
1

Snake-in-the-Box Codes for Rank Modulation
Yonatan Yehezkeally and Moshe Schwartz, Senior Member, IEEE

Abstract—Motivated by the rank-modulation scheme with
applications to flash memory, we consider Gray codes capable of
detecting a single error, also known as snake-in-the-box codes.
We study two error metrics: Kendall’s τ-metric, which applies to
charge-constrained errors, and the ℓ∞-metric, which is useful in
the case of limited-magnitude errors. In both cases we construct

snake-in-the-box codes with rate asymptotically tending to 1. We
also provide efficient successor-calculation functions, as well as
ranking and unranking functions. Finally, we also study bounds
on the parameters of such codes.

Index Terms—Snake-in-the-box codes, rank modulation, per-
mutations, flash memory

I. INTRODUCTION

FLASH memory is a non-volatile storage medium which is

electrically programmable and erasable. Its current wide

use is motivated by its high storage density and relative low

cost. Among the chief disadvantages of flash memories is their

inherent asymmetry between cell programming (injecting cells

with charge) and cell erasure (removing charge from cells).

While single cells can be programmed with relative ease,

in the current architecture, the process of erasure can only

be preformed by completely depleting large blocks of cells

of their charge. Moreover, the removal of charge from cells

physically damages them over time.

This issue is exacerbated as a result of the ever-present

demand for denser memory: smaller cells are more delicate,

and are damaged faster during erasure. They also contain less

charge and are therefore more prone to error. In addition, flash

memories, at present, use multilevel cells, where charge-levels

are quantized to simulate a finite alphabet – the more levels,

the less safety margins are left, and data integrity is compro-

mised. Thus, over-programming (increasing a cell’s charge-

level above the designated mark) is a real problem, requiring

a costly and damaging erasure cycle. Hence, in a programming

cycle, charge-levels are usually made to gradually approach the

desirable amount, making for lengthier programming cycles as

well (see [3]).

In an effort to counter these effects, a different modulation

scheme has recently been suggested for flash memories – rank

modulation [12]. This scheme calls for the representation of

the data stored in a group of cells in the permutation suggested

The material in this paper was submitted in part to the 2012 IEEE
International Symposium on Information Theory (ISIT 2012).

Yonatan Yehezkeally is with the Department of Electrical and Computer
Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
(e-mail: yonatany@bgu.ac.il).

Moshe Schwartz is with the Department of Electrical and Computer
Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
(e-mail: schwartz@ee.bgu.ac.il).

This work was supported in part by ISF grant 134/10.
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

by their relative charge-levels. That is, if c1, c2, . . . , cn ∈ R

represent the charge-levels of n ∈ N cells, then that group of

cells is said to encode that permutation σ ∈ Sn such that:

cσ(1) > cσ(2) > . . . > cσ(n) > 0.

This scheme eliminates the need for discretization of charge-

levels. Furthermore, it was suggested in [12] that programming

could be restricted to “push-to-the-top” operations. In this

scheme, one only programs a group of cells by increasing

the charge-level of a single cell above that of all others. In

this manner, over-programming is no longer an issue.

In addition, storing data using this scheme also improves the

memory’s robustness against other noise types. Retention, the

process of slow charge leakage from cells, tends to affect all

cells with a similar trend [3]. Since rank modulation stores

information in the differences between charge-levels rather

than their absolute values, it offers more resilience against that

type of noise. It is also worth noting that the advantages of

rank modulation have been experimentally applied to phase-

change memory (see [18]).

Gray codes using “push-to-the-top” operations and spanning

the entire space of permutations were also studied in [12].

The Gray code [9] was first introduced as a sequence of

distinct binary vectors of fixed length, where every adjacent

pair differs in a single coordinate. It has since been generalized

to sequences of distinct states s1, s2, . . . , sk ∈ S such that

for every i < k there exists a function in a predetermined

set of transitions t ∈ T such that si+1 = t(si) (see [19]

for an excellent survey). When the states one considers are

permutations on n ∈ N elements and the allowed transitions

are “push-to-the-top” operations, [12] referred to such Gray

codes as n-length Rank-Modulation Gray Codes (n-RMGC’s),

and it presented such codes traversing the entire set of permu-

tations. In this fashion, a set of n rank-modulation cells could

implement a single logical multilevel cell with n! levels, where

increasing the logical cell’s level by 1 corresponds to a single

transition in the n-RMGC. This allows for a natural integration

of rank modulation with other multilevel approaches such as

rewriting schemes [4], [10], [11], [24].

Other recent works have explored error-correcting codes for

rank modulation, where different types of errors are addressed

by a careful choice of metric. In [2], [13], [17], Kendall’s τ-

metric was considered, since a small charge-constrained error

translates into a small distance in the metric. In contrast, the

ℓ∞-metric was used in [15], [22], as small distances in this

metric correspond to small limited-magnitude errors.

In this paper, we explore Gray codes for rank modulation

which detect a single error, under both metrics mentioned

above. Such codes are known as snake-in-the-box codes,

and have been studied extensively for binary vectors with

2

the Hamming metric and with single-bit flips as allowable

transitions (see [1] and references therein).

The paper is organized as follows: In Section II we present

basic notation and definitions. In Section III we review prop-

erties of Kendall’s τ-metric, present a recursive construction

of snake-in-the-box codes over the alternating groups of odd

orders with rate asymptotically tending to 1, then present

some upper-bounds on the size of such snake-in-the-box codes

in general, and conclude by presenting auxiliary functions

needed for the use of codes generated by this construction. In

Section IV we present a direct construction of snake-in-the-box

codes of every order in the ℓ∞-metric based on results from

[12], with rates that asymptotically tend to 1. We conclude

in Section V with some ad-hoc results, as well as some open

questions.

II. PRELIMINARIES

Given a permutation σ on n elements (i.e., a bijection from

and into the set [n] = {1, 2, . . . , n}), we shall denote it by

σ = [σ(1), σ(2), . . . , σ(n)]. This form is called the vector

notation for permutations. We let Sn be the symmetric group

on [n] (that is, the group of all permutations on [n]). For

σ, τ ∈ Sn, their composition, denoted στ, is the permutation

for which στ(i) = σ(τ(i)) for all i ∈ [n]. It is well known

that |Sn| = n!.

Example 1. One has precisely 6 ways of organizing the ele-

ments of [3] in a row. These are:

[1, 2, 3] , [1, 3, 2] , [2, 3, 1] , [2, 1, 3] , [3, 1, 2] , [3, 2, 1] .

These 6 permutation form the group S3. ✷

A cycle, denoted (a1, a2, . . . , ak), is a permutation mapping

ai 7→ ai+1 for all i ∈ [k − 1], as well as ak 7→ a1. We

shall occasionally use cycle notation in which a permutation is

described as a composition of cycles. We also recall that any

permutation may be represented as a composition of cycles

of size 2 (known as transpositions), and that the parity of the

number of transpositions does not depend on the decomposi-

tion. Thus we have even and odd permutations, with positive

and negative signs, respectively. We let An be the subgroup

of all even permutations on [n], called the alternating group

of order n. Again, it is well known that |An| = 1
2 |Sn|.

Example 2. Of the permutations presented in Example 1, only

the following are even:

[1, 2, 3] , [2, 3, 1] , [3, 1, 2] .

They form the group A3. Put in cycle notation, they are:

id, (1, 2, 3) , (1, 3, 2) ,

where id denotes the identity permutation. ✷

Definition 3. Given a set S and a subset of transformations T ⊆
SS = { f | f : S→ S}, a Gray code over S, using transitions

T, of size M ∈ N, is a sequence C = (c0, c1, . . . , cM−1) of

M distinct elements of S, called codewords, such that for all

j ∈ [M− 1] there exists t ∈ T such that cj = t(cj−1).

Alternatively, when the original permutation c0 is known

(or irrelevant), we use a slight abuse of notation in referring

to the sequence of transformations (tk1
, . . . , tkM−1

) generating

the code (i.e., cj = tk j
(cj−1)) as the code itself.

In the above definition, when M = |S| the Gray code is

called complete. If there exists t ∈ T such that t (cM−1) = c0

the Gray code is called cyclic, M is called its period, and we

shall, when listing the code by its sequence of transformations,

include tkM
= t at the end of the list. The rate of C, denoted

R(C), is defined as

R(C) =
log2 M

log2 |S|
.

In the context of rank modulation for flash memories,

the set of transformations T comprises of “push-to-the-top”

operations, first used in [12], and later also in [7], [23]. We

denote by ti : Sn → Sn the “push-to-the-top” operation on

index i, i.e.,

ti[a1, a2, . . . , ai−1, ai, ai+1, . . . , an] =

= [ai, a1, a2, . . . , ai−1, ai+1, . . . , an],

and throughout the paper we set T = {t2, t3, . . . , tn}. We also

note that, in cycle notation,

tiσ = σ (i, i− 1, . . . , 1) . (1)

For ease of presentation only, we also denote by ti the “push-

to-the-bottom” operation on index n + 1− i, i.e.,

ti[a1, a2, . . . , an−i, an+1−i, an+2−i, . . . , an] =

= [a1, a2, . . . , an−i, an+2−i, . . . , an, an+1−i].

Restricting the transformations to “push-to-the-top” opera-

tions allows fast cell programming, and eliminates overshoots

(see [12]). In the context of flash memory, “push-to-the-top”

operations have also been used in [6], [8]. We also note that

generating permutations using “push-to-the-top” operations is

of independent interest, called “nested cycling” in [21] (see

also references therein), motivated by a fast “push-to-the-top”

operation1 (cycling) available on some computer architectures.

Let d : S× S → N ∪ {0} be a distance function inducing

a metric M over S. Given a transmitted codeword c ∈ C and

its received version c̃ ∈ S, we say a single error occurred

if d(c, c̃) = 1. We are interested in Gray codes capable of

detecting single errors, which we now define.

Definition 4. LetM be a metric over S induced by a distance

measure d. A snake-in-the-box code over M and S, using

transitions T, is a Gray code C over S and using T, in which

for every pair of distinct elements c, c′ ∈ C, c 6= c′, one has

d (c, c′) > 2.

Since throughout the paper our ambient space is Sn, and the

transformations we use are the “push-to-the-top” operations T,

we shall abbreviate our notation and call the snake-in-the-box

code of size M an (n, M,M)-snake, or anM-snake. We will

1The operations described in [21] are actually mirror images of “push-
to-the-top” . Furthermore, the permutation-generation scheme there is not a
Gray code since it repeats some of the previously generated permutations,
also making it inefficient.

3

be considering two metrics in the next sections: Kendall’s τ-

metric, K, and the ℓ∞-metric, with their respective K-snakes

and ℓ∞-snakes.

It is interesting to note that the classical definition of snake-

in-the-box codes (see the survey [1]) is slightly weaker in the

sense that d(c, c′) > 2 is required for distinct c, c′ ∈ C, unless

c and c′ are adjacent in C. This, however, is a compromise due

to the fact that in the classical codes over binary vectors, the

transformations (which flip a single bit) always create adjacent

codewords at distance 1 apart. This compromise is unnecessary

in our case since, as we shall later see, the “push-to-the-top”

operations allow adjacent words at distance 2 or more apart.

III. KENDALL’S τ-METRIC AND K-SNAKES

Kendall’s τ-metric [14], denoted K, is induced by the

bubble-sort distance which measures the minimal amount of

adjacent transpositions required to transform one permutation

into the other. For example, the distance between the permu-

tations [2, 1, 4, 3] and [2, 4, 3, 1] is 2, as

[2, 1, 4, 3]→ [2, 4, 1, 3]→ [2, 4, 3, 1]

is a shortest sequence of adjacent transpositions between the

two. More formally, for α, β ∈ Sn, as noted in [13],

dK(α, β) = |{(i, j) | α(i) < α(j) ∧ β(i) > β(j)}| .

The metric K was first introduced by Kendall [14] in the

study of ranking in statistics. It was observed in [13] that a

bounded distance in Kendall’s τ-metric models errors caused

by bounded changes in charge-levels of cells in the flash

memory. Error-correcting codes for this metric were studied

in [2], [13], [17].

We let Kendall’s τ adjacency graph of order n ∈ N be

the graph Gn = (Vn, En) whose vertices are the elements of

the symmetric group Vn = Sn, and {α, β} ∈ En if and only

if dK(α, β) = 1. It is well known that Kendall’s τ-metric is

graphic [5], i.e., for every α, β ∈ Sn, dK(α, β) equals the

length of the shortest path between the two in the adjacency

graph, Gn.

A. Construction

We begin the construction process by restricting ourselves

to Gray codes using only “push-to-the-top” operations on odd

indices. The following lemma provides the motivation for this

restriction.

Lemma 5. A Gray code over Sn using only “push-to-the-top”

operations on odd indices is a K-snake.

Proof: According to (1), a “push-to-the-top” operation on

an odd index is a composition with an odd-length cycle (which

is an even permutation). Thus, the codewords in a Gray code

using only such operations are all with the same sign.

On the other hand, an adjacent transposition is an odd

permutation, thus, flipping the sign of the permutation it acts

on. It follows that in a list of codewords, all with the same

sign, there are no two codewords which are adjacent in Gn,

i.e., the Gray code is a K-snake.

Lemma 5 saves us the need to check whether a Gray code

is in fact a K-snake, at the cost of restricting the set of

allowed transitions (and the size of the resulting code, although

Theorems 15 and 17, presented below, work to mitigate this

concern). In particular, if n is even, the last element cannot

be moved.

By starting with an even permutation, and using only “push-

to-the-top” operations on odd indices, we get a sequence of

even permutations. Thus, throughout this part, the context of

the alternating group A2n+1 is assumed, where n ∈ N.

The construction we are about to present is recursive in na-

ture. As a base for the recursion, we note that three consecutive

“push-to-the-top” operations on the 3rd index of permutations

in A3 constitute a complete cyclic (3, 3,K)-snake:

C3 = ([1, 2, 3], [3, 1, 2], [2, 3, 1]) .

We shall extend C3 to the next order as a running example

alongside the general construction below.

Now, assume that there exists a cyclic (2n− 1, M2n−1,K)-
snake, C2n−1, and let

tk1
, tk2

, . . . , tkM2n−1

be the sequence of transformations generating it, where kj is

odd for all j ∈ [M2n−1]. We also assume that k1 = 2n− 1
(this requirement, while perhaps appearing arbitrary, is actu-

ally quite easily satisfied. Indeed, every sufficiently large cyclic

K-snake over S2n−1 must, w.l.o.g., satisfy it. We shall make

it a point to demonstrate that this holds for our construction).

We fix arbitrary values for a0, a1, . . . , a2n−2 such that

{a0, a1, . . . , a2n−2} = [2n + 1] \ {1, 3} . (2)

For all i ∈ [2n− 1] we define

σ
(i)
0 = [1, ai, 3, ai+1, . . . , ai+2n−2],

where the indices are taken modulo 2n− 1, and such that we

indeed have σ
(i)
0 ∈ A2n+1, i.e., σ

(i)
0 is an even permutation

(one simple way of achieving this is to choose them in

ascending order).

Example 6. We recall that C3 is generated by the operations

(t3, t3, t3), which satisfy our requirement. As suggested above,

we order [5] \ {1, 3} in ascending order, i.e.,

(a0, a1, a2) = (2, 4, 5) .

We define the following permutations as starting points for our

construction

σ
(0)
0 = σ

(3)
0 = [1, 2, 3, 4, 5]

σ
(1)
0 = [1, 4, 3, 5, 2]

σ
(2)
0 = [1, 5, 3, 2, 4]

and readily verify that they are all even. ✷

We now define for all i ∈ [2n− 1] and j ∈ [M2n−1] the

permutation

σ
(i)
j(2n+1)

= tk j

(

σ
(i)
(j−1)(2n+1)

)

,

4

i.e., we construct cycles corresponding to a mirror view of

C2n−1 on all but the two first elements of σ
(i)
0 (which, as we

recall, are (1, ai)).

Example 7. In our running example, we define the following

permutations:

σ
(0)
5 = t3σ

(0)
0 = [1, 2, 4, 5, 3]

σ
(0)
10 = t3σ

(0)
5 = [1, 2, 5, 3, 4]

σ
(0)
15 = t3σ

(0)
10 = [1, 2, 3, 4, 5]

σ
(1)
5 = t3σ

(1)
0 = [1, 4, 5, 2, 3]

σ
(1)
10 = t3σ

(1)
5 = [1, 4, 2, 3, 5]

σ
(1)
15 = t3σ

(1)
10 = [1, 4, 3, 5, 2]

σ
(2)
5 = t3σ

(2)
0 = [1, 5, 2, 4, 3]

σ
(2)
10 = t3σ

(2)
5 = [1, 5, 4, 3, 2]

σ
(2)
15 = t3σ

(2)
10 = [1, 5, 3, 2, 4]

and resume our construction. ✷

We now note the following properties of our construction:

Lemma 8. Let i, k ∈ [2n − 1] and j, l ∈ [M2n−1]. The

following are equivalent:

1) The permutations σ
(i)
j(2n+1)

and σ
(k)
l(2n+1)

are cyclic shifts

of each other.

2) σ
(i)
j(2n+1)

= σ
(k)
l(2n+1)

.

3) i = k and j = l.

Proof: First, if σ
(i)
j(2n+1)

is a cyclic shift of σ
(k)
l(2n+1)

, since

σ
(i)
j(2n+1)

(1) = 1 = σ
(k)
l(2n+1)

(1)

then necessarily

σ
(i)
j(2n+1)

= σ
(k)
l(2n+1)

.

It then follows that

ai = σ
(i)
j(2n+1)

(2) = σ
(k)
l(2n+1)

(2) = ak,

hence i = k. Moreover, since the two permutations’ last n− 1
elements agree, and tk1

, tk2
, . . . , tkM2n−1

induce a Gray code,

we necessarily have j = l.
Finally, that the last statement implies the first is trivial.

Lemma 9. For all i ∈ [2n− 1] it holds that

σ
(i)
M2n−1(2n+1)

= σ
(i)
0 .

Proof: The transformations tk1
, tk2

, . . . , tkM2n−1
induce a

cyclic code, and the claim follows directly.

Therefore we have constructed 2n− 1 cycles comprised of

cyclically non-equivalent permutations (although, at this point

they are not generated by “push-to-the-top” operations).

It shall now be noted that

tk = t2n
2n+1t2n+2−k.

Hence, if we define for all i ∈ [2n− 1], 0 6 j < M2n−1, and

1 < m 6 2n, the permutations

σ
(i)
j(2n+1)+1

= t2n+2−k j+1
σ
(i)
j(2n+1)

σ
(i)
j(2n+1)+m

= tm−1
2n+1σ

(i)
j(2n+1)+1

,

then it holds that

σ
(i)
(j+1)(2n+1)

= t2n+1σ
(i)
j(2n+1)+2n

.

Our observation from one paragraph above means that at

this point we have 2n− 1 disjoint cycles, which we conve-

niently denote

C
(i)
2n+1 =

(

σ
(i)
0 , σ

(i)
1 , . . . , σ

(i)
M2n−1(2n+1)−1

)

,

for all i ∈ [2n − 1] (for ease of notation, we let C
(0)
2n+1 =

C
(2n−1)
2n+1).

Example 10. In our construction, the cycles we produced are:

σ
(0)
0 = t5σ

(0)
14 = [1, 2, 3, 4, 5]

σ
(0)
1 = t3σ

(0)
0 = [3, 1, 2, 4, 5]

σ
(0)
2 = t5σ

(0)
1 = [5, 3, 1, 2, 4]

σ
(0)
3 = t5σ

(0)
2 = [4, 5, 3, 1, 2]

σ
(0)
4 = t5σ

(0)
3 = [2, 4, 5, 3, 1]

σ
(0)
5 = t5σ

(0)
4 = [1, 2, 4, 5, 3]

σ
(0)
6 = t3σ

(0)
5 = [4, 1, 2, 5, 3]

σ
(0)
7 = t5σ

(0)
6 = [3, 4, 1, 2, 5]

σ
(0)
8 = t5σ

(0)
7 = [5, 3, 4, 1, 2]

σ
(0)
9 = t5σ

(0)
8 = [2, 5, 3, 4, 1]

σ
(0)
10 = t5σ

(0)
9 = [1, 2, 5, 3, 4]

σ
(0)
11 = t3σ

(0)
10 = [5, 1, 2, 3, 4]

σ
(0)
12 = t5σ

(0)
11 = [4, 5, 1, 2, 3]

σ
(0)
13 = t5σ

(0)
12 = [3, 4, 5, 1, 2]

σ
(0)
14 = t5σ

(0)
13 = [2, 3, 4, 5, 1]

σ
(1)
0 = t5σ

(1)
14 = [1, 4, 3, 5, 2]

σ
(1)
1 = t3σ

(1)
0 = [3, 1, 4, 5, 2]

σ
(1)
2 = t5σ

(1)
1 = [2, 3, 1, 4, 5]

σ
(1)
3 = t5σ

(1)
2 = [5, 2, 3, 1, 4]

σ
(1)
4 = t5σ

(1)
3 = [4, 5, 2, 3, 1]

σ
(1)
5 = t5σ

(1)
4 = [1, 4, 5, 2, 3]

σ
(1)
6 = t3σ

(1)
5 = [5, 1, 4, 2, 3]

σ
(1)
7 = t5σ

(1)
6 = [3, 5, 1, 4, 2]

σ
(1)
8 = t5σ

(1)
7 = [2, 3, 5, 1, 4]

σ
(1)
9 = t5σ

(1)
8 = [4, 2, 3, 5, 1]

σ
(1)
10 = t5σ

(1)
9 = [1, 4, 2, 3, 5]

σ
(1)
11 = t3σ

(1)
10 = [2, 1, 4, 3, 5]

σ
(1)
12 = t5σ

(1)
11 = [5, 2, 1, 4, 3]

σ
(1)
13 = t5σ

(1)
12 = [3, 5, 2, 1, 4]

σ
(1)
14 = t5σ

(1)
13 = [4, 3, 5, 2, 1]

σ
(2)
0 = t5σ

(2)
14 = [1, 5, 3, 2, 5]

σ
(2)
1 = t3σ

(2)
0 = [3, 1, 5, 2, 4]

σ
(2)
2 = t5σ

(2)
1 = [4, 3, 1, 5, 2]

σ
(2)
3 = t5σ

(2)
2 = [2, 4, 3, 1, 5]

σ
(2)
4 = t5σ

(2)
3 = [5, 2, 4, 3, 1]

σ
(2)
5 = t5σ

(2)
4 = [1, 5, 2, 4, 3]

σ
(2)
6 = t3σ

(2)
5 = [2, 1, 5, 4, 3]

σ
(2)
7 = t5σ

(2)
6 = [3, 2, 1, 5, 4]

σ
(2)
8 = t5σ

(2)
7 = [4, 3, 2, 1, 5]

σ
(2)
9 = t5σ

(2)
8 = [5, 4, 3, 2, 1]

σ
(2)
10 = t5σ

(2)
9 = [1, 5, 4, 3, 2]

σ
(2)
11 = t3σ

(2)
10 = [4, 1, 5, 3, 2]

σ
(2)
12 = t5σ

(2)
11 = [2, 4, 1, 5, 3]

σ
(2)
13 = t5σ

(2)
12 = [3, 2, 4, 1, 5]

σ
(2)
14 = t5σ

(2)
13 = [5, 3, 2, 4, 1]

where the permutations in bold are those from Example 7. ✷

Each of the cycles is of size (2n + 1)M2n−1, is generated

by “push-to-the-top” operations, and contains all cyclic shifts

of elements present in our previous version of that cycle. We

merge these cycles into a single cycle in the following theorem.

Theorem 11. Given a cyclic (2n− 1, M2n−1,K)-snake using

only “push-to-the-top” operations on odd indices, and such that

its first transformation is t2n−1, there exists a cyclic (2n +
1, M2n+1,K)-snake with the same properties, whose size is

M2n+1 = (2n− 1)(2n + 1)M2n−1.

Proof: Since k1 = 2n− 1, it holds for all i ∈ [2n− 1] that

σ
(i)
1 = t3σ

(i)
0 , and we recall σ

(i)
2 = t2n+1σ

(i)
1 . More explicitly,

σ
(i)
1 = [3, 1, ai, ai+1, . . . , ai+2n−2]

σ
(i)
2 = [ai+2n−2, 3, 1, ai, ai+1, . . . , ai+2n−3] ,

5

where, again, the indices are taken modulo 2n− 1. Thus for

all i ∈ [2n− 2] we have

t3σ
(i)
1 = [ai, 3, 1, ai+1, . . . , ai+2n−2] = σ

(i+1)
2

and t3σ
(2n−1)
1 = σ

(1)
2 .

Let E denote the left-shift operator, and so

E2C
(i)
2n+1 =

(

σ
(i)
2 , σ

(i)
3 , . . . , σ

(i)
M2n−1(2n+1)−1

, σ
(i)
0 , σ

(i)
1

)

.

By the above observations we conclude that

C2n+1 = E2C
(0)
2n+1, E2C

(1)
2n+1, . . . , E2C

(2n−2)
2n+1

is a cyclic (2n + 1, M2n+1,K)-snake, consisting of

M2n+1 = (2n− 1)(2n+ 1)M2n−1

permutations. The code C2n+1 obviously uses t2n+1, and so

some cyclic shift of it has it as its first transition (in fact,

for every i ∈ [2n − 1] one has σ
(i)
3 = t2n+1σ

(i)
2 , and in

particular, E2C
(0)
2n+1 has t2n+1 as its first transition, and so

does C2n+1). Finally, it is easily verifiable that all “push-to-

the-top” operations are on odd indices.

Example 12. Our running example ends with the full construc-

tion of a (5, 45,K)-snake, C5, from Theorem 11. The down

arrows stand for an omitted sequence of t5 transformations. The

transition from column to column uses a single t3 transforma-

tion.

[5, 3, 1, 2, 4] σ
(0)
2

↓ ↓
[1, 2, 4, 5, 3] σ

(0)
5

[4, 1, 2, 5, 3] σ
(0)
6

↓ ↓
[1, 2, 5, 3, 4] σ

(0)
10

[5, 1, 2, 3, 4] σ
(0)
11

↓ ↓
[1, 2, 3, 4, 5] σ

(0)
0

[3, 1, 2, 4, 5] σ
(0)
1

[2, 3, 1, 4, 5] σ
(1)
2

↓ ↓
[1, 4, 5, 2, 3] σ

(1)
5

[5, 1, 4, 2, 3] σ
(1)
6

↓ ↓
[1, 4, 2, 3, 5] σ

(1)
10

[2, 1, 4, 3, 5] σ
(1)
11

↓ ↓
[1, 4, 3, 5, 2] σ

(1)
0

[3, 1, 4, 5, 2] σ
(1)
1

[4, 3, 1, 5, 2] σ
(2)
2

↓ ↓
[1, 5, 2, 4, 3] σ

(2)
5

[2, 1, 5, 4, 3] σ
(2)
6

↓ ↓
[1, 5, 4, 3, 2] σ

(2)
10

[4, 1, 5, 3, 2] σ
(2)
11

↓ ↓
[1, 5, 3, 2, 4] σ

(2)
0

[3, 1, 5, 2, 4] σ
(2)
1

✷

We now turn to consider the size and rate of the constructed

codes, and show that their rate asymptotically tends to 1.

Theorem 13. The size of K-snakes constructed in Theorem 11

behaves asymptotically as

|C2n+1| = M2n+1 =
(2n)!(2n + 1)!

n!2 · 22n
∼ 1√

πn
|S2n+1| ,

which leads to an asymptotic rate of 1.

Proof: Starting from our base case of a complete cyclic

(3, 3,K)-snake, we define for all n ∈ N the ratio

D2n+1 =
M2n+1

(2n + 1)!
,

which is the size of our constructed code over the total size

of S2n+1. We note that

D2n+1

D2n−1
=

M2n+1 · (2n− 1)!

(2n + 1)! ·M2n−1
=

2n− 1

2n
.

Therefore, since D3 =
1
2 , we have for all 2 6 n ∈ N that

D2n+1 =
1

2

n

∏
m=2

2m− 1

2m
=

(2n)!

n!2 · 22n
.

Using Stirling’s approximation one observes

lim
n→∞

D2n+1

√
πn = lim

n→∞

(2n)!
√

πn

n!2 · 22n

= lim
n→∞

√
4πn

(
2n
e

)2n√
πn

(√
2πn

(
n
e

)n
)2
· 22n

= 1.

Moreover, one can now readily verify that

lim
n→∞

R(C2n+1) = lim
n→∞

log2 M2n+1

log2 |S2n+1|
= 1.

Part III-B will focus in exploring the possible size of K-

snakes in general.

Before we conclude this part, we recall that Flash mem-

ory cells suffer long-time damage from erasure cycles, and

therefore it is desirable to minimize the number of times such

cycles are required.

A property of rank-modulation cell programming is that

an erasure of an entire cell block is required only when a

specific cell is to exceed its maximal permitted charge level.

It is therefore of interest to analyze the rate with which our

constructed codes increase the charge level of any given cell.

Repeated “push-to-the-top” operations on a given cell will

result in a fast increase in that cell’s charge level, and growing

gaps between it and the charge levels of other cells. It is

therefore most cost-economic, in the sense that it delays

the need for a time-consuming erasure and reprogramming

cycle, to employ a programming strategy which retains the

charge levels of individual cells as balanced as possible. Such

balanced Gray codes were constructed in [12].

In this part’s context, this goal is achieved if and only if

every two subsequent incidents in a cyclic (2n + 1, M,K)-
snake where a “push-to-the-top” operation is applied to a

certain cell are separated by at most 2n + 1 operations on

other cells. Our family of codes nearly achieves this goal:

Proposition 14. For every permutation σ ∈ C2n+1, in the K-

snake constructed in Theorem 11, there exists another σ′ ∈
C2n+1 such that σ(1) = σ′(1), following it by no more than

2n + 3 steps.

Proof: Recall that

C2n+1 = E2C
(0)
2n+1, E2C

(1)
2n+1, . . . , E2C

(2n−2)
2n+1 .

By the nature of our construction, for n > 2, every “push-to-

the-top” operation, on all but the last rank in the code, appears

either as part of the pattern

. . . , t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, ti, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, . . .

or as

. . . , t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, t3, t3, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, . . .

6

It is therefore the case that there exist 0 6 k 6 2n and j ∈ [n]
such that the transformations used in C2n+1 after σ are of the

following two forms:

1) t2n+1, . . . , t2n+1
︸ ︷︷ ︸

k

, t2j+1, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n
2) t2n+1, . . . , t2n+1

︸ ︷︷ ︸

k

, t3, t3, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

In the second case, one notes:

σ(1) =







t2n−1
2n+1t2

3σ(1) k = 0

t2
3t2n+1σ(1) k = 1

t3t2
2n+1σ(1) k = 2

t2n+1−k
2n+1 t2

3tk
2n+1σ(1) k > 2.

Finally, in the first case, we note that

σ(1) =







t2n−k
2n+1t2j+1tk

2n+1σ(1) k < 2j + 1

t2j+1tk
2n+1σ(1) k = 2j + 1

t2n+1−k
2n+1 t2j+1tk

2n+1σ(1) k > 2j + 1.

It is of interest to note that, of all cases discussed in the

last proof, the second case where k > 2 is the only situation

in which another instance of programming to the specific cell

fails to occur in 2n + 2 steps, i.e., for the large majority of

cases (in all but 2n−1
M2n+1

of them), the construction of Theo-

rem 11 yields optimally-behaving codes in this respect.

B. Bounds on K-Snakes

We now turn our attention to bounding the parameters of

K-snakes. We begin by noting a simple upper bound on the

size of K-snakes.

Theorem 15. If C is an (n, M,K)-snake then

1) M 6 1
2 |Sn|.

2) M = 1
2 |Sn| if and only if for all {α, β} ∈ En it holds

that α ∈ C or β ∈ C.

Proof: Every α ∈ Sn has exactly (n− 1) neighbors in

Gn. When we sum the edges for every vertex in Gn, each edge

in En is counted precisely twice, hence

|En| =
n− 1

2
· |Sn| =

n!(n− 1)

2
.

On the other hand, for every α, β ∈ C and e1, e2 ∈ En such

that α ∈ e1 and β ∈ e2 clearly e1 6= e2. It follows that there

are no less than M(n− 1) distinct edges in En. Hence

M 6
1

2
|Sn| .

Finally, we note that M = 1
2 |Sn| iff M(n− 1) = |En|, iff

every edge in En contains a (unique) element of C.

It is worth mentioning, at this point, that this upper-bound

might not be tight. Indeed, we know by Theorem 13 that

M2n+1
1
2 |S2n+1|

∼ 2√
πn

,

and no constructions are currently known which attain the

upper bound, except for the trivial case of C3.

The codes we constructed in the previous part use only

“push-to-the-top” operations on odd indices. We would now

like to show that using even a single “push-to-the-top” opera-

tion on an even index can never result in a code attaining the

bound of Theorem 15 with equality. We first require a simple

lemma.

Lemma 16. Let C be aK-snake over Sn. If σ, σ′ ∈ C and there

exists a path in Gn of odd length between them, then that path

contains an edge both of whose endpoints are not in C.

Proof: Consider such a path of odd length in Gn, con-

necting σ and σ′. Now color the vertices of C black, and those

of Sn \C white. Since C is a K-snake, no edge in En has both

its ends colored black. In the path above the vertices cannot

alternate in color since σ and σ′ are colored black and the

path has odd length. It follows that there is an edge in the

path with both ends colored white, as claimed.

With this lemma in hand, we can now further bound the

size K-snakes employing a “push-to-the-top” operation on an

even index.

Theorem 17. If an (n, M,K)-snake C contains a “push-to-the-

top” operation on an even index then

M 6
1

2
|Sn| −Θ(n) <

1

2
|Sn| .

Proof: Let C = (σ1, . . . , σM). We take i ∈ [M− 1] such

that σi+1 = t2m (σi), where 2m ∈ [n]. Then σi and σi+1 have

different signs. We will also find it convenient to denote

r = σi(2m) ∈ [n].

We shall construct as many distinct paths in Kendall’s τ
adjacency graph Gn connecting σi with σi+1, knowing they

must all have odd lengths, and therefore by Lemma 16 they

each contain an edge completely disjoint from C. We will then

show that these edges are all distinct, allowing us to improve

upon the bound of Theorem 15.

One natural such path is generated by subsequently ap-

plying to σi the adjacent transpositions (j, j + 1) for j =
2m− 1, 2m− 2, . . . , 1. By taking more care before applying

these transpositions, we shall arrive at more paths.

Consider the set of adjacent transpositions that do not

involve the index 2m, namely

T = {(j, j + 1) | j ∈ [n− 1] \ {2m− 1, 2m}} .

For every subset B ⊆ T of size |B| 6 2, we generate a new

permutation ωB by applying to σi the elements of B (in some

arbitrary order, say from smallest to largest indices). Naturally,

for two distinct such subsets, B and B′, we have ωB 6= ωB′ ,

but still ωB(2m) = r = ωB′(2m).
We can now apply to ωB the aforementioned transpositions

in the following way:

ωB
0 = ωB

ωB
j = ωB

j−1(2m− j, 2m− j + 1); j ∈ [2m− 1],

and for every choice of subset we have ωB
2m−1(1) = r. Clearly,

we can generate σi+1 from ωB
2m−1 by reversing the effect of

B’s elements (the actual transpositions required are altered by

7

the change of index for r, but all other elements retain their

relative positions with respect to each other. Formally, we need

to apply the elements of B in the reverse order, but whenever

(j, j+ 1) ∈ B such that j < 2m we instead apply the adjacent

transposition (j + 1, j + 2)).
Now, note that if ωB

k = ωB′
l then in particular

2m− k = (ωB
k)
−1(r) = (ωB′

l)−1(r) = 2m− l,

hence k = l. Therefore, the induced permutation on [n] \ {r}
agrees as well. This, however, is impossible unless B = B′.
Hence, any two paths of this sort can only intersect in the first

step of obtaining ωB from σi (or the last step from ωB
2m−1 to

σi+1), i.e., in the first (or last) edge of the path.

Finally, by Lemma 16 each path hereby described contains

an edge disjoint from C. Note that it cannot be its first or last

edge (since σi, σi+1 ∈ C), hence these edges are all distinct.

It follows (in the same manner used in the proof of Theo-

rem 15) that, where N denotes the number of subsets of T
with cardinality 2 or less, we have

M(n− 1) 6 |En| − N =
n− 1

2
|Sn| − N,

and naturally N = (n−3
2) + (n− 3) + 1 = Θ(n2).

Before concluding this section, we note that the upper-

bound of Theorem 17 is still higher than M2n+1, the size

of codes generated by the construction of Theorem 11. See

Section V for some ad-hoc results of codes with optimal sizes.

C. Successor Calculation and Ranking Algorithms

We now turn to present algorithms associated with the

codes we constructed in the previous sections. The algorithms

are brought here for completeness of presentation, and are

straightforward derivations from the construction. We shall,

therefore, only provide an intuitive sketch of correctness for

them, as we shall later do in the section corresponding to l∞-

snakes.

In order to use the codes described in Theorem 11 in the im-

plementation of a logic cell (with M2n+1 levels), importance

is known to the ability of efficiently increasing the cell’s level.

That is, one needs to know, for every given permutation in the

code, the appropriate “push-to-the-top” operation required to

produce the subsequent permutation.

For the code C2n+1 from Theorem 11, the function

SuccessorK (n, [b1, . . . , b2n+1]) takes as input a permutation

in the code, and returns as output the index i of the required

transformation ti. It is assumed throughout this part that the

elements {ai}2n−2
i=0 from (2), used in our construction, are

known, and we will denote them with superscript (n) to

indicate order when it is not clear from context. Furthermore,

we require a function

Indn(b) : [2n + 1] \ {1, 3} → [0, 2n− 2]

which returns the unique index such that a
Indn(b) = b. We

assume Indn runs in O(1) time2. One possible way, among

2Though the integers used throughout are of magnitude O(n), and so may
require O(log n) bits to represent, we tacitly assume (as in [12]) all simple
integer operations, e.g., assignment, comparison, addition, etc., to take O(1)
time.

many, of achieving this is by defining:

a
(n)
i =

{

2 i = 0

i + 3 i > 1
Indn(b) =

{

0 b = 2,

b− 3 b > 4.

Finally, we naturally assume validity of the input in all

procedures.

Our strategy will be to identify the vertices in C2n+1 which

require a transformation other than t2n+1. Those are either

permutations with leading 1’s (those on which we initially per-

formed “push-to-the-bottom” operations in our construction),

or the last permutation in each E2C
(j)
2n+1. In the latter case

we need only apply t3, where the former requires translation

of the a
(n)
i ’s according to their respective positions in the

originating permutation of each C
(j)
2n+1, and a recursive run

of SuccessorK to determine the correct “push-to-the-bottom”

operation to be performed.

It shall be noted at this point that a degree of freedom

exists in the cyclic shift of C2n−1 one applies to construct

each C
(j)
2n+1 (one only needs to confirm that the first “push-to-

the-top” operation shall be on the last index). This shift shall

be denoted by the following bijection for every order n ∈ N

and index j ∈ [2n− 1]:

n
j ↓ : {3} ∪

{

a
(n)
i

}

i 6=j
−→ [2n− 1],

defined such that the “push-to-the-bottom” operation applied

to [

1, a
(n)
j , b1, . . . , b2n−1

]

∈ C
(j)
2n+1

matches the “push-to-the-top” operation applied in C2n−1 to
[

n
j ↓b2n−1, n

j ↓b2n−2, . . . , n
j ↓b1

]

.

We shall further denote its inverse as n
j ↑. These two bijections

can be implemented in O(1) time, for example, by taking as

a starting point C2n−1’s (2n− 4)-ranked permutation
[

a
(n−1)
0 , . . . , a

(n−1)
2n−4 , 3, 1

]

,

and defining accordingly

n
j ↓b =







1 b = 3

3 Indn(b) = j + 1

a
(n−1)
(j−Indn(b)−1) mod (2n−1)

otherwise,

(3)

where Indn(b) = j+ 1 is checked modulo 2n− 1, as well as

n
j ↑b =







3 b = 1

a
(n)
(j+1) mod (2n−1)

b = 3

a
(n)
(j−Indn(b)−1) mod (2n−1)

otherwise.

(4)

Lemma 18. SuccessorK runs in O(1) amortized time.

Proof: We first note that by the nature of our construc-

tion the element 1 appears in the leading index precisely

(2n− 1) ·M2n−1 times, which constitutes 1
2n+1 of the code’s

size. The pair (3, 1) leads no more (and in fact strictly less)

permutations.

8

Function SuccessorK (n, [b1, . . . , b2n+1])
input : n ∈N, A permutation [b1, . . . , b2n+1] ∈ C2n+1

output : An odd i ∈ {3, . . . , 2n + 1} that determines the
transition ti to the next permutation in C2n+1

1 if n = 1 then
2 return 3

3 if b1 = 3 and b2 = 1 and ∀3 6 i 6 2n :
(Indn (bi+1)− Indn (bi)) ≡ 1 (mod 2n− 1) then

4 return 3

5 if b1 = 1 then
6 j← Indn (b2)

7 i← SuccessorK
(

n− 1,
[

n
j ↓b2n+1, n

j ↓b2n, . . . , n
j ↓b3

])

8 return 2n + 2− i

9 return 2n + 1

Therefore, if we let En denote the expected number of steps

performed by SuccessorK when called on input of length

2n + 1, then we note the recursive connection

En 6 O(1) +
1

2n + 1
O(n) +

1

2n + 1
(O(n) + En−1)

= O(1) +
1

2n + 1
En−1.

Developing this inequality recursively, there exists L ∈ N

such that

En 6L +
1

2n− 1
En−1

6

(

1 +
1

2n− 1

)

L +
1

(2n− 1)(2n− 3)
En−2 6

...

6

(

1 +
1

2n− 1
+

n− 2

(2n− 1)(2n− 3)

)

L +
n!2n

(2n)!
E1,

and so En = O(1).
To use C2n+1 in the implementation of a logic cell, one also

needs a method of computing a given permutation’s rank in

the code. We implement the function RankK ([b1, . . . , b2n+1])
which receives as input a permutation [b1, . . . , b2n+1] ∈ C2n+1

and returns its rank in

C2n+1 = E2C
(0)
2n+1, E2C

(1)
2n+1, . . . , E2C

(2n−2)
2n+1 ,

in the order indicated by that notation. The assumptions made

in the previous part are still in effect. Moreover, we will require

knowledge of the cyclic shift of C2n−1 used in the construction

of each C
(j)
2n+1, which we retain in the form of r

(j)
2n+1, the rank

of permutation in C2n−1 which was chosen as a starting point.

For example, in the method suggested by (3) and (4), we have

r
(j)
2n+1 = 2n− 4

for all j ∈ [2n− 1].
We use the following method: first identify the position

of 1 in the permutation, and the following element, which

gives us both the subcode the permutation belongs to and

the cyclic shift in our mock “push-to-the-bottom” operation.

Armed with that information we then scan the permutation

backwards and translate the a
(n)
j ’s indices according to the

subcode in the same way we did in SuccessorK. After that, a

Function RankK ([b1, . . . , b2n+1])
input : A permutation [b1, . . . , b2n+1] ∈ C2n+1

output : The rank k ∈ {0, . . . , M2n+1− 1} associated with the
given permutation in C2n+1

1 if n = 1 then
2 return 3− b2

3 i← min {l ∈ [2n + 1] | bl = 1}
4 j← Indn

(

b(i mod (2n+1))+1

)

5 for l ← 1 to 2n− 1 do

6 cl ← n
j ↓b((i−l−1) mod (2n+1))+1

7 r ←
(

RankK ([c1, . . . , c2n−1])− r
(j)
2n+1

)

mod M2n−1

8 rn← ((2n + 1)(r− 1)− 1 + ((i− 2) mod (2n + 1))) mod
((2n + 1)M2n−1)

9 return (2n + 1)M2n−1 · j + rn

Function UnrankK (n, k)
input : n ∈N; rank k ∈ [0, M2n+1− 1]
output : The permutation [b1, . . . , b2n+1] which is kth in C2n+1

1 if n = 0 then
2 return [1]

3 j←
⌊

k
(2n+1)·M2n−1

⌋

4 pos← k mod ((2n + 1)M2n−1)

5 perm←
(⌊

pos+1
2n+1

⌋

+ 1 + r
(j)
2n+1

)

mod M2n−1

6 shift ← (pos + 2) mod (2n + 1)
7 [c1, . . . , c2n−1]← UnrankK(n− 1, perm)

8 return tshift

2n+1

[

1, a
(n)
j , n

j ↑c2n−1, n
j ↑c2n−2, . . . , n

j ↑c1

]

recursive run of RankK will give us the permutation’s position

in its subcode, which we will combine with the cyclic shift

to produce the correct rank, taking r
(j)
2n+1 into account and

remembering that C2n+1 is constructed of the E2C
(j)
2n+1’s rather

than the C
(j)
2n+1’s.

Lemma 19. The function RankK operates in O(n2) steps.

Proof: We note that RankK performs O(n) operations

before calling upon itself with an order reduced by one. It

therefore operates in O(n2) time.

Unranking permutations, i.e., the process of assigning to a

given rank in [0, M2n+1 − 1] the corresponding permutation

in the C2n+1, might also be needed if one requires the logic

cell to perform as more than a counter. We implement a

function UnrankK(n, k) which returns as output the k-ranked

permutation in C2n+1.

Naturally, all assumptions made above still hold. We will

follow the same general method used for RankK, i.e., we shall

compute j ∈ [2n − 1] such that the given rank belongs to

σ ∈ E2C
(j)
2n+1, then adjust the rank to indicate the correct

position in C
(j)
2n+1. It will then remain to compute the correct

permutation in the “push-to-the-bottom” cycle using a recur-

sive run, and shift it the required number of times.

Lemma 20. The function UnrankK operates in O(n2) steps as

well.

Proof: Follows exactly the same lines as our proof to

Lemma 19.

9

IV. THE ℓ∞-METRIC AND ℓ∞-SNAKES

The ℓ∞-metric is induced on Sn by the embedding in Z
n

implied by the vector notation. More precisely, for α, β ∈ Sn

one defines

d∞(α, β) = max
i∈[n]
|α(i)− β(i)| .

We use the ℓ∞-metric to model a different kind of noise-

mechanism than that modeled by Kendall’s τ-metric, namely

spike noise. In this model, the rank of each memory cell is

assumed to have been changed by a bounded amount (see

[22]).

Error-correcting and -detecting codes in Sn for the ℓ∞-

metric are referred to in [22] as limited-magnitude rank-

modulation codes (LMRM codes). In that paper, constructions

of such codes achieving non-vanishing normalized distance

and rate are presented. Moreover, bounds on the size of

optimal LMRM codes are proven. In particular, it has been

shown [22, Th. 20] that if C is an (n, M, 2)-LMRM then

M 6
n!

2⌊n/2⌋ .

Using a simple translation to an extremal problem involving

permanents of (0, 1)-matrices (see [20]), this is also the best

possible bound using the set-antiset method. For our needs, it

follows that the size of every n-length ℓ∞-snake is bounded

by this term. We shall present a construction of ℓ∞-snakes

achieving this upper-bound by a factor of
⌊

n
2

⌋
2⌈n/2⌉, which

we will show achieves an asymptotic rate of 1.

A. Construction

In order to use the code constructions presented in [12], we

first prove the following lemma.

Lemma 21. Both constructions in [12, Th. 4,7], when applied

recursively, yield complete cyclic n-RMGC’s containing both

“push-to-the-top” operations t2 and tn.

Proof: The proposition was, while not fully stated, actu-

ally proven in [12, Th. 4].

For [12, Th. 7], we shall assume that the recursive process

was applied to a length-(n− 1) Gray code satisfying these

conditions (as is the case with the base example given in that

article). The resulting code uses tn by definition. Moreover,

since the original code used tn−1, the resulting code uses

tn−(n−1)+1 = t2.

This lemma now allows for the construction of a basic

building block which we will later use.

Lemma 22. Let
{

aj

}n

j=1
, n > 2, be a set of integers of the same

parity. Let

σ = [x, a1, a2, . . . , an, bn+2, bn+3, . . . , bm] ∈ Sm

be a permutation such that the parity of x differs from that

of the elements of
{

aj

}n

j=1
. Then there exists a (non-cyclic)

(m, n + (n − 1)!, ℓ∞)-snake starting with σ and ending with

the permutation

t2tn
n+1(σ) = [a2, a1, a3, a4, . . . , an, x, bn+2, bn+3, . . . , bm] .

Proof: Let σ0, . . . , σn+(n−1)!−1 denote the codewords of

the claimed code, and denote by tk1
, . . . , tkn+(n−1)!−1

the list of

transformations generating it.

We set σ0 = σ. For all i ∈ [n] we let σi = ti
n+1(σ), i.e.,

tki
= tn+1. Quite clearly, any two of these n+ 1 permutations

are at ℓ∞-distance at least 2 apart, since the aj’s share parity.

Now, by Lemma 21 there exists a complete cyclic (n− 1)-
RMGC starting with σn, with its last operation being t2. We

therefore let tkn+i
for i ∈ [(n − 1)!] represent that code,

hence tkn+(n−1)!
= t2 and σn+(n−1)! = σn (we then, obviously,

omit the last transformation as well as the repeated codeword

σn+(n−1)!). These (n− 1)! permutations, σn, . . . , σn+(n−1)!−1,

also represent an ℓ∞-snake, for the same reason.

Finally, take 0 6 k < n and 0 6 l < (n− 1)!, and observe

σk and σn+l. Suppose d∞(σk, σn+l) 6 1. Then in particular

|an−k − x| = 1. Moreover, if k = n− 1 then |x− an| = 1,

but then an’s position in σk correlates to one of
{

aj

}n−1

j=1
in

σn+l, in contradiction. Therefore k 6 n − 2, but then an’s

position in σn+l (nth from left) correlates to that of an−k−1

in σk, where 1 6 n− k− 1 6 n− 1, again in contradiction.

This concludes our proof.

Example 23. We shall start this example with the permutation

σ = [1, 2, 4, 6, 3, 5] .

We will also require a complete 2-RMGC, which clearly com-

prises of two subsequent t2 operations. We are now ready to

present a (non-cyclic) (6, 3 + 2!, l∞)-snake:

[1, 2, 4, 6, 3, 5]
↓ t4

[6, 1, 2, 4, 3, 5]
↓ t4

[4, 6, 1, 2, 3, 5]
↓ t4

[2, 4, 6, 1, 3, 5]
↓ t2

[4, 2, 6, 1, 3, 5]

An additional t2 operation is called for by our complete 2-

RMGC, but we omit it. We also note that any permutation on

the odd element in this example will not change its properties

as an l∞-snake. ✷

Having this building block in hand, we continue to describe

a construction of a cyclic ℓ∞-snake. The construction follows

by dividing the ranks in a length-n permutation into even

and odd elements, and covering permutations on each half

separately.

Theorem 24. For all 4 6 n ∈ N there exists an (n, M, ℓ∞)-
snake of size

M =
⌈n

2

⌉

!
(⌊n

2

⌋

+
(⌊n

2

⌋

− 1
)

!
)

.

Proof: To simplify notations, we start by noting that [n]
has p =

⌈
n
2

⌉
odd elements and q =

⌊
n
2

⌋
even ones. We shall

use that notation throughout this proof.

Using [12, Th. 4,7] we take a complete cyclic p-RMGC

using the operations

tα(1), tα(2), . . . , tα(p!).

10

Moreover, we use Lemma 22 to come by a (q, Mq, ℓ∞)-snake

of size Mq = q + (q− 1)! given by the operations

tβ(1), tβ(2), . . . , tβ(q+(q−1)!−1).

As the origin for the code we construct we use

σ0 = [1, 2, 4, . . . , 2q, 3, . . . , 2p− 1] .

For all i ∈ [p!] and j ∈ [q + (q− 1)!− 1] we define the

sequence of transformations generating the code as

tk(i−1)(q+(q−1)!)+j
= tβ(j)

tki(q+(q−1)!)
= tα(i)+q

and where, naturally, the codewords satisfy σi = tki
(σi−1).

We start by noting that, for all i ∈ [p!], the permutation

σ(i−1)(q+(q−1)!) satisfies the requirements of Lemma 22 as a

simple matter of induction. It follows that for all i ∈ [p!] the

permutations

{

σ(i−1)(q+(q−1)!)+1, σ(i−1)(q+(q−1)!)+2, . . . , σi(q+(q−1)!)−1

}

are at ℓ∞-distance of at least 2 apart.

Furthermore, for i, i′ ∈ [p!], i < i′, since the code generated

by tα(1), tα(2), . . . , tα(p!) is indeed a Gray code, we are assured

that for all 0 6 j, j′ 6 q+(q− 1)!− 1 the last p− 1 elements

of both σ(i−1)(q+(q−1)!)+j and σ(i′−1)(q+(q−1)!)+j′ are all odd

and represent two distinct permutations, hence

d∞

(

σ(i−1)(q+(q−1)!)+j, σ(i′−1)(q+(q−1)!)+j′
)

> 2.

Finally, we note that

tα(p!)

(

σp!(q+(q−1)!)−1

)

= σ0,

since the code provided by tα(1), tα(2), . . . , tα(p!) is cyclic and

o(t2) = 2 divides p!.

Example 25. For this example, using an order of 6 as the last

example (i.e., p = q = 3), we refer to [12, Th. 4,7] for

a complete cyclic 3-RMGC as well as the aforementioned 2-

RMGC. Once such is created by the transitions:

t2, t3, t3, t2, t3, t3.

Moreover, we have our (6, 3 + 2!, l∞)-snake from the last ex-

ample, generated by (recall that it’s not cyclic):

t4, t4, t4, t2.

We start our cyclic (6, 3!(3+ 2!), l∞)-snake in the same per-

mutation as we did the last example, and use the generating

transitions of the code presented in the last example as a

building block:

σ0 [1, 2, 4, 6, 3, 5]
�

σ4 [4, 2, 6, 1, 3, 5]
↓ t5 = t3+2

σ5 [3, 4, 2, 6, 1, 5]
�

σ9 [2, 4, 6, 3, 1, 5]
↓ t6 = t3+3

σ10 [5, 2, 4, 6, 3, 1]
�

σ14 [4, 2, 6, 5, 3, 1]
↓ t6 = t3+3

σ15 [1, 4, 2, 6, 5, 3]
�

σ19 [2, 4, 6, 1, 5, 3]
↓ t5 = t3+2

σ20 [5, 2, 4, 6, 1, 3]
�

σ24 [4, 2, 6, 5, 1, 3]
↓ t6 = t3+3

σ25 [3, 4, 2, 6, 5, 1]
�

σ29 [2, 4, 6, 3, 5, 1]
↓ t6 = t3+3

σ30 [1, 2, 4, 6, 3, 5]

Down double-arrows stand for an omitted sequence of transi-

tions generating Example 23, i.e., t4, t4, t4, t2. One sees that we

indeed have a cyclic l∞-snake of size 30. ✷

We note that by switching the roles of odd and even numbers

in Theorem 24 we can construct an (n, M, ℓ∞)-snake of size

M =
⌊n

2

⌋

!
(⌈n

2

⌉

+
(⌈n

2

⌉

− 1
)

!
)

.

However, the resulting code is strictly smaller for odd n.

Theorem 26. The ℓ∞-snakes constructed in Theorem 24 have

an asymptotic-rate of 1.

Proof: Let Cn denote the ℓ∞-snake of length n con-

structed by Theorem 24. Using the crude
(n

e

)n
6 n! 6 nn

the proof is a matter of simple calculation:

lim
n→∞

R(Cn) = lim
n→∞

log2

(⌈
n
2

⌉
!
(⌊

n
2

⌋
+

(⌊
n
2

⌋
− 1

)
!
))

log2 (n!)

> lim
n→∞

2 log2

((⌊
n
2

⌋
− 1

)
!
)

log2 (n!)

> lim
n→∞

(n− 4) log2

(
n−4
2e

)

n log2 n
= 1.

B. Successor Calculation and Ranking Algorithms

Finding the correct “push-to-the-top” operation to propagate

a given permutation to the following one is naturally depen-

dent upon one’s ability to do the same with the
⌈

n
2

⌉
- and

(⌊
n
2

⌋
− 1

)
-RMGC’s used in our construction. We therefore

assume to have the function Succ ([a1, a2, . . . , an]) which ac-

cepts as input a permutation [a1, a2, . . . , an] ∈ Sn and returns

the correct transformation used in the codes we used. Further-

more, we assume to have the function Rn ([a1, a2, . . . , an])
which returns the respective rank of the input permutation

11

Function Successor∞ ([a1, . . . , an])
input : A permutation [a1, a2, . . . , an]
output : i ∈ {2, 3, . . . , n} that determines the transition ti to the

next permutation in the ℓ∞-snake from Theorem 24
1 q←

⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 if aq+1 ≡ 0 (mod 2) then

3 return q + 1

4 if Rn(
[

aq+1+1

2 , . . . , an+1
2

]

) ≡ 0 (mod 2) then

5 if
[
a1, . . . , aq

]
= [4, 2, 6, . . . , 2q] then

6 return q + Succ

([
aq+1+1

2 , . . . , an+1
2

])

7 return Succ

([
a1
2 , . . . ,

aq

2

])

8 if
[
a1, . . . , aq

]
= [2, 4, . . . , 2q] then

9 return q + Succ

([
aq+1+1

2 , . . . , an+1
2

])

10 return Succ

(

sw

([
a1
2 , . . . ,

aq−1

2

]))

in that code, where the identity permutation is assumed to

have rank zero. Finally, we shall use an auxiliary function

sw : Sn → Sn defined by sw (σ) = (1, 2) ◦ σ (which naturally

operates in O(n) steps).

The function Successor∞ ([a1, . . . , an]) then returns as

output the index i of the required transformation ti to produce

the subsequent permutation in the code from [a1, . . . , an]. It

operates by considering the following cases: in each block of

Lemma 22 one computes the proper index by propagating the

leading element of odd rank as long as that is needed, then

applying Succ to the permutation on the elements of even

ranks (where one distinguishes between blocks in which 2, 4
were switched). Only the last permutation of each block calls

for applying Succ to the permutation on the elements of odd

ranks.

Lemma 27. If the functions Succ, Rn operate in Ln, Mn steps

respectively in the average case, then Successor∞ has an

average runtime of O
(
n + Lq−1 + Mp

)
.

Proof: We partition our proof by return cases.

Successor∞ exits at line 3 in precisely
q

q+(q−1)!
of cases,

in which case it returns within a fixed number of operations.

It exits at lines 6, 9 in 1
q+(q−1)!

of cases, in which case it

operates in at most (depending on the data structures in use)

O(n) + Mp + Lp steps in the average case.

Finally, Successor∞ returns from lines 7, 10 in
(q−1)!−1
q+(q−1)!

of cases, after performing O(n) + Mp + Lq−1 steps.

In every sensible implementation of Succ (i.e., where we

assume
Lp−Lq−1

q+(q−1)!
→ 0) we then have an amortized runtime of

O
(
n + Lq−1 + Mp

)
.

We now note that by [12, Th. 7,10] we may assume Succ

to operate in O(1) steps in the average case, and by [12, Part

III-C] (which also relies on [16]) we assume Rn runs in O(n)
steps, yielding an average runtime of O(n) for Successor∞.

We shall also present the function Rank∞(n, [a1, . . . , an])
that, given a permutation in the ℓ∞-snake presented in part

IV-A, returns that permutation’s rank in the code. This function

uses the function Rn discussed above as well, and works by

considering the same cases discussed above.

Function Rank∞ ([a1, . . . , an])
input : A permutation [a1, a2, . . . , an] in the ℓ∞-snake from

Theorem 24
output : k ∈N that represents the given permutation’s rank in

the code
1 q←

⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 if aq+1 ≡ 0 (mod 2) then

3 i← min
{

j ∈ [n] | aj 6≡ 0 (mod 2)
}

4 return

i− 1 + (q + (q− 1)!) · Rn
([

ai+1
2 ,

aq+2+1

2 , . . . , an+1
2

])

5 R← Rn

([
aq+1+1

2 , . . . , an+1
2

])

6 if R ≡ 0 (mod 2) then

7 return q + (q + (q− 1)!) · R + Rn

([
a1
2 , . . . ,

aq−1

2

])

8 return q + (q + (q− 1)!) · R + Rn

(

sw

([
a1
2 , . . . ,

aq−1

2

]))

Function Unrank∞ (n, k)
input : 4 6 n ∈N; rank k ∈N

output : The permutation [a1, a2, . . . , an] which is kth in the
(n, M, ℓ∞)-snake from Theorem 24

1 q←
⌊

n
2

⌋
; p←

⌈
n
2

⌉

2 R←
⌊

k
q+(q−1)!

⌋

; r ← (k mod (q + (q− 1)!))

3

[
b1, . . . , bp

]
← UnR(p, R)

4 if r > q then

5

[
a1, . . . , aq−1

]
← UnR(q− 1, r − q)

6 if R ≡ 1 (mod 2) then

7

[
a1 , . . . , aq−1

]
← sw

([
a1, . . . , aq−1

])

8 return [2a1, . . . , 2aq−1, 2q, 2b1 − 1, . . . , 2bp − 1]

9 if R ≡ 0 (mod 2) then

10 return
[

2, 4, 6, . . . , 2r, 2b1 − 1, 2(r+ 1), . . . , 2q, 2b2 − 1, . . . , 2bp − 1
]

11 return
[

4, 2, 6, . . . , 2r, 2b1 − 1, 2(r+ 1), . . . , 2q, 2b2 − 1, . . . , 2bp − 1
]

Lemma 28. If the function Rn operates in Mn steps, then

Rank∞ has a runtime of O(n + Mp) (in the average or worst

case respectively).

Proof: We partition our proof by return condition once

more. If the program exits from 4 then it performed O(q) +
Mp steps.

If it exits from 7 or 8 then it performed O(1)+ Mp + Mq−1

steps.

Again, by results discussed above, we note that Rank∞ runs

in O(n) steps in the average case.

As mentioned before, unranking permutations in the code

might also be required. For that purpose we implement the

function Unrank∞(n, k), accepting as input the length of the

code and a specific rank and returning the implied permutation.

We will assume the existence of a similar function UnR for the

construction used in part IV-A, where again we assume the unit

permutation to have rank zero.

Once more, our implementation and estimate of Unrank∞’s

runtime relies heavily on that of its auxiliary functions.

Lemma 29. If the function UnR operates in Nn steps, then

Unrank∞ runs in O(n + Np) steps.

Proof: One notes that the only operations in Unrank∞

that take more than a fixed number of steps are calls for

sw (taking O(n)), calls for UnR, and, depending on the data

structures in use, concatenation of indices (at most O(n) as

well). The claim follows.

12

σ1
︷ ︸︸ ︷
[1

2
3
4
5

]

t3→
[3

1
2
4
5

]

t3→
[2

3
1
4
5

]

t5→
[5

2
3
1
4

]

σ1

[4
2
3
5
1

]

t3→
[3

4
2
5
1

]

t5→
[1

3
4
2
5

]

t5→
[5

1
3
4
2

]

︸ ︷︷ ︸

σ2

σ2

[2
5
3
4
1

]

t5→
[1

2
5
3
4

]

︸ ︷︷ ︸

σ3

σ3

[1
2
4
5
3

]

σ3

[1
2
3
4
5

]

Figure 1. A (5, 57,K)-snake generated by a computer search. Squiggly arrows stand for a repetition of the transitions defined by the braces.

Again, it shall be noted that, relying on Lemma 21 and [12,

Part III-C], Unrank∞ can be performed in O(n2) operations.

V. CONCLUSION

In this paper we explored rank-modulation snake-in-the-box

codes under both Kendall’s τ-metric and the ℓ∞-metric. In

both cases we presented a construction yielding codes with

rates asymptotically tending to 1, and implemented auxiliary

functions for the production of the successor permutation, as

well as ranking and unranking for permutations in such codes.

We also proved upper-bounds on the size of K-snakes.

However, it is not presently known whether the upper-

bounds presented and referenced in this paper are achievable,

and therefore we were unable to show how close the codes

generated by our constructions come to being optimal with

respect to their sizes (rather than their asymptotic rates). A

computer search for cyclic codes, performed on S5, yielded

(5, M,K)-snakes of maximal size M = 57 (for comparison,

the construction from Theorem 11 yields a (5, 45,K)-snake).

While an abundance of such codes were found (well over 500
nonequivalent codes), they all were in fact codes over A5. For

completeness, we present one of those codes in Figure 1.

Searches of a higher order appear to be infeasible, but we

include one more peculiar result: every maximal code we

tested skipped 3 permutations who all agree on 4, 5, i.e., it

skipped a coset of S3. While we have no optimal codes of a

higher order to test this phenomenon on, the codes generated

by Theorem 11 of lengths 7 and 9 display it as well - several

cosets of S5 and S7 were absent, respectively.

It shall be noted that a complete (but not cyclic) (5, 60,K)-
snake over A5 can easily be constructed from each cyclic code

we tested by generating the skipped coset of S3 with two t3

operations, followed by a t5 operation and the given code,

in order. However, we do not currently know whether (2n +

1,
(2n+1)!

2 ,K)-snakes over A2n+1 exist for every length.

These results, along with the bounds we showed in Lem-

ma 17 and Theorem 15 give rise to the following conjecture:

For all n ∈ N a K-snake exists over An whose size is no less

than that of every K-snake over Sn.

In addition, searches done in a computer for ℓ∞-snakes for

lengths 4, 5, 6 returned codes of size 6, 30, 90 respectively,

suggesting that perhaps the upper-bound of [22, Th. 20] is

achievable. Moreover, in these cases we were able to find

codes generated only by “push-to-the-top” operations on the

last two indices. A code for each length is presented in

Figure 2 in binary representation (conveniently written in octal

notation), where zeroes stand for tn’s and ones for tn−1’s.

Searches for higher lengths again seem infeasible.

n Defining Transitions

4 55

5 0212206063

6 010204410222042124446130162347

Figure 2. (4, 6, ℓ∞)-, (5, 30, ℓ∞)- and (6, 90, ℓ∞)-snakes generated by a
computer search. All codes represented by a sequence of “push-to-the-top”
operations, applied in order to the identity permutation, where zeroes stand
for tn’s and ones for tn−1’s. The binary strings are given in octal notation
and should be read from left to right.

ACKNOWLEDGMENTS

The authors would like to thank the two anonymous re-

viewers, whose comments improved the presentation of this

paper.

REFERENCES

[1] H. L. Abbot and M. Katchalski, “On the construction of snake in the
box codes,” Utilitas Math., vol. 40, pp. 97–116, 1991.

[2] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Trans. on Inform. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[3] J. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis

on Flash. Wiley-IEEE Press, 2008.
[4] F. Chierichetti, H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing

floating codes for expected performance,” IEEE Trans. on Inform. The-

ory, vol. 56, no. 3, pp. 968–978, Mar. 2010.
[5] M. Deza and H. Huang, “Metrics on permutations, a survey,”

J. Comb. Inf. Sys. Sci., vol. 23, pp. 173–185, 1998.
[6] E. En Gad, A. Jiang, and J. Bruck, “Compressed encoding for rank

modulation,” in Proceedings of the 2011 IEEE International Symposium

on Information Theory (ISIT2011), St. Petersburg, Russia, Aug. 2011,
pp. 884–888.

[7] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-weight
Gray codes for local rank modulation,” IEEE Trans. on Inform. Theory,
vol. 57, no. 11, pp. 7431–7442, Nov. 2011.

[8] ——, “Constant-weight Gray codes for local rank modulation,” IEEE

Trans. on Inform. Theory, vol. 57, no. 11, pp. 7431–7442, Nov. 2011.
[9] F. Gray, “Pulse code communication,” March 1953, U.S. Patent 2632058.

[10] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint
information storage in flash memories,” IEEE Trans. on Inform. Theory,
vol. 56, no. 10, pp. 5300–5313, Oct. 2010.

[11] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting
in constrained memories,” in Proceedings of the 2009 IEEE International

Symposium on Information Theory (ISIT2009), Seoul, Korea, Jun. 2009,
pp. 1219–1223.

[12] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[13] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

13

[14] M. Kendall and J. D. Gibbons, Rank Correlation Methods. Oxford
University Press, NY, 1990.

[15] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,” IEEE Trans. on Inform. Theory, vol. 56,
no. 6, pp. 2611–2617, Jun. 2010.

[16] M. Mares and M. Straka, “Linear-time ranking of permutations,”
Algorithms-ESA, pp. 187–193, 2007.

[17] A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modula-
tion codes,” in Proceedings of the 2011 IEEE International Symposium

on Information Theory (ISIT2011), St. Petersburg, Russia, Aug. 2011,
pp. 834–838.

[18] N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch,
C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change
memory,” in Proceedings of the 3rd IEEE International Memory Work-

shop (IMW), Monterey, CA, U.S.A., May 2011, pp. 22–25.
[19] C. D. Savage, “A survey of combinatorial Gray codes,” SIAM Rev.,

vol. 39, no. 4, pp. 605–629, Dec. 1997.
[20] M. Schwartz and I. Tamo, “Optimal permutation anticodes with the

infinity norm via permanents of (0, 1)-matrices,” J. Combin. Theory

Ser. A, vol. 118, pp. 1761–1774, 2011.
[21] R. Sedgewick, “Permutation generation methods,” ACM Computing

Surveys, vol. 9, no. 2, pp. 137–164, Jun. 1977.
[22] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the

rank-modulation scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[23] Z. Wang and J. Bruck, “Partial rank modulation for flash memories,” in
Proceedings of the 2010 IEEE International Symposium on Information

Theory (ISIT2010), Austin, TX, USA, Jun. 2010, pp. 864–868.
[24] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimensional

flash codes,” in Proc. of the Annual Allerton Conference, 2008.

