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Abstract—This paper studies the adversarial torn-paper chan-
nel. This problem is motivated by applications in DNA data
storage where the DNA strands that carry the information may
break into smaller pieces that are received out of order. Our
model extends the previously researched probabilistic setting to
the worst-case. We develop code constructions for any parameters
of the channel for which non-vanishing asymptotic rate is possible
and show that our constructions achieve optimal asymptotic
rate while allowing for efficient encoding and decoding. Finally,
we extend our results to related settings included multi-strand
storage, presence of substitution errors, or incomplete coverage.

I. INTRODUCTION

High density and extreme longevity make DNA an ap-
pealing medium for data storage, especially for archival
purposes [4], [10], [33]. Advances in DNA synthesis and
sequencing technologies and recent proofs of concept [6],
[10], [11], [14], [15], [23] have ignited active research into
the capacity and challenges of data storage in this medium.

An aspect of this medium is that typically only short DNA
sequences may be read; information molecules are therefore
broken up into pieces and then read out of order, such as
in shotgun sequencing [7], [12], [21], [25]. Multiple channel
models have recently been suggested and studied based on
this property. An assumption of overlap in read substrings and
(near) uniform coverage leads to the problem of string recon-
struction from substring composition [3], [3], [7], [13], [20],
[21], [27], [29]; on the contrary, assuming no overlap in read
substrings leads to the torn-paper problem [22], [24], [30],
a problem closely related to the shuffling channel [16], [17],
[28], [32]. This problem is motivated by DNA-based storage
systems, where the information is stored in synthesized strands
of DNA molecules. However, during and after synthesis, the
DNA strands may break into smaller segments and due to the
lack of ordering among the strands in these systems, all broken
segments can only be read out of order [30]. Thus, the goal is
to successfully retrieve the data from this multiset collection
of read segments of the broken DNA strands.

In the torn-paper channel [24], [30], also known as the
chop-and-shuffle channel [22], a long information string is
segmented into non-overlapping substrings and their length has
some known distribution. The channel outputs an unordered
collection of the substrings. Given the lengths’ distribution, the
goal is to determine the channel capacity and devise efficient
coding techniques. The geometric distribution was first studied
in [30], and later in [22] using the Varshamov-Tenengolts
(VT) codes [31]. The work [24] considered almost arbitrary
distributions while, additionally, extending the problem by
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introducing incomplete coverage, i.e., assuming some of the
substrings are deleted with some probability.

The torn-paper channel was studied so far only in a proba-
bilistic setting. The goal of this paper is to extend this channel
to the worst case, referred to herein as the adversarial torn-
paper channel. Namely, it is assumed that an information
string is adversarially segmented into non-overlapping sub-
strings, where the length of each substring is between Lmin

and Lmax, for some given Lmin and Lmax. We note that while
the capacity of the probabilistic channel was shown to depend
on average substring length, this adversarial model is chosen
here for ease of analysis. Observe that under this setting the
average substring length might indeed approach Lmin.

We study the noiseless adversarial torn-paper channel for a
single information string, as well as multiple strings, which
is motivated by DNA sequencing technologies where multiple
strings are sequenced simultaneously [9], [19], [26]. In the
single string case, we also extend the model to either allow
for substitution errors affecting the information string prior to
segmentation, or for incomplete coverage due to deletion of
several segments after the segmentation. In all cases we inves-
tigate the values of Lmin and Lmax that provide codes with
non-vanishing asymptotic rates, and develop constructions
of codes with efficient encoding and decoding algorithms,
achieving asymptotically optimal rates.

The rest of this paper is organized as follows. In Section II,
the definitions and notations that will be used throughout
the paper are presented as well as a lower bound on Lmin

required for the existence of codes for the adversarial torn-
paper channel with non-vanishing asymptotic rates. Then, in
Section III we present the basic construction used throughout
the paper for the noiseless case of the single-strand adversarial
torn-paper channel, and extend it to the multi-strand case; in
Section IV we extend our construction to the noisy settings,
including substitution errors or incomplete coverage. Due to
space limitations, some proofs have been delegated to an
extended version in preprint [5].

II. DEFINITIONS AND PRELIMINARIES

Let Σ be a finite alphabet of size q. For convenience of
presentation, we assume Σ is equipped with a ring structure,
and in particular identify elements 0, 1 ∈ Σ. For a positive
integer n, let [n] denote the set [n] , {0, 1, . . . , n− 1}. Let
Σ∗ denote the set of all finite strings over Σ. The length of
a string x ∈ Σ∗ is denoted by |x|. For strings x,y ∈ Σ∗,
we denote their concatenation by x ◦ y. We say that v is a
substring of x if there exist strings u,w (perhaps empty) such
that x = u ◦v ◦w. If |v| = ℓ, we specifically say that v is an
ℓ-segment of x. If |u| = i then it said that i is the location of
v in x. We also consider the cases where v appears cyclically
in x and refer to its location accordingly. We reserve the term
index to elements of presented constructions.

In our setting, information is stored in an unordered col-
lection of strings over Σ; it might be allowed for the same



string to appear with multiplicity in the collection, which is
encapsulated in the following formal definition:

Xn,k , {S = {{x0, . . . ,xk−1}} : ∀i,xi ∈ Σn}.

Here, {{a, a, b, . . .}} denotes a multiset; i.e., elements appear

with multiplicity (but no order). Note that |Xn,k| =
(

k+qn−1
k

)

.
It is assumed that a message S ∈ Xn,k is read by seg-
menting all elements of S into non-overlapping substrings
of lengths between some fixed values Lmin and Lmax, and
all segments are received, possibly with multiplicity, with-
out order or information on which element they originated
from. More formally, a segmentation of the string x is a
multiset {{u0,u1, . . . ,um−1}}, where x can be presented as
x = u0 ◦ u1 ◦ · · · ◦ um−1. In case Lmin 6 |ui| 6 Lmax for
0 6 i < m − 1 and |um−1| 6 Lmax, then the segmentation
is called an (Lmin, Lmax)-segmentation. The multiset of all

(Lmin, Lmax)-segmentations of x is denoted by T Lmax

Lmin
(x)

and is referred as the (Lmin, Lmax)-segmentation spectrum

of x. These definitions are naturally extended for a multiset
S ∈ Xn,k, so a segmentation of S is a union (as a multiset)
of segmentations of all the strings in S (and the same holds

for an an (Lmin, Lmax)-segmentation), and T Lmax

Lmin
(S), the

(Lmin, Lmax)-segmentation spectrum of S, is the multiset of
all (Lmin, Lmax)-segmentations of S.

Note that our channel model only restricts the length of
the last segment to be at most Lmax. Such a relaxation is
motivated in applications where segmentation of the strings
occurs sequentially, so that it might happen that the last
segment is shorter than Lmin, but not larger than Lmax.

A code C ⊆ Xn,k is said to be an (Lmin, Lmax)-multistrand
torn-paper code if for any S, S′ ∈ C, S 6= S′, it holds that
any possible (Lmin, Lmax)-segmentations of S, S′ are distinct.

That is, T Lmax

Lmin
(S) ∩ T Lmax

Lmin
(S′) = ∅. For k = 1, we simply

receive (Lmin, Lmax)-single strand torn-paper codes.

In case Lmin = Lmax = ℓ, then for convenience, we
let Tℓ(x) , T ℓ

ℓ (x) and Tℓ(S) , T ℓ
ℓ (S) and note that in

this case |Tℓ(x)| = |Tℓ(S)| = 1. For example, if S =
{{01010, 00101, 11101}} (which may be thought of as a
multiset), then T2(S) = {{01, 01, 0, 00, 10, 1, 11, 10, 1}}.

The definition of Tℓ(S) should be seen as a technical
instrument in our analysis rather than an intrinsic part of the

channel model. However, we note that TLmin
(S) ⊆ T Lmax

Lmin
(S)

for all S and Lmin 6 Lmax, hence every (Lmin, Lmax)-
multistrand torn-paper code C ⊆ Xn,k satisfies

|C| 6 |{TLmin
(S) : S ∈ Xn,k}|.

For all C ⊆ Xn,k we denote the rate, redundancy of C by

R(C) , log|C|
log|Xn,k|

, red(C) , log|Xn,k| − log|C|, respectively.

Throughout the paper, we use the base-q logarithms.

For two non-negative functions f, g of a common variable n,

denoting L , lim supn→∞
f(n)
g(n) (in the wide sense) we say

that f = on(g) if L = 0, f = Ωn(g) if L > 0, f = On(g) if
L <∞, and f = ωn(g) if L =∞. If f is not positive, we say
f(n) = On(g(n)) (f(n) = on(g(n))) if |f(n)| = On(g(n))
(respectively, |f(n)| = on(g(n))). We say that f = Θn(g) if
f = Ωn(g) and f = On(g). If clear from context, we omit
the subscript from aforementioned notations.

We conclude this section by observing a lower bound on
the required segment length Lmin for multi-strand torn-paper

Algorithm 1: Encoder for Construction A

Input: x = (x0, x1, . . . , xKm−1) ∈ ΣKm

Output: EncA(x)
for i← 0 to K − 1 do

xi ← (xim,xim+1, . . . , x(i+1)m−1) // |xi| = m

yi ← ERLL
m (xi) // yi contains no zero runs

of length f(n)

zi ← c
′′
i ◦ 10f(n)1 ◦ yi // |zi| = Lmin

end

zK ← c
′′
K ◦ 10f(n)10Nn(m)

// |zK | = Lmin

z ← z0 ◦ z1 ◦ · · · ◦ zK ◦ 0n mod Lmin // |z| = n

return z

codes to achieve non-vanishing rates, and in particular rates
approaching one. This result is stated in the next theorem.

Theorem 1 Let C be any (Lmin, Lmax)-mulstistrand torn-
paper code. Assuming log(k) = o(n), if Lmin 6 (a +
onk(1)) log(nk), for some a > 1, then R(C) 6 1− 1

a
+onk(1).

III. A CONSTRUCTION OF TORN PAPER CODES

In this section, a construction of single-strand torn-paper
codes is presented and is then extended for multiple strands.
It is assumed from here on out that Lmin = ⌈a log(n)⌉, for
some a > 1.

We propose the following construction of length-n
(Lmin, Lmax)-single strand torn-paper codes.

Construction A Denote I , ⌈log(n/Lmin)⌉ and K ,
⌊n/Lmin⌋ − 1. Let f be any function satisfying f(n) = ω(1)
and f(n) = o(log(n)). The construction is based on the
following two ingredients:

• Index generation. Let (ci)i∈[qI ], ci ∈ ΣI be a q-ary Gray

code. Denote by c
′
i the concatenation of ci with a single

parity symbol (i.e., the sum of the entries in c
′
i is zero).

Further, denote by c
′′
i the result of inserting ‘1’s into c

′
i

at every location divisible by f(n). (Since the locations
of substrings start with 0, the first bit of c′′i is always 1.)

Note that for all i ∈ [qI ], α , |c′′i | =
⌈

f(n)
f(n)−1 (I + 1)

⌉

.

We refer to ci (or simply i) as an index in the construction
and to c

′′
i as an encoded index.

• Run-length limited (RLL) encoding. We use an RLL
encoder which receives strings of length m and returns
strings of length Nn(m) that do not contain length-f(n)
‘0’-runs. Constructions of such encoders can be taken
from [18] or [34, Lem. 5]. Denote this encoder by ERLL

m .

The constructed (Lmin, Lmax)-single strand torn-paper
code, denoted by CA(n), is carried as follows. Let m be an
integer such that Nn(m) = Lmin− |c′′i | − f(n)− 2 = Lmin−
α−f(n)−2. The construction’s encoder, EncA : ΣKm → Σn,
is given in Algorithm 1. �

In the rest of the paper, we call the strings xi (respectively,
yi) in the constructions an information block (encoded block).
The string zi will be referred to as a segment of z. Observe
that once the encoded blocks yi’s are obtained, encoding
(including the generation of the Gray code) requires a number
of operations linear in n. By [18], [34], encoding each xi into
yi may also be achieved with a linear number of operations.
Hence, the complexity of Construction A is linear with n.



Next, it is shown that the constructed code CA(n) is an
(Lmin, Lmax)-single strand torn-paper code.

Theorem 2 For all admissible values of n, the code CA(n) is

an (Lmin, Lmax)-single strand torn-paper code with a linear-
run-time decoder.

The proof of Theorem 2 is carried by presenting an explicit
decoder to CA(n). Let z ∈ CA(n) and let z = u0 ◦ u1 ◦
· · · ◦ us−1 so that {{u0,u1, . . . ,us−1}} is an (Lmin, Lmax)-
segmentation of z. The main task of the decoding algorithm
is to successfully retrieve the location within z of each of
the s segments of the (Lmin, Lmax)-segmentation. For every
segment uj , j ∈ [s], the decoder first finds the location i such
that the first (maybe partial) occurrence of an encoded index in
the segment uj is of c′′i . Given i and the location of c′′i in uj ,
the location of the segment uj within z can be calculated.
Then, according to the location in z for each segment in
the (Lmin, Lmax)-segmentation, one can simply concatenate
the segments in the correct order to obtain the code-word z.
Finally, by removing the markers and the encoded indices and
applying the RLL decoder for each of the strings yi’s, the
information string x is retrieved.

Consider the case where a segment u is a proper substring
of the suffix of z of length (n mod Lmin) +Nn(m) + f(n),
i.e., u begins with a proper suffix of zK0n mod Lmin (note that
this does not imply that u is itself a suffix of z). Then, u does
not intersect yi for any i ∈ [K], and may safely be discarded.
We see next that these cases may be identified efficiently.

Lemma 3 Let z ∈ CA(n), and let u be a substring of z, |u| =
L. If u begins with a proper suffix of zK0n mod Lmin , then for

all sufficiently large n this fact can efficiently be identified.

By Lemma 3, it is sufficient to retrieve the location of any
segment which is not a substring of the suffix of length (n mod
Lmin)+Nn(m)+f(n) of z. For any such u, the calculation of
the index i such that c′′i is the first (perhaps partial) occurrence
of an encoded index within u, is given in Algorithm 2.

Any L-segment u of z ∈ CA(n), such that L > Lmin,
contains at least part of one of the encoded indices c′′i . If c′′i is

the first encoded index to intersect u, we denote by Ind(u) , i
the index of u. Note that this index does not depend on the
information that was encoded in the construction. Algorithm 2
ensures that it is possible to determine the index of every L-
segment u of z, where L > Lmin.

Lemma 4 Let z ∈ CA(n), L > Lmin, and let u be an L-
segment of z which is not a substring of the suffix of length

(n mod Lmin) + Nn(m) + f(n) of z. Then, Algorithm 2

successfully returns the index Ind(u) of u.

We remark that the described procedure operates in run-
time which is linear in the substring length. In addition, if z

can be reconstructed from its non-overlapping substrings, then
the strings yi’s are readily obtained, and x may be decoded
(again, see [18], [34]). These algorithms also require a linear
number of operations. This completes the proof of Theorem 2.

Lastly the redundancy of Construction A is analyzed.

Algorithm 2: Index retrieval from a segment

Input: An L-segment u of a code-word of CA(n),
where L > Lmin.

Output: The index of u within z, Ind(u)
u
′ ← the Lmin-length prefix of u

j ← the starting index of the unique occurrence of
10f(n)1 within u

′; if none exists, of the cyclic
occurrence
c
′′ ← the (cyclic) α-substring of u strictly preceding j

c
′ ← the non-padded subsequence of c′′

c← the I-prefix of c′

Ind← the index of c in the Gray code
if the last symbol of c′ is not the parity of c then

Ind← Ind−1
end
return Ind

Theorem 5 For all admissible values of n and f(n) in

Construction A, where f(n) = ω(1), f(n) = o(log(n)) and

with the RLL encoders of [18], [34], it holds that

red(CA(n)) 6
n

a

(

1 +
f(n)

log(n)
+

1 + o(1)

f(n)
+ 2a2

log(n)

n

)

.

In particular, for f(n) = (1 + o(1))
√

log(n), red(CA(n)) 6
n
a

(

1 + 2+o(1)√
log(n)

)

.

Next, we consider the case of k > 1 and log(k) = o(n).
We know from Theorem 1 that if lim sup Lmin

nk
6 1 then

any family of (Lmin, Lmax)-multistrand torn-paper codes will
only achieve vanishing asymptotic rate; hence we assume
Lmin = ⌈a log(nk)⌉ for some a > 1. The following the-
orem summarizes our main results regarding (Lmin, Lmax)-
multistrand torn-paper codes.

Theorem 6 Take n, k such that k > 1, log(k) = o(n), and

let Lmin = ⌈a log(nk)⌉, for a > 1. There exists a linear

run-time (in the substrings length, i.e., nk) encoder-decoder
pair for (Lmin, Lmax)-multistrand torn-paper codes achieving

1− 1
a
− onk(1) asymptotic rate.

IV. ERROR-CORRECTING TORN-PAPER CODES

In this section, we extend the study of torn-paper codes
to the noisy setup. We consider two models of noise. The
first one assumes that the encoded string, before segmentation,
suffers at most some t substitution errors. The second model
corresponds to the case where some of the segments are
deleted during segmentation.

A. Substitution-Correcting Torn-paper Codes

For a string x, its t-error torn-paper ball, denoted by

BT Lmax

Lmin
(x; t), is defined by all possible (Lmin, Lmax)-

segmentations after introducing at most t errors to x, that is,

BT Lmax

Lmin
(x; t) ,

⋃

y∈Bt(x)

T Lmax

Lmin
(y),

where Bt(x) = {y : dH(x,y) 6 t}. A code C is called a
t-error single-strand torn-paper code if for all x1,x2 ∈ C it
holds that BT Lmax

Lmin
(x1; t) ∩ BT Lmax

Lmin
(x2; t) = ∅.



Our goal in this section is to show how to adjust Con-
struction A in order to produce t-error single-strand torn-
paper codes. We first explain the main ideas of the required
modifications. Let z = EncA(x) ∈ CA(n) (encoded with

Algorithm 1) and let U ∈ BT Lmax

Lmin
(z; t) be an (Lmin, Lmax)-

segmentation of some word z
′, where dH(z, z′) 6 t. The main

task of the noiseless decoder of CA(n) was to first calculate
the index, and thus the location in z, of every segment u ∈ U .
However, in the presence of errors, calculating the index
of a segment u ∈ U based on the first (perhaps partial)
occurrence of an encoded index within u might result with the
misplacement of all the (perhaps partial) information blocks
yi that are contained in u. Hence, a more careful approach is
necessary for index decoding.

Before presenting our construction for t-error single-strand
torn-paper codes, we introduce additional required definitions.
For u ∈ Σ∗, define T +

Lmin
(u) to be the multiset of non-

overlapping Lmin-segments of u, where the last segment is
of length ℓ, Lmin 6 ℓ < 2Lmin. A segment w ∈ T +

Lmin
(u) is

called A-decodable if w satisfies one of the following.

1) w either contains a unique complete occurrence of
10f(n)1, or it doesn’t contain complete occurrences but
contains a cyclic occurrence (i.e., has a suffix-prefix pair
whose concatenation is 10f(n)1.

2) w contains precisely two complete occurrences of
10f(n)1, and there exist a unique pair of occurrences
(either complete or complete-to-suffix/prefix) whose lo-
cations are at distance precisely Lmin.

Let w be an A-decodable segment. Then, by definition,
there is at least one occurrence (perhaps cyclic) of 10f(n)1
within w and, if there is more than a single occurrence, then
there is exactly one pair of occurrences such that the difference
between their locations is Lmin. Consider the α-segments of w
preceding these occurrences as encoded indices; if the (first)
occurrence of 10f(n)1 in w is at location ℓ < α, concatenate
the (α − ℓ)-segment of w at location Lmin + ℓ − α, to the
ℓ-prefix of w, and consider the resulting length-α string to be
a cyclic encoded index.

An A-decodable segment w is called valid if it satisfies one
of the following conditions:

1) w contains no complete encoded index, hence it contains
only a cyclic encoded index.

2) w contains a single complete encoded index, and its
parity symbold is correct.

3) w contains two complete encoded indices, and either
exactly one of their parity symbols is correct, or both
are correct and the indices are consecutive.

Construction B This construction uses Construction A with
its coding components and parameters, and in particu-
lar the value of K and m, as follows. Let CEC be a
(K, qmM , 2t + 1)qm error-correcting code with an encoder
algorithm EncEC : (Σm)M → (Σm)K . The constructed t-
error (Lmin, Lmax)-single-strand torn-paper code, denoted by
CB(n), is defined by the encoder EncB : ΣMm → Σn given
by, EncB(x) = EncA(EncEC(x)), for all x ∈ ΣMm. �

Assume one retrieves a noisy version z
′ of z = EncB(x),

such that z, z′ agree on all locations containing encoded
indices c

′′
i or markers 10f(n)1 (as their locations in z do

not depend on the information x). Thus, one extracts from
z
′ (perhaps erroneous) encoded information blocks, denoted

y
′
i. Denote by e the number of encoded information blocks

that were not recovered, and by s the number of encoded
blocks that were recovered incorrectly (i.e., y′

i 6= yi). Since
the information string is encoded using a (K, qmM , 2t+1)qm
error-correcting code, it suffices that 2s+ e 6 2t to guarantee
correct decoding.

In order to reconstruct a noisy version z
′ of z, we

define a modification of Algorithm 2, as follows. First,

given U ∈ BT Lmax

Lmin
(z; t) we apply the reconstruction al-

gorithm not directly to U , but rather to valid segments in

T +
Lmin

(U) ,
{{

T +
Lmin

(u) : u ∈ U
}}

. Secondly, in case a valid

w ∈ T +
Lmin

(U) contains multiple (perhaps cyclic) occurrences
of an encoded index, the algorithm selects one to decode
by prioritizing complete occurrences over cyclic ones, and
then accepting the first containing a correct parity symbol.
Decoding of the selected encoded index is then performed as
described in Algorithm 2, and denoted by Ind′(w).

For U ∈ BT Lmax

Lmin
(z; t), we define the set Z(U) ,

{

(Ind′(w),w) : w ∈ T +
Lmin

(U) is valid
}

. If (j,w), (j,w′) ∈
Z(U) for some j and w 6= w

′, we define a restriction Z ′(U) of
Z(U) by including only the shortest, lexicographically-least,
segment (i.e., Z ′(U) defines a proper function). Given the set
Z ′(U), a string z

′ is decoded:

1) Fill the encoded indices and the markers in z
′ in the

correct locations as defined in Algorithm 1 (note again
that these locations do not depend on the information).

2) Next, we iterate over any pair (Ind′(w),w) ∈ Z ′(U) and
update z

′ with the symbols of the encoded blocks yi’s
within w; If there is a collision of symbols in the same
position within an encoded block y

′
i for some i, i ∈ [K],

we erase y
′
i completely from z

′.
3) If an encoded block y

′
i is partially filled at the end of

the process (i.e., there are missing symbols within y
′
i)

we erase the encoded block y
′
i.

The output z′ of this decoding procedure over the segmenta-

tion U ∈ BT Lmax

Lmin
(z; t) is denoted by DecB(U) , z

′.

Let z = EncB(x), U ∈ BT Lmax

Lmin
(z; t) and let z

′ =
DecB(U) be the noisy version of z reconstructed by the afore-
mentioned algorithm. According to the decoding procedure,
z
′ and z can differ only in the values of the encoded blocks

yi. Denote by e the number of encoded blocks that were not
recovered in z

′ and let s denote the number of encoded blocks
in z

′ that were recovered incorrectly with respect to z.

Lemma 7 Let z = EncB(x), U ∈ BT Lmax

Lmin
(z; t), and z

′ =
DecB(U). Then, it holds that 2s + e 6 2t, where e, s are

defined as previously explained.

Theorem 8 Denote the redundancy of the code CEC used in

Construction B by ρEC , K −M . Then, operating EncA as

in Theorem 5, with f(n) = (1 + o(1))
√

log(n), we have

red(CB) 6
n

a

(

1 +
2 + o(1)
√

log(n)

)

+ ρEC

(

(a− 1) log(n)− (2 + o(1))
√

log(n)
)

.

Furthermore, when a > 2 then the code CEC can be an MDS
code and hence ρEC = 2t.



B. Deletion-Correcting Torn-paper Codes

For a string x, its t-deletion torn-paper ball, DT Lmax

Lmin
(x; t),

is defined as all the subsets with at most t missing segments
of all the possible (Lmin, Lmax)-segmentations of x, that is,

DT Lmax

Lmin
(x; t) ,

⋃

S∈T Lmax

Lmin
(x)

{S′ ⊆ S : |S| − |S′| 6 t}.

A code C is called a t-deletion torn-paper code if for all
x1,x2 ∈ C it holds that DT Lmax

Lmin
(x1; t)∩DT Lmax

Lmin
(x2; t) = ∅.

In this section, we utilize burst-erasure-correcting (BEC)

codes in our constructions, which are defined next. For a
string x, its t-burst L-erasures ball, denoted by BL

BE(x; t),
is defined as the set of all strings that can be obtained from
x by at most t burst of erasures, each of length at most
L. A code C is called a t-burst L-erasure correcting code

if for all x1,x2 ∈ C, BL
BE(x1; t) ∩ BL

BE(x2; t) = ∅. Next,
we present a construction of t-deletion torn-paper codes. Let

L̂max , Lmax −
⌈

Lmax

Lmin

⌉

(α + f(n) + 2). This construction is
based on Construction A and assumes the existence of a sys-

tematic linear t-burst L̂max-erasure correcting code, denoted
by CBEC.

Construction C Let ρ > 0 be an integer that is determined
next. This construction uses the following family of codes:

Systematic BEC encoding. Let EncBEC : Σ(K−ρ)Nn(m) →
ΣρBEC denote the systematic encoder of the code CBEC, such
that for any string v ∈ Σ(K−ρ)Nn(m), v ◦EncBEC(v) ∈ CBEC

(for convenience we assume that EncBEC(v) returns only the
encoded systematic redundancy symbols). The redundancy of
this encoder is denoted by ρBEC. The parameter ρ is defined

ρ ,
⌈

ρBEC

Nn(m)

⌉

·
⌊

f(n)
f(n)−1

⌋

.

We amend Construction A as follows:

1) The length of the input string x. The input of this
construction is x ∈ Σ(K−ρ)m. That is, this construc-
tion has additional redundancy of ρm symbols com-
pared to Construction A. The input string is divided to
K − ρ information blocks each of length m, denoted by
x0, . . . ,xK−ρ−1.

2) The generation of the encoded blocks yi’s. The first
K − ρ blocks are generated from the corresponding xi’s
using the RLL encoder ERLL

m similarly to Construction A.

Let y
∗ , y0 ◦ · · · ◦ yK−ρ−1 ∈ Σ(K−ρ)Nn(m) denote

their concatenation. Next, we apply EncBEC to obtain
w , EncBEC(y

∗), and denote by w
∗ the result of

inserting ‘1’s into w at every location divisible by f(n)
(in particular, y∗ ◦ w∗ does not contain a length-f(n)
zero-run). Then, w∗ is divided to the remaining segments
yK−ρ, . . . ,yK−1 ∈ ΣNn(m) (if |w∗| is not a multiple
of Nn(m), yK−1 is padded with 1’s to length Nn(m)).
Note that the parameter ρ satisfies ρNn(m) > ρBEC ·
⌊

f(n)
f(n)−1

⌋

= |w∗|.
From here we continue identically to Construction A. That is,
an index and a marker are appended to the beginning of each
encoded block yi to construct a segment zi of length Lmin.
Then, z0, . . . , zK−1 are concatenated along with additional
redundancy symbols to construct the output string z. �

The correctness of Construction C and redundancy calcu-
lation are proved in the next theorem. Let Cdel(n) denote the
constructed code.

Theorem 9 For all admissible values of n, the code Cdel(n)
is a t-deletion torn-paper code. Furthermore, it holds that

red(Cdel(n)) = red(CA(n)) +m

⌈

ρBEC

Nn(m)

⌉⌊

f(n)

f(n)− 1

⌋

.

Before concluding, we discuss the cases of t ∈ {1, 2}, in
which more is known on the construction of BEC codes.

For t = 1, we use a systematic interleaving parity BEC
code as the code CBEC. Namely, the redundancy string

w = EncBEC(y
∗) is of length ρBEC = L̂max, and for

all i ∈ [L̂max], i.e., wi is a single parity symbol for
(

y∗i , y
∗
i+L̂max

, . . .
)

. Denote this code by Cdel,1.

For t = 2, we state for completeness the following basic
proposition which draws the connection between burst-error-
correcting codes and burst-erasure-correcting codes. We note
that this fact has been mentioned before in [8], for a single
burst of errors.

Lemma 10 For 0 < ℓ 6 n and x,y ∈ Σn, it holds that x,y
are confusable under t bursts of errors of lengths at most ℓ if

and only if they are confusable under 2t bursts of erasures of
lengths at most ℓ.

A construction of 2-deletion torn-paper codes is derived
from Construction C, using a BEC code for t = 2. Hence, by

Lemma 10 one may use an L̂max-burst error-correcting code.
Observe Construction C requires a systematic construction of
said code, which is guaranteed by several prior works with

redundancy at most log(Nn(m)) + L̂max; see, e.g. [1], [2].
These constructions require the alphabet Σ to be a field, and
are linear and cyclic, which ensures the existence of a sys-
tematic encoder. For simplicity of derivation we approximate

this redundancy by L̂max+log(n). Let Cdel,2 denote this code.
The next corollary summarizes these results. For convenience,
denote the difference

∆red(C(n)) , red(C(n))− red(CA(n)),
for a t-deletion torn-paper code C(n) ⊆ Σn.

Corollary 11 For a prime power q and all admissible values
of n and f(n) in Construction A, where f(n) = ω(1), f(n) =
o(log(n)) and with RLL encoders of [18], [34], it holds that

∆red(Cdel,1(n)) 6 L̂max ·
f(n)

f(n)− 1
,

∆red(Cdel,2(n)) 6 (L̂max + log(n)) · f(n)

f(n)− 1
.

In particular, for f(n) = (1 + o(1))
√

log(n),

∆red(Cdel,1(n)) 6 L̂max

(

1 +
1− o(1)
√

log(n)

)

,

∆red(Cdel,2(n)) 6 (L̂max + logn)

(

1 +
1− o(1)
√

log(n)

)

.

Note that if Lmax = o(n) the rates of Cdel,1(n) and Cdel,2(n)
are asymptotically equal to the rate of CA(n). Thus, efficient
encoding and decoding of t-deletion torn-paper codes, t =
1, 2, is possible at rates arbitrarily close to the optimum.
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