The Fractality of Polar Codes

Bernhard C. Geiger
Institute for Communications Engineering

July $26^{\text {th }}, 2016$

A look back in time. . (JCCC 2015)

\div

Two Little (?) Problems

Bernhard C. Geiger

Institute for Communications Engineering
March 2015

The Sierpinski Triangle

Sinan Kahraman, Emanuele Viterbo, and Mehmet E. Çelebi
Fig. 2. The matrix $\mathbf{G}=\mathbf{F}^{\otimes 7}$ has the fractal form of a Sierpinski triangle.

Polar Codes

Polar Codes

Polar Codes

Continue polarizing:

$$
\begin{aligned}
(W, W) & \rightarrow\left(W^{1}, W^{0}\right) \\
(W, W, W, W) & \rightarrow\left(W^{1}, W^{1}, W^{0}, W^{0}\right) \rightarrow\left(W^{11}, W^{10}, W^{01}, W^{00}\right)
\end{aligned}
$$

Polar Codes

Continue polarizing:

$$
\begin{aligned}
(W, W) & \rightarrow\left(W^{1}, W^{0}\right) \\
(W, W, W, W) & \rightarrow\left(W^{1}, W^{1}, W^{0}, W^{0}\right) \rightarrow\left(W^{11}, W^{10}, W^{01}, W^{00}\right)
\end{aligned}
$$

Proposition (Polarization)

For almost every $b \in\{0,1\}^{\infty}$, either $I\left(W^{b}\right)=1$ or $I\left(W^{b}\right)=0$.

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

2^{17}

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . $($ BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Some intuition. . (BEC, $I(W)=0.433)$

Polar Codes: Up- \& Degrading

Polar Codes: Up- \& Degrading

Polar Codes: Up- \& Degrading

If W is symmetric:

Bardet et al., "Algebraic properties of polar codes from a new polynomial formalism", arXiv:1601.06215.

Polar Codes: Up- \& Degrading

For symmetric channels,

$$
\begin{array}{cl}
W^{0} \preccurlyeq \quad W & \preccurlyeq W^{1} \\
I\left(W^{0}\right)<\quad I(W) & <I\left(W^{1}\right)
\end{array}
$$

Polar Codes: Up- \& Degrading

For symmetric channels,

$$
\begin{array}{cl}
W^{0} \preccurlyeq \quad W & \preccurlyeq W^{1} \\
I\left(W^{0}\right)<\quad I(W) & <I\left(W^{1}\right)
\end{array}
$$

For every binary sequence $b^{n} \in\{0,1\}^{n}$,

$$
\begin{array}{cl}
W^{0 b^{n}} \preccurlyeq \quad W^{b^{n}} & \preccurlyeq W^{1 b^{n}} \\
I\left(W^{0 b^{n}}\right) \leq I\left(W^{b^{n}}\right) & \leq I\left(W^{1 b^{n}}\right)
\end{array}
$$

Polar Codes: Up- \& Degrading

For symmetric channels,

$$
\begin{array}{cl}
W^{0} \preccurlyeq \quad W & \preccurlyeq W^{1} \\
I\left(W^{0}\right)<\quad I(W) & <I\left(W^{1}\right)
\end{array}
$$

For every binary sequence $b^{n} \in\{0,1\}^{n}$,

$$
\begin{array}{cl}
W^{0 b^{n}} \preccurlyeq \quad W^{b^{n}} & \preccurlyeq W^{1 b^{n}} \\
I\left(W^{0 b^{n}}\right) \leq I\left(W^{b^{n}}\right) & \leq I\left(W^{1 b^{n}}\right)
\end{array}
$$

For every b^{n} and every $a \in\{0,1\}^{\infty}$,

$$
\begin{aligned}
W^{b^{n} 000 \cdots} \preccurlyeq \quad W^{b^{n} a} & \preccurlyeq W^{b^{n} 111 \cdots} \\
I\left(W^{b^{n} 000 \cdots}\right) \leq I\left(W^{b^{n} a}\right) & \leq I\left(W^{b^{n} 111 \cdots}\right)
\end{aligned}
$$

Polar Codes: Up- \& Degrading

For symmetric channels,

$$
\begin{array}{cl}
W^{0} \preccurlyeq \quad W & \preccurlyeq W^{1} \\
I\left(W^{0}\right)<\quad I(W) & <I\left(W^{1}\right)
\end{array}
$$

For every binary sequence $b^{n} \in\{0,1\}^{n}$,

$$
\begin{array}{cl}
W^{0 b^{n}} \preccurlyeq \quad W^{b^{n}} & \preccurlyeq W^{1 b^{n}} \\
I\left(W^{0 b^{n}}\right) \leq I\left(W^{b^{n}}\right) & \leq I\left(W^{1 b^{n}}\right)
\end{array}
$$

For every b^{n} and every $a \in\{0,1\}^{\infty}$,

$$
\begin{aligned}
W^{b^{n} 000 \cdots} \preccurlyeq \quad W^{b^{n} a} & \preccurlyeq W^{b^{n} 111 \cdots} \\
0=I\left(W^{b^{n} 000 \cdots}\right) \leq I\left(W^{b^{n} a}\right) & \leq I\left(W^{b^{n} 111 \cdots}\right)=1
\end{aligned}
$$

Simplifying Notation

Map binary sequences $b \in\{0,1\}^{\infty}$ to real numbers $x \in[0,1]$:

$$
x=f(b)=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{-i}}
$$

Simplifying Notation

Map binary sequences $b \in\{0,1\}^{\infty}$ to real numbers $x \in[0,1]$:

$$
x=f(b)=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{-i}}
$$

- A dyadic rational $x \in \mathbb{D}$ has two binary expansions:

$$
f(1000 \cdots)=f(0111 \cdots)=0.5
$$

Simplifying Notation

Map binary sequences $b \in\{0,1\}^{\infty}$ to real numbers $x \in[0,1]$:

$$
x=f(b)=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{-i}}
$$

- A dyadic rational $x \in \mathbb{D}$ has two binary expansions:

$$
f(1000 \cdots)=f(0111 \cdots)=0.5
$$

- Every other number $x \in[0,1] \backslash \mathbb{D}$ has a unique binary expansion

Simplifying Notation

Map binary sequences $b \in\{0,1\}^{\infty}$ to real numbers $x \in[0,1]$:

$$
x=f(b)=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{-i}}
$$

- A dyadic rational $x \in \mathbb{D}$ has two binary expansions:

$$
f(1000 \cdots)=f(0111 \cdots)=0.5
$$

- Every other number $x \in[0,1] \backslash \mathbb{D}$ has a unique binary expansion
$\Rightarrow f$ is bijective on $\{0,1\}^{\infty} \backslash f^{-1}(\mathbb{D})$

The Good Channels and the Bad Channels

Definition

Let \mathcal{G} denote the set of good channels, i.e.,

$$
I\left(W^{b}\right)=1 \Rightarrow f(b) \in \mathcal{G}
$$

let \mathcal{B} denote the set of bad channels, i.e.,

$$
I\left(W^{b}\right)=0 \Rightarrow f(b) \in \mathcal{B}
$$

The Good Channels and the Bad Channels

Definition

Let \mathcal{G} denote the set of good channels, i.e.,

$$
I\left(W^{b}\right)=1 \Rightarrow f(b) \in \mathcal{G}
$$

let \mathcal{B} denote the set of bad channels, i.e.,

$$
I\left(W^{b}\right)=0 \Rightarrow f(b) \in \mathcal{B}
$$

Proposition

$\lambda(\mathcal{G})=I(W)$ and $\lambda(\mathcal{B})=1-I(W)$.

The Good (and the Bad) Channels are Dense

Proposition
\mathcal{G} and \mathcal{B} are dense in $[0,1]$.

The Good (and the Bad) Channels are Dense

Proposition

\mathcal{G} and \mathcal{B} are dense in $[0,1]$.
Idea (symmetric W):

The Good (and the Bad) Channels are Dense

Proposition

\mathcal{G} and \mathcal{B} are dense in $[0,1]$.

Idea (symmetric W):

- $x=0.5: f^{-1}(0.5)=\{(1000 \cdots),(0111 \cdots)\}$

The Good (and the Bad) Channels are Dense

Proposition

\mathcal{G} and \mathcal{B} are dense in $[0,1]$.

Idea (symmetric W):

- $x=0.5: f^{-1}(0.5)=\{(1000 \cdots),(0111 \cdots)\}$
- For every $a, W^{1000 \cdots} \preccurlyeq W^{1 a} \preccurlyeq W^{1111 \cdots}$

The Good (and the Bad) Channels are Dense

Proposition

\mathcal{G} and \mathcal{B} are dense in $[0,1]$.

Idea (symmetric W):

- $x=0.5: f^{-1}(0.5)=\{(1000 \cdots),(0111 \cdots)\}$
- For every $a, W^{1000 \cdots} \preccurlyeq W^{1 a} \preccurlyeq W^{1111 \cdots}$
- $0=I\left(W^{1000 \cdots}\right) \leq I\left(W^{1 a}\right) \leq I\left(W^{1111 \cdots}\right)=1$

The Good (and the Bad) Channels are Dense

Proposition

\mathcal{G} and \mathcal{B} are dense in $[0,1]$.

Idea (symmetric W):

- $x=0.5: f^{-1}(0.5)=\{(1000 \cdots),(0111 \cdots)\}$
- For every $a, W^{0000 \cdots} \preccurlyeq W^{0 a} \preccurlyeq W^{0111 \cdots}$
- $0=I\left(W^{0000 \cdots}\right) \leq I\left(W^{0 a}\right) \leq I\left(W^{0111 \cdots}\right)=1$

The Good (and the Bad) Channels are Dense

Proposition

\mathcal{G} and \mathcal{B} are dense in $[0,1]$.
Idea (symmetric W):

- $x=0.5: f^{-1}(0.5)=\{(1000 \cdots),(0111 \cdots)\}$
- For every $a, W^{0000 \cdots} \preccurlyeq W^{0 a} \preccurlyeq W^{0111 \cdots}$
- $0=I\left(W^{0000 \cdots}\right) \leq I\left(W^{0 a}\right) \leq I\left(W^{0111 \cdots}\right)=1$

Proposition

$\mathcal{G} \backslash \mathbb{D}$ is dense in $[0,1]$. If W is a $B E C$, also $\mathcal{B} \backslash \mathbb{D}$ is dense in $[0,1]$.

The Good Channels are Self-Similar

Proposition
Let W be symmetric. Then, \mathcal{G} is quasi self-similar in the sense that it is a subset of its "right halves", and a superset of its "left halves". That is true on all scales.

The Polar Fractal

The Polar Fractal

The Polar Fractal

The Polar Fractal

Conclusion and Open Questions

arxiv:1506.05231 [cs.IT]

- Polar codes are fractal: Self-similarity
- Reed-Muller codes are fractal, too: Self-similarity and Hausdorff dimension
- Extension to non-binary polar codes?
- Are there practical implications for polar code construction?

Conclusion and Open Questions

arxiv:1506.05231 [cs.IT]

- Polar codes are fractal: Self-similarity
- Reed-Muller codes are fractal, too: Self-similarity and Hausdorff dimension
- Extension to non-binary polar codes?
- Are there practical implications for polar code construction?

Thanks for your attention!

