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Transmission vs. Identification

Shannon’s setting: Bob recover the message

i Enc noisy channel Dec î
ui Y

Identification setting: Bob asks if a message was sent or not?

i Enc noisy channel Dec

j

Yes/No
ui Y

Apps ! vehicle-to-X communications, health care, point to

multi-point communication, molecular communication, online

sales, communication complexity, and any event-triggered scenario
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Randomized Identification (RI) 1

Originally introduced by Ahlswede and Dueck (1989)

Capacity was established with randomness at encoder

Encoder employs distribution to select codewords

Remarkable Property

Reliable identification is possible with code size growth � 22nR

Sharp difference to transmission with code size growth � 2nR

For R = 0:01 and n = 821 ! 228:21
> # of atoms in universe

1Ahlswede, R. and Dueck, G. ”Identification via channels”, 1989
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Deterministic Identification (DI) 2

Encoder uses deterministic mapping for coding

Code size � 2nR for DMC as in transmission paradigm

Achievable rates higher than transmission

Why deterministic?

Simpler implementation (random resource not required)

Suitable for Jamming scenarios

Suitable for molecular communication a

aNakano, et. al, ”Molecular communication and networking: Opportunities

and challenges”, 2012

2Ahlswede, R. and Cai, N. ”Identification without randomization”, 1999
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Main Contributions

We established the DI capacity for three channel models with
power constraints:

DMC

Fast Fading

Slow Fading

We show that the optimal code size scales as � 2nR for the

DMC and as � 2n log(n)R = nnR for the fading channels

Our analysis combines techniques and ideas from both works,

by JáJá a and Ahlswede b

aJa, J.J., ”Identification is easier than decoding”, 1985
bAhlswede, R. ”A method of coding and its application to arbitrarily varying

channels”, 1980
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Transmission

Definition (Transmission Code)

A (L(n;R); n; ")-transmission code for DMC W is a system

f(ui ;Di )gi2[1:L(n;R)] subject to

1 Code size: L(n;R) = 2nR

2 Code-word: ui 2 X n, decoding regions: Di � Yn

3 Input constraint: 1
n

Pn
t=1 �(ui ;t) � A with � : X ! [0;1)

4 Error requirement: W n(Di jui ) � 1� "

5 Non-overlapping decoding regions: Di \
i 6=j
Dj = ;
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Transmission

Definition (Achievable Rate)

A rate R is called achievable if for every positive " and sufficiently

large n, there exists an (L(n;R); n; ")-code

Definition (Channel Capacity)

CT (W) = supfR jR is achievableg

Theorem (Shannon, 1948)

Transmission capacity of a DMC W for L(n;R) = 2nR is given by

CT (W; L) = max
pX

I (X ;Y )
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DI Codes

Definition (Ahlswede and Cai, 1999)

A (L(n;R); n; �1; �2)-DI code for DMC W is a system

f(ui ;Di )gi2[1:L(n;R)] subject to

1 Code size: L(n;R) = 2nR

2 Code-word: ui 2 X n, decoding regions: Di � Yn

3 Input constraint: 1
n

Pn
t=1 �(ui ;t) � A with � : X ! [0;1)

4 Error requirement type I: W n(Di jui ) > 1� �1

5 Error requirement type II: W n(Di juj) <
i 6=j

�2
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Geometry of DI Codes

X n

u1

u2

u3

u4

Yn

D1

D2

D3

D4

correct identification

type I error

type II error

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 13/38



Institute for Communications Engineering Technical University of Munich

RI Codes

Ahlswede and Dueck, 1989

Given local randomness at the transmitter, encoder send a random

codeword ui � Qi .

Theorem (Ahlswede and Dueck, 1989)

RI capacity of a DMC W for L(n;R) = 22nR is given by

CRI (W; L) = max
pX

I (X ;Y )
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DI Capacity of DMC

Theorem
a Let W be a DMC with distinct rows in channel matrix. Then for

L(n;R) = 2nR , the DI capacity under input constraint is given by

CDI (W; L) = max
pX : Ef�(X )g�A

H(X )

aarXiv:2010.04239, 2020
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DI Capacity of DMC

Theorem (Ahlswede and Dueck, 1989 ; Ahlswede and Cai, 1999)

For DMC W let W : X ! Y be channel matrix with distinct rows.

Then for L(n;R) = 2nR , the DI capacity is given by

CDI (W; L) = log jX j

A proof was not provided

Consequence of our result with A = �max

CDI (W; L) = max
pX : Ef�(X )g��max

H(X ) = H(X ) j
pX� U(f1:jX jg)

=

log jX j
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Proof Sketch (Achievability)

Lemma

Let R < H(X ) and � > 0. Then, 9 U� = fvigi2M such that

1 vi 2 T (pX ) 8i 2M
2 dH(vi ; vj) � n� 8i 6= j

3 jMj � 2n(R��)

Coding Scheme

Enc: given message i 2M transmit xn = vi
Dec: Dj = fyn : (vj ; yn) 2 T�(pXW )g
Error Analysis

1 Pe;1(i) � 2��1(�)n by standard type class argument
2 Pe;2(i ; j) � 2�n�2(�;�) by conditional type intersection lemma

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 18/38



Institute for Communications Engineering Technical University of Munich

Proof Sketch (Achievability)

Lemma (Ahlswede, 1980)

Let W : X ! Y be a channel matrix of a DMC W with distinct

rows. Then, for every xn; x 0n 2 T�(pX ) with d(xn; x 0n) � n�,

jT�(pY jX jxn) \ T�(pY jX jx 0n)j
jT�(pY jX jxn)j � e�ng(�)

with pY jX �W, for sufficiently large n and some positive function

g(�) > 0 which is independent of n.
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Proof Sketch (Converse)

Lemma

Distinct messages have distinct codewords, i.e.,

i1 6= i2 ) ui1 6= ui2

Proof. If ui1 = ui2 = xn, then

Pe;1(i1) + Pe;2(i2; i1) = W n(Dc
i1 jxn) + W n(Di1 jxn) = 1

Further Steps

2nR � ��fxn : n�1Pn
t=1 �(xt) � Ag��

��fxn : n�1Pn
t=1 �(xt) � Ag�� � 2

n( max
pX : Ef�(X )g�A

H(X )+�n)

since input subspace is a union of type classes

R � max
pX : Ef�(X )g�A

H(X ) + �n for �n
n!1���! 0
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DI for Gaussian Channel

Theorem
a Let G ; Y = x + Z be Gaussian channel with power constraint

kxk2 � nA and Z
iid� N (0; �2

Z ). Then for L(n;R) = 2nR , DI

capacity is given by

CDI (G ; L) = 1
aarXiv:2010.04239

i Encoder + Decoder

j

Yes/No

Z

ui Y

Figure 1: DI over Gaussian channel
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Proof Sketch.

Proof I

Dense sphere packing arrangement with radius
p
�

Minkowski-Hlawka Theorem guarantees a density ∆ � 2�n

2nR =
Vol

�S2nR

i=1
Sui (n;

p
�)

�
Vol(Su1 (n;

p
�))

= ∆ � Vol(S0(n;
p
A))

Vol(Su1 (n;
p
�))
� 2�n �

�
A
�

� n
2

R � 1
2 log

�
A
�

�
� 1

�!0��!1

Proof II

Apply quantization to approximate G with a DMC

H(X∆) � 1
2 log(2�eA)� 2p

2�A
∆ + log 1

∆

R
∆!0+����!1
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DI for Fading Channel

i Enc � + Dec

j

Yes/No

fG

Zt

Gt

ui ;t
Gt

Yt

Definitions

Fast fading ! Y = G � x + Z where G = (Gt)
1
t=1

iid� fG

Slow fading ! Yt = Gxt + Zt where G � fG

Power const. ! kxk � pnA , Noise ! Z
iid� N �

0; �2
Z

�
G , set of fading coefficient values
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DI for Fast Fading Channel
Theorem
a Let G fast be fast fading channel with positive fading coefficients.

Then the DI capacity for L(n;R) = 2n log(n)R is given by
1

4
� CDI (G fast; L) � 1

aarXiv:2010.10010

Corollary (Traditional Scales)

DI capacity in traditional scales is given by

CDI (G fast; L) =

8<
:1 for L(n;R) = 2nR

0 for L(n;R) = 22nR

Standard Gaussian channel is a special case

To prove lower-bound, we pack sphere of radius
p
n�n � n

1
4 ,

which results in � 2
1
4
n log(n) codewords
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DI for Slow Fading Channel

Theorem
a Let G slow be slow fading Gaussian channel. Then DI capacity for

L(n;R) = 2n log(n)R is given by

1
4 � CDI (G slow; L) � 1 if 0 =2 cl(G)

CDI (G slow; L) = 0 if 0 2 cl(G)

aarXiv:2010.10010

Corollary (Traditional Scales)

DI capacity in traditional scales is given by

CDI (G slow; L) =

8<
:0 if 0 2 cl(G)

1 if 0 =2 cl(G)
; for L(n;R) = 2nR

CDI (G slow; L) = 0 ; for L(n;R) = 22nR
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Discontinuity of DI Capacity
Binary Symmetric Channel

For � < 1
2 (arbitrary close to 1

2 ): W =

�
1� � �

� 1� �

�
)

CDI (BSC ) = log
�
nrow [W ]

�
= log 2 = 1

For � = 1
2 , it is a pure noise channel, and W =

�
0:5 0:5
0:5 0:5

�
)

CDI (BSC ) = log
�
nrow [W ]

�
= log 1 = 0

0 0:5
0

1

Cross-over Probability, �

C
ap

ac
it

y CDI (BSC )

CT (BSC )
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Conclusions

We have determined DI capacity for

1 DMC ! 2nC behavior
2 Fading ! 2n log(n)C = nnC behavior

As opposed to 22nR for random identification

Future directions

1 Multi-user scenarios
2 Molecular communication channel (with memory)
3 Finite block-length regime
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Discussion

Thank You!
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�-DI Capacity for DMC

Theorem (Ahlswede et al, 1989 ; Burnashev, 2000)

For a DMC W with L(n;R) = 22nR , the �-DI Capacity for

� 2 [0; 1
2 ) are given by

C�
RI (W; L) = CRI (W; L) = max

pX
I (X ;Y )

C�
DI (W; L) = CDI (W; L) = 0

Theorem (Ahlswede et al, 1989)

�-DI and �-RI achievable rate with L(n;R) = 22nR for � � 1
2 can be

made arbitrary large, i.e.,

C�
DI (W; L) = C�

RI (W; L) = 1
Proof ! Decoder flips a fair coin
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�-DI Capacity for Gaussian Channel

Theorem (Burnashev, 2000)

For a Gaussian channel with L(n;R) = 22nR , the �-DI capacity for

� � 1
2 is given by

C�
DI (G ; L) = C�

RI (G ; L) = 1

Theorem (Labidi et al, 2020)

For a Gaussian channel under input constraint kxk2 � nA with

L(n;R) = 22nR , the �-DI capacity for � 2 [0; 1
2 ) is given by

C�
RI (G ; L) = CRI (G ; L) =

1

2
log

 
1 +

A

�2
Z

!
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DI for Compound Channel
1 Let V = fV (:j:; s) : s 2 SgjSj<1 be a compound channel

2 Each V (:j:; s) induces a partition fX (1js); : : : ;X (js js)g
of X with

x ; x 0 2 X (:js) () V (:jx ; s) = V (:jx 0; s)

3 Any RV X taking values in X induces a RV X̂ (s) s.t.

X̂ (s) = k () X 2 X (k js) for k 2 [1 : js ]

Theorem (Ahlswede and Cai, 1999)

CDI (V; L) = max
X

min
s

H(X̂ (s)) for L(n;R) = 2nR
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DI for AVC

Theorem (Ahlswede and Cai, 1999)

1 Let P 2 P(X ) and A be the row-convex closure of A
2 Set Q(P;A) =

�
(X ;X 0;Y ) : PY jX ;PY jX 0 2 A;PX = PX 0 =

P;X ! X 0 ! Y
	

then

CDI (A) � max
P

min
(X ;X 0;Y )2Q(P;A)

I (X 0 ^ XY )

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 33/38



Institute for Communications Engineering Technical University of Munich

DI Capacity of AVC I

For every fixed x 2 X define

A1(x) =
�
A(:jx ; s) : s 2 S	

as set of PDs on Y where A1 =
�
A(:j:; s) : s 2 S	

Define A(x) as convex closure of A1(x) i.e. of entries in form

X
s2S̃

P(s)A(y jx ; s)
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DI Capacity of AVC II

Define row-convex closure of A denote by A as follows:

A =
�

(A(y jx))x2X ;y2Y : A(:jx) 2 A(x)
	

A has entries of form:

X
s2S̃

P(sjx)A(y jx ; s)

P(sjx) means that coefficient are conditioned on choice of x ,

i.e., for every different x there would be in general a complete

different set of coefficients than that of required for defining

entries of A(x)
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DI Codes for Gaussian Channel

Cost Constraints

1 Average power constraint:

1

n

nX
1

jxt j2 � P () kxnk2 �
p
nP

2 Peak power constraint:

max
1�t�n

jxt j � A () kxnk1 � A
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DI Capacity Results

Theorem (JáJá, 1985)

For Binary Symmetric Channel (BSC) with � 6= 0:5, the DI with

rate arbitrarily close to 1 is possible, i.e,

CDI (BSC ) = 1

Theorem (Ahlswede, 1989)

For DMC W with stochastic matrix W , let nrow be # of distinct

rows in W , then the DI capacity is given by

CDI (W) = log
�
nrow [W ]

�
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Geometry of RI Codes

E2

Ei

Ej

E1

E���

E
22nR�1

E
22nR

X n
correct identification

type I error

type II error

D2

Di

Dj

D1

D���

D
22nR�1

D
22nR

Yn
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