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Mixture models

• Height distribution of a population

Image credit: [Hardt-Price ’15]

• Model each of male and female subpopulation by a Gaussian
distribution

Question

How to learn the average heights of male and female from unlabeled
data?
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Mixture models & empirical Bayes

• Nikita Kucherov scored 33 goals in 2019-2020.

• How many will he score in 2020-2021?
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Setup

• {pθ : θ ∈ Θ}: parametric family of densities

• π: mixing distribution (prior) on Θ

• mixture density:

pπ(x) ,
∫

Θ
pθ(x)π(dθ)

• Goal: given sample x1, . . . , xn
i.i.d.∼ pπ, learn the mixture model

(e.g. estimating π or pπ)
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Running example: Gaussian location mixture

• pθ(x) = ϕ(x− θ): density N(θ, 1), where ϕ(x) , 1√
2π
e−x

2/2

• mixture density = Gaussian convolution

pπ(x) = (ϕ ∗ π)(x)

• Special case: k-component Gaussian mixture (k-GM)

pπ(x) =

k∑

i=1

wiϕ(x− θi), π =

k∑

i=1

wiδθi .

• Major difficulty: nonconvexity of mixture likelihood (in location
parameters θi’s)
I Expectation-Maximization: Heuristic and suffer from spurious local

maxima [Jin-Zhang-Balakrishnan-Wainwright-Jordan ’16]

Yury Polyanskiy (MIT) Self-regularization of NPMLE 5



Nonparametric approach

Three major methodologies:

1 Method of moments: [Pearson 1895]

learn π through estimating its moments

Tuning param: Number of moments

2 Minimum-distance estimator: [Wolfowitz ’57]

π̂ = arg min
π

dist(pπ, empirical)

Tuning param: choice of distance

3 Nonparametric Maximum Likelihood: [Kiefer-Wolfowitz ’56]

Tuning param: NONE!
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(Θ) of all priors:

π̂NPMLE ∈ arg max
π∈M(Θ)

1

n

n∑

i=1

log pπ(xi)

• k-component mixture problem is finite dim., but non-convex
• NPMLE: ∞-dimensional but convex (overparametrization)

• NPMLE is a form of minimum-distance estimator:

π̂NPMLE = arg min
π
D(P̂n‖Pπ) D(P ||Q) =

∫
dP log

dP

dQ

(P̂n is empirical distribution of samples)
• NPMLE is related to rate-distortion theory (with source ∼ P̂n):

min
π
D(P̂n‖Pπ) = min

Pθ,X :PX=P̂n

I(θ;X) +
1

2σ2
E[‖θ −X‖2]

• ... and also to entropic optimal transport [Weed-Rigollete ’18]

min
π
D(P̂n‖Pπ) = min

π
W

(σ)
2 (π, P̂n)

where W σ
2 (µ, ν) = infX∼µ,Y∼ν E[‖X − Y ‖2] + 2σ2I(X;Y ).
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Nonparametric Maximum Likelihood Estimator (NPMLE)

Optimizing the likelihood over the space M(Θ) of all priors:

π̂NPMLE ∈ arg max
π∈M(Θ)

1

n

n∑

i=1

log pπ(xi)

• Information-theoretic literature:
I Iterative algo [Richardson ’70] (for astronomy imaging)
I Proof of convergence and connections to Blahut-Arimoto algo

[Csiszar-Tusnady ’82]

• Stats literature: for mixture model in one dimension
I Basic properties (existence, uniqueness, discreteness) are well

understood [Simar ’76, Jewell ’82, Lindsay ’83,’95]
I Other kinds of iterative algorithms:

• vertex exchange method [Böhning ’81, Lindsay ’83]
• Grid-based: discretization [Koenker-Mizera ’14]

I ∼ 102 papers on density estimation via NPMLE, NPMLE for
empirical Bayes, shape-constrained NPMLE (Grenander)...
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Pros and Cons of NPMLE

Advantages:
• Flexibility: no tuning parameters, no penalty, assumes no upper

bound on the mixture order
• Computation: does not suffer from non-convexity
• Accuracy: near-parametric rate in density estimation [Zhang ’09,

Saha-Guntuboyina ’20]

• Widely used in empirical Bayes and superior in both theoretical and
practical performance

Potential issues:
• An extreme form of overparameterization
• Runs the risk of overfitting

Major question

• Does NPMLE “overfit” if the data are drawn from a finite mixture?

• If data are generated from a k-GM, say, k = 2, what is the typical
model size fitted by NPMLE?

These questions are not answered by classical theory.
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Structural property of NPMLE



Optimality condition

• Objective function: `(π) = 1
n

∑n
i=1 log pπ(xi), maximized by

π̂ = π̂NPMLE.

• For any ε ∈ [0, 1] and any θ ∈ R,

`(π̂) ≥ `((1− ε)π̂ + εδθ) =⇒ d

dε
`((1− ε)π̂ + εδθ)

∣∣
ε=0︸ ︷︷ ︸

1
n

∑n
i=1

pθ(xi)

pπ̂(xi)
−1

≤ 0

First-order optimality condition

π̂ is optimal ⇐⇒ Dπ̂(θ) ,
1

n

n∑

i=1

pθ(xi)

pπ̂(xi)
≤ 1, ∀θ ∈ R

Consequence:
• Averaging the LHS over π̂ =⇒

∫
π̂(dθ)Dπ̂(θ) = 1

• Thus

supp(π̂NPMLE) ⊂ {Global maximizers of Dπ̂} ⊂ {Critical points of Dπ̂}
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Gaussian mixture

• Note that

Dπ̂(θ) =
1

n

n∑

i=1

1

pπ̂(xi)
φ(xi − θ) ∝

n∑

i=1

wiφ(xi − θ)

which is an n-GM density, with centers at the datapoints.

• Fact: n-GM density in 1D has at most n modes [Polya-Szegö ’25,

Hummel-Gidas ’84]

Theorem (Lindsay ’83)

π̂NPMLE exists and is unique and discrete with at most n atoms

• This deterministic result is tight in the worst case

• In practice, model fitted by NPMLE is much simpler

• Question: can we improve it when x1, . . . , xn are random?
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Example 1: datapoints well-spread out

sample=[-15. -12. -9. -6. -3. 0. 3. 6. 9. 12. 15.]

NPMLE output:

weights= [0.09100201 0.09084195 0.09092767 0.09092682 0.09092779 0.09083749

0.09083684 0.09092779 0.09092766 0.09084195 0.09100201]

centers= [-14.96996997 -11.996997 -8.99399399 -5.99099099 -2.98798799

0.01501502 2.98798799 5.99099099 8.99399399 11.996997 14.96996997]

-15 -10 -5 5 10 15

0.01

0.02

0.03

• Bad news: NPMLE fits an n-component Gaussian mixture
• Good news: this sample is atypical!
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Example 2: datapoints clustered

sample= [ 1.86797447 1.4552763 -1.80237513 -0.7244036 2.22400636 1.85900276

2.57612104 1.69214083 -0.64707404 -1.48164282 -1.07169643]

NPMLE output:

weights= [0.45098479 0.5490152 ]

centers= [-1.12302888 1.90554054]

-4 -2 2 4

0.05

0.10

0.15

0.20

NPMLE fits a 2-component Gaussian mixture

Yury Polyanskiy (MIT) Self-regularization of NPMLE 14



Further experiment

• True distribution: N(0, 1) (single component)

• Sample size n = 10000

Histogram of | supp(π̂NPMLE)| in 500 trials

Yury Polyanskiy (MIT) Self-regularization of NPMLE 15



Main result

Theorem (P.-Wu ’20)

• Exists absolute constant C0 s.t. for Gaussian location mixtures,

| supp(π̂NPMLE)| ≤ C0(xmax−xmin)2, xmin = min
i∈[n]

xi, xmax = max
i∈[n]

xi

• Thus, if x1, . . . , xn
i.i.d.∼ π ∗N(0, 1) for some 1-subgaussian mixing

distribution π, then w.h.p.

| supp(π̂NPMLE)| ≤ O(log n)

• Significantly improves the worst-case bound (n)

• If data are drawn from a finite k-GM, NPMLE typically fits an
O(log n)-GM

• Universality of log n: analogous result holds for exponential families
with tail exp(−|x|C) for C > 1

Yury Polyanskiy (MIT) Self-regularization of NPMLE 16
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• Universality of log n: analogous result holds for exponential families
with tail exp(−|x|C) for C > 1
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Optimality of log n

• Is our estimate | supp π̂NPMLE| . log n tight? YES!
I Inapproximability result [Wu-Verdú ’10]:

inf
π:k-atomic

H(pπ, N(0, 2)) ≥ e−O(k)

I Thus, if Xi
iid∼ N(0, 2) then for any mixture density estimator:

H(Pπ̂, N(0, 2)) = poly(n) =⇒ | supp π̂| = Ω(log n)

I For any subgaussian π: H(pπ̂NPMLE
, pπ) = OP ( logn√

n
) [Zhang ’09]

• Why ≥ log n mixture components is useless?
I Approximability result (m.o.m.):

∀π ∈ SubGauss∃π′–k-atomic : H(Pπ, Pπ′) = o(1/
√
n)

and k = O(log n) .

I IOW, n-sample Xi
iid∼ Pπ is statistically indistinguihsable from

X ′i
iid∼ Pπ′
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inf
π:k-atomic

H(pπ, N(0, 2)) ≥ e−O(k)

I Thus, if Xi
iid∼ N(0, 2) then for any mixture density estimator:

H(Pπ̂, N(0, 2)) = poly(n) =⇒ | supp π̂| = Ω(log n)

I For any subgaussian π: H(pπ̂NPMLE
, pπ) = OP ( logn√

n
) [Zhang ’09]

• Why ≥ log n mixture components is useless?
I Approximability result (m.o.m.):

∀π ∈ SubGauss∃π′–k-atomic : H(Pπ, Pπ′) = o(1/
√
n)

and k = O(log n) .

I IOW, n-sample Xi
iid∼ Pπ is statistically indistinguihsable from

X ′i
iid∼ Pπ′

Yury Polyanskiy (MIT) Self-regularization of NPMLE 17



Self-regularization property of the NPMLE

Recap:
• We have a sequence of models

M1 ⊂M2 ⊂ · · ·M

M = {Pπ = π ∗N(0, 1) : π is 1-subgaussian }
Mk = {Pπ = π ∗N(0, 1) : π is 1-subgaussian and k-atomic}

• We know that statistical degree is Θ(log n).
I.e. for any f ∈M there exists fk ∈Mk with k � log n such that

TV(f⊗n, f⊗nk ) = o(1) .

• Surprise: NPMLE automatically selects density estimate f̂ ∈Mk

with k � log n !

Self-regularization of NPMLE

Absent any explicit form of model selection, NPMLE automatically
chooses the model of order-optimal complexity.
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Model selection and penalized MLE

• The likelihood of the best k-GM fit (non-convex):

Lopt(k) , max
π:k-atomic

1

n

n∑

i=1

log pπ(xi).

• Penalized MLE: for some pre-defined maximal model size K,

max
k=1,...,K

{Lopt(k)− pen(k)}

• New result shows: w.h.p. k 7→ Lopt(k) flattens after k ≥ C log n.

• To achieve model selection consistency, penality is probably needed
e.g. BIC pen(k) = k

2 log n [Leroux ’92, Keribin ’00]

• NPMLE exhibits some mild overfitting, a modest (and fair) price for
being completely automatic and computationally attractive.
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Analogy with shape-constrained NPMLE

x1, . . . , xn
i.i.d.∼ f , a monotone density on [0, 1] [Grenander ’56]

• f̂NPMLE (Grenander estimator) is piecewise constant with kn pieces.

• Deterministically kn ≤ n

• Typically
I Under conditions on f : kn = OP (n1/3) [Groeneboom ’11]

I For uniform f : kn ≈ N(log n, log n) [Groeneboom-Lopuhaa ’93]

• Thanks to an explicit characterization of f̂NPMLE in terms of
empirical processes (no such result for mixture models)

intervals,	the	equality	in	(2.6)	easily	follows.	☐
Figure	 2.4	 shows	 the	 empirical	 distribution	 function	 of	 a	 sample	 of	 size	 	 generated
from	 the	 standard	exponential	distribution	 together	with	 its	 concave	majorant.	The	 right
picture	shows	the	resulting	Grenander	estimate	as	derivative	of	this	concave	majorant.

	

Figure	2.4	 (a)	Empirical	distribution	function	of	a	sample	of	size	 	and	its
concave	majorant.	(b)	The	resulting	Grenander	estimate.

Example	 2.3	 In	 Slama	 et	 al.,	 2012,	 an	 interesting	 data	 set	 of	 current	 durations	 of
pregnancy	in	France	is	studied.	The	aim	is	to	estimate	the	distribution	of	the	time	it	takes
for	a	woman	to	become	pregnant	after	having	started	unprotected	sexual	intercourse.	For	

	women	the	current	duration	of	unprotected	intercourse	was	recorded	and	this	is	the
basis	of	part	of	the	research	reported	in	Slama	et	al.,	2012.

Given	that	the	women	in	the	study	are	currently	trying	to	become	pregnant,	the	actual
recorded	 data	 (current	 duration)	 can	 be	 viewed	 as	 uniform	 random	 fraction	 of	 the	 true,
total	duration.	In	that	sense,	the	model	as	given	in	(2.5)	 is	not	unreasonable.	Figure	2.5a
shows	 a	 part	 of	 the	 empirical	 distribution	 function	 of	 	 recorded	 current	 durations,
kindly	provided	to	us	by	Niels	Keiding,	where	the	data	are	truncated	at	 	months	and	are
of	a	nature	similar	to	the	data	in	Slama	et	al.,	2012.	Based	on	the	least	concave	majorant,
Figure	 2.5b	 is	 computed,	 showing	 the	 resulting	MLE	 of	 the	 decreasing	 density	 of	 the
observations	 together	 with	 its	 smoothed	 version,	 the	 smoothed	 maximum	 likelihood
estimator	(SMLE),	defined	by

(2.7)

where	 	is	the	Grenander	estimator	(the	MLE)	and	 	is	a	symmetric	kernel,	for	which
we	took	the	triweight	kernel

Image credit: [Groeneboom-Jongbloed ’14]
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Statistical consequence: density estimation

Theorem (Zhang ’09)

Let x1, . . . , xn
i.i.d.∼ pπ , π ∗ ϕ. For any 1-subgaussian π,

Eπ[H2(pπ̂NPMLE
, pπ)] .

log2 n

n
,

• Std. analysis of NPMLE is via empirical process theory:

sup
f∈F
|Ên[f ]− E[f ]| . ε+

√
logN (F , ε)

n

+ metric entropy bounds
• Our guess: π̂NPMLE has C log n atoms so we expect

H2(Pπ̂NPMLE
, Pπ) .

log n

n
Unfortunately, rigorous proof picks up another log n.

(Best lower bound on H2 density estimation Ω
(

logn
n

)
[Kim ’14]).
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|Ên[f ]− E[f ]| . ε+

√
logN (F , ε)

n

+ metric entropy bounds

• Our guess: π̂NPMLE has C log n atoms so we expect

H2(Pπ̂NPMLE
, Pπ) .

log n

n
Unfortunately, rigorous proof picks up another log n.

(Best lower bound on H2 density estimation Ω
(

logn
n

)
[Kim ’14]).

Yury Polyanskiy (MIT) Self-regularization of NPMLE 21



Statistical consequence: density estimation

Theorem (Zhang ’09)

Let x1, . . . , xn
i.i.d.∼ pπ , π ∗ ϕ. For any 1-subgaussian π,

Eπ[H2(pπ̂NPMLE
, pπ)] .

log2 n

n
,

• Std. analysis of NPMLE is via empirical process theory:

sup
f∈F
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Statistical consequence: density estimation

Theorem (Zhang ’09)

Let x1, . . . , xn
i.i.d.∼ pπ , π ∗ ϕ. For any 1-subgaussian π,

Eπ[H2(pπ̂NPMLE
, pπ)] .

log2 n

n
,

Proof based on self-regularization: Let k = C log n.

• On the event that π̂NPMLE is k-atomic, π̂NPMLE coincides with
parametric MLE over k-GMs

• Find k-GM pπ′ such that TV(pπ′ , pπ) ≤ n−10, so we can couple

(x1, . . . , xn) to (x′1, . . . , x
′
n)

i.i.d.∼ pπ′ with probability 1− n−9

• This reduces the problem to k-GM and allows invoking existing
guarantee for parametric MLE: O( kn log n

k ) [Maugis-Michel ’11]

Yury Polyanskiy (MIT) Self-regularization of NPMLE 22



Self-regularization: cartoon example

• Model sequence on Z+:

M1 ⊂M2 ⊂ · · · ⊂ M

M = {π : π[{m}] ≤ 2−m,m ∈ Z+}
Mk = {π ∈M : π[{m}] = 0,m > k}

• By truncation we see:

∀π ∈M ∃π′ ∈Mk : TV(π, π′) = o(1/n)

with k � log n – statistical degree.

• OTOH, given Xi
iid∼ π we have

π̂NPMLE[{m}] =
1

n

n∑

t=1

1{Xi = m} ,

and clearly
P[π̂NPMLE ∈Mk] = 1− o(1)

whenever k & log n .

Observation: More samples “unlock” new
dimensions in M and NPMLE adapts to it.
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Proof of the main result



Warmup: Poisson model

Self-regularization in Poisson mixture is easy to prove:

• pθ(x) = θx

x! e
−θ and x ∈ Z+.

• Gradient

Dπ̂(θ) =
1

n

n∑

i=1

pθ(xi)

pπ̂(xi)
= e−θ

n∑

i=1

wiθ
xi

︸ ︷︷ ︸
deg-xmax polynomial in θ

So
D′π̂(θ) = e−θ × poly(θ)

has at most deg poly ≤ xmax roots!

• For nice (e.g. subexponential) mixing distribution π,
xmax = OP (log n)

• This does not work for Gaussian: D(θ) not a poly!
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Recall from optimality condition

• | supp(π̂NPMLE)| ≤ # of critical points of

Dπ̂(θ) =
1

n

n∑

i=1

1

pπ̂(xi)
φ(xi − θ) ∝

n∑

i=1

wiφ(xi − θ) = (π ∗ ϕ)(θ)

where π is supported on {x1, . . . , xn} ⊂ [xmin, xmax]

• Reduces to counting critical points of Gaussian convolved with
compactly supported measure
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Number of modes of Gaussian mixtures

• Key analytic puzzle: Given a > 0 and a measure π on [−a, a] how
many modes can Pπ = π ∗ φ have?

• Let us try to understand it:
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Number of modes of Gaussian mixtures

• Key analytic puzzle: Given a > 0 and a measure π on [−a, a] how
many modes can Pπ = π ∗ φ have?

• Let us try to understand it:

We should only be able to create Θ(a) modes?
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Maxima of Gaussian mixtures

Theorem

Let π be supported on [−a, a]. Then π ∗ ϕ has at most C0a
2 critical

points (C0–absolute constant). Furthermore, this bound is order-tight as
a→∞.

• A concurrent (and totally independent) work in IT on
amplitude-constrained channel capacity contains the same upper
bound! [Dytso-Yagli-Poor-Shamai ’20]

• They further conjectured that O(a) should be tight...

• Our lower bound :

Lemma

Take π = (1 + sin(ωx))1{|x| ≤ a}. For ω � a density π ∗ φ has Ω(a2)
modes.
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FIGURE 1. A plot of fa,N(x) =
∑N

n=−N ϕ(x− an) for N = 5 and a = 2
√

π/N .

A sketch of the proofs. The main ingredients in our proofs of Propositions 1 and 2 are mixtures of
the form

γa,N (x) :=
1

2N + 1

N∑

n=−N

ϕ(x− an), (2)

with a > 0. This is an equally-weighted mixture of 2N + 1 Gaussians with equally-spaced centres
(means) an, for integers n between −N and N . Fig. 1 illustrates the shape of the unnormalized
mixture

fa,N (x) :=

N∑

n=−N

ϕ(x− an). (3)

We will show that by choosing a = c√
N

for a suitable constant c > 0, the resulting unnormalized

mixture fa,N has centres in [−c
√
N, c

√
N ] and at least N − 1 modes. Since scaling by a constant

has no effect on the number of modes, the same holds for the mixture γa,N , which suffices to prove
Proposition 1. The proof is elaborated in Section 2.

For Proposition 2, we work with the mixture

Γα; a,N (x) := (1− 2α)ϕ(x) + αγa,N (x+ 2aN) + α γa,N (x− 2aN)

= (1− 2α)ϕ(x) +
α

2N + 1

−N∑

n=−3N

ϕ(x− an) +
α

2N + 1

3N∑

n=N

ϕ(x− an), (4)

where a = c√
N

is as above, and α ∈ (0, 12). This is a Gaussian mixture with centres at 0 and ±an,

n = N,N + 1, . . . , 3N , weighted by 1 − 2α and α
2N+1 , respectively. It is easy to check that by

taking α ∼ 1
N , we can get the underlying random variable X to have variance at most 1. We will,

4

Another construction in [Kashyap-Krishnapur ’20]
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Main tool: complex analysis

via http://geogebra.org

• Imagine a poly with many roots
in the unit circle

p(z) = c

n∏

j=1

(z − aj)

• Then its magnitude on a
far-away circle should be very
large:

|p(z)|
|p(0)| & |z|

n, |z| � 1

• This generalizes: holomorphic
functions with many zeros must
grow very fast at infinity.
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Main tool: complex analysis

Jensen’s formula

• Let g be an analytic function. Then

∑

k

log
|ak|
R

=
1

2π

∫ 2π

0
log
|g(Reiθ)|
|g(0)| dθ

where a1, a2, . . . are the zeros of g inside disk of radius R

• Consequence: for r < R,

# {zeros of g inside disk of radius r} ≤
log M

|g(0)|
log R

r

where M = sup|z|=R |g(z)|
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Proof for Gaussian mixtures

Let U ∼ π and p(x) = (π ∗ ϕ)(x) = E[ϕ(x− U)].

• Step 1: Localize roots. All real roots of p′ are in [−a, a], since

p′(x) = E[(U − x)ϕ(x− U)], |U | ≤ a.

Pick z0 = −2a, r = 3a, R = 4a

• Step 2: Lower bound |p′(2a)|.

p′(−2a) ≥ ae−Ca2

• Step 3: Upper bound |p′| on complex circle

|p′(w)| ≤ eCa2 , ∀w ∈ R , {z : |z + 2a| ≤ 4a}

• Jensen’s formula: p′ has at most C0a
2 in R (which contains all its

real roots).

• Proof for exponential family is more complicated.
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Discussion and Open problems



Limitation of current proof technique

Mixture of exponentials [Jewell ’82]

• Exp(θ) with density pθ(x) = θe−θx1{x > 0} and θ > 0.

π̂NPMLE = arg max
π∈M(R+)

1

n

n∑

i=1

log pπ(xi), pπ(x) =

∫
θe−θxπ(dθ).

• Similar analysis yields:

| supp(π̂NPMLE)| . xmax

xmin
.

• If x1, . . . , xn
i.i.d.∼ Exp(1), then whp xmax � log n, xmin � 1

n and
| supp(π̂NPMLE)| . n log n is useless

• Open question: does self-regularization fail for exp mixture?
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Stronger self-regularization for constrained solution

Suppose true mixing distribution π is known to be supported on [−1, 1].

• Correct model complexity reduces to O( logn
log logn) components.

• Constrained NPMLE:

π̂NPMLE = arg max
π∈M([−1,1])

1

n

n∑

i=1

log(π ∗ ϕ)(xi)

• Open question: Is π̂NPMLE O( logn
log logn)-atomic?

• Our method disregards special structure of weights 1
Pπ(Xi)

(and

provably fails)
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Multiple dimensions

• Existence and uniqueness not resolved
I Major difficulty: # modes of n-GM in d dim = Ω(nd)

[Améndola-Engström-Haase ’17]

• Fundamental distinction with 1D:
I With positive (but low) probability π̂NPMLE is not unique

(e.g. Poisson mixture in 2D) [P.-Wu ’20]

• Open problems:
I Understanding the typical structural NPMLE in d dimensions
I Scalable algorithms
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NPMLE in Empirical Bayes



Empirical Bayes formalism

Large-scale inference

Xi
ind∼ Pθi , i = 1, . . . , n

Goal: Estimate θ1, . . . , θn

• EB setting: θi
i.i.d.∼ π.

I Metric: compete with oracle (Bayes) who knows π

• Compound setting: θi deterministic.
I Metric: compete with oracle who knows empirical distribution of θi’s

• Competetive optimality offers a meaningful framework to go beyond
(pessimistic) minimax setting
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Empirical Bayes estimator

Bayes estimator θ̂Bayes(·;π) depends on the unknown π.

Robbins’ meta-principle

• Learn the prior π̂ (empirical distribution) from data

• Execute Bayes strategy with learned prior θ̂Bayes(·; π̂)

• NPMLE is a principled way of learning prior from data.

Robbins’ ad hoc scheme for Poisson model

• Given X = x drawn from Poi(θ) and θ ∼ π,

θ̂Bayes(x;π) = (x+1)
pπ(x+ 1)

pπ(x)
=⇒ θ̂Robbins(x) = (x+1)

pemp(x+ 1)

pemp(x)
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A real-data experiment

• NHL data: goals of a player in season 2017 and 2018

• NPMLE is much more stable than Robbins

Data: https://www.hockey-reference.com/leagues/NHL_2019_skaters-advanced.html
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Optimal regret in EB

Regretn = inf
θ̂

sup
π∈Π

n∑

i=1

{Eπ[(θ̂i − θi)2]−RBayes(π)}

• Robbins showed sublinear regret Regretn = o(n) is possible
(aka“borrowing strength”, or “learning from experience of others”)

• ... but as we saw his estimator is very finicky.

• ... so many improvements over the years.

• Question 1: Does NPMLE provably improve over Robbins?

• Question 2: How does Regretn scale with n?
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Optimal regret in EB

Regretn = inf
θ̂

sup
π∈Π

n∑

i=1

{Eπ[(θ̂i − θi)2]−RBayes(π)}

Theorem (P.-Wu ’20)

Consider compactly supported priors and Pθ = Poi(θ) (Poisson model)

Regretn �
(

log n

log log n

)2

and achieved by Robbins’ estimator.

• Long-standing conjecture was to prove an ω(1) lower bound [Singh ’79]

• Upper bound via Robbins is from [Brown-Greenshtein-Ritov ’13]

• For Pθ = N(θ, 1) (normal means) we show Regretn &
(

logn
log logn

)2

Best upper bound O(log5 n) by NPMLE [Jiang-Zhang ’09]
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Concluding remarks

Main result:

• Self-regularizng property of NPMLE for certain mixture models:
automatically tunes to the correct model size

Many open problems

• Better self-regularization with constraints

• Theory and algorithms for NPMLE in multiple/high dimensions

• Regret optimality of NPMLE in empirical Bayes
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