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Weight Spectral Shape

• Used by Gallager to show that his regular LDPC codes have
minimum distance growing linearly with the codeword length.

• Weight spectral shape of a sequence of code ensembles

G (ω) := lim
n→∞

logq Aωn
n

• Aωn: the expected number of weight ωn for an LDPC code
drawn randomly from an ensemble.

• Critical codeword weight ratio

ω∗ := inf{ω : G (ω) > 0}
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Weight Spectral Shape

• The minimum distance has a linear growth when

ω∗ > 0

and
lim
n→∞

Pr (Dmin < ω∗n) = 0

• In ensemble optimization we are often interested only in ω∗

and not in the entire G (ω).

• This talk: develop a tool for the efficient and exact evaluation
of G (ω) and ω∗ for protograph LDPC codes over GF(q).
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Protograph LDPC Codes

• A Tanner graph with a relatively small number of nodes.

v4v5 v1

v3 v2

c3 c2

c1

19,10,11

12 2

36

7,8 4,5

15 13,14

• The protograph defines an ensemble of LDPC codes over
GF(q).

• To draw one code:
• A copy-and-permute operation with copy factor Q.
• E uniform i.i.d. random variables are drawn from GF(q) \ {0};

the E edges in the Tanner graph are labeled with the obtained
E nonzero symbols.
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Protograph LDPC Codes

• J : set of nv protograph VNs; I: set of nc protograph CNs.

• nu protograph VNs are transmitted and np are punctured.

• Corresponding sets: Ju and Jp.

• qj : the degree of VN j ∈ J ; si : the degree of CN i ∈ I.

• e: the number of edges in the protograph; Φ: the set of edge
indexes; |Φ|= e.

• For all i ∈ I, Γi ⊆ Φ is the set which contains the indices of
the edges connected to CN i in the protograph.

• For all j ∈ J , Λj ⊆ Φ is the set which contains the indices of
the edges connected to VN j in the protograph.
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The Approach of [Gar15]

• Developed for multi-edge type LDPC codes.

• May be specialized to the protograph setting.

• To calculate one point of the weight spectral shape function
requires solution of a (3e + 1)× (3e + 1) system of equations.

• It extends to the MET setting the approach of [Fla13].
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Composite Codes

• C(n, k): a linear block code over GF(q) with length n and
dimension k .

• Composite code with base code C(n, k) and replica factor Q,
Ccom(nQ, kQ): the linear block code whose codewords are
concatenations of Q codewords of C(n, k).
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Vector WEF of Composite Codes

• Consider a composite code with replica factor Q and (s, h)
linear block component code C over GF(q).

• Vector weight enumerating function:

A(z) =
∑
d

Adzd

where Ad is the number of composite codewords of vector
weight d = (d1, d2, . . . , ds).

• Notation: zd =
∏s

t=1 z
dt
t ; dt : Hamming weight of the Q

replicas of the t-th codeword symbol of the component code.
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Vector WEF of Composite CNs [Dol14]

• Consider the Ki × si matrix M containing all distinct supports
of the codewords of Ci (i-th CN).

• xk : the Hamming weight of the k-th row of M .

• We have Ki = 2si − si if q > 2 and Ki = 2si−1 if q = 2.

• n = (n1, n2, . . . , nKi
): a vector whose elements are Ki

nonnegative integer numbers whose sum is equal to Q.

• We have

Ai ,d i
=

∑
n∈N (d i )

(
Q

n

)
exp (〈n, f q〉)

where N (d i ) is the set of all n that are integer-vector
solutions of nM = d i and where f q = (fq,1, fq,2, . . . , fq,Ki

) is
such that

fq,k = ln

(
q − 1

q

[
(q − 1)xk−1 + (−1)xk

])
.
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Vector Weight Spectral Shape of Composite CNs [Dol14]

• Let d i = Qδi . Define a vector weight spectral shape for a
composite code ensemble as

αi (δi ) = lim
Q→∞

1

Q
lnAi ,Qδi .

• Let n = Qν. Note that 〈n, f q〉 = Q〈ν, f q〉 and that ν is a
probability mass function.

• We have

αi (δi ) = max
ν
{H(ν) + 〈ν, f q〉}

where H(ν) = −
∑Ki

k=1 νk ln νk is the entropy of ν in nats and

where the maximization is subject to
∑Ki

k=1 νk = 1 and to
νM = δi (as well as 0 ≤ νk ≤ 1 for all k ∈ {1, 2, . . . ,Ki}).
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Average Number of Protograph-LDPC Codewords

• Easy to show that

Aw =
∑
w

∏
i∈I Ai ,d i (w)∏

j∈J
(Q
wj

)qj−1
(q− 1)(qj−1)wj

where the vector weight w = (w1,w2, . . . ,wnv ) is subject to
the constraint

∑
j∈Ju wj = w .

• The function G (ω) fulfills the identity

G (ω) =
r(ωnv )

nv ln q

where the function r(δ) is defined as

r(δ) = lim
Q→∞

1

Q
lnAδQ .



Background Proposed Approach Examples Conclusion

r(δ) Solution Method [Dol14]

• We have

r(δ) = max
δ

∑
i∈I

αi (δi )−
∑
j∈J

(tj − 1) (δj ln(q− 1) + h(δj))


subject to the constraint

∑
j∈Ju δj = δ, as well as 0 ≤ δj ≤ δ

for all j ∈ J .

• Vector δ has nv elements. Each vector δi , i ∈ I, has si
elements.

• To calculate one point of r(δ):
• Solve numerically the constrained maximization problem;
• In the objective function, each of the nc terms αi (δi ) must be

calculated by solving numerically a constrained maximization
problem “nested” in the main one.
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Using Generating Functions

• Approach: Use generating functions properties.

Lemma
The number Ai ,d i

of codewords with vector weight d i in the
composite code is given by (ai (z i ) vector WEF of CN)

Ai ,d i
= coeff

(
(ai (z i ))Q , zd i

i

)
.

• We then have

Aw =
∑

w∈Ww

∏
i∈I coeff

(
(ai (z i ))Q , zd i (w)

i

)
∏

j∈J
(Q
wj

)qj−1
(q− 1)(qj−1)wj

. (1)
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Main Result

Theorem
The weight spectral shape of a protograph ensemble over GF(q) is

G (ω) =
1

nu ln q

[∑
i∈I

ln ai (x i )− nu
∑
g∈Γi

ωg ln xg


−
∑
j∈J

((qj − 1)h(nuωj) + nuωj(qj − 1) ln(q− 1))

]

where the values {xg} for g ∈ Φ are the positive solutions to

xg
∂ai
∂xg

(x i ) = nuωg ai (x i ) ∀i ∈ I, g ∈ Γi , (2)

which also satisfy, for every j ∈ J ,

(qj − 1) ln

(
nuωj/(q− 1)

1− nuωj

)
−
∑
g∈Λj

ln xg =

{
µ if j ∈ Ju
0 if j ∈ Jp .

(3)
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System Dimension, Augmented System

• The evaluation of the weight spectral shape via the proposed
method requires solution of a system of equations.

• There are nv + e + 1 variables: {wj} (nv variables); {xg} (e
variables); and µ (1 variable).

• There are also nv + e + 1 equations: (2) for each i ∈ I,
g ∈ Γi (together giving e equations); (3) for each j ∈ J
(together giving nv equations); and

∑
j∈Ju ωj = ω.

• The critical codeword weight ratio can be directly efficiently
computed using the proposed method, simply by adding the
equation G (ω∗) = 0 to the system of equations to be solved,
yielding an (nv + e + 2)× (nv + e + 2) system.
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Proof Sketch

• Let ω = w/n and ω = (ωj)j∈J = (1/n)w . Moreover, let
λi (ω) = (1/n) l i (nω).

• From previous Lemma

coeff
(

(ai (z i ))Q , z l i (w)
i

)
= coeff

(
(ai (z i ))Q , znuλi (ω)Q

i

)
.

= exp

n

 1

nu
ln ai (x i )−

∑
g∈Γi

ωg ln xg


• The vector x i = (xg )g∈Γi

contains the positive solutions to
the equations

xg
∂ai
∂xg

(x i ) = nuωg ai (x i ) g ∈ Γi .
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Proof Sketch

• Regarding the expression at the denominator of denominator
applied to the denominator of (1) simply note that

∏
j∈J

(
Q

wj

)qj−1

(q− 1)(qj−1)wj

.
= exp

n

 1

nu

∑
j∈J

(qj − 1)h(nuωj) + ωj(qj − 1) ln(q− 1)


• In the previous expression, h(x) is the binary entropy function

in nats.
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Proof Sketch

• Applying the above asymptotic results yields

G (ω) =
1

ln q

(
max
ω

S(ω)
)

where

S(ω) =
∑
i∈I

 1

nu
ln ai (x i )−

∑
g∈Γi

ωg ln xg


−
∑
j∈J

[(
qj − 1

nu

)
h(nuωj) + ωj(qj − 1) ln(q− 1)

]

• Maximization is subject to R(ω) =
∑

j∈Ju ωj = ω and

0 ≤ ωj ≤ 1
nu
∀j ∈ J .

• Solution yields the statement.
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Reducing the System Size

Lemma
If two edges a, b ∈ Φ are connected to the same VN–CN pair in
the protograph, then xa = xb.

Proof.

• Consider two parallel edges a, b ∈ Φ which connect VN j ∈ J
to CN i ∈ I.

• As the local weight enumerator ai (x i ) is symmetric in the
variables {xg}, g ∈ Γi , it follows that if a solution exists with
(xa, xb) = (α, β), then another solution must exist with
(xa, xb) = (β, α) (all other variables being unchanged).

• Then, the hypothesis that β 6= α contradicts the uniqueness
of the positive solution xi to (2) for CN type i .
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Example: An R = 1/2 AR4JA Protograph

v4v5 v1

v3 v2

c3 c2

c1

19,10,11

12 2

36

7,8 4,5

15 13,14

• nc = 3 CNs, nv = 5 VNs, e = 15 edges.

• Ju = {1, 2, 3, 5}, Jp = {4}, R = 1/2.

• Since there are punctured VNs the method of [Garr15] cannot
be applied to this protograph.
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Example: An R = 1/2 AR4JA Protograph

v4v5 v1

v3 v2

c3 c2

c1

19,10,11

12 2

36

7,8 4,5

15 13,14

• The method of [Dol14] requires maximization of a
multidimensional objective function over a space of dimension
5 to calculate one point of the weight spectral shape function.

• Evaluation of this objective function requires solution of
further maximization problems over spaces of dimension equal
to 58 for any q > 2.
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Example: An R = 1/2 AR4JA Protograph

v4v5 v1

v3 v2

c3 c2

c1

19,10,11

12 2

36

7,8 4,5

15 13,14

• The proposed method requires solution of a 21× 21 system to
calculate one point of the weight spectral shape function.

• Use of Lemma 3 reduces this to a 16× 16 system.

• Use of the augmented 17× 17 system allows solving directly
for ω∗.
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Example: An R = 1/2 RJA Protograph

v4 v1

v3 v2

c2

c1

19,10,11

12 2

36

7,8 4,5

1
• nc = 3 CNs, nv = 4 VNs, e = 12 edges.

• Ju = {1, 2, 3, 4}, Jp = { }, R = 1/2.

• The method of [Garr15] requires solution of a 37× 37 system
of equations to calculate one point of the spectral shape
function.
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Example: An R = 1/2 RJA Protograph

v4 v1

v3 v2

c2

c1

19,10,11

12 2

36

7,8 4,5

1
• The method of [Dol14] requires maximization of a

multidimensional objective function over a space of dimension
4 to calculate one point of the weight spectral shape function.

• Evaluation of this objective function requires solution of
further maximization problems over spaces of dimension equal
to 58 for any q > 2.
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Example: An R = 1/2 RJA Protograph

v4 v1

v3 v2

c2

c1

19,10,11

12 2

36

7,8 4,5

1
• The proposed method requires solution of a 17× 17 system to

calculate one point of the weight spectral shape function.

• Use of Lemma 3 reduces this to a 13× 13 system.

• Use of the augmented 14× 14 system allows solving directly
for ω∗.
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G (ω) Plots for ARJA and RJA Protographs
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• “random”: Grand(ω) = 1
ln q (h(ω) + ω ln(q− 1)− (1− R) ln q)

(rate-1/2 parity-check ensemble).
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ω∗ Values for ARJA and RJA Protographs

• Critical fractional codeword weight values for rate-1/2 ARJA
and RJA protograph ensembles over GF(q), for
q ∈ {2, 4, 8, 16}:

q ω∗ (ARJA) ω∗ (RJA)

2 0.014401 0.013316
4 0.030871 0.028576
8 0.046681 0.043253

16 0.059427 0.055104

• In all cases the run-time for a direct calculation of ω∗ was
approximately equal to 50 ms.
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Conclusion

• The method is efficient and exact; it allows solving directly for
ω∗ (good for ensemble optimization).

• Can be extended to stopping sets, ..., and to GLDPC codes.



Background Proposed Approach Examples Conclusion

E. Paolini and Mark F. Flanagan, “Efficient and exact
evaluation of the weight spectral shape and typical minimum
distance of protograph LDPC codes,” IEEE Commun. Lett., to
appear.

M. Chiani, G. Liva, B. Matuz, E. Paolini, Coding for Erasure
Channels. Cambridge University Press, upcoming.


	Background
	Proposed Approach
	Examples
	Conclusion

