Deterministic Identification for Molecular Communications over the Poisson Channel

Mohammad Javad Salariseddigh

Institute for Communications Engineering

Joint work with:

Uzi Pereg (TUM-LNT), Holger Boche (TUM-LTI), Christian Deppe (TUM-LNT), Vahid Jamali (Princeton, ECE), and Robert Schober (FAU-IDC)

February 24rd, 2022

3 Definitions

5 Conclusions

- 2 Main Contributions
- 3 Definitions
- 4 Main Results

Transmission vs. Identification

• Shannon's setting: Bob recover the message.

• Identification setting: Bob asks if a message was sent or not?

- Event-triggered scenarios
- Molecular communication

Transmission (TR)¹

- Originally introduced by Shannon (1948)
- Capacity was established without randomness at encoder
- Codebook size $\sim 2^{nR}$

¹Shannon, "A Mathematical Theory of Communication", Bell Sys. Tech. J., 1948

Transmission (TR)¹

- Originally introduced by Shannon (1948)
- Capacity was established without randomness at encoder
- Codebook size $\sim 2^{nR}$

Theorem (Shannon, 1948)

Transmission capacity of a DMC W with exponential codebook size, *i.e.*, $L(n, R) = 2^{nR}$ is given by

$$\mathbb{C}_T(\mathcal{W},L) = \max_{p_X} I(X;Y)$$

¹Shannon, "A Mathematical Theory of Communication", Bell Sys. Tech. J., 1948

Randomized Identification (RI)²

- Originally introduced by Ahlswede and Dueck (1989)
- Capacity was established with randomness at encoder
- Encoder employs distribution to select codewords

Remarkable Property

• Reliable identification is possible with codebook size $\sim 2^{2^{nR}}$

Theorem (Ahlswede and Dueck, 1989)

RI capacity of a DMC W in double exponential codebook size, i.e., $L(n, R) = 2^{2^{nR}}$ is given by

$$\mathbb{C}_{RI}(\mathcal{W},L) = \max_{D_X} I(X;Y)$$

²Ahlswede and Dueck, "Identification via Channels", T-IT, 1989

Deterministic Identification (DI) ^{3 4}

- Encoder uses deterministic mapping for coding
- Simpler implementation (random resource not required)
- Achievable rates higher than transmission ^a
- Suitable for molecular communication
 - Olfactory-inspired MC system
 - Cancer treatment and target drug delivery

^aSalarisedigh *et al.*, "Deterministic Identification Over Channel With Power Constraints", T-IT, 2022

⁴ Salariseddigh *et al.*, "Deterministic Identification Over Channels With Power Constraints," Proc. ICC, 2021

³Ahlswede and Cai, "Identification Without Randomization", T-IT, 1999

Olfactory-inspired MC System

- A codeword is molecular mixture
- Dedicated type receptors ensure spacial orthogonality

3 Definitions

4 Main Results

5 Conclusions

Main Contributions

• We develop lower and upper bounds on the DI capacity for the memoryless discrete time Poisson channels (DTPC) subject to both average and peak power constraints

- We use the bounds to determine the **correct size** of codebook
- We show that the optimal codebook size scales as $\sim 2^{(n \log n)R}$

4 Main Results

5 Conclusions

DI Codes

Definition

An $(L(n, R), n, \lambda_1, \lambda_2)$ -DI code for DTPC W is a system $\{(u_i, D_i)\}_{i \in [1:L(n,R)]}$ subject to

- Codebook size: $L(n, R) = 2^{(n \log n)R}$
- **2** Codeword: $u_i \in \mathcal{X}^n$, decoding sets: $\mathcal{D}_i \subset \mathcal{Y}^n$
- Input constraints:

•
$$0 \le u_{i,t} \le P_{\max}$$

• $n^{-1} \sum_{t=1}^{n} u_{i,t} \le P_{\max}$

Error requirement type I: $W^n(\mathcal{D}_i | oldsymbol{u}_i) > 1 - \lambda_1$

Error requirement type II: $W^n(\mathcal{D}_i | oldsymbol{u}_j) \underset{i \neq j}{<} \lambda_2$

DI Codes (Cont.)

Definition

An $(L(n, R), n, \lambda_1, \lambda_2)$ -DI code for DTPC W is a system $\{(u_i, D_i)\}_{i \in [1:L(n,R)]}$ subject to

- Code size: $L(n, R) = 2^{(n \log n)R}$
- **(a)** Code-word: $u_i \in \mathcal{X}^n$, decoding sets: $\mathcal{D}_i \subset \mathcal{Y}^n$
- Input constraints:

• $0 \le u_{i,t} \le P_{\max}$ • $n^{-1} \sum_{t=1}^{n} u_{i,t} \le P_{avg}$

- **4** Error requirement type I: $W^n(\mathcal{D}_i | \boldsymbol{u}_i) > 1 \lambda_1$
- S Error requirement type II: $W^n(\mathcal{D}_i | \mathbf{u}_j) \underset{i \neq i}{<} \lambda_2$

3 Definitions

5 Conclusions

DI for Poisson Channel

DI for Poisson Channel

Definitions

- $Y_t \sim \operatorname{Pois}(\lambda + \rho u_{i,t})$
- $\lambda \in \mathbb{R}_{>0}
 ightarrow$ Expected # of interfering molecules
- $\rho X \rightarrow$ Expected # observed molecules due to release by TX
- $\mathbf{y} \in \mathbb{N}_0^n \to \text{Output vector}$
- Power const. $0 \le u_{i,t} \le P_{\max}$ and $\frac{1}{n} \sum_{t=1}^{n} u_{i,t} \le P_{\max}$

•
$$W^n(\mathbf{y}|\mathbf{u}_i) = \prod_{t=1}^n \frac{e^{-(\lambda+\rho u_{i,t})}(\lambda+\rho u_{i,t})^{y_t}}{y_t!}$$

DI for Poisson Channel ⁵

Theorem

Let W be a DTPC with expected interference $\lambda \in \mathbb{R}_{>0}$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{avg}$ and $0 \leq u_{i,t} \leq P_{max}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by

$$rac{1}{4} \leq \mathbb{C}_{Dl}(\mathcal{W},L) \leq rac{3}{2}$$

⁵ Salariseddigh *et al.*, "Deterministic Identification Over Poisson Channels," Proc. GC, 2021

Salariseddigh et al. - Deterministic Identification for Molecular Communications over the Poisson Channel

DI for Poisson Channel ⁵

Theorem

Let W be a DTPC with expected interference $\lambda \in \mathbb{R}_{>0}$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{avg}$ and $0 \leq u_{i,t} \leq P_{max}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by

$$rac{1}{4} \leq \mathbb{C}_{Dl}(\mathcal{W}, L) \leq rac{3}{2}$$

• Achiev. proof: sphere pkg. of rad. $\sqrt[4]{n} \Rightarrow 2^{\frac{1}{4}(n \log n)}$ codewords

⁵ Salariseddigh *et al.*, "Deterministic Identification Over Poisson Channels," Proc. GC, 2021

Salariseddigh et al. - Deterministic Identification for Molecular Communications over the Poisson Channel

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- *Minkowski-Hlawka Theorem* guarantees a density $\Delta_n \geq 2^{-n}$

•
$$2^{(n\log n)R} \ge \Delta_n \cdot \frac{\operatorname{Vol}(\mathcal{Q}_0[n,A])}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))} \ge 2^{-n} \cdot \frac{A^n}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))}$$

• $R \ge \frac{1}{n\log n} \left[\left(\frac{1-b}{4} \right) n \log n + n \log \left(\frac{A}{e\sqrt{a}} \right) + o(n) \right] \xrightarrow[b \to 0]{n \to \infty} \frac{1}{4}$
• $A = \min \left(P_{\operatorname{ave}}, P_{\max} \right)$
• $a = \Omega(A^2)$ is constant
• b is arbitrarily small constant

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- *Minkowski-Hlawka Theorem* guarantees a density $\Delta_n \geq 2^{-n}$

•
$$2^{(n\log n)R} \ge \Delta_n \cdot \frac{\operatorname{Vol}(\mathcal{Q}_0[n,A])}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))} \ge 2^{-n} \cdot \frac{A^n}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))}$$

• $R \ge \frac{1}{n\log n} \left[\left(\frac{1-b}{4} \right) n \log n + n \log \left(\frac{A}{e\sqrt{a}} \right) + o(n) \right] \xrightarrow[b \to 0]{n \to \infty} \frac{1}{4}$
• $A = \min \left(P_{\text{ave}}, P_{\max} \right)$
• $a = \Omega(A^2) \text{ is constant}$
• b is arbitrarily small constant

Chebyshev's inequality gives following error bounds:

$$P_{e,1}(i) \leq \frac{c_1}{n\epsilon_n^2} = \mathcal{O}(\frac{1}{n^b})$$

2
$$P_{e,2}(i,j) \leq \frac{c_2}{n\epsilon_n^2} = \mathcal{O}(\frac{1}{n^b})$$

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- *Minkowski-Hlawka Theorem* guarantees a density $\Delta_n \geq 2^{-n}$

•
$$2^{(n\log n)R} \ge \Delta_n \cdot \frac{\operatorname{Vol}(\mathcal{Q}_0[n,A])}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))} \ge 2^{-n} \cdot \frac{A^n}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))}$$

• $R \ge \frac{1}{n\log n} \left[\left(\frac{1-b}{4} \right) n\log n + n\log \left(\frac{A}{e\sqrt{a}} \right) + o(n) \right] \xrightarrow[b \to 0]{n \to \infty} \frac{1}{4}$
• $A = \min \left(P_{\operatorname{ave}}, P_{\max} \right)$
• $a = \Omega(A^2) \text{ is constant}$
• b is arbitrarily small constant

Chebyshev's inequality gives following error bounds:

$$P_{e,1}(i) \leq \frac{c_1}{n\epsilon_n^2} = \mathcal{O}(\frac{1}{n^b})$$

2
$$P_{e,2}(i,j) \leq \frac{c_2}{n\epsilon_n^2} = \mathcal{O}(\frac{1}{n^b})$$

• Error bounds (1 and 2) gives: $\epsilon_n = a n^{\frac{1}{2}(b-1)}$

Proof Sketch. (Converse)

Lemma

• For every pair of codewords \mathbf{u}_i and \mathbf{u}_j $1 \leq \exists t \leq n$ such that

$$\left|1-\frac{
ho u_{i,t}+\lambda}{
ho u_{j,t}+\lambda}\right|>\epsilon'_n$$

then exploiting continuity of Poisson distribution gives:

•
$$\epsilon'_n, \kappa_n \xrightarrow{n \to \infty} 0$$

Proof Sketch. (Converse)

Lemma

• For every pair of codewords \mathbf{u}_i and \mathbf{u}_j $1 \leq \exists t \leq n$ such that

$$1-\frac{\rho u_{i,t}+\lambda}{\rho u_{j,t}+\lambda}\Big|>\epsilon'_n$$

then exploiting continuity of Poisson distribution gives:

•
$$\epsilon'_n, \kappa_n \xrightarrow{n \to \infty} 0$$

•
$$\left|1 - \frac{\rho u_{i,t} + \lambda}{\rho u_{j,t} + \lambda}\right| > \epsilon'_n \Rightarrow \rho \left|u_{i,t} - u_{j,t}\right| > \lambda \epsilon'_n \Rightarrow \left\|\mathbf{u}_i - \mathbf{u}_j\right\| > \frac{\lambda \epsilon'_n}{\rho}$$

• $R \leq \frac{1}{n \log n} \left[\left(\frac{1}{2} + (1+b)\right) n \log n + o(n) \right] \xrightarrow{n \to \infty}{b \to 0} \frac{3}{2}$

Codebook Sizes Spectrum

- Bloch, "Covert Communication over Noisy Channels: A Resolvability Perspective", T-IT, 2016
- Shannon, "A Mathematical Theory of Communication", Bell Sys. Tech. J., 1948
- Lapidoth and Moser, "On the Capacity of the Discrete-Time Poisson Channel", T-IT, 2009
- Salarisedigh et al., "Deterministic Identification Over Channel With Power Constraints", T-IT, 2021
- 10 Salarisedigh et al., "Deterministic Identification Over Fading Channels", Proc. ITW, 2020
- Salarisedigh et al., "Deterministic Identification Over Poisson Channels", Proc. GC, 2021
- 12 Zhang and Tan, "Covert Identification over Binary-Input Discrete Memoryless Channels", arXiv, 2021
- Ahlswede and Dueck, "Identification via Channels", T-IT, 1989
- 14 Burnashev, "On Identification Capacity of Infinite Alphabets or Continuous-Time Channels", T-IT, 2000
- Labidi et al., "Identification over the Gaussian Channel in the Presence of Feedback", Proc. ISIT, 2021

- 2 Main Contributions
- 3 Definitions
- 4 Main Results

Conclusions

- We have determined bounds on the DI capacity for DTPC
- We have found optimal codebook size $\sim 2^{(n \log n)C}$
- We observed that DI codebook size for **DTPC** and **Gaussian** channels is the same
- Future directions:
 - Extension to multi-user scenarios (e.g., broadcast and multiple access channels) or multiple-input multiple-output channels
 - 2 Extension to non-orthogonal molecule reception / ISI Memory
 - It obtain better bounds:
 - Enhance sphere packing arrangement
 - Try a different decoder
 - Improve error analysis techniques (sharper conc. inequal.)

Question and Discussion

