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Transmission vs. |dentification

@ Shannon's setting: Bob recover the message

.,_

@ Identification setting: Bob asks if a message was sent or not?

. u; . Y
i —| Enc noisy channel Dec Yes/No

!
J
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Transmission vs. ldentification

@ Shannon's setting: Bob recover the message

.,_

@ Identification setting: Bob asks if a message was sent or not?

. u; . Y

J

Apps — vehicle-to-X communications, health care, point to
multi-point communication, molecular communication, online
sales, communication complexity, and any event-triggered scenario

V.
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Randomized Identification (RI) !

@ Originally introduced by Ahlswede and Dueck (1989)
o Capacity was established with randomness at encoder

@ Encoder employs distribution to select codewords

Remarkable Property

@ Reliable identification is possible with code size growth ~ 02"

o Sharp difference to transmission with code size growth ~ 2%

1Ahlswede, R. and Dueck, G. "ldentification via channels”, 1989
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Randomized Identification (RI) !

@ Originally introduced by Ahlswede and Dueck (1989)
o Capacity was established with randomness at encoder

@ Encoder employs distribution to select codewords

Remarkable Property

@ Reliable identification is possible with code size growth ~ 02"

o Sharp difference to transmission with code size growth ~ 2%

For R = 0.01 and n = 821 — 22°*'> 4 of atoms in universe J

1Ahlswede, R. and Dueck, G. "ldentification via channels”, 1989
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Deterministic Identification (DI) 2

@ Encoder uses deterministic mapping for coding
o Code size ~ 2"R for DMC as in transmission paradigm

@ Achievable rates higher than transmission

v

Why deterministic?

e Simpler implementation (random resource not required)

@ Suitable for Jamming scenarios

@ Suitable for molecular communication 2

?Nakano, et. al, "Molecular communication and networking: Opportunities
and challenges”, 2012

2Ahlswede, R. and Cai, N. "Identification without randomization”, 1999
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Main Contributions

@ We established the DI capacity for three channel models with
power constraints:
e DMC
e Fast Fading
e Slow Fading
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Main Contributions

@ We established the DI capacity for three channel models with
power constraints:

e DMC
e Fast Fading
e Slow Fading

@ We show that the optimal code size scales as ~ 2"% for the
DMC and as ~ 2m'og(MR — pnR for the fading channels

@ Our analysis combines techniques and ideas from both works,
by JaJa @ and Ahlswede ?

?Ja, J.J., "ldentification is easier than decoding”, 1985
bAhlswede, R. " A method of coding and its application to arbitrarily varying
channels”, 1980
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Transmission

Definition (Transmission Code)

A (L(n, R), n,e)-transmission code for DMC W is a system
{(ui, Di)}ieq:(n,R)) Subject to
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Transmission

Definition (Transmission Code)

A (L(n, R), n, e)-transmission code for DMC W is a system
{(ui, Di)}ie[:L(n,R)) Subject to
© Code size: L(n, R) = 2"k
@ Code-word: u; € X", decoding regions: D; C )"
@ Input constraint: 1 =7, ¢(u;;) < A with ¢ : X — [0, 00)
Q@ Error requirement: W"(Djlu;) > 1 —¢
© Non-overlapping decoding regions: D; in D=0
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Transmission

Definition (Achievable Rate)

A rate R is called achievable if for every positive € and sufficiently
large n, there exists an (L(n, R), n, €)-code

A

Definition (Channel Capacity)

C1(W) = sup{R|R is achievable}

N
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Transmission

Definition (Achievable Rate)

A rate R is called achievable if for every positive € and sufficiently
large n, there exists an (L(n, R), n, €)-code

A

Definition (Channel Capacity)

C1(W) = sup{R|R is achievable}

N

Theorem (Shannon, 1948)

Transmission capacity of a DMCW for L(n, R) = 2"R is given by
Cr(w,L) = max 1(X;Y)
X

A
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DI Codes

Definition (Ahlswede and Cai, 1999)
A (L(n, R), n, A1, A2)-DI code for DMC W is a system
{(ui, Di)}iep:L(n,R) Subject to
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DI Codes

Definition (Ahlswede and Cai, 1999)
A (L(n, R), n, A1, A2)-DI code for DMC W is a system
{(ui, Di)}ie[:L(n,R)) Subject to
@ Code size: L(n,R) =2"R
@ Code-word: u; € X", decoding regions: D; C Y"
@ Input constraint: %E?Il ¢(uir) < Awith ¢ : X — [0, 00)
@ Error requirement type I: W"(Djluj) > 1 — A\

© Error requirement type Il: W"(D;|u;) i A2
i#]
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correct identification
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Rl Codes

Ahlswede and Dueck, 1989

Given local randomness at the transmitter, encoder send a random
codeword u; ~ Q;.

N

Theorem (Ahlswede and Dueck, 1989)
Rl capacity of a DMC W for L(n, R) = 22" is given by
Cr(W, L) = max 1(X;Y)
X

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 14/38



Technical University of Munich m

Outline

@ Main Results

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 15/38



#  Institute for Communications Engineering Technical University of Munich m

DI Capacity of DMC

Theorem
2 [et W be a DMC with distinct rows in channel matrix. Then for
L(n, R) = 2"R, the DI capacity under input constraint is given by

Cpi(W, L) = ma H(X
W)= elea HX)

?arXiv:2010.04239, 2020
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DI Capacity of DMC

Theorem (Ahlswede and Dueck, 1989 ; Ahlswede and Cai, 1999)

For DMCW let W : X — Y be channel matrix with distinct rows.
Then for L(n, R) = 2"R, the DI capacity is given by

Cpi(W, L) = log|X|

@ A proof was not provided
@ Consequence of our result with A = @pax

o Cp(W,L)= max H(X) = H(X =
DI( ) px : E{¢(X)}<dmax ( ) ( )PXN Z,{(|{1:|X|})

log |X|
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Proof Sketch (Achievability)

Let R < H(X) and € > 0. Then, 3U* = {v;}icpm such that
O viecT(px) VieM
@ du(vi,vj)) > ne Vi#j
[3) |M| Z 2n(R—6)

v

Coding Scheme

@ Enc: given message i € M transmit x" = v;
e Dec: D; ={y" : (vj,y") € Ts(pxW)}
@ Error Analysis

@ P.1(i) < 2=21(9" by standard type class argument
@ P.o(i,j) < 2-1(&9) py conditional type intersection lemma

v
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Proof Sketch (Achievability)

Lemma (Ahlswede, 1980)

Let W : X — Y be a channel matrix of a DMC W with distinct
rows. Then, for every x",x'" € Ts(px) with d(x",x"") > ne,

[ 75(py x|x") N Ts(py|x|x"")|
|75 (pyx|x")|

S e ng(e)

with py|x = W, for sufficiently large n and some positive function
g(€) > 0 which is independent of n.
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Proof Sketch (Converse)

Distinct messages have distinct codewords, i.e.,
n#h = u#u,

Proof. If u;; = u;, = x", then

Pea(it) + Pep(i2, it) = W'(Dj [x") + W"(Dy |x") = 1

1
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Proof Sketch (Converse)

Distinct messages have distinct codewords, i.e.,
n#h = u#u,

Proof. If u;; = u;, = x", then

Pe1(i1) + Pep(i2, 1) = W™(Dj |x") + W™(Dj,|x") = 1

1

Further Steps

0 2" < {x" 7t ¢(x) < A}

max H(X)+an)
{#(X)}<A

n(
o [{x":n ITE f(x) < A} <2 P
since input subspace is a union of type classes

e R< m HX)+a, fora, =20

ax
T opx E{g(X)}<A
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DI for Gaussian Channel

A let9d ;Y =x +"Z be Gaussian channel with power constraint
Ix|[> < nA and Z % N(0,02). Then for L(n, R) = 2"R, DI
capacity is given by

Cpi(¥4,L) =0
?arXiv:2010.04239
zZ
u; l Y
J

Figure 1: DI over Gaussian channel
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Proof Sketch.

@ Dense sphere packing arrangement with radius /€

o Minkowski-Hlawka Theorem guarantees a density A > 27"

NIS

nR
Vol (Ule S""(”’*/E)) Vol(Se(nvA) < n—n (A
VoG (/) = B Vol(Sw (nve) 2 2 (4)

R>%log (4) —1% 00

o 2R =
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Proof Sketch.

@ Dense sphere packing arrangement with radius /€

o Minkowski-Hlawka Theorem guarantees a density A > 27"

nR
vol (U} Sy (nv/) 2
e i=1 v — A VolSo(nvVA)  5—n  (A)2
° 2" = VG (/) — 2 Vol(Bay (me)) = 2 (e)

oRZ%Iog(é)—lﬂoo

y

Proof Il

@ Apply quantization to approximate ¢ with a DMC

o H(X2) = Llog(2meA) — ﬁA + log %

A—0t
o R—— )
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DI for Fading Channel
Gt

Uit

)

&5

I T

Z J

Y,
@ : @—» Yes/No

iid

o Fast fading - Y = Gox+ Z where G = (G;)2, ~ f¢

e Slow fading — Y; = Gx; + Z; where G ~ fg
@ Power const. — ||x|| < +/nA, Noise — Z

@ G £ set of fading coefficient values

iid
s

(0,07)

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification

23/38



 Institute for Communications Engineering Technical University of Munich m

DI for Fast Fading Channel

2 Let Ysst be fast fading channel with positive fading coefficients.
Then the DI capacity for L(n, R) = 2"'°&("R s given by

1
2 < Cpi(¥9fst, L) <1

?arXiv:2010.10010
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DI for Fast Fading Channel

2 Let Ysst be fast fading channel with positive fading coefficients.
Then the DI capacity for L(n, R) = 2"'°&("R s given by

1
A < Cpi(%rst: L) <1

?arXiv:2010.10010

A

Corollary (Traditional Scales)

DI capacity in traditional scales is given by
oo for L(n,R) =2"R
Cpi(Yfast, L) = n
T =10 4, L(n, R) = 22"

o Standard Gaussian channel is a special case
. 1
@ To prove lower-bound, we pack sphere of radius /ne, ~ n%,

) ) 1
which results in ~ 22"1°8(") codewords
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DI for Slow Fading Channel

2 Let Yiow be slow fading Gaussian channel. Then DI capacity for
L(n, R) = 2""&(MR s gjven by

i <Coi(Gsion, L) <1 if O ¢ cl(G)

(CDI(gslow; L) =0 if0 € C/(g)

?arXiv:2010.10010
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DI for Slow Fading Channel

Theorem

2 Let Yiow be slow fading Gaussian channel. Then DI capacity for
L(n, R) = 2""&(MR s gjven by

T <Cpi(Fstom, L) <1 if0 ¢ cl(G)

CDI(gslow; L) =0 if0 € C/(g)

?arXiv:2010.10010

| \

Corollary (Traditional Scales)

DI capacity in traditio %I sca/efols Egn//(s’éy by
Coi(Fsiom L) =
oo if0¢clG)’

Coi(Ysiow, L) =0, for L(n,R) =2

( R) 2nR

2nR
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Discontinuity of DI Capacity
Binary Symmetric Channel
o For € < 1 (arbitrary close to 3): W = (1:€ 1€€> =
Cpi(BSC) = log (nrow[W]) = log2 =1

2 05 0.5
Cpi(BSC) = log (nrow[W]) =logl =0

@ For e =1 itis a pure noise channel, and W = (0'5 05) =
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Discontinuity of DI Capacity

Binary Symmetric Channel

o For € < 1 (arbitrary close to 3): W = (1:€ 1€€> =
Cpi(BSC) = log (nrow[W]) = log2 =1
@ Fore= % it is a pure noise channel, and W = (gg gg)

Cpi(BSC) = log (nrow[W]) =logl =0

= Cpi(BSC)
—— C7(BSC)

Capacity

0 R
0 0.5

Cross-over Probability, €
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Outline

© Conclusions
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Conclusions

@ We have determined DI capacity for
@ DMC — 27C behavior
@ Fading — 27"°8(MC — " pbehavior
As opposed to 22" for random identification
o Future directions

@ Multi-user scenarios
@ Molecular communication channel (with memory)
© Finite block-length regime
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Discussion

Thank You!

O
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5l

e-DI Capacity for DMC

Theorem (Ahlswede et al, 1989 ; Burnashev, 2000)

For a DMC W with L(n,R) = 22" the e-DI Capacity for
€ € [0, 3) are given by

RV, L) = Cri(W, L) = max I(X; Y)
X

bW, L) =Cp/(W,L)=0

N

Theorem (Ahlswede et al, 1989)

e-DI and e-RI achievable rate with L(n, R) = 22" for e > % can be
made arbitrary large, i.e.,

EDI(Wi L) = C??I(Wi L) =00

Proof — Decoder flips a fair coin
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e-DI Capacity for Gaussian Channel

Theorem (Burnashev, 2000)

For a Gaussian channel with L(n, R) = 22"R, the e-DI capacity for
€> % is given by

eDl(g, L) = 7?/(%7 L) =00

Theorem (Labidi et al, 2020)

For a Gaussian channel under input constraint ||x||*> < nA with
L(n,R) = 22" the €-DI capacity for € € [0, %) is given by

1 A

0z
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DI for Compound Channel

@ Let V={V(],s) : s € S}s|<e be a compound channel
@ Each V/(.|.,s) induces a partition {X(1]s),..., X(s|s)}
of X with

x,x' € X(.|s) <= V(|x,s) = V(|X,s)

© Any RV X taking values in X induces a RV X(s) s.t.
X(s) =k < X € X(k|s) for k € [1: j

Theorem (Ahlswede and Cai, 1999)

Coi(V, L) = max min H(X(s)) for L(n,R) =2"R
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DI for AVC

Theorem (Ahlswede and Cai, 1999)

Q Let P P(X) and A be the row-convex closure of A

@ Set Q(P, A) = {(X,X",Y) : Pyix,Pyjx € A, Px = Pxi =
P,X = X' =Y}

then

> ] !
Cpi(A) > max (X’Xl’\g)vgé(P’A)/(X A XY)
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DI Capacity of AVC |

@ For every fixed x € X define
Ai1(x) = {A(|x,s) : s € S}

as set of PDs on Y where A; = {A(.]., s):s €S}

@ Define A(x) as convex closure of A;(x) i.e. of entries in form

> P(s)Avlx,s)

se8
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DI Capacity of AVC I

@ Define row-convex closure of A denote by A as follows:

A= {(Ay))xexyey : Al-|x) € A(x)}

j has entries of form:

> P(sIx)Alylx, s)

seES

P(s|x) means that coefficient are conditioned on choice of x,
i.e., for every different x there would be in general a complete
different set of coefficients than that of required for defining
entries of A(x)
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DIl Codes for Gaussian Channel

Cost Constraints

@ Average power constraint:

1 n
=Y P <P = (X", < vnP
1

@ Peak power constraint:

<A M, <A
max x| SA =[x, <

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 36/38



il |nstitute for Communications Engineering Technical University of Munich m

DI Capacity Results

Theorem (JaJa, 1985)

For Binary Symmetric Channel (BSC) with € # 0.5, the DI with
rate arbitrarily close to 1 is possible, i.e,

Cpi(BSC) =1

Theorem (Ahlswede, 1989)

For DMC W with stochastic matrix W, let n,., be # of distinct
rows in W, then the DI capacity is given by

Cpi(W) = log (nrow[W])
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Geometry of Rl Codes

correct identification
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