

Bounds For Deterministic Identification Capacity in Power-Constrained Poisson Channels

Mohammad J. Salariseddigh

Joint work with:

Uzi Pereg, Holger Boche, Christian Deppe and Robert Schober

17 Nov 2021

2 Main Contributions

3 Definitions

5 Conclusions

- 2 Main Contributions
- 3 Definitions
- 4 Main Results

Transmission vs. Identification

• Shannon's setting: Bob recover the message.

• Identification setting: Bob asks if a message was sent or not?

Transmission vs. Identification

• Shannon's setting: Bob recover the message.

• Identification setting: Bob asks if a message was sent or not?

- Molecular communication and healthcare
- Cancer treatment and smart drug delivery
- Any event-triggered scenario

Randomized Identification (RI)¹

- Originally introduced by Ahlswede and Dueck (1989)
- Capacity was established with randomness at encoder
- Encoder employs distribution to select codewords

Remarkable Property

- Reliable identification is possible with code size growth $\sim 2^{2^{nR}}$
- Sharp difference to transmission with code size growth $\sim 2^{nR}$

¹R. Ahlswede, and G. Dueck, "Identification via channels", 1989

Deterministic Identification (DI)²³

• Encoder uses deterministic mapping for coding

Why deterministic?

- Simpler implementation (random resource not required)
- Suitable for Jamming scenarios
- Suitable for molecular communication

²R. Ahlswede and N. Cai. "Identification without randomization", 1999

³M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over channels with power constraints," IEEE Int'l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]

2 Main Contributions

3 Definitions

4 Main Results

5 Conclusions

Main Contributions

• We develop lower and upper bounds on the DI capacity for the memoryless discrete time Poisson channels (DTPC) subject to both average and peak power constraints

- We use the bounds to determine the **correct scale**
- We show that the optimal code size scales as $\sim 2^{(n \log n)R}$

Motivation

2 Main Contributions

4 Main Results

5 Conclusions

DI Codes

Definition

An $(L(n, R), n, \lambda_1, \lambda_2)$ -DI code for DTPC W is a system $\{(u_i, D_i)\}_{i \in [1:L(n,R)]}$ subject to

- Code size: $L(n, R) = 2^{(n \log n)R}$
- **2** Code-word: $u_i \in \mathcal{X}^n$, decoding sets: $\mathcal{D}_i \subset \mathcal{Y}^n$

Input constraints:

•
$$0 < u_{i,t} \le P_{\max}$$

• $n^{-1} \sum_{t=1}^{n} u_{i,t} \le P_{\max}$

Second Secon

• Error requirement type II: $W^n(\mathcal{D}_i | u_j) \underset{i \neq j}{<} \lambda_2$

DI Codes (Cont.)

Definition

An $(L(n, R), n, \lambda_1, \lambda_2)$ -DI code for DTPC W is a system $\{(u_i, D_i)\}_{i \in [1:L(n,R)]}$ subject to

- Code size: $L(n, R) = 2^{(n \log n)R}$
- **(a)** Code-word: $u_i \in \mathcal{X}^n$, decoding sets: $\mathcal{D}_i \subset \mathcal{Y}^n$
- Input constraints:

•
$$0 < u_{i,t} \le P_{\max}$$

• $n^{-1} \sum_{t=1}^{n} u_{i,t} \le P_{\max}$

- **4** Error requirement type I: $W^n(\mathcal{D}_i | \boldsymbol{u}_i) > 1 \lambda_1$
- **S** Error requirement type II: $W^n(\mathcal{D}_i | \mathbf{u}_j) \underset{i \neq j}{<} \lambda_2$

Motivation

- 2 Main Contributions
- 3 Definitions

4 Main Results

5 Conclusions

• $Y(t) \sim \text{Pois}(\lambda + u_i(t))$

•
$$Y(t) \sim \text{Pois}(\lambda + u_i(t))$$

Definitions

- Dark current $ightarrow \lambda \in (0,\infty)$
- Realization of channel output $\rightarrow \mathbf{y} \in \mathbb{N}_0^n$
- Power const. $0 < u_{i,t} \le P_{\max}$ and $\frac{1}{n} \sum_{t=1}^{n} u_{i,t} \le P_{avg}$
- Channel law $\rightarrow W^n(\mathbf{y}|\mathbf{u}_i) = \prod_{t=1}^n \frac{e^{-(\lambda+u_{i,t})}(\lambda+u_{i,t})^{y_t}}{y_t!}$

Theorem

⁴ Let \mathcal{W} be a DTPC with dark current $\lambda \in (0, \infty)$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{avg}$ and $0 < u_{i,t} \leq P_{max}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by $\frac{1}{4} \leq \mathbb{C}_{DI}(\mathcal{W}, L) \leq \frac{3}{2}$

⁴arXiv:2107.06061

Theorem

⁴ Let W be a DTPC with dark current $\lambda \in (0, \infty)$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{avg}$ and $0 < u_{i,t} \leq P_{max}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by $\frac{1}{4} \leq \mathbb{C}_{DI}(W, L) \leq \frac{3}{2}$

Corollary (Traditional Scales)

DI capacity in traditional scales is given by $\mathbb{C}_{DI}(\mathcal{W}, L) = \begin{cases} \infty & \text{for } L(n, R) = 2^{nR} \\ 0 & \text{for } L(n, R) = 2^{2^{nR}} \end{cases}$

4 arXiv:2107.06061

Theorem

⁴ Let \mathcal{W} be a DTPC with dark current $\lambda \in (0, \infty)$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{avg}$ and $0 < u_{i,t} \leq P_{max}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by $\frac{1}{4} \leq \mathbb{C}_{DI}(\mathcal{W}, L) \leq \frac{3}{2}$

Corollary (Traditional Scales)

DI capacity in traditional scales is given by $\mathbb{C}_{DI}(\mathcal{W}, L) = \begin{cases} \infty & \text{for } L(n, R) = 2^{nR} \\ 0 & \text{for } L(n, R) = 2^{2^{nR}} \end{cases}$

• Achiev. proof: sphere pkg. of rad. $n^{\frac{1}{4}} \Rightarrow 2^{\frac{1}{4}(n \log n)}$ codewords

4 arXiv:2107.06061

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

•
$$2^{n\log(n)R} \ge \Delta \cdot \frac{\operatorname{Vol}(\mathcal{Q}_{\mathbf{0}}[n,A])}{\operatorname{Vol}(\mathcal{S}_{\mathbf{u}_{1}}(n,\sqrt{n\epsilon_{n}}))} \ge 2^{-n} \cdot \frac{A^{n}}{\operatorname{Vol}(\mathcal{S}_{\mathbf{u}_{1}}(n,\sqrt{n\epsilon_{n}}))}$$

•
$$R \geq \frac{1}{n \log n} \left[o(n \log n) + \frac{1}{2} n \log n - \frac{1}{4} (1+b) n \log n \right] \xrightarrow{n \to \infty} \frac{1}{4}$$

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

$$\bullet 2^{n\log(n)R} \ge \Delta \cdot \frac{\operatorname{Vol}(\mathcal{Q}_{0}[n,A])}{\operatorname{Vol}(\mathcal{S}_{u_{1}}(n,\sqrt{n\epsilon_{n}}))} \ge 2^{-n} \cdot \frac{A^{n}}{\operatorname{Vol}(\mathcal{S}_{u_{1}}(n,\sqrt{n\epsilon_{n}}))}$$

•
$$R \geq \frac{1}{n \log n} \left[o(n \log n) + \frac{1}{2} n \log n - \frac{1}{4} (1+b) n \log n \right] \xrightarrow{n \to \infty} \frac{1}{4}$$

Chebyshev's inequality leads to the following error bounds:

1
$$P_{e,1}(i) \leq \frac{c_1}{n\epsilon_n^2}$$

2 $P_{e,2}(i,j) \leq \frac{c_2}{n\epsilon_n^2}$

Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

$$2^{n\log(n)R} \ge \Delta \cdot \frac{\operatorname{Vol}(\mathcal{Q}_0[n,A])}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))} \ge 2^{-n} \cdot \frac{A^n}{\operatorname{Vol}(\mathcal{S}_{u_1}(n,\sqrt{n\epsilon_n}))}$$

•
$$R \geq \frac{1}{n \log n} \left[o(n \log n) + \frac{1}{2} n \log n - \frac{1}{4} (1+b) n \log n \right] \xrightarrow{n \to \infty} \frac{1}{4}$$

Chebyshev's inequality leads to the following error bounds:

•
$$P_{e,1}(i) \le \frac{c_1}{n\epsilon_n^2}$$

• $P_{e,2}(i,j) \le \frac{c_2}{n\epsilon_n^2}$

• Cond. 1 & 2
$$\rightarrow \epsilon_n = \frac{A}{n^{\frac{1}{2}(1-b)}}$$

where *b* is small positive and $A = \min(P_{\text{ave}}, P_{\text{max}})$.

Proof Sketch. (Converse)

• We show that if two distinct code-words \mathbf{u}_i and \mathbf{u}_j satisfy $\left|1 - \frac{v_{i_2,t}}{v_{i_1,t}}\right| \leq \epsilon'_n$, for all $t \in [1:n]$, where $v_{i,t} = \lambda + u_{i,t}$ is the letter for shifted codeword, then using the continuity of the Poisson PDF, we obtain

$$P_{e,1}(i) + P_{e,2}(i,j) \ge 1 - \kappa_n$$

Proof Sketch. (Converse)

• We show that if two distinct code-words \mathbf{u}_i and \mathbf{u}_j satisfy $\left|1 - \frac{v_{i_2,t}}{v_{i_1,t}}\right| \leq \epsilon'_n$, for all $t \in [1:n]$, where $v_{i,t} = \lambda + u_{i,t}$ is the letter for shifted codeword, then using the continuity of the Poisson PDF, we obtain

$$P_{e,1}(i)+P_{e,2}(i,j)\geq 1-\kappa_n$$

• We have $|u_{i_1,t}-u_{i_2,t}|=|v_{i_1,t}-v_{i_2,t}|>\lambda\epsilon'_n$ • Hence $\|\mathbf{u}_{i_1}-\mathbf{u}_{i_2}\|>\lambda\epsilon'_n$

Proof Sketch Cont. (Converse)

- Tight upper-bound requires:

 - 2 κ_n tends to zero
- By conditions. 1 & 2 we obtain

$$\epsilon'_n = \frac{P_{\max}}{n^{1+b}}$$

for b > 0 being an arbitrarily small

rate
$$\uparrow \iff \epsilon'_n \downarrow$$

S., Pereg, Boche & Deppe, ITW 2020 ⁵

⁵ M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over fading channels," IEEE Inf. Theory Workshop (ITW), 2020 [arXiv:2010.10010, 2021]

- 2 Main Contributions
- 3 Definitions
- 4 Main Results

Conclusions

• We have determined DI capacity for

• discrete time Poisson channel $\rightarrow 2^{(n \log n)C} = n^{nC}$ behavior As opposed to $2^{2^{nR}}$ for randomized identification

- We observed that DI coding scale is the same for both DTPC and fading channels
- Future directions
 - Address other molecular communication channel models
 - Try Multi-user scenarios

Thank You!

S., Pereg, Boche, and Deppe — Bounds For Deterministic Identification Capacity in Power-Constrained Poisson Channels 21/21