
1

Limited-Magnitude Error-Correcting Gray Codes for

Rank Modulation
Yonatan Yehezkeally, Student Member, IEEE, Moshe Schwartz, Senior Member, IEEE

Abstract—We construct error-correcting codes over permuta-
tions under the infinity-metric, which are also Gray codes in the
context of rank modulation, i.e., are generated as simple circuits
in the rotator graph. These errors model limited-magnitude or
spike errors, for which only single-error-detecting Gray codes
are currently known. Surprisingly, the error-correcting codes
we construct achieve a better asymptotic rate than that of
presently known constructions not having the Gray property, and
exceed the Gilbert-Varshamov bound. Additionally, we present
efficient ranking and unranking procedures, as well as a decoding
procedure that runs in linear time. Finally, we also apply our
methods to solve an outstanding issue with error-detecting rank-
modulation Gray codes (also known in this context as snake-in-
the-box codes) under a different metric, the Kendall τ-metric, in
the group of permutations over an even number of elements S2n ,
where we provide asymptotically optimal codes.

Index Terms—Gray codes, error-correcting codes, permuta-
tions, spread-d circuit codes, rank modulation

I. Introduction

R
ANK modulation is a method for storing information in

non-volatile memories [23], which has been researched

in recent years. It calls for encoding information in relative

values in a group of cells rather than the absolute values of

each single cell. More precisely, it stores information in the

permutation suggested by sorting a group of cells by their

relative values; Such values may be charge levels in flash

memory cells or electrical resistance in phase-change mem-

ory [30]. Rank modulation allows for increased robustness

against certain noise mechanisms (e.g., charge leakage in flash

memory cells), as well as alleviating some inherent challenges

in flash memories (e.g., programming/erasure-asymmetry and

programming-overshoot). Permutation codes in general have

also previously seen usages in source-encoding [3]–[5], [38]

and signal detection [7], as well as other fields [6], [9], [11],

and more recently been used in power-line communications

[41].

Several error models have been studied for rank modulation,

including the Kendall τ-metric [2], [24], [28], [47], the ℓ∞-

metric [27], [36], [39], [40] and other examples [12], [18]. In

this paper we focus on the ℓ∞-metric, which models limited-

magnitude or spike noise, i.e., we assume that the rank of any

This paper was presented in part at the 2016 IEEE International Symposium
on Information Theory.

The authors are with the Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (e-mail:
yonatany@post.bgu.ac.il; schwartz@ee.bgu.ac.il).

This work was supported in part by ISF grant no. 130/14.
Copyright (c) 2017 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

given cell–its position when sorting the group of cells–could

not have changed by more than a given amount. [27], [39]

have presented constructions for error-correcting codes under

this metric, as well as explored some non-constructive lower-

and upper-bounds on the parameters of existing codes. [40] has

since employed methods of relabeling to optimize the minimal

distance of known constructions.

In the context of rank modulation, a generalization of the

Gray code has been shown to reduce write-time–by eliminat-

ing the risk of programming-overshoot–and allow integration

with other multilevel-cells coding schemes [13], [14], [23].

Gray codes were first considered over the space of binary

vectors, where they were generally defined as a listing of

distinct vectors–sometimes exhaustive–such that each pair of

consecutive vectors differed by a single bit-flip [19]; the

concept has since been generalized in some contexts to include

codes over arbitrary alphabets, requiring only that codewords

could be ordered in a sequence, where each codeword is

derived from the previous by one of a predefined set of

functions. Put differently, Gray codes may be considered as

simple paths on the digraph whose nodes are elements of

the alphabet, and edges are induced by the aforementioned

functions set (e.g., Cayley graphs). Suggested usages of Gray

codes in contexts other than rank modulation, surveyed in

[33], include permanent-computation [29], circuit-testing [31],

image-processing [1], hashing [17], coding [15], [23], [34]

and data storing/extraction [8]. Within rank modulation, par-

ticular Cayley graphs were used, which were first proposed

(for use in multiprocessor networks) in [10], [16] as Faber–

Moore- or rotator graphs, and later rediscovered (the authors

being apparently unaware) for use in Flash memories in [23]

(including one of its constructions). These codes are in fact

also an example of greedily constructed Gray codes [43].

Gray codes with error-correction capabilities have some-

times been referred to as spread-d circuit codes (see [21]

and references therein). Specifically, in the context of rank

modulation, such codes were so far only studied for the

case of single-error detection, where they were dubbed (see

[20]–[22], [42], [44]–[46]) snake-in-the-box codes (or, more

appropriately, coil-in-the-box codes, when they are cyclic);

this, again, draws on terminology first used with Gray codes

in the hypercube, where snake-in-the-box codes are defined as

spread-2 codes using the Hamming distance [37]. [44] studied

such rank-modulation codes under both the Kendall τ-metric

and the ℓ∞-metric, and more recent papers [20], [22], [45]

have categorized and constructed optimally sized coil-in-the-

box codes under the former metric for odd orders, although

the case of even orders proved more challenging (see [46] in

2

addition to the aforementioned papers).

In this work we focus on the ℓ∞-metric and present a

construction of error-correcting Gray codes capable of cor-

recting an arbitrary number of limited-magnitude errors. The

allowed transitions between codewords are the “push-to-the-

top” operations, used in most previous works [13], [14], [20],

[22], [23], [44], [45] (which are isomorphic to the prefix-

rotations of [10]). An example of such a code, generated

in the paper in Example 19, is presented in Figure 1. The

resulting codes will be shown to have greater size than known

constructions in the case of fixed minimal distance, as well as

achieve better asymptotic rates than known codes in the case

of d = Θ(n); both size and rate are also compared against

known bounds. In particular, in the case of error-detecting

codes (i.e., d = 2), where some codes with the Gray property

are already known (that is, snake-in-the-box codes, developed

in [44]), our new construction outperforms known codes by a

factor of ∼ n2

8
(we note that in this specific case of d = 2, an

equivalent construction was also concurrently published in a

preprint in [42]).

We will also briefly examine error-detecting codes under the

Kendall τ-metric for even orders, since methods developed

for the application of our main construction can readily be

adapted to that purpose. We provide an asymptotically optimal

construction which nearly completes the categorization of

available codes for that scheme.

The paper is organized as follows. In Section II we present

notations and definitions. In Section III we study a new kind of

auxiliary codes which are required for our construction, before

presenting it in Section IV and discussing its performance in

comparison with known constructions and bounds. We devise

a decoding algorithm for the generated codes in Section V,

and discuss ranking and unranking procedures in Section VI.

We briefly present an adaptation of the developed auxiliary

codes to error-detecting codes under the Kendall τ-metric in

Section VII. Finally, we conclude in Section VIII by reviewing

our results and suggesting problems for future study.

II. Preliminaries

For n ∈ N, we let Sn denote the symmetric group, the

set of all permutations on [n] = {1, 2, . . . , n} (i.e., bijections

σ : [n] 1−1−→
onto
[n]), with composition as group action:

στ(k) = (σ ◦ τ) (k) = σ(τ(k)).

Throughout the paper we shall denote the identity permutation

Id ∈ Sn defined for all k ∈ [n]: Id(k) = k.

We use the cycle notation for permutations, i.e., for distinct{
aj

}k
j=1
⊆ [n] we let σ = (a1, a2, . . . , ak) be the permutation

such that σ(aj) = a(j mod k)+1 and σ(b) = b for all b ∈
[n] \

{
aj

}k
j=1

. Trivially, every permutation can be represented

as a composition of disjoint cycles. It is also well known

that every permutation can be represented as a composition

of transpositions, cycles of length 2, and that the parity of

the number of transpositions in that representation is unique

(although the representation itself is not). We therefore have

even and odd permutations, and we use sign(σ) = ±1 to

indicate the parity of the number of elements in transposition

representation (with no particular importance given to which

is which). The set of even permutations forms a subgroup

An 6 Sn named the alternating group. We will say that C ⊆ Sn
is parity-preserving if every two elements σ, τ ∈ C have the

same parity, that is, signσ = sign τ (put differently, either

C ⊆ An or C ⊆ Sn \ An).

We also use the vector notation for permutations,

σ = [σ(1), σ(2), . . . ,σ(n)] .

This allows us to more easily notate, for 1 6 i < j 6 n, the

“push-to-the-ith-index” transition ti↑j : Sn → Sn by

ti↑j
([

a1, a2, . . . , ai−1, ai, ai+1, . . . , aj−1, aj , aj+1, . . . , an
])

=

[
a1, a2, . . . , ai−1, aj , ai, ai+1, . . . , aj−1, aj+1, . . . , an

]
.

We follow recent works [22], [23], [44], [45] (among others)

in dubbing “push-to-the-1st-index” transitions as “push-to-the-

top” transitions (although these operations–or more precisely

their inverse–were originally introduced as prefix-rotations in

[10]); We denote t↑j = t1↑j . Finally, we define the “push-to-

the-bottom” transition on the jth index, t↓j : Sn → Sn,

t↓j
([

a1, a2, . . . , aj−1, aj , aj+1, . . . , an
])

=

[
a1, a2, . . . , aj−1, aj+1, . . . , an, aj

]
.

Given any set S, and a collection of transitions

T ⊆ { f | f : S→ S} ,

we define a T -Gray code over the set S to be a sequence

C = (cr)Mr=1 ⊆ S such that for all 1 6 r < r ′ 6 M we have

cr , cr ′ and such that for all 1 6 r < M there exists tr ∈ T

satisfying cr+1 = tr (cr). We say that a sequence C is contained

in S, by abuse of notation, if cr ∈ S for all r. That is, we may

refer to a Gray code as an unordered set–or simply a code–

when desired for simplicity. Conversely, we say that a code has

the Gray property, or is a Gray code, if it can be so ordered.

We call M = |C | the size of the code, and t1, t2, . . . , tM−1 the

transition sequence generating C. If there exists t ∈ T such

that c1 = t(cM) we say that C is cyclic, and include tM = t in

its generating transition sequence. If C = S, we say that C is

a complete code.

Example 1 In the classic example of a Gray code we have,

e.g., S = F2
3, with T consisting of the group action of

{001, 010, 100} ⊆ S on S, defined

v(u) = u + v.

We then have the complete cyclic Gray code given by

000 001 011 010

110111101100

001 010 001

100

001010001

100

�

In this paper, we fix S = Sn. Since we intend to work with

minutely distinct classes of codes on the symmetric group in

this paper, we will introduce notations to distinguish them,

which are organized in Table I for the readers’ comfort. We say

that C = (c1, c2, . . . , cM) ⊆ Sn is a Gi↑(n, M) if it is a cyclic

3



4
1
5
2
6
3





3
4
1
5
2
6





1
3
4
5
2
6





4
1
3
5
2
6





2
4
1
3
5
6





1
2
4
3
5
6





4
1
2
3
5
6





5
4
1
2
3
6





1
5
4
2
3
6





4
1
5
2
3
6





6
4
1
5
2
3





1
6
4
5
2
3





4
1
6
5
2
3





2
4
1
6
5
3





1
2
4
6
5
3





4
1
2
6
5
3





5
4
1
2
6
3





1
5
4
2
6
3



t↑6 t↑6t↑5 t↑5 t↑5 t↑5t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3

t↑3

Figure 1. An error-correcting rank-modulation Gray code in S6 with minimal ℓ∞ distance d = 3, presented in more detail later in Example 19.

Gray code with transition set T =
{
ti↑j

�� i < j 6 n
}
. When

i = 1 we refer to C as a “push-to-the-top” code and denote it

G↑(n, M), and we likewise denote “push-to-the-bottom” codes

G↓(n, M).

Example 2 We observe (a fact that has been remarked in [23])

that 
1

2

3


t↑2−→


2

1

3


t↑3−→


3

2

1


t↑3−→


1

3

2


t↑2−→


3

1

2


t↑3−→


2

3

1


t↑3y

is a G↑(3, 6), i.e., a complete cyclic “push-to-the-top” Gray

code over S3. �

It is worthwhile to note that when S is a group, and

T consists of the group action of some subset on S, and

C is a (complete- and/or cyclic-) Gray code generated by

t1, t2, . . . , tM−1 (, tM), then C can be viewed as a simple

path (or circuit) in the Cayley graph with generators from T .

Moreover for all σ ∈ S we observe that (σ, t1(σ), t2(t1(σ)), . . .)
is also a (complete- and/or cyclic- respectively) Gray code.

In other words, the code is shift invariant as Cayley graphs

are vertex-transitive. In these cases we might refer to the

transition sequence generating the code as the code itself, when

desirable for simplicity. It is of particular interest to observe

that ti↑j (σ) = σ ◦ (j, j − 1, . . . , i), i.e., “push-to-the-ith-index”

transitions are indeed group actions, hence we shall make that

simplification in places. We remark that the Cayley graphs

generated by {(j, j − 1, . . . , 1) | j ∈ [n]}, i.e., prefix-rotations

or “push-to-the-top” operations, were named (n− 1, n)-Faber–

Moore graphs in [16], or (the transpose/converse to) n-rotator

graphs in [10]; as mentioned above, we follow the terminology

used in more recent works.

When S is equipped with a metric dM : S × S → R+,

and C ⊆ S has the property that for all σ, τ ∈ C either

σ = τ or dM(σ, τ) > d, for some constant d > 0, then C

(when considered as an unordered set) is commonly referred

to as an error-correcting code with minimal distance d. If

dM(·, ·) models an error mechanism, such that a single error

corresponds to distance 1, and 2p + q < d, it is well known

that C can then correct p errors, and also detect q additional

errors (e.g., see [32, Prop. 1.5]).

Error-correcting Gray codes were (as mentioned above)

named spread-d circuit codes (e.g., in [21]), where they were

defined by requiring that for all cr , cr ′ ∈ C,

(r − r ′ mod |C |) > d =⇒ dM(cr , cr ′) > d.

In that way, e.g., spread-1 circuit codes are simply Gray codes.

This eased requirement was made necessary since, working

with the Hamming distance dH in the n-cube, one cannot

have codewords at distance less than d in the code sequence

attain a distance of at least d. We shall depart from it here to

deal with Gray codes which are classic error-correcting codes,

but the codes presented in this paper are nevertheless also,

in particular, spread-d circuit-codes. This is naturally true in

the special case of d = 2, which to the authors’ knowledge

is the only case of error-correcting codes studied thus far in

the context of rank modulation with the Gray property. In an

analogue to classic Gray codes in the hypercube mentioned

above, using the Hamming distance [37], they were dubbed

snake-in-the-box codes regardless of the metric being used on

Sn, although only two such metrics were considered [44].

We shall focus on the ℓ∞-metric defined on Sn by

d∞(σ, τ) = max
j∈[n]
|σ(j) − τ(j)| .

That is, it is the metric induced on Sn by the embedding into

Z
n (and, indeed, R

n) implied by the vector notation, and the

ℓ∞-metric in these spaces.

Example 3 In S4, the code



1

2

3

4


t↑2−→



2

1

3

4


t↑3−→



3

2

1

4


t↑2−→



2

3

1

4


t↑3y

has minimal distance 2 (e.g., d∞([1, 2, 3, 4] , [2, 3, 1, 4]) = 2,

but as 4 is fixed no two codewords have distance 3). In contrast,



4

1

2

3


t↑3−→



2

4

1

3


t↑3−→



1

2

4

3


t↑3

y

has minimal distance 3 (which we can verify to be the diameter

of the metric space (S4, d∞)). �

Error-correcting codes in Sn with d∞ were studied in [39],

where they were dubbed limited-magnitude rank-modulation

codes. A code C with minimal distance d was denoted as an

(n, |C | , d)-LMRM code. In our case, if a Gi↑(n, M) is also

an (n, M, d)-LMRM code, we shall denote it a Gi↑(n, M, d)
(likewise for G↑ and G↓).

III. Auxiliary construction

Before we present the main construction of our paper, we

first describe in this section a construction for auxiliary codes

which will be a component of the main construction.

4

TABLE I
Code notations for C ⊆ Sn .

Notation Definition

Gi↑(n, M) C = (cr)Mr=1 ⊆ Sn such that for all r :
c(r mod M)+1 = ti↑ jr (cr).

G↑(n, M) C is a G1↑(n, M).

G↓(n, M) C = (cr)Mr=1 ⊆ Sn such that for all r :
c(r mod M)+1 = t↓ jr (cr).

(n, M , d)-LMRM
C ⊆ Sn , |C | = M and for all c1 , c2 ∈ C:
d∞(c1 , c2) > d.

Gi↑(n, M , d) C is a Gi↑(n, M) and an (n, M , d)-LMRM.

G↑(n, M , d) C is a G1↑(n, M , d).

Gaux
↑ (k, M)

C is a G↑(k, M), beginning with
(
Id, t↑k Id

)
, and

for all q ∈ [k − 1]: σ ∈ C =⇒ (q, k)σ < C.
(See Section III.)

We say that C ⊆ Sk is j-nontransposing, for some j ∈ [k],
if for all q ∈ [k] \ { j} it holds that

σ ∈ C =⇒ (q, j) ◦ σ < C.

Unlike some of the codes mentioned thus far, if we shift the

first permutation of a j-nontransposing Gi↑(k, M) code C, or

rotate the generating sequence of transitions, it is no longer

assured that the resulting code will be j-nontransposing. We

therefore make further requirements and define an auxiliary

code Gaux
↑ (k, M) as a G↑(k, M) which is k-nontransposing,

beginning at Id, and its first transition is t↑k . We will use such

codes in our main construction, and we therefore study their

existence.

Firstly, note that the only existing Gaux
↑ (2, M) codes are the

singletons {Id} , {(1, 2)}. However, for k > 3 there do exist

Gaux
↑ (k, M) codes with M > 3, as one such example is(

Id, t↑3 Id, t↑3
2 Id

)
.

We also note the following:

Lemma 4 If C ⊆ Sk is k-nontransposing, then M 6
|Sk |

2
.

Proof: Take q ∈ [k − 1], and observe that σ 7→ (q, k)σ is

an Sk-automorphism, under which C and its image are disjoint.

Hence 2M 6 |Sk |.
This motivates us to examine another family of codes,

namely, parity-preserving codes, due to the following obser-

vations.

Lemma 5 If C ⊆ Sk is parity-preserving then |C | 6 |Sk |
2

.

Proof: Either C ⊆ Ak or C ⊆ Sk \ Ak . It is well-known

that |Ak | = |Sk |2
.

Lemma 6 If C ⊆ Sk is a parity-preserving G↑(k, M), then C

is k-nontransposing.

Proof: Take σ ∈ C and observe that signσ , sign(q, k)σ
for all q ∈ [k − 1], hence (q, k)σ < C, since C is parity-

preserving.

Parity-preserving Gaux
↑ (2m+ 1, M) codes are known to exist,

achieving the aforementioned bound.

Lemma 7 [20] For all m , 2, there exist parity-

preserving G↑(2m + 1,
(2m+1)!

2
) codes. The largest parity-

preserving G↑(5, M) codes have M = 57.

Although not declared, it is shown in [20] that such codes

can be assumed to have t↑2m+1 as the first transition in their

generating transition sequence, and furthermore, that they also

employ at least one t↑2m−1 transition.

In comparison, as noted in [44], a parity-preserving

G↑(2m, M) must satisfy M 6
|S2m |
2m

, as it must never employ

a t↑2m transition. This evidently yields much smaller codes

than the case of odd orders, and we therefore examine more

general Gaux
↑ codes, which are not parity-preserving. We begin

by noting the following lemma.

Lemma 8 [10, Thm. 4] For all n > 1 there exist G↑(n, n!)
codes, that is, complete and cyclic “push-to-the-top” Gray

codes over the symmetric group Sn.

Relying on these codes, we construct auxiliary codes in the

following theorem. The method we apply here of using “push-

to-the-bottom” transitions was also used in [10], [23] as a

building block for their proposed constructions of a complete

and cyclic Gray code in Sn (which are equivalent), then later

in [44] for parity-preserving codes in S2m+1.

Theorem 9 For all m > 2 there exists a Gaux
↑ (2m,

|S2m |
2m−1
).

Proof: Take a G↑(2m− 2, (2m− 2)!) code C′, provided by

Lemma 8. We follow the concept of [23, Thm. 7] in extending

C′ to S2m. Let us define

σ0 = t↑2m Id = [2m, 1, . . . , 2m − 1] .
If we take t↑i1 , t↑i2 , . . . , t↑i(2m−2)! to be the transition sequence

generating C′, then the transition sequence

t↓2m+1−i1 , t↓2m+1−i2 , . . . , t↓2m+1−i(2k−2)!

of “push-to-the-bottom” operations, applied in succession to

σ0, generates C′′ ⊆ S2m, a G↓(2m, (2m − 2)!), all of whose

elements’ vector notations begin with [2m, 1].
We now note that t↓2m+1−j = t↑2m

2m−1t↑j . Thus, by replacing

each t↓2m+1−j with t↑j followed by a sequence of 2m − 1

occurrences of t↑2m, we get C ⊆ S2m, a G↑(2m, (2m− 2)!2m),
where every block of 2m elements is comprised of cyclic shifts

of some σ ∈ C′′.
The code C is known to be a Gray code [23, Thm. 7].

Moreover, if σ ∈ C satisfies τ = (q, 2m)σ ∈ C, note that

both have a vector notation with 1 immediately (cyclically)

following 2m, but since τ = (q, 2m)σ its vector notation has

1 following q. It follows (by abuse of notation) that q = 2m.

Hence, C is 2m-nontransposing.

Finally, note that C is generated by a transition sequence

ending with 2m − 1 instances of t↑2m, and begins with σ0 =

t↑2m Id. Therefore, it includes Id followed by a t↑2m transition.

A cyclic shift of C therefore satisfies the theorem.

Example 10 To construct a Gaux
↑ (4, 8) we utilize the complete

G↑(2, 2) code
{
Id, t↑2 Id

}
, generated by t↑2, t↑2, to arrive by the

G↓(4, 2) code starting with σ0 = t↑4 Id = [4, 1, 2, 3]:
C′′ = {[4, 1, 2, 3] , [4, 1, 3, 2]} ,

5

which is generated by t↓3, t↓3. We recall that t↓3 = t↑4
3 ◦ t↑3,

allowing us to expand C′′ in the following manner:


4
1
2
3

∈

C′′

t↑3→

2
4
1
3


t↑4→


3
2
4
1


t↑4→


1
3
2
4


t↑4→


4
1
3
2

∈

C′′

t↑3→

3
4
1
2


t↑4→


2
3
4
1


t↑4→


1
2
3
4


t↑4

y

Finally, we observe that as seen in the proof to Theorem 9,

the code we constructed has Id as its last codeword, followed

by a t↑4 operation. A cyclic shift of the code now begins with

Id and the required operation, which satisfies Theorem 9. �

We remark that, while Theorem 9 does not produce codes

much larger than the parity-preserving code of size
|S2m |
2m

, it

does at least allow us to permute the last element 2m while

preserving the property of being 2m-nontransposing, and thus

construct auxiliary codes.

Next, we present another construction which yields larger

codes, for even k > 6 (but not k = 4). From now on, we fix

m > 2 and let k = 2m + 2. We also define ϕ : S2m+2 → S2m+2

by

ϕ = t↑2m+2
2 ◦ t↑2m−1

−1.

We note that

ϕ(π) = π ◦ (1, 2m+ 1)(2m+ 2, 2m, 2m− 1, . . . , 2),

Hence, informally, in π’s vector notation, ϕ transposes the

elements in indices 1, 2m + 1, and cyclically shifts all other

elements once to the bottom (i.e., as if applying a “push-to-

the-top” operation on the last index – acting only on these

indices). We can also observe that ϕ2m
= Id.

We conveniently define, for all r > 0, the permutations

π̂r = ϕ
r (Id)

= (1, 2m+ 1)r (2m + 2, 2m, 2m− 1, . . . , 2)r ∈ S2m+2,

In particular, we note that when r ≡ r ′ (mod 2m), and only

then, we have π̂r = π̂r ′.

Lemma 11 For all r > 0 a parity-preserving G↑(2m +

2, M2m+2) code Pr exists which begins with π̂r and ends with

t↑2m−1
−1π̂r , where

M2m+2 =

{
57 m = 2,
(2m+1)!

2
m > 2.

Proof: The claim follows trivially from the codes pro-

vided by Lemma 7, if we shift the generating transition se-

quence such that it ends with t↑2m−1 and apply it to π̂r .

We note in particular that for all r, π̂r is even, and thus

Pr ⊆ A2m+2. Moreover, since the parity-preserving code Pr

does not employ t↑2m+2, for all π ∈ Pr it holds that

π(2m + 2) = π̂r (2m + 2)

=

{
2m + 2 r ≡ 0 (mod 2m),
2m + 1 − (r mod 2m) r . 0 (mod 2m).

Thus, when considered as sets,

Pr ∩ Pr ′ = ∅,

for all 0 6 r < r ′ < 2m.

We shall construct a Gaux
↑ (2m + 2, M) code by stitching

together P1, P2, . . . , P2m−1. We will need to amend P0 before

incorporating it into our code, for reasons we shall discuss

below. First, we describe the stitching method in the following

lemma.

Lemma 12 For all r > 0 (including, in particular, r = 2m − 1),

we may concatenate Pr , Pr+1 into a (non-cyclic) “push-to-the-

top” code by applying the transitions t↑2m+2, t↑2m+2 to the last

permutation of Pr , which is t↑2m−1
−1π̂r . Additionally, the only

odd permutation in the resulting code is

βr+1 = t↑2m+2
−1(π̂r+1).

We shall refer to it as the (r + 1)-bridge.

Proof: The claim follows trivially from the definition

π̂r+1 = ϕ(π̂r) = t↑2m+2 ◦
(
t↑2m+2 ◦ t↑2m−1

−1(π̂r)
)

,

since Pr , Pr+1 are parity-preserving, and t↑2m+2 flips parity.

Lemma 12 can be used iteratively to concatenate

P1, P2, . . . , P2m−1, with a single odd permutation–the r-

bridge–between each pair of Pr−1, Pr . Thus, we obtain the

sequence

P1, β2, P2, β3, . . . , β2m−1, P2m−1.

Note that if any two permutations π1, π2 in the resulting

sequence satisfy π1 = (q, 2m+ 2) ◦ π2 for some q ∈ [2m + 1],
then w.l.o.g π2 is odd and hence an r-bridge for some r, and

π1 is even and thus not a bridge. Since in every bridge the last

element is

βr (2m + 2) = π̂r (1) ∈ {1, 2m+ 1} ,

and in every non-bridge it is not, it must follow, then, that

q = βr (2m + 2), and in particular

π1(2m + 2) = (βr (2m + 2), 2m+ 2) ◦ βr (2m + 2)
= 2m + 2,

thus π1 ∈ P0.

We witness, therefore, that no such pair of permutations

exist, since we have not yet incorporated P0 into our code.

Hence, so far we have a (2m+ 2)-nontransposing code. It also

becomes apparent that P0 must necessarily be amended prior

to its inclusion, so it does not include any permutations of the

form

(βr (2m + 2), 2m+ 2) ◦ βr , 0 < r 6 2m.

In order to do so, we note that for all r > 0

βr (2m) = π̂r (2m + 1) ∈ {1, 2m+ 1} ,

and in particular βr (2m) , 2m + 2, hence

(βr (2m + 2), 2m+ 2) ◦ βr (2m) = βr (2m) ∈ {1, 2m+ 1} .
It follows that if we let P′

0
be generated by the transition

sequence t↑2m−1
2m−1 applied to π̂0, then it is parity-preserving,

its last permutation is t↑2m−1
−1π̂0, and for all π ∈ P′

0
we have

π(2m) = 2m < {1, 2m+ 1}, thus

P′0 ∩ {(βr (2m + 2), 2m+ 2) ◦ βr }2mr=1 = ∅.

6

Lemma 13 The following sequence P,

P = P′0, β1, P1, β2, P2, β3, . . . , β2m−1, P2m−1, β2m,

is a cyclic and k-nontransposing G↑(k, M).

Proof: By Lemma 12, and since when considered as sets,

Pr ∩ Pr ′ = ∅

for all 0 < r < r ′ < 2m, and similarly P′
0

is disjoint from

P1, P2, . . . , P2m−1, we know that P is a G↑(2m + 2, M).
As seen above, if for any two permutations π1, π2 ∈ P and

q ∈ [2m+ 1] we have π1 = (q, 2m+ 2) ◦ π2, then w.l.o.g. π2 =

βr for some 0 < r 6 2m and q = βr (2m + 2). In particular,

π1(2m + 2) = 2m + 2, thus

π1 < {βr }2mr=1 ∪
2m−1⋃
r=1

Pr ,

thus π1 ∈ P′
0
. But

P′0 ∩ {(βr (2m + 2), 2m+ 2) ◦ βr }2mr=1 = ∅,

in contradiction.

The code from Lemma 13 is almost what we need. The only

property lacking is the fact that Id is not followed in P by the

transition t↑2m+2. We fix this in the following theorem.

Theorem 14 Let k > 6 be even. Then there exists a

Gaux
↑ (k, M), with

M =

{
178 k = 6,

(k − 3)
(
(k−1)!

2
+ 2

)
+ 1 k > 6.

In particular, for all k > 6,

M >
k − 3

k
· k!

2
.

Proof: Denote k = 2m + 2 for m > 2, and let P = (cj)Mj=1

be the code from Lemma 13. Since Id ∈ Sk is not followed

with a t↑k transition in P, we denote the last permutation of

P′
0

by π̃, and replace P with

P̃ = π̃−1P =
(
π̃−1 ◦ cj

)M
j=1

.

We observe that P̃ is still a “push-to-the-top” code since

“push-to-the-top” transitions are group actions by right-

multiplications. Moreover, since π̃(k) = k, if for some π1, π2 ∈
P we have π̃−1 ◦ π1 = (q, k) ◦

(
π̃−1 ◦ π2

)
, where q ∈ [k − 1],

then

π1 = π̃ ◦
[
(q, k) ◦

(
π̃−1 ◦ π2

)]
=

[
π̃ ◦ (q, k) ◦ π̃−1

]
◦ π2 = (π̃(q), k) ◦ π2,

and π̃(q) ∈ [k − 1], in contradiction.

As for the size of the code, note that
��P′

0

��
= 2m − 1 = k − 3

and

|P1 | = |P2 | = . . . = |P2m−1 | =
{

57 k = 6,
(k−1)!

2
k > 6.

Counting β1, . . . , β2m, the claim is thus substantiated, up to a

rotation to make Id the first permutation.

To conclude this section, we combine Lemma 7, Theorem 9

and Theorem 14 into the following corollary.

Corollary 15 For all k > 3 there exists a Gaux
↑ (k, M̃k), where

M̃k =




8 k = 4

57 k = 5

178 k = 6
k!

2
5 , k ≡ 1 (mod 2)

ρk
k!

2
6 < k ≡ 0 (mod 2),

and ρk >
k−3
k

.

IV. Code Construction

In this section we present the main construction of our

paper, and discuss the size and asymptotic rate of the resulting

codes. We will show, surprisingly, that our method generates

codes which are larger than formerly known families of codes,

even though we require the additional structure of a Gray code.

A. Main code construction

We now present a construction of G↑(n, M, d) codes, for

d < n, which we base on Corollary 15 and Lemma 8.

It will simplify the presentation to assume n = kd for some

positive k > 2, since in that case every congruence class

modulo d of [n] has size k. Nonetheless, the construction is

applicable to any n > d with natural amendments. We discuss

these changes, focusing on special cases, after presenting the

simple construction first.

Construction A Let n, k, d ∈ N, with n = kd and k > 2. We

recursively construct a sequence of codes, Cd , Cd−1, . . . , C1.

An explicit construction is given for Cd and a recursion step

constructs Cm from Cm+1.

Recursion base: We construct the code Cd by starting at the

permutation σ0 ∈ Sn defined by

σ0(j) = d (j mod k) +
⌈

j

k

⌉
.

We obtain a transition sequence t↑r1
, t↑r2

, . . . , t↑rk !
which gen-

erates the G↑(k, k!) provided by Lemma 8. The code Cd starts

with σ0, and uses the transition sequence

tk(d−1)+1↑k(d−1)+r1
, tk(d−1)+1↑k(d−1)+r2

, . . .

. . . , tk(d−1)+1↑k(d−1)+rk !
.

Recursion step: Assume Cm+1 has already been constructed,

starting with permutation σ0. Additionally, let

t↑k+1, t↑i2 , . . . , t↑iM̃k+1
(1)

be a transition sequence generating a Gaux
↑ (k + 1, M̃k+1) code

provided by Corollary 15.

We construct the code Cm as follows: replace each

tkm+1↑j transition of Cm+1 with tk(m−1)+1↑j , followed

7

by tk(m−1)+1↑k(m−1)+i2 , tk(m−1)+1↑k(m−1)+i3 , and so on until

tk(m−1)+1↑k(m−1)+iM̃k+1
. �

Lemma 16 For all n = kd, k > 2, the code Cd from

Construction A is a Gk(d−1)+1↑(n, k!, d).

Proof: The parameters of the code are obvious, except

perhaps the minimal distance d. The fact that the codewords

of Cd are distinct follows from Lemma 8.

To prove the minimal distance d, note that for all 0 6 u < d

and ku + 1 6 i < j 6 k(u + 1) it holds that σ0(i) ≡ σ0(j)
(mod d). Thus, for every distinct σ, τ ∈ Cd, there exists j,

k(d − 1) < j 6 kd = n, such that σ(j) , τ(j). Since by

construction σ(j) ≡ τ(j) ≡ 0 (mod d), we observe

d∞(σ, τ) > |σ(j) − τ(j)| > d,

implying that Cd is a Gk(d−1)+1↑(n, k!, d).

Example 17 We let d = 3, k = 2, and n = kd = 6. We

construct the code C3 starting at

σ0 = [4, 1, 5, 2, 6, 3] ∈ S6.

We use the complete G↑(2, 2) shown in Example 10, which is

generated by the sequence t↑2, t↑2. We arrive at a generating

sequence t5↑6, t5↑6 for C3. Hence, in our example

C3 = ([4, 1, 5, 2, 6, 3] , [4, 1, 5, 2, 3, 6]) ,

which is readily seen to be a G5↑(6, 2, 3) code. �

We shall follow Construction A to develop this example into

a G↑(6, 18, 3) in Example 19. First, we prove the validity of

the construction.

Theorem 18 For all n = kd, k > 2, the code C1 from

Construction A is a G↑(n, M̃k+1
d−1 · k!, d).

Proof: To prove the claim we will prove by induc-

tion that Cm from Construction A, for all m ∈ [d], is

a Gk(m−1)+1↑(n, M̃k+1
d−m · k!, d). The base case of Cd was

proved in Lemma 16. Assume the claim holds for Cm+1 and

we now prove it for Cm.

Recall (1) gives the sequence of transitions for a

Gaux
↑ (k + 1, M̃k+1). Then

t↑iM̃k+1
t↑iM̃k+1−1

· · · t↑i3 t↑i2 = t↑k+1
−1.

Thus,

tkm+1↑j =
©­«
M̃k+1∏
r=2

tk(m−1)+1↑k(m−1)+ir
ª®
¬

tk(m−1)+1↑j

(where the product is expanded right-to-left). Therefore, Cm

expands each “push-to-the-(km + 1)st-index” transition of

Cm+1 into M̃k+1 “push-to-the-[k(m − 1) + 1]st-index” transi-

tions.

It follows that Cm contains the codewords of Cm+1 in the

same order, with M̃k+1 − 1 new words inserted between any

two words originally from Cm+1. We say that each codeword

of Cm+1 (now appearing in Cm) is the Cm+1-parent of each of

the M̃k+1 preceding codewords in Cm (including itself), since

their vector notations agree on the order of the elements

σ0(km + 1),σ0(km + 2), . . . ,σ0(n).

We note here (and will further examine later) that when

x = σ′(km + 1) and σ′ is a Cm+1-parent of M̃k+1 codewords

in Cm (inclusive), then that subsequence of Cm is an x-

nontransposing Gk(m−1)+1↑(n, M̃k+1) code. This follows since

we used an auxiliary code to construct that subsequence, of

which the parent takes the role of first permutation, and in σ′,
x is the last element among the indices being permuted.

Now, suppose that σ, τ ∈ Cm satisfy d∞(σ, τ) < d. Let σ′,
τ′ be their Cm+1-parents, respectively. To complete the proof

we will show that σ = τ.

Case 1: σ′ = τ′. Denote

x = σ′(km + 1) = τ′(km + 1)

and s = σ−1(x), a = τ(s).
If a = x then for all j , s, k(m − 1) < j 6 km + 1, we have

σ(j) ≡ τ(j) (mod d) and

|σ(j) − τ(j)| 6 d∞(σ, τ) < d,

hence σ(j) = τ(j), and σ = τ.

Otherwise, a , x, and denote t = τ−1(x) , s. It similarly

holds for all j < {s, t}, k(m − 1) < j 6 km + 1, that σ(j) =
τ(j). We therefore observe τ = σ ◦ (s, t). This implies that,

if we let σ̂, τ̂ ∈ Sk+1 be the permutations in the Gaux
↑ we

obtained, generated similarly to σ, τ, respectively (i.e., by their

corresponding transition sequences), then

τ̂ = σ̂ ◦ (s − k(m − 1), t − k(m − 1)) = (q, k + 1)σ̂

for some q ∈ [k], in contradiction to the fact it was a

Gaux
↑ (k + 1, M̃k+1).
Case 2: σ′ , τ′. Since σ′, τ′ ∈ Cm+1 we have by

assumption d∞(σ′, τ′) > d, and note that for all j satisfying

j 6 k(m − 1) or j > km + 1, it holds that σ(j) = σ′(j) and

τ(j) = τ′(j). Hence there exists j, k(m − 1) < j 6 km + 1,

such that

|σ(j) − τ(j)| < d but |σ′(j) − τ′(j)| > d.

Note particularly, since for all k(m − 1) < j 6 km it holds that

σ′(j) = σ0(j) = τ′(j), that we have

|σ′(km + 1) − τ′(km + 1)| > d.

Denote x = σ′(km + 1), y = τ′(km + 1), and note that

{σ(j)}km+1
j=k(m−1)+1 = {ai}

k
i=1 ∪ {x} ;

{τ(j)}km+1
j=k(m−1)+1 = {ai}

k
i=1 ∪ {y} ,

where {ai}ki=1 is a congruence class modulo d of [n], of which

x, y are not members.

Let s = σ−1(x) and denote a = τ(s). Since

|x − a| = |σ(s) − τ(s)| 6 d∞(σ, τ) < d

we have a , y. Let t = σ−1(a). Since a ∈ {ai}ki=1 is a

congruence class modulo d, for all b ∈ {ai}ki=1 \ {a} we

observe |a − b| > d, but

|a − τ(t)| = |σ(t) − τ(t)| 6 d∞(σ, τ) < d

8

and therefore τ(t) = y. For all j < {s, t} satisfying

k(m − 1) < j 6 km + 1 we then have σ(j) ≡ τ(j) (mod d)
and |σ(j) − τ(j)| 6 d∞(σ, τ) < d, hence σ(j) = τ(j).

This implies that, if we again let σ̂, τ̂ ∈ Sk+1 be the per-

mutations in the Gaux
↑ generated similarly to σ, τ respectively,

then

τ̂ = σ̂ ◦ (s − k(m − 1), t − k(m − 1)) = (q, k + 1)σ̂

where q is given by a = aq ∈ {ai}ki=1, again contradicting

the properties of a Gaux
↑ (k + 1, M̃k+1). Hence Cm has minimal

ℓ∞-distance of at least d, as required.

Example 19 We complete Example 17 into a G↑(6, 32 · 2, 3)
code by applying the recursion step twice. In each step, since

k = 2, we utilize the trivial parity-preserving Gaux
↑ (3, 3) code

generated by the sequence t↑3, t↑3, t↑3.

Firstly, recall that we used

σ0 = [4, 1, 5, 2, 6, 3] ∈ S6,

and the sequence t5↑6, t5↑6 generates

C3 = ([4, 1, 5, 2, 6, 3] , [4, 1, 5, 2, 3, 6]) .

We build C2 by exchanging each t5↑6 transition by t3↑6
followed by 2 instances of t2+1↑2+3 = t3↑5; the middle level

of Figure 2 shows the resulting code.

Secondly, as seen in the same figure, each t3↑j transition of

C2, j ∈ {5, 6}, can be replaced by t1↑j = t↑j , followed by 2

instances of t0+1↑0+3 = t↑3, to generate C1.

Note that C3 ⊆ C2 ⊆ C1, and that they are G5↑(6, 2, 3),
G3↑(6, 6, 3) and G↑(6, 18, 3) codes, respectively. �

We now describe the changes needed in Construction A to

allow general n and d parameters. We first consider n not

necessarily being a multiple of d, but still n > 2d. For all

i ∈ [d], let

Ri = {i, i + d, i + 2d, . . . , n − ((n − i) mod d)} ,

be the ith congruence class modulo d of [n]. Then

|Ri | =
{⌈

n
d

⌉
1 6 i 6 (n mod d),⌊

n
d

⌋
(n mod d) < i 6 d.

We define the starting permutation

σ0 = [R1 |R2 | . . . |Rd] ∈ Sn,

to be comprised of a concatenation of the congruence classes,

where the order of elements within the congruence class is ar-

bitrary. Additionally, the recursion base uses a G↑(|Rd | , |Rd |!).
As for the recursion step of constructing Cm from Cm+1, we

can still apply it with the following changes:

• We choose Gaux
↑ (|Rm | + 1, M̃ |Rm |+1).

• We use push operations to position 1 +
∑m−1

i=1 |Ri |.
We obtain C1 which is a G↑ (n, M, d), where

M = M̃⌈n/d⌉+1
n mod d · M̃⌊n/d⌋+1

d−(n mod d)−1 ·
⌊ n

d

⌋
!.

Finally, we discuss the special case of n < 2d, in which

all but (n mod d) congruence classes are singletons. We will

amend our construction by replacing the recursion base with

Cm =
{
σ0, t2m−1↑2m+1σ0, t2m−1↑2m+1

2σ0

}
,

where m = n mod d, and continuing the recursion step as

discussed above. Thus, we are effectively only using the

first member of Rm+1 together with the previous congruence

classes, fixing σ0(j) for j > 2m + 1. In this case, we obtain

C1 which is a G↑(n, 3n mod d, d).
Thus, in what follows, whenever we mention

Construction A, we refer to its most general version

applying to all n and d.

B. Code-size analysis and comparison

We would like to give an explicit expression for the size of

the codes constructed by Construction A. This would enable

a comparison with previously known results.

Lemma 20 Let C1 be the code from (the general version of)

Construction A. Then its size, |C1 |, is given by (2).

Proof: Let us first assume n > 2d. We note the asymmetry

in Construction A between congruence classes Ri of odd and

even sizes. Indeed, a class of size |Ri | = k > 2 (for all classes

other than Rd , which is used in the recursion base and whose

contribution is based on the G↑(k, k!) code) contributes to the

code size, according to Corollary 15, a multiplicative factor of

M̃k+1 =




8 k = 3;

57 k = 4;

178 k = 5;
(k+1)!

2
4 , k ≡ 0 (mod 2);

ρk+1
(k+1)!

2
5 < k ≡ 1 (mod 2),

where, again, ρk+1 >
k−2
k+1

.

It is therefore important to note that when
⌊
n
d

⌋
≡ 0 (mod 2),

[n] has (n mod d) congruence classes modulo d of odd size⌈
n
d

⌉
, and d − (n mod d) classes of even size

⌊
n
d

⌋
. Thus, if

additionally
⌊
n
d

⌋
> 4, the constructed code C1 is of size

|C1 | =
(
ρ ⌈n/d⌉+1

(⌈n/d⌉ + 1)!
2

)n mod d

·
⌊ n

d

⌋
!

·
(
(⌊n/d⌋ + 1)!

2

)d−(n mod d)−1

,

and simple rearranging gives us the first case of (2). Similar

considerations give us the next five cases of (2).

Finally, we consider the case of n < 2d, which implies⌊
n
d

⌋
= 1. In this special case we only permute (n mod d) =

(n − d) congruence classes of [n], (and each such class has

2 =
⌊
n
d

⌋
+ 1 elements). As mentioned, we therefore construct

a code of size |C1 | = 3n mod d.

We comment that it is also possible to achieve a slight gain

in code size by reordering σ0 so that the last block consists

of a congruence class of odd size, rather than even, where the

added complexity of index calculation is inconsequential. The

gains are negligible for large enough n.

9

C3



4
1
5
2
6
3


C2

C1



3
4
1
5
2
6





1
3
4
5
2
6





2
4
1
3
5
6





1
2
4
3
5
6





5
4
1
2
3
6





1
5
4
2
3
6





6
4
1
5
2
3





1
6
4
5
2
3





2
4
1
6
5
3





1
2
4
6
5
3





5
4
1
2
6
3





1
5
4
2
6
3





4
1
3
5
2
6





4
1
2
3
5
6





4
1
6
5
2
3





4
1
2
6
5
3





4
1
5
2
3
6



t5↑6

t3↑6

t↑6

t5↑6

t3↑6

t↑6

t3↑5

t↑5

t3↑5

t↑5

t3↑5

t↑5

t3↑5

t↑5t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3 t↑3

Figure 2. Construction A as demonstrated in the case d = 3, k = 2.

|C1 | =




(⌈
n
d

⌉
+ 1

)n mod d (⌊
n
d

⌋
+ 1

)
!
d · ρ⌈n/d⌉+1

n mod d

2d−1(⌊n/d⌋+1) 4 <
⌊
n
d

⌋
≡ 0 (mod 2),(

178
57

)n mod d

· 57d−1 · 24
⌊
n
d

⌋
= 4,(

8
3

)n mod d

· 3d−1 · 2
⌊
n
d

⌋
= 2,(⌈

n
d

⌉
+ 1

)n mod d (⌊
n
d

⌋
+ 1

)
!
d · ρ⌊n/d⌋+1

(d−1)−(n mod d)

2d−1 (⌊n/d⌋+1) 5 <
⌊
n
d

⌋
≡ 1 (mod 2),(

1260
89

)n mod d

· (178)d · 120
178

⌊
n
d

⌋
= 5,(

57
8

)n mod d

· 8d · 3
4

⌊
n
d

⌋
= 3,

3n mod d
⌊
n
d

⌋
= 1.

(2)

We now turn to comparing the size of the resulting code

with that of previously constructed codes, as well as known

bounds on the cardinality of such codes.

The first comparison we make is with codes that have the

Gray property. Such codes were only studied for d = 2, i.e.,

snake-in-the-box codes or G↑(n, M, 2) codes in our notation.

These codes were studied in [44, Thm. 24], where it was shown

that such codes can be constructed with sizes

M =
⌈n

2

⌉
!

(⌊n

2

⌋
+

(⌊n

2

⌋
− 1

)
!

)
.

Construction A improves this size by a factor of
1
2

(⌈
n
2

⌉
+ 1

) ⌊
n
2

⌋
, times a factor of ρ ⌊n/2⌋+1 when n ≡ 2

(mod 4) (in the case of n ≡ 1 (mod 4), the factor ρ ⌊n/2⌋+1

is eliminated by changing the order of congruence classes

in σ0). We note that a similar improvement was made

concurrently by [42] in a preprint devoted solely to the case

of d = 2, i.e., snake-in-the-box codes.

We now also compare our results to error-correcting codes

with the ℓ∞-metric which are not necessarily Gray codes

(LMRM-codes). We observe that the best known general

LMRM-code construction to date, [39, Cst. 1, Thm. 2] and

[27, Sec. III-A], presented (n, M, d)-LMRM codes with sizes

M =
⌈n

d

⌉
!

n mod d ⌊ n

d

⌋
!

d−(n mod d)
,

which our construction improves upon, more pronouncedly the

more [n] has even-sized congruence classes modulo d (cf. (2)).

Finally, we also note the following lemma:

Lemma 21 [39, Thm. 16] If C ⊆ Sn is a code with minimal

ℓ∞ distance d, then

|C | 6 n!

(d!) ⌊n/d⌋ (n mod d)!

We remark that in the case of d = 2, [44] confirmed that

the optimal size of error-correcting codes for n = 4, 5, 6 to

be 6, 30, 90 respectively, meeting the bound of Lemma 21. It

also presented Gray codes achieving these sizes by computer

search. Searches in higher dimension were reported unfeasible.

For higher values of d, the optimal size is unknown, as well

as whether Gray codes can achieve it. While the reader can

appreciate that the bound of Lemma 21 is exponentially greater

than the size provided by Lemma 20, we note anecdotally that

the G↑(6, 18, 3) code presented in Example 19 almost meets

the bound (M 6 20).

In the asymptotic regime, we go on to examine the case of

d = Θ(n). For an (n, M, d)-LMRM code (and in particular a

G↑(n, M, d)), we follow the convention (e.g., [39]) of defining

the rate of the code

R =
1

n
log2 M,

and its normalized distance

δ =
d

n
.

The following were proven in [39].

10

Lemma 22 [39, Thm. 23] For any (n, M, nδ)-LMRM code it

holds that

R 6 2− 2δ

⌊
1

δ

⌋
−

(
δ

⌊
1

δ

⌋
− δ

)
log2(δ)

−
(
1+ δ − δ

⌊
1

δ

⌋)
log2

(
1 + δ − δ

⌊
1

δ

⌋)
+ o(1).

Lemma 23 [39, Thm. 27] For any 0 < δ 6 1 the construction

of [39, Cst. 1, Thm. 2] and [27, Sec. III-A] yields codes with

R =

(
1 − δ

⌊
1

δ

⌋)
log2

(⌈
1

δ

⌉
!

)

+

(
δ + δ

⌊
1

δ

⌋
− 1

)
log2

(⌊
1

δ

⌋
!

)
.

Previous works have also established the following lower

bound on achievable rates of error-correcting codes:

Lemma 24 (Gilbert-Varshamov) For any 0 < δ 6 1 there

exist (n, M, d)-LMRM codes satisfying d
n
> δ with rate

R > fGV(δ) − o(1), where Φ(δ) 6 fGV(δ) 6 ϕ(δ),

Φ(δ) =
{

log2
1
δ
+ 2δ

(
log2(e) − 1

)
− 1 0 < δ 6 1

2

−2δ log2
1
δ
+ 2(1− δ) log2(e) 1

2
< δ 6 1,

ϕ(δ) =




log2
1
δ
+ δ − 1 0 < δ 6 ρ

log2
1
δ
+ 2δ

(
log2(e) − 1

)
− log2

(
e log2(e)

)
+ 1 ρ < δ 6 1

2

log2

(
t̂(δ)

log2(e)

)
− t̂(δ) · (2δ − 1)+ log2

1
1−δ

1
2
< δ 6 1,

ρ =
2−log2(e log2(e))

3−2 log2(e)
, W(t) is the Lambert function, and

t̂(δ) = log2(e) ·
©­­
«

2(1− δ)
2δ − 1

−W
©­­
«
(1− δ) · exp

(
2(1−δ)
2δ−1

)
2δ − 1

ª®®¬
ª®®¬

.

Proof: We derive fGV from the Gilbert-Varshamov bound:

fGV(δ) =
1

n
log2

(
n!��Bδn,n

��
)

= log2(n) − log2(e) −
1

n
log2(

��Bδn,n

��) + o(1),

where
��Bδn,n

�� is the size of ball of radius δn in Sn, and is

independent of the center of the ball since the ℓ∞ metric is

right-invariant, i.e., for all σ, π, τ ∈ Sn,

d∞(σπ, τπ) = d∞(σ, τ).

Unfortunately, the asymptotic size of Bδn,n isn’t precisely

known as n → ∞. Recently, however, [35] proved new lower

bounds on
��Bδn,n

��, namely:

n log2(n) − log2(
��Bδn,n

��) 6

6




n
[
log2

e
δ
+ δ − 1

]
− o(n) 0 < δ 6 ρ

n
[
log2

e
δ
+ 2δ

(
log2(e) − 1

)
− log2

(
e log2(e)

)
+ 1

]
− o(n) ρ < δ 6 1

2

n
[
log2

(
e ·t̂(δ)
log2(e)

)
−t̂(δ) · (2δ − 1)+ log2

1
1−δ

]
− o(n) 1

2
< δ 6 1.

An upper bound for
��Bδn,n

�� was established in [26, Eq. (4)]

and [39, Lem. 25]:

n log2(n) − log2(
��Bδn,n

��) >

>




n
[
log2

1
δ

+(2δ + 1)
(
log2(e) − 1

)]
− o(n) 0 < δ 6 1

2

n
[
(3− 2δ) log2(e)

−2δ log2
1
δ

]
− o(n) 1

2
< δ 6 1.

Deriving the lemma is now straightforward.

The works cited in Lemma 24 establish a narrow rate-range

for the Gilbert-Varshamov bound, as can be seen in Figure 3,

i.e., the true Gilbert-Varshamov bound passes somewhere

within the gray-shaded area in Figure 3.

Next, we aim to show that our construction can bridge some

of the gap between the given bounds and known constructions.

Lemma 25 Let C1 be the code from (the general version of)

Construction A. Then an estimate from below of its rate R as

a function of its normalized distance δ is given by (3).

Proof: The proof follows by a simple substitution of

(n mod d) = n − d
⌊
n
d

⌋
and d = nδ into (2). We also recall

that ρk >
k−3
k

.

In conclusion, these asymptotic rates and bounds are shown

in Figure 3. We note in particular that the rate of codes

produced by Construction A is strictly higher than that of pre-

viously known constructions (as in Lemma 23). Furthermore, it

produces codes with rates higher than those guaranteed by the

Gilbert-Varshamov bound shown in Lemma 24 for all δ greater

than ≈ 0.1 except in a small neighborhood of 1
5
, whereas

known constructions only bypassed these rates for δ greater

than ≈ 0.349.

V. Decoding Algorithm

This section is devoted to devising a decoding algorithm

capable of correcting a noisy received version of a transmitted

codeword.

Known constructions of (n, M, d)-LMRM codes, presented

in [39, Cst. 1, Thm. 2] and [27, Sec. III-A], lend themselves to

straightforward decoding algorithms, efficiently done in O(n)
operations, since for any given codeword σ and index i ∈ [n],
r = [σ(i) mod d] is known. Hence, if a retrieved permutation τ

satisfies d∞(σ, τ) 6 ⌊(d − 1)/2⌋, then σ(i) is known to be the

unique element k ∈ r + dZ satisfying |k − τ(i)| 6 ⌊(d − 1)/2⌋.
Our proposed construction diverges from that rigid partition.

However, we can still efficiently decode noisy information,

provided errors of magnitude no more than t have occurred,

where 2t + 1 6 d. More precisely, we assume that for every

stored permutation σ and retrieved permutation τ it holds that

d∞(σ, τ) 6 t 6 ⌊(d − 1)/2⌋.
To simplify our presentation we assume n = kd, since

then our construction only makes (repeated) use of a single

auxiliary Gaux
↑ (k + 1, M̃k+1) code. Extensions to the general

version of Construction A are easily obtainable.

We first require a function ValidAux capable of detecting

whether a given permutation π ∈ Sk+1 belongs to the auxiliary

Gaux
↑ (k + 1, M̃k+1) code.

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

(b)

(c)

(d)R

δ

Figure 3. (a) The range of uncertainty for the Gilbert-Varshamov lower bound seen in Lemma 24. (b) The rate of codes from Lemma 23 constructed in [39].
(c) A lower bound for the rate of codes C1 from Construction A. (d) The upper bound of Lemma 22.

R >




(
1 − δ

⌊
1
δ

⌋)
log2

(⌈
1
δ

⌉
+ 1

)
+ δ log2

((⌊
1
δ

⌋
+ 1

)
!

)
+

(
1− δ

⌊
1
δ

⌋)
log2

(
⌈1/δ⌉−2

⌈1/δ⌉+1

)
− δ 4 < ⌊1/δ⌋ ≡ 0 (mod 2),

(1− 4δ)
(
log2(178)

)
+ (5δ − 1) log2 (57) ⌊1/δ⌋ = 4,

(1− 2δ)
(
3 − log2 (3)

)
+ δ log2 (3) ⌊1/δ⌋ = 2,(

1 − δ
⌊

1
δ

⌋)
log2

(⌈
1
δ

⌉
+ 1

)
+ δ log2

((⌊
1
δ

⌋
+ 1

)
!

)
+

(
δ + δ

⌊
1
δ

⌋
− 1

)
log2

(
⌊1/δ⌋−2

⌊1/δ⌋+1

)
− δ 5 < ⌊1/δ⌋ ≡ 1 (mod 2),

(1− 5δ) log2 (315)+ (6δ − 1) log2(89)+ 2 − 9δ ⌊1/δ⌋ = 5,

(1− 3δ)
(
log2 (57) − 4

)
+ 1 ⌊1/δ⌋ = 3,

(1− δ) log2(3) ⌊1/δ⌋ = 1.

(3)

Lemma 26 For an auxiliary Gaux
↑ (k + 1, M̃k+1) code provided

by Lemma 7, Theorem 9 or Theorem 14, a function ValidAux

can be implemented to operate in O(k) steps.

Proof: If we use Lemma 7, then the auxiliary code

consists of all even permutations, and it is well known that

we can determine the signature of a permutation π ∈ Sk+1 in

O(k) operations, e.g., by finding a cycle decomposition of π.

The case of k + 1 = 5 requires special attention, as M̃5 = 57.

In fact, in that case [44] showed that a parity-preserving code

of size 57 exists consisting of

A5 \
{
σ, t↑3σ, t↑3

2σ
}

,

for every choice of σ ∈ A5. The user may arbitrarily decide

on σ, and check for the missing codewords in O(k).
If we instead use Theorem 9, then we know that the vector

notation of every codeword in the auxiliary code has 1

following k + 1 (cyclically). Since there are

|Sk+1 |
k
= k! + (k − 1)! = k!

(
1 · k − 1

k
+ 2 · 1

k

)

such codewords, we observe that the auxiliary code consists

of precisely all permutations so characterized (when count-

ing valid permutations, we partition permutations on [k] by

whether the first index in their vector notation equals 1. If so,

we may insert k + 1 either at the beginning or the end of their

vector notation; otherwise, its position is uniquely determined),

i.e.,

π

(
(π−1(k + 1) mod (k + 1))+ 1

)
= 1,

which again requires O(k) steps to verify.

Finally, for Theorem 14 we note that the problem can equiv-

alently be solved for the codes of Lemma 13, as composition

with π̃ can be done in O(1) steps with a simply implemented

rule, or naively in at most O(k) steps. If we divide into cases

according to π(k + 1) = j we may identify r such that π must

belong to Pr , or not belong to our code. For values j = 1, k, we

know π can only be a bridge; For j = k + 1, it must belong to

P′
0
. In these cases, only cyclic shifts (on a subset of indices, by

case) of a known permutation are valid, which we can easily

verify in linear time. For all other elements Pr consists of all

even permutations satisfying π(k + 1) = j, hence the problem

again reduces to determining sign π, as in the case based on

Lemma 7 (or managed as discussed above for k = 5).

An important notion of a window will be useful. Let σ ∈ Sn
be a permutation, n = kd. For all j ∈ [d] we define the jth

12

window as the set of indices

Wj = {k(j − 1)+ 2, k(j − 1)+ 3, . . . , k j + 1} ∩ [n].

The windows partition [n] \ {1}, and are all of size k except

Wd which is of size k − 1.

Given a set I ⊆ [n], we conveniently denote

σ(I) = {σ(i) | i ∈ I} .

We prove a simple lemma concerning properties of windows

of codewords from Construction A.

Lemma 27 Let σ be a codeword of C1 from Construction A,

with n = kd. Then for all j ∈ [d],

k − 1 6
��σ(Wj) ∩ R j

�� 6 k,

i.e., at most one element of σ(Wj) does not leave a residue of

j modulo d. In particular, σ(Wd) ⊆ Rd .

Additionally, if
��σ(Wj) ∩ R j

�� = k − 1, j ∈ [d − 1], and we

denote {x} = σ(Wj) \ R j , then there exists some j ′ > j such

that x ∈ R j′ .

Proof: Take any 1 < j ∈ [d], and let σj be the Cj -

parent of σ. Then, in C1, no transition between σ and σj is

induced by Cj , and hence σj is derived from σ by a (perhaps

empty) sequence of t↑i′ transitions, for i′ ∈ W1 ∪ · · · ∪Wj−1.

Therefore, for all i ∈ Wj ∪ · · · ∪Wd we have σj (i) = σ(i), and

the same also holds for j = 1 (since σ1 = σ). In particular,

σ(Wj) = σj (Wj).
Now, since Cj only applies “push-to-the-k(j − 1) + 1st-

index” transitions, and

σ0

(
{k(j − 1) + 1} ∪Wj ∪ · · · ∪Wd

)
= R j ∪ · · · ∪ Rd ,

if for any i ∈ Wj we have σ(i) = σj (i) < R j , then by necessity

σ(i) ∈ R j′ for some j ′ > j. In particular, σ(Wd) ⊆ Rd .

For all j ∈ [d − 1], we also consider σj+1, the Cj+1-parent of

both σ and σj . Since Cj+1 only applies “push-to-the-k j + 1st-

index” transitions,

σj+1

(
({k(j − 1)+ 1} ∪Wj) \ {k j + 1}

)
= σ0

(
({k(j − 1) + 1} ∪Wj) \ {k j + 1}

)
= R j .

Finally, since σj+1 is derived from σj by a sequence of

tk(j−1)+1↑i′ transitions for i′ ∈ Wj , it follows that

σj+1

(
{k(j − 1)+ 1} ∪Wj

)
= σj

(
{k(j − 1) + 1} ∪Wj

)
thus

σj (Wj) ⊆ σj+1

(
{k(j − 1)+ 1} ∪Wj

)
= R j ∪

{
σj+1(k j + 1)

}
.

Noting that
��σj (Wj)

��
=

��R j

��
= k and recalling that σ(Wj) =

σj (Wj), we are done.

Corollary 28 Let σ be a codeword of C1 from

Construction A, with n = kd. Then for each j ∈ [d],
there is a unique element xσ

j
∈ R j ∪ · · · ∪ Rd satisfying

σ(Wj ∪ · · · ∪Wd) = R j ∪ · · · ∪ Rd \
{
xσj

}
.

Proof: The proposition follows from Lemma 27 for j = d

since |σ(Wd)| = |Wd | = k − 1 6 |Rd ∩σ(Wd)|. Now suppose

the proposition holds for j + 1, and we prove that it holds for

j.

We again observe by Lemma 27 that |R j ∩ σ(Wj)| ∈
{k − 1, k}. If |R j ∩ σ(Wj)| = k, since |σ(Wj)| = |Wj | = k,

then R j = σ(Wj) and xσ
j
= xσ

j+1
satisfies the claim.

Otherwise σ(Wj) \ R j = {y} for some y ∈ [n]; it would

suffice to show y = xσ
j+1

, since then R j \σ(Wj) = {xσj } would

satisfy the claim.

Consider then σj , the Cj -parent of σ. Note that σj (Wj) =
σ(Wj), and since Cj employs “push-to-the-(k(j − 1) + 1)st-
index” transitions only, and

σ0(Wj ∪ · · · ∪Wd) ⊆ R j ∪ · · · ∪ Rd,

we know that σ(Wj) ⊆ R j ∪ · · · ∪ Rd. We now use the

induction hypothesis

σ(Wj+1 ∪ · · · ∪Wd) =
(
R j+1 ∪ · · · ∪ Rd

)
\
{
xσj+1

}
,

and it follows that σ(Wj) ⊆ R j ∪
{
xσ
j+1

}
, hence y = xσ

j+1
.

From now on, we denote iσ
j
= σ−1(xσ

j
). Another useful

notation we shall employ is a function that quantizes any

integer to the nearest integer leaving a residue of j modulo

d. We denote this function by q
j

d
: Z→ dZ + j, defined by

q
j

d
(a) = argmin

b∈dZ+j

|a − b| ,

where we assume argmin returns a single value, and ties are

broken arbitrarily.

For the decoding procedure description, let us fix the

parameters n = kd, and the code C1 from Construction A.

Additionally, we denote by σ ∈ C1 the transmitted permu-

tation, by τ ∈ Sn the received permutation, and by σ̂ ∈ Sn
the decoded permutation. We denote the decoding radius by

t = ⌊(d − 1)/2⌋, and assume d∞(σ, τ) 6 t.

We will decode τ iteratively by window, from W1 to Wd. We

shall make sure–inductively–that when we begin the process

of decoding Wj , for some j ∈ [d], we know iσ
j

. Initially, as

mentioned, we set j = 1. Trivially, iσ
1
= 1.

Step I We set the decoding window

Ŵj = Wj ∪
{
iσj

}
,

and naively decode Ŵj by setting for all i ∈ Ŵj ,

σ̂(i) = q
j

d
(τ(i)).

Lemma 29 After Step I, for all i ∈ Ŵj such that σ(i) ∈ R j it

holds that σ̂(i) = σ(i).

Proof: For all such i we have σ̂(i) ≡ σ(i) (mod d) and

|σ̂(i) − σ(i)| 6 |σ̂(i) − τ(i)| + |τ(i) − σ(i)|

=

���q j

d
(τ(i)) − τ(i)

��� + |τ(i) − σ(i)|
6 ⌊d/2⌋ + t < d.

13

Corollary 30 After Step I,

σ̂(Ŵj) = σ̂
(
Ŵj \

{
iσj+1

})
= R j .

Proof: By Corollary 28 we know that R j ⊆ σ
(
Ŵj

)
. We

further recall that σ(iσ
j+1
) < R j , hence

R j ⊆ σ
(
Ŵj \

{
iσj+1

})
,

and since���σ (
Ŵj \

{
iσj+1

})��� = ���Ŵj \
{
iσj+1

}��� = k =
��R j

��
we have equality. The claim now follows from Lemma 29.

Corollary 30 implies that after Step I, σ̂(Ŵj) contains a

unique element of R j which appears twice, and every other

element appears exactly once; by Lemma 29 these other ele-

ments have been decoded correctly. Before we can continue

inductively to decode Wj+1, it only remains to find iσ
j+1

; the

other instance in Ŵj of σ̂(iσ
j+1
) we therefore also know to have

been decoded correctly.

We shall identify iσ
j+1

using Caux, the auxiliary

Gaux
↑ (k + 1, M̃k+1) code used in Construction A. By

construction, if we examine σj , the Cj -parent of σ,

then for all i ∈ Wj we observe σ(i) = σj (i), and

σ(iσ
j
) = σj (k(j − 1) + 1). The ordering of the k + 1 elements

of σ(Ŵj) = σj
(
{k(j − 1)+ 1} ∪Wj

)
is then induced by a

permutation of Caux. We construct this induced permutation

from the auxiliary code Caux, which we denote π̂ ∈ Sk+1. We

first define a simple bijection αj : R j → [k], which is the

inverse of the enumeration of R j given by the arbitrary initial

order of elements in σ0 used in Construction A, e.g., in the

simple case n = kd,

αj (m) =
{⌊

m
d

⌋
j < m ∈ R j ,

k m = j.

With αj we define π̂ as,

π̂(i) =
{
αj (σ̂(iσj)) i = 1;

αj (σ̂(k(j − 1) + i)) i ∈ {2, 3, . . . , k + 1} ,

and note that–as it currently stands–π̂ is not a permutation of

[k + 1] because its range is [k] and some unique a ∈ [k] has

two distinct pre-images.

Theorem 31 Let s, t ∈ [k + 1] be the unique pair of indices

such that π̂(s) = π̂(t) = a ∈ [k]. There is a unique way to

re-define π̂ ↾{s,t } (the restriction of π̂ to {s, t}) as a bijection

onto {a, k + 1} that yields π̂ ∈ Caux. Furthermore, if we define

Ij : [k + 1] × [n] → [n] by

Ij (q, r) =
{

r q = 1,

k(j − 1) + q otherwise

then after performing that correction

iσj+1 = Ij (π̂−1(k + 1), iσj).

Proof: First, arbitrarily set π̂(t) = k + 1, where t > s.

Once corrected, π̂ ∈ Sk+1 by Corollary 30 and because αj :

R j → [k] is a bijection.

Now, we take π ∈ Caux which generates σj in the recursion

step of Construction A–while constructing Cj–from its Cj+1-

parent. Hence

π(i) =
{
αj (xσj) i = 1,

αj (σ(k(j − 1)+ i)) i ∈ {2, 3, . . . , k + 1} ,

and therefore either π̂ = π or π̂ = (k + 1, a) ◦ π. Crucially,

we observe that in the latter case π̂ < Caux since Caux is a

Gaux
↑ (k + 1, M̃k+1) code and π ∈ Caux; we utilize ValidAux to

discover whether our original arbitrary correction should be

reversed.

To complete the proof, we note by the recursion step of

Construction A that, indeed, iσ
j+1
= Ij (π−1(k + 1), iσ

j
).

We can therefore complete our iterative decoding round with

the following step.

Step II We construct π̂ as described, identify s, t, s < t, and

arbitrarily correct π̂(t) = k + 1. We test ValidAux(π̂): if true,

we have iσ
j+1
= Ij (t, iσ

j
); otherwise, it holds that iσ

j+1
= Ij (s, iσ

j
).

Finally, observe that when decoding Wd it’s known that

σ(Ŵd) = Rd, hence by Lemma 29 Ŵd is decoded correctly,

and we need not (and–indeed–cannot) perform Step II.

Example 32 We shall demonstrate the decoding process as-

suming once again n = kd for simplicity, and using the

parameters d = 3 (hence t = 1), k = 2 and code constructed

in Example 19. Recall that the Gaux
↑ (3, 3) code used in that

example is

Caux
= {[1, 2, 3] , [3, 1, 2] , [2, 3, 1]} .

We choose the transmitted codeword σ = [1, 2, 4, 6, 5, 3], and

a noisy received permutation τ = [1, 3, 4, 5, 6, 2].
We start by defining i1 = 1 and observing (by abuse of

the vector notation) τ ↾Ŵ1
= [1; 3, 4] (the first element is

differentiated because–generally although never when j = 1–it

does not immediately precede the rest in τ’s vector notation).

Since j = 1, we define σ̂ ↾Ŵ1
= [1; 4, 4]. This leads us

to construct π̂ = [2, 1, 3] < Caux, so we instead correct π̂ =

[2, 3, 1] and define i2 = 2. (So far we have σ̂ =
[
1, 4, 4, ·, ·, ·

]
,

where an underline marks iσ
j+1

.)

Next, we have τ ↾Ŵ2
= [3; 5, 6], which (j = 2) we decode

σ̂ ↾Ŵ1
= [2; 5, 5]. This again generates π̂ = [2, 1, 3] < Caux, and

we correct in similar fashion to π̂ = [2, 3, 1] and define i2 = 4.

(Up to this point, we have σ̂ =
[
1, ✁42, 4, 5, 5, ·

]
).

Finally, we have τ ↾Ŵ3
= [5; 2] and since j = 3 we decode

σ̂ ↾Ŵ1
= [6; 3], and overall σ̂ =

[
1, 2, 4, ✁56, 5, 3

]
= σ. �

Example 33 We present another example, intended to demon-

strate the process in more detail, for which we depart from

the parameters used in Example 19 by setting d = 5 (allowing

for t = 2 6 ⌊(d − 1)/2⌋), k = 3. In each recursion step of

Construction A the Gaux
↑ (4, 8) code used is Caux presented in

Example 10.

The codeword

σ = [11, 1, 8, 6, 7, 2, 12, 13, 3, 5, 9, 14, 4, 10, 15]

14

appears in the code generated in this case, as can be seen by

identifying its C5, C4, C3, and C2 parents as, respectively,

σ5 = [6, 11, 1, 7, 12, 2, 8, 13, 3, 9, 14, 4, 5, 10, 15] ,
σ4 = [6, 11, 1, 7, 12, 2, 8, 13, 3, 5, 9, 14, 4, 10, 15] ,
σ3 = σ4,

σ2 = [6, 11, 1, 8, 7, 2, 12, 13, 3, 5, 9, 14, 4, 10, 15] .

We choose

τ = [12, 3, 9, 7, 5, 2, 11, 15, 1, 6, 8, 13, 4, 10, 14]

to be the noisy version of the transmitted codeword σ, and

verify that d∞(τ,σ) = 2 = t.

Beginning with j = 1, we have τ ↾Ŵ1
= [12; 3, 9, 7], which

we decode σ̂ ↾Ŵ1
= [11; 1, 11, 6], generating π̂ = [2, 3, 2, 1]

which is corrected to π̂ = [2, 3, 4, 1] ∈ Caux. We identify i2 = 3,

and keep

σ̂ =
[
11, 1, 11, 6, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·

]
.

Next, for j = 2, observe that τ ↾Ŵ2
= [9; 5, 2, 11], and we

decode σ̂ ↾Ŵ2
= [7; 7, 2, 12]. This generates π̂ = [1, 1, 3, 2],

which we initially correct to π̂ = [1, 4, 3, 2] < Caux, so (skip

correcting π̂, as it has no further consequence) i3 = i2 = 3

instead of i3 = 4. We summarize

σ̂ =
[
11, 1,✚✚117, 6, 7, 2, 12, ·, ·, ·, ·, ·, ·, ·, ·

]
.

We turn to Ŵ3 and see that τ ↾Ŵ3
= [9; 15, 1, 6], decoded to

σ̂ ↾Ŵ3
= [8; 13, 3, 8]. We generate π̂ = [1, 2, 3, 1] and correct it

to π̂ = [1, 2, 3, 4] ∈ Caux, indicating that i4 = 10. We now have

σ̂ =
[
11, 1, ✁78, 6, 7, 2, 12, 13, 3, 8, ·, ·, ·, ·, ·

]
.

Moving on to j = 4, while decoding Ŵ4 we note τ ↾Ŵ4
=

[6; 8, 13, 4], which we decode as σ̂ ↾Ŵ4
= [4; 9, 14, 4]. This

generates π̂ = [3, 1, 2, 3] which is corrected to π̂ = [3, 1, 2, 4] <
Caux. We therefore define i5 = i4 = 10 instead of i5 = 13. Up

to now,

σ̂ =
[
11, 1, 8, 6, 7, 2, 12, 13, 3, ✁84, 9, 14, 4, ·, ·

]
.

Finally, j = 5, and we get τ ↾Ŵ5
= [4; 10, 14] which we

decode to σ̂ ↾Ŵ5
= [5; 10, 15], and overall

σ̂ =
[
11, 1, 8, 6, 7, 2, 12, 13, 3, ✁45, 9, 14, 4, 10, 15

]
= σ.

�

The decoding algorithm is formalized in Decode(τ). With

appropriate simple data structures, the algorithm requires

O(kd) = O(n) steps. We assume simple integer operations

to take constant-time.

VI. Ranking and Unranking

In this section we discuss the process of encoding data m ∈
{0, 1, . . . , |C1 | − 1} to a codeword σ ∈ C1, which is also known

as unranking m, and the inverse process of ranking σ ∈ C1,

i.e., obtaining its rank in the code. Throughout this section,

C1 stands for the code obtained via Construction A.

Due to the nature of our construction, performing these

tasks with the codes generated by Theorem 18 is reliant on our

Function Decode (τ)
input : τ ∈ Skd satisfying d∞(τ,C1) 6 t 6 ⌊(d − 1)/2⌋.
output : σ̂ ∈ C1 such that d∞(τ, σ̂) 6 t.

1 i ← 1
2 for j = 1, 2, . . . , d − 1 do

/* Naively decode Ŵj */

3 σ̂(i) ← q
j

d
(τ(i))

4 π̂(1) ← αj (σ̂(i))
5 for r = 2, . . . , k + 1 do

6 m← q
j

d
(τ(k(j − 1) + r))

7 if σ̂−1(m) is already set then

8 π̂(r) ← k + 1
9 a ← αj (m)

10 else

11 π̂(r) ← αj (m)
12 σ̂(r) ← m

/* Define i j+1 */

13 if ValidAux(π̂) then

14 i ← I (π̂−1(k + 1), i)
15 else

16 i ← I (π̂−1(a), i)

/* Decode Ŵd */

17 σ̂(i) ← qd
d
(τ(i))

18 for r = 2, . . . , k do

19 σ̂(r) ← q
j

d
(τ(k(d − 1) + r))

20 return σ̂

ability to do the same with the codes provided by Lemma 8 and

Corollary 15. We therefore recall the following known result.

Lemma 34 [23] The complete G↑(n, n!) codes provided by

Lemma 8 has a ranking algorithm operating in O(n) steps, and

an unranking scheme operating in O(n2) steps.

This gives rise to the following corollary.

Corollary 35 The Gaux
↑ (2m,

|S2m |
2m−1
) codes generated by

Theorem 9 can be ranked in O(m) operations and unranked

in O(m2) operations.

Proof: Ranking a permutation σ in the code may proceed

by finding the cyclic shift required for [2m, 1] to be the first two

elements. After removing these two first elements, and then

reversing the permutation we may use a ranking algorithm

from Lemma 34. A simple combination of the results gives

the required ranking of σ. By Lemma 34, the entire procedure

takes O(m) operations. A symmetric argument gives an O(m2)
algorithm for unranking.

Unfortunately, no ranking and unranking schemes are known

for parity-preserving G↑(2m + 1, M2m+1) codes provided by

Lemma 7 (developed in [20]), or previous constructions pre-

sented in [22], [45]. Consequentially, we rely on Theorem 9

instead of Theorem 14 for even sized congruence classes. In

the case of odd sized classes, we can leverage the following

codes.

Lemma 36 [44] For all m > 1 there exist parity-preserving

G↑(2m + 1, M̂2m+1) codes with sizes

M̂2m+1 =

(
(2m)!

m!

)2 (2m + 1)
22m

=

(2m)!
m!222m

|S2m+1 | .

15

These codes can be ranked and unranked in O(m2) operations.

We summarize those observations in the following corollary.

Corollary 37 For all k > 3 there exist a Gaux
↑ (k, M̂k) code,

which have ranking and unranking schemes operating in O(k2)
steps, where

M̂k =

{ (k−1)!
((k−1)/2)!22k−1 k! k ≡ 1 (mod 2);
k!

(k−1) k ≡ 0 (mod 2).

Note that we can now replace Corollary 15 by Corollary 37

in Construction A to obtain codes which we shall denote Ĉ1,

and each auxiliary code on a congruence class of size k > 1

contributes to
��Ĉ1

�� a multiplicative factor of

M̂k+1 =

{
k!

(k/2)!22k
(k + 1)! k ≡ 0 (mod 2),

(k+1)!
k

k ≡ 1 (mod 2).

We also note, using Stirling’s approximation

e
1

12n+1 <
n!en

nn
√

2πn
< e

1
12n ,

that

k!

(k/2)!22k
>

√
2

πk

(
e

1− 1

4+ 1
3k

)− 1
3k

>

√
2

πk
e−1/(4k).

We can then recalculate code size, in the case of
⌊
n
d

⌋
≡ 0

(mod 2):
��Ĉ1

��
=

(
(⌈n/d⌉ + 1)!
⌈n/d⌉

)n mod d

·
⌊ n

d

⌋
!

·
(

⌊n/d⌋!
(⌊n/d⌋ /2)!22 ⌊n/d⌋

(⌊ n

d

⌋
+ 1

)
!

)d−(n mod d)−1

>

⌈ n

d

⌉
!

n mod d ⌊ n

d

⌋
!

d−(n mod d)

·
(
1+

1

⌈n/d⌉

)n mod d

·
(⌊ n

d

⌋
+ 1

)(d−1)−(n mod d)

·
(√

2

π ⌊n/d⌋ e
−1/(4⌊n/d⌋)

) (d−1)−(n mod d)

,

and when
⌊
n
d

⌋
≡ 1 (mod 2):

��Ĉ1

��
=

(
⌈n/d⌉!

(⌈n/d⌉ /2)!22 ⌈n/d⌉

(⌈ n

d

⌉
+ 1

)
!

)n mod d

·
⌊ n

d

⌋
! ·

(
(⌊n/d⌋ + 1)!
⌊n/d⌋

)d−(n mod d)−1

>

⌈ n

d

⌉
!

n mod d ⌊ n

d

⌋
!

d−(n mod d)

·
(⌈ n

d

⌉
+ 1

)n mod d

·
(
1 +

1

⌊n/d⌋

) (d−1)−(n mod d)

·
(√

2

π ⌈n/d⌉ e
−1/(4⌈n/d⌉)

)n mod d

,

and we note that in the special case
⌊
n
d

⌋
= 1 we have

��Ĉ1

�� =
|C1 |.

Function Rank (σ)
input : σ ∈ Ĉ1.
output : m ∈

{
0, 1, . . . ,

��Ĉ1

�� − 1
}

which is the rank of σ in Ĉ1.

/* Build a permutation πd ∈ Sk */

1 for i ∈Wd do
2 πd [i − k(d − 1)] ← αd (σ[i])
3 πd [1] ← [k] \ πd [2, . . . , k]
4 m← ((RankComplete(πd) − 1) mod k!)
5 for j = d − 1, . . . , 1 do

/* Build a permutation π j ∈ Sk+1 */

6 for i ∈Wj do

7 π j [i − k(j − 1)] ← αj (σ[i])
8 π j [1] ← [k + 1] \ π j [2, . . . , k + 1]
9 m← m · M̂k+1 +

(
(RankAux(π j) − 1) mod M̂k+1

)
10 return (m + 1) mod

��Ĉ1

��

We likewise observe the rates of codes based on

Corollary 37, and find for ⌊1/δ⌋ ≡ 0 (mod 2)

R̂ >

(
1 − δ

⌊
1

δ

⌋)
log2

(⌈
1

δ

⌉
!

(
1 +

1

⌈1/δ⌉

))

+

(
δ + δ

⌊
1

δ

⌋
− 1

)
log2

((⌊
1

δ

⌋
+ 1

)
!

)

− 1

2

(
δ + δ

⌊
1

δ

⌋
− 1

)

·
(
log2

⌊
1

δ

⌋
+

log2(e)
2 ⌊1/δ⌋ + log2(π) − 1

)
− o(1),

and for ⌊1/δ⌋ ≡ 1 (mod 2)

R̂ >

(
1− δ

⌊
1

δ

⌋)
log2

((⌈
1

δ

⌉
+ 1

)
!

)

+

(
δ + δ

⌊
1

δ

⌋
− 1

)
log2

(⌊
1

δ

⌋
!

(
1+

1

⌊1/δ⌋

))

− 1

2

(
1 − δ

⌊
1

δ

⌋)

·
(
log2

⌈
1

δ

⌉
+

log2(e)
2 ⌈1/δ⌉ + log2(π) − 1

)
− o(1).

The losses in asymptotic rate are shown in Figure 4. We

observe in particular that we still manage to achieve better rates

than previously known error-correcting codes (without the

Gray property), even with the significantly smaller Gaux
↑ (k, M̂k)

of Corollary 37.

Let us denote by RankComplete(π), UnrankComplete(m)
the ranking and unranking procedures for the complete

codes from Lemma 34. Additionally, let RankAux(π) and

UnrankAux(m) denote the ranking and unranking procedures

for the auxiliary codes of Corollary 37. We can readily take

advantage of Ĉ1’s tiered structure to use these functions in or-

der to perform the same tasks for our construction. We include

pseudo-code for these algorithms, which we call Rank(σ) and

Unrank(m), for completeness. As before, we assume n = kd

to simplify the presentation.

Theorem 38 For the code Ĉ1 of length n = kd, the algorithms

Rank(σ), Unrank(m) operate in O(k2d) steps.

Proof: Both algorithms perform a single loop over all

indices of σ, making simple integer operations, which requires

16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

(b)

(c)

R

δ

Figure 4. (a) The rate of codes from Lemma 23 constructed in [39]. (b) The rate of codes C1 from Construction A. (c) The rate of codes Ĉ1 constructed
using auxiliary codes from Corollary 37.

Function Unrank (m)
input : m ∈

{
0, 1, . . . ,

��Ĉ1

�� − 1
}
.

output : σ ∈ Ĉ1 with rank m in Ĉ1.
/* Convert m to local ranks R[1, 2, . . . , d] */

1 m←
(
(m − 1) mod

��Ĉ1

��)
2 for i = 1, 2, . . . , d − 1 do

3 R[i] ←
(
(m + 1) mod M̂k+1

)
4 m←

⌊
m/M̂k+1

⌋
5 R[d] ← ((m + 1) mod k!)
/* Construct σ */

6 πd ← UnrankComplete(R[d])
7 for i ∈Wd do

8 σ[i] ← πd[i − k(d − 1)] · d
9 x ← πd [1] · d

10 for j = d − 1, . . . , 1 do
11 π j ← UnrankAux(R[j])
12 for i ∈Wj do

13 if π j [i] = k + 1 then
14 σ[i] ← x

15 else

16 σ[i] ← π j [i − k(j − 1)] · d + j

17 if π j [1] , k + 1 then

18 x ← π j [1] · d + j

19 σ[1] ← x

20 return σ

O(n) steps. They also make a call to one of RankComplete(π),
UnrankComplete(m) and (d − 1) calls to one of RankAux(π),
UnrankAux(m), costing O(k2) operations each.

We also note in particular that in the regime d = Θ(n), we

have k = Θ(1), and Theorem 38 yields linear run-time O(n).

VII. Snake-in-the-box codes in S2m+2

As mentioned before in Section III, the issue of asymmetry

between “push-to-the-top” codes in the symmetric group of

odd and even orders has also frustrated research into error-

detecting codes under the Kendall τ-metric in the past.

The Kendall τ-metric [25] on Sn is defined as

dK (σ, τ) = |{(i, j) | σ(i) < σ(j) ∧ τ(i) > τ(j)}| .

Informally, as noted in [24], it measures the minimal number of

adjacent transpositions required to transform one permutation

into the other, that is, the minimal r such that

σ = τ ◦ (i1, i1 + 1) ◦ (i2, i2 + 1) ◦ . . . , ◦(ir , ir + 1)

for some i1, i2, . . . , ir ∈ [n − 1]. An (n, M,K)-snake, or

K-snake for short, is a single-error-detecting rank-modulation

Gray code of size M, or more formally, a G↑(n, M) code C

such that for all σ, τ ∈ C, σ , τ, it holds that dK(σ, τ) > 2.

Put differently, for no i ∈ [n − 1] does it hold that σ =

τ ◦ (i, i + 1).
The authors have shown in [44][Thm. 17] that any K-snake

C ⊆ Sn which employs a “push-to-the-top” transition on an

even index t↑2m–for any m ∈
⌊
n
2

⌋
–must satisfy |C | 6 n!

2
−Θ(n).

Horovitz and Etzion posited in [22] that K-snakes in S2m+2

do not exceed the size of those in S2m+1, a conjecture refuted

when Zhang and Ge demonstrated in [46] the existence of

K-snakes in S2m+2 of size
(2m+2)!

4
. Concurrently and indepen-

dently, Holroyd conjectured in [20] that K-snakes can be found

in S2m+2 with size greater than
(2m+2)!

2
−O(m2).

A resemblance is evident in the definitions of (n, M,K)-
snakes and Gaux

↑ (n, M) codes, which is reinforced by the

observations that, similarly to properties seen in Section III,

any parity-preserving G↑(n, M) code is an (n, M,K)-snake (see

[44][Lem. 5]), and any (n, M,K)-snake satisfies M 6 n!

2
(see

[44][Thm. 15]).

We wish to demonstrate how the principles behind

Theorem 14 can be applied to the construction of a K-snake

in S2m+2 of size M ≈ (2m+2)!
2

.

Lemma 39 [22, Thm. 18] [45] For m > 2, there exist parity-

preserving G↑(2m+ 1, M2m+1) codes with

M2m+1 = |A2m+1 | − (2m − 1) = (2m+ 1)!
2

− (2m − 1).

In particular, such a code C was constructed such that, as a

group,

C = A2m+1 \
{
t↑2m−1

qσ
}2m−2

q=0

17

for some σ ∈ A2m+1. Finally, C only employed t↑2m−1, t↑2m+1.

As before, we fix m > 2. We also reuse

ϕ(π) = t↑2m+2
2 ◦ t↑2m−1

−1(π)
= π ◦ (1, 2m+ 1)(2m+ 2, 2m, 2m− 1, . . . , 2)

and the permutations π̂r = ϕ
r (Id).

Theorem 40 For all r > 0 a parity-preserving

G↑
(
2m + 2,

(2m+1)!
2
− (2m− 1)

)
code P̂r exists which satisfy:

1) The first permutation in P̂r is π̂r .

2) The last permutation in P̂r is t↑2m−1
−1π̂r .

3) For all π ∈ P̂r it holds that

π(2m + 2) = π̂r (2m + 2)

=

{
2m + 2 r ≡ 0 (mod 2m),
2m + 1− (r mod 2m) r . 0 (mod 2m).

4) σ̃r < P̂r , where we denote

σ̃r =
(
t↑2m+2

−1π̂r

)
◦ (2m + 1, 2m+ 2)

(and observe σ̃r = t↑2m+1
−1(π̂r), hence in particular

σ̃r (2m + 2) = π̂r (2m + 2)).

Proof: By Lemma 39 we know that there exist a parity-

preserving G↑(2m + 1, M2m+1) code P such that, as a set,

P = S2m+1 \
{
t↑2m−1

qσ
}2m−2

q=0

for some σ ∈ A2m+1. We also know that P only employs

t↑2m−1, t↑2m+1 transitions.

We apply its generating sequence to π̂r to generate the

G↑(2m+ 2, M2m+1) code P̂, which employs only t↑2m−1, t↑2m+1

transitions (in particular, it never employs t↑2m+2, hence point

3 is established), and note that as a set

P̂ = {τ ∈ A2m+2 | τ(2m + 2) = π̂r (2m + 2)}
\
{
t↑2m−1

qσ̂
}2m−2

q=0

for some σ̂ ∈ A2m+2, satisfying σ̂(2m+ 2) = π̂r (2m + 2).
Denote P̂ =

(
cj

)M2m+1

j=1
. We modify our code by defining

P̂r =

(
c′j

)M2m+1

j=1
=

(
σ̃r σ̂

−1cj

)M2m+1

j=1
,

which is still a G↑(2m + 2, M2m+1) since “push-to-the-top”

transitions are group-actions by right-multiplication. More-

over, since σ̃r (2m + 2) = σ̂(2m + 2) = π̂r (2m + 2), as a set

we have

P̂r = {τ ∈ A2m+2 | τ(2m + 2) = π̂r (2m + 2)}
\
{
t↑2m−1

qσ̃r
}2m−2

q=0
.

Note in particular that

σ̃r (2m + 1) = π̂r (1) , π̂r (2m + 1),

hence π̂r ∈ P̂r . In addition, point 4 is thus substantiated.

Finally, t↑2m+1
−1(π̂r) = σ̃r < P̂r implies that π̂r must

necessarily be preceded in P̂r by t↑2m−1, which substantiates

point 2 (after a proper cyclic shift of P̂r).

As in Section III, P̂r ⊆ A2m+2 for all r. We construct a

(2m + 2, M,K)-snake by stitching together P̂0, P̂1, . . . , P̂2m−1

in the following lemma.

Lemma 41 For all r > 0, we may concatenate P̂r , P̂r+1

into a (non-cyclic) “push-to-the-top” code by applying the

transitions t↑2m+2, t↑2m+2 to the last permutation of P̂r , which

is t↑2m−1
−1π̂r .

The only odd permutation in the resulting code is then

βr+1 = t↑2m+2
−1(π̂r+1),

which we again call the (r + 1)-bridge.

Proof: Exactly as in the proof of Lemma 12, given that

Pr , P̂r are parity-preserving, and have the same first and last

permutations.

Again, similarly to Section III, Lemma 41 can be used itera-

tively to cyclically concatenate P̂0, P̂1, . . . , P̂2m−1, with a single

odd permutation–the r-bridge–between P̂(r−1) mod 2m, P̂r . Let

us prove that fact in the following theorem.

Theorem 42 There exists a (2m + 2, M̌2m+2,K)-snake for all

m > 2, with

M̌2m+2 =
2m

2m + 2
· (2m + 2)!

2
− (2m − 2)2m

=

2m

2m + 2
· |S2m+2 |

2
− (2m − 2)2m.

Proof: We define P, similarly to Section III, as the cyclic

concatenation

P̂0, β1, P̂r , β2, . . . , β2m−1, P̂2m−1, β0.

Suppose π1, π2 ∈ C satisfy

π1 = π2 ◦ (i, i + 1)

for some i ∈ [2m+1], then w.l.o.g π2 is odd and hence π2 = βr
for some 0 6 r < 2m, and π1 is even and thus not a bridge; it

must follow, then, that

π2(2m + 2) ∈ {1, 2m + 1} = π1(2m + 2),

hence i = 2m + 1 and

π1 = π2 ◦ (2m + 1, 2m+ 2)

=

(
t↑2m+2

−1(π̂r)
)
◦ (2m+ 1, 2m + 2)

= t↑2m+1
−1(π̂r) = σ̃r .

This is in contradiction to Theorem 40, since π1(2m + 2) =
π̂r (2m + 2) and thus π1 ∈ P̂r . Hence P̂ is a K-snake. Now,

that ��P̂��
= 2m

[
(2m + 1)!

2
− (2m − 1)

]
+ 2m

=

2m

2m + 2
· (2m + 2)!

2
− (2m − 2)2m

is trivial.

To conclude this section, we note that
M̌2m+2

|S2m+2 | −→m→∞
1
2
,

which is optimal. The authors are unaware of any current

result achieving this. We add that, in particular, in the context

18

of K-snakes it is common to define the rate of codes as

R = limm→∞
log|M̌2m+2 |
log |S2m+2 | (see [44]), and we naturally observe

that in our case R = 1 (which, again, is optimal, although

R = 1 is also achieved by existing constructions, e.g., that of

[46]).

VIII. Conclusion

In this paper we proposed a new class of codes, which we

dubbed j-nontransposing, leveraging codes designed for the

rank-modulation scheme under the Kendall τ-metric, which we

show can be used in the construction of error-correcting codes

for the ℓ∞-metric. By doing so, we were able to construct codes

that achieve better asymptotic rates than previously known

constructions, while also incorporating the property of being

Gray codes. As with previously known constructions, we have

shown that these codes allow for linear-time encoding and

decoding of noisy data.

However, there remains a gap between the best known

upper-bound for code sizes (either in the general case or in

the specific case of Gray codes), based on the code-anticode

approach presented in [39], and achievable sizes (both known

constructions and proven lower-bounds). We therefore propose

that more research into upper and lower bounds on achievable

code sizes is warranted.

Furthermore, much as in the case of codes designed

for the Kendall τ-metric, our auxiliary construction of k-

nontransposing codes in Sk has some asymmetry between the

cases of even- and odd-sized congruence classes. Although

mostly alleviated by Theorem 14–in particular for large k–this

creates an irregularity in the slope of the graph of asymptotic

rate; for rankable codes, certain regions of δ even admit

a positive slope, whereby a code with a higher normalized

distance also has a higher rate. We posit that, as Holroyd

conjectured in [20] for K-snakes, 2n-nontransposing codes in

S2n exist with size M > (2n)!/2 − O(n2). This irregularity

is especially pronounced when 2n = 6, where we have

constructed an auxiliary code of size 178 << 360 = 6!

2
. We

may note, however, that in the case of 2n = 4, the constructed

auxiliary code of size 8 can be confirmed to be optimal by a

manual search.

Finally, we have presented an adaptation of the solutions

discussed above to the problem of (2n, M,K)-snakes, which

although not yet validating Holroyd’s conjecture above, is

asymptotically tight.

Acknowledgments

The authors gratefully acknowledge the three anonymous

reviewers and associate editor, whose insight and meticulous

suggestions helped shape this paper.

References

[1] D. J. Amalraj, N. Sundararajan, and G. Dhar, “Data structure based on
Gray code encoding for graphics and image processing,” in Proccedings
of the SPIE: International Society for Optical Engineering, vol. 1349,
1990, pp. 65–76.

[2] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Trans. on Inform. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[3] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codes for sources,”
IEEE Trans. on Inform. Theory, vol. IT-18, no. 1, pp. 160–169, Jan.
1972.

[4] I. F. Blake, “Permutation codes for discrete channels,” IEEE Trans. on

Inform. Theory, vol. 20, pp. 138–140, 1974.

[5] I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,”
Inform. and Control, vol. 43, pp. 1–19, 1979.

[6] H. Chadwick and I. Reed, “The equivalence of rank permutation codes
to a new class of binary codes,” IEEE Trans. on Inform. Theory, vol. 16,
no. 5, pp. 640–641, 1970.

[7] H. D. Chadwick and L. Kurz, “Rank permutation group codes based
on Kendall’s correlation statistic,” IEEE Trans. on Inform. Theory, vol.
IT-15, no. 2, pp. 306–315, Mar. 1969.

[8] C. C. Chang, H. Y. Chen, and C. Y. Chen, “Symbolic Gray code as a
data allocation scheme for two-disc systems,” Comput. J., vol. 35, pp.
299–305, 1992.

[9] G. Cohen and M. Deza, “Decoding of permutation codes,” in Intl. CNRS

Colloquium, July, France, 1977.

[10] P. F. Corbett, “Rotator graphs: an efficient topology for point-to-
point multiprocessor networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 3, no. 5, pp. 622–626, Sep 1992.

[11] M. Deza and P. Frankl, “On maximal numbers of permutations with
given maximal or minimal distance,” J. Combin. Theory Ser. A, vol. 22,
1977.

[12] C. Ding, F.-W. Fu, T. Kløve, and V. K. Wei, “Construction of permutation
arrays,” IEEE Trans. on Inform. Theory, vol. 48, no. 4, pp. 977–980, Apr.
2002.

[13] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-weight
Gray codes for local rank modulation,” IEEE Trans. on Inform. Theory,
vol. 57, no. 11, pp. 7431–7442, Nov. 2011.

[14] ——, “Generalized Gray codes for local rank modulation,” IEEE

Trans. on Inform. Theory, vol. 59, no. 10, pp. 6664–6673, Oct. 2013.

[15] T. Etzion, “Optimal codes for correcting single errors and detecting
adjacent errors,” IEEE Trans. on Inform. Theory, vol. 38, no. 4, pp.
1357–1360, Jul 1992.

[16] V. Faber and J. W. Moore, “High-degree low-diameter interconnec-
tion networks with vertex symmetry: the directed case,” Computing
and Communications Division, Los Alamos National Laboratory, Los
Alamos, NM, Tech. Rep. LA-UR-88-1051, 1988.

[17] C. Faloutsos, “Gray codes for partial match and range queries,” IEEE

Trans. on Software Eng., vol. 14, pp. 1381–1393, 1988.

[18] F.-W. Fu and T. Kløve, “Two constructions of permutation arrays,” IEEE

Trans. on Inform. Theory, vol. 50, no. 5, pp. 881–883, May 2004.

[19] F. Gray, “Pulse code communication,” March 1953, U.S. Patent 2632058.

[20] A. E. Holroyd, “Perfect snake-in-the-box codes for rank modulation,”
IEEE Trans. on Inform. Theory, vol. 63, no. 1, pp. 104–110, Jan 2017.

[21] S. Hood, D. Recoskie, J. Sawada, and D. Wong, “Snakes, coils, and
single-track circuit codes with spread k,” Journal of Combinatorial
Optimization, vol. 30, no. 1, pp. 42–62, July 2015.

[22] M. Horovitz and T. Etzion, “Constructions of snake-in-the-box codes for
rank modulation,” IEEE Trans. on Inform. Theory, vol. 60, no. 11, pp.
7016–7025, Nov 2014.

[23] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[24] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[25] M. Kendall and J. D. Gibbons, Rank Correlation Methods. Oxford
University Press, NY, 1990.

[26] T. Kløve, “Spheres of permutations under the infinity norm – permuta-
tions with limited displacement,” University of Bergen, Bergen, Norway,
Tech. Rep. 376, Nov. 2008.

[27] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,” IEEE Trans. on Inform. Theory, vol. 56,
no. 6, pp. 2611–2617, Jun. 2010.

[28] A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modula-
tion codes,” IEEE Trans. on Inform. Theory, vol. 59, no. 2, pp. 1018–
1029, 2013.

[29] A. Nijenhuis and H. S. Wilf, Combinatorial algorithms for computers
and calculators, ser. Computer science and applied mathematics. New
York: Academic Press, 1978.

[30] N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch,
C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change
memory,” in Proceedings of the 3rd IEEE International Memory Work-

shop (IMW), Monterey, CA, U.S.A., May 2011, pp. 22–25.

19

[31] J. Robinson and M. Cohn, “Counting seqeuences,” IEEE Trans. on

Comput., vol. C-30, pp. 17–23, May 1981.
[32] R. M. Roth, Introduction to Coding Theory. Cambridge Univ. Press,

2006.
[33] C. D. Savage, “A survey of combinatorial Gray codes,” SIAM Rev.,

vol. 39, no. 4, pp. 605–629, Dec. 1997.
[34] M. Schwartz and T. Etzion, “The structure of single-track Gray codes,”

IEEE Trans. on Inform. Theory, vol. 45, no. 7, pp. 2383–2396, Nov
1999.

[35] M. Schwartz and P. O. Vontobel, “Improved lower bounds on the size
of balls over permutations with the infinity metric,” to appear in IEEE
Trans. on Inform. Theory.

[36] M.-Z. Shieh and S.-C. Tsai, “Decoding frequency permutation arrays
under Chebyshev distance,” IEEE Trans. on Inform. Theory, vol. 56,
no. 11, pp. 5730–5737, Nov. 2010.

[37] R. C. Singleton, “Generalized snake-in-the-box codes,” IEEE Transac-

tions on Electronic Computers, vol. EC-15, no. 4, pp. 596–602, Aug
1966.

[38] D. Slepian, “Permutation modulation,” in Proc. of the IEEE, vol. 53,
no. 3, 1965, pp. 228–236.

[39] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[40] ——, “On the labeling problem of permutation group codes under the
infinity metric,” IEEE Trans. on Inform. Theory, vol. 58, no. 10, pp.
6595–6604, Oct 2012.

[41] H. Vinck, J. Haering, and T. Wadayama, “Coded M-FSK for power
line communications,” in Proceedings of the 2000 IEEE International

Symposium on Information Theory (ISIT2000), Sorrento, Italy, 2000, p.
137.

[42] X. Wang and F.-W. Fu, “Constructions of snake-in-the-box codes under
the ℓ∞-metric for rank modulation,” arXiv preprint arXiv:1601.05539,
2016.

[43] A. Williams, “The greedy Gray code algorithm,” in Algorithms and
Data Structures: 13th International Symposium, WADS 2013, London,

ON, Canada, August 12-14, 2013. Proceedings, ser. Lecture Notes in
Computer Science, F. Dehne, R. Solis-Oba, and J.-R. Sack, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, vol. 8037, pp. 525–536.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-40104-6_46

[44] Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” IEEE Trans. on Inform. Theory, vol. 58, no. 8, pp. 5471–
5483, Aug 2012.

[45] Y. Zhang and G. Ge, “Snake-in-the-box codes for rank modulation under
Kendall’s τ-metric,” IEEE Trans. on Inform. Theory, vol. 62, no. 1, pp.
151–158, Jan. 2016.

[46] ——, “Snake-in-the-box codes for rank modulation under Kendall’s τ-
metric in S2n+2,” IEEE Trans. on Inform. Theory, vol. 62, no. 9, pp.
4814–4818, Sept 2016.

[47] H. Zhou, M. Schwartz, A. Jiang, and J. Bruck, “Systematic error-
correcting codes for rank modulation,” IEEE Trans. on Inform. Theory,
vol. 61, no. 1, pp. 17–32, Jan. 2015.

Yonatan Yehezkeally (S’12) is a graduate student at the Department of Elec-
trical and Computer Engineering, Ben-Gurion University of the Negev, Beer-
Sheva, Israel. His research interests include algebraic coding, combinatorial
structures, and finite group theory.

Yonatan received the B.Sc. and M.Sc. degrees from Ben-Gurion Univer-
sity of the Negev in 2012 and 2016 respectively, from the department of
Mathematics and the department of Electrical and Computer Engineering.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Department
of Electrical and Computer Engineering, Ben-Gurion University of the Negev,
Israel. His research interests include algebraic coding, combinatorial struc-
tures, and digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and Ph.D. de-
grees from the Technion – Israel Institute of Technology, Haifa, Israel, in
1997, 1998, and 2004 respectively, all from the Computer Science Department.
He was a Fulbright post-doctoral researcher in the Department of Electrical
and Computer Engineering, University of California San Diego, and a post-
doctoral researcher in the Department of Electrical Engineering, California
Institute of Technology. While on sabbatical 2012–2014, he was a visiting
scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage.

http://dx.doi.org/10.1007/978-3-642-40104-6_46

	Introduction
	Preliminaries
	Auxiliary construction
	Code Construction
	Main code construction
	Code-size analysis and comparison

	Decoding Algorithm
	Ranking and Unranking
	Snake-in-the-box codes in S2m+2
	Conclusion
	References
	Biographies
	Yonatan Yehezkeally
	Moshe Schwartz

