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Reconstruction Codes for DNA Sequences with

Uniform Tandem-Duplication Errors
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Abstract—DNA as a data storage medium has several advan-
tages, including far greater data density compared to electronic
media. We propose that schemes for data storage in the DNA of
living organisms may benefit from studying the reconstruction
problem, which is applicable whenever multiple reads of noisy
data are available. This strategy is uniquely suited to the medium,
which inherently replicates stored data in multiple distinct ways,
caused by mutations. We consider noise introduced solely by
uniform tandem-duplication, and utilize the relation to constant-
weight integer codes in the Manhattan metric. By bounding the
intersection of the cross-polytope with hyperplanes, we prove the
existence of reconstruction codes with full rate, as well as suggest

a construction for a family of reconstruction codes.

Index Terms—DNA storage, reconstruction, string-duplication
systems, tandem-duplication errors

I. INTRODUCTION

D
NA is attracting considerable attention in recent years

as a medium for data storage, due to its high density

and longevity [8]. Data storage in DNA may provide inte-

gral memory for synthetic-biology methods, where such is

required, and offer a protected medium for long-period data

storage [4], [42]. In particular, storage in the DNA of living

organisms is now becoming feasible [40]; it has varied usages,

including watermarking genetically modified organisms [3],

[16], [35] or research material [21], [42], and even affords

some concealment to sensitive information [9]. Naturally,

therefore, data integrity in such media is of great interest.

Several recent works have studied the inherent constraints

of storing and retrieving data from DNA. While desired

sequences (over quaternary alphabet) may be synthesized

(albeit, while suffering from substitution noise), generally data

can only be read by observation of its subsequences, quite

possibly an incomplete observation [22]. Moreover, the nature

of DNA and current technology results in asymmetric errors

which depend upon the dataset [14]. The medium itself also

introduces other types of errors which are atypical in electronic

storage, such as symbol/block-deletion and adjacent trans-

positions (possibly complemented) [15]. Finally, the purely

combinatorial problem of recovering a sequence from the

multiset of all its subsequences (including their numbers of
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incidence), was also studied, e.g., [1], [41], as well as coding

schemes involving only these multisets (or their profile vectors

– describing the incidence frequency of each subsequence)

[38].

Other works were concerned with data storage in the

DNA of a living organism. While this affords some level

of protection to the data, and even propagation (through

DNA replication), it is also exposed to specific noise mech-

anisms due to mutations. Examples of such noise include

symbol insertions, deletion, substitutions (point-mutation), and

duplication (including tandem- and interspersed-duplication).

Therefore, schemes for data storage in live DNA must address

data integrity and error-correction.

In an effort to better understand these typical noise mech-

anisms, their potential to generate the diversity observed

in nature was studied. [12] classified the capacity and/or

expressiveness of the systems of sequences over a finite

alphabet generated by four distinct substring duplication rules:

end-duplication, tandem-duplication, palindromic-duplication,

and interspersed-duplication. [18] fully characterized the ex-

pressiveness of bounded tandem-duplication systems, proved

bounds on their capacity (and, in some cases, even exact

values). [20] later showed that when point-mutations act

together with tandem-duplication as a sequence-generation

process, they may actually increase the capacity of the gen-

erated system. [2] looked at the typical duplication distance

of binary sequences; i.e., the number of tandem-duplications

generating a binary sequence from its root. It was proven

that for all but an exponentially small number of sequences

that number is proportional to the sequence length. Further,

when tandem-duplication is combined with point-mutations

(here, only within the duplicated string), it was shown that

the frequency of substitutions governs whether that distance

becomes logarithmic.

The generative properties of interspersed-duplication were

also studied from a probabilistic point of view. [11], [13]

showed (under assumption of uniformity) that the frequencies

of incidence for each subsequence converge to the same

limit achieved by an i.i.d. source, thus reinforcing the no-

tion that interspersed-duplication is–on its own–capable of

generating diversity. [10] specifically looked at tandem- and

end-duplication, and found exact capacities in the case of

duplication length 1 by a generalization of the Pólya urn model

that applies to strings. It also tightly bounded the capacity of

complement tandem-duplication, a process where the dupli-

cated symbol is complemented (using binary alphabet).

Finally, error-correcting codes for data affected by tandem-

duplication have been studied in [19], which presented a
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construction of optimal-size codes for correcting any number

of errors under uniform tandem-duplication (fixed duplication

length), computing their (and thus, the optimal-) capacity. It

also presented a framework for the construction of optimal

codes for the correction of a fixed number of errors. Next, it

studies bounded tandem-duplications, where a characterization

of the capacity of error-correcting codes is made for small

constants. In general, it characterized the cases where the

process of tandem-duplication can be traced back uniquely.

More recently, a flurry of activity in the subject includes works

such as [27], [29], [30] which provide some implicit and

explicit constructions for uniform tandem-duplication codes,

as well as some bounds.

However, classical error-correction coding ignores some

properties of the DNA storage channel; namely, stored infor-

mation is expected to be replicated, even as it is mutated.

This lends itself quite naturally to the reconstruction problem

[34], which assumes that data is simultaneously transmitted

over several noisy channels, and a decoder must therefore

estimate that data based on several (distinct) noisy versions

of it. Solutions to this problem have been studied in several

contexts. It was solved in [34] for sequence reconstruction over

finite alphabets, where several error models were considered,

such as substitutions, transpositions and deletions. Moreover,

a framework was presented for solving the reconstruction

problem in general cases of interest in coding theory, uti-

lizing a graph representation of the error model, which was

further developed in [32], [33]. The problem was also studied

in the context of permutation codes with transposition and

reversal errors [23]–[25], and partially solved therein. Later,

applications were found in storage technologies [6], [7], [43],

[44], since modern application might preclude the retrieval of a

single data point, in favor of multiple-point requests. However,

the problem hasn’t been addressed yet for data storage in the

DNA of living organisms, where it may be most applicable.

In this paper, we study the reconstruction problem over

DNA sequences, with uniform tandem-duplication errors. The

main contributions of the paper are the following: We show

that reconstruction codes in this setting are necessarily error-

correcting codes with appropriately chosen minimum distance,

based on the uncertainty parameter. We also show that in two

asymptotic regimes, we can always obtain higher size than

error-correcting codes. These asymptotic regimes include what

we believe is the most interesting one, where the uncertainty

is sublinear, and the time (number of mutations) is bounded

by a constant.

The paper is organized as follows: In Section II we present

notations and definitions. In Section III we demonstrate that

reconstruction codes partition into error-correcting codes and

find the requisite minimal-distance of each part, as a function

of the reconstruction parameters. We see that these parts

can be isometrically embedded as constant-weight codes in

the Manhattan metric. Finally, in Section IV we show that

reconstruction codes exist with full capacity, and also suggest

a construction for reconstruction codes; we also briefly review

recent results, published after the submission of this paper. We

conclude with closing remarks in Section V.

II. PRELIMINARIES

Throughout this paper, though DNA is composed of four

nucleotide bases, we observe the more general case of se-

quences over a finite alphabet; since the alphabet elements are

immaterial to our discussion, we denote it throughout as Zq .

We observe the set of finite sequences (also: words) over it

Z
∗
q ,

⋃∞
n=0 Z

n
q . For any two words u, v ∈ Z

∗
q , we denote

their concatenation uv. For each word x ∈ Z
n
q , we denote its

length |x| = n. We also take special note of the set of words

with length higher than or equal to some 0 < k ∈ N, which

we denote Z
>k
q ,

{

x ∈ Z
∗
q

∣

∣ |x| > k
}

. For ease of notation,

we let N stand for the set of non-negative integers throughout

the paper; when an integer is assumed to be strictly positive,

we make special note of that fact.

For 0 < k ∈ N, i ∈ N, we define a tandem-duplication of

duplication-length k by the mappings

Tk,i(x) ,
{

uvvw x = uvw, |u| = i, |v| = k,

x otherwise.

If y = Tk,i(x) and y 6= x (which occurs whenever |x| > i+k),

we say that y is a descendant of x, and denote x =⇒
k

y. In

what follows, we focus on the uniform tandem-duplication

model (i.e., we fix k) because of its simplicity.

Further, given a sequence {xj}tj=0 ⊆ Z
∗
q such that for all

0 6 j < t, xj =⇒
k

xj+1, we say that xt is a t-descendant

of x0, and denote x0
t

=⇒
k

xt. For completeness, we also

denote x
0

=⇒
k

x. Finally, if there exists some t ∈ N such that

x
t

=⇒
k

y, we also denote x
∗

=⇒
k

y.

We denote the set of t-descendants of x ∈ Z
∗
q as

Dt
k(x) ,

{

y ∈ Z
∗
q

∣

∣

∣

∣

x
t

=⇒
k

y

}

,

for some t ∈ N. We also denote the descendant cone of x by

D∗
k(x) ,

⋃∞
t=0D

t
k(x).

We say that x ∈ Z
>k
q is irreducible if x ∈ D∗

k(y) implies

y = x. We exclude from the definition shorter words, for

which the condition vacuously holds. We denote by Irrk the

set of all irreducible words, and Irrk(n) , Irrk ∩Zn
q .

It was shown in [20], [31] that for each word x ∈ Z
>k
q , a

unique irreducible word exists for which x is a descendant.

We call it the root of x, and denote it by Rk(x). This induces

an equivalence relation by x ∼k y if Rk(x) = Rk(y).
We also follow [20] in defining, for x ∈ Z

>k
q , Prefk(x)

as the length-k prefix of x, and Suffk(x) as its suffix; i.e., if

x = uu′ = v′v where |u| = |v| = k, then Prefk(x) = u and

Suffk(x) = v. Using this notation, we define an embedding

φk : Z>k
q → Z

k
q × Z

∗
q by

φk(x) ,
(

Prefk(x), Suff |x|−k(x)− Pref|x|−k(x)
)

.

It is seen in [20] that this mapping is indeed injective. Further,

it was shown that, defining ζk,i : Z
k
q × Z

∗
q → Z

k
q × Z

∗
q by

ζk,i(a, b) ,

{

(a, b10
kb2) b = b1b2, |b1| = i,

(a, b) otherwise,
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where 0 < k ∈ N, i ∈ N, we have

φk(Tk,i(x)) = ζk,i(φk(x)).

The simplicity of ζk,i in comparison to Tk,i motivates the anal-

ysis of tandem-duplications using the φk images of sequences.

If b ∈ Z
∗
q is composed of the subsequences

b = 0s1w10
s2 · · ·wm0sm+1 ; w1, . . . , wm ∈ Zq \ {0}

we define

µ(b) , 0s1 mod kw10
s2 mod k · · ·wm0sm+1 mod k,

σ(b) ,
(⌊s1

k

⌋

, . . . ,
⌊sm+1

k

⌋)

.

We may note that wtH(b) = wtH(µ(b)) = m, where wtH is

the Hamming weight, and σ(b) ∈ N
wtH(b)+1 = N

wtH(µ(b))+1.

We also observe that b is recoverable from σ(b), µ(b). It was

proven in [20, Cor. 10] that if φk(x) = (a, b) then

φk(Rk(x)) = (a, µ(b)).

Thus, if x, y ∈ Z
>k
q , φk(x) = (a1, b1) and φk(y) = (a2, b2),

then x ∼k y if and only if a1 = a2 and µ(b1) = µ(b2).
Moreover, x ∈ Irrk if and only if σ(b1) = (0, 0, . . . , 0). Note

that, equivalently, we may say that b contains no zero-runs of

length k; such sequences are called (0, k − 1)q-Run-Length-

Limited, or (0, k − 1)q-RLL.

For x ∈ Irrk, φk(x) = (a, b), we denote m(x) , wtH(b)
and define ψx : D∗

k(x) → N
m(x)+1 by ψx(y) , σ(b′), where

φk(y) = (a, b′).
Finally, for n > k and x, y ∈ Z

n
q we define

dk(x, y) , min
{

t ∈ N
∣

∣ Dt
k(x) ∩Dt

k(y) 6= ∅
}

,

or dk(x, y) = ∞ if {t ∈ N | Dt
k(x) ∩Dt

k(y) 6= ∅} = ∅. It was

shown in [20, Lem. 14] that dk(x, y) = ∞ if and only if

x 6∼k y, hence dk(·, ·) is finite on Dt
k(x), for any particular

x ∈ Z
>k
q . Furthermore, [20, Lem. 19] shows that for any

x ∼k y with |x| = |y| it holds that

dk(x, y) =
1
2 ‖σ(b1)− σ(b2)‖1 ,

thus dk(·, ·) defines a metric on each equivalence class of ∼k.

III. RECONSTRUCTION CODES

The reconstruction problem in the context of uniform

tandem-duplication errors can be stated as follows: suppose

data is encoded in C ⊆ Z
n
q , and suppose we later are able to

read distinct x0, x1, . . . , xN ∈ Dt
k(c) for some specific c ∈ C

and t ∈ N; can we uniquely identify c?
It is apparent (see [34]) that to allow successful reconstruc-

tion we require codes to satisfy the following.

Definition 1 Take N, t, n > 0. We say that C ⊆ Z
n
q is a

uniform tandem-duplication reconstruction code, which we

abbreviate as an (N, t, k)q-UTR code, if

max
{

|Dt
k(c) ∩Dt

k(c
′)|
∣

∣ c, c′ ∈ C, c 6= c′
}

6 N.

The purpose of this section is to characterize reconstruction

codes. By an evaluation of the size of intersection of descen-

dant cones, we determine the achievable size of (N, t, k)q-

UTR codes. We shall state the solution to this problem in

terms of error-correcting codes for the Manhattan metric, and

devote the next section to an observation of such codes.

A. Structure of descendant cones

Throughout this section we fix some x ∈ Irrk, and denote

φk(x) = (a, b).
As noted above, for all y ∈ D∗

k(x), we have φk(y) = (a, b′),
with µ(b′) = b (hence, in particular, wtH(b′) = wtH(b)). We

therefore denotem = m(x) = wtH(b) and make the following

definition:

Definition 2 We let ψx : D∗
k(x) → N

m+1 be defined by

ψx(y) = σ(b′), where φk(y) = (a, b′).

It was noted in the previous section that ψx is then distance-

preserving from (D∗
k(x), dk) to

(

N
m+1, 12 ‖·‖1

)

(the definition

of dk, made here specifically for sequences of equal-length,

can be extended to D∗
k(x) by considering the shortest path

between any two sequences, but for simplicity in what follows,

we shall implicitly only consider dk as a metric over Dt
k(x)

for any given t ∈ N).

Definition 3 We define on N
m+1 the partial order b′ � b′′ if

for every coordinate i = 1, . . . ,m+1 it holds that b′i 6 b′′i (�
is the well-known product order).

The poset
(

N
m+1,�

)

has a simple structure. We shall

therefore find it more convenient to consider D∗
k(x) in these

terms:

Lemma 4 ψx is a poset isomorphism from

(

D∗
k(x),

∗
=⇒
k

)

to
(

N
m+1,�

)

. In particular,

1) For all y, y′ ∈ D∗
k(x) there exists z ∈ D∗

k(y) ∩ D∗
k(y

′)
such that

D∗
k(y) ∩D∗

k(y
′) = D∗

k(z);

2) If in addition |y| = |y′| then for all t ∈ N

∣

∣Dt
k(y) ∩Dt

k(y
′)
∣

∣ =

{

0 t < dk(y, y
′),

∣

∣

∣D
t−dk(y,y

′)
k (x)

∣

∣

∣ t > dk(y, y
′).

Proof: We note that x ∈ Irrk, hence ψx(x) =
(0, 0, . . . , 0) ∈ N

m+1. Further, we note that in the image of

φk, a tandem-duplication ζk,i corresponds to increasing by one

a single coordinate of σ(·), i.e., an addition of a unit vector

ej ∈ N
m+1 to ψx(·).

Hence, ψx is indeed a poset isomorphism, and we see that
∗

=⇒
k

endows D∗
k(x) with a lattice structure; We denote the

join of y, y′ ∈ D∗
k(x) as y∨y′, and their meet y∧y′. It follows

that z = y ∨ y′ satisfies item 1.

Finally, if |y| = |y′| then by definition of d , dk(y, y
′)

we have z = y ∨ y′ ∈ Dd
k(y) ∩ Dd

k(y
′), and item 2 is now

straightforward to prove from the poset-isomorphism.

Given Lemma 4, we can now find the size of intersection

of descendant cones for any c, c′ ∈ Z
n
q (n > k), keeping in

mind that D∗
k(c) ∩D∗

k(c
′) 6= ∅ if and only if c ∼k c

′.

Lemma 5 For x ∈ Irrk, |Dt
k(x)| =

(t+m(x)
m(x)

)

.

Proof: By Lemma 4 we know that

Dt
k(x) = {y ∈ D∗

k(x) | ‖ψx(y)‖1 = t}.
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Since ψx : D∗
k(x) → N

m(x)+1 is bijective, |Dt
k(x)| equals the

number of distinct integer solutions to
∑m+1

j=1 xj = t, where

x1, . . . , xm+1 > 0 (equivalently, the number of distinct ways

to distribute t identical balls into m(x) + 1 bins).

B. Size of reconstruction codes

In this section we aim to estimate the maximal size of

(N, t, k)q-UTR codes.

Definition 6 For m, r > 0 we denote the simplex of dimension

m and weight r, or (m, r)−simplex

∆m
r ,







(xi)
m+1
i=1 ∈ N

m+1

∣

∣

∣

∣

∣

∣

m+1
∑

j=1

xj = r







.

Theorem 7 We take positive integers N, t and n > k. For

C ⊆ Z
n
q and x ∈ Irrk we partition Cx , C ∩ D∗

k(x) and

define r(x) , n−|x|
k .

If Cx 6= ∅ then r(x) ∈ N and r(x) <
⌊

n
k

⌋

. Moreover, C is

an (N, t, k)q-UTR code if and only if for all x ∈ Irrk such

that Cx 6= ∅, the image ψx(Cx) ⊆ ∆
m(x)
r(x) satisfies

min
{

1
2 ‖c− c′‖1

∣

∣ c 6= c′ ∈ ψx(Cx)
}

> dN,t(m(x)),

where we make the notation

dN,t(m) , min

{

δ ∈ N

∣

∣

∣

∣

(

t− δ +m

m

)

6 N

}

.

Proof: If C ∩ D∗
k(x) 6= ∅ then it follows from the

definitions that for some r ∈ N we have |x| + rk = n;

since |x| > k, necessarily r = r(x) <
⌊

n
k

⌋

. Furthermore,

C ∩D∗
k(x) = C ∩Dr

k(x), hence we have seen in the proof

of Lemma 4 that for all y ∈ Dr
k(x) we have ψx(y) =

∑r
u=1 eju ∈ ∆

m(x)
r .

In addition, by Lemma 4 and Lemma 5, for all x ∈ Irrk
and y 6= y′ ∈ Cx the size of intersection Dt

k(y) ∩ Dt
k(y

′)

is
(

t−dk(y,y
′)+m(x)

m(x)

)

. It follows that Cx is an (N, t, k)q-UTR

code if and only if that size is no greater than N for all such

y, y′ ∈ Cx.

Recalling that ψx is bijective and distance-preserving, i.e.,

that dk(y, y
′) = 1

2 ‖ψx(y)− ψx(y
′)‖1, the claim follows for

Cx.

To conclude the proof, we recall that for x, x′ ∈ Irrk we

have D∗
k(x) ∩ D∗

k(x
′) = ∅, hence C is an (N, t, k)q-UTR if

and only if the same is true for Cx, for all x ∈ Irrk.

In other words, Theorem 7 states that the intersection of

a uniform-tandem-duplication reconstruction code C with the

descendant cone of any irreducible word D∗
k(x) can be viewed

as an error-correcting code with a suitable minimal distance.

Further, we see that these error-correcting codes are equivalent

to codes in the Manhattan metric over a simplex ∆
m(x)
r(x) . We

note here, however, that this does not hold for C in general:

not only is each code’s minimal distance dependent on x, but

the dimension and weight of the simplex in which that code

exists do, as well.

We therefore see that constructions and bounds on the

size of error-correcting codes for uniform tandem-duplication

depend on doing the same for error-correcting codes in the

Manhattan metric over ∆m
r . We start by notating the maximal

size of such codes:

Definition 8 For m, r > 0 and d > 0 we define

M(m, r, d) , max
{

|C|
∣

∣

∣ C ⊆ ∆m
r , min

c,c′∈C
c 6=c′

1
2 ‖c− c′‖1 > d

}

.

We now reiterate that if C ⊆ Z
n
q , x, x′ ∈ Irrk(n− rk) (i.e.,

r(x) = r(x′) = r) and m(x) = m(x′), then Dn−rk
k (x) ∼=

Dn−rk
k (x′) (through, e.g., ψ−1

x′ ◦ ψx). It is therefore practical

to assume |Cx| = |Cx′ | = M(m, r, dN,t(m)) for all such

x, x′. This results in the following corollary, which concludes

this section:

Corollary 9 If C ⊆ Z
n
q is an (N, t, k)q-UTR code, and for

all x ∈ Irrk it holds that |Cx| =M(m, r, dN,t(m)), then

|C| =
⌊n/k⌋−1
∑

r=0

∑

m

M(m, r, dN,t(m))·

· |{x ∈ Irrk(n− rk) | m(x) = m}|

=

⌊n/k⌋−1
∑

r=0

∑

m

M(m, r, dN,t(m)) · qk·

·
∣

∣

∣

{

b ∈ Z
n−(r+1)k
q

∣

∣

∣

b is (0,k−1)q -RLL
wtH(b)=m

}∣

∣

∣

Proof: First, trivially, |C| =∑x∈Irrk
|Cx|.

Observe that x ∈ Irrk satisfies Cx 6= ∅, r(x) = r and

m(x) = m, if and only if x ∈ Z
n−rk
q and in φk(x) = (a, b),

b is (0, k − 1)q-RLL, and wtH(b) = m.

The rest now follows from Theorem 7.

Corollary 9 motivates us to estimate the optimal size of

error-correcting codes in the Manhattan metric over the (m, r)-
simplex. This topic was examined in some depth in [28], where

a construction based on Sidon sets (of particular interest for

our application, see [26], and references therein) was proposed,

leading to lower bounds tighter than the Gilbert-Varshamov

bound. For our purposes, we cite an asymptotic result (we

slightly rephrase):

Lemma 10 [28, Eq. 36] Take µ ∈ (0, 1), ρ > 0 and integer

sequences (mn)n>0, (rn)n>0 such that limn→∞
mn

n = µ and

limn→∞
rn
n = ρ. Also take a fixed d > 0. Then

lim
n→∞

1

n
log2M(mn, rn, d) = (µ+ ρ)H

(

1

1 + ρ
µ

)

. (1)

C. Minimal distance of reconstruction codes

Next, before we can ascertain the sizes of error-correcting

codes over simplices, we bound their requisite minimal dis-

tance. That is, given N, t > 0 and m > 0, we establish bounds

on

dN,t(m) , min

{

δ ∈ N

∣

∣

∣

∣

(

t− δ +m

m

)

6 N

}

seen in Theorem 7.
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Lemma 11 If N 6 m then dN,t(m) = t.

Proof: We may verify by substitution that δ = t satisfies
(

t−δ+m
m

)

6 N , while δ = t − 1 does not. Using the strict

monotonicity of s 7→
(

s+m
m

)

, we are done.

In order to find a practical bound for dN,t(m) when N > m,

we first require the following three lemmas:

Lemma 12 1) [36, Ch.10, Sec.11, Lem.7] For integers 0 <
k < n it holds that
√

n

8k(n− k)
2nH(

k
n ) 6

(

n

k

)

6
√

n

2πk(n− k)
2nH(

k
n)

where H is the binary entropy function, defined by

H(p) , −p log2 p− (1− p) log2(1 − p).
2)

nH

(

k

n

)

− 1

2
log2(2n) 6 log2

(

n

k

)

< nH

(

k

n

)

.

Proof: For item 2, we see that if 0 < k < n we have

n− 1 6 k(n− k) 6 n2

4 , hence

n

2πk(n− k)
6

1

2π

(

1 +
1

n− 1

)

6
1

π
< 1,

n

8k(n− k)
>

1

2n
.

Thus the claim trivially follows from item 1.

For ease of notation in what follows, we make the notation,

for 1 6 x ∈ R:

H(x) , xH

(

1

x

)

.

Lemma 13 For N > m > 0 and t > 0 it holds that

dN,t(m) 6 min

{

δ ∈ N

∣

∣

∣

∣

H
(

1 +
t− δ

m

)

6
log2N

m

}

.

Proof: Under the assumption, δ = t − 1 satisfies the

inequality
(

t−δ+m
m

)

6 N . Therefore we may restrict the

minimum to δ < t, giving 0 < m < (t − δ) + m. Now,

Lemma 12 implies

log2

(

t− δ +m

m

)

6 m

(

1 +
t− δ

m

)

H

(

1

1 + t−δ
m

)

,

which completes the proof.

Lemma 14 For x > 1 it holds that H(x) 6 2
√
x− 1.

Proof: The claim can be restated by the substitution

p = 1
x as the known inequality H(p)2 6 4p(1− p) (its proof

follows elementary calculus, and is omitted here).

Finally,

Theorem 15 Take N > m > 0. Then

dN,t(m) 6 max

{

1, t−
⌊

(log2N)2

4m

⌋}

.

Proof: Using Lemma 14 we may bound H
(

1 + t−δ
m

)

6

2
√

t−δ
m . Lemma 13 therefore implies that it suffices to require

2
√

t−δ
m 6 log2 N

m , and reordering the inequality we get δ >

t− (log2 N)2

4m , yielding the claim.

IV. CAPACITY OF RECONSTRUCTION CODES

Definition 16 We define the rate of a code C ⊆ Z
n
q as

R(C) ,
1

n
logq|C|,

and the capacity of a system C ⊆ Z
∗
q as

cap(C) , lim sup
n→∞

1

n
logq

∣

∣C ∩ Z
n
q

∣

∣.

We are interested in sup{cap(C)}, where C is any family

of reconstruction codes (i.e., C ∩ Z
n
q is an (Nn, tn, k)q-code

for all n).

The purpose of this section is to determine that optimal

capacity in two asymptotic regimes:

Regime I When Nn = o(n) and tn = t is fixed.

Regime II When Nn = 2αn and tn = βn for constants

α, β > 0 (such that Nn, tn ∈ N for some, hence infinitely

many, indices).

In practical applications, Regime I is likely to apply, since

we may indeed expect the number of duplications t, which

is dependent on the period of time before data is read,

to be fixed w.r.t. n. The allowed uncertainty Nn will also

likely be bounded. Regime II requires Theorem 15 (and some

restrictions over the values of α, β), but allows us to calculate

capacity in much the same way, which we do after presenting

the first.

Note, since [19] showed that Irrk(n) can correct any number

of tandem-duplication errors, they are trivially (N, t, k)q-codes

for all N, t (more precisely, they are (0, t, k)q-codes for all

t). In comparison, in the setting we consider only t tandem-

duplications are assumed to have occurred, therefore the codes

we seek are less restrictive. Nevertheless, at the time of this

paper’s submission no bounds on the size of error-correcting

codes for a fixed number of tandem-duplications were known;

It is our purpose, then, to demonstrate that reconstruction

codes exist which have strictly higher capacity than Irrk, and

suggest constructions for families of such codes.

First, we denote for any n, r ∈ N such that n > k and

r <
⌊

n
k

⌋

, and any N, t ∈ N

MN,t(n, r) ,
∑

m

M(m, r, dN,t(m))·

·
∣

∣

∣

{

b ∈ Z
n−(r+1)k
q

∣

∣

∣

b is (0,k−1)q- RLL
wtH (b)=m

}∣

∣

∣.

We recall for all n, if rn = argmaxr MN,t(n, r), that by

Corollary 9 we have an (N, t, k)q-code C ⊆ Z
n
q with |C| >

qkMN,t(n, rn). Corollary 9 also implies that for all C ⊆ Z
n
q

it holds that |C| 6 n
k q

kMN,t(n, rn). We therefore focus on

maximizing lim supn→∞
1
n logq MN,t(n, rn) by choice of rn.

In what follows, we take γ ∈ (0, 1) and set rn = 1−γ
k n− 1

for any n ∈ N for which rn ∈ N; we shall assume that such

n exist (hence, infinitely many exist), and refer only to such

indices.

For all x ∈ Irrk(n − rnk) = Irrk(k + γn), recall that we

denoted φk(x) = (a, b) with b ∈ Z
γn
q in (0, k− 1)q-RLL. We
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shall build a reconstruction code in the descendant cones of

only such x, which we denote Cγ .

Lemma 17 There exists a system S ⊆ (0, k − 1)q-RLL and

θ ∈
(

1
2 , 1
)

such that

cap(S) = lim
l→∞

1

l
logq

∣

∣S ∩ Z
l
q

∣

∣ = cap((0, k − 1)q-RLL)

and for all b ∈ S it holds that wtH(b) > θ|b|.

Proof: Let Gq(k−1) be the strongly connected determin-

istic digraph representing the (0, k − 1)q-RLL system, seen

in Figure 1, whose adjacency matrix is

Tq(k − 1) =

















q − 1 1 0 · · · 0

q − 1 0 1
...

...
...

. . . 0
q − 1 0 · · · 0 1
q − 1 0 · · · · · · 0

















As is well known for the case of q = 2 (see, e.g., [17], [45]),

its characteristic polynomial is

p(k−1)
q (x) = xk − (q − 1)

k−1
∑

j=0

xj =
xk+1 − qxk + (q − 1)

x− 1
,

hence the Perron eigenvalue λ of Tq(k − 1) is the unique

positive root of p̂
(k−1)
q (x) = xk+1 − qxk + (q − 1) greater

than 1 (in fact, λ ∈ (q−1, q), which can readily be confirmed

either using elementary calculus or by information-theoretic

methods, since (Zq \ {0})∗ ⊆ (0, k − 1)q-RLL ⊆ Z
∗
q).

Further, Tq(k − 1) has positive right- and left-eigenvectors

associated with λ, which we denote v̄, w̄ respectively; specif-

ically,

v̄ =

(

1, λ− (q − 1), . . . , λj−1 − (q − 1)

j−2
∑

i=0

λi, . . . ,

. . . λk−1 − (q − 1)

k−2
∑

i=0

λi

)

,

w̄ =
(

λk−1, λk−2, . . . , λk−j , . . . , 1
)

.

and we may verify that

vk = λk−1 − (q − 1)

k−2
∑

i=0

λi =
1

λ



λk − (q − 1)

k−1
∑

j=1

λj





=
q − 1

λ
> 0

and vj =
vj+1+(q−1)

λ , hence every entry of v̄ is indeed positive.

Denoting qi,j = (Tq(k − 1))i,j ·
vj
λvi

, it follows (see, e.g.,

[37][Sec. 3.5]) that Q = (qi,j)16i,j6k is stochastic, and

represents a transition matrix of a stationary Markov chain P
on Gq(k−1) (a probability measure on its edges set Eq(k−1))
satisfying H(P) = logq λ = cap((0, k − 1)q-RLL). Further,

the stationary distribution of the Markov chain, i.e., a positive

π̄ = (π1, . . . , πk) such that
∑k

j=1 πj = 1 and π̄TQ = π̄T , is

given by πj =
π̂j

∑

k
i=1 π̂i

, where π̂ is defined by π̂j = wjvj . It

holds for all j that πj is the sum of probabilities
∑P(e) of

edges terminating at the j’th node.

Note, then, that

k
∑

i=1

π̂i = λk−1 +

k
∑

i=2

[

λk−1 − (q − 1)
λk−1 − λk−i

λ− 1

]

= λk−1

[

1 + (k − 1)

(

1− q − 1

λ− 1

)]

+
q − 1

λ− 1

k
∑

i=2

λk−i

= λk−1

[

k − (k − 1)
q − 1

λ− 1

]

+
q − 1

λ− 1

k−2
∑

j=0

λj

= λk−1

[

k − (k − 1)
q − 1

λ− 1

]

+
λk − (q − 1)λk−1

λ− 1

=
λk−1

λ− 1
[λ− k(q − λ)]

and in particular π1 = λ−1
λ−k(q−λ) . (Incidentally, it follows from

π1 ∈ (0, 1) that 1 < k(q − λ) < λ, that is, q − q
k+1 < λ <

q − 1
k .)

Next, recall that for a given ǫ > 0, a (P , ǫ)-strongly-

typical path in G is a path γ = (e1, e2, . . . , el) (denoted

by its edges {e1, e2, . . . , el} ⊆ Eq(k − 1)) such that each

e ∈ Eq(k − 1) appears in the path l · τ times, for some

τ satisfying |τ − P(e)| 6 ǫ. If we let Sǫ ⊆ Z
∗
q be the

system induced by (P , ǫ
k(q−1) )-strongly-typical paths, then it

is well known that cap(Sǫ) = cap((0, k − 1)q-RLL). Note,

for b ∈ Sǫ of length |b| = l, which is generated by the

path γ = (e1, . . . , el), wtH(b) is precisely the number of

edges which terminate at the first node; since γ is (P , ǫ
k(q−1) )-

strongly-typical,

wtH(b) >
∑

e terminates
at first node

l ·
(

P(e)− ǫ

k(q − 1)

)

= l(π1 − ǫ)

To conclude the proof, note

λ+k(q − λ) = q + (k − 1)(q − λ) > q > 2

=⇒ λ > 2− k(q − λ)

=⇒ 2(λ− 1) > λ− k(q − λ) =⇒ π1 >
1

2

Hence we can take any 0 < ǫ < π1 − 1
2 , and observe that

S = Sǫ, θ = π1 − ǫ satisfy the proposition.

Lemma 17 implies that there exists a subset Sk ⊆ Irrk such

that cap(Sk) = cap(Irrk), and for every x ∈ Sk of length

|x| = k + γn we have m(x) > ⌈θ · γn⌉. For the rest of this

section we only build codes Cn
γ in the descendant cones of

roots in Sk. Note, then, that if we denote mn = ⌈θ · γn⌉ and

Cγ ,
⋃

Cn
γ , then

cap(Cγ) > lim sup
n→∞

1

n
logq

[

|Irrk(k + γn)|·

·M(mn, rn, dN,t(mn))
]

= γ cap(Irrk)+

+ lim sup
n→∞

1

n
logqM(mn, rn, dN,t(mn)) (2)

We evaluate the second addend in the following theorem:
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s0 s1 s2 · · · sk−1
0 0 0 0

1q − 1

1

q − 1 1

q − 1

1

q − 1

Figure 1. The graph Gq(k − 1) generating the (0, k − 1)q-RLL system.

Theorem 18 As before, we denote rn = 1−γ
k n−1 and mn =

⌈θ · γn⌉. Then

lim
n→∞

1

n
logqM(mn, rn, dNn,tn(mn)) =

=
θγ

log2 q
· H
(

1 +
1− γ

kθγ

)

in both of the aforementioned two regimes:

1) Regime I: when Nn = o(n) and tn = t is fixed.

2) Regime II: when Nn = 2αn and tn = βn, if we

additionally require α2

β > 4θγ.

Proof:

1) Note, for sufficiently large n, that Nn < θ · γn 6 mn,

resulting by Lemma 11 in dNn,t(mn) = t. We note that

limn→∞
rn
n = 1−γ

k and limn→∞
mn

n = θγ, hence by

Lemma 10 the claim is proven when t is fixed.

2) By Theorem 15:

dNn,tn(mn) 6 max

{

1, βn−
⌊

n
α2n

4⌈θ · γn⌉

⌋}

= max

{

1,

⌈(

β − α2n

4⌈θ · γn⌉

)

n

⌉}

.

If α2

β > 4θγ then for sufficiently large n we have β <
α2n

4⌈θ·γn⌉ , hence dNn,tn(mn) = 1. Since it is fixed, we may

now apply the same argument used in the previous part.

Going forward, we shall view the lower bound to cap(Cγ),

R(γ) , γ cap(Irrk) +
θγ

log2 q
· H
(

1 +
1− γ

kθγ

)

,

as a function of γ. Before moving on to show that it may be

made to exceed cap(Irrk) by a careful choice of γ, we look

at the following example.

Example 19 Set q = k = 2. Then the Perron eigenvalue of

T2(1) is λ = 1+
√
5

2 , and

cap(Irr2) = log2(λ) = log2

(

1 +
√
5

2

)

≈ 0.6942.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R

γ

(a)

(b)

Figure 2. Rate R(γ) in the cases (a) q = k = 2, θ = 0.7236, and (b) q = 4,
k = 2, θ = 0.8273. The value at γ = 1 equals cap(Irrk).

In addition, any θ which is less than π1 = 1
2

(

1 + 1√
5

)

≈
0.7236 satisfies Lemma 17.

Alternatively, we may set q = 4 (for the special case

of DNA) and duplication-length k = 2. Now the Perron

eigenvalue of T4(1) is given by λ = 3+
√
21

2 , hence

cap(Irr2) = log4(λ) = log4

(

3 +
√
21

2

)

≈ 0.9613.

Further, we may choose any θ which is less than π1 =
1
2

(

1 +
√

3
7

)

≈ 0.8273.

R(γ) is shown for both cases in Figure 2, under the

assumptions of asymptotic regime made in Theorem 18. The

figure demonstrates that the capacity of reconstruction codes

(bounded from below by the maximum of the curve) is greater

than cap(Irrk). �

We now attempt to maximize R(γ) by a proper choice of

γ ∈ (0, 1). Analysis of R(γ) is simpler using the following

change of variable:

Definition 20 Define x : (0, 1) → (0,∞) by x(γ) , 1−γ
γ .

We observe that x(γ) is a decreasing diffeomorphism, and

γ = 1
1+x(γ) .



8

Lemma 21 One has

R(γ) = γ cap(Irrk) + θγ

[(

1 +
x(γ)

kθ

)

logq

(

1 +
x(γ)

kθ

)

−x(γ)
kθ

logq

(

x(γ)

kθ

)]

Proof: We observe that for all x > 0, log
(

1 + 1
x

)

=
log
(

x+1
x

)

= log(x+ 1)− log x; in particular

logq

(

1 +
kθγ

1− γ

)

= logq

(

1 +
1− γ

kθγ

)

− logq

(

1− γ

kθγ

)

Hence,

R(γ) =γ cap(Irrk) +
θγ

log2 q
· H
(

1 +
1− γ

kθγ

)

=γ cap(Irrk) + θγ logq

(

1 +
1− γ

kθγ

)

+
1− γ

k
logq

(

1 +
kθγ

1− γ

)

=γ cap(Irrk) +

(

θγ +
1− γ

k

)

logq

(

1 +
1− γ

kθγ

)

− 1− γ

k
logq

(

1− γ

kθγ

)

=γ cap(Irrk) + θγ

[(

1 +
1− γ

kθγ

)

logq

(

1 +
1− γ

kθγ

)

− 1− γ

kθγ
logq

(

1− γ

kθγ

)]

We can now show that there always exists a choice of γ for

which we get R(Cn
γ ) > cap(Irrk):

Theorem 22 maxγ∈(0,1)R(γ) > cap(Irrk).

Proof: Observe that R(γ) is continuously differentiable

and satisfies limγ→0R(γ) = 0, limγ→1R(γ) = cap(Irrk).
We find R′(γ) in Eq. (3); Thus, We can show that R′(γ) = 0
if and only if

q−k cap(Irrk) =

(

1 +
x(γ)

kθ

)kθ−1

· x(γ)
kθ

(4)

This equation has a unique solution x0 = x(γ0), since the

RHS is a monotonic increasing function of x, vanishing at

x = 0 and unbounded as x grows. Moreover, 0 < x0 < kθ,

since kθ > 1, hence the RHS is greater than 1 at x = kθ.

Thus R(γ) has a unique local extremum in (0, 1).
It now suffices to show that R(γ) is concave, hence the

extremum is a maximum. Indeed,

R′′(γ) =
1

k

dx

dγ
· d
dx

[

(kθ − 1) logq

(

1 +
x

kθ

)

+ logq

( x

kθ

)

]

x=x(γ)

=
−1

k ln(q)γ2

[

kθ − 1

kθ + x(γ)
+

1

x(γ)

]

< 0

It follows that R(γ0) > limγ→1R(γ) = cap(Irrk).

Thus, the main result of this paper is established. In what

remains of this section we show that we can bound γ0 which

maximizes R(γ), in practice, to any desired level of accuracy.

We begin by establishing bounds in the following lemma.

Lemma 23 Let γ0 ∈ (0, 1) be the unique maximum of R(γ),
and denote x0 = x(γ0). Then

x0 >
kθ

(

2θqcap(Irrk)
)k − 1

and

x0 6
1

2

[
√

(

1− q− cap(Irrk)k
)2

+ kθq2−cap(Irrk)k

−
(

1− q− cap(Irrk)k
)

]

6
kθq2

4
(

qcap(Irrk)k − 1
) .

Proof: For fixed x ∈ [0,∞) define gx : (0,∞) → R by

gx(y) = y ln
(

1 + x
y

)

. Then

g′x(y) = ln

(

1 +
x

y

)

+
y

1 + x
y

· −x
y2

= ln

(

1 +
x

y

)

− x

y + x

= − ln

(

1− x

x+ y

)

− x

y + x

> −
(

− x

x+ y

)

− x

y + x
> 0.

Therefore, fx(y) = egx(y) =
(

1 + x
y

)y

satisfies 1 + x =

fx(1) 6 fx(y) =
(

1 + x
y

)y

for all y > 1. In our case kθ > 1

and x0 satisfies Eq. (4), hence

q− cap(Irrk)k =
(

1 +
x0
kθ

)kθ−1 x0
kθ

>
1 + x0
1 + x0

kθ

· x0
kθ

=
x0 + x20
kθ + x0

which we simplify to 0 > x20 +
(

1− q− cap(Irrk)k
)

x0 −
kθq− cap(Irrk)k. Thus, the first upper bound is proven. For

the second, we require only that for a, b > 0 it holds that√
a+ b2 − b 6 a

2b , which is readily shown by differentiation.

On the other hand, Eq. (4) implies that x0 6 kθ. Therefore

q− cap(Irrk)k =
(

1 +
x0
kθ

)kθ−1 x0
kθ

6
2kθ

1 + x0

kθ

· x0
kθ

⇐⇒ kθq− cap(Irrk)k 6
(

2kθ − q− cap(Irrk)k
)

x0

which proves the lower bound.

Next, we show that we may tighten the bounds we derived

in the previous lemma.

Lemma 24 Let x0 > 0 be the unique solution to Eq. (4), and

denote z0 = x0

kθ . If z 6 z0 6 z then F (z) 6 z0 6 F (z),
where

F (z) ,
q− cap(Irrk)k

(

1 + q− cap(Irrk)k

(1+z)kθ−1

)kθ−1
.

Proof: By assumption we have q− cap(Irrk)k =
(1 + z0)

kθ−1 · z0, hence q− cap(Irrk)k 6 (1 + z)
kθ−1 · z0,
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R
′

(γ) = cap(Irrk) +
dx

dγ
· d

dx

[

θ

1 + x

((

1 +
x

kθ

)

logq

(

1 +
x

kθ

)

− x

kθ
logq

(

x

kθ

))]

x=x(γ)

=cap(Irrk) −
1

γ2

[ −θ

(1 + x)2

((

1 +
x

kθ

)

logq

(

1 +
x

kθ

)

− x

kθ
logq

(

x

kθ

))

+
θ

(1 + x)
·
(

1

kθ
logq

(

1 +
x

kθ

)

− 1

kθ
logq

(

x

kθ

))]

x=x(γ)

=cap(Irrk) +
1

k

[

(kθ − 1) logq

(

1 +
x(γ)

kθ

)

+ logq

(

x(γ)

kθ

)]

(3)

implying that z0 > G(z) where G(z) = q− cap(Irrk)k

(1+z)kθ−1 . Simi-

larly, z0 6 G(z). The proposition now trivially follows for

F (z) = G(G(z)).
Finally, we can show that x0 may be found by the following

limiting process:

Theorem 25 The unique solution to Eq. (4) is given by x0 =
kθ limn→∞ Fn(z1), for all z1 ∈ [0, 1].

Proof: As before, we denote the unique solution x0 > 0,

and take z0 =
x0

kθ .

Note that Lemma 24 implies that z0 = F (z0). We will prove

that F : [0, 1] → [0, 1] is a contraction; that is, for all z1, z2 ∈
[0, 1] we have |F (z1)− F (z2)| 6 c|z1 − z2| for some c < 1.

Indeed, recalling kθ > 1 we find

F ′(z) =
2−2 cap(Irrk)k(kθ − 1)2

(1 + z)kθ
(

1 + q− cap(Irrk)k

(1+z)kθ−1

)kθ

6
(kθ − 1)2

(22 cap(Irrk))k
6

(k − 1)2

2k
6
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16
< 1,

where the next to last inequality may be directly verified for

all small k.

Having done so, we utilize Banach’s fixed-point theorem to

deduce that F has a unique fixed point (necessarily z0), and for

all z1 ∈ [0, 1], defining zn+1 = F (zn) we get limn→∞ zn =
z0.

We can now suggest a construction for (N, t, k)q-UTR

codes achieving better capacity than the error-correcting codes

Irrk(n) suggested in [19] (provided that one is willing to

consider reconstruction codes over unambiguous decoding of

any single output).

Construction A We set the alphabet size q, duplication length

k. In the case that our application falls within Regime I, we

also set a fixed decoding-delay t, and restrict the ambiguity

Nn to be sub-linear in n. (with the necessary adjustments, this

construction also applies for Regime II.)

• Start by finding the Perron eigenvalue λ of Tq(k − 1),
and π1 = λ−1

λ−k(q−λ) , as in the proof of Lemma 17. Set

some θ < π1.

• The upper and lower bounds on x0 from Lemma 23 can

be made tighter by a repetitive application of F (·) from

Lemma 24; Theorem 25 guarantees that the bounds–hence

the acceptable error–can be made as tight as desired for

our application.

• With γ0 = 1
1+x0

we may find rn = 1−γ0

k n − 1, and we

note that a capacity-achieving subset of Irrk(n− rnk) =
Irrk(k + γn) has weight m(x) > mn = ⌈θ · γn⌉.

• Within Drn
k (x) of just such irreducible sequences x we

may utilize any construction of codes for the Manhattan

metric over ∆mn
rn with minimal distance t, if it produces

codes of size sufficiently close to M(mn, rn, t). For

practical applications, [28, Sec. IV-A] showed that if mn

is a prime power, then by [5] there exist such codes

of size
∣

∣∆mn
rn

∣

∣

/mt
n−1

mn−1 (which improves on the Gilbert-

Varshamov bound, and is sufficiently tight to achieve the

same result as in Theorem 18).

�

Note that we do not establish that Construction A produces

a system of codes of capacity 1, rather only greater than

cap(Irrk). To conclude this section, we also present a non-

constructive argument proving the existence of a system of

reconstruction codes with capacity 1 by an application of the

Gilbert-Varshamov bound.

Recall that in the proof of Theorem 18 we have shown that

the minimal distance, dNn,tn(mn) was bounded. In particular,

in the case of interest Regime I, we used the fact that mn =
Θ(n); This does not, in general, hold for m(Rk(y)) for all

y ∈ Z
n
q .

However, if we show that to be the case for a sufficiently

large subset Sn ⊆ Z
n
q , then we may note the following: by

[28, Lem. 1] the size of ball in the dk(·, ·) metric of radius d
in the descendant cone of x ∈ Irrk, where m(x) > d, is

d
∑

j=0

(

m(x)

j

)(

d

j

)(

d+m(x)− j

d

)

6 (d+ 1) ·
(

m(x)

d

)(

d

⌊d/2⌋

)(

d+m(x)

d

)

= O(m(x)d) = O(nd)

It would follow that a code of size
|Sn|
O(nd)

exists (and, again,

the capacity of these codes will be cap(Sn)).

It now suffices to show that except for a vanishingly small

portion of y ∈ Z
n
q , it holds that m(Rk(y)) = Θ(n). Indeed,

recall that m(Rk(y)) = wtH(µ(b)) = wtH(b), where φk(y) =
(a, b), b ∈ Z

n−k
q . Then, for any real 0 < ξ < 1− 1

q ,

|
{

b ∈ Z
n−k
q

∣

∣ wtH(b) 6 ξ(n− k)
}

|
qn−k

6 q(n−k)(Hq(ξ)−1),

where Hq(·) is the q-ary entropy function,

Hq(ξ) , −ξ logq ξ − (1− ξ) logq(1− ξ) + ξ logq(q − 1),

and where we used a standard bounding of the size on the

Hamming ball, e.g., see [39, Lemma 4.7].
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A. Comparison to recent results

Before we finish, we note here that the last argument also

shows via the GV bound that error-correcting codes for a fixed

number of tandem-duplications achieve capacity 1. Indeed,

after the submission of this manuscript [27], [29] were made

available, wherein bounds on the optimal size of such error-

correcting codes were presented; these bounds show that the

redundancy required to correct a fixed number of tandem-

duplications is logarithmic in n.

More specifically, both works showed (see [27, Thm. 4],

[29, Lem. 6]) that there exist codes Cn ⊆ Z
n
q that correct up

to t tandem-duplications, for a fixed t ∈ N, satisfying

qn

nt

(

q

q − 1

)t

. |Cn|

(where we say that an . bn if lim sup an

bn
6 1). They also

showed that the optimal size was Θ
(

qn

nt

)

. Finally, [27, Lem. 3]

demonstrated that Cn can be assumed w.l.o.g. to only contain

sequences which roots satisfy m(x) = Θ(n).
We note that error-correcting codes for t tandem-

duplications have minimal dk(·, ·) distance t+ 1; In compari-

son, then, we have showed that (N, t, k)q-UTR codes, where

t is fixed and N = o(n), have minimal distance t (when re-

stricted to descendant cones of irreducible words with m(x) =
Θ(n)). The observations above imply that codes designed

in the aforementioned works for correcting t − 1 tandem-

duplications, of size & qn

nt−1

(

q
q−1

)t−1

, are (N, t, k)q-UTR

codes. Importantly, this validates the hypothesis that recon-

struction codes for data storage in the DNA of living organisms

offer greater data-density than error-correcting codes. Namely,

in comparison to the t log(n)+O(1) redundancy achieved by

optimal error-correcting codes in [27], [29], (N, t, k)q-UTR

codes achieve redundancy (t− 1) log(n) +O(1).
Finally, we also note for completeness that our results in

Regime II, albeit less applicable in practice, are unique to this

work.

V. CONCLUSION

We have proposed that reconstruction codes can be applied

to data-storage in the DNA of living organisms, due to the

channel’s inherent property of data replication.

We have showed, under the assumption of uniform tandem-

duplication noise, that any reconstruction code is partitioned

into error-correcting codes for the Manhattan metric over a

simplex, with minimal distances dependent on the reconstruc-

tion parameters. We then proved the existence of reconstruc-

tion codes with rate 1, and suggested a construction of a

family of codes, which relies on constructions of codes for the

simplex. Via Theorem 25, we showed that we can bound the

parameters required for code-design in any real application, to

any degree of accuracy.

We believe that further research should examine explicit

code constructions on the simplex; specifically, encoding and

decoding algorithms for sufficiently large codes haven’t yet

been developed; in addition, only specific asymptotic regimes

have been explored, and a gap still exists between lower

an upper bounds on the size of non-linear codes. It is also

desirable to examine the problem under broader noise models,

such as bounded tandem-duplication,interspersed-duplication

(perhaps complemented), as well as combinations of multiple

error models.
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