

Short Polar Codes

Peihong Yuan

Chair for Communications Engineering Technische Universität München

July 26, 2016 LNT & DLR Summer Workshop on Coding

1 Motivation

mprove the Distance Property

3 Simulation Results

sum-min Approx.

5 Rate Matching/IR-HARQ

Polar codes

- Provable Capacity-Achieving¹
- Encoding: Precoding (k → n) Polar transform (n → n) ¹/₂n log n " ⊕" (parallelizable)

 Successive Cancellation (SC) decoding (sequential): ¹/₂n log n " +" ¹/₂n log n " ⊞"

 W: 2 tanh⁻¹[tanh ^x/_x tanh ^y/_y] ~ sign(x) sign(y) min(|x|)
- $x \boxplus y$: $2 \tanh^{-1}[\tanh \frac{x}{2} \tanh \frac{y}{2}] \approx \operatorname{sign}(x) \operatorname{sign}(y) \min(|x|, |y|)$

¹E. Arıkan. "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels." *IEEE Trans. on Information Theory*, 2009

Construction of Polar codes (Gaussian Approx.² with *J*-function³)

•
$$I(W_1^{(1)}) = J(2/\sigma_n)$$

• $I(W_N^{(2i-1)}) = 1 - J\left(\sqrt{2\left[J^{-1}\left(1 - I(W_{N/2}^{(i)})\right)\right]^2}\right)$
• $I(W_N^{(2i)}) = J\left(\sqrt{2\left[J^{-1}\left(I(W_{N/2}^{(i)})\right)\right]^2}\right)$

²S. ten Brink *et al.* "Design of low-density parity-check codes for modulation and detection." *IEEE Trans. on Communications*, 2004

³F. Brännström. "Convergence analysis and design of multiple concatenated codes." Ph.D. dissertation, Chalmers Univ. Technol., Göteborg, Sweden, Mar. 2004.

Technische Universität München

Polar codes vs. LTE-Turbo codes (1024, 512)

SC List Decoding⁴

- Time Complexity:
 \$\mathcal{O}(Ln \log n)\$
- Space Complexity: L(2n-1) float 2L(2n-1) boolean
- ML-achieving decoding $(L \rightarrow 2^k)$

 $^{^{\}rm 4}{\rm I.}$ Tal and A. Vardy. "List decoding of polar codes." IEEE Trans. on Information Theory, 2015

Technische Universität München

Polar codes vs. LTE-Turbo codes (1024, 512)

$\mathsf{ML}\ (\mathsf{lower})\ \mathsf{bound}^5$

Algorithm 1 Estimate ML bound

- 1: $\hat{c} = \text{decode}(y)$
- 2: if $\hat{c} \neq c$ then

$$3:$$
 error = error + 1;

4: **if**
$$\hat{c}y^{\mathsf{T}} > cy^{\mathsf{T}}$$
 then

5:
$$error_ml = error_ml + 1;$$

6: end if

 $^{^5 {\}rm I.}$ Tal and A. Vardy. "List decoding of polar codes." IEEE Trans. on Information Theory, 2015, Sec. 5

Distance Property of Polar codes

$$F_n = egin{pmatrix} 1 & 0 \ 1 & 1 \end{pmatrix}^{\otimes m}$$

$$F_{n \times n} \xrightarrow{n-k \text{ row deletions}} G_{k \times n}$$

Minimum Hamming distance of (1024, 512) Polar codes:

- 16 (Design SNR < 5 dB)
- 32 (Design SNR \geq 5 dB)

Improve the Distance Property

Outer codes + Polar codes

CRC-aided (CA)-Polar codes⁶

- Flexible
- HARQ/Adaptive-decoding
- Minimum Distance?

⁶K. Niu and K. Chen. "CRC-aided decoding of polar codes." *IEEE Communications Letters*, 2012

RM-Polar codes⁷

RM codes and Polar codes are obtrained from same polarization matrix $F_2^{\otimes m}$.

Polar rule:

freeze the unreliable bits

• RM rule:

freeze the bits with low weight of their corresponding rows

RM-Polar codes:

semi-RM semi-Polar rule

- SCL decodable
- Minimum Distance
- not Flexible

⁷B. Li et al. "A RM-polar codes." arXiv preprint arXiv:1407.5483, 2014

eBCH-Polar codes⁸

- Dynamic frozen bits
- (k', n, d) eBCH codes (k' > k) with H
- $c = uF_2^{\otimes m}$, $cH^{\mathsf{T}} = 0$
- $uF_2^{\otimes m}H^{\mathsf{T}} = 0$, let $V_{n \times (n-k')} = F_2^{\otimes m}H^{\mathsf{T}}$
- $(k, n, \geq d)$ eBCH-Polar codes
 - SCL decodable
 - Minimum Distance
 - Flexible

⁸P. Trifonov and V. Miloslavskaya. "Polar subcodes." *IEEE Journal on Selected Areas in Communications*, 2016

Improve the Distance Property

3 Simulation Results

sum-min Approx

Conclusions

Technische Universität München

Simulation Results, R = 1/2, n = 1024

15 / 23

D Motivation

Improve the Distance Property

3 Simulation Results

4 sum-min Approx.

5 Rate Matching/IR-HARQ

Conclusions

sum-min Approximation Polar codes

• $2 \tanh^{-1} [\tanh \frac{x}{2} \tanh \frac{y}{2}] =$ sign(x) sign(y) min(|x|, |y|) + ln(1 + e^{-|x+y|}) - ln(1 + e^{-|x-y|})

Technische Universität München

sum-min Approximation for Polar codes

D Motivation

Improve the Distance Property

3 Simulation Results

sum-min Approx.

Conclusions

Rate Matching/IR-HARQ

- k is controlled via bit-freezing
- *n* is controlled via puncturing 'mother' code length $N = 2^{\lceil \log_2 n \rceil}$, the first N - n bits will be punctured
- IR: equivalent puncture pattern

 $\mathsf{SNR} \text{ in } \mathsf{dB}$

D Motivation

2 Improve the Distance Prope

3 Simulation Results

sum-min Approx.

5 Rate Matching/IR-HARQ

Conclusions

- Pros:
 - Good Performance
 - Efficient Design
 - Low Complexity Encoding/Decoding
- Cons:
 - no High-Throughput VLSI Architecture
 - no Adaptive Decoding