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Abstract—Motivated by the rank-modulation scheme with
applications to flash memory, we consider Gray codes capable of
detecting a single error, also known as snake-in-the-box codes.
We study two error metrics: Kendall’s τ-metric, which applies to
charge-constrained errors, and the `∞-metric, which is useful in
the case of limited-magnitude errors. In both cases we construct
snake-in-the-box codes with rate asymptotically tending to 1.

Index Terms—Snake-in-the-box codes, rank modulation, per-
mutations, flash memory

I. INTRODUCTION

Flash memory is a non-volatile storage medium which is
electrically programmable and erasable. Its current wide use
is motivated by its high storage density and relative low cost.
Among the chief disadvantages of flash memories is their
inherent asymmetry between cell programming (injecting cells
with charge) and cell erasure (removing charge from cells).
While single cells can be programmed with relative ease,
in the current architecture, the process of erasure can only
be performed by completely depleting large blocks of cells
of their charge. Moreover, the removal of charge from cells
physically damages them over time.

This issue is exacerbated as a result of the ever-present
demand for denser memory: smaller cells are more delicate,
and are damaged faster during erasure. They also contain less
charge and are therefore more prone to error. In addition, flash
memories, at present, use multilevel cells, where charge-levels
are quantized to simulate a finite alphabet – the more levels,
the less safety margins are left, and data integrity is compro-
mised. Thus, over-programming (increasing a cell’s charge-
level above the designated mark) is a real problem, requiring
a costly and damaging erasure cycle. Hence, in a programming
cycle, charge-levels are usually made to gradually approach the
desirable amount, making for lengthier programming cycles as
well (see [3]).

In an effort to counter these effects, a different modulation
scheme has recently been suggested for flash memories – rank
modulation [11]. This scheme calls for the representation of
the data stored in a group of cells in the permutation suggested
by their relative charge-levels. That is, if c1, c2, . . . , cn ∈ R

represent the charge-levels of n ∈N cells, then that group of
cells is said to encode that permutation σ ∈ Sn such that:

cσ(1) > cσ(2) > . . . > cσ(n) > 0.
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This scheme eliminates the need for discretization of charge-
levels. In addition, rank modulation also improves the mem-
ory’s robustness against other noise types. Retention, the
process of slow charge leakage from cells, tends to affect all
cells with a similar trend [3]. Since rank modulation stores
information in the differences between charge-levels rather
than their absolute values, it offers more resilience against that
type of noise. It is also worth noting that the advantages of
rank modulation have been experimentally applied to phase-
change memory with promising results (see [16]).

The Gray code [8] was first introduced as a sequence of
distinct binary vectors of fixed length, where every adjacent
pair differs in a single coordinate. It has since been gener-
alized to sequences of states over other spaces, where each
state is derived from the former by a transformation from a
predetermined set of allowed transformations (see [17] for an
excellent survey). Among these, [11] studied Gray odes over
permutations, and presented such codes traversing the entire
group of permutations. In this fashion, it was suggested that
a set of n rank-modulation cells could implement a single
logical multilevel cell with n! levels, where increasing the
logical cell’s level by 1 corresponds to a single transition in the
code. This allows for a natural integration of rank modulation
with other multilevel approaches such as rewriting schemes
[4], [9], [10], [21]. This was done by restricting the allowed
transformations to “push-to-the-top” operations, namely only
programming a group of cells by increasing the charge-level
of a single cell above that of all other cells in the group. The
use of such Gray codes allows for faster cell programming
and eliminates overshoot problems (see [11]). In the context
of flash memory, “push-to-the-top” operations have also been
used in [6], [7]. We also note that generating permutations
using “push-to-the-top” operations is of independent interest,
called “nested cycling” in [18] (see also references therein),
motivated by a fast “push-to-the-top” operation1 (cycling)
available on some computer architectures.

Other recent works have explored error-correcting codes for
rank modulation, where different types of errors are addressed
by a careful choice of metric. In [2], [12], [15], Kendall’s τ-
metric was considered, since a small charge-constrained error

1The operations described in [18] are actually mirror images of “push-
to-the-top” . Furthermore, the permutation-generation scheme there is not a
Gray code since it repeats some of the previously generated permutations,
also making it inefficient.



translates into a small distance in the metric. In contrast, the
`∞-metric was used in [14], [19], as small distances in this
metric correspond to small limited-magnitude errors.

In this paper, we explore Gray codes for rank modulation
which detect a single error, under Kendall’s τ-metric (further
results in the `∞-metric are mentioned in the conclusion to
this paper). Such codes are known as snake-in-the-box codes,
and have been studied extensively for binary vectors with
the Hamming metric and with single-bit flips as allowable
transitions (see [1] and references therein).

The paper is organized as follows: In Section II we present
basic notation and definitions. In Section III we review prop-
erties of Kendall’s τ-metric, then present a recursive construc-
tion of snake-in-the-box codes over the alternating groups of
odd orders with rate asymptotically tending to 1. We conclude
in Section IV with a description of further results given without
proof, along with some ad-hoc results, and open questions.
Some proofs for stated results are omitted due to the limited
space; they can be found in the journal version of this work,
to appear in [22].

II. PRELIMINARIES

We shall denote a permutation σ on n elements by σ =
[σ(1), σ(2), . . . , σ(n)]. This form is called the vector notation
for permutations. We let Sn be the group of all permutations
on [n]. For σ, τ ∈ Sn, their composition, denoted στ, is the
permutation for which στ(i) = σ(τ(i)) for all i ∈ [n]. It is
well known that |Sn| = n!.

A cycle, denoted (a1, a2, . . . , ak), is a permutation mapping
ai 7→ ai+1 for all i ∈ [k − 1], as well as ak 7→ a1. We
shall occasionally use cycle notation in which a permutation
is described as a composition of cycles. We also recall that
any permutation may be represented as a composition of
cycles of size 2 (known as transpositions), and that the parity
of the number of transpositions does not depend on the
decomposition. Thus we have even and odd permutations. We
let An be the subgroup of all even permutations on [n], called
the alternating group of order n. Again, it is well known that
|An| = 1

2 |Sn|.

Definition 1. Given a set S and a subset of transformations T ⊆
{ f | f : S→ S}, a Gray code over S, using transitions T, of
size M, is a sequence C = (c0, c1, . . . , cM−1) of M distinct
elements of S, called codewords, such that for all j ∈ [M− 1]
there exists t ∈ T such that cj = t(cj−1).

Alternatively, when the original permutation c0 is known
(or irrelevant), we use a slight abuse of notation in referring
to the sequence of transformations (tk1 , . . . , tkM−1) generating
the code (i.e., cj = tkj

(cj−1)) as the code itself.
In the above definition, when M = |S| the Gray code is

called complete. If there exists t ∈ T such that t (cM−1) =
c0 the Gray code is cyclic, M is called its period, and we
shall, when listing the code by its sequence of transformations,
include tkM = t at the end of the list. The rate of C, denoted

R(C), is defined as

R(C) =
log2 M
log2 |S|

.

In the context of rank modulation for flash memories,
the set of transformations T comprises of “push-to-the-top”
operations, first used in [11], and later also in [7], [20]. We
denote by ti : Sn → Sn the “push-to-the-top” operation on
index i, i.e.,

ti[a1, a2, . . . , ai−1, ai, ai+1, . . . , an] =

= [ai, a1, a2, . . . , ai−1, ai+1, . . . , an],

and throughout the paper we set T = {t2, t3, . . . , tn}. We also
note that, in cycle notation,

tiσ = σ (i, i− 1, . . . , 1) . (1)

For ease of presentation only, we also denote by ti the
“push-to-the-bottom” operation on index n + 1− i, i.e.,

ti[a1, a2, . . . , an−i, an+1−i, an+2−i, . . . , an] =

= [a1, a2, . . . , an−i, an+2−i, . . . , an, an+1−i].

Let d : S× S → N ∪ {0} be a distance function inducing
a metric M over S. Given a transmitted codeword c ∈ C and
its received version c̃ ∈ S, we say a single error occurred
if d(c, c̃) = 1. We are interested in Gray codes capable of
detecting single errors, which we now define.

Definition 2. LetM be a metric over S induced by a distance
measure d. A snake-in-the-box code over M and S, using
transitions T, is a Gray code C over S and using T, in which
for every pair of distinct elements c, c′ ∈ C, c 6= c′, one has
d (c, c′) > 2.

Since throughout this paper our ambient space is Sn, and the
transformations we use are the “push-to-the-top” operations T,
we shall abbreviate our notation and call a snake-in-the-box
code of size M an (n, M,M)-snake, or anM-snake. We will
be considering two metrics in the next sections: Kendall’s τ-
metric, K, and the `∞-metric, with their respective K-snakes
and `∞-snakes.

III. KENDALL’S τ-METRIC AND K-SNAKES

Kendall’s τ-metric [13], denoted K, is induced by the
bubble-sort distance which measures the minimal amount of
adjacent transpositions required to transform one permutation
into the other. For example, the distance between the permu-
tations [2, 1, 4, 3] and [2, 4, 3, 1] is 2, as

[2, 1, 4, 3]→ [2, 4, 1, 3]→ [2, 4, 3, 1]

is a shortest sequence of adjacent transpositions between the
two. More formally, for α, β ∈ Sn, as noted in [12],

dK(α, β) = |{(i, j) | α(i) < α(j) ∧ β(i) > β(j)}| .

The metric K was first introduced by Kendall [13] in the
study of ranking in statistics. It was observed in [12] that a
bounded distance in Kendall’s τ-metric models errors caused



by bounded changes in charge-levels of cells in the flash
memory. Error-correcting codes for this metric were studied
in [2], [12], [15].

We let Kendall’s τ adjacency graph of order n ∈ N be
the graph Gn = (Vn, En) whose vertices are permutations on
n elements (i.e., Vn = Sn), and {α, β} ∈ En if and only
if dK(α, β) = 1. It is well known that Kendall’s τ-metric is
graphic [5], i.e., for every α, β ∈ Sn, dK(α, β) equals the
length of the shortest path between the two in Gn.

A. Construction

We begin the construction process by restricting ourselves
to Gray codes using only “push-to-the-top” operations on odd
indices. The following lemma provides the motivation for this
restriction.

Lemma 3. A Gray code over Sn using only “push-to-the-top”
operations on odd indices is a K-snake.

Lemma 3 saves us the need to check whether a Gray
code is in fact a K-snake, at the cost of restricting the set
of allowed transitions (and the size of the resulting code,
although Theorems 12,13, presented below, work to mitigate
this concern). In particular, if n is even, the last element cannot
be moved.

By starting with an even permutation, and using only “push-
to-the-top” operations on odd indices, we get a sequence of
even permutations. Thus, throughout this part, the context of
the alternating group A2n+1 is assumed, where n ∈N.

The construction we are about to present is recursive in na-
ture. As a base for the recursion, we note that three consecutive
“push-to-the-top” operations on the 3rd index of permutations
in A3 constitute a complete cyclic (3, 3,K)-snake:

C3 = ([1, 2, 3], [3, 1, 2], [2, 3, 1]) .

We shall extend C3 to the next order as a running example
alongside the general construction below.

Now, assume that there exists a cyclic (2n− 1, M2n−1,K)-
snake, C2n−1, and let tk1 , tk2 , . . . , tkM2n−1

be the sequence
of transformations generating it, where k j is odd for all
j ∈ [M2n−1]. We also assume that k1 = 2n − 1 (this
requirement, while perhaps appearing arbitrary, is actually
quite easily satisfied. Indeed, every sufficiently large cyclic
K-snake over S2n−1 must, w.l.o.g., satisfy it. We shall make
it a point to demonstrate that this holds for our construction).

We fix arbitrary values for a0, a1, . . . , a2n−2 such that

{a0, a1, . . . , a2n−2} = [2n + 1] \ {1, 3} . (2)

For all i ∈ [2n− 1] we define

σ
(i)
0 = [1, ai, 3, ai+1, . . . , ai+2n−2],

where the indices are taken modulo 2n− 1, and such that we
indeed have σ

(i)
0 ∈ A2n+1, i.e., σ

(i)
0 is an even permutation

(one simple way of achieving this is to choose them in
ascending order).

Example 4. We recall that C3 is generated by the operations
(t3, t3, t3), which satisfy our requirement. As suggested above,

we order [5] \ {1, 3} in ascending order, i.e., (a0, a1, a2) =
(2, 4, 5). We define the following permutations as starting
points for our construction

σ
(0)
0 = σ

(3)
0 = [1, 2, 3, 4, 5] σ

(1)
0 = [1, 4, 3, 5, 2] σ

(2)
0 = [1, 5, 3, 2, 4]

and readily verify that they are all even. 2

We now define for all i ∈ [2n− 1] and j ∈ [M2n−1] the
permutation

σ
(i)
j(2n+1) = tkj

(
σ
(i)
(j−1)(2n+1)

)
,

i.e., we construct cycles corresponding to a mirror view of
C2n−1 on all but the two first elements of σ

(i)
0 (which, as we

recall, are (1, ai)).

Example 5. In our running example, we define the following
permutations:

σ
(0)
5 = t3σ

(0)
0 = [1, 2, 4, 5, 3]

σ
(0)
10 = t3σ

(0)
5 = [1, 2, 5, 3, 4]

σ
(0)
15 = t3σ

(0)
10 = [1, 2, 3, 4, 5]

σ
(1)
5 = t3σ

(1)
0 = [1, 4, 5, 2, 3]

σ
(1)
10 = t3σ

(1)
5 = [1, 4, 2, 3, 5]

σ
(1)
15 = t3σ

(1)
10 = [1, 4, 3, 5, 2]

σ
(2)
5 = t3σ

(2)
0 = [1, 5, 2, 4, 3]

σ
(2)
10 = t3σ

(2)
5 = [1, 5, 4, 3, 2]

σ
(2)
15 = t3σ

(2)
10 = [1, 5, 3, 2, 4]

and resume our construction. 2

We now note the following properties of our construction:

Lemma 6. Let i, k ∈ [2n − 1] and j, l ∈ [M2n−1]. The
following are equivalent:

1) The permutations σ
(i)
j(2n+1) and σ

(k)
l(2n+1) are cyclic shifts

of each other.
2) σ

(i)
j(2n+1) = σ

(k)
l(2n+1).

3) i = k and j = l.

Proof: First, if σ
(i)
j(2n+1) is a cyclic shift of σ

(k)
l(2n+1), since

σ
(i)
j(2n+1)(1) = 1 = σ

(k)
l(2n+1)(1)

then necessarily

σ
(i)
j(2n+1) = σ

(k)
l(2n+1).

It then follows that

ai = σ
(i)
j(2n+1)(2) = σ

(k)
l(2n+1)(2) = ak,

hence i = k. Moreover, since the two permutations’ last n− 1
elements agree, and tk1 , tk2 , . . . , tkM2n−1

induce a Gray code,
we necessarily have j = l.

Finally, that the last statement implies the first is trivial.

Lemma 7. For all i ∈ [2n− 1] it holds that

σ
(i)
M2n−1(2n+1) = σ

(i)
0 .

Proof: The transformations tk1 , tk2 , . . . , tkM2n−1
induce a

cyclic code, and the claim follows directly.



Therefore we have constructed 2n− 1 cycles comprised of
cyclically non-equivalent permutations (although, at this point
they are not generated by “push-to-the-top” operations).

It shall now be noted that

tk = t2n
2n+1t2n+2−k.

Hence, if we define for all i ∈ [2n− 1], 0 6 j < M2n−1, and
1 < m 6 2n, the permutations

σ
(i)
j(2n+1)+1 = t2n+2−kj+1

σ
(i)
j(2n+1)

σ
(i)
j(2n+1)+m = tm−1

2n+1σ
(i)
j(2n+1)+1,

then it holds that

σ
(i)
(j+1)(2n+1) = t2n+1σ

(i)
j(2n+1)+2n.

Our observation from one paragraph above means that at
this point we have 2n − 1 disjoint cycles, which we conve-
niently denote

C(i)
2n+1 =

(
σ
(i)
0 , σ

(i)
1 , . . . , σ

(i)
M2n−1(2n+1)−1

)
,

for all i ∈ [2n − 1] (for ease of notation, we let C(0)
2n+1 =

C(2n−1)
2n+1 ).

Example 8. In our construction, the cycles we produced are:

σ
(0)
0 = [1, 2, 3, 4, 5] σ

(1)
0 = [1, 4, 3, 5, 2] σ

(2)
0 = [1, 5, 3, 2, 5] ↓ t3

σ
(0)
1 = [3, 1, 2, 4, 5] σ

(1)
1 = [3, 1, 4, 5, 2] σ

(2)
1 = [3, 1, 5, 2, 4] ↓ t5

σ
(0)
2 = [5, 3, 1, 2, 4] σ

(1)
2 = [2, 3, 1, 4, 5] σ

(2)
2 = [4, 3, 1, 5, 2] ↓ t5

σ
(0)
3 = [4, 5, 3, 1, 2] σ

(1)
3 = [5, 2, 3, 1, 4] σ

(2)
3 = [2, 4, 3, 1, 5] ↓ t5

σ
(0)
4 = [2, 4, 5, 3, 1] σ

(1)
4 = [4, 5, 2, 3, 1] σ

(2)
4 = [5, 2, 4, 3, 1] ↓ t5

σ
(0)
5 = [1, 2, 4, 5, 3] σ

(1)
5 = [1, 4, 5, 2, 3] σ

(2)
5 = [1, 5, 2, 4, 3] ↓ t3

σ
(0)
6 = [4, 1, 2, 5, 3] σ

(1)
6 = [5, 1, 4, 2, 3] σ

(2)
6 = [2, 1, 5, 4, 3] ↓ t5

σ
(0)
7 = [3, 4, 1, 2, 5] σ

(1)
7 = [3, 5, 1, 4, 2] σ

(2)
7 = [3, 2, 1, 5, 4] ↓ t5

σ
(0)
8 = [5, 3, 4, 1, 2] σ

(1)
8 = [2, 3, 5, 1, 4] σ

(2)
8 = [4, 3, 2, 1, 5] ↓ t5

σ
(0)
9 = [2, 5, 3, 4, 1] σ

(1)
9 = [4, 2, 3, 5, 1] σ

(2)
9 = [5, 4, 3, 2, 1] ↓ t5

σ
(0)
10 = [1, 2, 5, 3, 4] σ

(1)
10 = [1, 4, 2, 3, 5] σ

(2)
10 = [1, 5, 4, 3, 2] ↓ t3

σ
(0)
11 = [5, 1, 2, 3, 4] σ

(1)
11 = [2, 1, 4, 3, 5] σ

(2)
11 = [4, 1, 5, 3, 2] ↓ t5

σ
(0)
12 = [4, 5, 1, 2, 3] σ

(1)
12 = [5, 2, 1, 4, 3] σ

(2)
12 = [2, 4, 1, 5, 3] ↓ t5

σ
(0)
13 = [3, 4, 5, 1, 2] σ

(1)
13 = [3, 5, 2, 1, 4] σ

(2)
13 = [3, 2, 4, 1, 5] ↓ t5

σ
(0)
14 = [2, 3, 4, 5, 1] σ

(1)
14 = [4, 3, 5, 2, 1] σ

(2)
14 = [5, 3, 2, 4, 1] � t5

where the permutations in bold are those from Example 5. 2

Each of the cycles of size (2n + 1)M2n−1, is generated
by “push-to-the-top” operations, and contains all cyclic shifts
of elements present in our previous version of that cycle. We
merge these cycles into a single cycle in the following theorem.

Theorem 9. Given a cyclic (2n − 1, M2n−1,K)-snake using
only “push-to-the-top” operations on odd indices such that its
first transformation is t2n−1, there exists a cyclic K-snake over
S2n+1 with the same properties, whose size is

M2n+1 = (2n− 1)(2n + 1)M2n−1.

Proof: Since k1 = 2n− 1, it holds for all i ∈ [2n− 1] that
σ
(i)
1 = t3σ

(i)
0 , and we recall σ

(i)
2 = t2n+1σ

(i)
1 . More explicitly,

σ
(i)
1 = [3, 1, ai, ai+1, . . . , ai+2n−2]

σ
(i)
2 = [ai+2n−2, 3, 1, ai, ai+1, . . . , ai+2n−3] ,

where, again, the indices are taken modulo 2n− 1. Thus for
all i ∈ [2n− 2] we have

t3σ
(i)
1 = [ai, 3, 1, ai+1, . . . , ai+2n−2] = σ

(i+1)
2

and t3σ
(2n−1)
1 = σ

(1)
2 .

Let E denote the left-shift operator, and so

E2C(i)
2n+1 =

(
σ
(i)
2 , σ

(i)
3 , . . . , σ

(i)
M2n−1(2n+1)−1, σ

(i)
0 , σ

(i)
1

)
.

By the observations made above we conclude that

C2n+1 = E2C(0)
2n+1, E2C(1)

2n+1, . . . , E2C(2n−2)
2n+1

is a cyclic (2n + 1, M2n+1,K)-snake, consisting of

M2n+1 = (2n− 1)(2n + 1)M2n−1

permutations. A careful observation readily shows that C2n+1
has t2n+1 for its first generating transformation.

Example 10. Our running example ends with the full con-
struction of a (5, 45,K)-snake, C5, from Theorem 9. The down
arrows stand for an omitted sequence of t5 transformations. The
transition from column to column uses a single t3 transforma-
tion.

[5, 3, 1, 2, 4] σ
(0)
2

↓ ↓
[1, 2, 4, 5, 3] σ

(0)
5

[4, 1, 2, 5, 3] σ
(0)
6

↓ ↓
[1, 2, 5, 3, 4] σ

(0)
10

[5, 1, 2, 3, 4] σ
(0)
11

↓ ↓
[1, 2, 3, 4, 5] σ

(0)
0

[3, 1, 2, 4, 5] σ
(0)
1

[2, 3, 1, 4, 5] σ
(1)
2

↓ ↓
[1, 4, 5, 2, 3] σ

(1)
5

[5, 1, 4, 2, 3] σ
(1)
6

↓ ↓
[1, 4, 2, 3, 5] σ

(1)
10

[2, 1, 4, 3, 5] σ
(1)
11

↓ ↓
[1, 4, 3, 5, 2] σ

(1)
0

[3, 1, 4, 5, 2] σ
(1)
1

[4, 3, 1, 5, 2] σ
(2)
2

↓ ↓
[1, 5, 2, 4, 3] σ

(2)
5

[2, 1, 5, 4, 3] σ
(2)
6

↓ ↓
[1, 5, 4, 3, 2] σ

(2)
10

[4, 1, 5, 3, 2] σ
(2)
11

↓ ↓
[1, 5, 3, 2, 4] σ

(2)
0

[3, 1, 5, 2, 4] σ
(2)
1

2

We now turn to consider the size and rate of the constructed
codes, and show that their rate asymptotically tends to 1.

Theorem 11. The size of K-snakes constructed in Theorem 9
behaves asymptotically as

|C2n+1| = M2n+1 =
(2n)!(2n + 1)!

n!2 · 22n ∼ 1√
πn
|S2n+1| ,

which leads to an asymptotic rate of 1.

One observes that the codes Cn+1 utilize the transformation
t2n+1 overwhelmingly more than any other. This property
allows one to calculate the transformation required to advance
any given permutation in the code to its successor in O(1)
amortized run time. In addition, the recursive nature of Theo-
rem 9 lends itself to the ranking and unranking of permutations
in the code (that is, the processes of attaching to a given
permutation its position in the code, and vice versa) in O(n2)
run time. Methods of achieving these tasks are presented
and analyzed in [22]. Together, they facilitate the use of the
codes C2n+1 in the implementation of logic memory cells, by
allowing one to increase the cell’s ‘level’ as well as directly
write data to it (and naturally, to read written data as well).



IV. CONCLUSION

In this paper we explored rank-modulation snake-in-the-box
codes under Kendall’s τ-metric, and presented a construction
yielding codes with rates asymptotically tending to 1. Some
results w.r.t. bounds on the size of such codes were also
proven in [22], which can be summarized by the following
two theorems:

Theorem 12. If C is an (n, M,K)-snake then
1) M 6 1

2 |Sn|.
2) M = 1

2 |Sn| if and only if for all {α, β} ∈ En it holds
that α ∈ C or β ∈ C.

Theorem 13. If an (n, M,K)-snake C contains a “push-to-the-
top” operation on an even index then

M 6
1
2
|Sn| −

1
n− 1

(
n− 3

2

)
.

However, it is not presently known whether these bounds are
achievable, and therefore we are unable to determine how close
the codes generated by our construction come to being optimal
with respect to their sizes (rather than their asymptotic rates).
A computer search for cyclic codes, performed on S5, yielded
(5, M,K)-snakes of maximal size M = 57 (for comparison,
the construction from Theorem 9 yields a (5, 45,K)-snake).
While an abundance of such codes were found (well over 500
nonequivalent codes), they all were in fact codes over A5.

It shall be noted that a complete (but not cyclic) (5, 60,K)-
snake over A5 can also be constructed by amending the
code presented in Example 10. However, we do not currently
know whether (2n + 1, (2n+1)!

2 ,K)-snakes over A2n+1 exist
for every length.

These results, along with the bounds we showed in Theo-
rems 12,13 give rise to the following conjecture: For all n ∈N

a K-snake exists over An whose size is no less than that of
every K-snake over Sn.

In addition, [22] explores rank-modulation snake-in-the-box
codes using a different metric, the `∞-metric, which is induced
by the embedding of Sn in Zn. More precisely, for α, β ∈ Sn
one defines

d∞(α, β) = max
i∈[n]
|α(i)− β(i)| .

We use the `∞-metric to model a different kind of noise-
mechanism than that modeled by Kendall’s τ-metric, namely
spike noise. In this model, the rank of each memory cell is
assumed to have been changed by a bounded amount (see
[19]). Under this metric, the authors were able to present a
construction which gives rise to the following theorem:

Theorem 14. For all 4 6 n ∈ N there exists an (n, M, `∞)-
snake of size

M =
⌈n

2

⌉
!
(⌊n

2

⌋
+
(⌊n

2

⌋
− 1
)

!
)

.

And it was again shown that these codes have rates asymp-
totically tending to 1.
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