Self-regularizing Property of Nonparametric Maximum Likelihood Estimator in Mixture Models

Yury Polyanskiy

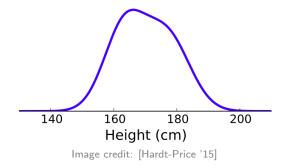
Department of EECS MIT

Joint work with Yihong Wu (Yale)

ICE Speaker Series, ICE, TU-Munich, 9 Dec 2020

Mixture models

• Height distribution of a population



Mixture models

• Height distribution of a population

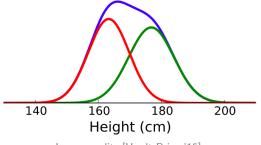
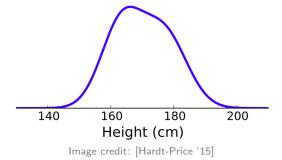


Image credit: [Hardt-Price '15]

• Model each of male and female subpopulation by a Gaussian distribution

Mixture models

• Height distribution of a population



• Model each of male and female subpopulation by a Gaussian distribution

Question

How to learn the average heights of male and female from unlabeled data?

Mixture models & empirical Bayes

F		IO EFE	CK Eri	EN	Y Ce								Ente	Persor	, Team, Section, etc				
Players	_	Team			eason		Lead	ers	NH	L Scores	0	Playoffs	s Stath	ead	Newsletter	Full Site Menu Below			
		likit	аK	ucł	nero	οv									2020 Cup Winne	r 4x All Star			
	Pe	sition	RW . S	hoots	Left										2018-19 Hart	2018-19 Pearson			
20		11, 1788													2018-19 Ross				
G		am: <u>Tan</u>								_									
100							laykop, <mark>B</mark> II), 2011 I								56 86				
1. 1. 1/2	Ar	nateur 1	leams:	Quebe	c Remp	arts, Ro	uyn-Norai												
	Pr	onuncia	ation: 🖣	hih-KEE	-tuh KC	O-chuhi	-awv\												
SUMMARY	GP	G		PTS	+/-	PS	PIM	SH	GWG	TOI	CF%	oZS%							
2019-20	68	33	52	85	26	10.5	38	210	6	18:52	56.1	59.8							
Career	515	221	326	547	128	69.6	261	1483	37	17:58	54.5	59.5							
Nikita Kuch	erov Ove	weiv	Game	Logs	• 9	plits 🔹	Scoring	Logs •	Gam	e Finder	Advand	<u>ed</u> 201	19-20 Lightning 🔹	News					
On this pag																			
NHL Standard				er Nev						trics (Eve	n Strengt		liscellaneous		NHL Playoffs	Playoff Overtime			
Penalty Shots (4)			Oth	er Star				ilarity Se					rboards, Awards			Full Site Menu			

NHL Standard

Season /				GP	Scoring		ıg				Goals		Assists		Shots		Ice Time												
	Age	Tm	Lg		G	GAI	PTS	+/-	PIM	EV	EV	PP	sн	GW	EV	PP	SH	s	S%	TSA	TOI	ATOI	FOW	FOL	FO%	BLK	HIT	тк	GV
2013-14	20	TBL	NHL	52	9	9	18	3	14	6	3	0	3	8	1	0	102	8.8	189	682	13:07	1	0	100.0	19	15	17	17	
2014-15	21	TBL.	NHL.	82	29	36	65	38	37	27	2	0	2	23	13	0	191	15.2	327	1226	14:57	0	2	0.0	28	65	22	48	AS-6, Selke-30
2015-16	22	TBL	NHL	77	30	36	66	9	30	21	9	0	4	20	16	0	209	14.4	402	1402	18:13	0	1	0.0	28	61	34	58	AS-8,Byng-53
2016-17	23	TBL	NHL	74	40	45	85	13	38	23	17	0	7	30	15	0	246	16.3	464	1438	19:26	0	0		20	30	54	64	AS-2.Hart-8.Selke-37
2017-18	24	TBL	NHL	80	39	61	100	15	42	31	8	0	7	33	28	0	279	14.0	547	1586	19:49	3	2	60.0	15	31	66	79	AS-1, Byng:26, Hart-6
2018-19	25	TBL	NHL	82	41	87	128	24	62	26	15	0	8	54	33	0	246	16.7	490	1637	19:58	0	3	0.0	31	-44	58	89	AS-1.Hart-1.Pearson-1.Ross-
2019-20	26	TBL	NHL	68	33	52	85	26	38	29	4	0	6	31	21	0	210	15.7	386	1283	18:52	0	1	0.0	19	37	30	59	AS-2.Hart-13
Career		7 yrs	NHL	515	221	326	547	128	261	163	58	0	37	199	127	0	1483	14.9	2805	9254	17:58	4	9	30.8	160	283	281	414	

- Nikita Kucherov scored 33 goals in 2019-2020.
- How many will he score in 2020-2021?

- $\{p_{\theta}: \theta \in \Theta\}$: parametric family of densities
- π : mixing distribution (prior) on Θ
- mixture density:

$$p_{\pi}(x) \triangleq \int_{\Theta} p_{\theta}(x) \pi(d\theta)$$

- $\{p_{\theta} : \theta \in \Theta\}$: parametric family of densities
- π : mixing distribution (prior) on Θ
- mixture density:

$$p_{\pi}(x) \triangleq \int_{\Theta} p_{\theta}(x) \pi(d\theta)$$

• Goal: given sample $x_1, \ldots, x_n \stackrel{\text{i.i.d.}}{\sim} p_{\pi}$, learn the mixture model (e.g. estimating π or p_{π})

Running example: Gaussian location mixture

- $p_{\theta}(x) = \varphi(x \theta)$: density $N(\theta, 1)$, where $\varphi(x) \triangleq \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$
- mixture density = Gaussian convolution

$$p_{\pi}(x) = (\varphi * \pi)(x)$$

• Special case: k-component Gaussian mixture (k-GM)

$$p_{\pi}(x) = \sum_{i=1}^{k} w_i \varphi(x - \theta_i), \quad \pi = \sum_{i=1}^{k} w_i \delta_{\theta_i}.$$

- Major difficulty: nonconvexity of mixture likelihood (in location parameters θ_i's)
 - Expectation-Maximization: Heuristic and suffer from spurious local maxima [Jin-Zhang-Balakrishnan-Wainwright-Jordan '16]

Three major methodologies:

1 Method of moments: [Pearson 1895]

learn π through estimating its moments

2 Minimum-distance estimator: [Wolfowitz '57]

$$\hat{\pi} = \arg\min_{\pi} \mathsf{dist}(p_{\pi}, \mathsf{empirical})$$

3 Nonparametric Maximum Likelihood: [Kiefer-Wolfowitz '56]

Three major methodologies:

1 Method of moments: [Pearson 1895]

learn π through estimating its moments

Tuning param: Number of moments

2 Minimum-distance estimator: [Wolfowitz '57]

 $\hat{\pi} = \arg\min_{\pi} \operatorname{dist}(p_{\pi}, \operatorname{empirical})$

Tuning param: choice of distance

Sonparametric Maximum Likelihood: [Kiefer-Wolfowitz '56] Tuning param: NONE!

Optimizing the likelihood over the space $\mathcal{M}(\Theta)$ of all priors:

$$\hat{\pi}_{\text{NPMLE}} \in \arg \max_{\pi \in \mathcal{M}(\Theta)} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$$

- *k*-component mixture problem is finite dim., but **non-convex**
- NPMLE: ∞ -dimensional but **convex** (overparametrization)

Optimizing the likelihood over the space $\mathcal{M}(\Theta)$ of all priors:

$$\hat{\pi}_{\text{NPMLE}} \in \arg \max_{\pi \in \mathcal{M}(\Theta)} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$$

- *k*-component mixture problem is finite dim., but **non-convex**
- NPMLE: ∞-dimensional but **convex** (overparametrization)
- NPMLE is a form of minimum-distance estimator:

$$\hat{\pi}_{\text{NPMLE}} = \arg\min_{\pi} D(\hat{P}_n || P_{\pi}) \qquad D(P || Q) = \int dP \log \frac{dP}{dQ}$$

 $(\hat{P}_n \text{ is empirical distribution of samples})$

Optimizing the likelihood over the space $\mathcal{M}(\Theta)$ of all priors:

$$\hat{\pi}_{\text{NPMLE}} \in \arg \max_{\pi \in \mathcal{M}(\Theta)} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$$

- *k*-component mixture problem is finite dim., but **non-convex**
- NPMLE: ∞-dimensional but **convex** (overparametrization)
- NPMLE is a form of minimum-distance estimator:

$$\hat{\pi}_{\text{NPMLE}} = \arg\min_{\pi} D(\hat{P}_n || P_{\pi}) \qquad D(P || Q) = \int dP \log \frac{dP}{dQ}$$

 $(\hat{P}_n \text{ is empirical distribution of samples})$

• NPMLE is related to rate-distortion theory (with source $\sim \hat{P}_n$):

$$\min_{\pi} D(\hat{P}_n \| P_{\pi}) = \min_{P_{\theta, X} : P_X = \hat{P}_n} I(\theta; X) + \frac{1}{2\sigma^2} \mathbb{E}[\|\theta - X\|^2]$$

... and also to entropic optimal transport [Weed-Rigollete '18]

$$\min_{\pi} D(\hat{P}_n \| P_{\pi}) = \min_{\pi} W_2^{(\sigma)}(\pi, \hat{P}_n)$$

Optimizing the likelihood over the space $\mathcal{M}(\Theta)$ of all priors:

$$\hat{\pi}_{\text{NPMLE}} \in \arg \max_{\pi \in \mathcal{M}(\Theta)} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$$

- Information-theoretic literature:
 - Iterative algo [Richardson '70] (for astronomy imaging)
 - Proof of convergence and connections to Blahut-Arimoto algo [Csiszar-Tusnady '82]

Optimizing the likelihood over the space $\mathcal{M}(\Theta)$ of all priors:

$$\hat{\pi}_{\text{NPMLE}} \in \arg \max_{\pi \in \mathcal{M}(\Theta)} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$$

- Information-theoretic literature:
 - Iterative algo [Richardson '70] (for astronomy imaging)
 - Proof of convergence and connections to Blahut-Arimoto algo [Csiszar-Tusnady '82]
- Stats literature: for mixture model in one dimension
 - Basic properties (existence, uniqueness, discreteness) are well understood [Simar '76, Jewell '82, Lindsay '83,'95]
 - Other kinds of iterative algorithms:
 - vertex exchange method [Böhning '81, Lindsay '83]
 - Grid-based: discretization [Koenker-Mizera '14]
 - $\blacktriangleright \sim 10^2$ papers on density estimation via NPMLE, NPMLE for empirical Bayes, shape-constrained NPMLE (Grenander)...

Advantages:

- Flexibility: no tuning parameters, no penalty, assumes no upper bound on the mixture order
- Computation: does not suffer from non-convexity
- Accuracy: near-parametric rate in density estimation [Zhang '09, Saha-Guntuboyina '20]

Advantages:

- Flexibility: no tuning parameters, no penalty, assumes no upper bound on the mixture order
- Computation: does not suffer from non-convexity
- Accuracy: near-parametric rate in density estimation [Zhang '09, Saha-Guntuboyina '20]
- Widely used in <u>empirical Bayes</u> and superior in both theoretical and practical performance

Advantages:

- Flexibility: no tuning parameters, no penalty, assumes no upper bound on the mixture order
- Computation: does not suffer from non-convexity
- Accuracy: near-parametric rate in density estimation [Zhang '09, Saha-Guntuboyina '20]
- Widely used in <u>empirical Bayes</u> and superior in both theoretical and practical performance

Potential issues:

- An extreme form of overparameterization
- Runs the risk of overfitting

Advantages:

- Flexibility: no tuning parameters, no penalty, assumes no upper bound on the mixture order
- Computation: does not suffer from non-convexity
- Accuracy: near-parametric rate in density estimation [Zhang '09, Saha-Guntuboyina '20]
- Widely used in <u>empirical Bayes</u> and superior in both theoretical and practical performance

Potential issues:

- An extreme form of overparameterization
- Runs the risk of overfitting

Major question

- Does NPMLE "overfit" if the data are drawn from a finite mixture?
- If data are generated from a *k*-GM, say, *k* = 2, what is the typical model size fitted by NPMLE?

Advantages:

- Flexibility: no tuning parameters, no penalty, assumes no upper bound on the mixture order
- Computation: does not suffer from non-convexity
- Accuracy: near-parametric rate in density estimation [Zhang '09, Saha-Guntuboyina '20]
- Widely used in <u>empirical Bayes</u> and superior in both theoretical and practical performance

Potential issues:

- An extreme form of overparameterization
- Runs the risk of overfitting

Major question

- Does NPMLE "overfit" if the data are drawn from a finite mixture?
- If data are generated from a *k*-GM, say, *k* = 2, what is the typical model size fitted by NPMLE?

These questions are not answered by classical theory.

Structural property of NPMLE

• Objective function: $\ell(\pi) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$, maximized by $\hat{\pi} = \hat{\pi}_{\text{NPMLE}}$.

• Objective function: $\ell(\pi) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$, maximized by $\hat{\pi} = \hat{\pi}_{\text{NPMLE}}$.

• For any $\epsilon \in [0,1]$ and any $\theta \in \mathbb{R}$,

$$\ell(\hat{\pi}) \ge \ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta}) \implies \underbrace{\frac{d}{d\epsilon}\ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta})\Big|_{\epsilon=0}}_{\frac{1}{n}\sum_{i=1}^{n}\frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} - 1} \le 0$$

• Objective function: $\ell(\pi) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$, maximized by $\hat{\pi} = \hat{\pi}_{\text{NPMLE}}$.

• For any $\epsilon \in [0,1]$ and any $\theta \in \mathbb{R},$

$$\ell(\hat{\pi}) \ge \ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta}) \implies \underbrace{\frac{d}{d\epsilon}\ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta})\Big|_{\epsilon=0}}_{\frac{1}{n}\sum_{i=1}^{n}\frac{p_{\theta}(x_i)}{p_{\pi}(x_i)} - 1} \le 0$$

First-order optimality condition

$$\hat{\pi} \text{ is optimal } \iff D_{\hat{\pi}}(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} \leq 1, \quad \forall \theta \in \mathbb{R}$$

• Objective function: $\ell(\pi) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$, maximized by $\hat{\pi} = \hat{\pi}_{\text{NPMLE}}$.

• For any $\epsilon \in [0,1]$ and any $\theta \in \mathbb{R}$,

$$\ell(\hat{\pi}) \ge \ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta}) \implies \underbrace{\frac{d}{d\epsilon}\ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta})\Big|_{\epsilon=0}}_{\frac{1}{n}\sum_{i=1}^{n}\frac{p_{\theta}(x_i)}{p_{\pi}(x_i)} - 1} \le 0$$

First-order optimality condition

$$\hat{\pi} \text{ is optimal } \iff D_{\hat{\pi}}(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} \leq 1, \quad \forall \theta \in \mathbb{R}$$

Consequence:

• Averaging the LHS over $\hat{\pi} \implies \int \hat{\pi}(d\theta) D_{\hat{\pi}}(\theta) = 1$

• Objective function: $\ell(\pi) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i)$, maximized by $\hat{\pi} = \hat{\pi}_{\text{NPMLE}}$.

• For any $\epsilon \in [0,1]$ and any $\theta \in \mathbb{R}$,

$$\ell(\hat{\pi}) \ge \ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta}) \implies \underbrace{\frac{d}{d\epsilon}\ell((1-\epsilon)\hat{\pi} + \epsilon\delta_{\theta})\Big|_{\epsilon=0}}_{\frac{1}{n}\sum_{i=1}^{n}\frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} - 1} \le 0$$

First-order optimality condition

$$\hat{\pi} \text{ is optimal } \iff D_{\hat{\pi}}(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} \leq 1, \quad \forall \theta \in \mathbb{R}$$

Consequence:

- Averaging the LHS over $\hat{\pi} \implies \int \hat{\pi}(d\theta) D_{\hat{\pi}}(\theta) = 1$
- Thus

 $\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}}) \subset \{ \mathsf{Global maximizers of } D_{\hat{\pi}} \} \subset \{ \mathsf{Critical points of } D_{\hat{\pi}} \}$

Gaussian mixture

• Note that

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{\hat{\pi}}(x_i)} \phi(x_i - \theta) \propto \sum_{i=1}^{n} w_i \phi(x_i - \theta)$$

which is an n-GM density, with centers at the datapoints.

Gaussian mixture

Note that

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{\hat{\pi}}(x_i)} \phi(x_i - \theta) \propto \sum_{i=1}^{n} w_i \phi(x_i - \theta)$$

which is an n-GM density, with centers at the datapoints.

• <u>Fact</u>: *n*-GM density in 1D has at most *n* modes [Polya-Szegö '25, Hummel-Gidas '84]

Theorem (Lindsay '83)

 $\hat{\pi}_{\mathrm{NPMLE}}$ exists and is unique and discrete with at most n atoms

Gaussian mixture

Note that

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{\hat{\pi}}(x_i)} \phi(x_i - \theta) \propto \sum_{i=1}^{n} w_i \phi(x_i - \theta)$$

which is an n-GM density, with centers at the datapoints.

• <u>Fact</u>: *n*-GM density in 1D has at most *n* modes [Polya-Szegö '25, Hummel-Gidas '84]

Theorem (Lindsay '83)

 $\hat{\pi}_{\mathrm{NPMLE}}$ exists and is unique and discrete with at most n atoms

- This deterministic result is tight in the worst case
- In practice, model fitted by NPMLE is much simpler

Note that

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{\hat{\pi}}(x_i)} \phi(x_i - \theta) \propto \sum_{i=1}^{n} w_i \phi(x_i - \theta)$$

which is an n-GM density, with centers at the datapoints.

• <u>Fact</u>: *n*-GM density in 1D has at most *n* modes [Polya-Szegö '25, Hummel-Gidas '84]

Theorem (Lindsay '83)

 $\hat{\pi}_{\mathrm{NPMLE}}$ exists and is unique and discrete with at most n atoms

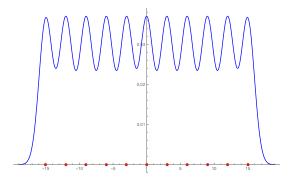
- This deterministic result is tight in the worst case
- In practice, model fitted by NPMLE is much simpler
- Question: can we improve it when x_1, \ldots, x_n are random?

Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749
0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]
centers= [-14.96996997 -11.996997 -8.99393939 -5.99099099 -2.98798799
0.01501502 2.98798799 5.9909909 8.99399399 11.996997 14.9696997]

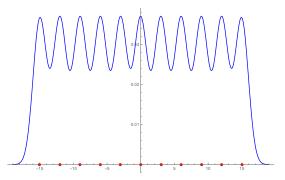


Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749
0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]
centers= [-14.9699699697 -11.996997 -8.99399399 -5.99099099 -2.98798799
0.01501502 2.98798799 5.99099099 8.9933939 11.996997 14.9696997]



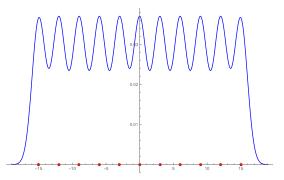
Bad news: NPMLE fits an n-component Gaussian mixture

Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749
0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]
centers= [-14.9699699699 -11.996997 -8.99399399 -5.99099099 -2.98798799
0.01501502 2.98798799 5.99099098 8.99399399 11.996997 14.96996997]



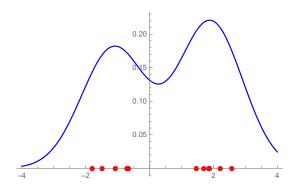
- Bad news: NPMLE fits an n-component Gaussian mixture
- Good news: this sample is atypical!

Example 2: datapoints clustered

sample= [1.86797447 1.4552763 -1.80237513 -0.7244036 2.22400636 1.85900276
2.57612104 1.69214083 -0.64707404 -1.48164282 -1.07169643]

NPMLE output:

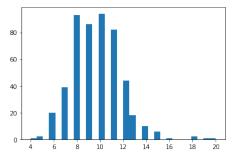
weights= [0.45098479 0.5490152] centers= [-1.12302888 1.90554054]



NPMLE fits a 2-component Gaussian mixture

Further experiment

- True distribution: N(0,1) (single component)
- Sample size n = 10000



Histogram of $|\operatorname{supp}(\hat{\pi}_{\mathrm{NPMLE}})|$ in 500 trials

Main result

Theorem (P.-Wu '20)

• Exists absolute constant C₀ s.t. for Gaussian location mixtures,

$$\sup(\hat{\pi}_{NPMLE})| \le C_0 (x_{\max} - x_{\min})^2, \quad x_{\min} = \min_{i \in [n]} x_i, x_{\max} = \max_{i \in [n]} x_i$$

Main result

Theorem (P.-Wu '20)

• Exists absolute constant C₀ s.t. for Gaussian location mixtures,

 $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \le C_0 (x_{\max} - x_{\min})^2, \quad x_{\min} = \min_{i \in [n]} x_i, x_{\max} = \max_{i \in [n]} x_i$

Thus, if x₁,..., x_n^{i.i.d.} π * N(0,1) for some 1-subgaussian mixing distribution π, then w.h.p.

 $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \le O(\log n)$

Main result

Theorem (P.-Wu '20)

• Exists absolute constant C₀ s.t. for Gaussian location mixtures,

 $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \le C_0 (x_{\max} - x_{\min})^2, \quad x_{\min} = \min_{i \in [n]} x_i, x_{\max} = \max_{i \in [n]} x_i$

Thus, if x₁,..., x_n ~ π * N(0,1) for some 1-subgaussian mixing distribution π, then w.h.p.

 $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \le O(\log n)$

- Significantly improves the worst-case bound (n)
- If data are drawn from a finite $k\text{-}\mathsf{GM},$ NPMLE typically fits an $O(\log n)\text{-}\mathsf{GM}$
- Universality of $\log n$: analogous result holds for exponential families with tail $\exp(-|x|^C)$ for C>1

Optimality of $\log n$

- Is our estimate $|\operatorname{supp} \hat{\pi}_{\operatorname{NPMLE}}| \lesssim \log n$ tight? YES!
 - Inapproximability result [Wu-Verdú '10]:

$$\inf_{\pi:k\text{-atomic}} H(p_{\pi}, N(0, 2)) \ge e^{-O(k)}$$

▶ Thus, if $X_i \stackrel{iid}{\sim} N(0,2)$ then for any mixture density estimator:

 $H(P_{\hat{\pi}}, N(0, 2)) = \operatorname{poly}(n) \implies |\operatorname{supp} \hat{\pi}| = \Omega(\log n)$

For any subgaussian π : $H(p_{\hat{\pi}_{NPMLE}}, p_{\pi}) = O_P(\frac{\log n}{\sqrt{n}})$ [Zhang '09]

Optimality of $\log n$

- Is our estimate $|\operatorname{supp} \hat{\pi}_{\operatorname{NPMLE}}| \lesssim \log n$ tight? YES!
 - Inapproximability result [Wu-Verdú '10]:

$$\inf_{\pi:k\text{-atomic}} H(p_{\pi}, N(0, 2)) \ge e^{-O(k)}$$

▶ Thus, if $X_i \stackrel{iid}{\sim} N(0,2)$ then for any mixture density estimator:

 $H(P_{\hat{\pi}}, N(0, 2)) = \operatorname{poly}(n) \quad \Longrightarrow \quad |\operatorname{supp} \hat{\pi}| = \Omega(\log n)$

For any subgaussian π : $H(p_{\hat{\pi}_{NPMLE}}, p_{\pi}) = O_P(\frac{\log n}{\sqrt{n}})$ [Zhang '09]

- Why ≥ log n mixture components is useless?
 - Approximability result (m.o.m.):

 $\forall \pi \in \text{SubGauss} \exists \pi' - k \text{-atomic}: \qquad H(P_{\pi}, P_{\pi'}) = o(1/\sqrt{n})$

and $k = O(\log n)$.

▶ IOW, *n*-sample $X_i \stackrel{iid}{\sim} P_{\pi}$ is statistically indistinguihsable from $X'_i \stackrel{iid}{\sim} P_{\pi'}$

Self-regularization property of the NPMLE

Recap:

We have a sequence of models

$$\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots \mathcal{M}$$

 $\mathcal{M} = \{ P_{\pi} = \pi * N(0, 1) : \pi \text{ is 1-subgaussian } \}$ $\mathcal{M}_{k} = \{ P_{\pi} = \pi * N(0, 1) : \pi \text{ is 1-subgaussian and } k\text{-atomic} \}$

- We know that statistical degree is $\Theta(\log n)$. I.e. for any $f \in \mathcal{M}$ there exists $f_k \in \mathcal{M}_k$ with $k \asymp \log n$ such that $\operatorname{TV}(f^{\otimes n}, f_k^{\otimes n}) = o(1)$.
- Surprise: NPMLE automatically selects density estimate $\hat{f} \in \mathcal{M}_k$ with $k \asymp \log n$!

Self-regularization property of the NPMLE

Recap:

We have a sequence of models

$$\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots \mathcal{M}$$

 $\mathcal{M} = \{ P_{\pi} = \pi * N(0, 1) : \pi \text{ is 1-subgaussian } \}$ $\mathcal{M}_{k} = \{ P_{\pi} = \pi * N(0, 1) : \pi \text{ is 1-subgaussian and } k\text{-atomic} \}$

 We know that statistical degree is Θ(log n).
 I.e. for any f ∈ M there exists f_k ∈ M_k with k ≍ log n such that TV(f^{⊗n}, f_k^{⊗n}) = o(1).

• Surprise: NPMLE automatically selects density estimate $\hat{f} \in \mathcal{M}_k$ with $k \asymp \log n$!

Self-regularization of NPMLE

Absent any explicit form of model selection, NPMLE automatically chooses the model of order-optimal complexity.

Model selection and penalized MLE

• The likelihood of the best *k*-GM fit (non-convex):

$$L_{\text{opt}}(k) \triangleq \max_{\pi:k\text{-atomic}} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i).$$

• Penalized MLE: for some pre-defined maximal model size K,

$$\max_{k=1,\dots,K} \left\{ L_{\text{opt}}(k) - \text{pen}(k) \right\}$$

Model selection and penalized MLE

• The likelihood of the best *k*-GM fit (non-convex):

$$L_{\text{opt}}(k) \triangleq \max_{\pi:k\text{-atomic}} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i).$$

• Penalized MLE: for some pre-defined maximal model size K,

$$\max_{k=1,\dots,K} \left\{ L_{\text{opt}}(k) - \text{pen}(k) \right\}$$

• New result shows: w.h.p. $k \mapsto L_{opt}(k)$ flattens after $k \ge C \log n$.

Model selection and penalized MLE

• The likelihood of the best *k*-GM fit (non-convex):

$$L_{\text{opt}}(k) \triangleq \max_{\pi:k\text{-atomic}} \frac{1}{n} \sum_{i=1}^{n} \log p_{\pi}(x_i).$$

• Penalized MLE: for some pre-defined maximal model size K,

$$\max_{k=1,\dots,K} \left\{ L_{\text{opt}}(k) - \text{pen}(k) \right\}$$

- New result shows: w.h.p. $k \mapsto L_{opt}(k)$ flattens after $k \ge C \log n$.
- To achieve model selection consistency, penality is probably needed e.g. BIC $pen(k) = \frac{k}{2} \log n$ [Leroux '92, Keribin '00]
- NPMLE exhibits some mild overfitting, a modest (and fair) price for being completely automatic and computationally attractive.

Analogy with shape-constrained NPMLE

 $x_1,\ldots,x_n \overset{\mathrm{i.i.d.}}{\sim} f$, a monotone density on [0,1] [Grenander '56]

- \hat{f}_{NPMLE} (Grenander estimator) is piecewise constant with k_n pieces.
- Deterministically $k_n \leq n$

Analogy with shape-constrained NPMLE

 $x_1,\ldots,x_n \overset{\mathrm{i.i.d.}}{\sim} f$, a monotone density on [0,1] [Grenander '56]

- \hat{f}_{NPMLE} (Grenander estimator) is piecewise constant with k_n pieces.
- Deterministically $k_n \leq n$
- Typically
 - Under conditions on $f: k_n = O_P(n^{1/3})$ [Groeneboom '11]
 - For uniform $f: k_n \approx N(\log n, \log n)$ [Groeneboom-Lopuhaa '93]

Analogy with shape-constrained NPMLE

 $x_1,\ldots,x_n \overset{\mathrm{i.i.d.}}{\sim} f$, a monotone density on [0,1] [Grenander '56]

- \hat{f}_{NPMLE} (Grenander estimator) is piecewise constant with k_n pieces.
- Deterministically $k_n \leq n$
- Typically
 - Under conditions on $f: k_n = O_P(n^{1/3})$ [Groeneboom '11]
 - For uniform $f: k_n \approx N(\log n, \log n)$ [Groeneboom-Lopuhaa '93]
- Thanks to an explicit characterization of $\hat{f}_{\rm NPMLE}$ in terms of empirical processes (no such result for mixture models)

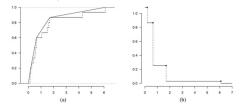


Figure 2.4 (a) Empirical distribution function of a sample of size n=15 and its concave majorant. (b) The resulting Grenander estimate.

Image credit: [Groeneboom-Jongbloed '14]

Statistical consequence: density estimation

Theorem (Zhang '09)

Let $x_1, \ldots, x_n \overset{i.i.d.}{\sim} p_{\pi} \triangleq \pi * \varphi$. For any 1-subgaussian π ,

$$\mathbb{E}_{\pi}[H^2(p_{\hat{\pi}_{\text{NPMLE}}}, p_{\pi})] \lesssim \frac{\log^2 n}{n},$$

Theorem (Zhang '09)

Let
$$x_1, \ldots, x_n \stackrel{i.i.d.}{\sim} p_{\pi} \triangleq \pi * \varphi$$
. For any 1-subgaussian π ,

$$\mathbb{E}_{\pi}[H^2(p_{\hat{\pi}_{\text{NPMLE}}}, p_{\pi})] \lesssim \frac{\log^2 n}{n},$$

• Std. analysis of NPMLE is via empirical process theory:

$$\sup_{f \in \mathcal{F}} |\hat{\mathbb{E}}_n[f] - \mathbb{E}[f]| \lesssim \epsilon + \sqrt{\frac{\log \mathcal{N}(\mathcal{F}, \epsilon)}{n}}$$

+ metric entropy bounds

Theorem (Zhang '09)

Let
$$x_1, \ldots, x_n \stackrel{i.i.d.}{\sim} p_{\pi} \triangleq \pi * \varphi$$
. For any 1-subgaussian π ,

$$\mathbb{E}_{\pi}[H^2(p_{\hat{\pi}_{\text{NPMLE}}}, p_{\pi})] \lesssim \frac{\log^2 n}{n},$$

• Std. analysis of NPMLE is via empirical process theory:

$$\sup_{f \in \mathcal{F}} |\hat{\mathbb{E}}_n[f] - \mathbb{E}[f]| \lesssim \epsilon + \sqrt{\frac{\log \mathcal{N}(\mathcal{F}, \epsilon)}{n}}$$

+ metric entropy bounds

• Our guess: $\hat{\pi}_{\mathrm{NPMLE}}$ has $C\log n$ atoms so we expect

$$H^2(P_{\hat{\pi}_{\text{NPMLE}}}, P_{\pi}) \lesssim \frac{\log n}{n}$$

Unfortunately, rigorous proof picks up another $\log n$. (Best lower bound on H^2 density estimation $\Omega\left(\frac{\log n}{n}\right)$ [Kim '14]).

Theorem (Zhang '09)

Let $x_1, \ldots, x_n \stackrel{i.i.d.}{\sim} p_{\pi} \triangleq \pi * \varphi$. For any 1-subgaussian π ,

$$\mathbb{E}_{\pi}[H^2(p_{\hat{\pi}_{\mathrm{NPMLE}}}, p_{\pi})] \lesssim \frac{\log^2 n}{n},$$

Proof based on self-regularization: Let $k = C \log n$.

- On the event that $\hat{\pi}_{\rm NPMLE}$ is *k*-atomic, $\hat{\pi}_{\rm NPMLE}$ coincides with parametric MLE over *k*-GMs
- Find k-GM $p_{\pi'}$ such that $\operatorname{TV}(p_{\pi'}, p_{\pi}) \leq n^{-10}$, so we can couple (x_1, \ldots, x_n) to $(x'_1, \ldots, x'_n) \stackrel{\text{i.i.d.}}{\sim} p_{\pi'}$ with probability $1 n^{-9}$
- This reduces the problem to k-GM and allows invoking existing guarantee for parametric MLE: $O(\frac{k}{n}\log\frac{n}{k})$ [Maugis-Michel '11]

Self-regularization: cartoon example

• Model sequence on \mathbb{Z}_+ :

$$\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots \subset \mathcal{M}$$
$$\mathcal{M} = \{\pi : \pi[\{m\}] \le 2^{-m}, m \in \mathbb{Z}_+\}$$
$$\mathcal{M}_k = \{\pi \in \mathcal{M} : \pi[\{m\}] = 0, m > k\}$$

• By truncation we see:

$$\forall \pi \in \mathcal{M} \quad \exists \pi' \in \mathcal{M}_k : \mathrm{TV}(\pi, \pi') = o(1/n)$$

with $k \simeq \log n$ – statistical degree.

Self-regularization: cartoon example

Model sequence on Z₊:

$$\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots \subset \mathcal{M}$$
$$\mathcal{M} = \{\pi : \pi[\{m\}] \le 2^{-m}, m \in \mathbb{Z}_+\}$$
$$\mathcal{M}_k = \{\pi \in \mathcal{M} : \pi[\{m\}] = 0, m > k\}$$

By truncation we see:

$$\forall \pi \in \mathcal{M} \quad \exists \pi' \in \mathcal{M}_k : \mathrm{TV}(\pi, \pi') = o(1/n)$$
with $k \asymp \log n$ - statistical degree.
• OTOH, given $X_i \stackrel{iid}{\sim} \pi$ we have

$$\hat{\pi}_{\text{NPMLE}}[\{m\}] = \frac{1}{n} \sum_{t=1}^{n} 1\{X_i = m\},\$$

and clearly

with

$$\mathbb{P}[\hat{\pi}_{\text{NPMLE}} \in \mathcal{M}_k] = 1 - o(1)$$

 $k \gtrsim \log n$ whenever

Self-regularization: cartoon example

Model sequence on Z₊:

$$\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots \subset \mathcal{M}$$
$$\mathcal{M} = \{\pi : \pi[\{m\}] \le 2^{-m}, m \in \mathbb{Z}_+\}$$
$$\mathcal{M}_k = \{\pi \in \mathcal{M} : \pi[\{m\}] = 0, m > k\}$$

• By truncation we see:

$$\forall \pi \subset M \quad \exists \pi' \subset M, \quad \mathsf{T} \mathsf{V}(\pi, \pi') = o(1/n)$$

Observation: More samples "unlock" new dimensions in \mathcal{M} and NPMLE adapts to it.

$$\hat{\pi}_{\text{NPMLE}}[\{m\}] = \frac{1}{n} \sum_{t=1}^{n} 1\{X_i = m\},\$$

and clearly

with

OTOF

$$\mathbb{P}[\hat{\pi}_{\text{NPMLE}} \in \mathcal{M}_k] = 1 - o(1)$$

whenever $k \ge \log n$

Proof of the main result

Self-regularization in Poisson mixture is easy to prove:

•
$$p_{\theta}(x) = \frac{\theta^x}{x!} e^{-\theta}$$
 and $x \in \mathbb{Z}_+$.

Self-regularization in Poisson mixture is easy to prove:

- $p_{\theta}(x) = \frac{\theta^x}{x!} e^{-\theta}$ and $x \in \mathbb{Z}_+$.
- Gradient

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} = e^{-\theta} \sum_{\substack{i=1 \\ \text{deg-}x_{\text{max}} \text{ polynomial in } \theta}}^{n} w_i \theta^{x_i}$$

So

$$D'_{\hat{\pi}}(\theta) = e^{-\theta} \times \operatorname{poly}(\theta)$$

has at most deg poly $\leq x_{\max}$ roots!

Self-regularization in Poisson mixture is easy to prove:

- $p_{\theta}(x) = \frac{\theta^x}{x!} e^{-\theta}$ and $x \in \mathbb{Z}_+$.
- Gradient

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} = e^{-\theta} \sum_{\substack{i=1\\ \text{deg-}x_{\text{max polynomial in } \theta}}^{n} w_i \theta^{x_i}$$

So

$$D'_{\hat{\pi}}(\theta) = e^{-\theta} \times \operatorname{poly}(\theta)$$

has at most $\deg \operatorname{poly} \le x_{\max}$ roots!

• For nice (e.g. subexponential) mixing distribution π , $x_{\max} = O_P(\log n)$

Self-regularization in Poisson mixture is easy to prove:

- $p_{\theta}(x) = \frac{\theta^x}{x!} e^{-\theta}$ and $x \in \mathbb{Z}_+$.
- Gradient

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta}(x_i)}{p_{\hat{\pi}}(x_i)} = e^{-\theta} \sum_{\substack{i=1\\ \text{deg-}x_{\text{max polynomial in } \theta}}^{n} w_i \theta^{x_i}$$

So

$$D'_{\hat{\pi}}(\theta) = e^{-\theta} \times \operatorname{poly}(\theta)$$

has at most $\deg \operatorname{poly} \le x_{\max}$ roots!

- For nice (e.g. subexponential) mixing distribution π , $x_{\max} = O_P(\log n)$
- This does <u>not</u> work for Gaussian: $D(\theta)$ not a poly!

Recall from optimality condition

• $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \le \#$ of critical points of

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{\hat{\pi}}(x_i)} \phi(x_i - \theta) \propto \sum_{i=1}^{n} w_i \phi(x_i - \theta) = (\pi * \varphi)(\theta)$$

where π is supported on $\{x_1, \ldots, x_n\} \subset [x_{\min}, x_{\max}]$

Recall from optimality condition

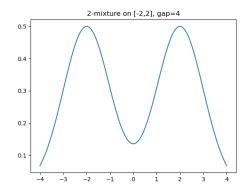
• $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \le \#$ of critical points of

$$D_{\hat{\pi}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{\hat{\pi}}(x_i)} \phi(x_i - \theta) \propto \sum_{i=1}^{n} w_i \phi(x_i - \theta) = (\pi * \varphi)(\theta)$$

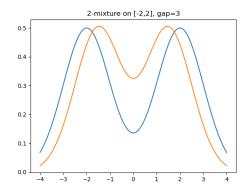
where π is supported on $\{x_1, \ldots, x_n\} \subset [x_{\min}, x_{\max}]$

 Reduces to counting critical points of Gaussian convolved with compactly supported measure Key analytic puzzle: Given a > 0 and a measure π on [-a, a] how many modes can P_π = π * φ have?

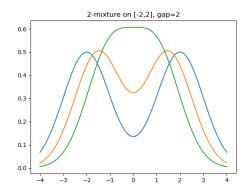
- Key analytic puzzle: Given a > 0 and a measure π on [-a, a] how many modes can P_π = π * φ have?
- Let us try to understand it:



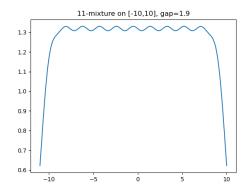
- Key analytic puzzle: Given a > 0 and a measure π on [-a, a] how many modes can P_π = π * φ have?
- Let us try to understand it:



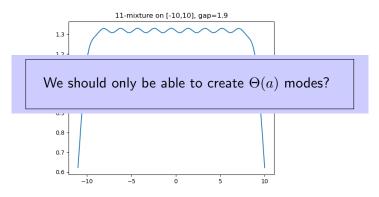
- Key analytic puzzle: Given a > 0 and a measure π on [-a, a] how many modes can P_π = π * φ have?
- Let us try to understand it:



- Key analytic puzzle: Given a > 0 and a measure π on [-a, a] how many modes can P_π = π * φ have?
- Let us try to understand it:



- Key analytic puzzle: Given a > 0 and a measure π on [-a, a] how many modes can P_π = π * φ have?
- Let us try to understand it:



Theorem

Let π be supported on [-a, a]. Then $\pi * \varphi$ has at most $C_0 a^2$ critical points (C_0 -absolute constant). Furthermore, this bound is order-tight as $a \to \infty$.

Theorem

Let π be supported on [-a, a]. Then $\pi * \varphi$ has at most $C_0 a^2$ critical points (C_0 -absolute constant). Furthermore, this bound is order-tight as $a \to \infty$.

- A concurrent (and totally independent) work in IT on amplitude-constrained channel capacity contains the same upper bound! [Dytso-Yagli-Poor-Shamai '20]
- They further conjectured that O(a) should be tight...
- Our lower bound :

Theorem

Let π be supported on [-a, a]. Then $\pi * \varphi$ has at most $C_0 a^2$ critical points (C_0 -absolute constant). Furthermore, this bound is order-tight as $a \to \infty$.

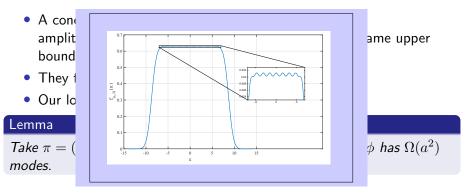
- A concurrent (and totally independent) work in IT on amplitude-constrained channel capacity contains the same upper bound! [Dytso-Yagli-Poor-Shamai '20]
- They further conjectured that O(a) should be tight...
- Our lower bound :

Lemma

Take $\pi = (1 + \sin(\omega x))1\{|x| \le a\}$. For $\omega \asymp a$ density $\pi * \phi$ has $\Omega(a^2)$ modes.

Theorem

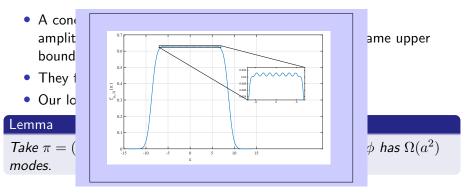
Let π be supported on [-a, a]. Then $\pi * \varphi$ has at most $C_0 a^2$ critical points (C_0 -absolute constant). Furthermore, this bound is order-tight as $a \to \infty$.



Maxima of Gaussian mixtures

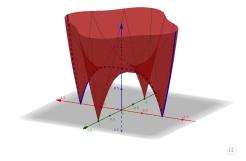
Theorem

Let π be supported on [-a, a]. Then $\pi * \varphi$ has at most $C_0 a^2$ critical points (C_0 -absolute constant). Furthermore, this bound is order-tight as $a \to \infty$.



Another construction in [Kashyap-Krishnapur '20]

Main tool: complex analysis



via http://geogebra.org

 Imagine a poly with many roots in the unit circle

$$p(z) = c \prod_{j=1}^{n} (z - a_j)$$

• Then its magnitude on a far-away circle should be very large:

$$\frac{|p(z)|}{|p(0)|}\gtrsim |z|^n, \qquad |z|\gg 1$$

• This generalizes: holomorphic functions with many zeros must grow very fast at infinity.

Jensen's formula

• Let g be an analytic function. Then

$$\sum_{k} \log \frac{|a_k|}{R} = \frac{1}{2\pi} \int_0^{2\pi} \log \frac{|g(Re^{i\theta})|}{|g(0)|} d\theta$$

where a_1, a_2, \ldots are the zeros of g inside disk of radius R

Jensen's formula

• Let g be an analytic function. Then

$$\sum_{k} \log \frac{|a_k|}{R} = \frac{1}{2\pi} \int_0^{2\pi} \log \frac{|g(Re^{i\theta})|}{|g(0)|} d\theta$$

where a_1, a_2, \ldots are the zeros of g inside disk of radius R

• Consequence: for r < R,

$$\# \{ \text{zeros of } g \text{ inside disk of radius } r \} \leq \frac{\log \frac{M}{|g(0)|}}{\log \frac{R}{r}}$$

where
$$M = \sup_{|z|=R} |g(z)|$$

Let $U \sim \pi$ and $p(x) = (\pi * \varphi)(x) = \mathbb{E}[\varphi(x - U)].$

• Step 1: Localize roots. All real roots of p' are in [-a, a], since

$$p'(x) = \mathbb{E}[(U-x)\varphi(x-U)], \quad |U| \le a.$$

Pick $z_0 = -2a$, r = 3a, R = 4a

Let $U \sim \pi$ and $p(x) = (\pi * \varphi)(x) = \mathbb{E}[\varphi(x - U)].$

• Step 1: Localize roots. All real roots of p' are in [-a, a], since

$$p'(x) = \mathbb{E}[(U-x)\varphi(x-U)], \quad |U| \le a.$$

Pick $z_0 = -2a$, r = 3a, R = 4a

• Step 2: Lower bound |p'(2a)|.

$$p'(-2a) \ge ae^{-Ca^2}$$

Let $U \sim \pi$ and $p(x) = (\pi * \varphi)(x) = \mathbb{E}[\varphi(x - U)].$

• Step 1: Localize roots. All real roots of p' are in [-a, a], since

$$p'(x) = \mathbb{E}[(U-x)\varphi(x-U)], \quad |U| \le a.$$

Pick $z_0 = -2a$, r = 3a, R = 4a

• Step 2: Lower bound |p'(2a)|.

$$p'(-2a) \ge ae^{-Ca^2}$$

• Step 3: Upper bound |p'| on complex circle

$$|p'(w)| \le e^{Ca^2}, \quad \forall w \in R \triangleq \{z : |z+2a| \le 4a\}$$

Let $U \sim \pi$ and $p(x) = (\pi * \varphi)(x) = \mathbb{E}[\varphi(x - U)].$

• Step 1: Localize roots. All real roots of p' are in [-a, a], since

$$p'(x) = \mathbb{E}[(U-x)\varphi(x-U)], \quad |U| \le a.$$

Pick $z_0 = -2a$, r = 3a, R = 4a

• Step 2: Lower bound |p'(2a)|.

$$p'(-2a) \ge ae^{-Ca^2}$$

• Step 3: Upper bound |p'| on complex circle

$$|p'(w)| \le e^{Ca^2}, \quad \forall w \in R \triangleq \{z : |z+2a| \le 4a\}$$

• Jensen's formula: p' has at most $C_0 a^2$ in R (which contains all its real roots).

Let $U \sim \pi$ and $p(x) = (\pi * \varphi)(x) = \mathbb{E}[\varphi(x - U)].$

• Step 1: Localize roots. All real roots of p' are in [-a, a], since

$$p'(x) = \mathbb{E}[(U-x)\varphi(x-U)], \quad |U| \le a.$$

Pick $z_0 = -2a$, r = 3a, R = 4a

• Step 2: Lower bound |p'(2a)|.

$$p'(-2a) \ge ae^{-Ca^2}$$

• Step 3: Upper bound |p'| on complex circle

$$|p'(w)| \le e^{Ca^2}, \quad \forall w \in R \triangleq \{z : |z+2a| \le 4a\}$$

- Jensen's formula: p' has at most $C_0 a^2$ in R (which contains all its real roots).
- Proof for exponential family is more complicated.

Discussion and Open problems

Limitation of current proof technique

Mixture of exponentials [Jewell '82]

• $\operatorname{Exp}(\theta)$ with density $p_{\theta}(x) = \theta e^{-\theta x} \mathbf{1}\{x > 0\}$ and $\theta > 0$.

$$\hat{\pi}_{\text{NPMLE}} = \arg \max_{\pi \in \mathcal{M}(\mathbb{R}_+)} \frac{1}{n} \sum_{i=1}^n \log p_{\pi}(x_i), \quad p_{\pi}(x) = \int \theta e^{-\theta x} \pi(d\theta).$$

Limitation of current proof technique

Mixture of exponentials [Jewell '82]

• $\operatorname{Exp}(\theta)$ with density $p_{\theta}(x) = \theta e^{-\theta x} \mathbf{1}\{x > 0\}$ and $\theta > 0$.

$$\hat{\pi}_{\text{NPMLE}} = \arg \max_{\pi \in \mathcal{M}(\mathbb{R}_+)} \frac{1}{n} \sum_{i=1}^n \log p_{\pi}(x_i), \quad p_{\pi}(x) = \int \theta e^{-\theta x} \pi(d\theta).$$

• Similar analysis yields:

$$|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \lesssim \frac{x_{\max}}{x_{\min}}.$$

• If $x_1, \ldots, x_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Exp}(1)$, then whp $x_{\max} \asymp \log n, x_{\min} \asymp \frac{1}{n}$ and $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \lesssim n \log n$ is useless

Limitation of current proof technique

Mixture of exponentials [Jewell '82]

• $\operatorname{Exp}(\theta)$ with density $p_{\theta}(x) = \theta e^{-\theta x} \mathbf{1}\{x > 0\}$ and $\theta > 0$.

$$\hat{\pi}_{\text{NPMLE}} = \arg \max_{\pi \in \mathcal{M}(\mathbb{R}_+)} \frac{1}{n} \sum_{i=1}^n \log p_\pi(x_i), \quad p_\pi(x) = \int \theta e^{-\theta x} \pi(d\theta).$$

• Similar analysis yields:

$$|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \lesssim \frac{x_{\max}}{x_{\min}}.$$

- If $x_1, \ldots, x_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Exp}(1)$, then whp $x_{\max} \asymp \log n, x_{\min} \asymp \frac{1}{n}$ and $|\operatorname{supp}(\hat{\pi}_{\operatorname{NPMLE}})| \lesssim n \log n$ is useless
- Open question: does self-regularization fail for exp mixture?

• Correct model complexity reduces to $O(\frac{\log n}{\log \log n})$ components.

- Correct model complexity reduces to O(log log n) components.
- Constrained NPMLE:

$$\hat{\pi}_{\text{NPMLE}} = \arg \max_{\pi \in \mathcal{M}([-1,1])} \frac{1}{n} \sum_{i=1}^{n} \log(\pi * \varphi)(x_i)$$

- Correct model complexity reduces to O(log log n) components.
- Constrained NPMLE:

$$\hat{\pi}_{\text{NPMLE}} = \arg \max_{\pi \in \mathcal{M}([-1,1])} \frac{1}{n} \sum_{i=1}^{n} \log(\pi * \varphi)(x_i)$$

• Open question: Is $\hat{\pi}_{\text{NPMLE}} O(\frac{\log n}{\log \log n})$ -atomic?

- Correct model complexity reduces to O(log log n) components.
- Constrained NPMLE:

$$\hat{\pi}_{\text{NPMLE}} = \arg \max_{\pi \in \mathcal{M}([-1,1])} \frac{1}{n} \sum_{i=1}^{n} \log(\pi * \varphi)(x_i)$$

- Open question: Is $\hat{\pi}_{\text{NPMLE}} O(\frac{\log n}{\log \log n})$ -atomic?
- Our method disregards special structure of weights $\frac{1}{P_{\pi}(X_i)}$ (and provably fails)

- Existence and uniqueness not resolved
 - Major difficulty: # modes of n-GM in $d \dim = \Omega(n^d)$ [Améndola-Engström-Haase '17]

- Existence and uniqueness not resolved
 - Major difficulty: # modes of n-GM in $d \dim = \Omega(n^d)$ [Améndola-Engström-Haase '17]
- Fundamental distinction with 1D:
 - With positive (but low) probability
 [^]_{NPMLE} is not unique (e.g. Poisson mixture in 2D) [P.-Wu '20]

- Existence and uniqueness not resolved
 - Major difficulty: # modes of n-GM in $d \dim = \Omega(n^d)$ [Améndola-Engström-Haase '17]
- Fundamental distinction with 1D:
 - With positive (but low) probability
 [^]_{NPMLE} is not unique (e.g. Poisson mixture in 2D) [P.-Wu '20]
- Open problems:
 - Understanding the typical structural NPMLE in d dimensions
 - Scalable algorithms

NPMLE in Empirical Bayes

Empirical Bayes formalism

Large-scale inference

$$X_i \stackrel{\text{ind}}{\sim} P_{\theta_i}, \quad i = 1, \dots, n$$

Goal: Estimate $\theta_1, \ldots, \theta_n$

- EB setting: $\theta_i \overset{\text{i.i.d.}}{\sim} \pi$.
 - Metric: compete with oracle (Bayes) who knows π
- Compound setting: θ_i deterministic.
 - Metric: compete with oracle who knows empirical distribution of θ_i 's
- Competetive optimality offers a meaningful framework to go beyond (pessimistic) minimax setting

Empirical Bayes estimator

Bayes estimator $\hat{\theta}_{Bayes}(\cdot; \pi)$ depends on the unknown π .

Robbins' meta-principle

- Learn the prior $\hat{\pi}$ (empirical distribution) from data
- Execute Bayes strategy with learned prior $\hat{\theta}_{\text{Bayes}}(\cdot;\hat{\pi})$

Bayes estimator $\hat{\theta}_{Bayes}(\cdot; \pi)$ depends on the unknown π .

Robbins' meta-principle

- Learn the prior $\hat{\pi}$ (empirical distribution) from data
- Execute Bayes strategy with learned prior $\hat{\theta}_{\mathsf{Bayes}}(\cdot;\hat{\pi})$
- NPMLE is a principled way of learning prior from data.

Bayes estimator $\hat{\theta}_{Bayes}(\cdot; \pi)$ depends on the unknown π .

Robbins' meta-principle

- Learn the prior $\hat{\pi}$ (empirical distribution) from data
- Execute Bayes strategy with learned prior $\hat{\theta}_{\text{Bayes}}(\cdot;\hat{\pi})$
- NPMLE is a principled way of learning prior from data.

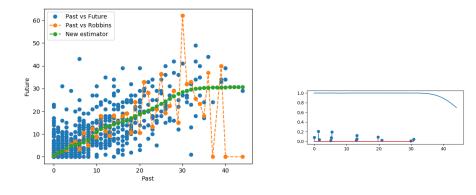
Robbins' ad hoc scheme for Poisson model

• Given X = x drawn from $\operatorname{Poi}(\theta)$ and $\theta \sim \pi$,

$$\hat{\theta}_{\mathsf{Bayes}}(x;\pi) = (x+1)\frac{p_{\pi}(x+1)}{p_{\pi}(x)} \implies \hat{\theta}_{\mathsf{Robbins}}(x) = (x+1)\frac{p_{\mathsf{emp}}(x+1)}{p_{\mathsf{emp}}(x)}$$

A real-data experiment

- NHL data: goals of a player in season 2017 and 2018
- NPMLE is much more stable than Robbins



Data: https://www.hockey-reference.com/leagues/NHL_2019_skaters-advanced.html

$$\mathsf{Regret}_n = \inf_{\hat{\theta}} \sup_{\pi \in \Pi} \sum_{i=1}^n \{ \mathbb{E}_{\pi} [(\hat{\theta}_i - \theta_i)^2] - R_{\mathsf{Bayes}}(\pi) \}$$

- Robbins showed sublinear regret $\text{Regret}_n = o(n)$ is possible (aka "borrowing strength", or "learning from experience of others")
- ... but as we saw his estimator is very finicky.
- ... so many improvements over the years.

$$\mathsf{Regret}_n = \inf_{\hat{\theta}} \sup_{\pi \in \Pi} \sum_{i=1}^n \{ \mathbb{E}_{\pi} [(\hat{\theta}_i - \theta_i)^2] - R_{\mathsf{Bayes}}(\pi) \}$$

- Robbins showed sublinear regret $\text{Regret}_n = o(n)$ is possible (aka "borrowing strength", or "learning from experience of others")
- ... but as we saw his estimator is very finicky.
- ... so many improvements over the years.
- Question 1: Does NPMLE provably improve over Robbins?
- Question 2: How does Regret_n scale with n?

$$\mathsf{Regret}_n = \inf_{\hat{\theta}} \sup_{\pi \in \Pi} \sum_{i=1}^n \{ \mathbb{E}_{\pi} [(\hat{\theta}_i - \theta_i)^2] - R_{\mathsf{Bayes}}(\pi) \}$$

Theorem (P.-Wu '20)

Consider compactly supported priors and $P_{\theta} = \operatorname{Poi}(\theta)$ (Poisson model)

$$\mathsf{Regret}_n \asymp \left(\frac{\log n}{\log \log n}\right)^2$$

and achieved by Robbins' estimator.

$$\mathsf{Regret}_n = \inf_{\hat{\theta}} \sup_{\pi \in \Pi} \sum_{i=1}^n \{ \mathbb{E}_{\pi} [(\hat{\theta}_i - \theta_i)^2] - R_{\mathsf{Bayes}}(\pi) \}$$

Theorem (P.-Wu '20)

Consider compactly supported priors and $P_{\theta} = \operatorname{Poi}(\theta)$ (Poisson model)

$$\mathsf{Regret}_n \asymp \left(\frac{\log n}{\log \log n}\right)^2$$

and achieved by Robbins' estimator.

- Long-standing conjecture was to prove an $\omega(1)$ lower bound [Singh '79]
- Upper bound via Robbins is from [Brown-Greenshtein-Ritov '13]
- For $P_{\theta} = N(\theta, 1)$ (normal means) we show $\operatorname{Regret}_n \gtrsim \left(\frac{\log n}{\log \log n}\right)^2$ Best upper bound $O(\log^5 n)$ by NPMLE [Jiang-Zhang '09]

Main result:

• Self-regularizng property of NPMLE for certain mixture models: automatically tunes to the correct model size

Many open problems

- Better self-regularization with constraints
- Theory and algorithms for NPMLE in multiple/high dimensions
- Regret optimality of NPMLE in empirical Bayes

References

- Y. Polyanskiy and W. Self-regularizing Property of Nonparametric Maximum Likelihood Estimator in Mixture Models, arxiv:2008.08244.
- Y. Polyanskiy and W. Sharp regret bound for empirical Bayes and compound decision problems (or: The optimality of Robbins' scheme), draft, 2020.