

Deterministic Identification

Mohammad J. Salariseddigh

Joint work with: Uzi Pereg, Holger Boche and Christian Deppe

Nov 11 2020

Outline

- 2 Main Contributions
- 3 Definitions
 - Transmission
 - Deterministic Identification
 - Randomized Identification

Main Results

- Deterministic Identification for DMC
- Deterministic Identification for Gaussian Channel

5 Conclusions

Outline

1 Motivation

- 2 Main Contributions
- 3 Definitions
 - Transmission
 - Deterministic Identification
 - Randomized Identification
- 4 Main Results
 - Deterministic Identification for DMC
 - Deterministic Identification for Gaussian Channel

5 Conclusions

Transmission vs. Identification

• Shannon's setting: Bob recover the message

$$i \rightarrow \text{Enc} \xrightarrow{\mathbf{u}_i} \text{noisy channel} \xrightarrow{\mathbf{Y}} \text{Dec} \rightarrow \hat{i}$$

• Identification setting: Bob asks if a message was sent or not?

$$i \rightarrow \text{Enc} \xrightarrow{\mathbf{u}_i} \text{noisy channel} \xrightarrow{\mathbf{Y}} \text{Dec} \rightarrow \text{Yes/No}$$

Applications

vehicle-to-X communications, health care, point to multi-point communication, molecular communication, online sales, communication complexity, and any event-triggered scenario

Randomized Identification ¹

- Originally introduced by Ahlswede and Dueck (1989)
- Capacity was established with randomness at encoder
- Encoder employs distribution to select codewords

Remarkable Property

- Reliable identification is possible with code size growth $\sim 2^{2^{nR}}$
- Sharp difference to transmission with code size growth $\sim 2^{nR}$

For
$$R = 0.01$$
 and $n = 821 \rightarrow 2^{2^{8.21}} > \#$ atoms in universe

¹Ahlswede, R. and Dueck, G. "Identification via channels". 1989

Deterministic Identification²

- Encoder uses deterministic mapping for coding
- Code size $\sim 2^{nR}$ for DMC as in transmission paradigm
- Achievable rates significantly higher than transmission

Why deterministic?

- Deterministic codes pros
 - Suitable for molecular communication
 - Suitable for Jamming scenarios
- Randomized identification cons
 - Process strings of exponential length
 - Enormous amount of randomness
 - Not easy to implement

²Ahlswede, R. and Cai, N. "Identification without randomization", 1999

Outline

Motivation

- 3 Definitions
 - Transmission
 - Deterministic Identification
 - Randomized Identification

4 Main Results

- Deterministic Identification for DMC
- Deterministic Identification for Gaussian Channel

5 Conclusions

Main Contributions

- We established the deterministic identification capacity for channels with power constraints:
 - DMC
 - Fast Fading
 - Slow Fading
- We show that the code size scales as $\sim 2^{nR}$ for the DMC and as $\sim 2^{n\log(n)R} = n^{nR}$ for the Gaussian channel
- Our analysis combines techniques and ideas from both works, by Já Já a and Ahlswede b

^aJa, J.J., "Identification is easier than decoding", 1985 ^bAhlswede, R. "A method of coding and its application to arbitrarily varying channels", 1980

Outline

Motivation

2 Main Contributions

3 Definitions

- Transmission
- Deterministic Identification
- Randomized Identification

4 Main Results

- Deterministic Identification for DMC
- Deterministic Identification for Gaussian Channel

5 Conclusions

Transmission

Definition (Transmission Code)

^a A $(L(n, R), n, \varepsilon)$ -transmission code for DMC \mathcal{W} is a system $\{(u_i, \mathcal{D}_i)\}_{i \in [1:L(n,R)]}$ subject to

1
$$L(n, R) = 2^{nR}$$

2
$$\boldsymbol{u_i} \in \mathcal{X}^n, \mathcal{D}_i \subset \mathcal{Y}^n$$

$$3 \quad \frac{1}{n} \sum_{t=1}^{n} \phi(u_{i,t}) \leq A$$

$$W^n(\mathcal{D}_i|\boldsymbol{u_i}) \geq 1-\varepsilon$$

^aAhlswede, R. "General theory of information transfer", 2005

Transmission

Definition (Achievable Rate)

Rate *R* is said to be achievable if there exist an (n, M_n, ε_n) -code satisfying

$$\lim_{n\to\infty}\varepsilon_n=0 \text{ and } \limsup_{n\to\infty}\frac{1}{n}\log(M_n)\geq R$$

Definition (Channel Capacity)

 $\mathbb{C}_{\mathcal{T}}(\mathcal{W}) = \sup\{R \,|\, \mathsf{R} \text{ is achievable}\}$

Theorem (Shannon, 1948)

Transmission capacity of a DMC W in the exponential scale $L(n, R) = 2^{nR}$ is given by

$$\mathbb{C}_{T}(\mathcal{W},L) = \max_{p_{X}} I(X;Y)$$

Salariseddigh, Pereg, Boche and Deppe - Deterministic Identification

Deterministic Identification Codes

Definition (Ahlswede and Cai, 1999)

A $(L(n, R), n, \lambda_1, \lambda_2)$ -deterministic identification code for DMC \mathcal{W} is a system $\{(\boldsymbol{u}, \mathcal{D}_{\boldsymbol{u}})\}_{\boldsymbol{u} \in \mathcal{U}}$ subject to

$$\begin{array}{l} \bullet \quad L(n,R) = 2^{nR} \\ \bullet \quad \mathcal{U} \subset \mathcal{X}^n, \ \mathcal{D}_{\boldsymbol{u}} \subset \mathcal{Y}^n, \ |\mathcal{U}| = 2^{nR} \\ \bullet \quad \frac{1}{n} \sum_{t=1}^n \phi(u_{i,t}) \leq A \\ \bullet \quad W^n(\mathcal{D}_{\boldsymbol{u}_i} | \boldsymbol{u}_i) > 1 - \lambda_1 \\ \bullet \quad W^n(\mathcal{D}_{\boldsymbol{u}_i} | \boldsymbol{u}_j) \underset{\boldsymbol{u}_i \neq \boldsymbol{u}_j}{<} \lambda_2 \end{array}$$

Geometry of Deterministic Identification Codes

Randomized Identification Codes

Definition (Ahlswede and Dueck, 1989)

A $(L(n, R), n, \lambda_1, \lambda_2)$ -randomized identification code for DMC \mathcal{W} is a system $\{(Q_i, \mathcal{D}_i)\}_{i \in [1:L(n,R)]}$ subject to

$$\begin{array}{l} \bullet \quad L(n,R) = 2^{2^{nR}} \\ \bullet \quad Q_i \in \mathcal{P}\left(\mathcal{X}^n\right), \mathcal{D}_i \subset \mathcal{Y}^n \\ \bullet \quad Q_i W^n(\mathcal{D}_i) > 1 - \lambda_1 \\ \bullet \quad Q_j W^n(\mathcal{D}_i) < \lambda_2 \\ \end{array}$$

Outline

1 Motivation

- 2 Main Contributions
- 3 Definitions
 - Transmission
 - Deterministic Identification
 - Randomized Identification

4 Main Results

- Deterministic Identification for DMC
- Deterministic Identification for Gaussian Channel

Conclusions

Deterministic Identification Capacity of DMC

Theorem

^a Let W be a DMC with distinct rows in channel matrix. Then with constraint $\mathbb{E}[\phi(X)]$ and $L(n, R) = 2^{nR}$, deterministic identification capacity is given by

$$\mathbb{C}_{DI}(\mathcal{W},L) = \max_{p_X : \mathbb{E}\{\phi(X)\} \le A} H(X)$$

^aarXiv:2010.04239, 2020

Deterministic Identification Capacity of DMC

Theorem (Ahlswede and Dueck, 1989; Ahlswede and Cai, 1999)

For DMC \mathcal{W} let $W : \mathcal{X} \to \mathcal{Y}$ be channel matrix with distinct rows. Then for $L(n, R) = 2^{nR}$, deterministic identification capacity is given by

 $\mathbb{C}_{DI}(\mathcal{W},L) = \log |\mathcal{X}|$

A proof was not provided

Proof Sketch (Achievability)

Lemma

- Let R < H(X) and $\epsilon > 0$. Then, $\exists U^* = \{v_i\}_{i \in M}$ such that

 - $d_H(\mathbf{v}_i, \mathbf{v}_j) \geq n\epsilon \quad \forall i \neq j$

$$|\mathcal{M}| \geq 2^{n(R-\theta)}$$

Coding Scheme

- **Enc**: given message $i \in \mathcal{M}$ transmit $x^n = \mathbf{v}_i$
- Dec: $\mathcal{D}_j = \{y^n : (\mathbf{v}_j, y^n) \in \mathcal{T}_{\delta}(p_X W)\}$
- Error Analysis

P_{e,1}(i) ≤ e^{-α₁(δ)n} by standard type class argument
 P_{e,2}(i, j) ≤ e^{-nα₂(ε,δ)} by conditional type intersection lemma

Proof Sketch (Achievability)

Lemma (Ahlswede, 1980)

Let $W : \mathcal{X} \to \mathcal{Y}$ be a channel matrix of a DMC \mathcal{W} with distinct rows. Then, for every $x^n, x'^n \in \mathcal{T}_{\delta}(p_X)$ with $d(x^n, x'^n) \ge n\epsilon$,

$$\frac{|\mathcal{T}_{\delta}(\rho_{\boldsymbol{Y}|\boldsymbol{X}}|\boldsymbol{x}^n)\cap\mathcal{T}_{\delta}(\rho_{\boldsymbol{Y}|\boldsymbol{X}}|\boldsymbol{x}'^n)|}{|\mathcal{T}_{\delta}(\rho_{\boldsymbol{Y}|\boldsymbol{X}}|\boldsymbol{x}^n)|} \leq e^{-ng(\epsilon)}$$

with $p_{Y|X} \equiv W$, for sufficiently large n and some positive function $g(\epsilon) > 0$ which is independent of n.

Proof Sketch (Converse)

Lemma

Distinct messages have distinct codewords, i.e., $i_1 \neq i_2 \Rightarrow \mathbf{u}_{i_1} \neq \mathbf{u}_{i_2}$

Proof. If $\boldsymbol{u}_{i_1} = \boldsymbol{u}_{i_2} = x^n$, then

$$P_{e,1}(i_1) + P_{e,2}(i_2, i_1) = W^n(\mathcal{D}_{i_1}^c | x^n) + W^n(\mathcal{D}_{i_1} | x^n) = 1$$

Further Steps

•
$$2^{nR} \leq \left| \{x^n : n^{-1} \sum_{t=1}^n \phi(x_t) \leq A\} \right|$$

• $\left| \{x^n : n^{-1} \sum_{t=1}^n \phi(x_t) \leq A\} \right| \leq 2^{n(H(X) + \alpha_n)}$
since input subspace is a union of type classes
• $R \leq \max_{p_X : \mathbb{E}\{\phi(X)\} \leq A} H(X) + \alpha_n$ for $\alpha_n \xrightarrow{n \to \infty} 0$

Deterministic Identification for Gaussian Channel

Theorem

^a Let \mathscr{G} ; $\mathbf{Y} = \mathbf{x} + \mathbf{Z}$ be Gaussian channel with power constraint $\|\mathbf{x}\|^2 \leq nA$ and $\mathbf{Z} \approx^{iid} \mathcal{N}(0, \sigma_Z^2)$. Then for $L(n, R) = 2^{nR}$, deterministic identification capacity is given by

 $\mathbb{C}_{DI}(\mathcal{G},L)=\infty$

^aarXiv:2010.04239

Figure 1: Deterministic identification over Gaussian channel

Proof Sketch.

Proof I

- \bullet Dense sphere packing arrangement with radius $\sqrt{\epsilon}$
- Minkowski-Hlawka Theorem guarantees a density $\Delta \geq 2^{-n}$

•
$$2^{nR} = \frac{\operatorname{Vol}\left(\bigcup_{i=1}^{2^{nR}} S_{\mathbf{u}_i}(n,\sqrt{\epsilon})\right)}{\operatorname{Vol}(S_{\mathbf{u}_1}(n,\sqrt{\epsilon}))} = \Delta \cdot \frac{\operatorname{Vol}(S_{\mathbf{0}}(n,\sqrt{A}))}{\operatorname{Vol}(S_{\mathbf{u}_1}(n,\sqrt{\epsilon}))} \ge 2^{-n} \cdot \left(\frac{A}{\epsilon}\right)^{\frac{n}{2}}$$

• $R \ge \frac{1}{2} \log\left(\frac{A}{\epsilon}\right) - 1 \xrightarrow{\epsilon \to 0} \infty$

Proof II

 \bullet Apply quantization to approximate ${\mathscr G}$ with a DMC

•
$$H(X^{\Delta}) \approx \frac{1}{2}\log(2\pi eA) - \frac{2}{\sqrt{2\pi A}}\Delta + \log \frac{1}{\Delta}$$

• $R \xrightarrow{\Delta \to 0^+} \infty$

Deterministic Identification for Fading Channel

Definitions

- Fast fading $\rightarrow \mathbf{Y} = \mathbf{G} \circ \mathbf{x} + \mathbf{Z}$ where $\mathbf{G} = (G_t)_{t=1}^{\infty} \stackrel{iid}{\sim} f_G$
- Slow fading $\rightarrow Y_t = Gx_t + Z_t$ where $G \sim f_G$
- Power const. $\rightarrow \|\mathbf{x}\| \leq \sqrt{nA}$, Noise $\rightarrow \mathbf{Z} \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_Z^2\right)$
- $\mathcal{G} \triangleq$ set of all fading coefficients

Deterministic Identification for Fast Fading Channel

Theorem

^a Let \mathscr{G}_{fast} be fast fading Gaussian channel with positive fading coefficients. Then deterministic identification capacity for $L(n, R) = 2^{n \log(n)R}$ is given by

$$rac{1}{4} \leq \mathbb{C}_{\textit{DI}}(\mathscr{G}_{\textit{fast}}, \textit{L}) \leq 1$$

^aarXiv:2010.10010

Corollary (Traditional Scales)

Deterministic identification capacity in traditional scales is given by

$$\mathbb{C}_{DI}(\mathscr{G}_{fast}, L) = \begin{cases} \infty & \text{ for } L(n, R) = 2^{nR} \\ 0 & \text{ for } L(n, R) = 2^{2^{nR}} \end{cases}$$

Deterministic Identification for Slow Fading Channel

Theorem

^a Let \mathscr{G}_{slow} be slow fading Gaussian channel. Then deterministic identification capacity for $L(n, R) = 2^{n \log(n)R}$ is given by

$$\begin{split} &\frac{1}{4} \leq \mathbb{C}_{DI}(\mathscr{G}_{slow},L) \leq 1 & \text{ if } 0 \notin cl(\mathcal{G}) \\ &\mathbb{C}_{DI}(\mathscr{G}_{slow},L) = 0 & \text{ if } 0 \in cl(\mathcal{G}) \end{split}$$

^aarXiv:2010.10010

Corollary (Traditional Scales)

Deterministic identification capacity in traditional scales is given by

$$\mathbb{C}_{DI}(\mathscr{G}_{slow}, L) = \begin{cases} 0 & \text{if } 0 \in cl(\mathcal{G}) \\ \infty & \text{if } 0 \notin cl(\mathcal{G}) \end{cases}, \text{ for } L(n, R) = 2^{nR} \\ \mathbb{C}_{DI}(\mathscr{G}_{slow}, L) = 0, \text{ for } L(n, R) = 2^{2^{nR}} \end{cases}$$

Salariseddigh, Pereg, Boche and Deppe - Deterministic Identification

Discontinuity of Deterministic Identification Capacity

Binary Symmetric Channel

• For
$$\epsilon$$
 arbitrary close to $\frac{1}{2}$:
 $W = \begin{pmatrix} 1-\epsilon & \epsilon \\ \epsilon & 1-\epsilon \end{pmatrix} \Rightarrow \mathbb{C}_{DI}(BSC) = \log(n_{row}[W]) = \log 2 = 1$
• Now let $\epsilon = 1$ then

$$W = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix} \Rightarrow \mathbb{C}_{DI}(BSC) = \log(n_{row}[W]) = \log 1 = 0$$

$$1 = \lim_{\epsilon \to \frac{1}{2}} \mathbb{C}_{DI}(BSC) \neq \mathbb{C}_{DI}(BSC) \mid_{\epsilon = \frac{1}{2}} = 0$$

Outline

Motivation

- 2 Main Contributions
- 3 Definitions
 - Transmission
 - Deterministic Identification
 - Randomized Identification

4 Main Results

- Deterministic Identification for DMC
- Deterministic Identification for Gaussian Channel

5 Conclusions

Conclusions

- Survey of deterministic and randomized identification results for DMC, Gaussian and Fading
- We have determined deterministic identification capacity for
 - 1 DMC $\rightarrow 2^{nC}$ behavior
 - **2** Fading $\rightarrow 2^{n \log(n)C} = n^{nC}$ behavior
- Future directions
 - Multi-user scenarios
 - Pinite block-length regime
 - O Wiretap channel
 - 4 Molecular communication channel (with memory)

Discussion

Thank you! Questions?

Salariseddigh, Pereg, Boche and Deppe - Deterministic Identification

Deterministic Identification Capacity of AVC I

• For every fixed $x \in \mathcal{X}$ define

$$\mathcal{A}_1(x) = \left\{ \mathcal{A}(.|x,s) : s \in \mathcal{S} \right\}$$

as set of PDs on $\mathcal Y$ where $\mathcal A_1 = \left\{ \textit{A}(.|., \ \textit{s}): \textit{s} \in \mathcal S
ight\}$

• Define $\overline{A}(x)$ as **convex closure** of $A_1(x)$ i.e. of entries in form

$$\sum_{s\in\tilde{\mathcal{S}}}P(s)A(y|x,s)$$

Deterministic Identification Capacity of AVC II

• Define **row-convex closure** of \mathcal{A} denote by $\overline{\mathcal{A}}$ as follows:

$$\overline{\overline{\mathcal{A}}} = \left\{ (\mathcal{A}(y|x))_{x \in \mathcal{X}, y \in \mathcal{Y}} : \mathcal{A}(.|x) \in \overline{\mathcal{A}}(x) \right\}$$

 $\overline{\overline{\mathcal{A}}}$ has entries of form:

$$\sum_{s\in\tilde{\mathcal{S}}} P(s|x)A(y|x,s)$$

P(s|x) means that coefficient are conditioned on choice of x, i.e., for every different x there would be in general a complete different set of coefficients than that of required for defining entries of $\overline{A}(x)$

Deterministic Identification Codes for Gaussian Channel

Cost Constraints

Average power constraint:

$$\frac{1}{n}\sum_{1}^{n}|x_{t}|^{2}\leq P\iff \|x^{n}\|_{2}\leq \sqrt{nP}$$

Peak power constraint:

$$\max_{1 \le t \le n} |x_t| \le A \iff \|x^n\|_{\infty} \le A$$

Deterministic Identification Capacity Results

Theorem (JáJá, 1985)

For Binary Symmetric Channel (BSC) with $\epsilon \neq 0.5$, the DI with rate arbitrarily close to 1 is possible, i.e,

 $\mathbb{C}_{DI}(BSC) = 1$

Theorem (Ahlswede, 1989)

For DMC W with stochastic matrix W, let n_{row} be # of distinct rows in W, then the DI capacity is given by

 $\mathbb{C}_{DI}(\mathcal{W}) = \log\left(n_{row}[\mathcal{W}]\right)$

Geometry of Randomized Identification Codes

Deterministic ϵ -Identification Capacity for DMC

Theorem (Ahlswede et al, 1989 ; Burnashev, 2000)

For DMC W, in the double exponential scale, $L(n, R) = 2^{2^{nR}}$, the deterministic ϵ -Identification Capacity for $\epsilon \in [0, \frac{1}{2})$ are given by

$$\mathbb{C}_{RI}^{\epsilon}(\mathcal{W},L) = \mathbb{C}_{RI}(\mathcal{W},L) = \max_{p_{X}} I(X;Y)$$
$$\mathbb{C}_{PI}^{\epsilon}(\mathcal{W},L) = \mathbb{C}_{PI}(\mathcal{W},L) = 0$$

Theorem (Ahlswede et al, 1989)

The deterministic and randomized ϵ -identification achievable rate for $\epsilon \geq \frac{1}{2}$, in the double exponential scale, $L(n, R) = 2^{2^{nR}}$ can be made arbitrary large, i.e.,

$$\mathbb{C}^{\epsilon}_{DI}(\mathcal{W},L) = \mathbb{C}^{\epsilon}_{RI}(\mathcal{W},L) = \infty$$

 $\mathsf{Proof} \to \mathsf{flip} \text{ a fair coin}$

Deterministic ϵ -Identification Capacity for Gaussian Channel

Theorem (Burnashev, 2000)

For Gaussian chanel, in the double exponential scale, i.e., $L(n, R) = 2^{2^{nR}}$, the deterministic ϵ -Identification Capacity for $\epsilon \geq \frac{1}{2}$ is given by

 $\mathbb{C}^{\epsilon}_{DI}(\mathcal{G},L) = \mathbb{C}^{\epsilon}_{RI}(\mathcal{G},L) = \infty$

Theorem (Labidi et al, 2020)

For Gaussian chanel with power constraint $\|\mathbf{x}\|^2 \leq nA$ in the double exponential scale, i.e., $L(n, R) = 2^{2^{nR}}$, the deterministic ϵ -Identification Capacity for $\epsilon \in [0, \frac{1}{2})$ is given by

$$\mathbb{C}_{RI}^{\epsilon}(\mathscr{G},L) = \mathbb{C}_{RI}(\mathscr{G},L) = \frac{1}{2}\log\left(1 + \frac{A}{\sigma_{\mathsf{Z}}^2}\right)$$