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Mixture models

® Height distribution of a population
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distribution
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Mixture models

® Height distribution of a population

160 180
Height (cm)
Image credit: [Hardt-Price '15]
® Model each of male and female subpopulation by a Gaussian
distribution

How to learn the average heights of male and female from unlabeled
data?
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Mixture models & empirical Bayes
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e Nikita Kucherov scored 33 goals in 2019-2020.
® How many will he score in 2020-20217
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® {pp:0 € O}: parametric family of densities
e 7. mixing distribution (prior) on ©

® mixture density:

pa(z) 2 /@ po(z)(d6)
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{pg : 0 € ©}: parametric family of densities
e 7. mixing distribution (prior) on ©

® mixture density:

pa(z) 2 /@ po(z)(d6)

. i.i.d. :
Goal: given sample z1, ..., Z, ~ py, learn the mixture model
(e.g. estimating 7 or p;)
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Running example: Gaussian location mixture

o po(z) = o(x — 6): density N(6,1), where ¢(z) £ —Le—o°/2

® mixture density = Gaussian convolution

pr(@) = (p*m)()

® Special case: k-component Gaussian mixture (k-GM)

k k
pr(z) = Z wip(x —0;), w™= Z w;0p, .
i=1 i=1

® Major difficulty: nonconvexity of mixture likelihood (in location
parameters 6;'s)

» Expectation-Maximization: Heuristic and suffer from spurious local
maxima [Jin-Zhang-Balakrishnan-Wainwright-Jordan '16]
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Nonparametric approach

Three major methodologies:

@ Method of moments: [Pearson 1895]

learn 7 through estimating its moments

® Minimum-distance estimator: [Wolfowitz '57]

7 = arg min dist(p,, empirical)
s

© Nonparametric Maximum Likelihood: [Kiefer-Wolfowitz '56]
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Nonparametric approach

Three major methodologies:

@ Method of moments: [Pearson 1895]
learn 7 through estimating its moments
Tuning param: Number of moments
® Minimum-distance estimator: [Wolfowitz '57]
T = arg mﬂin dist(ps, empirical)
Tuning param: choice of distance
©® Nonparametric Maximum Likelihood: [Kiefer-Wolfowitz '56]

Tuning param: NONE!
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(O) of all priors:

TNPMLE € arg max log pr(z;)
g max Z g (@

® k-component mixture problem is f|n|te d|m., but JCHECERVERN
® NPMLE: co-dimensional but |JG8iNERI (overparametrization)
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(O) of all priors:

TNPMLE € arg max log pr(z;)
g max Z g (@

® k-component mixture problem is f|n|te d|m., but JCHECERVERN
® NPMLE: co-dimensional but |JG8iNERI (overparametrization)
® NPMLE is a form of minimum-distance estimator:

A o aP
e = argmin DB Py)  D(PIIQ) = /dPlong

(Pn is empirical distribution of samples)
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(O) of all priors:

TNPMLE € arg max log pr(z;)
g max Z g (@

® k-component mixture problem is f|n|te d|m., but JCHECERVERN
® NPMLE: co-dimensional but |JG8iNERI (overparametrization)
® NPMLE is a form of minimum-distance estimator:

A o aP
e = argmin DB Py)  D(PIIQ) = /dPlong

(Pn is empirical distribution of samples)
® NPMLE is related to rate-distortion theory (with source ~ P,):

. 1
min D(P,|Pr) = min _ I1(6;X) + - E[[|6 — X|]
™ PQ’XZPX:PH 20
® ... and also to entropic optimal transport [Weed-Rigollete 18]
min D(P,||P;) = min W, (w, P,)
s ™
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(©) of all priors:
ANPMLE € arg max Zlogpﬂ ;)

® [nformation-theoretic literature:

> |terative algo [Richardson '70] (for astronomy imaging)
» Proof of convergence and connections to Blahut-Arimoto algo
[Csiszar-Tusnady '82]
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(©) of all priors:
ANPMLE € arg max Zlogpﬂ ;)

® [nformation-theoretic literature:
> |terative algo [Richardson '70] (for astronomy imaging)
» Proof of convergence and connections to Blahut-Arimoto algo
[Csiszar-Tusnady '82]
® Stats literature: for mixture model in one dimension

> Basic properties (existence, uniqueness, discreteness) are well
understood [Simar '76, Jewell '82, Lindsay '83,'95]
» Other kinds of iterative algorithms:

® vertex exchange method [Bdhning '81, Lindsay '83]
® Grid-based: discretization [Koenker-Mizera '14]

> ~ 102 papers on density estimation via NPMLE, NPMLE for
empirical Bayes, shape-constrained NPMLE (Grenander)...
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Pros and Cons of NPMLE

Advantages:
® Flexibility: no tuning parameters, no penalty, assumes no upper
bound on the mixture order
® Computation: does not suffer from non-convexity
® Accuracy: near-parametric rate in density estimation [Zhang '09,
Saha-Guntuboyina '20]
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practical performance
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bound on the mixture order
® Computation: does not suffer from non-convexity
® Accuracy: near-parametric rate in density estimation [Zhang '09,
Saha-Guntuboyina '20]
® Widely used in empirical Bayes and superior in both theoretical and
practical performance
Potential issues:
® An extreme form of overparameterization
® Runs the risk of overfitting

® Does NPMLE “overfit” if the data are drawn from a finite mixture?

® |f data are generated from a k-GM, say, k = 2, what is the typical
model size fitted by NPMLE?
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Pros and Cons of NPMLE

Advantages:
® Flexibility: no tuning parameters, no penalty, assumes no upper
bound on the mixture order
® Computation: does not suffer from non-convexity
® Accuracy: near-parametric rate in density estimation [Zhang '09,
Saha-Guntuboyina '20]
® Widely used in empirical Bayes and superior in both theoretical and
practical performance
Potential issues:
® An extreme form of overparameterization
® Runs the risk of overfitting

® Does NPMLE “overfit” if the data are drawn from a finite mixture?

® |f data are generated from a k-GM, say, k = 2, what is the typical
model size fitted by NPMLE?

These questions are not answered by classical theory.
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Structural property of NPMLE



Optimality condition

e Objective function: ¢() = £ 3"  log p~(x;), maximized by
T = TNPMLE-
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Optimality condition

e Objective function: ¢() = £ 3"  log p~(x;), maximized by
T = TNPMLE-
® For any € € [0,1] and any 6 € R,

0(7) > 0((1 — €)7 + eby) = %ﬁ((l — &)t +edy)|_, <0

15w pe(wi) 4
n 1:1177}(9%‘)
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Optimality condition

e Objective function: ¢() = £ 3"  log p~(x;), maximized by
T = TNPMLE-
® For any € € [0,1] and any 6 € R,

0(7) > 0((1 — €)7 + eby) = %ﬁ((l — &)t +edy)|_, <0

15w pe(wi) 4
n =1 pz(z;)

First-order optimality condition

1 ¢ 3
7 is optimal <= D;(0) = = g po(zi) <1, VAeR
i ‘

Yury Polyanskiy (MIT) Self-regularization of NPMLE 11



Optimality condition

® Objective function: ¢(m) = L 3" logp,(z;), maximized by

n
T = TNPMLE-
® For any € € [0,1] and any 6 € R,

0(7) > 0((1 — €)7 + eby) = diﬁ((l — &)t +edy)|_, <0
- _

15 n pg(wz‘)fl
n 1:1177}(11‘)

First-order optimality condition

. . 1~ po(zi)
7 is optimal <= D;(0) = =
7 2 el

<1, VOeR

Consequence:
* Averaging the LHS over # — [ #(df)D(9) =1
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Optimality condition
® Objective function: ¢(m) = L 3" logp,(z;), maximized by
T = TNPMLE-
For any € € [0,1] and any 0 € R,

n

0(7) > 0((1 — €)7 + eby) = diﬁ((l — &)t +edy)|_, <0
- _

15w pe(wi) 4
1:1177}(%‘)

First-order optimality condition

7 is optimal <= D3 (0)

, VAeER
i1 pa(z:)
Consequence:

* Averaging the LHS over # — [ #(df)D(9) =1
® Thus

Yury Polyanskiy (MIT)

supp(7npmLE) C {Global maximizers of Dz} C {Critical points of D5}

Self-regularization of NPMLE
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Gaussian mixture

® Note that

> — ! ~p(x; — 0) o< > wi(w; — 0)
: i=1

which is an n-GM density, with centers at the datapoints.
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Gaussian mixture

® Note that

> — ! ~p(x; — 0) o< > wi(w; — 0)
: i=1

which is an n-GM density, with centers at the datapoints.

® Fact: n-GM density in 1D has at most n modes [Polya-Szegé '25,
Hummel-Gidas '84]

Theorem (Lindsay '83)

TNPMLE €Xists and is unique and discrete with at most n atoms
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Gaussian mixture

® Note that

> — ! ~(; —0) o< > wip(wi — )
: i=1

which is an n-GM density, with centers at the datapoints.

® Fact: n-GM density in 1D has at most n modes [Polya-Szegé '25,
Hummel-Gidas '84]

Theorem (Lindsay '83)

TNPMLE €Xists and is unique and discrete with at most n atoms

® This deterministic result is tight in the worst case

® |n practice, model fitted by NPMLE is much simpler
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Gaussian mixture

® Note that

> — ! ~(; —0) o< > wip(wi — )
: i=1

which is an n-GM density, with centers at the datapoints.

® Fact: n-GM density in 1D has at most n modes [Polya-Szegé '25,
Hummel-Gidas '84]

Theorem (Lindsay '83)

TNPMLE €Xists and is unique and discrete with at most n atoms

® This deterministic result is tight in the worst case
® |n practice, model fitted by NPMLE is much simpler

® Question: can we improve it when x1,...,x, are random?
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Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749
0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]

centers= [-14.96996997 -11.996997 -8.99399399 -5.99099099 -2.98798799
0.01501502 2.98798799 5.99099099 8.99399399 11.996997 14.96996997]

of NPMLE 13
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Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749
0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]

centers= [-14.96996997 -11.996997 -8.99399399 -5.99099099 -2.98798799
0.01501502 2.98798799 5.99099099 8.99399399 11.996997 14.96996997]

® Bad news: NPMLE fits an n-component Gaussian mixture
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Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749
0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]

centers= [-14.96996997 -11.996997 -8.99399399 -5.99099099 -2.98798799
0.01501502 2.98798799 5.99099099 8.99399399 11.996997 14.96996997]

® Bad news: NPMLE fits an n-component Gaussian mixture
® Good news: this sample is atypical!
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Example 2: datapoints clustere

sample= [ 1.86797447 1.4552763 -1.80237513 -0.7244036  2.22400636 1.85900276
2.57612104 1.69214083 -0.64707404 -1.48164282 -1.07169643]

NPMLE output:

weights= [0.45098479 0.5490152 ]
centers= [-1.12302888 1.90554054]

-4 -2

NPMLE fits a 2-component Gaussian mixture
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Further experiment

¢ True distribution: N(0,1) (single component)
® Sample size n = 10000

4 & 8 10 12 14 16 18 20

Histogram of |supp(AnpMmre)| in 500 trials
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Main result

Theorem (P.-Wu '20)

® [xists absolute constant Cy s.t. for Gaussian location mixtures,

| Supp(ﬁ-NPMLEN < CO(-xmax_xmin)Q, Lmin = min Tjy Tmax = MaX T;
i€[n] i€[n]
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Main result

Theorem (P.-Wu '20)

® [xists absolute constant Cy s.t. for Gaussian location mixtures,

| Supp(ﬁ-NPMLEN < CO(-xmax_xmin)Q, Lmin = min Tjy Tmax = MaX T;
i€[n] i€[n]

® Thus, ifxq,... ,a:ni'riifiﬂ * N(0,1) for some 1-subgaussian mixing

distribution m, then w.h.p.

supp(npmLe)| < O(logn)
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Main result

Theorem (P.-Wu '20)

® [xists absolute constant Cy s.t. for Gaussian location mixtures,

| Supp(ﬁ-NPMLEN < CO($max_xmin)27 Lmin = min Tj, Tmax = MaXT;
1€[n] i€[n]

Thus, if x1,... ,xni'riifiﬂ * N(0,1) for some 1-subgaussian mixing

distribution m, then w.h.p.

| supp(npmLE)| < O(logn)

e Significantly improves the worst-case bound (1)

If data are drawn from a finite k-GM, NPMLE typically fits an

O(log n)-GM

® Universality of logn: analogous result holds for exponential families
with tail exp(—|z|®) for C > 1
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Optimality of logn

* Is our estimate | supp Anxpure| < logn tight? [NESH
» Inapproximability result [Wu-Verdd '10]:

inf  H(px, N(0,2)) > e 9"

7:k-atomic
> Thus, if X; N(0,2) then for any mixture density estimator:
H(P;,N(0,2)) = poly(n) = [supp7|=Q(logn)

» For any subgaussian 7: H (Dsyprigs Pr) = Op(lo%) [Zhang '09]
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Optimality of logn

* Is our estimate | supp Anxpure| < logn tight? [NESH
» Inapproximability result [Wu-Verdd '10]:

inf  H(px, N(0,2)) > e 9"

7:k-atomic

» Thus, if X; b N(0,2) then for any mixture density estimator:

H(P;,N(0,2)) =poly(n) = [supp#|={(logn)

» For any subgaussian 7: H (Dsyprigs Pr) = Op(lo%) [Zhang '09]

® Why > logn mixture components is useless?
> Approximability result (m.o.m.):

Vr € SubGauss3r'—k-atomic : H(Py, Py) =o0o(1/y/n)

jid o . - e
> |IOW, n-sample X; ~ P, is statistically indistinguihsable from
X% P,
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Self-regularization property of the NPMLE

Recap:
® We have a sequence of models

MiCcMyC--- M
M = {P,=7nxN(0,1): 7 is l-subgaussian }
My, = {Pr=mxN(0,1): 7 is l-subgaussian and k-atomic}

® We know that statistical degree is ©(logn).
l.e. for any f € M there exists f;, € My with k < logn such that

TV, f") = o(1).

° - NPMLE automatically selects density estimate f e My,
with k& < logn !
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Self-regularization property of the NPMLE

Recap:
® We have a sequence of models

MiCcMsC--- M

M = {P,=7nxN(0,1): 7 is l-subgaussian }
My, = {Pr=mxN(0,1): 7 is l-subgaussian and k-atomic}

® We know that statistical degree is ©(logn).
l.e. for any f € M there exists f;, € My with k < logn such that

TV(fe", ,Szm) =o(1).
° - NPMLE automatically selects density estimate f e My,
with k& < logn !
Self-regularization of NPMLE

Absent any explicit form of model selection, NPMLE automatically
chooses the model of order-optimal complexity.
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Model selection and penalized MLE

® The likelihood of the best k-GM fit (non-convex):

Lopt(k) & max E:logp7r x;).

m:k-atomic T,

® Penalized MLE: for some pre-defined maximal model size K,

%, {Lopn (k) — pen(k)}
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Model selection and penalized MLE

® The likelihood of the best k-GM fit (non-convex):

Lopt(k) & max E:logp7r Ti).

m:k-atomic T,

® Penalized MLE: for some pre-defined maximal model size K,

i IIllaXK {Lopt (k) — pen(k)}

® New result shows: w.h.p. k — L (k) flattens after k£ > C'logn.
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Model selection and penalized MLE

® The likelihood of the best k-GM fit (non-convex):

Lopt(k) & max E:logp7r Ti).

m:k-atomic T,

® Penalized MLE: for some pre-defined maximal model size K,
max{Lopi (k) — pen(h)}
[ ]

New result shows: w.h.p. k — Lo (k) flattens after &k > C'logn.

® To achieve model selection consistency, penality is probably needed
e.g. BIC pen(k) = £ logn [Leroux '92, Keribin '00]

NPMLE exhibits some mild overfitting, a modest (and fair) price for
being completely automatic and computationally attractive.
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Analogy with shape-constrained NPMLE

i.i.d. .
T1,...,2, ~ f, a monotone density on [0, 1] [Grenander '56]
e fxpMmrLe (Grenander estimator) is piecewise constant with k,, pieces.

® Deterministically k, < n
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Analogy with shape-constrained NPMLE

T1,... ,xni'iﬂ'f, a monotone density on [0, 1] [Grenander '56]
o prMLE (Grenander estimator) is piecewise constant with k,, pieces.
® Deterministically k, < n
® Typically
» Under conditions on f: k, = Op(n'/?) [Groeneboom '11]
» For uniform f: k, = N(logn,logn) [Groeneboom-Lopuhaa '93]
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Analogy with shape-constrained NPMLE

iid. .
T1,...,2, ~ f, a monotone density on [0, 1] [Grenander '56]

o prMLE (Grenander estimator) is piecewise constant with k,, pieces.

Deterministically k, <n

Typically

» Under conditions on f: k, = Op(n'/?) [Groeneboom '11]

» For uniform f: k, = N(logn,logn) [Groeneboom-Lopuhaa '93]
Thanks to an explicit characterization of prMLE in terms of
empirical processes (no such result for mixture models)

cerr e d 10

o8 : —
; o8
08
08 |

o 1 2 s s s o 1 2z 3 4 5 & 7

3
(a) (b)

Figure 2.4 (a) Empirical distribution function of a sample of size 5 — 15 and its
concave majorant. (b) The resulting Grenander estimate.

Image credit: [Groeneboom-Jongbloed '14]
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Statistical consequence: density estimation

Theorem (Zhang '09)

i.id. :
Let x1,...,Tp ~ Pr L 7k . For any 1-subgaussian T,

log?n

ETF[Hz(pﬁ'NPMLEapW)] 5 n
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Statistical consequence: density estimation

Theorem (Zhang '09)

Let z1,... ,;vni'r'lfjl']%r L 7k . For any 1-subgaussian T,
log?n
Ex [H2 (prNPMLEapW)] 5 n

® Std. analysis of NPMLE is via empirical process theory:
N log NV (F, e
sup [B,[f] — E[f]] 5 e+ BT
fer n

+ metric entropy bounds
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Statistical consequence: density estimation

Theorem (Zhang '09)

Let z1,... ,;vni'r'lfjl'p7r L 7k . For any 1-subgaussian T,
log?n
Ex [H2 (pﬁ'NPMLE’pﬂ')] 5 n

® Std. analysis of NPMLE is via empirical process theory:

sup [Balf] — E[f]] < e 4 1/ 2B
feF n

+ metric entropy bounds
® QOur guess: anpMmLE has C'logn atoms so we expect

logn
HQ(Pﬁ'NPMLE7P7T) S osn

Unfortunately, rigorous proof picks up another logn.
(Best lower bound on H? density estimation (bﬂ) [Kim '14]).

n
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Statistical consequence: density estimation

Theorem (Zhang '09)

d.
Let xy,...,x ’,’V pr 2 7 . For any I-subgaussian T,

log? n

EW[H2(pﬁNPMLE7pW)] N n

Proof based on self-regularization: Let k = C'logn.

® On the event that AnpMLE IS k-atomic, INpMLE coincides with
parametric MLE over k-GMs

® Find k-GM p, such that TV(p7r ,Pr) <n~ 'Y so we can couple
(x1,...,2,) to (xh, ..., 2l)' & ‘b with probability 1 —n~

® This reduces the problem to k-GM and allows invoking existing
guarantee for parametric MLE: O(% log %) [Maugis-Michel '11]

N
N
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Self-regularization: cartoon example

® Model sequence on Z:

MiCcMyC---CM

M = {m:w[{m}] <27 meZ;}
M, = {mreM:x[{m}]=0,m >k}
® By truncation we see:

VreM 3Ir' e My : TV(m, ') =o(1/n)

with - — statistical degree.
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Self-regularization: cartoon example

® Model sequence on Z:

MiCcMyC---CM

M = {m:w[{m}] <27 meZ;}
M, = {mreM:x[{m}]=0,m >k}
® By truncation we see:
VreM 3Ir' e My : TV(m, ') =o(1/n)

with - — statistical degree.

e OTOH, given X; 4 7 we have

n

anemLE[{m}] = %Z H{X; =m},

t=1
and clearly
P[ﬁ'NPMLE S Mk] =1- 0(1)

whenever
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Self-regularization: cartoon example

® Model sequence on Z:
MiCMyC---C M
M = {m:w[{m}] <27 meZ;}
M, = {mreM:x[{m}]=0,m >k}

® By truncation we see:

A~ A !~ AA. TN !N — AL )

Withl Observation: More samples “unlock” new
e OTOF dimensions in M and NPMLE adapts to it.

anemLE[{m}] = iz H{X; =m},

t=1
and clearly
P[ﬁ'NpMLE S Mk] =1- 0(1)

whenever

Yury Polyanskiy (MIT) Self-regularization of NPMLE



Proof of the main result



Warmup: Poisson model

Self-regularization in Poisson mixture is easy to prove:

T

o py(z)=Le?andxcZy.

z!
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Warmup: Poisson model

Self-regularization in Poisson mixture is easy to prove:

® py(z) = 9—?6_9 and x € Z..

T

® Gradient
1 — z; & )
Da(0) = * po( z.) ot S b
n = pa(@i) i=1
———
deg-Tmax polynomial in 0
So

DL(0) = e~? x poly(6)

has at most deg poly < xyax roots!
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Warmup: Poisson model

Self-regularization in Poisson mixture is easy to prove:

® py(z) = 9—?6_9 and x € Z..

T

® Gradient

1 n (.%') n
Dﬁ(@) = — PolTi == 6_0 Zwﬂ“
=1
deg-Tmax polynomial in 0

So
D% (0) = e~ x poly(6)

has at most deg poly < xyax roots!

® For nice (e.g. subexponential) mixing distribution T,
ZTmax = Op(logn)
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Warmup: Poisson model

Self-regularization in Poisson mixture is easy to prove:

T

® py(z) = %6_0 and x € Z..
® Gradient

D#(0) = — Po(@i) _ ef Zwiﬁxi
i=1

=

deg-Tmax polynomial in 0

So
DL(0) = e~? x poly(6)

™

has at most deg poly < xyax roots!

® For nice (e.g. subexponential) mixing distribution T,
ZTmax = Op(logn)

® This does not work for Gaussian: D(6) not a poly!
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Recall from optimality condition

¢ | supp(npMmLE)| < # of critical points of

1 n n
- 5 Y widlai ) = (x» 9)(0)
i=1 i=1
where 7 is supported on {z1,...,2Zn} C [Zmin, Tmax)
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Recall from optimality condition

¢ | supp(npMmLE)| < # of critical points of

Da(0) = 3" ol — 0) o< Y wid(wi — ) = (7 £)(0)

where 7 is supported on {z1,...,2Zn} C [Zmin, Tmax)

® Reduces to counting critical points of Gaussian convolved with
compactly supported measure
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Number of modes of Gaussian mixtures

e Key analytic puzzle: Given a > 0 and a measure 7 on [—a, a] how
many modes can P, = 7 x ¢ have?
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Number of modes of Gaussian mixtures

¢ Key analytic puzzle: Given a > 0 and a measure 7 on [—a, a] how
many modes can P, = 7 % ¢ have?

® | et us try to understand it:

2-mixture on [-2,2], gap=4
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Number of modes of Gaussian mixtures

¢ Key analytic puzzle: Given a > 0 and a measure 7 on [—a, a] how
many modes can P, = 7 % ¢ have?

® | et us try to understand it:

2-mixture on [-2,2], gap=3
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Number of modes of Gaussian mixtures

¢ Key analytic puzzle: Given a > 0 and a measure 7 on [—a, a] how
many modes can P, = 7 % ¢ have?

® | et us try to understand it:

2-mixture on [-2,2], gap=2
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Number of modes of Gaussian mixtures

¢ Key analytic puzzle: Given a > 0 and a measure 7 on [—a, a] how
many modes can P, = 7 % ¢ have?

® | et us try to understand it:

11-mixture on [-10,10], gap=1.9

1349

124

114

1.0+
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Number of modes of Gaussian mixtures

e Key analytic puzzle: Given a > 0 and a measure 7 on [—a, a] how
many modes can P, = 7 x ¢ have?

® |et us try to understand it:

11-mixture on [-10,10], gap=1.9
1_3J /\/\/\/\/\/\/\/\/\
1o

We should only be able to create ©(a) modes?

-10 -5 o] 5 10
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Maxima of Gaussian mixtures

Theorem

Let 7 be supported on [—a,a]. Then 7 * ¢ has at most Coa? critical
points (Co—absolute constant). Furthermore, this bound is order-tight as
a — 00.
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Maxima of Gaussian mixtures

Theorem

Let 7 be supported on [—a,a]. Then 7 * ¢ has at most Coa? critical
points (Co—absolute constant). Furthermore, this bound is order-tight as

a — Q.

e A concurrent (and totally independent) work in IT on
amplitude-constrained channel capacity contains the same upper
bound! [Dytso-Yagli-Poor-Shamai '20]

® They further conjectured that O(a) should be tight...

® Qur lower bound :
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Maxima of Gaussian mixtures

Let 7 be supported on [—a,a]. Then 7 * ¢ has at most Coa? critical
points (Co—absolute constant). Furthermore, this bound is order-tight as
a — 00.

e A concurrent (and totally independent) work in IT on
amplitude-constrained channel capacity contains the same upper
bound! [Dytso-Yagli-Poor-Shamai '20]

® They further conjectured that O(a) should be tight...

® Qur lower bound :

Lemma

Take m = (1 + sin(wx))1{|z| < a}. For w < a density 7 * ¢ has Q(a?)
modes.
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Maxima of Gaussian mixtures

Theorem

Let 7 be supported on [—a,a]. Then 7 * ¢ has at most Coa? critical
points (Co—absolute constant). Furthermore, this bound is order-tight as

a — Q.

® A con
amplit T T T T T ] ame upper
bound \ |
o5 | \ -
® They | k] | Y
g | ‘ 1 |
® QOurlc o (‘ ‘\ ! —
o x |
Take m = ( J T ¢ has Q(a?)
modes. X
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Maxima of Gaussian mixtures

Theorem

Let 7 be supported on [—a,a]. Then 7 * ¢ has at most Coa? critical
points (Co—absolute constant). Furthermore, this bound is order-tight as

a — Q.

® A con
amplit T T T T T ] ame upper
bound \ |
o5 | \ -
® They | k] | Y
g | ‘ 1 |
® QOurlc o (‘ ‘\ ! —
o x |
Take m = ( J T ¢ has Q(a?)
modes. X

Another construction in [Kashyap-Krishnapur '20]
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Main tool: complex analysis

® Imagine a poly with many roots
in the unit circle

n

p(z)=c][(z—ay)

J=1

® Then its magnitude on a
far-away circle should be very
large:

p(2)]
p(0)]

® This generalizes: holomorphic
functions with many zeros must
grow very fast at infinity.

el el >1

via http://geogebra.org
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Main tool: complex analysis

Jensen's formula

® |et g be an analytic function. Then

jag] _ 1 / lg(Re™)|
log 2 = — [ log T2l
; R 21 o 9(0)]

where a1, ao, . .. are the zeros of g inside disk of radius R
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Main tool: complex analysis

Jensen's formula

® |et g be an analytic function. Then

jag] _ 1 / lg(Re™)|
log 2 = — [ log T2l
; R 21 o 9(0)]

where a1, ao, . .. are the zeros of g inside disk of radius R

® Consequence: for r < R,
log foy
# {zeros of g inside disk of radius r} < ————

where M = Sup|,|=R lg(2)]
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Proof for Gaussian mixtures

Let U ~ 7 and p(x) = (7 *x ¢)(z) = E[p(z — U)].
e Step 1: Localize roots. All real roots of p’ are in [—a, a], since

p(x) =E[U - z)p(z - V)], [U]<a

Pick zo = —2a, r = 3a, R = 4a
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Proof for Gaussian mixtures

Let U ~ 7 and p(x) = (7 *x ¢)(z) = E[p(z — U)].
e Step 1: Localize roots. All real roots of p’ are in [—a, a], since

p(x) =E[U - z)p(z - V)], [U]<a

Pick zo = —2a, r = 3a, R = 4a
e Step 2: Lower bound [p/(2a)|.

p'(—2a) > ae~ ¢’
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Proof for Gaussian mixtures

Let U ~ 7 and p(x) = (7 *x ¢)(z) = E[p(z — U)].
e Step 1: Localize roots. All real roots of p’ are in [—a, a], since

p(x) =E[U - z)p(z - V)], [U]<a

Pick zo = —2a, r = 3a, R = 4a
e Step 2: Lower bound [p/(2a)|.

P (—2a) > ae
e Step 3: Upper bound |p'| on complex circle

p'(w)] < e’ VweR2 {z: |2+ 2a| < 4a}
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Proof for Gaussian mixtures

Let U ~ 7 and p(x) = (7 *x ¢)(z) = E[p(z — U)].
e Step 1: Localize roots. All real roots of p’ are in [—a, a], since

p(x) =E[U - z)p(z - V)], [U]<a

Pick zo = —2a, r = 3a, R = 4a
e Step 2: Lower bound [p/(2a)|.

p'(—2a) > ae=C%
* Step 3: Upper bound |p/| on complex circle
Ip' (w)| < “” YweR2 {z: |2+ 2a| < 4a}

® Jensen's formula: p’ has at most Coa? in R (which contains all its
real roots).
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Proof for Gaussian mixtures

Let U ~ 7 and p(x) = (7 *x ¢)(z) = E[p(z — U)].
e Step 1: Localize roots. All real roots of p’ are in [—a, a], since

p(x) =E[U - z)p(z - V)], [U]<a

Pick zo = —2a, r = 3a, R = 4a
e Step 2: Lower bound [p/(2a)|.

P (—2a) > ae
e Step 3: Upper bound |p'| on complex circle
! (w §eca2, Ywe RE2{z:|2+4 2a|l < 4a
p

® Jensen's formula: p’ has at most Coa? in R (which contains all its
real roots).

® Proof for exponential family is more complicated.

Yury Polyanskiy (MIT) Self-regularization of NPMLE 31



Discussion and Open problems



Limitation of current proof technique

Mixture of exponentials [Jewell '82]
® Exp(f) with density pp(x) = e *1{z > 0} and 6 > 0.

TNPMLE = arg Efjl\fl/laﬁlé )7 Zlogpﬁ zi), px(x) = /96_917r(d9).
7T +
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Limitation of current proof technique

Mixture of exponentials [Jewell '82]
® Exp(f) with density pp(x) = e *1{z > 0} and 6 > 0.

T = arg max lo x;) - Oe 077 (d6).
NPMLE = gﬂeM &) 1 Z g Pr(Ti pr( /

® Similar analysis yields:

N i
| supp(AnpumLe)| S ——.

min

° Ifzq,..., xni-,i;‘i"Exp(l), then Whp Zpax < 10g 0, Tmin < £ and
| supp(npMLE)| S nlogn is useless

Yury Polyanskiy (MIT) Self-regularization of NPMLE



Limitation of current proof technique

Mixture of exponentials [Jewell '82]
® Exp(f) with density pp(x) = e *1{z > 0} and 6 > 0.

T = arg max lo x;) - Oe 077 (d6).
NPMLE = gﬂeM &) 1 Z g Pr(Ti pr( /

® Similar analysis yields:

Lmax

| supp(TnpMLE)| S

min

ii.d.
® If z1,...,2, < Exp(1), then whp Zpax < 10gn, Tmin < £ and
| supp(npMLE)| S nlogn is useless
® Open question: does self-regularization fail for exp mixture?
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Stronger self-regularization for constrained solution

Suppose true mixing distribution 7 is known to be supported on [—1,1].

e Correct model complexity reduces to O(log’ﬁ)gn) components.
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Stronger self-regularization for constrained solution

Suppose true mixing distribution 7 is known to be supported on [—1,1].

e Correct model complexity reduces to O(
® Constrained NPMLE:

loglogn) components.

T =ar max log(m * ¢)(x
NPMLE gwe/\/t( X pn Z g(m * @) ()
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Stronger self-regularization for constrained solution

Suppose true mixing distribution 7 is known to be supported on [—1,1].

e Correct model complexity reduces to O(
® Constrained NPMLE:

loglogn) components.

ANPMLE = aIg  max Zlog 7 ©)(z
reM([—-1,1]) N ) (i)
e Open question: Is ANPMLE O(log’ﬁ)gn)—atomic?
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Stronger self-regularization for constrained solution

Suppose true mixing distribution 7 is known to be supported on [—1,1].

e Correct model complexity reduces to O(—2£"_) components.

® Constrained NPMLE:

log log n

T =ar max log(m * ¢)(x
NPMLE gwe/\/t( X pn Z g(m * @) ()

e QOpen question: Is ANPMLE O( )-atomic?

loglogn
® QOur method disregards special structure of weights X)) (and
provably fails)
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Multiple dimensions

® Existence and uniqueness not resolved
> Major difficulty: # modes of n-GM in d dim = Q(n)

[Améndola-Engstrom-Haase '17]
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Multiple dimensions

® Existence and uniqueness not resolved
> Major difficulty: # modes of n-GM in d dim = Q(n)
[Améndola-Engstrom-Haase '17]
® Fundamental distinction with 1D:

> With positive (but low) probability 7npMmrE is not unique
(e.g. Poisson mixture in 2D) [P.-Wu '20]
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Multiple dimensions

® Existence and uniqueness not resolved
> Major difficulty: # modes of n-GM in d dim = Q(n)
[Améndola-Engstrom-Haase '17]
® Fundamental distinction with 1D:

> With positive (but low) probability 7npMmrE is not unique
(e.g. Poisson mixture in 2D) [P.-Wu '20]

® Open problems:

» Understanding the typical structural NPMLE in d dimensions
> Scalable algorithms
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NPMLE in Empirical Bayes



Empirical Bayes formalism

Large-scale inference

ind . ims  Monographs
X, ~ Pgi, 1= 1, ..o, n Large-Scale
Inference

Goal: Estimate 64,...,60,

e EB setting: 91-"5'77.
> Metric: compete with oracle (Bayes) who knows 7
e Compound setting: #; deterministic.
» Metric: compete with oracle who knows empirical distribution of 6;’s

e Competetive optimality offers a meaningful framework to go beyond
(pessimistic) minimax setting
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Empirical Bayes estimator

Bayes estimator éBayes(-; m) depends on the unknown 7.

Robbins’ meta-principle

® Learn the prior 7 (empirical distribution) from data

® Execute Bayes strategy with learned prior éBayes(-;w)
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Empirical Bayes estimator

Bayes estimator éBayes(-; m) depends on the unknown 7.

Robbins’ meta-principle

® Learn the prior 7 (empirical distribution) from data
® Execute Bayes strategy with learned prior éBayes(-;ﬁ)

e NPMLE is a principled way of learning prior from data.
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Empirical Bayes estimator

Bayes estimator éBayes(-; m) depends on the unknown 7.

Robbins’ meta-principle

® Learn the prior 7 (empirical distribution) from data
® Execute Bayes strategy with learned prior éBayes(-;ﬁ)

e NPMLE is a principled way of learning prior from data.

Robbins’ ad hoc scheme for Poisson model

¢ Given X = z drawn from Poi(#) and 6 ~ T,

pr(x+1)
pr ()

pemp(ﬂf + 1)

= ORobbins(7) = (z+1) -

éBayes(x; m) = (v+1)
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A real-data experiment

® NHL data: goals of a player in season 2017 and 2018
® NPMLE is much more stable than Robbins

504 ® Past vs Future ?

~®- Past vs Robbins K
|
1
|
1
i
1

—®- New estimator

50 1

Data: https://www.hockey-reference.com/leagues/NHL_2019_skaters-advanced.html
Yury Polyanskiy (MIT) Self-regularization of NPMLE 39


https://www.hockey-reference.com/leagues/NHL_2019_skaters-advanced.html

Optimal regret in EB

Regret,, = inf sup Z{E [(0; — 6;)%] — Rpayes(m)}
6 mell

® Robbins showed sublinear regret Regret,, = o(n) is possible
(aka “borrowing strength”, or “learning from experience of others™)

. but as we saw his estimator is very finicky.

® ... so many improvements over the years.
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Optimal regret in EB

Regret,, = inf sup Z{E [(0; — 6;)%] — Rpayes(m)}
6 mell

Robbins showed sublinear regret Regret,, = o(n) is possible
(aka “borrowing strength”, or “learning from experience of others™)

® .. but as we saw his estimator is very finicky.

® ... so many improvements over the years.

Question 1: Does NPMLE provably improve over Robbins?

Question 2: How does Regret,, scale with n?
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Optimal regret in EB

Regret,, = inf sup Z{E [(0; — 6;)%] — Rpayes(m)}
6 mell

Theorem (P.-Wu '20)
Consider compactly supported priors and Py = Poi() (Poisson model)

2
Regret, = [ —28™_
loglogn

and achieved by Robbins’ estimator.
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Optimal regret in EB

Regret,, = inf sup Z{E [(0; — 6;)%] — Rpayes(m)}
6 mell

Theorem (P.-Wu '20)
Consider compactly supported priors and Py = Poi() (Poisson model)

1 2
Regret,, < B
loglogn

and achieved by Robbins’ estimator.
® Long-standing conjecture was to prove an w(1) lower bound [Singh '79]
® Upper bound via Robbins is from [Brown-Greenshtein-Ritov '13]

2
® For Py = N(0,1) (normal means) we show Regret,, 2> (102)1%)2”)

Best upper bound O(log® n) by NPMLE [Jiang-Zhang '09]
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Concluding remarks

Main result:

® Self-regularizng property of NPMLE for certain mixture models:
automatically tunes to the correct model size

Many open problems

® Better self-regularization with constraints
® Theory and algorithms for NPMLE in multiple/high dimensions
® Regret optimality of NPMLE in empirical Bayes
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