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Transmission vs. ldentification

@ Shannon's setting: Bob recover the message

)

@ Identification setting: Bob asks if a message was sent or not?

. u; . Y
i — Enc noisy channel Dec Yes/No

.
A

Applications

vehicle-to-X communications, health care, point to multi-point
communication, molecular communication, online sales,
communication complexity, and any event-triggered scenario
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Randomized Identification !

@ Originally introduced by Ahlswede and Dueck (1989)
o Capacity was established with randomness at encoder

@ Encoder employs distribution to select codewords

y

Remarkable Property

@ Reliable identification is possible with code size growth ~ 22"

@ Sharp difference to transmission with code size growth ~ 2%

v

28.21

For R=0.01 and n =821 — 2" > # atoms in universe J

1Ahlswede, R. and Dueck, G. "ldentification via channels”. 1989
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Deterministic Identification 2

@ Encoder uses deterministic mapping for coding
o Code size ~ 2"F for DMC as in transmission paradigm

@ Achievable rates significantly higher than transmission

<

Why deterministic?

@ Deterministic codes pros

e Suitable for molecular communication
e Suitable for Jamming scenarios

@ Randomized identification cons
e Process strings of exponential length
e Enormous amount of randomness
o Not easy to implement

2Ahlswede, R. and Cai, N. "Identification without randomization”, 1999
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Main Contributions

@ We established the deterministic identification capacity for
channels with power constraints:

e DMC
e Fast Fading
e Slow Fading

@ We show that the code size scales as ~ 2"F for the DMC and
as ~ 2M1og(MR — pnR for the Gaussian channel

@ Our analysis combines techniques and ideas from both works,
by J4J4 @ and Ahlswede ?

?Ja, J.J., "ldentification is easier than decoding”, 1985

bAhlswede, R. " A method of coding and its application to arbitrarily varying
channels”, 1980

V.
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Transmission

Definition (Transmission Code)

2 A (L(n, R), n,e)-transmission code for DMC W is a system
{(ui, Di)}ier:1(n,r) subject to
@ L(n,R)=2"R
@ uc X" D;cCcy"
© 1 d(uje) <A
Q@ W'Djly;)) >1—¢
i#

?Ahlswede, R. " General theory of information transfer”, 2005
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Transmission
Definition (Achievable Rate)

Rate R is said to be achievable if there exist an (n, M,, ,,)-code
satisfying

1
lim e, =0 and limsup = log(M,) > R

n—00 n—oo N

\

Definition (Channel Capacity)

C1(W) = sup{R|R is achievable}

\

Theorem (Shannon, 1948)

Transmission capacity of a DMC W in the exponential scale
L(n, R) = 2"R is given by

Cr(W, L) =max I(X;Y)
Px

\
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Deterministic Identification Codes

Definition (Ahlswede and Cai, 1999)
A (L(n,R),n, A1, \2)-deterministic identification code for DMC W
is a system {(u,D,)}uci/ subject to

@ L(n,R)=2"R

@UCX" D,CY", U] =2

© %Z?:l P(uir) < A

O W(Dylu)>1-X\

O W'(Dylu)) < Ao

uitu;

J

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 12/36



t Institute for Communications Engineering Technical University of Munich m

Geometry of Deterministic ldentification Codes

correct identification - N

type Il error

. type | error N ,
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Randomized ldentification Codes

Definition (Ahlswede and Dueck, 1989)
A (L(n,R),n, A1, \2)-randomized identification code for DMC W
is a system {(Qi, Di)}ie[1:L(n,R)] Subject to

@ L(n,R) =2>"

@ QeP(X"),D;CY"

Q@ QWD) >1-X\

Q@ QW™(Di) < X

i#j
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Deterministic Identification Capacity of DMC

Theorem

2 Let W be a DMC with distinct rows in channel matrix. Then
with constraint E[¢(X)] and L(n, R) = 2", deterministic
identification capacity is given by

Cp(W, L) = H(X
oi( ) px:Er{T;S?;(()}SA (%)

?arXiv:2010.04239, 2020
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Deterministic Identification Capacity of DMC

Theorem (Ahlswede and Dueck, 1989 ; Ahlswede and Cai, 1999)

For DMCW let W : X — Y be channel matrix with distinct rows.

Then for L(n, R) = 2"R, deterministic identification capacity is
given by

CD/(W, L) = |Og ‘X|

@ A proof was not provided

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification

17/36



 Institute for Communications Engineering Technical University of Munich m

Proof Sketch (Achievability)

Let R < H(X) and € > 0. Then, 3U* = {v;}icp such that
O vieT(px) VieM
@ dy(vj,vj) > ne Vi#j
[3) ‘M| > 2n(R—0)

| A\

Coding Scheme

@ Enc: given message i € M transmit x”7 = v;
@ Dec: D; = {y" : (vj,y") € Ts(pxW)}
@ Error Analysis

@ P.1(i) < e=*(On by standard type class argument
O P..(i,j) < e~"(e9) by conditional type intersection lemma

y
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Proof Sketch (Achievability)

Lemma (Ahlswede, 1980)

Let W : X — Y be a channel matrix of a DMC W with distinct
rows. Then, for every x", x'" € Ts(px) with d(x",x") > ne,

|7:$(PY|X’Xn) N 7:5(PY|X|Xm)| < o—n8le)
[ T5(py|x|x")] B

with py|x = W, for sufficiently large n and some positive function
g(€) > 0 which is independent of n.
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Proof Sketch (Converse)

Distinct messages have distinct codewords, i.e.,
h#h = up = uj,

Proof. If u;, = u;, = x", then

Pe1(i1) + Pep(i2, 1) = W™(Dj [x") + W™(Dj,|x") = 1

1

0 2R < [{x": n7 Y21, 6(xe) < A}
o [{x":n 101 d(xe) < A}| < 2n(H(X)a)

since input subspace is a union of type classes
n—o00

e R< max H(X)+a, fora, ——0
px : E{$(X)}<A
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Deterministic Identification for Gaussian Channel

Theorem

Tletd ;Y =x +_'Z be Gaussian channel with power constraint
IXI|2 < nA and Z % N'(0,0%). Then for L(n, R) = 2R,

deterministic identification capacity is given by

CDI (ff’ L) = 0

?arXiv:2010.04239

z
|

u; Y
J

Figure 1: Deterministic identification over Gaussian channel
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Proof Sketch.

@ Dense sphere packing arrangement with radius /€

@ Minkowski-Hlawka Theorem guarantees a density A > 27"
2”R n @

. 2,-,R _ Vol (Ui:l Su,'( 1\[)) —A. Vol(So(n,\/Z))

Vol(Suy (n,1/€)) Vol(Su; (n,V/€))

° RZ%Iog(é)—lioo

NIS

v

2 (4)

€

v

Proof Il

@ Apply quantization to approximate ¢ with a DMC

o H(X%) ~ Llog(2meA) — ﬁA + log %

A—0t

o R

Salariseddigh, Pereg, Boche and Deppe — Deterministic Identification 22/36



Institute for Communications Engineering Technical University of Munich m

Deterministic Identification for Fading Channel

G
f ‘
Gt
Uj ¢ Y;
i Enc @ @ : @—» Yes/No
! T
Zs J

o Fast fading — Y = G o x + Z where G = (G)22, 2 fg
@ Slow fading — Y; = Gx; + Z; where G ~ fg
@ Power const. — [|x|[ < v'nA, Noise — Z %/\/'(0,0%)

@ G £ set of all fading coefficients
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Deterministic Identification for Fast Fading Channel

2 Let Y be fast fading Gaussian channel with positive fading
coefficients. Then deterministic identification capacity for
L(n, R) = 2""&(MR s gjven by

?arXiv:2010.10010

Corollary (Traditional Scales)

Deterministic identification capacity in traditional scales is given by

oo for L(n,R) =2"R

CDI(gfastv L) = {0 for L(n7 R) = 22"R
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Deterministic Identification for Slow Fading Channel

2 Let Yson be slow fading Gaussian channel. Then deterministic
identification capacity for L(n, R) = 2"'°&("R js given by

% < CDI(gSIOW7 L) <1 if0 ¢ Cl(g)

(CDI(gslowa L) =0 if0 e C/(g)

4arXiv:2010.10010

Corollary (Traditional Scales)

Deterministic identification capacity in traditional scales is given by

0 if0ecG)
0o if0 ¢ cl(G)
Coi(Gsiows L) =0, for L(n, R) = 22"

(CDI (gSIOW7 L) - { 9 for L(na R) = 2nR

N
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Discontinuity of Deterministic Identification Capacity

Binary Symmetric Channel

@ For € arbitrary close to %:
W = <1;€ 1i€) :>(CD/(BSC):|Og (n,OW[W]) :|0g2:1
@ Now let € = % then

W= (gg 8:) = CDI(BSC) - |Og (nrow[W]) = IOgl =0

1= limCp(BSC) # Cpy(BSC) | =0
=5

e=

N[
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Conclusions

@ Survey of deterministic and randomized identification results
for DMC, Gaussian and Fading
@ We have determined deterministic identification capacity for
@ DMC — 27C behavior
@ Fading — 272" — ;7€ behavior
o Future directions
@ Multi-user scenarios
@ Finite block-length regime
© Wiretap channel
@ Molecular communication channel (with memory)
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Discussion

Thank you! Questions?
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Deterministic Identification Capacity of AVC |

@ For every fixed x € X define
Ai(x) = {A(|x,s) : s € S}

as set of PDs on V) where A; = {A(.|., s5):s€ S}

o Define A(x) as convex closure of A;(x) i.e. of entries in form

Z P(s)A(y|x, s)
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Deterministic Identification Capacity of AVC Il

@ Define row-convex closure of A denote by A as follows:
A= {(Alylx))xexyey - A(Ix) € A(x)}
A has entries of form:

> P(s|x)A(y|x, s)
se$

P(s|x) means that coefficient are conditioned on choice of x,
i.e., for every different x there would be in general a complete
different set of coefficients than that of required for defining
entries of A(x)
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Deterministic Identification Codes for Gaussian Channel

Cost Constraints

@ Average power constraint:

1 n
;Z‘Xt,z <P = [x"||, < VnP
1

@ Peak power constraint:

< n <
max x| <A = x|, <A
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Deterministic Identification Capacity Results

Theorem (J4Ja, 1985)

For Binary Symmetric Channel (BSC) with € # 0.5, the DI with
rate arbitrarily close to 1 is possible, i.e,

Cpi(BSC) =1

Theorem (Ahlswede, 1989)

For DMC W with stochastic matrix W, let n,,,, be # of distinct
rows in W, then the DI capacity is given by

CD[(W) = Iog (n,OW[W])
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Geometry of Randomized ldentification Codes

correct identification
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Deterministic e-ldentification Capacity for DMC

Theorem (Ahlswede et al, 1989 ; Burnashev, 2000)

For DMC W, in the double exponential scale, L(n, R) = 22™, the
deterministic e-ldentification Capacity for e € |0, %) are given by

(W, L) = Cri(W, L) =max I(X;Y)
Px

bW, L) =Cp/(W,L) =0

Theorem (Ahlswede et al, 1989)

The deterministic and randomized e-identification achievable rate

o . nR
for e > % in the double exponential scale, L(n, R) = 22
made arbitrary large, i.e.,

can be

pi(W, L) = Ciy(W, L) = o0

Proof — flip a fair coin
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Deterministic e-ldentification Capacity for Gaussian
Channel

Theorem (Burnashev, 2000)

For Gaussian chanel, in the double exponential scale, i.e.,
L(n, R) = 2™, the deterministic e-Identification Capacity for
€> % is given by

Cor(9, L) = Co (9, 1) =
Theorem (Labidi et al, 2020)

For Gaussian chanel with power constraint ||x||> < nA in the
double exponential scale, i.e., L(n,R) = 22"R, the deterministic
e-ldentification Capacity for € € |0, %) is given by

wl.1) = Ca(d.1) = 3 log (1+ 75

\
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