e

)k

⩽
qnk

k!
⩽ |Xn,k| ⩽

(qn + k)k

k!

⩽

(
qn(1 + k/qn)

k/e

)k

.

For a multi-strand ℓ-trace code C we have from Lemma 7
that |C| ⩽

(
nk+qℓ

qℓ

)
. A corollary of Lemma 8 is therefore stated:

Corollary 17 Assume lim sup log(k)
n < 1. If log(nk) − ℓ =

ωnk(1) then for any multi-strand ℓ-trace code C ⊆ Xn,k it
holds that

R(C) = onk(1).

Proof: By the observation in the proof of Lemma 8

R(C) ⩽ 1

|Xn,k|
log

(
nk + qℓ

qℓ

)
= O

(
qℓ

nk
(2 log(e) + log(nk)− ℓ)

)
,

where the equality follows from Lemma 16.
On the other hand, recall from Corollary 2 that

RFℓ(n, k) ⊆ Xn,k is a multi-strand (ℓ+ 1)-trace code. Next,
we show in contrast to Corollary 17 that if ℓ − log(nk) =
ωnk(1), then R(RFℓ(n, k)) = 1 − onk(1). We shall do so
by presenting two explicit constructions of multi-strand ℓ-
repeat-free codes with efficient encoders and decoders. For
convenience, we assume all quantities to have integer values;
a straightforward adjustment of the described methods applies
for all values.

A. Index-based construction

Construction B Denote n′ ≜ (n− log(k))k, and take m such
that E : Σm → RFℓ′(n

′) is any repeat-free encoder, for a
given ℓ′. Let x ∈ Σm be an arbitrary information string, and
encode it into y ≜ E(x). Take y0, . . . ,yk−1 ∈ Σn−log(k)

such that y = y0 ◦y1 ◦ · · · ◦yk−1. Let ci ∈ Σlog(k) be a q-ary
expansion of i ∈ [k]. Denote ỹi ≜ ci ◦ yi; then,

EncB(x) ≜ {{ỹi : i ∈ [k]}} ∈ Xn,k. □

We denote CB(n, k) ≜ EncB(Σ
m). The decoding success

of Construction B follows from the next lemma.

Lemma 18 CB(n, k) ⊆ RFℓ(n, k), where ℓ = ℓ′ + log(k).

Proof: For x ∈ Σm, note that y ≜ EncB(x) = y0 ◦ y1 ◦
· · · ◦ yk−1 ∈ RFℓ′(n

′) and thus ∥Lℓ′(y)∥ = n′ − ℓ′ + 1. It
follows that ∥Lℓ′({{yi : i ∈ [k]}})∥ = (n′ − ℓ′ + 1) − (k −
1)(ℓ′ − 1) = k(n− ℓ+ 1).

Now, let u,v be ℓ-substrings of ỹi, ỹj respectively; note
that the ℓ′-suffixes of u,v are ℓ′-substrings of yi,yj respec-
tively, and hence if u = v then i = j and their locations in
yi agree. It follows that the locations of u,v in ỹi agree as
well, and the claim follows.

Recall, then, that given Lℓ+1(EncB(x)), an efficient algo-
rithm produces the set of strings {ỹi : i ∈ [k]}. Then, by
ordering and subsequent removal of the length-log(k) indices
from these strings, one obtains the string y = E(x), and
consequently, x. Note that the role of the indices in this
construction is crucial to deduce y from its ℓ-profile; without
indices the order of these k substrings could not have been
derived, hence one would only obtain y up to a permutation
of its non-overlapping (n′/k)-substrings. The next theorem
analyzes the parameters of codes that can be constructed using
Construction B based upon Lemma 3 and Theorem 5.

Theorem 19 Given ℓ(n, k), denote f(n, k) ≜ ℓ(n, k) −
log(nk) − log(k). Further, let ℓ′ ≜ ℓ(n, k) − log(k). Here,
we assume Construction B is operated with n, k, ℓ′. Observe

ℓ′ − log(n′) = f(n, k)− log

(
1− log(k)

n

)
⩾ f(n, k).

1) If f(n, k) ⩾ 3 log log(nk) + 12 then utilizing Theorem 5
in Construction B we obtain

R(CB(n, k)) ⩾ 1− q4−⌊f(n,k)/3⌋

q − 2
− log(e)

n− log(k)
− o
(
1
n

)
.

(For q = 2 that is R(CB(n, k)) ⩾ 1 − 25−⌊f(n,k)/3⌋ −
log(e)

n−log(k) − o
(
1
n

)
.)

2) If f(n, k) ⩾ log(nk)+2+2 log
(
1− log(k)

n

)
then utilizing

Lemma 3 in Construction B we have

R(CB(n, k)) ⩾ 1− log(e)

n− log(k)
− o
(
1
n

)
.

Proof:
1) Note that by the assumption, Theorem 5 may be applied

for some choice of t. Since Construction B does not
require y to be run-length constrained, we let t ≜
⌊(ℓ′ − log(n′))/3⌋ and observe

m ⩾ n′ − t− 1−
⌈

q4

q−2n
′/qt⌉

= n′ −
⌈

q4

q−2n
′/q⌊(ℓ′−log(n′))/3⌋

⌉
⩾
(
1− q4

q−2q
−⌊f(n,k)/3⌋

)
k(n− log(k))− 1.

10

(For q = 2, that is m ⩾
(
1− 25−⌊f(n,k)/3⌋)k(n −

log(k))− 3.)
It then follows from Lemma 16 that

R(CB(n, k)) =
m

log|Xn,k|

⩾

(
1− q4−⌊f(n,k)/3⌋

q−2

)
k(n− log(k))− 1

k(n− log(k/e)) + o(k)

=
1− q4−⌊f(n,k)/3⌋

q−2 − 1
(n−log(k))k

1 + log(e)+o(1)
n−log(k)

= 1− q4−⌊f(n,k)/3⌋

q − 2
− log(e)

n− log(k)
− o
(
1
n

)
,

where again the last equality follows from 1
1−x = 1 +

x + x2

1−x , and from the observation n − log(k) = Θ(n).
(Similarly for q = 2.)

2) Equivalently, ℓ′ ⩾ 2 log(n′) + 2, hence by Lemma 3 we
have m = n′− 1. Following the same steps as in the last
part,

R(CB(n, k)) =
m

log|Xn,k|

⩾ 1− log(e)

n− log(k)
− o
(
1
n

)
.

B. Overlap-based construction

While in Construction B we added indices in order to
overcome the lack of ordering when the string y = E(x)
is partitioned into k substrings, in Construction C we tackle
this constraint differently. To wit, we again partition y, but
include overlapping segments between consecutive substrings.
The overlapping segments will guarantee in decoding that,
given the set of k substrings, there will be a unique way
to concatenate them into one long string. As opposed to
Construction B, this approach eliminates the need to decrease
the length used for repeat-free encoders with respect to that
of the read substrings, i.e., ℓ.

Construction C For a given ℓ, denote n′ ≜ nk− (k− 1)ℓ =
(n− ℓ)k+ ℓ, and take m such that E : Σm → RFℓ(n

′) is any
repeat-free encoder. Let x ∈ Σm be an arbitrary information
string, and encode it into y ≜ E(x). Define k length-n strings
y0, . . . ,yk−1 ∈ Σn by segmenting y with an overlap of ℓ
symbols between consecutive segments; more precisely, let
yi ≜ (yi,1, . . . , yi,n) for i ∈ [k], where

yi,j ≜ yi(n−ℓ)+j ; j ∈ [n].

Then,

EncC(x) ≜ {{yi : i ∈ [k]}} ∈ Xn,k. □

We denote CC(n, k) ≜ EncC(Σ
m). The decoding success of

Construction C follows from the following simple observation.

Lemma 20 For all x ∈ Σm it holds that Lℓ+1(y) =
Lℓ+1(EncC(x)).

Proof: Since yi is a substring of y for all i, it follows that
Lℓ+1(EncC(x)) ⊆ Lℓ+1(y). For the other direction, note that
yi,yi+1 are overlapping substrings of y for all 1 ⩽ i < k,
with a common substring of length ℓ; thus all (ℓ+1)-substrings
of y are also substrings of some yi.

Lemma 20 immediately implies the next corollary.

Corollary 21 CC(n, k) ⊆ RFℓ(n, k).

Proof: By Lemma 20 and since y ∈ RFℓ(n
′).

We are now ready to analyze the code parameters that
Construction C can achieve, again based on Lemma 3 and The-
orem 5.

Theorem 22 Given ℓ(n, k), denote f(n, k) ≜ ℓ(n, k) −
log(nk).

1) If f(n, k) ⩾ 3 log log(nk) + 12 then utilizing Theorem 5
in Construction C we obtain

R(CC(n, k)) ⩾ 1− q4−⌊f(n,k)/3⌋

q − 2
−

− (1 + o(1))
log(n) + f(n, k)

n− log(k)
.

(for q = 2, that is R(CC(n, k)) ⩾ 1 − 25−⌊f(n,k)/3⌋ −
(1 + o(1)) log(n)+f(n,k)

n−log(k)).

2) If f(n, k) ⩾ log(nk)+2+2 log
(
1−

(
1− 1

k

) ℓ(n,k)
n

)
then

utilizing Lemma 3 in Construction C we have

R(CC(n, k)) ⩾ 1− (1 + o(1))
log(n) + f(n, k)

n− log(k)
.

Proof: Recalling from Construction C that n′ = nk −
(k − 1)ℓ(n, k), we begin by observing

n′

nk
= 1−

(
1− 1

k

)
ℓ(n, k)

n

= 1− log(k)

n
− (1 + o(1))

log(n) + f(n, k)

n
,

hence ℓ(n, k)−log(n′) = ℓ(n, k)−log(nk)+O(1) = f(n, k)+
O(1). Also, by multiplying the above equality with n

n−log(k)
we have have

n′

(n− log(k))k
= 1− (1 + o(1))

log(n) + f(n, k)

n− log(k)
.

Next,
1) As in the proof of Theorem 19,

m ⩾
(
1− q4

q−2q
−⌊f(n,k)/3⌋

)
n′ − 1,

and following the same steps

R(CC(n, k)) =
m

log|Xn,k|

⩾ 1− q4−⌊f(n,k)/3⌋

q − 2
−

− (1 + o(1))
log(n) + f(n, k)

n− log(k)
.

11

Figure 6. Trade-off of window-length to constructions’ rates.

2) Again, we have ℓ(n, k) ⩾ 2 log(n′)+2, hence m = n′−1.
It follows that

R(CC(n, k)) = 1− (1 + o(1))
log(n) + f(n, k)

n− log(k)
.

We note that inherent to Construction C is that the last step
might introduce more redundancy than is required for repeat-
free encoding. Indeed, for f(n, k) ⩾ 3 log(n) the latter term
in Theorem 22 becomes significant, and the construction’s rate
is then correspondingly decreasing in f(n, k); this is an oddity
since RFℓ1(n, k) ⊆ RFℓ2(n, k) for all ℓ1 ⩽ ℓ2.

C. Constructions’ rates

In this section we study the performance of the two
proposed constructions. We first seek to give a converse to
Corollary 17 and establish the result on the minimum value
of ℓ which guarantees that the asymptotic rate of multi-strand
ℓ-reconstruction codes (in fact, RFℓ−1(n, k)) is 1. This result
is established in the next corollary using Construction C.

Corollary 23 For n, k satisfying lim sup log(k)
n < 1 and

for ℓ ⩾ log(nk) + 3 log log(nk) + 12, it holds that
R(RFℓ(n, k)) = 1− onk(1).

Note that if one aims to achieve rate 1 − o(1) using
Construction B, then the minimum value of ℓ(n, k) should
be log(nk2) + 3 log log(nk) + 12, i.e., there exists a gap of
log(k) with respect to the result in Corollary 23. However, for
comparable values of ℓ(n, k), Construction B may offer better
code rate; a comparison of the rates of both constructions,
based on Theorems 19 and 22, for applicable values of ℓ(n, k)
is illustrated in Figure 6, in context of the lower bound
of Corollary 17. The following observation follows from these
results.

Lemma 24 R(CB(n)) > R(CC(n)) for sufficiently large n if

1) ℓ(n, k) ⩾ log(n2k3) + 2 + 2 log
(
1− log(k)

n

)
; or

2) if k = Ω(n2), for ℓ− log(n4k2)+3 log log(n4k) = ω(1);
or

3) if log(k) = ω(
√
n), for ℓ ⩾ log(nk2)+3 log log(nk)+12.

Proof: Clearly the claim holds if ℓ(n, k) ⩾ log(n2k3) +

2 + 2 log
(
1− log(k)

n

)
by part 2 of Theorem 19, satisfying

part 1.
For lower values of ℓ = ℓ(n, k), suffice that ℓ−log(k)

n =

ω
(

3

√
nk2

qℓ

)
. Reorganizing q(ℓ−log(k))/3(ℓ − log(k))/3 =

ω
(

3
√
n4k

)
, we equivalently have ln(q)

3 (ℓ − log(k)) =

W0

(
3
√
n4k

)
+ ω(1), where W0(x) = ln(x)− ln ln(x) + o(1)

is the principal brunch of the Lambert W function. Hence, a
sufficient condition is that

ℓ− log(n4k2) + 3 log log(n4k) = ω(1). (10)

For part 2, observe that(
log(n2k3) + 2 + 2 log

(
1− log(k)

n

))
− log(n4k2) + 3 log log(n4k)

= log(k/n2) + 3 log log(n4k) +O(1),

hence k = Ω(n2) ensures that there exist values of ℓ satisfying
both Eq. (10) and ℓ < log(n2k3)+2+2 log

(
1− log(k)

n

)
, i.e.,

not already covered by part 1.
Finally, part 3 is justified by(

log(nk2) + 3 log log(nk) + 12
)

− log(n4k2) + 3 log log(n4k)

= 3 log

(
log(nk) log(n4k)

n

)
+ 12,

and the observation that log(nk) log(n4k) = ω(n) if and only
if log(k) = ω(

√
n).

VII. CONCLUSION

In this work, we generalized both the reconstruction from
substring-composition problem, and the torn-paper problem,
by studying an intermediate setting of partial overlap between
read substrings. Our analysis is done in worst-case (i.e.,
adversarial) regime, as opposed to the probabilistic treatment
of this problem in [30]. For the case of a single string
(k = 1), we proved an upper bound on achievable code rates
(implying in particular a lower bound on the length of read
substrings, required for asymptotically non-vanishing codes’
rates), and developed an efficient construction asymptotically
achieving optimal rate. Pleasingly, at the two extreme points,
Construction A essentially degenerates to known constructions
for either the torn-paper channel [2] (for γ = 0) or for
reconstruction from substring-composition [11] (for γ → 1/a).
Finally, we demonstrate that like in the torn-paper extreme, one
may also extend solutions to the reconstruction from substring-
composition problem to multiset-codes. It is left for future
work to extend the intermediate setting in this fashion.

Before concluding, we suggest that one might consider a
slightly different channel definition to that of Section VI,
where the k strands are required to be distinct from one
another, i.e., when information is stored in the space

X ∗
n,k ≜ {S ⊆ Σn : |S| = k}.

12

A priori, it seems feasible that the added restriction might
allow for lower redundancy (when measured in X ∗

n,k). How-

ever, we note that
∣∣∣X ∗

n,k

∣∣∣ = (qnk), thus a similar development
to Lemma 16 yields

(qn − k)k

k!
⩽
∣∣X ∗

n,k

∣∣ ⩽ qnk

k!
.

It follows that log
∣∣∣X ∗

n,k

∣∣∣ = k(n − log(k/e)) + o(k) as well.
A careful examination reveals that Constructions B and C
actually encode into X ∗

n,k ∩RFℓ(n, k), and hence the results
of this work also hold for that setup of the problem.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the two anonymous
reviewers, and associate editor, whose insight and suggestions
helped shape this paper and greatly improve its presentation.

REFERENCES

[1] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” SIAM J. Discrete Math.,
vol. 29, no. 3, pp. 1340–1371, 2015.

[2] D. Bar-Lev, S. Marcovich, E. Yaakobi, and Y. Yehezkeally, “Adversarial
torn-paper codes,” in Proceedings of the 2022 IEEE International
Symposium on Information Theory (ISIT), Espoo, Finland, Jun. 2022,
pp. 2934–2939.

[3] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing
strings from random traces,” in Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’04), New Orleans, LA,
USA. Society for Industrial and Applied Mathematics, Jan. 2004, pp.
910–918.

[4] G. Bresler, M. Bresler, and D. Tse, “Optimal assembly for high
throughput shotgun sequencing,” BMC Bioinformatics, vol. 14, no. 5,
p. S18, Jul. 2013.

[5] Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of DNA
sequence profiles for practical values of read lengths,” IEEE Trans. on
Inform. Theory, vol. 63, no. 11, pp. 7166–7177, Nov. 2017.

[6] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace
reconstruction,” IEEE Trans. on Inform. Theory, vol. 66, no. 10, pp.
6084–6103, Oct. 2020.

[7] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake,
C. Heiner, A. Clum, A. Copeland, J. Huddleston, E. E. Eichler, S. W.
Turner, and J. Korlach, “Nonhybrid, finished microbial genome assem-
blies from long-read SMRT sequencing data,” Nature Methods, vol. 10,
no. 6, pp. 563–569, Jun. 2013.

[8] J. Chrisnata, H. M. Kiah, S. Rao, A. Vardy, E. Yaakobi, and H. Yao, “On
the number of distinct k-decks: Enumeration and bounds,” in Proceed-
ings of the 2019 19th International Symposium on Communications and
Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, Vietnam,
Sep. 2019, pp. 519–524.

[9] M. Dudık and L. J. Schulman, “Reconstruction from subsequences,”
J. Combin. Theory Ser. A, vol. 103, no. 2, pp. 337–348, Aug. 2003.

[10] M. Eisenstein, “Enzymatic DNA synthesis enters new phase,” Nature
Biotechnology, vol. 38, no. 10, pp. 1113–1115, Oct. 2020.

[11] O. Elishco, R. Gabrys, M. Médard, and E. Yaakobi, “Repeat-free codes,”
IEEE Trans. on Inform. Theory, vol. 67, no. 9, pp. 5749–5764, Sep.
2021.

[12] H. Fredricksen and J. Maiorana, “Necklaces of beads in k colors and
k-ary de Bruijn sequences,” Discrete Mathematics, vol. 23, no. 3, pp.
207–210, 1978.

[13] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Trans. on Inform. Theory, vol. 65,
no. 12, pp. 7682–7696, Dec. 2019.

[14] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstruction of
sets of strings from prefix/suffix compositions,” IEEE Transactions on
Communications, vol. 71, no. 1, pp. 3–12, Jan. 2023.

[15] S. Ganguly, E. Mossel, and M. Racz, “Sequence assembly from cor-
rupted shotgun reads,” in Proceedings of the 2016 IEEE International
Symposium on Information Theory (ISIT), Barcelona, Spain, Jul. 2016,
pp. 265–269.

[16] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fun-
damental limits of DNA storage systems,” in Proceedings of the 2017
IEEE International Symposium on Information Theory (ISIT), Aachen,
Germany, Jun. 2017, pp. 3130–3134.

[17] A. R. Khan, M. T. Pervez, M. E. Babar, N. Naveed, and M. Shoaib, “A
comprehensive study of de novo genome assemblers: Current challenges
and future prospective,” Evolutionary Bioinformatics, vol. 14, Jan. 2018,
PMID: 29511353.

[18] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. on Inform. Theory, vol. 62, no. 6, pp. 3125–3146,
Jun. 2016.

[19] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “An upper bound
on the capacity of the DNA storage channel,” in Proceedings of the 2019
IEEE Information Theory Workshop (ITW), Visby, Sweden, Aug. 2019.

[20] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” J. Combin. Theory Ser. A, vol. 93,
no. 2, pp. 310–332, Feb. 2001.

[21] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA
storage,” IEEE Trans. on Inform. Theory, vol. 65, no. 6, pp. 3671–3691,
Jun. 2019.

[22] N. J. Loman, J. Quick, and J. T. Simpson, “A complete bacterial
genome assembled de novo using only nanopore sequencing data,”
Nature Methods, vol. 12, no. 8, pp. 733–735, Aug. 2015.

[23] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and P. Stockmeyer,
“Reconstruction of sequences,” Discrete Mathematics, vol. 94, no. 3, pp.
209–219, 1991.

[24] S. Marcovich and E. Yaakobi, “Reconstruction of strings from their
substrings spectrum,” IEEE Trans. on Inform. Theory, vol. 67, no. 7,
pp. 4369–4384, Jul. 2021.

[25] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to
coding for constrained systems,” Oct. 2001, unpublished Lecture Notes.
[Online]. Available: www.math.ubc.ca/~marcus/Handbook

[26] A. Motahari, K. Ramchandran, D. Tse, and N. Ma, “Optimal DNA
shotgun sequencing: Noisy reads are as good as noiseless reads,” in
Proceedings of the 2013 IEEE International Symposium on Information
Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 1640–1644.

[27] A. S. Motahari, G. Bresler, and D. N. C. Tse, “Information theory of
DNA shotgun sequencing,” IEEE Trans. on Inform. Theory, vol. 59,
no. 10, pp. 6273–6289, Oct. 2013.

[28] S. Nassirpour, I. Shomorony, and A. Vahid, “Reassembly codes for the
chop-and-shuffle channel,” arXiv preprint arXiv:2201.03590, 2022.

[29] A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of the torn paper
channel with lost pieces,” in Proceedings of the 2021 IEEE Interna-
tional Symposium on Information Theory (ISIT), Melbourne, Victoria,
Australia, Jul. 2021, pp. 1937–1942.

[30] ——, “Coded shotgun sequencing,” IEEE Journal on Selected Areas in
Information Theory, vol. 3, no. 1, pp. 147–159, Mar. 2022.

[31] S. L. Salzberg, “Mind the gaps,” Nature Methods, vol. 7, no. 2, pp.
105–106, Feb. 2010.

[32] A. D. Scott, “Reconstruction of sequences,” Discrete Mathematics, vol.
175, no. 1, pp. 231–238, 1997.

[33] I. Shomorony, T. Courtade, and D. Tse, “Do read errors matter for
genome assembly?” in Proceedings of the 2015 IEEE International
Symposium on Information Theory (ISIT), Hong Kong, China, Jun. 2015,
pp. 919–923.

[34] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” in Proceedings of the 2019 IEEE International Symposium on
Information Theory (ISIT), Paris, France, Jul. 2019, pp. 762–766.

[35] I. Shomorony, G. M. Kamath, F. Xia, T. A. Courtade, and D. N. Tse,
“Partial DNA assembly: A rate-distortion perspective,” in Proceedings of
the 2016 IEEE International Symposium on Information Theory (ISIT),
Barcelona, Spain, Jul. 2016, pp. 1799–1803.

[36] I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Trans. on
Inform. Theory, vol. 67, no. 12, pp. 7904–7913, Dec. 2021.

[37] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191–211,
1992.

[38] N. Weinberger and N. Merhav, “The DNA storage channel: Capacity
and error probability bounds,” IEEE Trans. on Inform. Theory, vol. 68,
no. 9, pp. 5657–5700, Sep. 2022.

[39] Y. Yehezkeally and N. Polyanskii, “On codes for the noisy substring
channel,” in Proceedings of the 2021 IEEE International Symposium on
Information Theory (ISIT), Melbourne, Victoria, Australia, Jul. 2021,
pp. 1700–1705.

13

Yonatan Yehezkeally (S’12–M’20) is the Carl Friedrich von Siemens post-
doctoral research fellow of the Alexander von Humboldt Foundation, in the
Associate Professorship of Coding and Cryptography (Prof. Wachter-Zeh),
School of Computation, Information and Technology, Technical University of
Munich. His research interests include coding for novel storage media, with
a focus on DNA-based storage and nascent sequencing technologies, as well
as combinatorial structures and finite group theory.

Yonatan received the B.Sc. (cum laude) degree in Mathematics, and the
M.Sc. (summa cum laude) and Ph.D. degrees in Electrical and Computer
Engineering, in 2013, 2017 and 2020 respectively, all from Ben-Gurion
University of the Negev, Beer-Sheva, Israel.

Daniella Bar-Lev (S’20) is a Ph.D. student in the Computer Science
Department at the Technion — Israel Institute of Technology. She received
the B.Sc. degrees in computer science and mathematics, and the M.Sc. degree
in computer science from the Technion — Israel Institute of Technology,
Haifa, Israel, in 2019 and 2021, respectively. Her research interests include
algorithms, discrete mathematics, coding theory, and DNA storage.

Sagi Marcovich (S’20) is a Ph.D. student in the Computer Science Depart-
ment at the Technion — Israel Institute of Technology. He received the B.Sc.
degree in software engineering and his M.Sc. degree in computer science
from the Technion — Israel Institute of Technology, Haifa, Israel in 2016
and 2021, respectively. His research interests include algorithms, information
theory, and coding theory with applications to DNA based storage.

Eitan Yaakobi (S’07–M’12–SM’17) is an Associate Professor at the Com-
puter Science Department at the Technion — Israel Institute of Technology. He
also holds a courtesy appointment in the Technion’s Electrical and Computer
Engineering (ECE) Department. He received the B.A. degrees in computer
science and mathematics, and the M.Sc. degree in computer science from the
Technion — Israel Institute of Technology, Haifa, Israel, in 2005 and 2007,
respectively, and the Ph.D. degree in electrical engineering from the University
of California, San Diego, in 2011. Between 2011-2013, he was a postdoctoral
researcher in the department of Electrical Engineering at the California
Institute of Technology and at the Center for Memory and Recording Research
at the University of California, San Diego. His research interests include
information and coding theory with applications to non-volatile memories,
associative memories, DNA storage, data storage and retrieval, and private
information retrieval. He received the Marconi Society Young Scholar in 2009
and the Intel Ph.D. Fellowship in 2010-2011. Since 2020, he serves as an
Associate Editor for Coding snd Decoding for the IEEE TRANSACTIONS
ON INFORMATION THEORY. Since 2016, he is affiliated with the Center
for Memory and Recording Research at the University of California, San
Diego, and since 2018, he is affiliated with the Institute of Advanced Studies,
Technical University of Munich, where he holds a four-year Hans Fischer
Fellowship, funded by the German Excellence Initiative and the EU 7th
Framework Program. He is a recipient os several grants, including the ERC
Consolidator Grant.

