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Abstract—Mixed codes, which are error-correcting codes in
the Cartesian product of different-sized spaces, model degrading
storage systems well. While such codes have previously been
studied for their algebraic properties (e.g., existence of perfect
codes) or in the case of unbounded alphabet sizes, we focus on the
case of finite alphabets, and generalize the Gilbert-Varshamov,
sphere-packing, Elias-Bassalygo, and first linear programming
bounds to that setting. In the latter case, our proof is also the
first for the non-symmetric mono-alphabetic q-ary case using
Navon and Samorodnitsky’s Fourier-analytic approach.

I. INTRODUCTION

In traditional coding theory, one generally studies codes
where every coordinate is over the same alphabet (e.g., binary–
or, more generally, q-ary–codes). A rich body of knowledge
has been developed regarding constructions, and bounds on
the parameters, of such error-correcting codes.

However, in some circumstances this assumption might not
hold. Sidorenko et al. [20] suggested that this is the case
in orthogonal-frequency-division-multiplexing (OFDM) trans-
mission; it can also be viewed as a relaxation of the partially-
stuck-cell setting [1], where both sender and receiver are
aware (e.g., thorough periodic sampling) of which coordinates
have smaller alphabets. The authors further believe that this
generalization of classical error correction is of independent
theoretical interest (see, e.g., their study in [5, Ch. 7]).

Codes for the setting of varying alphabet sizes are named
mixed- (or polyalphabetic-) codes, and have been studied in the
past. In comparison to [6], [9]–[11], [14], [19], the codes we
consider are not necessarily perfect, and therefore can correct
more than a single error. On the other hand, [20] generalized
the Singleton bound to mixed codes, and presented construc-
tions of MDS codes, based on this bound and known MDS
“mother codes”, by letting alphabet sizes grow with respect
to the code block size. Similarly, [5, Cha. 7.3] constructed
diameter-perfect mixed codes that meet a code-anticode bound
proven therein, which also rely on unbounded alphabet sizes.
A special class of mixed codes, termed error-block codes, were
also studied in [7], [15], [21]. In contrast to these, we study
the setting where alphabet sizes are bounded.

The rest of this manuscript is organized as follows. In
Section II, we summarize the main contributions of this work.
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In Section III we present definitions and notations. Then, in
Section IV we study the size of Hamming spheres in this
space; in Section V we observe the list-decoding capabilities
of mixed codes by generalizing the first Johnson bound, and in
Section VI we develop lower- and upper bounds on the sizes
of mixed codes. Finally, in Section VII we demonstrate that
our bounds improve upon the known bound of [20, Th. 2], [5,
Cor. 2.15] in some settings.

II. MAIN CONTRIBUTION

Our contributions in this work are as follows:

(i) While [20] presented a Gilbert-Varshamov lower bound
and a sphere-packing upper bound based on a straight-
forward expression for sphere size, containing an expo-
nential number of terms, we develop a recursive formula
for the size of spheres which enables one to efficiently
compute exact sizes in any given case, resulting in said
bounds on code sizes.

(ii) We develop closed-form upper and lower bounds on the
size of spheres, yielding asymptotic expressions for the
size of balls which readily lend themselves to closed-
form statements of the asymptotic Gilbert-Varshamov and
sphere-packing bounds (more precisely, lower and upper
bounds on these, respectively).

(iii) In comparison to a known bound ([20, Th. 2] and [5,
Cor. 2.15], which curiously develop the same bound in
this context), we develop the equivalence of the Elias-
Bassalygo bound (in [2], and reported in [12]) and the
first linear-programming (LP) bound [13], [16] for mixed
codes, which we show are tighter, for codes with some
minimum distances, when alphabet sizes are bounded. In
particular, our treatment of the LP bound relies on Navon
and Samorodnitsky’s Fourier analysis approach [17]; to
our knowledge its restriction to fixed alphabet size is the
first time that a proof for the bound in the general q-ary
case (e.g., not only symmetric codes) is suggested using
these methods.

III. PRELIMINARIES

The pertinent space is defined as follows. For n ∈ N, take
some 1 < q1 6 q2 6 . . . 6 qn. For convenience we denote
[n] = {1, 2, . . . , n}. We let Q ,

∏n
i=1(Z/qiZ). This Cartesian

product should be interpreted as a (finite) product of (finite)
cyclic groups, with the resulting structure of a finite Abelian
group.



We endow Q with the Hamming metric, defined d(x, y) ,
wt(x − y), where wt(x) , |supp(x)|. We denote the sphere

of radius r around x ∈ Q in this metric by Sr(x) ,
{y ∈ Q : d(x, y) = r}, and the ball of radius r around x ∈ Q
by Br(x) , {y ∈ Q : d(x, y) 6 r}. We say a code

C ⊆ Q has minimum distance d if for all x, y ∈ C, x 6= y
implies d(x, y) > d. Let A(n, d), Ar(n, d), A6r(n, d) denote
the maximum size of code in Q, Sr(0), Br(0) respectively,
with minimal Hamming distance d.

The rate of a code C ⊆ Q is defined by R(C) , log|C|
log|Q| . For

0 6 δ 6 1 we shall be interested in the maximum achievable

rate

R(δ) ,
logA(n, ⌊δn⌋)

log|Q| . (1)

We will also be interested in an asymptotic analysis of R(δ)
as n grows to infinity; in these cases, we shall assume {qi} is
sampled from a fixed set of alphabet sizes, where the incidence
of each value is proportional to n.

Finally, we make the following notation for the arithmetic
and geometric means of the alphabet sizes {qi}ni=1:

q̂a ,
1

n

n
∑

i=1

qi; q̂g ,

(

n
∏

i=1

qi

)1/n

, (2)

as well as geometric and harmonic means of {qi − 1}ni=1:

q̂mg ,

(

n
∏

i=1

(qi − 1)

)1/n

+ 1; q̂mh ,
n

∑n
i=1

1
qi−1

+ 1. (3)

(Note that in our notation q̂mg−1, q̂mh−1 are the geometric and
harmonic means of {qi − 1}ni=1, respectively; further, q̂a − 1
is its arithmetic mean.)

Observe that q̂a > q̂g > q̂mg > q̂mh. Further, if n grows and
{qi}ni=1 is sampled as described above, q̂a, q̂g, q̂mg, q̂mh are fixed
with respect to n.

IV. SIZE OF SPHERES

In this section, we study the size of spheres Sr(x) in
Hamming distance on Q. Since the Hamming distance is
shift-invariant, we denote the size of the Hamming sphere
sr , |Sr(0)|, for 0 6 r 6 n. It was noted in [20, Eq. 5]
that sr =

∑

16i1<i2<...<ir6n

∏r
j=1(qij − 1); however, this

expression contains an exponential number of summands, and
is challenging to work with. In this section, we instead develop
a recursive expression for sr, which can be evaluated in
polynomial time, as well as develop bounds on it.

For convenience, we also denote for all I ⊆ [n], Sr(I) ,
{x ∈ Sr(0) : supp(x) ⊆ I} and sr(I) , |Sr(I)| (so that sr =
sr([n])). Then, observe the following:

Lemma 1 1) For all 0 6 r 6 n,
∑

i∈[n] sr([n] \ {i}) =
(n− r)sr.

2) For all 0 6 r < n,
∑

i∈[n](qi − 1)sr([n] \ {i}) = (r +
1)sr+1.

3) For all 0 6 r < n − 1,
∑

i∈[n](qi − 1)2sr([n] \ {i}) =
n(q̂a − 1)sr+1 − (r + 2)sr+2.

Proof:

1) Observe for x ∈ Sr(0) that x ∈ Sr([n] \ {i}) if and only
if i ∈ supp(x).

2) We note

(qi − 1)sr([n] \ {i}) = |{x ∈ Sr+1(0) : i ∈ supp(x)}|.

3) Observe
∑

i∈[n]

(qi − 1)2sr([n] \ {i})

= n(q̂a − 1)sr+1

−
∑

i∈[n]

(qi − 1)(sr+1 − (qi − 1)sr([n] \ {i}))

= n(q̂a − 1)sr+1 −
∑

i∈[n]

(qi − 1)sr+1([n] \ {i})

= n(q̂a − 1)sr+1 − (r + 2)sr+2.

Theorem 2 It holds that s0 = 1, and for 0 < r 6 n,

sr =
1

r

r−1
∑

k=0

(−1)ksr−1−k

∑

i∈[n]

(qi − 1)k+1.

Proof: That s0 = 1 is immediate. Then, for 0 < r 6 n
and 1 6 i 6 n, we note

sr([n] \ {i}) = sr([n])− (qi − 1)sr−1([n] \ {i})
= sr([n])− (qi − 1)

(

sr−1([n])

−(qi − 1)sr−2([n] \ {i})
)

= . . . =

r
∑

k=0

(−1)k(qi − 1)ksr−k.

Hence from part 2 of Lemma 1,

sr =
1

r

∑

i∈[n]

(qi − 1)sr−1([n] \ {i})

=
1

r

∑

i∈[n]

r−1
∑

k=0

(−1)k(qi − 1)k+1sr−1−k

=
1

r

r−1
∑

k=0

(−1)ksr−1−k

∑

i∈[n]

(qi − 1)k+1.

Observe that Theorem 2 suggests a polynomial-run-time
algorithm for computing sr and |Br(x)| =

∑r
k=0 sk.

Theorem 3 For 0 6 r < n, the ratio
(r+1)sr+1

(n−r)sr
is decreasing

in r; in particular,

(q̂mh − 1)(n− r)

r + 1
6

sr+1

sr
6

(q̂a − 1)(n− r)

r + 1
.

Proof: Firstly, observe that s1
s0

= n(q̂a − 1) and sn
sn−1

=
q̂mh−1

n , achieving the upper and lower bounds, respectively.
Hence the latter part of the claim follows from the former.

Next, substitute in the sequel ai , qi − 1 and bi , sr([n] \
{i}), and observe that ai (bi) is monotone non-decreasing



(non-increasing, respectively). Assume to the contrary that
(r+2)sr+2

(n−r−1)sr+1
> (r+1)sr+1

(n−r)sr
for some 0 6 r 6 n− 2; it follows

that

(n− r)(r + 1)(r + 2)sr+2sr > (n− r − 1)(r + 1)2s2r+1,

and from parts 1 to 3 of Lemma 1 this is equivalent to




∑

i∈[n]

bi













∑

i∈[n]

ai









∑

i∈[n]

aibi



− (r + 1)
∑

i∈[n]

a2i bi





> (n− r − 1)





∑

i∈[n]

aibi





2

.

Rearranging, we have




∑

i,j∈[n]

aibibj

((

∑

k∈[n]ak

)

− naj

)





> (r + 1)





∑

i,j∈[n]

aibibj(ai − aj)



.

Observe that the right-hand side is non-negative, since
∑

i,j∈[n]

aibibj(ai − aj)

=
1

2

∑

i,j∈[n]

(aibibj(ai − aj) + ajbjbi(aj − ai))

=
1

2

∑

i,j∈[n]

bibj(ai − aj)
2 > 0.

Hence, in particular,
∑

i,j∈[n]

aibibj

((

∑

k∈[n]ak

)

− naj

)

>
∑

i,j∈[n]

aibibj(ai − aj),

which we rearrange to

0 <
∑

i,j∈[n]

aibibj

((

∑

k∈[n]ak

)

− (n− 1)aj − ai

)

=
∑

i,j∈[n]

∑

k∈[n]\{i}

aibibj(ak − aj)

=
∑

i,j,k∈[n]

aibibj(ak − aj)−
∑

i,j∈[n]

aibibj(ai − aj)

=
1

2

∑

i,j,k∈[n]

aibi(bj − bk)(ak − aj)

− 1

2

∑

i,j∈[n]

bibj(aj − ai)
2 6 0,

in contradiction, where the last step follows from (bj −
bk)(ak − aj) 6 0 for all j, k.

We can now prove the following bounds on the size of
spheres:

Theorem 4 It holds that
(

n
r

)(

q̂mg − 1
)r

6 sr 6
(

n
r

)

(q̂a − 1)
r
.

Proof: For the right inequality, observe from Theorem 3
that

sr =

r−1
∏

k=0

sk+1

sk
6

r−1
∏

k=0

(q̂a − 1)(n− k)

k + 1
=

(

n

r

)

(q̂a − 1)
r
.

On the other hand, from the arithmetic and geometric mean
inequality we directly observe

sr =
∑

R⊆[n]
|R|=r

∏

i∈R

(qi − 1) >

(

n

r

)

(

∏

R⊆[n]
|R|=r

∏

i∈R

(qi − 1)

)1
/

(nr)

=

(

n

r

)

(

n
∏

i=1

(qi − 1)(
n−1

r−1)

)1
/

(nr)

=

(

n

r

)

(

q̂mg − 1
)r
.

Conjecture 5 Observe that s1 = n(q̂a − 1) and sn =
(

q̂mg − 1
)n

, achieving the upper and lower bounds of The-

orem 4, respectively. We conjecture that
(

sr
/(

n
r

))1/r
is also

decreasing, for 1 6 r 6 n.

Corollary 6 For 0 6 r 6
(

1− 1
q̂a

)

n it holds that

1
n+1 q̂

nHq̂mg (r/n)
mg 6 |Br(0)| 6 q̂

nHq̂a (r/n)
a .

where Hq(x) = x logq(q−1)−x logq(x)−(1−x) logq(1−x)
is the q-ary entropy function.

Proof: We rely on the well-known bounds on the size of
the q-ary Hamming ball (see, e.g., [18, Lemmas 4.7-8]), and
the bounds of Theorem 4.

V. JOHNSON RADIUS AND LIST-DECODABILITY

Definition 7 For q > 1 and δ < 1− 1
q we denote the Johnson

radius

Jq(δ) ,

(

1− 1

q

)

(

1−
√

1− δ

1− 1
q

)

.

Observe that δ
2 6 Jq(δ) 6 δ < 1 − 1

q . Essentially, for r <

Jq(d/n) · n it holds that qr2 > (q − 1)(2r − d)n.
We next follow the approach of [2, Lem.], and attributed to

Johnson in [8, Th. 7.3.1], to bound Ar(n, d), A6r(n, d):

Lemma 8 If q̂ar
2 > (q̂a − 1)(2r − d)n then

Ar(n, d) 6 A6r(n, d) 6
(q̂a − 1)nd

q̂ar2 − (q̂a − 1)(2r − d)n
.

Proof: That Ar(n, d) 6 A6r(n, d) follows from the
definitions. Denote then A , A6r(n, d), and build a matrix
with A rows, each an element of a maximum-size code in
Br(0). Hence

(a) Every row has at most r nonzero coordinates. (Here, the
meaning of 0 depends on the column, but this fact has
no effect on our argument, and will be ignored).



(b) The coordinate-wise difference of any two distinct rows
has at least d nonzero coordinates.

For 1 6 i 6 n and any j ∈ Z/qiZ, we let ki,j denote the
number of incidences of j in the i’s column of our matrix.
Then we observe

n
∑

i=1

∑

06=j∈Z/qiZ

ki,j 6 Ar;

n
∑

i=1

∑

j∈Z/qiZ

ki,j = An.

We note that the total number of nonzero elements in the
A(A − 1) differences of any two distinct rows (when order
is considered) is

∑n
i=1

∑

j∈Z/qiZ
ki,j(A − ki,j). This num-

ber is at least A(A − 1)d, by assumption. Then, denoting
ρ , 1

A

∑n
i=1

∑

06=j∈Z/qiZ
ki,j 6 r,

A(A− 1)d 6

n
∑

i=1

∑

j∈Z/qiZ

ki,j(A− ki,j)

= A

n
∑

i=1

∑

j∈Z/qiZ

ki,j −
n
∑

i=1

∑

06=j∈Z/qiZ

k2i,j −
n
∑

i=1

k2i,0

6 A2n− A2ρ2
∑n

i=1(qi − 1)
− A2(n− ρ)2

n
,

where the last inequality uses Titu’s lemma. By rearrangement
of addends and multiplication by (q̂a−1)n

A :

(q̂a − 1)nd > A
[

q̂aρ
2 − (q̂a − 1)(2ρ− d)n

]

= A

[

(q̂a − 1)nd− (q̂a − 1)2

q̂a

(

n2 −
(

n− ρ

1− 1/q̂a

)2
)]

> A

[

(q̂a − 1)nd− (q̂a − 1)2

q̂a

(

n2 −
(

n− r

1− 1/q̂a

)2
)]

= A
[

q̂ar
2 − (q̂a − 1)(2r − d)n

]

.

The claim follows directly.

Corollary 9 Take a code C ⊆ Q with minimum distance d,

0 < d <
(

1− 1
q̂a

)

n. For any ρ ∈ N, ρ < Jq̂a(d/n) · n, and

any x ∈ Q, it holds that |C ∩Bρ(x)| 6 (q̂a − 1)dn.

Proof: From the shift-invariance of the Hamming dis-
tance, C∩Bρ(x) = (C−x)∩Bρ(0), implying |C ∩Bρ(x)| 6
A6ρ(n, d). Then, by assumption we have q̂aρ

2 > (q̂a −
1)(2ρ − d)n, and since all quantities are integers, q̂aρ

2 >
1 + (q̂a − 1)(2ρ − d)n. Finally, observe from Lemma 8 that
A6ρ(n, d) 6

(q̂a−1)nd
q̂aρ2−(q̂a−1)(2ρ−d)n 6 (q̂a−1)nd, as required.

The last corollary establishes a number of errors beyond
⌊

d−1
2

⌋

in which codes with minimum distance d allow list-
decoding with list size quadratic in n, although unique decod-
ing is no longer assured. Indeed, we note from Jq̂a(δ) > δ

2

that for sufficiently large n, ρ , ⌈Jq̂a(d/n) · n⌉− 1 >
⌊

d−1
2

⌋

.

VI. BOUNDS

In this section, we explore generalizations of known bounds
on mono-alphabetic q-ary codes. We first present the known
‘Singleton-like’ bound [20, Th. 2], which is also developed

as a ‘code-anticode’ bound [5, Cor. 2.15] with the diameter-
(d− 1) anticode

(

∏n−d+1
i=1 {0}

)

×
(
∏n

i=n−d+2(Z/qiZ)
)

:

Theorem 10 If C ⊆ Q has minimum distance d, then

|C| 6
n−d+1
∏

i=1

qi.

Next, we start with a corollary of the bounds of the last
section; these are asymptotic version of the Gilbert-Varshamov
and sphere-packing bounds.

Corollary 11 For 0 6 δ 6 1− 1
q̂a

it holds that

1− log(q̂a)
log(q̂g)

Hq̂a(δ) + o(1) 6 R(δ)

6 1− log(q̂mg)
log(q̂g)

Hq̂mg(
δ
2 ) + o(1)

Proof: We utilize well-known proofs for these bounds
(e.g., [18, Ch. 4.5]), based on Corollary 6.

A. Elias-Bassalygo bound

In this section we pursue a parallel to the Elias-Bassalygo
bound for mixed codes. We start with a proof of the Elias-

Bassalygo inequality (see, e.g., a corollary in [2, Eq. 5]), also
referred to in [5, Eq. 2.2] as the local inequality lemma.

Lemma 12 For all r 6 n, it holds that A(n, d) 6
|Q|
sr

Ar(n, d).

Proof: Take some maximum size code C ⊆ Q with
minimum distance d. We observe that for each c ∈ C, there
exist exactly sr distinct x ∈ Q such that x + c ∈ Sr(0). It
follows that

∑

x∈Q|(x+ C) ∩ Sr(0)| = sr|C| = srA(n, d).
By the pigeonhole principle there must exist x ∈ Q such
that |(x + C) ∩ Sr(0)| > srA(n,d)

|Q| . Note that (x+C)∩Sr(0)

is a code in Sr(0) with minimum distance d (the Hamming
distance is shift invariant), hence Ar(n, d) > srA(n,d)

|Q| , as
required.

Corollary 13 For d <
(

1− 1
q̂a

)

n and r < Jq̂a(d/n) · n it

holds that

A(n, d) 6
|Q|
sr

· (q̂a − 1)nd

q̂ar2 − (q̂a − 1)(2r − d)n
.

Proof: The claim follows from Lemmas 8 and 12.

Corollary 14 For δ <
(

1− 1
q̂a

)

it holds that

R(δ) 6 1− log(q̂mg)
log(q̂g)

Hq̂mg(Jq̂a(δ)) + o(1).

Proof: We denote dn , ⌊δn⌋ and let rn ,
⌊

(

1− 1
q̂a

)

[

1−
√

1− (dn−1)/n

1− 1
q̂a

]

n

⌋

; then by Corollary 13

A(n, dn) 6
|Q|
srn

· dn.



Next, by Theorem 4

logA(n, dn) 6 log|Q| − log
(

n
rn

)

− rn log(q̂mg − 1) + log(dn)

= log|Q| − (log(2)nH2(rn/n)−O(log n))

− rn log(q̂mg − 1) + log(dn)

= log|Q| − log(q̂mg)nHq̂mg(rn/n) +O(log n),

which concludes the proof.
Before concluding, we observe from Jq̂a(δ) > δ

2 that Corol-
lary 14 is tighter than the sphere-packing upper bound of
Corollary 11.

B. First linear-programming bound

We adapt techniques utilized in [3] for a Fourier analytic
approach to the development of the first linear-programming
bound on q-ary codes (first developed in the binary case by
McEliece et al. [16] and later generalized by Levenshtein [13]),
to the case of mixed codes. These methods draw on a similar
treatment of the binary case in [17]. We stress that [3] proved
the bound in the mono-alphabetic q-ary case for a class of
symmetric codes (containing all linear codes, and, in the binary
case, all codes); our analysis shows that this requirement can
be dropped (since q-ary codes are a private case of our setting,
our results directly apply to that case as well). We also choose
to more rigorously treat the Fourier duality.

The Hamming metric on Q is fully represented by the
graph on vertex set Q, where x, y ∈ Q are connected by
an (undirected) edge if and only if d(x, y) = 1. That is, for
any x, y ∈ Q it holds that d(x, y) is also the graph distance of
x, y (i.e., the length of the shortest path in the graph between
x, y). Motivated by this fact, throughout this section we let A
be the adjacency matrix of this graph. By abuse of notation,
we let A operate on functions f : Q → C by considering f to
be an |Q|-tuple over C (indexed identically to A).

The purpose of this section is to develop an upper bound
on R(δ), parallel to the first linear-programming bound. The
methods we use rely on Fourier analysis in finite Abelian
groups; due to space limitation, we delegate to an arXiv.org
version of this manuscript [22] a review of basic notions,
mostly based on [4], as well as proofs for two main proposi-
tions necessary for this section, Theorem 16 and Corollary 17.

Definition 15 For a subset B ⊆ Q, we define the maximum
eigenvalue of B by

λB , max

{ 〈Af , f〉
〈f , f〉 : f : Q → R, supp(f) ⊆ B

}

.

It is the maximum eigenvalue of the minor of A corresponding

to B; i.e., the adjacency matrix of the subgraph of the

Hamming graph spanned by the elements of B. Since the

entries of A are non-negative, by Perron’s theorem, λB is non-

negative, greater than or equal to the absolute value of any

other eigenvalue, and there exists a non-negative eigenfunction

fB : Q → R, fB > 0, of λB (that is, AfB = λBfB).

Theorem 16 Let C ⊆ Q be a code with minimum distance d.

Take a symmetric B ⊆ Q such that λB > (n+ 1)(q̂a − 1)−
∑d

i=1 qi. Then

|C| 6 n|B|.

Corollary 17 Take 2
√
n < r 6 n. Then λBr(0) >

2
√

(q̂a − 1)r(n− r) + (q̂a − 2)r + o(n).

Based on these results, we can now show the following.

Theorem 18 Denote

ρ =
n

q̂a

(

(q̂a − 1)− (q̂a − 2)δ̌ − 2
√

(q̂a − 1)δ̌
(

1− δ̌
)

)

,

where δ̌ , 1
q̂an

∑d
i=1 qi. If C ⊆ Q has minimum distance d,

then

log|C| 6 n log(q̂a)Hq̂a(ρ/n) + o(n).

Proof: We find the solution in r to the equation
2
√

(q̂a − 1)r(n− r) + (q̂a − 2)r = (q̂a − 1)n −
∑d

i=1 qi =
(q̂a − 1)n− q̂anδ̌. Indeed, this equation holds if and only if

4(q̂a − 1)r(n− r) = (q̂a − 2)2r2

− 2(q̂a − 2)
(

(q̂a − 1)n− q̂anδ̌
)

r

+
(

(q̂a − 1)n− q̂anδ̌
)2

⇐⇒ 0 = q̂2ar
2

− 2nq̂a
(

(q̂a − 1)− (q̂a − 2)δ̌
)

r

+ n2
(

(q̂a − 1)− q̂aδ̌
)2
.

This implies the two solutions

r± =
n

q̂a

(

(q̂a − 1)− (q̂a − 2)δ̌ ± 2
√

(q̂a − 1)δ̌
(

1− δ̌
)

)

(trivially, ρ = r− < r+). It follows from Theorem 16
and Corollary 17 that |C| 6 n|Br(0)| for r = ρ + o(n), and
from Corollary 6 we obtain the claim.

VII. CONCLUSION

In conclusion, we refer the reader to the arXiv.org ver-
sion of this manuscript [22] for plots of the lower bound
of Corollary 11 with the upper bounds of Corollary 14
and Theorem 18, in comparison to the known upper bound
of Theorem 10, in some special cases. These demonstrate that
our proven bounds compete with the known one for some
choices of alphabet sizes and normalized minimum distance.
In principle, our bounds are more competitive for smaller
alphabet sizes (which can be expected, given that the Singleton
bound is already competitive in the mono-alphabetic 64-ary
case), and for distributions of alphabet sizes closer to the
mono-alphabetic case.

A natural question is whether efficiently en-/decodable
codes can be constructed to approach these bounds; we dele-
gate an answer for this question to a future work.
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