Strong Polarization for Shortened and Punctured Polar Codes

Boaz Shuval, Ido Tal

Technion

- Question: do shortened/punctured polar codes have the same error exponent as seminal polar codes?
- Answers:
- ChatGPT 3: No (and we did not understand the explanation)
- ChatGPT 4: Yes (and we did not understand the explanation)
- Co-pilot: Yes, see Shuval \& Tal's recent paper

Big picture first

- Seminal polar codes have probability of error $\approx 2^{-\sqrt{N}}$, where $N=2^{n}$
- Polar codes can be either shortened or punctured to lengths M that are not powers of 2
- We analyze:
- the shortening method of Wang and Liu, and
- the puncturing method of Niu, Chen, and Lin
- In both cases, the probability of error is $\approx 2^{-\sqrt{M}}$
- No restriction on M
- We are not assuming a symmetric channel nor a symmetric input

Theorem

Let \mathbf{X} be a random vector of length M with i.i.d. entries, each sampled from an input distribution $p(x)$. Let \mathbf{Y} be the result of passing \mathbf{X} through a BM channel $W(y \mid x)$. Let \mathbf{U} of length M be the result of transforming \mathbf{X} via either the shortening transform or the puncturing transform. Fix $0<\beta<1 / 2$. Then,

$$
\begin{aligned}
\lim _{M \rightarrow \infty} \frac{1}{M}\left|\left\{i: Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)<2^{-M^{\beta}}\right\}\right| & =1-H(X \mid Y), \\
\lim _{M \rightarrow \infty} \frac{1}{M}\left|\left\{i: K\left(U_{i} \mid U^{i-1}\right)<2^{-M^{\beta}}\right\}\right| & =H(X) .
\end{aligned}
$$

Reminder: Bhattacharyya parameter and total variation

$$
\begin{aligned}
& Z(X \mid Y)=\sum_{y} p(Y=y) \cdot \sqrt{P(X=0 \mid Y=y) P(X=1 \mid Y=y)} \\
& K(X \mid Y)=\sum_{y} p(Y=y) \cdot|P(X=0 \mid Y=y)-P(X=1 \mid Y=y)|
\end{aligned}
$$

Shortening and puncturing

Shortening a general code \mathcal{C} :

- Pick an index set \mathcal{S}
- Subcode: $\mathbf{c} \in \mathcal{C}$ such that

$$
i \in \mathcal{S} \Longrightarrow c_{i}=0
$$

- Do not transmit indices in \mathcal{S}

Puncturing a general code \mathcal{C} :

- Pick an index set \mathcal{P}
- Use all $\mathbf{c} \in \mathcal{C}$...
- Do not transmit indices in \mathcal{P}

For polar codes
(Niu, Chen, and Lin):
$\mathcal{S}=\{\overleftarrow{N-1}, \overleftarrow{N-2}, \ldots, \overleftarrow{N-(N-M)}\} \mathcal{P}=\{\overleftarrow{0}, \overleftarrow{1}, \ldots, \overleftarrow{N-M-1}\}$

Notation for the polar transform

For a binary vector $\mathbf{x}=\left[\begin{array}{llll}x_{0} & x_{1} & \cdots & x_{N-1}\end{array}\right]$ of length $N=2^{n}$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{N-1}
\end{array}\right]^{[0]} } \\
&=\left[\begin{array}{lllll}
x_{0} \oplus x_{1} & x_{2} \oplus x_{3} & \cdots & x_{N-2} \oplus x_{N-1}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{N-1}
\end{array}\right]^{[1]} } \\
& \\
&=\left[\begin{array}{lllll}
x_{1} & x_{3} & \cdots & x_{N-1}
\end{array}\right],
\end{aligned}
$$

Notation for the polar transform

For a binary vector $\mathbf{x}=\left[\begin{array}{llll}x_{0} & x_{1} & \cdots & x_{N-1}\end{array}\right]$ of length $N=2^{n}$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{N-1}
\end{array}\right]^{[0]} } \\
&=\left[\begin{array}{llll}
x_{0} \oplus x_{1} & x_{2} \oplus x_{3} & \cdots & x_{N-2} \oplus x_{N-1}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{N-1}
\end{array}\right]^{[1]} } \\
&=\left[\begin{array}{lllll}
x_{0} \triangleright x_{1} & x_{2} \triangleright x_{3} & \cdots & x_{N-2} \triangleright x_{N-1}
\end{array}\right],
\end{aligned}
$$

where

$$
\alpha \triangleright \beta \triangleq \beta
$$

Notation for the polar transform

- Let $N=2^{n}$
- Polar transform:

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{N-1}
\end{array}\right] \Longrightarrow \mathbf{u}=\left[\begin{array}{llll}
u_{0} & u_{1} & \cdots & u_{N-1}
\end{array}\right]
$$

- Definition: for an index

$$
i=\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)_{2}=\sum_{j=0}^{n-1} b_{j} 2^{j}
$$

we have

$$
u_{i}=\mathbf{x}^{[\stackrel{[b]}{b}}=\left(\cdots\left(\left(\mathbf{x}^{\left[b_{n-1}\right]}\right)^{\left[b_{n-2}\right]}\right) \cdots\right)^{\left[b_{0}\right]}
$$

Notation for shortening and puncturing

Recall that

$$
\alpha \triangleright \beta \triangleq \beta
$$

We now generalize the $\alpha \oplus \beta$ and $\alpha \triangleright \beta$ operations to

$$
\alpha, \beta \in\{0,1, \mathrm{~s}, \mathrm{p}\}
$$

\oplus	0	1	s	p
0	0	1	0	\emptyset
1	1	0	1	\emptyset
s	\emptyset	\emptyset	s	\emptyset
p	p	p	p	p

\triangleright	0	1	s	p
0	0	1	s	\emptyset
1	0	1	s	\emptyset
s	\emptyset	\emptyset	s	\emptyset
p	0	1	s	p

Intuition:

- s is another name for 0
- p signifies a bit with arbitrary value

Two definitions of the polar shortening transform

$$
\begin{array}{c|ccccc|cccc}
\oplus & 0 & 1 & \mathrm{~s} & \mathrm{p} & \triangleright & 0 & 1 & \mathrm{~s} & \mathrm{p} \\
\hline 0 & 0 & 1 & 0 & \emptyset & 0 & 0 & 1 & \mathrm{~s} & \emptyset \\
1 & 1 & 0 & 1 & \emptyset & 1 & 0 & 1 & \mathrm{~s} & \emptyset \\
\mathrm{~s} & \emptyset & \emptyset & \mathrm{~s} & \emptyset & \mathrm{~s} & \emptyset & \emptyset & \mathrm{~s} & \emptyset \\
\mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{p} & 0 & 1 & \mathrm{~s} & \mathrm{p}
\end{array} .
$$

Suppose $M=5$, and so $N=2^{\left\lceil\log _{2} M\right\rceil}=8$

$$
\mathcal{S}=\{\overleftarrow{N-1}, \overleftarrow{N-2}, \ldots, \overleftarrow{N-(N-M)}\}=\{\overleftarrow{7}, \overleftarrow{6}, \overleftarrow{5}\}=\{7,3,5\}
$$

First definition:

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{lllllll}
0 & 1 & 1 & & 0 & 1
\end{array}\right] \\
& \overline{\mathrm{x}}=\left[\begin{array}{llllllll}
0 & 1 & 1 & \mathrm{~s} & 0 & \mathrm{~s} & 1 & \mathrm{~s}
\end{array}\right] \\
& \overline{\mathrm{x}}^{[0]}=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right] \quad \overline{\mathrm{x}}^{[1]}=\left[\begin{array}{llll}
1 & \mathrm{~s} & \mathrm{~s} & \mathrm{~s}
\end{array}\right] \\
& \overline{\mathbf{x}}^{[00]}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad \overline{\mathrm{x}}^{[01]}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \quad \overline{\mathrm{x}}^{[10]}=\left[\begin{array}{ll}
1 & \mathrm{~s}
\end{array}\right] \quad \overline{\mathrm{x}}^{[11]}=\left[\begin{array}{ll}
\mathrm{s} & \mathrm{~s}
\end{array}\right] \\
& \overline{\mathbf{u}}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & \mathrm{~s} & \mathrm{~s} & \mathrm{~s}
\end{array}\right] \\
& \mathbf{u}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right.
\end{aligned}
$$

Two definitions of the polar shortening transform

$$
\begin{array}{c|ccccc|cccc}
\oplus & 0 & 1 & \mathrm{~s} & \mathrm{p} & \triangleright & 0 & 1 & \mathrm{~s} & \mathrm{p} \\
\hline 0 & 0 & 1 & 0 & \emptyset & 0 & 0 & 1 & \mathrm{~s} & \emptyset \\
1 & 1 & 0 & 1 & \emptyset & 1 & 0 & 1 & \mathrm{~s} & \emptyset \\
\mathrm{~s} & \emptyset & \emptyset & \mathrm{~s} & \emptyset & \mathrm{~s} & \emptyset & \emptyset & \mathrm{~s} & \emptyset \\
\mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{p} & \mathrm{p} & 0 & 1 & \mathrm{~s} & \mathrm{p}
\end{array}
$$

Suppose $M=5$, and so $N=2^{\left\lceil\log _{2} M\right\rceil}=8$

$$
\mathcal{S}=\{\overleftarrow{N-1}, \overleftarrow{N-2}, \ldots, \overleftarrow{N-(N-M)}\}=\{\overleftarrow{7}, \overleftarrow{6}, \overleftarrow{5}\}=\{7,3,5\}
$$

Second definition:

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{lllllll}
0 & 1 & 1 & & 0 & 1
\end{array}\right] \\
& \overline{\mathrm{x}}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& \overline{\mathbf{x}}^{[0]}=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right] \quad \overline{\mathbf{x}}^{[1]}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \\
& \overline{\mathbf{x}}^{[00]}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad \overline{\mathbf{x}}^{[01]}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \quad \overline{\mathbf{x}}^{[10]}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad \overline{\mathbf{x}}^{[11]}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& \overline{\mathbf{u}}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
& \mathbf{u}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right.
\end{aligned}
$$

Two definitions of the polar puncturing transform

\oplus	0	1	s	p
0	0	1	0	\emptyset
1	1	0	1	\emptyset
s	\emptyset	\emptyset	s	\emptyset
p	p	p	p	p

\triangleright	0	1	s	p
0	0	1	s	\emptyset
1	0	1	s	\emptyset
s	\emptyset	\emptyset	s	\emptyset
p	0	1	s	p

Suppose $M=5$, and so $N=2^{\left\lceil\log _{2} M\right\rceil}=8$

$$
\mathcal{P}=\{\overleftarrow{0}, \overleftarrow{1}, \ldots, \overleftarrow{N-M-1}\}=\{\overleftarrow{0}, \overleftarrow{1}, \overleftarrow{2}\}=\{0,4,2\}
$$

First definition:

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \tilde{\mathbf{x}}=\left[\begin{array}{llllllll}
\mathrm{p} & 0 & \mathrm{p} & 1 & \mathrm{p} & 1 & 0 & 1
\end{array}\right] \\
& \tilde{\mathbf{x}}^{[0]}=\left[\begin{array}{llll}
\mathrm{p} & \mathrm{p} & \mathrm{p} & 1
\end{array}\right] \quad \tilde{\mathbf{x}}^{[1]}=\left[\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right] \\
& \tilde{\mathbf{x}}^{[00]}=\left[\begin{array}{ll}
\mathrm{p} & \mathrm{p}
\end{array}\right] \quad \tilde{\mathbf{x}}^{[01]}=\left[\begin{array}{ll}
\mathrm{p} & 1
\end{array}\right] \quad \overline{\mathbf{x}}^{[10]}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad \tilde{\mathbf{x}}^{[11]}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
& \tilde{\mathbf{u}}=\left[\begin{array}{llllllll}
p & p & p & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{u}=\left[\begin{array}{llllll}
{[} & 1 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Two definitions of the polar puncturing transform

\oplus	0	1	s	p
0	0	1	0	\emptyset
1	1	0	1	\emptyset
s	\emptyset	\emptyset	s	\emptyset
p	p	p	p	p

\triangleright	0	1	s	p
0	0	1	s	\emptyset
1	0	1	s	\emptyset
s	\emptyset	\emptyset	s	\emptyset
p	0	1	s	p

Suppose $M=5$, and so $N=2^{\left\lceil\log _{2} M\right\rceil}=8$

$$
\mathcal{P}=\{\overleftarrow{0}, \overleftarrow{1}, \ldots, \overleftarrow{N-M-1}\}=\{\overleftarrow{0}, \overleftarrow{1}, \overleftarrow{2}\}=\{0,4,2\}
$$

Second definition:

$$
\left.\begin{array}{c}
\mathbf{x}=\left[\begin{array}{lllllll}
& 0 & 1 & & 1 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{x}}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1
\end{array}\right] \\
\tilde{\mathbf{x}}^{[0]}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1
\end{array}\right] \quad \tilde{\mathbf{x}}^{[1]}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array} 1\right.
\end{array}\right]\left[\begin{array}{ll}
\tilde{\mathbf{x}}^{[00]}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad \tilde{\mathbf{x}}^{[01]}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \quad \overline{\mathbf{x}}^{[10]}=\left[\begin{array}{llll}
1 & 0
\end{array}\right] \quad \tilde{\mathbf{x}}^{[11]}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
\tilde{\mathbf{u}}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1
\end{array}\right] \\
\mathbf{u}=\left[\begin{array}{lllllll}
& & 1 & 1 & 0 & 0 & 1
\end{array}\right]
\end{array}\right.
$$

Second definition, for now

- We now think of shortening/puncturing using the second definition

$$
\begin{aligned}
& \overline{\mathbf{x}}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& \tilde{\mathbf{x}}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- The first definition will come into play later...

Distributions

- Denote the probability distribution of "regular" input-output as

$$
W(x ; y)=P(X=x, Y=y)
$$

- What about shortening/puncturing?
- Shortening:
- Input is forced to be 0
- No corresponding output

$$
\mathrm{S}(x ; y)= \begin{cases}1, & x=0, y=? \\ 0, & \text { otherwise }\end{cases}
$$

- Puncturing:
- Input is arbitrary
- No corresponding output

$$
P(x ; y)= \begin{cases}\frac{1}{2}, & x \in\{0,1\}, y=? \\ 0, & \text { otherwise }\end{cases}
$$

The ' - ' and '+' operations on joint distributions

- Denote

$$
\mathcal{X}=\{0,1\}
$$

- Let $A\left(x_{0} ; y_{0}\right)$ be a joint distribution on $\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}_{0}$
- Let $B\left(x_{0} ; y_{1}\right)$ be a joint distribution on $\left(x_{1}, y_{1}\right) \in \mathcal{X} \times \mathcal{Y}_{1}$
- The '-' operation:

$$
(A \text { 困 } B)\left(u_{0} ; y_{0}, y_{1}\right)=\sum_{x_{1} \in \mathcal{X}} A\left(u_{0} \oplus x_{1} ; y_{0}\right) B\left(x_{1} ; y_{1}\right)
$$

- The ' + ' operation:

$$
(A \circledast B)\left(u_{1} ; u_{0}, y_{0}, y_{1}\right)=A\left(u_{0} \oplus u_{1} ; y_{0}\right) B\left(u_{1} ; y_{1}\right)
$$

Degrading and the symmetric setting

- For two joint distributions $A\left(x_{0} ; y_{0}\right)$ and $B\left(x_{0} ; y_{1}\right)$, denote

$$
A \stackrel{\mathrm{~d}}{\sqsubseteq} B
$$

if A is (stochastically) degraded with respect to B

- That is, if there exists $Q\left(y_{0} \mid y_{1}\right)$ over $\mathcal{Y}_{0} \times \mathcal{Y}_{1}$ such that

$$
A\left(x_{0} ; y_{0}\right)=\sum_{y_{1}} B\left(x_{0} ; y_{1}\right) Q\left(y_{0} \mid y_{1}\right)
$$

- In the special case where $A\left(x_{0} ; y_{0}\right)$ corresponds to a symmetric input distribution and a symmetric channel,

$$
\underbrace{A \text { 娄 } A}_{A^{-}} \stackrel{\mathrm{d}}{\sqsubseteq} A \stackrel{\mathrm{~d}}{\sqsubseteq} \underbrace{A \circledast A}_{A^{+}}
$$

- Goal: generalize " $\stackrel{\mathrm{d}}{\sqsubseteq}$ " to some " \sqsubseteq " so that for general A, B

$$
A \circledast B \sqsubseteq A \sqsubseteq A \circledast B, \quad A \text { 困 } B \sqsubseteq B \sqsubseteq A \circledast B
$$

The 'input permutation' relation

- We say that A has undergone an input permutation, resulting in A^{\prime} if there exists a function $f: \mathcal{Y}_{0} \rightarrow \mathcal{X}$ such that

$$
A^{\prime}\left(x_{0} ; y_{0}\right)=A\left(x_{0} \oplus f\left(y_{0}\right) ; y_{0}\right)
$$

- We denote this by

$$
A^{\prime} \stackrel{\mathrm{p}}{\sqsubseteq} A
$$

- Note that

$$
\begin{aligned}
& Z\left(A^{\prime}\right)=Z(A), \\
& K\left(A^{\prime}\right)=K\left(A^{\prime}\right), \\
& H\left(A^{\prime}\right)=H(A)
\end{aligned}
$$

Since

$$
\begin{aligned}
Z(A) & =\sum_{y} \sqrt{A(0 ; y) \cdot A(1 ; y)} \\
Z\left(A^{\prime}\right) & =\sum_{y} \sqrt{A(0 \oplus f(y) ; y) \cdot A(1 \oplus f(y) ; y)}
\end{aligned}
$$

The 'inferior' relation

- We define that $A \sqsubseteq B$ if we can identify a finite sequence of 'degradation' and 'input permutation' relations that will lead to A from B
- In other words, there exists $0<t<\infty$, a sequence of joint distributions $C_{1}, C_{2}, \ldots, C_{t-1}$, and a sequence $r_{1}, r_{2}, \ldots, r_{t} \in\{d, p\}$ such that

$$
A \stackrel{r_{1}}{\sqsubseteq} C_{1} \stackrel{r_{2}}{\sqsubseteq} C_{2} \stackrel{r_{3}}{\sqsubseteq} \cdots \stackrel{r_{t-1}}{\sqsubseteq} C_{t-1} \stackrel{r_{t}}{\sqsubseteq} B
$$

Key properties of the 'inferior' relation

$A \sqsubseteq B$ if there exists $0<t<\infty$, a sequence of joint distributions
$C_{1}, C_{2}, \ldots, C_{t-1}$, and a sequence $r_{1}, r_{2}, \ldots, r_{t} \in\{d, p\}$ such that

$$
A \stackrel{r_{1}}{\sqsubseteq} C_{1} \stackrel{r_{2}}{\sqsubseteq} C_{2} \stackrel{r_{3}}{\sqsubseteq} \cdots \stackrel{r_{t-1}}{\sqsubseteq} C_{t-1} \stackrel{r_{t}}{\sqsubseteq} B
$$

Key properties:

- Transitivity:

$$
A \sqsubseteq B \quad \text { and } \quad B \sqsubseteq C \Longrightarrow A \sqsubseteq C
$$

- Z, K, and H monotonicity:

$$
A \sqsubseteq B \Longrightarrow Z(A) \geq Z(B), K(A) \leq K(B), H(A) \geq H(B)
$$

- Preservation by polar operations:

$$
\begin{aligned}
& A^{\prime} \sqsubseteq A \quad \text { and } \quad B^{\prime} \sqsubseteq B \Longrightarrow \\
& A^{\prime} \text { 図 } B^{\prime} \sqsubseteq A \text { 囵 } \quad \text { and } \quad A^{\prime} \circledast B^{\prime} \sqsubseteq A \circledast B .
\end{aligned}
$$

- The two extremes: For any A,

$$
\mathrm{P} \sqsubseteq A \sqsubseteq \mathrm{~S}
$$

Look familiar?

- If $A \sqsubseteq B$ and $B \sqsubseteq A$ then we will treat A and B as equivalent
- The following holds, up to equivalence:

困	B	S	P
A	A 囷 B	A	P
S	B	S	P
P	P	P	P

\circledast	B	S	P
A	$A \circledast B$	S	A
S	S	S	S
P	B	S	P

- Look familiar?

Look familiar?

- If $A \sqsubseteq B$ and $B \sqsubseteq A$ then we will treat A and B as equivalent
- The following holds, up to equivalence:

困	B	S	P
A	A 囷 B	A	P
S	B	S	P
P	P	P	P

\circledast	B	S	P
A	$A \circledast B$	S	A
S	S	S	S
P	B	S	P

- Look familiar?
- Yes! For $a, b \in\{0,1\}$,

\oplus	b	s	p
a	$a \oplus b$	a	p
s	b	s	p
p	p	p	p

\triangleright	b	s	p
a	$a \triangleright b$	s	a
s	s	s	s
p	b	s	p

The advantages of good bookkeeping

$$
\begin{aligned}
& x=\left[\begin{array}{llllll}
0 & 1 & 1 & & 0 & 1
\end{array}\right] \quad x=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \overline{\mathrm{x}}=\left[\begin{array}{llllllll}
0 & 1 & 1 & \mathrm{~s} & 0 & \mathrm{~s} & 1 & \mathrm{~s}
\end{array}\right] \quad \tilde{\mathbf{x}}=\left[\begin{array}{llllllll}
\mathrm{p} & 0 & \mathrm{p} & 1 & \mathrm{p} & 1 & 0 & 1
\end{array}\right] \\
& \overline{\mathbf{u}}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & \mathrm{~s} & \mathrm{~s} & \mathrm{~s}
\end{array}\right] \quad \tilde{\mathbf{u}}=\left[\begin{array}{llllllll}
\mathrm{p} & \mathrm{p} & \mathrm{p} & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{u}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \text { For } 0 \leq i \leq M \text {, } \\
& \begin{array}{l}
Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
Z\left(\bar{U} \mid \bar{U}^{i-1}, \overline{\mathbf{Y}}\right)
\end{array} \\
& K\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
& K\left(\bar{U}_{i} \mid \bar{U}^{i-1}, \overline{\mathbf{Y}}\right) \\
& \text { For } 0 \leq i \leq M \text {, } \\
& Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
& Z\left(\tilde{U}_{i+N-M} \mid \tilde{U}^{i+N-M-1}, \tilde{\mathbf{Y}}\right) \\
& K\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
& K\left(\tilde{U}_{i+N-M} \mid \tilde{U}^{i+N-M-1}, \tilde{\mathbf{Y}}\right)
\end{aligned}
$$

The advantages of good bookkeeping

$$
\begin{aligned}
& x=\left[\begin{array}{llllll}
0 & 1 & 1 & & 0 & 1
\end{array}\right] \quad x=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \overline{\mathbf{x}}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \tilde{\mathbf{x}}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \overline{\mathbf{u}}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \quad \tilde{\mathbf{u}}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{u}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \text { For } 0 \leq i \leq M \text {, } \\
& \begin{array}{l}
Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
Z\left(\bar{U} \mid \bar{U}^{i-1}, \overline{\mathbf{Y}}\right)
\end{array} \\
& K\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
& K\left(\bar{U}_{i} \mid \overline{U^{i-1}}, \overline{\mathbf{Y}}\right) \\
& Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
& Z\left(\tilde{U}_{i+N-M} \mid \tilde{U}^{i+N-M-1}, \tilde{\boldsymbol{Y}}\right) \\
& K\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)= \\
& K\left(\tilde{U}_{i+N-M} \mid \tilde{U}^{i+N-M-1}, \tilde{\mathbf{Y}}\right)
\end{aligned}
$$

Main Theorem, reworded

Theorem

Let $W(x ; y)$ be a joint distribution over $\mathcal{X} \times \mathcal{Y}$. Let \mathbf{X}, \mathbf{Y} be a pair of random vectors of length M, with each $\left(X_{i}, Y_{i}\right)$ sampled independently from W. Let \mathbf{U} of length M be the result of transforming \mathbf{X} via either the shortening transform or the puncturing transform. Fix $0<\beta<1 / 2$ and $\epsilon>0$. Then, there exists M_{0} such that for all $M \geq M_{0}$,

$$
\begin{aligned}
& \frac{1}{M}\left|\left\{i: Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)<2^{-M^{\beta}}\right\}\right|>1-H(X \mid Y)-\epsilon \\
& \frac{1}{M}\left|\left\{i: K\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)<2^{-M^{\beta}}\right\}\right|>H(X \mid Y)-\epsilon
\end{aligned}
$$

A halfway lemma

Lemma

Let $W(x ; y), \mathbf{X}, \mathbf{Y}$, and \mathbf{U} be as in the main theorem. Fix $0<\beta^{\prime}<1 / 2$ and $\epsilon^{\prime}>0$. Fix integers $t>0$ and
$a \in\left\{2^{t-1}+1,2^{t-1}+2, \ldots, 2^{t}\right\}$. There exists n_{0} such that for all $n \geq n_{0}$, if $M=a \cdot 2^{n-t}$, then for $N=2^{n}$,

$$
\begin{aligned}
& \frac{1}{M}\left|\left\{i: Z\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)<2^{-N^{\beta^{\prime}}}\right\}\right|>1-H(X \mid Y)-\epsilon^{\prime}, \\
& \frac{1}{M}\left|\left\{i: K\left(U_{i} \mid U^{i-1}, \mathbf{Y}\right)<2^{-N^{\beta^{\prime}}}\right\}\right|>H(X \mid Y)-\epsilon^{\prime} .
\end{aligned}
$$

Proof of halfway lemma - part 1

Proof of halfway lemma - part 1

Proof of halfway lemma - part 1

When all A_{i} are equal: Arıkan \& Telatar '09 gives fast polarization

Proof of halfway lemma - part 1

Proof of halfway lemma - part 1

When A_{i} have period 2: Arıkan \& Telatar, '09 applied after first transform gives fast polarization

Proof of halfway lemma - part 1

Generally: if the A_{i} have period 2^{t}, then we have fast polarization

Proof of halfway lemma - part 2

Proof of main theorem - key properties of " \sqsubseteq "

Recall key properties of " \sqsubseteq " relation:

- The two extremes: For any A,

$$
\mathrm{P} \sqsubseteq A \sqsubseteq \mathrm{~S}
$$

- Preservation by polar operations:

$$
\begin{aligned}
A^{\prime} \sqsubseteq A \quad \text { and } \quad & B^{\prime} \sqsubseteq B \Longrightarrow \\
& A^{\prime} \text { 困 } B^{\prime} \sqsubseteq A \text { 困 } B \quad \text { and } \quad A^{\prime} \circledast B^{\prime} \sqsubseteq A \circledast B .
\end{aligned}
$$

- Transitivity:

$$
A \sqsubseteq B \quad \text { and } \quad B \sqsubseteq C \Longrightarrow A \sqsubseteq C
$$

- Z, K, and H monotonicity:

$$
A \sqsubseteq B \Longrightarrow Z(A) \geq Z(B), K(A) \leq K(B), H(A) \geq H(B)
$$

Proof of main theorem

