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Abstract—The problem of string reconstruction based on its
substrings spectrum has received significant attention recently
due to its applicability to DNA data storage and sequencing.
In contrast to previous works, we consider in this paper a
setup of this problem where multiple strings are reconstructed
together. Given a multiset S of strings, all their substrings of
some fixed length ℓ, defined as the ℓ-profile of S, are received
and the goal is to reconstruct all strings in S. A multi-strand
ℓ-reconstruction code is a set of multisets such that every element
S can be reconstructed from its ℓ-profile. Given the number of
strings k and their length n, we first find a lower bound on the
value of ℓ necessary for existence of multi-strand ℓ-reconstruction
codes with non-vanishing asymptotic rate. We then present two
constructions of such codes and show that their rates approach 1

for values of ℓ that asymptotically behave like the lower bound.

I. INTRODUCTION

String reconstruction refers to a large class of problems

where information about a string can only be obtained in

forms other than receiving it as one unit, and allowing for

errors. Examples of this set of problems are the k-deck prob-

lem [7], [8], [20], [26] and the reconstruction from substring

compositions problem [1], [2], [4], [12], [15], [23], [24], [27],

[28]. Similar problems under this paradigm are the trace

reconstruction problem [3] and the reconstruction problem by

Levenshtein [16], however in these setups the string is received

as one unit multiple times with possible errors.

The problem of string reconstruction from its substring

spectrum has received significant interest in the past decade

and has been rigorously studied. For a length-n string x and

a positive integer ℓ, its ℓ-profile, denoted by Lℓ(x), is the

multiset of all its length-ℓ substrings. Then, the goal is to

reconstruct the string x given only Lℓ(x). If a string can be

uniquely reconstructed from its ℓ-profile, then it is called ℓ-
reconstructible. One of the main problems under this paradigm

is to find the minimum value of ℓ, as a function of n, which

guarantees that the asymptotic rate of all ℓ-reconstructible

strings approaches 1. It was proved by Ukkonen [29] that if

all length-ℓ substrings of x are different from each other, then

the string x is (ℓ+1)-reconstructible. A string x that satisfies

this constraint is referred to as ℓ-repeat free. Based upon this

property, it was recently proved in [9] that if ℓ = ⌈a log(n)⌉
for some fixed value of a > 1, then the asymptotic rate of
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all ℓ-reconstructible strings approaches 1. The authors of [9]

also proposed two encoding schemes of ℓ-repeat free strings;

the first one uses a single redundancy symbol and supports

ℓ = 2⌈log(n)⌉ + 2, while the second works for substrings of

length ℓ = ⌈logn⌉+ ⌈2 log logn⌉+ 5 and its asymptotic rate

approaches 1. Extensions of this problem to the setup where

the ℓ-profiles are not received error-free were also studied

recently [5], [10], [21], [30].

In this paper, we extend the problem of ℓ-reconstructible

strings to multisets of strings. This extension of the problem

is motivated by DNA and polymer-based storage systems,

since in both sequencing- and tandem mass spectrometry

technologies it is typical that not a single string is read alone,

but multiple strings simultaneously [6], [11], [14], [18], [25].

Thus, the ℓ-profiles of all the strings in some multiset S are

read and the goal is to reconstruct all the strings in the multiset

S. Assuming the multiset S consists of k length-n strings, our

first goal is to study the minimum value of ℓ as a function

of k and n which guarantees the asymptotic rate of all ℓ-
reconstructible multisets approaches 1. We also present two

efficient constructions of codes of ℓ-reconstructible multisets

where their asymptotic rate approaches 1.

The rest of this paper is organized as follows. Section II

presents the definitions that will be used throughout the

paper as well as the problem formulation of multi-strand

ℓ-reconstruction code. Section III shows that if log(nk) −
ℓ = ωnk(1) then there do not exist positive-rate multi-

strand ℓ-reconstruction codes. In Section IV, two efficient

constructions of multi-strand reconstruction codes are pre-

sented. We summarize and compare between the results of

the constructions in the paper and show that, as a result, if

ℓ > log(nk) + 2 log log(nk) + 5 then there exists a family of

multi-strand reconstruction codes with asymptotic rate 1.

II. DEFINITIONS AND PRELIMINARIES

Let Σ be a finite alphabet of size q, and denote some element

0 ∈ Σ. In our setting, information is stored in an unordered

collection of k strings of length n over Σ; it might be allowed

for the same string to appear with multiplicity in the collection,

which is encapsulated in the following formal definition. Let

{{a, a, b, . . .}} denotes a multiset; i.e., elements are allowed

to appear with multiplicity (for a multiset S, for convenience

we let ‖S‖ denote the number of unique elements in S). Then

Xn,k , {S = {{x1, . . . ,xk}} : ∀i : xi ∈ Σn}.

Note that |Xn,k| =
(
k+qn−1

k

)
.



For strings x,y ∈ Σn, we denote their concatenation by

x ◦ y. We say that v is a substring of x if there exist strings

u,w (perhaps empty) such that x = u◦v◦w. If the length of

v is ℓ, we specifically say that v is an ℓ-mer of x. Similarly,

if x = u ◦v we say that u (v) is a prefix (suffix, respectively)

of x. An ℓ-mer which is also a prefix is an l-prefix (similarly,

ℓ-suffix). For a multiset S ∈ Xn,k, we let Lℓ(S) denote its

ℓ-profile, i.e., the multiset of all ℓ-mers of all elements of S.

For example, if S = {{01010, 00101, 11101}} (which may be

thought of as a multiset),

L3(S) = {{010, 101, 010, 001, 010, 101, 111, 110, 101}}.
By abuse of notation, we let Lℓ(x) , Lℓ({{x}}), for x ∈ Σn.

For a window of length ℓ, a code C ⊆ Xn,k is said to be a

multi-strand ℓ-reconstruction code if for all for all S, S′ ∈ C
such that S 6= S′ it holds that Lℓ(S) 6= Lℓ(S

′). Define

An,k,ℓ , {S ∈ Xn,k : Lℓ(S) is unique in Xn,k},
Bn,k,ℓ , {Lℓ(S) : S ∈ Xn,k}.

The case of k = 1 is of special interest; [9] introduced

repeat-free strings, which we denote herein for all ℓ < n by

RFn
ℓ , {x ∈ Σn : ‖Lℓ(x)‖ = n− ℓ+ 1}.

Observe that RFn
ℓ ⊆ An,1,ℓ+1 [29]. Moreover, an efficient

algorithm reconstructs each x ∈ RFn
ℓ from Lℓ+1(x) as

follows. Given any (ℓ+ 1)-mer v of x, there exists a unique

preceding (ℓ+1)-mer u of x such that the ℓ-suffix of u equals

the ℓ-prefix of v (unless v is a prefix of x); similarly, a unique

following (ℓ + 1)-mer. An extension of the same argument

shows that if S ∈ Xn,k satisfies ‖Lℓ(S)‖ = (n− ℓ+1)k, then

S is efficiently reconstructible from Lℓ+1(S), and in particular,

S ∈ An,k,ℓ+1.

We note that An,k,ℓ is a multi-strand ℓ-reconstruction code

and that for any multi-strand ℓ-reconstruction code C ⊆ Xn,k,

|C| 6 |Bn,k,ℓ|. For all C ⊆ Xn,k (and, by abuse of notation,

for Bn,k,ℓ as well) we denote the rate and redundancy of C
by R(C) , log|C|

log|Xn,k|
and red(C) , log|Xn,k| − log|C|, respec-

tively. Throughout the paper, we use the base-q logarithms

where not otherwise indicated.

Finally, for two positive functions f, g of a common vari-

able n, we say that f = on(g) if lim supn→∞
f(n)
g(n) = 0,

f = Ωn(g) if lim infn→∞
f(n)
g(n) > 0, and f = On(g) if

lim supn→∞
f(n)
g(n) < ∞. If clear from context, we omit the

subscript from the aforementioned notations.

The main goal of this work is to find the minimum ℓ,
as a function of n and k, such that the asymptotic rate of

An,k,ℓ and Bn,k,ℓ approaches 1. We will also be interested in

efficient constructions of multi-strand ℓ-reconstruction codes

with asymptotic rate 1 while the value of ℓ will be close to

the minimum value that accomplishes this rate result.

III. A LOWER BOUND ON ℓ FOR CODES WITH POSITIVE

RATE

We begin by analyzing our channel, Xn,k. Throughout this

work, we assume in asymptotic analysis that as n grows, α ,
lim sup log(k)

n < 1.

Lemma 1 log|Xn,k| = nk − k log(k/e) + o(k).

Proof: We note that

qnk

k!
6 |Xn,k| =

qnk

k!

k−1∏

j=0

(
1 +

j

qn

)

6 qnk
( e

k

)k



1

k

k−1∑

j=0

(
1 +

j

qn

)


k

6 qnk
(
e

k
+

e

2qn

)k

.

Recalling that log(k!) 6 log
(
e
√
k(k/e)k

)
= k log(k/e) +

O(log(k)), and observing for α < 1 that e
k + e

2qn =
e
k

(
1 +O(q−(1−α)n)

)
, the proof is concluded.

We can now observe a lower bound on the required win-

dow length ℓ for multi-strand ℓ-reconstruction codes to have

positive rate and in particular rate approaching 1.

Lemma 2 Let f : (0,∞) → (0,∞) be any function satisfying

f(x) < log(x) and f(x) −→
x→∞

∞. Let ℓ 6 log(nk) − f(nk).

Then,

R(An,k,ℓ) 6 R(Bn,k,ℓ) = onk(1).

Proof: We follow [5], by defining profile vectors, as

follows. For every S ∈ Xn,k and v ∈ Σℓ, let fS(v)
count the number of times v appears in Lℓ(S). Clearly, if

S, S′ ∈ Xn,k satisfy L(S) 6= L(S′), then fS 6= fS′ . Since∑
v∈Σℓ fS(v) = k(n − ℓ + 1), this implies that |Bn,k,ℓ| 6(k(n−ℓ+1)+qℓ−1

qℓ−1

)
. Observe that qℓ

nk −→
nk→∞

0; then, based on
(
a
b

)
6 2aH2(b/a), where H2 is the binary entropy function

(see, e.g., [19, Ch.10, Sec.11, Lem.7]), it is possible to derive

that log|Bn,k,ℓ| = o(nk). Recalling Lemma 1, we have that

log|Xn,k| > (n− log(k))k = Ω(nk), and thus the proposition

is proven.

IV. CONSTRUCTIONS OF MULTI-STRAND

RECONSTRUCTION CODES

In contrast to Lemma 2, we show in this section that if

ℓ > log(nk)+2 log log(nk)+5 as nk grows, then R(Bn,k,ℓ) >
R(An,k,ℓ) = 1 − onk(1). We shall do so by presenting two

explicit constructions of multi-strand ℓ-reconstruction codes

with efficient encoders and decoders.

Our constructions will be generic in the sense that they

will apply any repeat-free encoding/decoding algorithm, and

more specifically the ones from [9]. Since the algorithms

from [9] use another component of run-length limited con-

strained (RLL) codes (for discussion of their use there, see

the proof of Theorem 7), we first begin with an examination

of known encoders for the well-studied (0,M − 1)q-RLL

constraint (see, e.g., [22, Sec. 1.2]). The formal definition of

these codes is given as follows.

Definition 3 Let Z(N,M) denote the set of length-N strings

over Σ containing no zero-run of length M .



While most previous works studied the case where M is

fixed with respect to N , [17] studied this constraint when

M = log(N) + O(1), and showed that red(Z(N,M)) =
Θ
(
N/qM

)
. Even though we could use the results from [17]

for the derivation of the results in our paper, we next show

how they can yet be improved. These improvements will be

beneficial when deriving the parameters of the multi-strand

reconstruction codes generated by our two constructions in this

section. We start with the following lemma on the redundancy

of the set Z(N,M).

Lemma 4 red(Z(N,M)) 6 q−1
q (1 + oM (1)) N

qM
.

Proof: It is well-known (see, e.g., for the binary case [22,

Exm. 3.3]), that for a fixed M > 0, lim 1
N log|Z(N,M)| =

log(λ), where λ is the unique real root strictly greater

than 1 of the polynomial p(x) = xM+1 − qxM + q −
1. Since log|Z(N,M)| is sub-additive in N , by Fekete’s

lemma (as was observed in [9]) lim 1
N log|Z(N,M)| =

inf 1
N log|Z(N,M)| for any fixed M . Hence, in particular,

for all N it may be observed log|Z(N,M)| > N log(λ).
Equivalently, red(Z(N,M)) 6 N(1− log(λ)). Based on [13,

App.], 1−log(λ) 6 q−1
q · 1+oM (1)

qM
, which completes the proof.

The authors of [17] also presented an algorithm with

efficient encoder/decoder pair from ΣN ′

into Z(N,M) (see

Alg. 1 and the discussion at the end of Section III in [17]).

It analyzed the case q = 2, and the resulting encoder requires

N − N ′ = 2
⌈
N/qM−1

⌉
redundant symbols, which is the

optimal order of magnitude. We can slightly improve upon

this algorithms, when q > 2.

Lemma 5 If q > 2, an efficient encoder/decoder pair into

Z(N,M) exists, requiring
⌈
N/

(
qM−1(q − 2) +M − 1

)⌉
re-

dundant symbols.

Proof: The concept of the encoder is similar to [17,

Alg. 1]. First, the information string x ∈ ΣN ′

is divided into

blocks of length n, to be determined later. Then, in each block:

1) Append a 1.

2) From left to right, search for zero-runs of length M ; if

one is encountered, remove it, and append the index of

its incidence to the block using M symbols, such that the

last symbol is restricted not be be either {0, 1}.

3) Continue, until no further zero-runs of length M exist.

Note that this process concludes in finite time (as in each

iteration of step 2 it must advance in finite time, and the string

length is preserved). Further, with the given restriction, M
symbols may index a total of qM−1(q − 2) positions for the

beginning of the zero M -mer. It is therefore required to set

n = qM−1(q − 2) +M − 1.

Also observe that a possible decoder can use the last symbol

to indicate whether a zero-run of length M was removed

and indexed (which it can then inject in the correct place,

discarding the index), or if the process is concluded (in which

case the 1 suffix should also be discarded).

Next, since every encoded block ends with a nonzero

symbol, these blocks can be concatenated without violating

the constraint. Observe, then, that a single redundant symbol

is added per block, hence the claimed overall redundancy.

Finally, note that both encoder and decoder operate in

polynomial time in the input length.

We are now ready to present two distinct constructions

for multi-strand reconstruction codes. For convenience, we

assume all quantities to have integer values; a straightforward

adjustment of the described methods applies for all values.

A. Construction A

Our first construction of multi-strand reconstruction codes

is next presented.

Construction A Let x ∈ Σm be an arbitrary information

string, and encode it into an ℓ′-repeat-free string c = E(x) ∈
Σn′

using any known repeat-free encoder. Take c1, . . . , ck ∈
Σn′/k such that c = c1 ◦ c2 ◦ · · · ◦ ck. Let f(i) ∈ Σlog(k) be

a q-ary expansion of i ∈ [1, k]. Denote c̃i , f(i) ◦ ci, and let

n , n′/k + log(k). Then,

EncA(x) , {{c̃i : i = 1, . . . , k}} ∈ Xn,k.

�
The decoding success of Construction A follows from the next

lemma.

Lemma 6 For all x ∈ Σm, it holds that EncA(x) ∈ An,k,ℓ+1,

where ℓ = ℓ′ + log(k).

Proof: Note that c = c1 ◦ c2 ◦ · · · ◦ ck ∈ RFn′

ℓ′ and thus

‖Lℓ′({{ci : i = 1, . . . , k}})‖ = (n′ − ℓ′ + 1)k. It follows that

{{ci : i = 1, . . . , k}} ∈ An′,k,ℓ′+1.

Now, let u,v be (ℓ + 1)-mers of c̃i, c̃j respectively; note

that the (ℓ′ + 1)-suffixes of u,v are (ℓ′ + 1)-mers of ci, cj
respectively, and hence if u = v then i = j and the positions

of both (ℓ′ + 1)-mers agree. It follows that the positions of

u,v agree as well, and the claim follows.

Recall, then, that given Lℓ+1(EncA(x)), an efficient algo-

rithm can easily produce the set of strings c̃1, c̃2, . . . , c̃k by

simple stitching based on identical prefixes and suffixes of

the (ℓ + 1)-mers in Lℓ+1(EncA(x)). Then, by ordering and

then removing the length-log(k) indices from these strings, we

receive the string c = E(x), and consequently, x. Note that

the role of the indices in this construction is crucial to deduce

the string c = E(x) from the set of strings c̃1, c̃2, . . . , c̃k.

Without indices the order of these k strings could have not

been derived so we could only know the string c = E(x)
up to a permutation of its k sub-strings. The next theorem

analyzes the parameters of codes that can be constructed using

Construction A based upon the repeat-free encoders from [9].

Theorem 7 Let n, k grow such that α = lim sup log(k)
n <

1. For the values of ℓ to be specified, take m such that

EncA : Σm → An,k,ℓ+1, and denote CA , rng(EncA). Then

1) One may choose a regime satisfying ℓ = log(nk2) +
2(log log(nk)) + O(1), while assuring red(CA) 6 q

q−2 ·



nk
log2(nk)

+ k log(e) + o(k). (When q = 2, this is

2q nk
log2(nk)

+ k log(e) + o(k).)

2) Allowing ℓ = (1 + ǫ) log(nk) + log(k) + O(1) for any

ǫ > 0, we have red(CA) 6 q(1−α+o(1))1−ǫ

q−2 · (nk)1−ǫ +

k log(e)+o(k). (When q = 2, this is 2q(1−α+o(1))1−ǫ ·
(nk)1−ǫ + k log(e) + o(k).)

3) Finally, when ǫ > 1 in the definition of the last part, we

have that red(CA) = k log(e) + o(k).

Note that the resulting redundancies are o(nk).
Proof:

1) We may set, in the parameters of Construction A, ℓ′ =
log(n′) + 2 log log(n′) + 5. We then have

ℓ = ℓ′ + log(k) = log(n′k) + 2 log log(n′) + 5

= log((n− log(k))k2) + 2 log log((n− log(k))k) + 5

= log(nk2) + 2 log log(nk) +O(1),

where the last equality relies on α < 1.

We now utilize in Construction A the repeat-free en-

coder described in [9, Alg. 3], which produces strings

in RFn′

log(n′)+2 log log(n′)+5. It initializes by encoding

an information string in Σm into Z(n′, 2 log log(n′));
this is done so that 02 log log(n′) may be used as a

marker later on. Following steps of encoding the result

into repeat-free strings interestingly require no further

redundancy. We observed that efficient encoders exist

into Z(n′, 2 log log(n′)) using less than q
q−2 · n′

log2(n′)
redundant symbols (in the case of q = 2, the coefficient

is based on [17] as described above).

It follows that m = n′ − q
q−2 · n′

log2(n′)
, hence

red(CA) = log|Xn,k| −m

=
q

q − 2

nk − k log(k)

(log(nk) +O(1))
2 + k log(e) + o(k)

6
q

q − 2

nk

log2(nk)
+ k log(e) + o(k).

2) Note that no part of the encoder of [9, Alg. 3] is affected

if initialization is done by encoding into Z(n′, ǫ log(n′))
(and makers changed accordingly). It then produces

strings in RFn′

(1+ǫ) log(n′)+5. As observed, the initial

encoding requires less than q
q−2 ·n′1−ǫ redundant symbols

(and similarly for q = 2). It follows that

red(CA) = log|Xn,k| −m

= q
q−2 ((n− log(k))k)

1−ǫ
+ k log(e) + o(k)

6 q(1−α+o(1))1−ǫ

q−2 (nk)1−ǫ + k log(e) + o(k).

In this case,

ℓ = ℓ′ + log(k) = (1 + ǫ) log(n′) + log(k) + 5

= (1 + ǫ) log(nk) + log(k) +O(1).

3) We analyze the cases where Construction A may utilize

the repeat-free encoder described in [9, Alg. 1], which

produces strings in RFn′

2 log(n′)+2 and requires a single

redundant symbol (see [9, Thm. 16]).

Note that ℓ′ > 2 log(n′) + 2 if and only if

1 + ǫ >
2 log((n− log(k))k) + 2

log(nk)

= 2(1− o(1)) + o(1),

hence for sufficiently large n, k and all ǫ > 1, the encoder

of [9, Alg. 1] may be used; in this case, m = n′− 1, and

red(CA) = log|Xn,k| −m = k log(e) + o(k).

B. Construction B

While in Construction A we added indices in order to

overcome the lack of ordering when the string c = E(x)
is partitioned into k strings, in Construction B we tackle

this constraint differently. We again partition c = E(x) to

k strings but with overlapping segments between consecutive

strings. The overlapping segments will guarantee in decoding

that, given the set of k strings, there will be only one way

to concatenate them into one long string. As opposed to

Construction A, this also guarantees that there is no need to

increase the length of the read ℓ-mers with respect to the one

required by the repeat-free encoders.

Construction B Let x ∈ Σm be an arbitrary information

string, and encode it into an ℓ-repeat-free string c = E(x) ∈
Σn′

using any known repeat-free encoder. For n, k such that

n′ = nk − (k − 1)ℓ = (n− ℓ)k + ℓ, define k length-n strings

c1, . . . , ck ∈ Σn by ci = (ci,1, . . . , ci,n), where

ci,j , c(i−1)(n−ℓ)+j ; j = 0, . . . , n− 1.

Then,

EncB(x) , {{ci : i = 1, . . . , k}} ∈ Xn,k.

�

The decoding correctness of the information string x in

Construction B follows from the following simple observation.

Lemma 8 For all x ∈ Σm it holds that Lℓ+1(E(x)) =
Lℓ+1(EncB(x)).

Proof: Since ci is a substring of c for all i, it follows that

Lℓ+1(EncB(x)) ⊆ Lℓ+1(E(x)). For the other direction, note

that for all 1 6 i < k, ci, ci+1 are overlapping substrings of c,

with a common substring of length ℓ; thus all (ℓ+1)-substrings

of c are also substrings of some ci.

Lemma 8 immediately implies the next corollary.

Corollary 9 EncB(x) ∈ An,k,ℓ+1 for all x ∈ Σm.

Proof: According to Lemma 8 and since E(x) ∈ RFn′

ℓ ,

the corollary’s statement follows.

We are now ready to analyze the code parameters that Con-

struction B can achieve, again using the repeat-free encoders

from [9].



TABLE I
REDUNDANCY AND WINDOW LENGTH TRADE-OFF COMPARISON

Lower bound log(nk)− ℓ = ωnk(1) =⇒ R(An,k,ℓ) 6 R(Bn,k,ℓ) = onk(1)

Case Construction A Construction B

1
ℓ = log(nk) + log(k) + 2 log log(nk) + O(1) ℓ = log(nk) + 2 log log(nk) + 5

red(CA) 6 q

q−2
·

nk
log2(nk)

+ k log(e) + o(k) red(CB) 6 q

q−2
·

nk
log2(nk)

+ k log(n)(1 + o(1))

2 (ǫ > 0)
ℓ = (1 + ǫ) log(nk) + log(k) + O(1) ℓ = (1 + ǫ) log(nk) + 5

red(CA) 6
q(1−α+o(1))1−ǫ

q−2
· (nk)1−ǫ + k log(e) + o(k) red(CB) 6 q

q−2
· (nk)1−ǫ + k log

(

n1+ǫkǫ
)

(1 + o(1))

3
ℓ = (1 + ǫ) log(nk) + log(k) + O(1); ǫ > 1 ℓ = (1 + ǫ) log(nk) + 5; ǫ > 1

red(CA) = k log(e) + o(k) red(CB) = k log(n1+ǫkǫ)(1 + o(1))

Theorem 10 Let n, k grow such that α = lim sup log(k)
n <

1. For the values of ℓ to be specified, take m such that

EncB : Σm → An,k,ℓ+1, and denote CB , rng(EncB). Then

1) Letting ℓ = log(nk) + 2 log log(nk) + 5, we have

red(CB) 6 q
q−2 · nk

log2(nk)
+ k log(n)(1 + o(1)). (When

q = 2, this is 2q nk
log2(nk)

+ k log(n)(1 + o(1)).)

2) Setting ℓ = (1 + ǫ) log(nk) + 5 for any ǫ > 0, we have

red(CB) 6 q
q−2 ·(nk)1−ǫ+k log

(
n1+ǫkǫ

)
(1+o(1)). (For

q = 2, this is 2q(nk)1−ǫ + k log
(
n1+ǫkǫ

)
(1 + o(1)).)

3) Finally, when ǫ > 1 in the definition of the last part, we

have red(CB) = k log(n1+ǫkǫ)(1 + o(1)).

Proof:

1) We start by observing, since n′ 6 nk, that the

repeat-free encoder of [9, Alg. 3] may produce strings

in RFn′

ℓ , if initialization is done by encoding into

Z(n′, 2 log log(nk)) (instead of Z(nk, 2 log log(nk))).
Following steps [9, Lem. 19–20, Lem. 23] are not af-

fected.

In this case, we have m = n′ − q
q−2 · n′

log2(nk)
(again, the

case q = 2 is handled similarly). Therefore

red(CB) = log|Xn,k| −m

=
q

q − 2
· nk

log2(nk)
+ k(ℓ− log(k)) +O(k) − ℓ

=
q

q − 2
· nk

log2(nk)
+ k log(n)(1 + o(1)).

2) The next part follows similarly to part 1, based on the

adjusted encoder described in part 2 of Theorem 7.

3) Finally, note that is suffices that ℓ = (1 + ǫ) log(nk) +
5 > 2 log(n′)+ 2 to utilize the repeat-free encoder of [9,

Alg. 1]; in this case, m = n′ − 1, hence

red(CB) = log|Xn,k| −m

= k(ℓ− log(k)) + k log(e) + o(k)− ℓ+ 1

= k log(n1+ǫkǫ)(1 + o(1)).

It should be noted that Theorem 10 does not preclude the

possibility that the encoder of part 3 requires more redundancy

than that of part 1 (namely, in any asymptotic regime satisfying

log(k) = Ω(n)); this is an oddity since An,k,ℓ1 ⊆ An,k,ℓ2 for

all ℓ1 6 ℓ2. We observe that it is inherent to Construction B

that the last step might introduce more redundancy than is

required by E, the repeat-free encoder utilized. Nevertheless,

Theorem 10 is structured to take into account other asymptotic

regimes, and should be applied accordingly in practice.

C. Comparison and Summary

We first seek to give a converse to Lemma 2 and establish

the result on the minimum value of ℓ which guarantees that the

asymptotic rate of multi-strand ℓ-reconstruction codes (in fact,

R(An,k,ℓ)) is 1. This result is established in the next corollary

using the results of Construction B.

Corollary 11 For sufficiently large n, k satisfying

lim sup log(k)
n < 1 and for ℓ ≥ log(nk) + 2 log log(nk) + 5,

it holds that R(Bn,k,ℓ) > R(An,k,ℓ) = 1− onk(1).

Proof: Observe that under the assumption n− log(k) =
Ω(n) we have from Lemma 1 that log|Xn,k| = Ω(nk). The

proposition of part 1 of Theorem 10 now suffices to establish

the corollary’s statement.

Note that if one aims to achieve the same result using

Construction A, then the minimum value of ℓ should be

log(nk) + log(k) + 2 log log(nk) + O(1) and hence there

is a gap of roughly log(k) with respect to the result in

Corollary 11. However, Construction A can support better

redundancy for comparable values of ℓ. Since Constructions A

and B provide codes with parameters that cannot be directly

compared, Table I lists the parameters of each construction for

different regimes of ℓ in order to have a better understanding

of the trade-offs between the minimal window length ℓ and

the constructions’ redundancy from Theorems 7 and 10. In

general, one can observe that the window length in Construc-

tion A should be larger than the one in Construction B but

construction’s redundancy is smaller.

Before concluding, we suggest that one might consider

a slightly different channel definition to the one handled

above where the k strands are required to be distinct from

one another, i.e., when information is stored in the space

X ∗
n,k , {S ⊆ Σn : |S| = k}. A priori, it seems feasible that

the added restriction might allow for lower redundancy (when

measured in X ∗
n,k). However, we note that

∣∣∣X ∗
n,k

∣∣∣ =
(
qn

k

)
, thus

a similar development to Lemma 1 yields

qnk
(
e

k
− e

2qn

)k

6
∣∣X ∗

n,k

∣∣ 6 qnk

k!
.

It follows that log
∣∣∣X ∗

n,k

∣∣∣ = nk − k log(k) + k log(e) + o(k)

as well. A careful examination reveals that Constructions A

and B actually encode into the set{
S ∈ X ∗

n,k : S has a unique ℓ-profile
}
,

and hence the results of this work also hold for this setup of

the problem.
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