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Transmission
(Shannon 1948):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3 î ≈λ i+3 :Bob

Transmission (n,Nn, λ) code for W is a system {(ui,Di)}i∈[[Nn]]:
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Transmission
(Shannon 1948):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3 î ≈λ i+3 :Bob

Transmission (n,Nn, λ) code for W is a system {(ui,Di)}i∈[[Nn]]:

ui ∈ X n,Di ⊂ Yn
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Transmission
(Shannon 1948):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3 î ≈λ i+3 :Bob

Transmission (n,Nn, λ) code for W is a system {(ui,Di)}i∈[[Nn]]:

ui ∈ X n,Di ⊂ Yn

W n(Di|ui) ≥ 1− λ
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Transmission
(Shannon 1948):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3 î ≈λ i+3 :Bob

Transmission (n,Nn, λ) code for W is a system {(ui,Di)}i∈[[Nn]]:

ui ∈ X n,Di ⊂ Yn

W n(Di|ui) ≥ 1− λ

Di ∩
i6=j
Dj = ∅
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Transmission
(Shannon 1948):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3 î ≈λ i+3 :Bob

Transmission (n,Nn, λ) code for W is a system {(ui,Di)}i∈[[Nn]]:

ui ∈ X n,Di ⊂ Yn

W n(Di|ui) ≥ 1− λ

Di ∩
i6=j
Dj = ∅

Capacity

lim
n→∞

1

n
logNmax(n, λ) = CT ∀λ ∈ (0, 1)
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Transmission
(Shannon 1948):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3 î ≈λ i+3 :Bob

Transmission (n,Nn, λ) code for W is a system {(ui,Di)}i∈[[Nn]]:

u2
u1

u··· uNn

D2
D1

D··· DNn

correct decoding

type I error

Figure: Geometric depiction of Transmission code
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

(n,Nn, µn, λn) ID code for W is a system {(Qi,Di)}i∈[[Nn]]:
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

(n,Nn, µn, λn) ID code for W is a system {(Qi,Di)}i∈[[Nn]]:

Qi = ϕn(i)→ codeword of message i
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

(n,Nn, µn, λn) ID code for W is a system {(Qi,Di)}i∈[[Nn]]:

Qi = ϕn(i)→ codeword of message i

Qi(x
n) = Pr{Xn(i) = xn}, xn ∈ X n, Di ⊂ Yn

QiW
n → Pr{Y n(i) = yn} (response of Qi)
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

(n,Nn, µn, λn) ID code for W is a system {(Qi,Di)}i∈[[Nn]]:

Qi = ϕn(i)→ codeword of message i

Qi(x
n) = Pr{Xn(i) = xn}, xn ∈ X n, Di ⊂ Yn

QiW
n → Pr{Y n(i) = yn} (response of Qi)

µ
(i)
n = QiW

n(Dci ) = Pr{Y n(i) ∈ Yn \ Di}
type I error−−−−−→ µn = max

1≤i≤Nn

µ
(i)
n
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

(n,Nn, µn, λn) ID code for W is a system {(Qi,Di)}i∈[[Nn]]:

Qi = ϕn(i)→ codeword of message i

Qi(x
n) = Pr{Xn(i) = xn}, xn ∈ X n, Di ⊂ Yn

QiW
n → Pr{Y n(i) = yn} (response of Qi)

µ
(i)
n = QiW

n(Dci ) = Pr{Y n(i) ∈ Yn \ Di}
type I error−−−−−→ µn = max

1≤i≤Nn

µ
(i)
n

λ
(i,j)
n = QjW

n(Di) = Pr{Y n(j) ∈ Di}(j 6= i)
type II error−−−−−−→ λn = max

1≤j,i≤Nn,j 6=i
λ
(j,i)
n
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

(n,Nn, µn, λn) ID code for W is a system {(Qi,Di)}i∈[[Nn]]:

Qi = ϕn(i)→ codeword of message i

Qi(x
n) = Pr{Xn(i) = xn}, xn ∈ X n, Di ⊂ Yn

QiW
n → Pr{Y n(i) = yn} (response of Qi)

µ
(i)
n = QiW

n(Dci ) = Pr{Y n(i) ∈ Yn \ Di}
type I error−−−−−→ µn = max

1≤i≤Nn

µ
(i)
n

λ
(i,j)
n = QjW

n(Di) = Pr{Y n(j) ∈ Di}(j 6= i)
type II error−−−−−−→ λn = max

1≤j,i≤Nn,j 6=i
λ
(j,i)
n

Nn ≤ 2|Y|
n
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

missed ID (due to channel noise)
Alice sent message i, Bob who is interested in test message i∗ can decide i∗ was not
sent

false ID (inherent to the code)
Alice sent message j, Bob who is interested in test message j∗ can decide message
i 6= j was sent
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IDentification
(Ahlswede & Dueck 1989):

Alice: i ∈ [[Nn]] ϕn+3
Xn

W n+3
Y n

ψn+3
correct ID

missed ID (µn)
false ID (λn)

+3

i∗

:Bob

Q1

Qj Qi

Q···

Q2

QNn Q3

D1

Dj Di

D...

D2

DNn D3

correct identification

type I error

type II error

Figure: Geometric depiction of ID code
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IDentification Theorems
Rate

rn ,
1

n
log logN(n, µn, λn) (1)

Capacity

CID = lim
n→∞

1

n
log logNmax(n, µn, λn) (2)

Direct Part
lim inf
n→∞

rn ≥ CT ∀µn, λn ∈ (0, 1] (3)

Soft Converse
lim sup
n→∞

rn ≤ CT µn, λn ≤ 2−nε ∀ε > 0 (4)

Strong Converse (Han & Verdu 1992)

CID ≤ CT ∀µn, λn ≥ 0 & lim sup
n→∞

(µn + λn) < 1 (5)
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Transmission vs IDentification

Figure: difference between Transmission and IDentification 1

1Y. Oohama, “Converse coding theorems for identification via channels,” IEEE Trans. Inform. Theory, vol. 59, pp. 744-759, Feb. 2013.
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Application
• Scenario→ Radio Networks, LAN, and Downlink Satellite Communications
• Goal→ Delivery a sequences of messages, each intended for one receiver
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Application
• Scenario→ Radio Networks, LAN, and Downlink Satellite Communications
• Goal→ Delivery a sequences of messages, each intended for one receiver

Figure: realization of identification-transmission communication 2

2adopted from “Information-Spectrum Methods in Information Theory”, T. S. Han, Tokyo, 2003, p. 436.
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Construction 1 (Random Coding Argument)
(Ahlswede & Dueck):

• Shannon’s coding theorem gaurantees existence of two transmission codes:

− L′ = {(u′

j,D
′

j)|j ∈ [[M ′]]} / (n, d2n(C−ε)e, 2−nδ)
− L′′ = {(u′′

k,D
′′

k)|k ∈ [[M ′′]]} / (d
√
ne, d2ε

√
ne, 2−

√
nδ)

• Let T be a family of maps T = {Ti|i ∈ [[N ]]} where Ti : [[M ′]]→ [[M ′′]]

• Let Ui := {u
′

j.u
′′

Ti(j)
|j ∈ [[M ′]]} and Di =

M ′⋃
j=1
D′

j ×D
′′

Ti(j)

• Let Q(i) be uniform distribution on set of codewords Ui

• Obviously IDL′,L′′ = {(Qi,Di)}i∈[[N ]] is an (n +
√
n,N, λL

′,L′′

1 , λL
′,L′′

2 ) ID code.
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Construction 1 (Random Coding Argument)
(Ahlswede & Dueck):

• Let ∀i ∈ [[N ]] and ∀j ∈ [[M ′]], Uij be independent RVs s.t.
Pr{Uij = u

′

j.u
′′

k} = 1
M ′′ , ∃T ∗ ∈ T s.t. T ∗i (j) = k ∈ [[M ′′]]

• Let random set U i = {Ui1, · · · , UiM ′} be a vector of concatenated codeword

• Let random decoding set D(U i) =
M ′⋃
j=1
D(Uij) where D(Uij) = D

′

j ×D
′′

k

• System {(Q(i),D(U i))|i ∈ [N ]} is (M ′(n + d
√
ne), N, λ1, λ2) ID code and achieves

acceptible maximal error probabilities
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Construction 2 (Concatenation)
(Verdu & Wei):

• Sequence of binary constant-weight code {Ci} = (Si, Ni,Mi, µiMi) with weight
factor βi, second order rate ρi and pairwise overlap fraction µi is optimal for
identification if:
− βi → 1, ρi → 1, µi → 0

• 3 layer concatenated code C1 ◦ C2 ◦ C3 denoted by [q, k, t] with:

− C1 = [q] PPM (all binary q-vectors of unit weight)
− C2 = [q, k] RS Code
− C3 = [qk, qt] RS Code
− t ≤ k ≤ q = prime

is a (qk+2, (qk)q
t
, qk+1, kqk + q1+t) binary constant-weight code
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Construction 2 (Concatenation)
(Verdu & Wei):

• Let {Ci} = [qi, ki, ti] be sequence of 3 layer concatenated codes, then {Ci} is
optimal for identification if:

− ti →∞
− ti

ki
→ 1

− ki
qi
→ 0

− qti−kii → 0

• Coupling 3 layer concatenated code with a transmission code (n, enR, λ)
gives an IT code which subsequently ID code can be extracted from !

• Error exponents of resulting ID code→ (1n log
1
λ,

1
n log

1
λ+µ)
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Construction 3 (1 Layer RS Code)
(Moulin & Koetter):

• Let C = (n, |C|, d)q be an EC code

• For word ci = (c1i , · · · , cni ) let enc/dec set Ai = Di is {(u, cui )|u ∈ [n]}
• |Ai| = n, |Ai ∩ Aj| ≤ n− d, ∀i, j ∈ [|C|] → µn = 1− d

n

• Let RS code (n ≤ q − 1, k) over Fq map (x0, · · · , xk−1) ∈ Fkq to (y1, · · · , yn) ∈ Fnq
where yi =

∑k−1
j=0 xjα

j
i where αi ∈ F = {α1, · · · , αn} ⊂ Fq

• (x0, · · · , xk−1) ∼ P =
∑k−1

j=0 xjX
j ∈ Fq[X ]

• Set AP = {(j, P (αj))}|j ∈ [n]} for P ∈ Fq[X ]

• Now M-K-RS ID code is defined by {(Ap, Ap)|P ∈ Fq[X ], deg(P ) < k}
• Correspionding ID code is (log2 n + log2 q, q

k, 0, k−1n )

• Application in ContactLess Device (RFID tags) identification [Private
Interrogation]
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Construction 3 (1 Layer RS Code)
(Moulin & Koetter):

• Let message set M have cardinality 2rK, where r = εn, for some ε ∈ (0, 1)
• Partition message m into K submessages m1, · · · ,mK

• Binary representation of m as r ×K matrix where mu sits in the u-th coloumn.

m ∼


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
... . . .
0 0 0 · · · 0︸ ︷︷ ︸

K


 r

• Encoding:
− Generate RV u uniformly distributed over {1, · · · , K}
− Transmit ID word (u,mu)
• Parameters:
− # of bits to represent a = (u,mu) = logK + r where logK = 1−ε

ε r

− 1
n log logM = 1− ε + log(εn)

n
10
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Construction 3 (1 Layer RS Code)
(Moulin & Koetter):

• Decoding:
− RX observes output of noiseless channel b = a = (u,mu)
− To test for the presence of message m∗, decoder compares if mu = m∗u
• Performance:
− µn = 0 �
− λn = 1− 1

K �
• The need for redundancy→ representation of message s.t. increase distance

between different messages (measured via distinct coloumns)
• Simple idea→ apply (L,K) RS code with alphabet size q = 2r to message m
• Performance:
− µn = 0 �
− λn =

K
L �
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Remarks
• ID codes outperform one exponential order more than transmission codes by

gaining reliable transmission of double exponential messages in bloklength

• Double Exponent Coding Theorem have been developed

• ID performance is measured by two errors namely type I and type II

• ID application→ P2MP, remote alarm service,

• For infinite alphabet channel (white Gaussian with bandwith constraint) or DMC
ID and Shannon capacity coincide

• ID code for noisy channel→ concatenation of standard transmission code and an
ID code for noiseless channel

• Need for explicit construction of ID codes and Practical algorithms for
implementation continues!
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Questions

Thanks For Attendance
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