Efficient Evaluation of the Weight Spectral Shape of Nonbinary Protograph LDPC Codes

Enrico Paolini
University of Bologna, Italy

work with: Mark F. Flanagan

DLR \& LNT Coding Workshop
Münich, Germany, July 26th, 2016

Outline

- Some background
- Weight spectral shape of protograph LDPC codes
- Examples
- Conclusion

Weight Spectral Shape

- Used by Gallager to show that his regular LDPC codes have minimum distance growing linearly with the codeword length.
- Weight spectral shape of a sequence of code ensembles

$$
G(\omega):=\lim _{n \rightarrow \infty} \frac{\log _{q} \mathcal{A}_{\omega n}}{n}
$$

- $\mathcal{A}_{\omega n}$: the expected number of weight ωn for an LDPC code drawn randomly from an ensemble.
- Critical codeword weight ratio

$$
\omega^{*}:=\inf \{\omega: G(\omega)>0\}
$$

Weight Spectral Shape

- The minimum distance has a linear growth when

$$
\omega^{*}>0
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(D_{\min }<\omega^{*} n\right)=0
$$

- In ensemble optimization we are often interested only in ω^{*} and not in the entire $G(\omega)$.
- This talk: develop a tool for the efficient and exact evaluation of $G(\omega)$ and ω^{*} for protograph LDPC codes over GF (q).

Some Literature

[Gal63] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA: M.I.T. Press, 1963.
[Orl05] A. Orlitsky, K. Viswanathan, and J. Zhang, "Stopping set distribution of LDPC code ensembles," T-IT, Mar. 2005.
[Di06] C. Di, T. Richardson, and R. Urbanke, "Weight distribution of low-density parity-check codes," T-IT, Nov. 2006.
[Kas11] K. Kasai, C. Poulliat, D. Declercq, and K. Sakaniwa, "Weight distributions of non-binary LDPC codes," IEICE T-Fundamentals, Apr. 2011. [Abu11] S. Abu-Surra, D. Divsalar, and W. Ryan, "Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes," T-IT, Feb. 2011.
[Fla11] M. Flanagan, E. Paolini, M. Chiani, and M. Fossorier, "On the growth rate of the weight distribution of doubly-generalized LDPC codes," T-IT, Jun. 2011.
[Fla13] M. Flanagan, E. Paolini, M. Chiani, M. Fossorier, "Spectral shape of doubly-generalized LDPC codes: Efficient and exact evaluation, T-IT, Nov. 2013.

Available Approaches

[Dol14]L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, "Non-binary protograph-based LDPC codes: Enumerators, analysis, and designs," T-IT, Jul. 2014.
[Gar15]G. Garrammone, D. Declercq, and M. Fossorier, "Weight distributions of non-binary multi-edge type LDPC code ensembles," ISIT 2015.

Protograph LDPC Codes

- A Tanner graph with a relatively small number of nodes.

- The protograph defines an ensemble of LDPC codes over GF(q).
- To draw one code:
- A copy-and-permute operation with copy factor Q.
- E uniform i.i.d. random variables are drawn from $\mathrm{GF}(\mathrm{q}) \backslash\{0\}$; the E edges in the Tanner graph are labeled with the obtained E nonzero symbols.

Protograph LDPC Codes

- \mathcal{J} : set of n_{v} protograph VNs ; \mathcal{I} : set of n_{c} protograph CNs.
- n_{u} protograph VNs are transmitted and n_{p} are punctured.
- Corresponding sets: \mathcal{J}_{u} and \mathcal{J}_{p}.
- q_{j} : the degree of $\mathrm{VN} j \in \mathcal{J} ; s_{i}$: the degree of $\mathrm{CN} i \in \mathcal{I}$.
- e: the number of edges in the protograph; Φ : the set of edge indexes; $|\Phi|=\mathrm{e}$.
- For all $i \in \mathcal{I}, \Gamma_{i} \subseteq \Phi$ is the set which contains the indices of the edges connected to $\mathrm{CN} i$ in the protograph.
- For all $j \in \mathcal{J}, \Lambda_{j} \subseteq \Phi$ is the set which contains the indices of the edges connected to $\mathrm{VN} j$ in the protograph.

The Approach of [Gar15]

- Developed for multi-edge type LDPC codes.
- May be specialized to the protograph setting.
- To calculate one point of the weight spectral shape function requires solution of a $(3 e+1) \times(3 e+1)$ system of equations.
- It extends to the MET setting the approach of [Fla13].

Composite Codes

- $\mathcal{C}(n, k)$: a linear block code over GF (q) with length n and dimension k.
- Composite code with base code $\mathcal{C}(n, k)$ and replica factor Q, $\mathcal{C}_{\text {com }}(n Q, k Q)$: the linear block code whose codewords are concatenations of Q codewords of $\mathcal{C}(n, k)$.

Vector WEF of Composite Codes

- Consider a composite code with replica factor Q and (s, h) linear block component code \mathcal{C} over GF(q).
- Vector weight enumerating function:

$$
A(z)=\sum_{d} A_{\boldsymbol{d}} z^{\boldsymbol{d}}
$$

where $A_{\boldsymbol{d}}$ is the number of composite codewords of vector weight $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{s}\right)$.

- Notation: $z^{d}=\prod_{t=1}^{s} z_{t}^{d_{t}} ; d_{t}$: Hamming weight of the Q replicas of the t-th codeword symbol of the component code.

Vector WEF of Composite CNs [Dol14]

- Consider the $K_{i} \times s_{i}$ matrix \boldsymbol{M} containing all distinct supports of the codewords of \mathcal{C}_{i} (i-th CN).
- x_{k} : the Hamming weight of the k-th row of M.
- We have $K_{i}=2^{s_{i}}-s_{i}$ if $q>2$ and $K_{i}=2^{s_{i}-1}$ if $q=2$.
- $\boldsymbol{n}=\left(n_{1}, n_{2}, \ldots, n_{K_{i}}\right)$: a vector whose elements are K_{i} nonnegative integer numbers whose sum is equal to Q.
- We have

$$
A_{i, \boldsymbol{d}_{i}}=\sum_{\boldsymbol{n} \in \mathcal{N}\left(\boldsymbol{d}_{i}\right)}\binom{Q}{\boldsymbol{n}} \exp \left(\left\langle\boldsymbol{n}, \boldsymbol{f}_{q}\right\rangle\right)
$$

where $\mathcal{N}\left(\boldsymbol{d}_{i}\right)$ is the set of all \boldsymbol{n} that are integer-vector solutions of $\boldsymbol{n} \boldsymbol{M}=\boldsymbol{d}_{i}$ and where $\boldsymbol{f}_{q}=\left(f_{q, 1}, f_{q, 2}, \ldots, f_{q, K_{i}}\right)$ is such that

$$
f_{q, k}=\ln \left(\frac{q-1}{q}\left[(q-1)^{x_{k}-1}+(-1)^{x_{k}}\right]\right) .
$$

Vector Weight Spectral Shape of Composite CNs [Dol14]

- Let $\boldsymbol{d}_{i}=Q \boldsymbol{\delta}_{i}$. Define a vector weight spectral shape for a composite code ensemble as

$$
\alpha_{i}\left(\boldsymbol{\delta}_{i}\right)=\lim _{Q \rightarrow \infty} \frac{1}{Q} \ln A_{i, Q \boldsymbol{\delta}_{i}}
$$

- Let $\boldsymbol{n}=Q \boldsymbol{\nu}$. Note that $\left\langle\boldsymbol{n}, \boldsymbol{f}_{q}\right\rangle=Q\left\langle\boldsymbol{\nu}, \boldsymbol{f}_{q}\right\rangle$ and that $\boldsymbol{\nu}$ is a probability mass function.
- We have

$$
\alpha_{i}\left(\boldsymbol{\delta}_{i}\right)=\max _{\boldsymbol{\nu}}\left\{\mathrm{H}(\boldsymbol{\nu})+\left\langle\boldsymbol{\nu}, \boldsymbol{f}_{q}\right\rangle\right\}
$$

where $\mathrm{H}(\boldsymbol{\nu})=-\sum_{k=1}^{K_{i}} \nu_{k} \ln \nu_{k}$ is the entropy of $\boldsymbol{\nu}$ in nats and where the maximization is subject to $\sum_{k=1}^{K_{i}} \nu_{k}=1$ and to $\boldsymbol{\nu} \boldsymbol{M}=\boldsymbol{\delta}_{i}\left(\right.$ as well as $0 \leq \nu_{k} \leq 1$ for all $\left.k \in\left\{1,2, \ldots, K_{i}\right\}\right)$.

Average Number of Protograph-LDPC Codewords

- Easy to show that

$$
\mathcal{A}_{w}=\sum_{w} \frac{\prod_{i \in \mathcal{I}} A_{i, d_{i}(w)}}{\prod_{j \in \mathcal{J}}\binom{Q}{w_{j}}^{q_{j}-1}(q-1)^{\left(q_{j}-1\right) w_{j}}}
$$

where the vector weight $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{n_{v}}\right)$ is subject to the constraint $\sum_{j \in \mathcal{J}_{u}} w_{j}=w$.

- The function $G(\omega)$ fulfills the identity

$$
G(\omega)=\frac{r\left(\omega n_{v}\right)}{n_{v} \ln q}
$$

where the function $r(\delta)$ is defined as

$$
r(\delta)=\lim _{Q \rightarrow \infty} \frac{1}{Q} \ln \mathcal{A}_{\delta Q}
$$

r(δ) Solution Method [Dol14]

- We have

$$
r(\delta)=\max _{\delta}\left\{\sum_{i \in \mathcal{I}} \alpha_{i}\left(\delta_{i}\right)-\sum_{j \in \mathcal{J}}\left(t_{j}-1\right)\left(\delta_{j} \ln (\mathrm{q}-1)+\mathrm{h}\left(\delta_{j}\right)\right)\right\}
$$

subject to the constraint $\sum_{j \in \mathcal{J}_{u}} \delta_{j}=\delta$, as well as $0 \leq \delta_{j} \leq \delta$ for all $j \in \mathcal{J}$.

- Vector δ has n_{v} elements. Each vector $\boldsymbol{\delta}_{i}, i \in \mathcal{I}$, has s_{i} elements.
- To calculate one point of $r(\delta)$:
- Solve numerically the constrained maximization problem;
- In the objective function, each of the n_{c} terms $\alpha_{i}\left(\boldsymbol{\delta}_{i}\right)$ must be calculated by solving numerically a constrained maximization problem "nested" in the main one.

Using Generating Functions

- Approach: Use generating functions properties.

Lemma

The number $A_{i, \boldsymbol{d}_{i}}$ of codewords with vector weight \boldsymbol{d}_{i} in the composite code is given by ($a_{i}\left(z_{i}\right)$ vector WEF of CN)

$$
A_{i, \boldsymbol{d}_{i}}=\operatorname{coeff}\left(\left(a_{i}\left(\boldsymbol{z}_{i}\right)\right)^{Q}, \boldsymbol{z}_{i}^{\boldsymbol{d}_{i}}\right)
$$

- We then have

$$
\begin{equation*}
\mathcal{A}_{w}=\sum_{\boldsymbol{w} \in \mathcal{W}_{w}} \frac{\prod_{i \in \mathcal{I}} \operatorname{coeff}\left(\left(a_{i}\left(\boldsymbol{z}_{i}\right)\right)^{Q}, \boldsymbol{z}_{i}^{\boldsymbol{d}_{i}(\boldsymbol{w})}\right)}{\prod_{j \in \mathcal{J}}\binom{Q}{w_{j}}^{q_{j}-1}(q-1)^{\left(q_{j}-1\right) w_{j}}} . \tag{1}
\end{equation*}
$$

Main Result

Theorem

The weight spectral shape of a protograph ensemble over $\mathrm{GF}(\mathrm{q})$ is

$$
\begin{aligned}
G(\omega) & =\frac{1}{n_{u} \ln \mathrm{q}}\left[\sum_{i \in \mathcal{I}}\left(\ln a_{i}\left(\boldsymbol{x}_{i}\right)-n_{u} \sum_{g \in \Gamma_{i}} \omega_{g} \ln x_{g}\right)\right. \\
& \left.-\sum_{j \in \mathcal{J}}\left(\left(q_{j}-1\right) \mathrm{h}\left(n_{u} \omega_{j}\right)+n_{u} \omega_{j}\left(q_{j}-1\right) \ln (\mathrm{q}-1)\right)\right]
\end{aligned}
$$

where the values $\left\{x_{g}\right\}$ for $g \in \Phi$ are the positive solutions to

$$
\begin{equation*}
x_{g} \frac{\partial a_{i}}{\partial x_{g}}\left(\boldsymbol{x}_{i}\right)=n_{u} \omega_{g} a_{i}\left(\boldsymbol{x}_{i}\right) \quad \forall i \in \mathcal{I}, g \in \Gamma_{i} \tag{2}
\end{equation*}
$$

which also satisfy, for every $j \in \mathcal{J}$,

$$
\left(q_{j}-1\right) \ln \left(\frac{n_{u} \omega_{j} /(q-1)}{1-n_{u} \omega_{j}}\right)-\sum_{g \in \Lambda_{j}} \ln x_{g}= \begin{cases}\mu & \text { if } j \in \mathcal{J}_{u} \tag{3}\\ 0 & \text { if } j \in \mathcal{J}_{p}\end{cases}
$$

System Dimension, Augmented System

- The evaluation of the weight spectral shape via the proposed method requires solution of a system of equations.
- There are $n_{v}+\mathrm{e}+1$ variables: $\left\{w_{j}\right\}$ (n_{v} variables); $\left\{x_{g}\right\}$ (e variables); and μ (1 variable).
- There are also $n_{v}+\mathrm{e}+1$ equations: (2) for each $i \in \mathcal{I}$, $g \in \Gamma_{i}$ (together giving e equations); (3) for each $j \in \mathcal{J}$ (together giving n_{v} equations); and $\sum_{j \in \mathcal{J}_{u}} \omega_{j}=\omega$.
- The critical codeword weight ratio can be directly efficiently computed using the proposed method, simply by adding the equation $G\left(\omega^{*}\right)=0$ to the system of equations to be solved, yielding an $\left(n_{v}+e+2\right) \times\left(n_{v}+e+2\right)$ system.

Proof Sketch

- Let $\omega=w / n$ and $\boldsymbol{\omega}=\left(\omega_{j}\right)_{j \in \mathcal{J}}=(1 / n) \boldsymbol{w}$. Moreover, let $\boldsymbol{\lambda}_{i}(\boldsymbol{\omega})=(1 / n) \boldsymbol{I}_{i}(n \boldsymbol{\omega})$.
- From previous Lemma

$$
\begin{aligned}
\operatorname{coeff} & \left(\left(a_{i}\left(\boldsymbol{z}_{i}\right)\right)^{Q}, \boldsymbol{z}_{i}^{\boldsymbol{I}_{i}(\boldsymbol{w})}\right)=\operatorname{coeff}\left(\left(a_{i}\left(\boldsymbol{z}_{i}\right)\right)^{Q}, \boldsymbol{z}_{i}^{n_{u} \lambda_{i}(\boldsymbol{\omega}) Q}\right) \\
& \doteq \exp \left\{n\left[\frac{1}{n_{u}} \ln a_{i}\left(\boldsymbol{x}_{i}\right)-\sum_{g \in \Gamma_{i}} \omega_{g} \ln x_{g}\right]\right\}
\end{aligned}
$$

- The vector $\boldsymbol{x}_{i}=\left(x_{g}\right)_{g \in \Gamma_{i}}$ contains the positive solutions to the equations

$$
x_{g} \frac{\partial a_{i}}{\partial x_{g}}\left(\boldsymbol{x}_{i}\right)=n_{u} \omega_{g} a_{i}\left(\boldsymbol{x}_{i}\right) \quad g \in \Gamma_{i}
$$

Proof Sketch

- Regarding the expression at the denominator of denominator applied to the denominator of (1) simply note that

$$
\begin{aligned}
& \prod_{j \in \mathcal{J}}\binom{Q}{w_{j}}^{q_{j}-1}(\mathrm{q}-1)^{\left(q_{j}-1\right) w_{j}} \\
& \doteq \exp \left\{n\left[\frac{1}{n_{u}} \sum_{j \in \mathcal{J}}\left(q_{j}-1\right) \mathrm{h}\left(n_{u} \omega_{j}\right)+\omega_{j}\left(q_{j}-1\right) \ln (\mathrm{q}-1)\right]\right\}
\end{aligned}
$$

- In the previous expression, $h(x)$ is the binary entropy function in nats.

Proof Sketch

- Applying the above asymptotic results yields

$$
G(\omega)=\frac{1}{\ln q}\left(\max _{\omega} S(\omega)\right)
$$

where

$$
\begin{aligned}
S(\boldsymbol{\omega}) & =\sum_{i \in \mathcal{I}}\left(\frac{1}{n_{u}} \ln a_{i}\left(\boldsymbol{x}_{i}\right)-\sum_{g \in \Gamma_{i}} \omega_{g} \ln x_{g}\right) \\
& -\sum_{j \in \mathcal{J}}\left[\left(\frac{q_{j}-1}{n_{u}}\right) \mathrm{h}\left(n_{u} \omega_{j}\right)+\omega_{j}\left(q_{j}-1\right) \ln (\mathrm{q}-1)\right]
\end{aligned}
$$

- Maximization is subject to $R(\boldsymbol{\omega})=\sum_{j \in \mathcal{J}_{u}} \omega_{j}=\omega$ and $0 \leq \omega_{j} \leq \frac{1}{n_{u}} \forall j \in \mathcal{J}$.
- Solution yields the statement.

Reducing the System Size

Lemma

If two edges $a, b \in \Phi$ are connected to the same VN-CN pair in the protograph, then $x_{a}=x_{b}$.

Proof.

- Consider two parallel edges $a, b \in \Phi$ which connect $\mathrm{VN} j \in \mathcal{J}$ to $\mathrm{CN} i \in \mathcal{I}$.
- As the local weight enumerator $a_{i}\left(\boldsymbol{x}_{i}\right)$ is symmetric in the variables $\left\{x_{g}\right\}, g \in \Gamma_{i}$, it follows that if a solution exists with $\left(x_{a}, x_{b}\right)=(\alpha, \beta)$, then another solution must exist with $\left(x_{a}, x_{b}\right)=(\beta, \alpha)$ (all other variables being unchanged).
- Then, the hypothesis that $\beta \neq \alpha$ contradicts the uniqueness of the positive solution x_{i} to (2) for CN type i.

Example: An $R=1 / 2$ AR4JA Protograph

- $n_{c}=3 \mathrm{CNs}, n_{v}=5 \mathrm{VNs}, \mathrm{e}=15$ edges.
- $\mathcal{J}_{u}=\{1,2,3,5\}, \mathcal{J}_{p}=\{4\}, R=1 / 2$.
- Since there are punctured VNs the method of [Garr15] cannot be applied to this protograph.

Example: An $R=1 / 2$ AR4JA Protograph

- The method of [Dol14] requires maximization of a multidimensional objective function over a space of dimension 5 to calculate one point of the weight spectral shape function.
- Evaluation of this objective function requires solution of further maximization problems over spaces of dimension equal to 58 for any $q>2$.

Example: An $R=1 / 2$ AR4JA Protograph

- The proposed method requires solution of a 21×21 system to calculate one point of the weight spectral shape function.
- Use of Lemma 3 reduces this to a 16×16 system.
- Use of the augmented 17×17 system allows solving directly for ω^{*}.

Example: An $R=1 / 2 R J A$ Protograph

- $n_{c}=3 \mathrm{CNs}, n_{v}=4 \mathrm{VNs}, \mathrm{e}=12$ edges.
- $\mathcal{J}_{u}=\{1,2,3,4\}, \mathcal{J}_{p}=\{ \}, R=1 / 2$.
- The method of [Garr15] requires solution of a 37×37 system of equations to calculate one point of the spectral shape function.

Example: An $R=1 / 2 R J A$ Protograph

- The method of [Dol14] requires maximization of a multidimensional objective function over a space of dimension 4 to calculate one point of the weight spectral shape function.
- Evaluation of this objective function requires solution of further maximization problems over spaces of dimension equal to 58 for any $q>2$.

Example: An $R=1 / 2 R J A$ Protograph

- The proposed method requires solution of a 17×17 system to calculate one point of the weight spectral shape function.
- Use of Lemma 3 reduces this to a 13×13 system.
- Use of the augmented 14×14 system allows solving directly for ω^{*}.
$G(\omega)$ Plots for ARJA and RJA Protographs

- "random": $G_{\text {rand }}(\omega)=\frac{1}{\ln \mathrm{q}}(\mathrm{h}(\omega)+\omega \ln (\mathrm{q}-1)-(1-R) \ln \mathrm{q})$ (rate-1/2 parity-check ensemble).

ω^{*} Values for ARJA and RJA Protographs

- Critical fractional codeword weight values for rate-1/2 ARJA and RJA protograph ensembles over $\operatorname{GF}(q)$, for $q \in\{2,4,8,16\}:$

q	$\omega^{*}(\mathrm{ARJA})$	$\omega^{*}(\mathrm{RJA})$
2	0.014401	0.013316
4	0.030871	0.028576
8	0.046681	0.043253
16	0.059427	0.055104

- In all cases the run-time for a direct calculation of ω^{*} was approximately equal to 50 ms .

Conclusion

- The method is efficient and exact; it allows solving directly for ω^{*} (good for ensemble optimization).
- Can be extended to stopping sets, ..., and to GLDPC codes.
E. E. Paolini and Mark F. Flanagan, "Efficient and exact evaluation of the weight spectral shape and typical minimum distance of protograph LDPC codes," IEEE Commun. Lett., to appear.
國 M. Chiani, G. Liva, B. Matuz, E. Paolini, Coding for Erasure Channels. Cambridge University Press, upcoming.

