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Abstract—We consider the problem of coding for the substring
channel, in which information strings are observed only through
their (multisets of) substrings. Because of applications to DNA-
based data storage, due to DNA sequencing techniques, interest in
this channel has renewed in recent years. In contrast to existing
literature, we consider a noisy channel model, where information
is subject to noise before its substrings are sampled, motivated
by in-vivo storage.

We study two separate noise models, substitutions or deletions.
In both cases, we examine families of codes which may be utilized
for error-correction and present combinatorial bounds. Through
a generalization of the concept of repeat-free strings, we show that
the added required redundancy due to this imperfect observation
assumption is sublinear, either when the fraction of errors in
the observed substring length is sufficiently small, or when that
length is sufficiently long. This suggests that no asymptotic cost
in rate is incurred by this channel model in these cases.

I. INTRODUCTION

DNA as a medium for data storage offers high density

and longevity, far greater than those of electronic media [1].

Among its applications, data storage in DNA may offer a

protected medium for long-period data storage [2], [3]. In

particular, it has recently been demonstrated that storage in the

DNA of living organisms (henceforth, in-vivo DNA storage)

is now feasible [4]; the envelope of a living cell affords

some level of protection to the data, and even offers prop-

agation, through cell replication. Among its varied usages, in-

vivo DNA storage allows watermarking genetically modified

organisms (GMOs) [5]–[7] to protect intellectual property,

or labeling research material [3], [8]. It may even conceal

sensitive information, as it may appear indistinguishable from

the organism’s own genetic information [9].

Similarly to other media, information stored over this

medium is subjected to noise due to mutations, creating

errors in data, which accumulate over time and replication

cycles. Examples of such noise include symbol insertions or

deletion, in addition to substitutions (point-mutations); the

latter is the focus of the vast majority of classical error-

correction research, and the former have also been studied.
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Interestingly, however, the very methods we currently use to

store and later retrieve data from DNA inherently introduce

new constraints on information reconstruction. While desired

sequences may be synthesized (albeit, while suffering from,

e.g., substitution noise), the process of DNA sequencing, i.e.,

retrieving the DNA sequence of an organism, only observes

that sequence as the (likely incomplete) multiset of its sub-

strings (practically, up to a certain substring length) [10]. Thus,

information contained in the order of these substrings might be

irrevocably lost. As a result of these constraints, conventional

and well-developed error-correction approaches cannot simply

be applied.

To overcome these effects, one approach in existing lit-

erature is to add redundancy in the form of indexing, in

order to recover the order of substrings (see, e.g., [11]–[13]).

A different approach, potentially more applicable to in-vivo

DNA storage, is to add redundancy in the form of constraints

on the long information string, such that it can be uniquely

reconstructed by knowledge of its substrings of a given length

(or range of lengths). The combinatorial problem of recovering

a sequence from its substrings has attracted attention in

recent years [14]–[21], and coding schemes involving only

these substrings (including the incidence frequency of each

substring) were studied [10], [11], [22]–[24].

However, works dedicated to overcoming this obstacle,

inherent to the technology we use, have predominantly fo-

cused on storage outside of living cells (i.e., in-vitro DNA

storage). Likewise, works focused on error-correction for in-

vivo DNA data storage (e.g., [25]–[27]) have disregarded the

technical process by which data is to be read. However, in real

applications varied distinct noise mechanisms act on stored

data concurrently. Hence, in practice, both sets of challenges

have to be collectively overcome in order to robustly store

information using in-vivo DNA.

The aim of this work is to protect against errors in the

information string (caused by mutations over the replication

process of cells), when channel outputs are given by the multi-

sets of their substrings, of a predetermined length, rather than

entire strings. This models the process of DNA sequencing,

once information needs to be read from the medium. We shall

study the required redundancy of this model, and devise coding

strategies, under the assumption of two different error types:

substitution and deletion noise.



The paper is organized as follows. In Section II, we discuss

the main contribution of this paper, in context of related works.

In Section III we then present necessary notation. Finally, in

Section IV-A we study the suggested model with substitution

errors, and in Section IV-B with deletion errors. Due to space

limitation, some proofs have been sketched or delegated to a

preprint of the manuscript [28].

II. RELATED WORKS AND MAIN CONTRIBUTION

Given a string of length n, the problem of reconstructing

x from the multiset of (all-, or, in some works, most-) its

substrings of a fixed lenght s 6 n, has been studied in

literature. Assuming no errors occur in x prior to sampling

of its substrings, the problem of interest is identifying a set of

constraints on the information string, equivalent of sufficient,

for such reconstruction to be achievable.

It was observed in [14] that under certain circumstances,

distinct information strings in which repetitions of s-substrings

appear in different positions, exhibit the same multisets of

(s+1)-substrings. These observations indicate that care must

be taken when including code-words which contain repeating

s-substrings (indeed, where observations are made via the

multiset of s′-substrings, for some s′ 6 s + 1). On the other

hand, if every s-substring of x is unique, then x is uniquely

reconstructible from the multiset of its (s+1)-substrings (and

in fact, s′-substrings, for all s′ > s), as evident from a greedy

reconstruction algorithm (which at each stage searches for

the next/previous character in the information string). This

observation motivates the study of repeat-free strings; x is

said to be s-repeat-free if every s-substring of x is unique

(put differently, if x is of length n, then it contains n− s+ 1
distinct s-substrings).

Focus on repeat-free strings is further justified by the

following results. It was observed in [17], via introduction

of profile vectors, that over an alphabet of size q, where

the length of strings n grows, if s <
logq(n)

1+ǫ then the rate

of all existing s-substring multisets vanishes. Conversely, it

was demonstrated in [20] using probabilistic arguments that

the asymptotic redundancy of the code-book consisting of

all s-repeat-free strings of length n (which, as noted above,

is an upper bound for the redundancy of a code assuring

reconstruction from (s + 1)-substrings), is O(n2−s/ logq(n));
thus, when s > (1 + ǫ) logq(n), the rate of repeat-free strings

alone is 1.

In this paper, we extend the setting of previous works by

allowing information strings to suffer a bounded number of

errors, prior to the sampling of their substrings. We study

this model under two separate error models: substitution

(Hamming) errors, and deletion errors. In both cases we show

(see Theorems 7 and 13) that when s > (1+ǫ) logq(n) and the

fraction of errors in the substring length s is sufficiently small,

the rate of generalized repeat-free strings dubbed resilient-

repeat-free suffers no penalty from the process of sampling, or

from the presence of noise (when compared to the results of

[20]); i.e., the required added redundancy is sub-linear. In the

case of Hamming noise, we also show that when the fraction

of errors is too large, resilient-repeat-free strings do not exist.

However, it is left for future works to determine the precise

transition between the two regimes.

It should be noted that [18] presented almost explicit en-

/decoding algorithms for codes with a similar noise model.

However, in that paper’s setting, substitution noise affects

individual substrings after sampling; the codes it constructs

are capable of correcting a constant number of errors in each

substring, but requires the assumption that errors do not affect

the same information symbol in a majority of the substrings

that reflect it. Therefore, its setting is incompatible with the

one considered herein, whereby each error occurring before

sampling affects s consecutive substrings. [21] also developed

codes with full rate, capable of correcting a fixed number of

errors, occurring in substrings independently after sampling.

It replaced the aforementioned restriction by a constraint on

the number of total erroneous substrings, which is at most

logarithmic in the information string’s length. Hence, the total

number of errors in its setting remains asymptotically smaller

than the one incurred in the setting considered here.

III. PRELIMINARIES

Let Σ∗ be the set of finite strings over an alphabet Σ, which

we assume to be a finite unital ring of size q (e.g., Zq). For

x = x(0)x(1) · · ·x(n − 1) ∈ Σ∗, we let |x| = n denote the

length of x. We note that indices in the sequel are numbered

0, 1, . . .. For x, y ∈ Σ∗, we let xy be their concatenation. For

I ⊆ N and x ∈ Σ∗, we denote by xI the restriction of x
to indices in I (excluding any indices |x| 6 i ∈ I), ordered

according to the naturally inherited order on I .

We let |A| denote the size of a finite set A. For a code

C ⊆ Σn, we define its redundancy red(C) , n − logq|C|,

and rate R(C) , 1
n logq|C| = 1− red(C)

n .

For n ∈ N, denote [n] , {0, 1, . . . , n− 1}. Although

perhaps confusable, for m 6 n ∈ N we use the common

notation [m,n] , {m,m+ 1, . . . , n}. We shall interpret xI

as enumerated by [|I|], i.e., xI(0) = x(min I), etc. Where it

is convenient, we will also assume I ⊆ N to be enumerated

by [|I|], such that the order of elements is preserved; i.e.,

I = {I(i) : i ∈ [|I|]}, and for all i ∈ [|I| − 1] one has

I(i) < I(i+1). Under this convention, e.g., xI(0) = x(I(0)).
We follow the standard ring notation in denoting for j ∈ N

and I ⊆ N the coset j + I , {j + i : i ∈ I}.

For x ∈ Σ∗ and i, s ∈ N, where i + s 6 |x|, we say that

xi+[s] is the length s substring of x at index i, or s-mer (at

index i), or s-gram, for short. Using notation from [14], for

x ∈ Σ∗ and s ∈ N we denote the multiset of s-mers of x by

Zs(x) ,
{{

xi+[s] : 0 6 i 6 |x| − s
}}

.

We follow [20] in denoting the set of s-repeat-free strings

RFs(n) ,
{

x ∈ Σn : i < j =⇒ xi+[s] 6= xj+[s]

}

.

Assuming an underlying error model, known in context but

yet to be determined, we let St(x), for some x ∈ Σ∗, be the set

of strings y ∈ Σ∗ that may be the product of t errors occurring



to x. We let Bt(x) ,
⋃

t′6t S
t′(x). Using this notation, our

aim shall be to study and design codes C ⊆ Σn, such that

given x ∈ C and y ∈ Bt(x), for some fixed (or bounded) t,
x can be uniquely reconstructed given only Zs(y). We shall

study constraints which allow unique reconstruction of y, and

state in Corollary 9 specific cases where this in turn allows

reconstruction of x.

IV. RESILIENT-REPEAT-FREE STRINGS

A. Substitution noise

In this section we consider substitution noise, with error

spheres St
s(x) , {y : dH(y, x) = t}, where dH(x, y) denotes

the Hamming distance between x and y.

We present and study a family of repeat-free strings which

are resilient to substitution errors:

Definition 1 We say that x ∈ Σ∗ is (t, s)-resilient repeat free

if the result of any t substitution errors to x is s-repeat-free.

More precisely, we define

RRF s
t,s(n) ,

{

x ∈ Σn : Bt
s(x) ⊆ RFs(n)

}

.

Lemma 2 Take t ∈ N, x ∈ Σn. If for all 0 6 i < j 6 n− s

dH
(

xi+[s], xj+[s]

)

> t+max{0,min{t, s− j + i}},

then x ∈ RRF s
t,s(n).

The proof follows from applying the triangle inequality by

cases on (i + [s]) ∩ (j + [s]), and is delegated to the full

version of the manuscript.

Definition 3 For positive s 6 n, denote
(

[n]
s

)

⊆ 2[n] the

collection of s-subsets of [n]. A pair of subsets (I, J) ∈
(

[n]
s

)2

is said to be observable if I(k) < J(k) for all k ∈ [s].

Given a string x ∈ Σn, known from context, we will denote

for an observable pair (I, J) ∈
(

[n]
s

)2

uI,J , xI − xJ ∈ Σs.

We also denote LI , {(P,Q) : (P,Q) is observable,
(P ∪ Q) ∩ I = ∅}. To simplify notation, where some s 6 n
is also given, we shall abbreviate ui,j , ui+[s],j+[s] and

Li , Li+[s], for any 0 6 i < j 6 n− s.

Lemma 4 Take s 6 n and an observable pair (I, J) ∈
(

[n]
s

)2
.

Further, let x ∈ Σn be chosen uniformly at random. Then

uI,J is distributed uniformly and mutually independent of

{uP,Q : (P,Q) ∈ LI}.

Proof: First, since uI,J is the image of x under a linear

map (more precisely, a module homomorphism), the pre-image

of any point is a coset of map’s kernel and, thus, of equal size;

as a result, uI,J is distributed uniformly on the map’s range.

Since (I, J) is observable, the map is surjective onto Σs, hence

the first part is completed.

Second, observe that xI is independent of x[n]\I , hence

mutually independent of {uP,Q : (P,Q) ∈ LI}. Since given

x[n]\I , there exist a bijection between xI and uI,J , the proof

is concluded.

Before stating Lemma 6, on which the main results of this

section rely, we make a few additional notations. First, fix a >
1, and denote sa =

⌊

a logq(n)
⌋

as n grows. By slight abuse of

notation, we let RRF s
t,a(n) , RRF s

t,sa(n), and RRF s
t,a ,

⋃

n∈N
RRF s

t,a(n). Second, for 0 < k 6 sa, denote

Ak ,
{

x ∈ Σsa+k : ∃y ∈ Bt
s(x) : y[sa] = yk+[sa]

}

.

Finally, denote πk , Pr(x ∈ Ak), where x ∈ Σsa+k is chosen

uniformly at random.

Corollary 5 πk 6 q · n−a(1−Hq(δ+min{δ,1− k
sa
})).

Proof: By Lemma 4 ui,j ∈ Σsa is distributed uni-

formly, hence for w < q−1
q sa it follows from, e.g., [30,

Lem. 4.7]), that Pr(wt(ui,j) 6 w) 6 qsa(Hq(w/sa)−1) 6
q · n−a(1−Hq(w/sa)). The claim now follows from Lemma 2.

Lemma 6 Denote π′ , max0<k<sa πk. If 2sanπsa , 4s
2
aπ

′ <
1/2e then, as n → ∞,

red
(

RRF s
t,a(n)

)

= O
(

n log(n)π′ + n2πsa

)

.

Proof: We define for all 0 6 i < j 6 n− sa the sets

Ai,j ,
{

x ∈ Σn : ∃y ∈ Bt
s(x) : yi+[sa] = yj+[sa]

}

.

Note that Σn \ RRF s
t,a(n) =

⋃

i,j Ai,j .

We let x ∈ Σn be chosen uniformly at random. Then

Pr(x ∈ Ai,j) = πmin{sa,j−i}. Further,
∣

∣RRF s
t,a(n)

∣

∣ = qn · Pr
(

x ∈ RRF s
t,a(n)

)

,

and hence

red
(

RRF s
t,a(n)

)

= − logq Pr
(

x ∈ RRF s
t,a(n)

)

.

Our proof strategy relies on Lovász’s local lemma (LLL) [29],

as follows. If for all 0 6 i < j 6 n− sa there exist constants

0 < fi,j < 1 such that

Pr(x ∈ Ai,j) 6 fi,j
∏

Γ

(1− fp,q),

where Γ is such that {x ∈ Ai,j} is mutually independent of

{{x ∈ Ap,q} : (p, q) 6∈ Γ}, then the lemma states that

Pr
(

x 6∈
⋃

i,j
Ai,j

)

>
∏

i,j

(1 − fi,j).

Note that, in our notation, Pr
(

x 6∈
⋃

i,j
Ai,j

)

=

Pr
(

x ∈ RRF s
t,a(n)

)

and Pr(x ∈ Ai,j) = πmin{sa,j−i}.

To determine Γ, we claim for 0 6 i < j 6 n − sa that

the event {x ∈ Ai,j} is mutually independent of the events

{{x ∈ Ap,q} : |i− p|, |i− q| > sa}. Indeed, Lemma 4 then

implies that ui,j is mutually independent of {up,q : (p, q) ∈
Li}. It is left to the reader to verify that there exists a set



Bi,j ⊆ Σsa , which depends on i, j but not x, such that

the event {x ∈ Ai,j} can be restated as {ui,j ∈ Bi,j} (and

similarly for p, q); therefore, the claim holds. Hence, for any

0 6 i < j 6 n − sa we let Γ , {(p, q) : (p, q) 6∈ Li}, and

observe that it consists of strictly less than 4s2a pairs (p, q)
such that |p− q| < sa, and strictly less than 2san other pairs.

Recalling for 0 < f < 1 that 1 − f > e−f/(1−f), and

denoting y = f/(1− f) we observe

fi,j
∏

p,q

(1− fp,q) =
fi,j

1−fi,j

∏

p,q inc. i,j

(1− fp,q)

> yi,j exp

(

−
∑

p,q inc. i,j

yp,q

)

We shall apply an almost symmetric version of LLL, where

fi,j =

{

f, j − i > sa,

f ′, j − i < sa.

Then, to satisfy the LLL conditions it suffices that πsa 6
ye−4s2ay

′−2sany and π′ 6 y′e−4s2ay
′−2sany , where y, y′ are

defined as above for f, f ′ respectively. Let y′ , eπ′, y , eπ.

We have,

ye−4s2ay
′−2sany = πe1−e(4s2aπ

′+2sanπsa) > π;

y′e−4s2ay
′−2sany = π′e1−e(4s2aπ′+2sanπsa) > π′,

as required.

Finally,

red
(

RRF s
t,a(n)

)

= − logq Pr
(

x ∈ RRF s
t,a(n)

)

6 − logq Pr
(

x 6∈
⋃

i,j
Ai,j

)

6 − logq
∏

i,j
(1 − fi,j)

=
∑

i,j
logq(1 + yi,j)

6 1
ln(q)

∑

i,j
yi,j

6 nsa
ln(q)y

′ + n2

ln(q)y,

which concludes the proof.

Before utilizing Lemma 6 to find the redundancy of

resilient-repeat-free strings, we make the following addi-

tional notation. For a fixed real number δ > 0, we denote

tδ , ⌊δsa⌋ =
⌊

δ
⌊

a logq(n)
⌋⌋

; as before, we abbreviate

RRF s
δ,a(n) , RRF s

tδ,sa(n) (and similarly RRF s
δ,a).

Theorem 7 Fix a > 1, 0 < δ < q−1
2q . Then, as n → ∞,

red
(

RRF s
δ,a(n)

)

= O(n2−a(1−Hq(δ))).

Proof: If a 6 (1−Hq(δ))
−1

the proposition vacuously

holds.

Otherwise, let x ∈ Σsa+k be chosen uniformly at random.

Based on Corollary 5, we observe for δ < q−1
2q and sufficiently

large n that 2sanπsa , 4s
2
amax0<k<sa(πk) < 1/2e, satisfying

the conditions of Lemma 6.

Since for all k < sa we also have n lognπk =
O
(

n2−a(1−Hq(δ))
)

, the claim follows from Lemma 6.

Corollary 8 Take 0 < δ < q−1
2q . If a > (1−Hq(δ))

−1
then

R
(

RRF s
δ,a(n)

)

= 1−o(1), and if a > 2(1−Hq(δ))
−1

, then

RRF s
δ,a(n) incurs a constant number of redundant symbols.

The last corollary can be viewed in the context of related

works; as mentioned above, [20] demonstrated that, letting

s =
⌊

a logq n
⌋

, if a > 1 then R(RFs(n)) = 1− o(1), and if

a > 2 then red(RFs(n)) = O(1). Corollary 8 demonstrates

that if a > 1 (respectively a > 2), then for all sufficiently

small δ > 0 it holds that R
(

RRF s
δ,a(n)

)

= 1 − o(1)
(respectively, red

(

RRF s
δ,a(n)

)

= O(1)). I.e., resilient-repeat-

free sequences for a number of substitutions errors logarithmic

in the string length (linear in the substring length) incur no

additional asymptotic cost.

Based on the last corollary, we can now demonstrate the

existence of error-correcting codes for the noisy substring

channel, which achieve at most a constant redundancy over

that of classical error-correcting codes for Hamming noise.

Corollary 9 Let C ⊆ Σn be an error-correcting code, capa-

ble of correcting tδ substitution errors, and denote, for some

z ∈ Σn, C̄z , (z + C) ∩ RRF s
δ,a(n). Then for any x ∈ C̄z

and y ∈ Btδ
s (x), it is possible to uniquely decode x observing

only Zsa+1(y). Further, decoding is possible through a greedy

algorithm for reconstruction of y, followed by application of

any decoding scheme for C.

Further, in the cases indicated in Corollary 8, where

red
(

RRF s
δ,a(n)

)

= O(1), there exists z satisfying red(C̄z) =
red(C) +O(1).

Note that Corollary 9 is unfortunately nonconstructive. We

leave the interesting problem of constructing an encoder for

error-correcting codes in RRF s
δ,a(n) (and in particular an

efficient encoder) for future work.

Definition 10 For a real δ, 0 6 δ < 1, and an integer s > 0,

let Mq(s, δ) be the maximum number of code-words in a code

C ⊆ Σs such that dH(x, y) > δs for any distinct x, y ∈ C.

For a given δ > 0, define the maximum achievable rate by

Rq(δ) , lim sup
k→∞

1
s logq Mq(s, δ).

For completeness, we state the well-known GV and EB bounds

(see, e.g., [30, Thm.4.9-12]) for δ 6 q−1
q ,

1−Hq(δ) 6 Rq(δ) 6 1−Hq

(

q−1
q

(

1−
√

1− q
q−1δ

))

.

The following lemma states a converse bound to Corol-

lary 8.

Lemma 11 If t > δsa and a < Rq(δ)
−1, then for sufficiently

large n ∈ N

RRF s
t,a(n) = ∅.

In particular, the statement holds if t > q−1
q sa, for all a.



Proof: Take, on the contrary, some x ∈ RRF s
t,a(n). By

Definition 1, the sa-mers
{

xisa+[sa] : 0 6 i 6 ⌊n/sa⌋ − 1
}

⊆ Σsa

form a code of size ⌊n/sa⌋ and minimum distance d > t >
δsa. By Definition 10, for n → ∞ we obtain

logq⌊n/sa⌋

sa
6 Rq(δ) + o(1).

Recalling sa =
⌊

a logq n
⌋

yields that

1
a 6 Rq(δ) + o(1).

For sufficiently large n, the latter violates the condition im-

posed in the statement.

It should be noted that Lemma 11 specifically pertains to

resilient-repeat-free strings, which the reader will observe are

not strictly required for successful reconstruction of informa-

tion (although in the noiseless case, they achieve optimum

asymptotic rate).

Before concluding, we note that a twofold gap remains

between Theorem 7 and the converse of Lemma 11. First,

red
(

RRF s
δ,a(n)

)

is not characterized when Rq(δ)
−1 6

a 6 (1−Hq(δ))
−1

; and second, it is not found when

δ > q−1
2q . In the full version of the manuscript, we show that

Lemma 6 may be used to prove red
(

RRF s
δ,a(n)

)

= o(n) +

O(n2−a(1−Hq(δ))) for all δ < δ∗q , where q−1
2q < δ∗q 6 q−1

q .

B. Deletion noise

In this section, we consider deletion noise instead of sub-

stitution errors. For x ∈ Σn, let St
d(x) ⊆ Σn−t denote the set

of strings generated from x by t deletions.

Definition 12 As in the previous section, we define a family

of repeat-free strings which is resistant to deletion noise:

RRFd
t,s(n) ,

{

x ∈ Σn : St
d(x) ⊆ RFs(n− t)

}

.

We denote sa ,
⌊

a logq(n)
⌋

and tδ , ⌊δsa⌋, for some

fixed real numbers a > 1 and δ > 0. As in the previ-

ous sections, we denote RRFd
δ,a(n) , RRFd

tδ,sa
(n) and

RRFd
δ,a ,

⋃

n∈N
RRFd

δ,a(n). Then we have the following:

Theorem 13 For all a > 1 and δ > 0 it holds that

red
(

RRFd
δ,a(n)

)

= O
(

n
2−a+ 2a(1+δ)

log2(q)
H2(δ/(1+δ))

)

.

Proof: We follow a similar strategy as in Lemma 6,

but apply a symmetric bound. Note that a sufficient condi-

tion for x ∈ RRFd
δ,a(n) is that for every observable pair

(I, J) ∈
(

[n]
sa

)2
, such that I(sa − 1) − I(0) < sa + tδ (and

similarly for J), it holds that xI 6= xJ . For such a pair,

denote AI,J , {x ∈ Σn : xI = xJ} = {x ∈ Σn : uI,J = 0}.

Again, we let x ∈ Σn be chosen uniformly at random, and

use the Lovász local lemma to bound Pr
(

x ∈ RRFd
δ,a(n)

)

>

Pr
(

x 6∈
⋃

I,J AI,J

)

from below.

For any observable pair (I, J), note that Pr(x ∈ AI,J) =
q−sa 6 q · n−a, and for convenience denote π , q · n−a.

Next, we estimate |Γ| (a set of observable pairs (P,Q)
satisfying the same properties) such that the event {x ∈ AI,J}
is mutually independent of {{x ∈ AP,Q} : (P,Q) 6∈ Γ}.

Observe by Lemma 4 that it suffices that Γ consists of all

(P,Q) 6∈ LI with the above properties. Thus, to determine P ,

it suffices to choose 1) a single element of I (which shall be a

member of P ∩ I); 2) an interval of length sa + tδ containing

the chosen element; 3) any sa−1 < sa additional elements of

the chosen interval. Then Q can be chosen from any interval

of length sa + tδ . The same holds for a suitable choice of

Q ∩ I 6= ∅. Thus, |Γ| 6 sa(sa + tδ)n
(

sa+tδ
sa

)2
.

Now, to apply LLL, we find 0 < f < 1 such

that π 6 f(1 − f)|Γ|. From
(

k
l

)

6 2kH2(l/k) (a relax-

ation of, e.g., [31, Ch.10, Sec.11, Lem.7]) we observe that
(

sa+tδ
tδ

)2
6 n

2a(1+δ)
log2(q)

H2(δ/(1+δ))
. If

2(1+δ)
log2(q)

H2(δ/(1 + δ)) > 1

or a 6
(

1− 2(1+δ)
log2(q)

H2(δ/(1 + δ))
)−1

, the proposition vac-

uously holds. Otherwise, we note that (|Γ| + 1)π = o(1)
as n → ∞. Let y , eπ, and for sufficiently large n
note ye−(|Γ|+1)y = πe1−e(|Γ|+1)π > π. By further denoting

f , y
1+y , and recalling for 0 < f < 1 that 1−f > e−f/(1−f),

we observe

f(1− f)|Γ| > f
1−f exp

(

− f
1−f (|Γ|+ 1)

)

= ye−(|Γ|+1)y > π.

Finally, one needs also note that the number of observable

pairs (I, J) satisfying the given requirements is no more than
(

n−sa−tδ
2

)

·
(

sa+tδ
sa

)2
6 1

2n
2
(

sa+tδ
sa

)2
. By LLL it follows that

Pr

(

x 6∈
⋃

I,J

AI,J

)

> (1−f)
n2

2 (sa+tδ
sa

)
2

= (1+y)−
n2

2 (sa+tδ
sa

)
2

,

and hence

red
(

RRFd
δ,a(n)

)

= − logq Pr
(

x ∈ RRFd
δ,a(n)

)

6
n2

2

(

sa + tδ
sa

)2

logq(1 + y)

6
1

2 ln(q)

(

sa + tδ
sa

)2

n2y

=
q

2 ln(q)

(

sa + tδ
sa

)2

n2−a,

which completes the proof.

Corollary 14 If a >
(

1− 2(1+δ)
log2(q)

H2(δ/(1 + δ))
)−1

, for any

δ > 0, then R(RRFd
δ,a(n)) = 1 − o(1), and if a >

2
(

1− 2(1+δ)
log2(q)

H2(δ/(1 + δ))
)−1

then red
(

RRFd
δ,a(n)

)

=

O(1).

Note again that if a > 1 (respectively a > 2), then for

all sufficiently small δ > 0 it holds that R
(

RRFd
δ,a(n)

)

=

1 − o(1) (respectively, red
(

RRFd
δ,a(n)

)

= O(1)). Before

concluding, we also note that a parallel statement to Corol-

lary 9 holds in this setting, as well.
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