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o Cell-Free User-Centric Wireless Networks

e Typically operating conventional (2 — 7 GHz) frequency bands (TDD
reciprocity, UL/DL duality, pilot contamination/decontamination, linear
precoding/detection).

e Scenarios: campus networks, ultra-dense deployments, super-high spectral
efficiency ... Imagine a sport stadium with 10,000 users, on a 20-60 MHz
bandwidth, served by 20 RUs with 10 antennas each, achieving ~ 50 bit/s/Hz
per 10 x 10 m?.
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1 [ Cell-Free User-Centric Wireless Networks
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e Each UE is served by a user-centric cluster of RUs; each RU participates in multiple user-
centric clusters.

e The UE-RU association is described by a bipartite graph.

e RUs are connected with DUs via a flexible fronthaul network, and implement the user-centric
cluster processors (PHY layer) as SDVNF.

e A CU implements higher level centralized functions.
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@ Active Device

€ Inactive Device

e Activity Detection (AD): each UE has a unique access code. Goal: determine
who is active.

e Unsourced RA (uRA): when active, UEs transmit a randomly chosen
codeword of the same codebook. Goal: determine the set of active
messages.

e Similar but some fundamental differences ...



—1lf The multiple antenna case: activity detection
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e The received baseband signal over the L channel uses and the M antennas:
Y =SAG'/’"H+W
where W is Gaussian i.i.d. noise.
e I' = AG = diag(~y), where v, = axgi for user k with LSFC gy.

e X = TI'H contains Bernoulli-Gaussian rows. Each k-th row has i.i.d.
CN (0, gr.)the elements, given a; = 1.
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o | Scaling regimes for K., K, L, M
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e Compressed Sensing (CS) regime: in order to obtain a “stable” estimate the
(sparse) rows of I''/?H we need L > K, log(Ki.:/K,) (Mmore measurements
than unknowns).

e |dentifiability regime (quadratic): two K,-sparse vectors ~,~' € thot can be
distinguished based on Y if A(T'—TI) A" £ 0. This yields K, < L? (quadratic
in the signature dimension).

e Achievability of the quadratic regime: AMP fails (as well as any CS algorithm)
but a relaxed ML algorithm, practically implemented by componentwise
rank-1 update minimization, achieves the quadratic regimes [Fengler,
Haghighatshoar, Jung, and GC, TIT 2021].

e Note: Beyond the linear CS regime, it is “impossible” to obtain “good”
channel estimates (activity can be still detected for large M, but the estimated
channels has large MSE). Therefore, the quadratic regime is intrinsically
“non-coherent”.
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o Key Difference Between AD and uRA
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e In AD, provided that the users’ LSFCs are known, we can treat X = T'H as
row-wise Bernoulli-Gaussian: Bayesian estimation formulation is “relatively
simple”, in particular the Posterior Mean Estimate (PME) denoising function
in AMP is tractable.

e In URA, K, Is irrelevant (it could be arbitrarily large): what counts is the
number of codewords N (number of columns of S).

e Any active user can pick any codeword: a fixed correspondence between the
columns of S and the LSFCs is not possible.

e As a consequence, X = I'H is not row-wise Bernoulli-Gaussian: Bayesian
estimation formulation is “much more complicated” (and heavily relies on
assumptions on the LSFC distribution for randomly placed users, .. risk of
model mismatch, etc ...).
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o uRA for Cell-Free User-Centric Networks
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UL DL UL/DL (TDD)

ACK DATA
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 AMP (Channel estimation)
e User Cluster Formation

e Interestingly, this arrangement is conceptually very similar to the 2-step
RACH currently studied in 3GPP.



o uRA for Cell-Free User-Centric Networks
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e In uRA for cell-free systems the statistics of the aggregate channel vector
over all RUs is more complicated. Conditioning on the position from which
codeword £ may be transmitted, we have

X, = aglhy 1, hg 2, ... hy B
from which

X ~ (1= A)o(xk) + Ag(xx|0, Xi)
where X, = diag(grp : b € [B]) ® Iy.

UE k
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o | URA for Cell-Free User-Centric Networks
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e However, message k may be transmitted by any user in any random position.
Hence, {gr, : b € [B]|} are a set of B jointly distributed LSFCs that depend
on the (random) transmitter position.

e Removing the conditioning involves a very complicated B-dimensional
integral (or, equivalently, integrating over the random transmitter position).

e In 3G-4G-5G the RACH codebook is cell-dependent.

e In a cell-free user-centric network, we propose location-dependent access
codebooks.



o Our Idea: Location-Based Codebooks
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e All users in “location” © € & make use of codebook S,,.

e Assuming perfectly co-located users, the channel statistics of allusers k € L,
are defined by nominal LSFCs {g,., : b € [B]}.

e This establishes a fixed relation between codewords and LSFCs.

CommIT 0

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn



.7 Channel/Observation Model for uRA in Cell-Free
locations
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.7 Channel/Observation Model for uRA in Cell-Free
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e The aggregate signal received during the RACH slot by all the RUs is given
by

U
Y:ZSuXquW

u=1

e With ' = BM, W ~jiq CN(0,0%), X, ~iid X, for an arbitrary and
independent (for each u) random vector x,, € C* with fulfilling the “finite-
moments” condition E[||x,||P] < oo, Vp € N,.

e Moreover, S, ~iiq. CN(0,1/L) has dimension L x N,, and we assume
N./L = o, as L — oo (system scaling parameter).
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o | New Multisource AMP
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For the system at hand, we consider the following AMP algorithm:

o Initialize: X\ = 0 for u € [U] and Z(© = 0.

e Foriterationstepst=1,2,...,T, repeat:

v =g, x® _ Lgze-ng®
Ay
U
zW=yY-> v{

u=1
R = shz®) 4 x (1)
XD =, (RP)
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o | Composite/Multisource MMV-AMP
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e where n,.+(-) : C" — C" is an appropriately defined deterministic and (u,t)-
dependent “denoiser” function.

e 7,.:(-) applied to an N, x F' matrix R,, denotes the N x F' matrix with its nth
row given by n,, (rn), i.e.,

nu,t(R) — [nu,t(rl)—l—a nu,t(rQ)Ta t 777u,t(rNu)T]T .

e where we define
Q™ = E[n, ,(xu + o)),

with Q%" = 0 and {¢"}, is a Gaussian process (defined in the following)
independent of the random vector x,,.
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o | Composite/Multisource MMV-AMP
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o For a differentiable vector-valued function n(r) : C" — C" we denote by /(r)
its F' x I' Jacobian matrix with the entries

7' (r)]ij = or - Vi,j € [F).

(here, for a complex number r = = + iy, the complex (Wirtinger) derivative is

defined £ = (% —i2). For R e CV*").

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 15



- [ Main Result: a Rigorous State Evolution
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Definition 1. (State Evolution) Let {¢'" ¢ C""},.iry be a zero-mean
(discrete-time) Gaussian process with its two-time covariances C(t%)
E[(¢)He'®)] for allt, s € [T constructed recursively according to

Cl) = %I + Z 0 I (t) — Xy) (X&S) — Xy)| ; (2)

where we define the random vectors fort € |T] andu € [U]

independent of x}"). O
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o Main Result: a Rigorous State Evolution
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Theorem 1. Let the matrices in {{S., X,}, W} be defined as before. Then, as
L — oo, forallt € |T| and u € [U] there exists a constant C,, for all p € N such
that

1
b1
|5 - .+ 2l " <6 “

where &) ~,;4 ¢ with the Gaussian process ¢'\" as in Definition 1 and
(@}, ey are mutually independent. (]

Corollary 1. Under the premises of Th. 1, for any small constant ¢ > 0

1
Lc

RO~ (K, + 2] o
F

where convergence is both a.s. and in the p-th mean. []
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o Main Result: a Rigorous State Evolution
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e Decoupling principle:
P )

where ¢\), is the n-th row of @ in Th. 1.

e By the Lipschiz-continuity of n,, , Th. 1 implies that there exists C), such that

D=

p
2[Jxe 0 . -0 <,

e Convergence of the empirical squared error:

1 a.s.
(X = XX, = XP) S E | (x4 — x0)x, —x0)]

u
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o | MSE and PME Bayesian Denoiser
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e The decoupling principle and the MSE suggest to choose 7, .(-) in order to
minimize E {(Xu — Xq(f))H(Xu — Xq(f))} :

e This yields the Posterior Mean Estimator (PME) for x,, form the observation
I‘gf) = X, T+ Qb(t), i.e.,

Nt (1) = Efxu[r(]

that can be easily calculated in closed form given the nominal LFSCs {g.»}
and the Bernoulli-Gaussian prior distribution of x,,.

e Interestingly, in this case we obtain also the Jacobian matrix », ,(r) in closed

form (see paper).
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o | Message Detection
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o Let C := CTD and R, := R ~ X, + ®7). The decoupled channel
model suggests the binary hypothesis test for the detection (active/inactive)
of message (u,n) with the two hypotheses:

. CN(0,C) an =0 (Hypothesis H,)
o CN(0,2,+C) a,,=1 (Hypothesis #,)

e Although we use the prior activity probability \ for the PME denoiser, we
prefer to use a Neyman-Pearson test for message activity detection since
MD and FA probabilities have a different impact on the system performance.
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o Message Detection
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e The LLR test takes on the form

H1
An,u 2 Vu
Ho

where v, is a suitable threshold and where A, ,, is a Hermitian Quadratic
form of Gaussian Circularly Symmetric Random Variables (HQF-GRV) under
both H, and H;.

e As a consequence, the MD and FA probabilities can be computed in closed
form!ll  (or approximated with any desired degree of accuracy using the
method of Laplace Inversion with Gauss-Chebyshev Quadrature Rules (see
oldie [J. Ventura-Traveset, GC, E. Biglieri, and G. Taricco TCOM 1997]).
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-1 Achievable rate in the ACK/DL transmission

Berlin

e Based on the active message channel estimates, for each UE (detected
active message) we allocate a user-centric cluster corresponding by the @
RUs b € [B] with largest g, ».

e We use MRT to transmit a beamformed coded ACK to the users (and possibly
allocate resource for further data communication).

e Using the asymptotic analysis, we obtain the semi-closed form ergodic rate
expression:

’Zbecu Mu,bﬁ )
Y

RE%F =log |1+ —
where, for all (u,b) € [U] x |B], we define

= 3\H
= E {hu,b N, 7(hyp +2,C7) " hy,z € DU]

1
é Var (hu,b T]’LL,T(hu,b + Zbcg)H‘hua Z C DU) Y

Co IT -
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and the Tx power normalization coefficient

1 25:1 AuClu
B
L Zb:l ZuGSb Auauzu,b

PDL —

with

1>

1
Zuy S (1= PIOE [ [nur(huy + 2G5 | 2,by € Dy

1
+(A7" = DPEE ||, r(2,C) |17 | 2 € F|

where h,, ~ CN(0,%,), z ~ii.4. CN(0,1) are mutually independent, h,, ; and
z;, denote the b-th segment of size 1 x M of u, and z, respectively, and the
events D, and F,, are defined before.
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1 | Toy Setup with U = B = 2

Techniscl

e N1 =Ny =2048, L = 1024, SNR=10dB, A\; = 0.1, A, = 0.2, M = 2.
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o More Realistic Setup U = 16, B = 12

Berlin

e N, = 2048, L = 1024, realistic SNR and distance dependent pathloss model,
Ay € {0.003,0.002}, repeated in a periodic pattern.

~J
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W [ More Realistic Setup U = 16, B = 12

Techniscl

e We choose to work at the point where Py, = Pog.

— — Monte Carlo

Gauss-Chebyshev

[t
o
L
T

Operating point

—_
3
[N}
T

Probability of False Alarm
=
|

’_\
9
S
T

1074 1073 102 1071
Probability of Missed Detection

Co IT

Communications ant d Information Theory Chair



o More Realistic Setup U = 16, B = 12

e In these conditions, the channel estimation for the messages in A4 is
excellent:
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o More Realistic Setup U = 16, B = 12

e Ergodic rate CDF (over the user population) for the MRT downlink
transmission.
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Wy Conclusion

mmmmmmmmmmm

Key Ideas: 1) location-based access codebooks; 2) a novel “multisource”
AMP.

The multisource AMP generalizes conventional AMP and MMV-AMP and can
be rigorously analyzed.

Not shown (see long paper): the Replica-Analysis yields results that coincide
with the SE.

The asymptotic output statistics of the AMP allows (almost) closed-form
evaluation of very large systems.

Work in progress: a) assess mismatch for non-colocated users (done!);
b) Joint message detection and RSS-based position estimation (done!);
c) Thorough comparison between uRA-based “seamless connectivity” and
conventional pilot-allocation/cluster formation (in progress); d) Extension to
the multipath/freq.selective case (in progress).
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