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Background: Group Testing

▶ We have a large population of items

▶ Very few of them are "defective" (probability of being defective, γ is very small)

▶ Goal: Identify x: defective (xi = 1), non-defective (xi = 0)
▶ To reduce the number of tests: test the items in groups (pooling) [Dorfman1943]

▶ Rate, Ω = m
n (smaller is better)

▶ Adaptive vs non-adaptive test design

▶ We consider the asymptotic regime: n → ∞

[Dorfman1943] Robert Dorfman, “The Detection of Defective Members of Large Populations,” The Annals of Mathematical Statistics,,
vol. 14, no. 4, pp. 436–440, 1943.
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Background: Graphical Representation

▶ For non-adaptive group testing the pooling can be represented by a test matrix A

A =




1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1




x1 x2 x3 x4 x5 x6

▶ The matrix can be represented by a bipartite graph G

▶ We consider the scenario where the graph is sparse

Michael Lentmaier, Lund University LDPC Codes for Quantitative Group Testing with a Non-Binary Alphabet 2 / 23



Background: Graphical Representation

▶ For non-adaptive group testing the pooling can be represented by a test matrix A

A =




1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1




x1 x2 x3 x4 x5 x6

▶ The matrix can be represented by a bipartite graph G

▶ We consider the scenario where the graph is sparse

Michael Lentmaier, Lund University LDPC Codes for Quantitative Group Testing with a Non-Binary Alphabet 2 / 23



Non-quantitative vs Quantitative

▶ Non-quantitative: test result, si = 1 if at least one item is defective otherwise si = 0 (logical OR)

▶ For quantitative group testing, a test result shows the number of defective items

si = ∑
n
j=1 xjaij → s = Ax
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Quantitative Group Testing with Sparse Graphs: Prior work

▶ The test results show the number of defectives
▶ Best known scheme with sparse graph uses GLDPC [KAR2019]

U =




dc

1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




t = 1,mu = 3

▶ dc = 2mu −1 → mu = log2(dc +1)
▶ Tests per subcode = t log2(dc +1)+1

▶ Rate, Ω = m
n = dv

dc

(
t⌈log2(dc +1)⌉+1

)

▶ A t-error-correcting BCH code is used as a component code

▶ An additional row of ones to identify # of defective items

[KAR2019] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan, and A. Sprintson, “Sparse graph codes for
non-adaptive quantitative group testing,” inProc. IEEE Inf. Theory Workshop (ITW), 2019.
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Prior Work

▶ Density Evolution
For each iteration ℓ

q(ℓ): probability a test sends resolved to item
p(ℓ): probability a defective item is unresolved

Test to item:

q(ℓ) =
t−1

∑
i=0

(
dc −1

i

)(
p(ℓ−1)

)i(
1−p(ℓ−1)

)dc−1−i

Item to test:

p(ℓ) =γ (1−q(ℓ−1))dv−1

▶ Small number of tests for a large population size

▶ Increasing t improves error correction

▶ Penalized by increasing number of tests
m = n dv

dc

(
t⌈log2(dc +1)⌉+1

)

n = 65536

■ What about using t = 0 ?
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Proposed scheme: Group Testing with LDPC
▶ With t = 0 we loose local error correcting capability

▶ We can observe and utilize two events
■ Syndrome equal zero: s(ℓ)i = 0

Infer all items as 0 (non-defective)
■ Syndrome equals test degree: s(ℓ)i = d(ℓ)c

Infer all items as 1 (defective)

▶ We then peel off resolved items (reducing the syndrome accordingly)
▶ This is repeated until no item to peel
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Density Evolution

▶ p(ℓ)1 : probability that a message from a defective is unresolved

▶ q(ℓ)0 : probability that a message to a non-defective is resolved

▶ p(ℓ)0 : probability a message from non-defective is unresolved

▶ q(ℓ)1 : probability that a message to a defective is resolved

From test to item

q(ℓ)0 =
dc−1

∑
i=0

(
dc −1

i

)
γ

i(1− γ)dc−1−i
(

1−p(ℓ−1)
1

)i

q(ℓ)1 =
dc−1

∑
i=0

(
dc −1

i

)
γ

i(1− γ)dc−1−i
(

1−p(ℓ−1)
0

)dc−1−i

From item to test
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Performance Comparison

▶ We consider two scenarios

■ Fixing the proportion of defective
items γ and changing the rate Ω = m

n

▶ Same as in previous work [KAR2019]

■ Fixing the rate Ω and changing γ

▶ A new perspective considering A
(code) as fixed

Minimum rate required for a fixed γ

0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.5

1

1.5

2

2.5

3

γ (in %)

Ω
th

(in
%

)

LDPC (t = 0), dv =5
GLDPC, t = 2, dv = 2

[KAR2019] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan, and A. Sprintson, “Sparse graph codes for
non-adaptive quantitative group testing,” inProc. IEEE Inf. Theory Workshop (ITW), 2019.
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Performance Comparison: Fixed Rate, Ω = 5%

Table: GLDPC Based

t dv γth

1
2 0.2487
3 0.3708
4 0.3510

2
2 0.3983
3 0.3372
4 0.2884

3
2 0.3784
3 0.3189
4 0.2441

5
2 0.3418
3 0.2686
4 0.2014

Table: GLDPC Based

t dv γth

1
2 0.2487
3 0.3708
4 0.3510

2
2 0.3983
3 0.3372
4 0.2884

3
2 0.3784
3 0.3189
4 0.2441

5
2 0.3418
3 0.2686
4 0.2014

Table: LDPC Based

dv γth

3 0.4555
4 0.5982
5 0.6416
6 0.6464
7 0.6353

10 0.5773

n = 153000

■■ Can we get consistently better with increasing dv?

What about spatial coupling?
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Improved Decoding with a Non-Binary Alphabet

▶ Idea: for a subset of tests, items occur only
in bundles of size q

Example: dv = 3, dc = 4
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
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; (6)
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q = 2

▶ Value of a bundle z ∈ {0, . . . ,q}:
sum of included items

▶ Compatible with standard testing:
only test matrix structure affected

Factor graph representation:
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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8
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=
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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z!c = max

⇢
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c02T (z)\c
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
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(`�1)
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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iterations.
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In the bundle-item interaction the massage passed from a
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empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by
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2
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0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
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It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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dv = dv,z + dv,x
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Improved Decoding with a Non-Binary Alphabet

▶ Idea: for a subset of tests, items occur only
in bundles of size q

Example: dv = 3, dc = 4
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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⇢
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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f!x = max
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q = 2

▶ Value of a bundle z ∈ {0, . . . ,q}:
sum of included items

▶ Compatible with standard testing:
only test matrix structure affected

Factor graph representation:
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
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c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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Improved Decoding with a Non-Binary Alphabet

▶ Idea: for a subset of tests, items occur only
in bundles of size q

Example: dv = 3, dc = 4
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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⇢
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
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c!z and U(`)
z!f = min

c2T (z)
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c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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q = 2

▶ Value of a bundle z ∈ {0, . . . ,q}:
sum of included items

▶ Compatible with standard testing:
only test matrix structure affected

Factor graph representation:
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
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c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min
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U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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f!x = max
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
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z!f = max
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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f!x = max
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
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(`�1)
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f!z
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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f!x = max
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Improved Decoding with a Non-Binary Alphabet

▶ Idea: for a subset of tests, items occur only
in bundles of size q

Example: dv = 3, dc = 4
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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⇢
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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q = 2

▶ Value of a bundle z ∈ {0, . . . ,q}:
sum of included items

▶ Compatible with standard testing:
only test matrix structure affected

Factor graph representation:
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
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z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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z!f = max
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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Improved Decoding with a Non-Binary Alphabet

▶ Idea: for a subset of tests, items occur only
in bundles of size q

Example: dv = 3, dc = 4
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
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z!f = max
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z!f = min
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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q = 2

▶ Value of a bundle z ∈ {0, . . . ,q}:
sum of included items

▶ Compatible with standard testing:
only test matrix structure affected

Factor graph representation:
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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Local Decoding with q-ary Variables
Extension of the erasure decoder to q > 1:
▶ messages: µ ∈ {0,q,?}
▶ Problem: can still only resolve s = 0 and s = dc, no gain with q

APP decoding (SISO):
▶ messages are probability vectors µ = [P(z = 0),P(z = 1), . . . ,P(z = q)], computed in a trellis
▶ Problem: complexity grows rapidly with degree dc (even for q = 1)

Proposed decoder: motivated by works on counter braids [LM+2008][RG2018]
▶ messages µ = [L,U] consist of lower bound L and upper bound U on z ∈ {0, . . . ,q}
▶ complexity similar to erasure decoding, performance improves with larger q

v v
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s = 4
<latexit sha1_base64="QrIxhBkmb9+I5zBtxx0hSrZrOnU=">AAACDXicbVDLSsNAFJ34rPUVdelmsAoupCRFqhuh6MZlBfuAJITJdNIOnUzCzESpIT/gxl9x40IRt+7d+TdO0y609cCFwzn3cu89QcKoVJb1bSwsLi2vrJbWyusbm1vb5s5uW8apwKSFYxaLboAkYZSTlqKKkW4iCIoCRjrB8Grsd+6IkDTmt2qUEC9CfU5DipHSkm8eulHqZxi6gvYHCgkR30M3Qmogw+whzy8c+6Tm+WbFqloF4Dyxp6QCpmj65pfbi3EaEa4wQ1I6tpUoL0NCUcxIXnZTSRKEh6hPHE05ioj0suKbHB5ppQfDWOjiChbq74kMRVKOokB3FofOemPxP89JVXjuZZQnqSIcTxaFKYMqhuNoYI8KghUbaYKwoPpWiAdIIKx0gGUdgj378jxp16p2vVq/Oa00LqdxlMA+OADHwAZnoAGuQRO0AAaP4Bm8gjfjyXgx3o2PSeuCMZ3ZA39gfP4AeSKb0A==</latexit>

µc!z = [1, 2]

<latexit sha1_base64="na85i05JTccxUwZRYWdMpqdvBv8=">AAACFnicbVDLSsNAFJ34rPUVdelmsAgutCQi1Y1QdOOygn1AE8JkOmmHTiZhZqLUkK9w46+4caGIW3Hn3zhNI2jrgQuHc+7l3nv8mFGpLOvLmJtfWFxaLq2UV9fWNzbNre2WjBKBSRNHLBIdH0nCKCdNRRUjnVgQFPqMtP3h5dhv3xIhacRv1Cgmboj6nAYUI6UlzzxywsRLnRCpgQzS+ww6gvYHCgkR3cEfGWfZedc6tF3PrFhVKwecJXZBKqBAwzM/nV6Ek5BwhRmSsmtbsXJTJBTFjGRlJ5EkRniI+qSrKUchkW6av5XBfa30YBAJXVzBXP09kaJQylHo68780GlvLP7ndRMVnLkp5XGiCMeTRUHCoIrgOCPYo4JgxUaaICyovhXiARIIK51kWYdgT788S1rHVbtWrV2fVOoXRRwlsAv2wAGwwSmogyvQAE2AwQN4Ai/g1Xg0no03433SOmcUMzvgD4yPbzLAn/8=</latexit>

µz!c = [0, 1] <latexit sha1_base64="/gnB9lm8Fm1+YfXBptrekE1anFE=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwoSUpUt0IRTcuK9gHJCFMppN26OTBzESpIV/hxl9x40IRt+LOv3GaRtDWAxcO59zLvfd4MaNCGsaXVlpYXFpeKa9W1tY3Nrf07Z2OiBKOSRtHLOI9DwnCaEjakkpGejEnKPAY6Xqjy4nfvSVc0Ci8keOYOAEahNSnGEklufqxHSRuagdIDoWf3mfQ5nQwlIjz6A7+yDjLzi3zqO64etWoGTngPDELUgUFWq7+afcjnAQklJghISzTiKWTIi4pZiSr2IkgMcIjNCCWoiEKiHDS/K0MHiilD/2IqwolzNXfEykKhBgHnurMD531JuJ/npVI/8xJaRgnkoR4ushPGJQRnGQE+5QTLNlYEYQ5VbdCPEQcYamSrKgQzNmX50mnXjMbtcb1SbV5UcRRBntgHxwCE5yCJrgCLdAGGDyAJ/ACXrVH7Vl7096nrSWtmNkFf6B9fAM1zKAB</latexit>

µz!c = [1, 2]

Example:
<latexit sha1_base64="5db6xStraX6MPFYlBhugrNb5dYw=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0g0YsQ9OIxonlAsoTZyWwyZHZ2nekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2Mxt5bd3dvf2CweHDROnmvE6i2WsWwE1XArF6yhQ8laiOY0CyZvB8GbqN5+4NiJWDzhKuB/RvhKhYBStdP94Ve4Wim7JnYEsEy8jRchQ6xa+Or2YpRFXyCQ1pu25CfpjqlEwySf5Tmp4QtmQ9nnbUkUjbvzx7NQJObVKj4SxtqWQzNTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsfmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUS55lVLl7rxYvc7iyMExnMAZeHABVbiFGtSBQR+e4RXeHOm8OO/Ox7x1xclmjuAPnM8f0mONgw==</latexit>

q = 2

<latexit sha1_base64="8BiWsSnt/nVRMytXCqoZ0QhyEng=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0xKBHohePmAiS0IZsly1s2G6b3a0JNPwSLx40xqs/xZv/xgV6UPAlk7y8N5OZeUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshtgRTkTtK2Z5rSbSIqjgNPHYHw79x+fqFQsFg96klA/wkPBQkawNlLfLk+RxwTyMqfqVuverG9XnJqzAFonbk4qkKPVt7+8QUzSiApNOFaq5zqJ9jMsNSOczkpeqmiCyRgPac9QgSOq/Gxx+AydG2WAwliaEhot1N8TGY6UmkSB6YywHqlVby7+5/VSHV77GRNJqqkgy0VhypGO0TwFNGCSEs0nhmAimbkVkRGWmGiTVcmE4K6+vE469ZrbqDXuLyvNmzyOIpzCGVyAC1fQhDtoQRsIpPAMr/BmTa0X6936WLYWrHzmBP7A+vwBsEGR1A==</latexit>

z 2 {0, 1, 2}

[LM+2008] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, “Counter braids: A novel counter architecture
for per-flow measurement,” Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Annapolis, June 2008.
[RG2018] E. Rosnes and A. Graell i Amat, “Asymptotic analysis and spatial coupling of counter braids,” IEEE Transactions on
Information Theory, vol. 64, no. 11, 2018.
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Local Decoding with q-ary Variables
Extension of the erasure decoder to q > 1:
▶ messages: µ ∈ {0,q,?}
▶ Problem: can still only resolve s = 0 and s = dc, no gain with q

APP decoding (SISO):
▶ messages are probability vectors µ = [P(z = 0),P(z = 1), . . . ,P(z = q)], computed in a trellis
▶ Problem: complexity grows rapidly with degree dc (even for q = 1)

Proposed decoder: motivated by works on counter braids [LM+2008][RG2018]
▶ messages µ = [L,U] consist of lower bound L and upper bound U on z ∈ {0, . . . ,q}
▶ complexity similar to erasure decoding, performance improves with larger q

v v
<latexit sha1_base64="Pt2VBvY3gT2Tsw9FvvB6PwNcwFQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1Ku1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOzTjQk=</latexit>z

<latexit sha1_base64="gfDDG5HdC2uj59mXU+2xx3lABwE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBfi+MwA==</latexit>

1
<latexit sha1_base64="gfDDG5HdC2uj59mXU+2xx3lABwE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBfi+MwA==</latexit>

1
<latexit sha1_base64="2fvfthwg1mRLBhwA3jth0GTm+tU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9IvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XG1el2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH+zjME=</latexit>

2

<latexit sha1_base64="Ya/mh0qhuZdAXP1IUvwOaq15OXA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00oO5rvSKJbfszkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYZX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSvCh71XL1vlKq3WRx5OEETuEcPLiEGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MH2HeNhw==</latexit>

s = 4
<latexit sha1_base64="QrIxhBkmb9+I5zBtxx0hSrZrOnU=">AAACDXicbVDLSsNAFJ34rPUVdelmsAoupCRFqhuh6MZlBfuAJITJdNIOnUzCzESpIT/gxl9x40IRt+7d+TdO0y609cCFwzn3cu89QcKoVJb1bSwsLi2vrJbWyusbm1vb5s5uW8apwKSFYxaLboAkYZSTlqKKkW4iCIoCRjrB8Grsd+6IkDTmt2qUEC9CfU5DipHSkm8eulHqZxi6gvYHCgkR30M3Qmogw+whzy8c+6Tm+WbFqloF4Dyxp6QCpmj65pfbi3EaEa4wQ1I6tpUoL0NCUcxIXnZTSRKEh6hPHE05ioj0suKbHB5ppQfDWOjiChbq74kMRVKOokB3FofOemPxP89JVXjuZZQnqSIcTxaFKYMqhuNoYI8KghUbaYKwoPpWiAdIIKx0gGUdgj378jxp16p2vVq/Oa00LqdxlMA+OADHwAZnoAGuQRO0AAaP4Bm8gjfjyXgx3o2PSeuCMZ3ZA39gfP4AeSKb0A==</latexit>

µc!z = [1, 2]

<latexit sha1_base64="na85i05JTccxUwZRYWdMpqdvBv8=">AAACFnicbVDLSsNAFJ34rPUVdelmsAgutCQi1Y1QdOOygn1AE8JkOmmHTiZhZqLUkK9w46+4caGIW3Hn3zhNI2jrgQuHc+7l3nv8mFGpLOvLmJtfWFxaLq2UV9fWNzbNre2WjBKBSRNHLBIdH0nCKCdNRRUjnVgQFPqMtP3h5dhv3xIhacRv1Cgmboj6nAYUI6UlzzxywsRLnRCpgQzS+ww6gvYHCgkR3cEfGWfZedc6tF3PrFhVKwecJXZBKqBAwzM/nV6Ek5BwhRmSsmtbsXJTJBTFjGRlJ5EkRniI+qSrKUchkW6av5XBfa30YBAJXVzBXP09kaJQylHo68780GlvLP7ndRMVnLkp5XGiCMeTRUHCoIrgOCPYo4JgxUaaICyovhXiARIIK51kWYdgT788S1rHVbtWrV2fVOoXRRwlsAv2wAGwwSmogyvQAE2AwQN4Ai/g1Xg0no03433SOmcUMzvgD4yPbzLAn/8=</latexit>

µz!c = [0, 1] <latexit sha1_base64="/gnB9lm8Fm1+YfXBptrekE1anFE=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwoSUpUt0IRTcuK9gHJCFMppN26OTBzESpIV/hxl9x40IRt+LOv3GaRtDWAxcO59zLvfd4MaNCGsaXVlpYXFpeKa9W1tY3Nrf07Z2OiBKOSRtHLOI9DwnCaEjakkpGejEnKPAY6Xqjy4nfvSVc0Ci8keOYOAEahNSnGEklufqxHSRuagdIDoWf3mfQ5nQwlIjz6A7+yDjLzi3zqO64etWoGTngPDELUgUFWq7+afcjnAQklJghISzTiKWTIi4pZiSr2IkgMcIjNCCWoiEKiHDS/K0MHiilD/2IqwolzNXfEykKhBgHnurMD531JuJ/npVI/8xJaRgnkoR4ushPGJQRnGQE+5QTLNlYEYQ5VbdCPEQcYamSrKgQzNmX50mnXjMbtcb1SbV5UcRRBntgHxwCE5yCJrgCLdAGGDyAJ/ACXrVH7Vl7096nrSWtmNkFf6B9fAM1zKAB</latexit>

µz!c = [1, 2]

Example:
<latexit sha1_base64="5db6xStraX6MPFYlBhugrNb5dYw=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0g0YsQ9OIxonlAsoTZyWwyZHZ2nekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2Mxt5bd3dvf2CweHDROnmvE6i2WsWwE1XArF6yhQ8laiOY0CyZvB8GbqN5+4NiJWDzhKuB/RvhKhYBStdP94Ve4Wim7JnYEsEy8jRchQ6xa+Or2YpRFXyCQ1pu25CfpjqlEwySf5Tmp4QtmQ9nnbUkUjbvzx7NQJObVKj4SxtqWQzNTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsfmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUS55lVLl7rxYvc7iyMExnMAZeHABVbiFGtSBQR+e4RXeHOm8OO/Ox7x1xclmjuAPnM8f0mONgw==</latexit>

q = 2

<latexit sha1_base64="8BiWsSnt/nVRMytXCqoZ0QhyEng=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0xKBHohePmAiS0IZsly1s2G6b3a0JNPwSLx40xqs/xZv/xgV6UPAlk7y8N5OZeUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshtgRTkTtK2Z5rSbSIqjgNPHYHw79x+fqFQsFg96klA/wkPBQkawNlLfLk+RxwTyMqfqVuverG9XnJqzAFonbk4qkKPVt7+8QUzSiApNOFaq5zqJ9jMsNSOczkpeqmiCyRgPac9QgSOq/Gxx+AydG2WAwliaEhot1N8TGY6UmkSB6YywHqlVby7+5/VSHV77GRNJqqkgy0VhypGO0TwFNGCSEs0nhmAimbkVkRGWmGiTVcmE4K6+vE469ZrbqDXuLyvNmzyOIpzCGVyAC1fQhDtoQRsIpPAMr/BmTa0X6936WLYWrHzmBP7A+vwBsEGR1A==</latexit>

z 2 {0, 1, 2}

[LM+2008] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, “Counter braids: A novel counter architecture
for per-flow measurement,” Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Annapolis, June 2008.
[RG2018] E. Rosnes and A. Graell i Amat, “Asymptotic analysis and spatial coupling of counter braids,” IEEE Transactions on
Information Theory, vol. 64, no. 11, 2018.
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Local Decoding with q-ary Variables
Extension of the erasure decoder to q > 1:
▶ messages: µ ∈ {0,q,?}
▶ Problem: can still only resolve s = 0 and s = dc, no gain with q

APP decoding (SISO):
▶ messages are probability vectors µ = [P(z = 0),P(z = 1), . . . ,P(z = q)], computed in a trellis
▶ Problem: complexity grows rapidly with degree dc (even for q = 1)

Proposed decoder: motivated by works on counter braids [LM+2008][RG2018]
▶ messages µ = [L,U] consist of lower bound L and upper bound U on z ∈ {0, . . . ,q}
▶ complexity similar to erasure decoding, performance improves with larger q

v v
<latexit sha1_base64="Pt2VBvY3gT2Tsw9FvvB6PwNcwFQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1Ku1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOzTjQk=</latexit>z

<latexit sha1_base64="gfDDG5HdC2uj59mXU+2xx3lABwE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBfi+MwA==</latexit>

1
<latexit sha1_base64="gfDDG5HdC2uj59mXU+2xx3lABwE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBfi+MwA==</latexit>

1
<latexit sha1_base64="2fvfthwg1mRLBhwA3jth0GTm+tU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9IvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XG1el2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH+zjME=</latexit>

2

<latexit sha1_base64="Ya/mh0qhuZdAXP1IUvwOaq15OXA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00oO5rvSKJbfszkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYZX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSvCh71XL1vlKq3WRx5OEETuEcPLiEGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MH2HeNhw==</latexit>

s = 4
<latexit sha1_base64="QrIxhBkmb9+I5zBtxx0hSrZrOnU=">AAACDXicbVDLSsNAFJ34rPUVdelmsAoupCRFqhuh6MZlBfuAJITJdNIOnUzCzESpIT/gxl9x40IRt+7d+TdO0y609cCFwzn3cu89QcKoVJb1bSwsLi2vrJbWyusbm1vb5s5uW8apwKSFYxaLboAkYZSTlqKKkW4iCIoCRjrB8Grsd+6IkDTmt2qUEC9CfU5DipHSkm8eulHqZxi6gvYHCgkR30M3Qmogw+whzy8c+6Tm+WbFqloF4Dyxp6QCpmj65pfbi3EaEa4wQ1I6tpUoL0NCUcxIXnZTSRKEh6hPHE05ioj0suKbHB5ppQfDWOjiChbq74kMRVKOokB3FofOemPxP89JVXjuZZQnqSIcTxaFKYMqhuNoYI8KghUbaYKwoPpWiAdIIKx0gGUdgj378jxp16p2vVq/Oa00LqdxlMA+OADHwAZnoAGuQRO0AAaP4Bm8gjfjyXgx3o2PSeuCMZ3ZA39gfP4AeSKb0A==</latexit>

µc!z = [1, 2]

<latexit sha1_base64="na85i05JTccxUwZRYWdMpqdvBv8=">AAACFnicbVDLSsNAFJ34rPUVdelmsAgutCQi1Y1QdOOygn1AE8JkOmmHTiZhZqLUkK9w46+4caGIW3Hn3zhNI2jrgQuHc+7l3nv8mFGpLOvLmJtfWFxaLq2UV9fWNzbNre2WjBKBSRNHLBIdH0nCKCdNRRUjnVgQFPqMtP3h5dhv3xIhacRv1Cgmboj6nAYUI6UlzzxywsRLnRCpgQzS+ww6gvYHCgkR3cEfGWfZedc6tF3PrFhVKwecJXZBKqBAwzM/nV6Ek5BwhRmSsmtbsXJTJBTFjGRlJ5EkRniI+qSrKUchkW6av5XBfa30YBAJXVzBXP09kaJQylHo68780GlvLP7ndRMVnLkp5XGiCMeTRUHCoIrgOCPYo4JgxUaaICyovhXiARIIK51kWYdgT788S1rHVbtWrV2fVOoXRRwlsAv2wAGwwSmogyvQAE2AwQN4Ai/g1Xg0no03433SOmcUMzvgD4yPbzLAn/8=</latexit>

µz!c = [0, 1] <latexit sha1_base64="/gnB9lm8Fm1+YfXBptrekE1anFE=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwoSUpUt0IRTcuK9gHJCFMppN26OTBzESpIV/hxl9x40IRt+LOv3GaRtDWAxcO59zLvfd4MaNCGsaXVlpYXFpeKa9W1tY3Nrf07Z2OiBKOSRtHLOI9DwnCaEjakkpGejEnKPAY6Xqjy4nfvSVc0Ci8keOYOAEahNSnGEklufqxHSRuagdIDoWf3mfQ5nQwlIjz6A7+yDjLzi3zqO64etWoGTngPDELUgUFWq7+afcjnAQklJghISzTiKWTIi4pZiSr2IkgMcIjNCCWoiEKiHDS/K0MHiilD/2IqwolzNXfEykKhBgHnurMD531JuJ/npVI/8xJaRgnkoR4ushPGJQRnGQE+5QTLNlYEYQ5VbdCPEQcYamSrKgQzNmX50mnXjMbtcb1SbV5UcRRBntgHxwCE5yCJrgCLdAGGDyAJ/ACXrVH7Vl7096nrSWtmNkFf6B9fAM1zKAB</latexit>

µz!c = [1, 2]

Example:
<latexit sha1_base64="5db6xStraX6MPFYlBhugrNb5dYw=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0g0YsQ9OIxonlAsoTZyWwyZHZ2nekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2Mxt5bd3dvf2CweHDROnmvE6i2WsWwE1XArF6yhQ8laiOY0CyZvB8GbqN5+4NiJWDzhKuB/RvhKhYBStdP94Ve4Wim7JnYEsEy8jRchQ6xa+Or2YpRFXyCQ1pu25CfpjqlEwySf5Tmp4QtmQ9nnbUkUjbvzx7NQJObVKj4SxtqWQzNTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsfmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUS55lVLl7rxYvc7iyMExnMAZeHABVbiFGtSBQR+e4RXeHOm8OO/Ox7x1xclmjuAPnM8f0mONgw==</latexit>

q = 2

<latexit sha1_base64="8BiWsSnt/nVRMytXCqoZ0QhyEng=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0xKBHohePmAiS0IZsly1s2G6b3a0JNPwSLx40xqs/xZv/xgV6UPAlk7y8N5OZeUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshtgRTkTtK2Z5rSbSIqjgNPHYHw79x+fqFQsFg96klA/wkPBQkawNlLfLk+RxwTyMqfqVuverG9XnJqzAFonbk4qkKPVt7+8QUzSiApNOFaq5zqJ9jMsNSOczkpeqmiCyRgPac9QgSOq/Gxx+AydG2WAwliaEhot1N8TGY6UmkSB6YywHqlVby7+5/VSHV77GRNJqqkgy0VhypGO0TwFNGCSEs0nhmAimbkVkRGWmGiTVcmE4K6+vE469ZrbqDXuLyvNmzyOIpzCGVyAC1fQhDtoQRsIpPAMr/BmTa0X6936WLYWrHzmBP7A+vwBsEGR1A==</latexit>

z 2 {0, 1, 2}

[LM+2008] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, “Counter braids: A novel counter architecture
for per-flow measurement,” Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Annapolis, June 2008.
[RG2018] E. Rosnes and A. Graell i Amat, “Asymptotic analysis and spatial coupling of counter braids,” IEEE Transactions on
Information Theory, vol. 64, no. 11, 2018.
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Local Decoding with q-ary Variables
Extension of the erasure decoder to q > 1:
▶ messages: µ ∈ {0,q,?}
▶ Problem: can still only resolve s = 0 and s = dc, no gain with q

APP decoding (SISO):
▶ messages are probability vectors µ = [P(z = 0),P(z = 1), . . . ,P(z = q)], computed in a trellis
▶ Problem: complexity grows rapidly with degree dc (even for q = 1)

Proposed decoder: motivated by works on counter braids [LM+2008][RG2018]
▶ messages µ = [L,U] consist of lower bound L and upper bound U on z ∈ {0, . . . ,q}
▶ complexity similar to erasure decoding, performance improves with larger q

v v
<latexit sha1_base64="Pt2VBvY3gT2Tsw9FvvB6PwNcwFQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1Ku1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOzTjQk=</latexit>z

<latexit sha1_base64="gfDDG5HdC2uj59mXU+2xx3lABwE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBfi+MwA==</latexit>

1
<latexit sha1_base64="gfDDG5HdC2uj59mXU+2xx3lABwE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBfi+MwA==</latexit>

1
<latexit sha1_base64="2fvfthwg1mRLBhwA3jth0GTm+tU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9IvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XG1el2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH+zjME=</latexit>

2

<latexit sha1_base64="Ya/mh0qhuZdAXP1IUvwOaq15OXA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00oO5rvSKJbfszkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYZX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSvCh71XL1vlKq3WRx5OEETuEcPLiEGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MH2HeNhw==</latexit>

s = 4
<latexit sha1_base64="QrIxhBkmb9+I5zBtxx0hSrZrOnU=">AAACDXicbVDLSsNAFJ34rPUVdelmsAoupCRFqhuh6MZlBfuAJITJdNIOnUzCzESpIT/gxl9x40IRt+7d+TdO0y609cCFwzn3cu89QcKoVJb1bSwsLi2vrJbWyusbm1vb5s5uW8apwKSFYxaLboAkYZSTlqKKkW4iCIoCRjrB8Grsd+6IkDTmt2qUEC9CfU5DipHSkm8eulHqZxi6gvYHCgkR30M3Qmogw+whzy8c+6Tm+WbFqloF4Dyxp6QCpmj65pfbi3EaEa4wQ1I6tpUoL0NCUcxIXnZTSRKEh6hPHE05ioj0suKbHB5ppQfDWOjiChbq74kMRVKOokB3FofOemPxP89JVXjuZZQnqSIcTxaFKYMqhuNoYI8KghUbaYKwoPpWiAdIIKx0gGUdgj378jxp16p2vVq/Oa00LqdxlMA+OADHwAZnoAGuQRO0AAaP4Bm8gjfjyXgx3o2PSeuCMZ3ZA39gfP4AeSKb0A==</latexit>

µc!z = [1, 2]

<latexit sha1_base64="na85i05JTccxUwZRYWdMpqdvBv8=">AAACFnicbVDLSsNAFJ34rPUVdelmsAgutCQi1Y1QdOOygn1AE8JkOmmHTiZhZqLUkK9w46+4caGIW3Hn3zhNI2jrgQuHc+7l3nv8mFGpLOvLmJtfWFxaLq2UV9fWNzbNre2WjBKBSRNHLBIdH0nCKCdNRRUjnVgQFPqMtP3h5dhv3xIhacRv1Cgmboj6nAYUI6UlzzxywsRLnRCpgQzS+ww6gvYHCgkR3cEfGWfZedc6tF3PrFhVKwecJXZBKqBAwzM/nV6Ek5BwhRmSsmtbsXJTJBTFjGRlJ5EkRniI+qSrKUchkW6av5XBfa30YBAJXVzBXP09kaJQylHo68780GlvLP7ndRMVnLkp5XGiCMeTRUHCoIrgOCPYo4JgxUaaICyovhXiARIIK51kWYdgT788S1rHVbtWrV2fVOoXRRwlsAv2wAGwwSmogyvQAE2AwQN4Ai/g1Xg0no03433SOmcUMzvgD4yPbzLAn/8=</latexit>

µz!c = [0, 1] <latexit sha1_base64="/gnB9lm8Fm1+YfXBptrekE1anFE=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwoSUpUt0IRTcuK9gHJCFMppN26OTBzESpIV/hxl9x40IRt+LOv3GaRtDWAxcO59zLvfd4MaNCGsaXVlpYXFpeKa9W1tY3Nrf07Z2OiBKOSRtHLOI9DwnCaEjakkpGejEnKPAY6Xqjy4nfvSVc0Ci8keOYOAEahNSnGEklufqxHSRuagdIDoWf3mfQ5nQwlIjz6A7+yDjLzi3zqO64etWoGTngPDELUgUFWq7+afcjnAQklJghISzTiKWTIi4pZiSr2IkgMcIjNCCWoiEKiHDS/K0MHiilD/2IqwolzNXfEykKhBgHnurMD531JuJ/npVI/8xJaRgnkoR4ushPGJQRnGQE+5QTLNlYEYQ5VbdCPEQcYamSrKgQzNmX50mnXjMbtcb1SbV5UcRRBntgHxwCE5yCJrgCLdAGGDyAJ/ACXrVH7Vl7096nrSWtmNkFf6B9fAM1zKAB</latexit>

µz!c = [1, 2]

Example:
<latexit sha1_base64="5db6xStraX6MPFYlBhugrNb5dYw=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0g0YsQ9OIxonlAsoTZyWwyZHZ2nekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2Mxt5bd3dvf2CweHDROnmvE6i2WsWwE1XArF6yhQ8laiOY0CyZvB8GbqN5+4NiJWDzhKuB/RvhKhYBStdP94Ve4Wim7JnYEsEy8jRchQ6xa+Or2YpRFXyCQ1pu25CfpjqlEwySf5Tmp4QtmQ9nnbUkUjbvzx7NQJObVKj4SxtqWQzNTfE2MaGTOKAtsZURyYRW8q/ue1Uwwv/bFQSYpcsfmiMJUEYzL9m/SE5gzlyBLKtLC3EjagmjK06eRtCN7iy8ukUS55lVLl7rxYvc7iyMExnMAZeHABVbiFGtSBQR+e4RXeHOm8OO/Ox7x1xclmjuAPnM8f0mONgw==</latexit>

q = 2

<latexit sha1_base64="8BiWsSnt/nVRMytXCqoZ0QhyEng=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITD4S0xKBHohePmAiS0IZsly1s2G6b3a0JNPwSLx40xqs/xZv/xgV6UPAlk7y8N5OZeUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshtgRTkTtK2Z5rSbSIqjgNPHYHw79x+fqFQsFg96klA/wkPBQkawNlLfLk+RxwTyMqfqVuverG9XnJqzAFonbk4qkKPVt7+8QUzSiApNOFaq5zqJ9jMsNSOczkpeqmiCyRgPac9QgSOq/Gxx+AydG2WAwliaEhot1N8TGY6UmkSB6YywHqlVby7+5/VSHV77GRNJqqkgy0VhypGO0TwFNGCSEs0nhmAimbkVkRGWmGiTVcmE4K6+vE469ZrbqDXuLyvNmzyOIpzCGVyAC1fQhDtoQRsIpPAMr/BmTa0X6936WLYWrHzmBP7A+vwBsEGR1A==</latexit>

z 2 {0, 1, 2}

[LM+2008] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, “Counter braids: A novel counter architecture
for per-flow measurement,” Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Annapolis, June 2008.
[RG2018] E. Rosnes and A. Graell i Amat, “Asymptotic analysis and spatial coupling of counter braids,” IEEE Transactions on
Information Theory, vol. 64, no. 11, 2018.
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Message Passing between Bundles and TestsJOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, JUNE 2024 2

Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
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z!f = max

c2T (z)
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c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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f!x = max

8
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
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c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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f!x = max

8
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Test to bundle:
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{
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z′→c ,0

}
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,

Bundle to test:
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �
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x02N (f)\x
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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c!z = max
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
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z!f = max

c2T (z)
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c!z and U(`)
z!f = min

c2T (z)
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c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
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f!x = max
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Test to bundle:
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}
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �
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x02N (f)\x
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x0!f , 0
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)

Test to bundle:

L(ℓ)
c→z = max

{
s(c)− ∑

z′∈T (c)\z
U(ℓ−1)

z′→c ,0

}

U(ℓ)
c→z = min

{
s(c)− ∑

z′∈T (c)\z
L(ℓ−1)

z′→c ,q

}
,

Bundle to test:

L(ℓ)
z→c = max

{
max

c′∈T (z)\c
L(ℓ−1)

c′→z , L(ℓ)
f→z

}

U(ℓ)
z→c = min

{
min

c′∈T (z)\c
U(ℓ−1)

c′→z , U(ℓ)
f→z

}
.
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)

Test to item:

L(ℓ)
c→x =max

{
s(c)− ∑

x′∈T (c)\x
U(ℓ−1)

x′→c ,0

}

U(ℓ)
c→x =min

{
s(c)− ∑

x′∈T (c)\x
L(ℓ−1)

x′→c ,1

}
.

Item to test:

L(ℓ)
x→c =max

{
max

c′∈Ts(x)\c
L(ℓ−1)

c′→x ,L
(ℓ−1)
f→x

}

U(ℓ)
x→c =min

{
min

c′∈Ts(x)\c
U(ℓ−1)

c′→x ,U
(ℓ−1)
f→x

}
.
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min
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<
:U(`�1)
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x02N (f)\x
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x0!f , 1
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=
; , (7)
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max
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Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
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z!f = max
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c!z and U(`)
z!f = min
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)

Test to item:

L(ℓ)
c→x =max

{
s(c)− ∑

x′∈T (c)\x
U(ℓ−1)

x′→c ,0

}

U(ℓ)
c→x =min

{
s(c)− ∑

x′∈T (c)\x
L(ℓ−1)

x′→c ,1

}
.

Item to test:

L(ℓ)
x→c =max

{
max

c′∈Ts(x)\c
L(ℓ−1)

c′→x ,L
(ℓ−1)
f→x

}

U(ℓ)
x→c =min

{
min

c′∈Ts(x)\c
U(ℓ−1)

c′→x ,U
(ℓ−1)
f→x

}
.
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)

Test to item:

L(ℓ)
c→x =max

{
s(c)− ∑

x′∈T (c)\x
U(ℓ−1)

x′→c ,0

}

U(ℓ)
c→x =min

{
s(c)− ∑

x′∈T (c)\x
L(ℓ−1)

x′→c ,1

}
.

Item to test:

L(ℓ)
x→c =max

{
max

c′∈Ts(x)\c
L(ℓ−1)

c′→x ,L
(ℓ−1)
f→x

}

U(ℓ)
x→c =min

{
min

c′∈Ts(x)\c
U(ℓ−1)

c′→x ,U
(ℓ−1)
f→x

}
.
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
(`)
c!z, U(`)

c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is

L
(`)
z!f = max

c2T (z)
L(`)

c!z and U(`)
z!f = min

c2T (z)
U(`)

c!z . (5)

These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as

L
(`)
f!x = max

8
<
:L

(`�1)
z!f �

X

x02N (f)\x

U(`�1)
x0!f , 0

9
=
; (6)

U(`)
f!x = min

8
<
:U(`�1)

z!f �
X

x02N (f)\x

L
(`�1)
x0!f , 1

9
=
; , (7)

Bundle to item:

L(ℓ)
z→f = max

c∈T (z)
L(ℓ)

c→z and U(ℓ)
z→f = min

c∈T (z)
U(ℓ)

c→z .

L(ℓ)
f→x = max

{
L(ℓ−1)

z→f − ∑
x′∈N (f)\x

U(ℓ−1)
x′→f ,0

}

U(ℓ)
f→x = min

{
U(ℓ−1)

z→f − ∑
x′∈N (f)\x

L(ℓ−1)
x′→f ,1

}
,

Item to bundle:

L(ℓ)
x→f = max

c∈Ts(x)
L(ℓ−1)

c→x and U(ℓ)
x→f = min

c∈Ts(x)
U(ℓ−1)

c→x .

L(ℓ)
f→z = ∑

x∈N (f)
L(ℓ)

x→f and U(ℓ)
f→z = ∑

x∈N (f)
U(ℓ)

x→f .
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th
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tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
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the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
6666664

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

3
7777775

It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.
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As seen from the graph in Fig. 1 there are three interactions
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action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
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starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.
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symbol-wise MAP decoder based on the observed syndrome
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is selected.
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Fig. 1. Graphical representation of a system with q = 2, dc = 4, dv = 3,
dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
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1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
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It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th

iteration will thus be a pair of values [L
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c!z] given as

L(`)
c!z = max

8
<
:s(c) �

X

z02T (c)\z

U(`�1)
z0!c , 0

9
=
; (1)

U(`)
c!z = min

8
<
:s(c) �

X

z02T (c)\z

L
(`�1)
z0!c , q

9
=
; , (2)

The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
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From bundle to test we have

L(`)
z!c = max

⇢
max

c02T (z)\c
L

(`�1)
c0!z , L

(`)
f!z

�
(3)

U(`)
z!c = min

⇢
min

c02T (z)\c
U(`�1)

c0!z , U(`)
f!z

�
. (4)

Where L
(`)
f!z and U(`)

f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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z!f = max
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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dx = 1 and dz = 2. Tests are represented by square with a plus sign while
empty squares represents bundles.In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge
from a bundle to a test corresponds to two edges in the overall graph.

parts, sq(c) and sx(c), corresponding to the tests in CN z and
CN x respectively. Fig. 1 shows an example where by dv = 3,
dx = 1, dz = 2. The corresponding adjacency matrix A is
given by

A =

2
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1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
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It can be seen in the graph that z = f(x) =
P

i2T (f) xi. Where
T (f) is a set of items grouped to the bundle f . We thus have
extra constraints f and variables z which are hidden.

Since the number of edges has from VNs must be equal
to number of edges from CNs for both parts of the graph,
we have mxdc = ndx and mzdc = ndz This implies m can
be split by the ratio mx/mz = dx/dz . We can thus set dx

and dz and obtain the corresponding number of tests in each
part. Furthermore the check node degree must be a factor of
q i.e dc/q = dq and dq is an integer. It can be observed that
the operation of the tests is oblivious to the bundles but the
decoder can take advantage of this knowledge.

III. MESSAGE PASSING DECODER

As seen from the graph in Fig. 1 there are three interactions
in the message passing decoder. One is a test-bundle inter-
action whereby tests in CN z pass messages to the bundles
and vice-versa. The second part is the bundle-item interaction
whereby the bundles pass messages to items and vice-versa.
The third part is the test-items interaction where by the tests
in CN x exchange messages with items. We use a scheduling
whereby the messages are first passed from the tests in CN z to
bundles then from bundles to items followed by items passing
messages to tests in CN x. This is then followed by the reverse
starting from the test in CN x to items and so on. We proceed
to describe the message passed between components in the
graph. The description does not however follow the order used
in the schedule but is focused on the interacting components.

A. Bundle-Test messages

In the tests-bundle interaction the optimal decoder is a
symbol-wise MAP decoder based on the observed syndrome

vector sq(c) from the mz tests in CN z. This can be solved by
message passing on a graph. The complexity of the symbol-
wise MAP decoder, however, grows quite rapidly with the
check node degree dc. To reduce complexity, we use a hard
decision decoder similar to one used in [14] for counter
braids (with some minor modifications). The simplification is
achieved by neglecting the actual distribution of the value of a
bundle and assign a uniform distribution from some minimum
value to a maximum value. This means that instead of passing
a vector with q + 1 entries, the decoder passes the lower
and upper bounds only. For convenience we use L-bound and
U-bound for the lower and upper bound respectively.

The message passed from test c to a bundle z during an `th
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The L-bound from a test to a bundle is obatined by assuming
that all other bundles take their U-bounds while the U-bound
is obtained by assuming a minimum value to each of the other
bundles.

From bundle to test we have
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Where L
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f!z are the L-bound and U-bound respec-
tively as computed from the q component items. A bundle
computes its L-bound to send to a test by comparing all the
L-bounds from other dz � 1 tests and the one computed from
the q items connected to it selecting the maximum. The same
is done for the U-bound where the minimum of the U-bounds
is selected.

Each bundle also computes the L-bound and U-bound (L(`)
z!f

and U(`)
z!f ) from all the tests connected to it. That is
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z!f = max
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These are then used by the constraint node f in the bundle-item
iterations.

B. Bundle-Item messages

In the bundle-item interaction the massage passed from a
bundle f to an item x is a pair of integers given as
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4 2 0.590 0.660 0.694 0.706 0.702
5 2 0.592 0.672 0.725 0.746 0.744

10 3 0.549 0.636 0.693 0.774 0.694
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Minimum Rate Ωth for a Fixed γ
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Minimum Rate Ωth for a Fixed γ

Consider a smaller range:
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q = 4
q = 5
q = 10
q = 1 (binary)

Ω
∗
th =

dv

dc
=

m
n

(smaller is better)

Observe:
best q depends on range of γ
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Group Testing with Spatial Coupling
▶ Classical approach: test each block of items separately

▶ Spatial Coupling: Interconnect blocks (motivated by results in coding theory)

memory ω = 1
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Spatial coupling: Performance for Fixed Rate (q = 1)

Table: γth for Ω = 5% with GLDPC Code-Based

t dv ω = 0 ω = 1 ω = 5 ω = 10

1
3 0.3708 0.4166 0.4166 0.4166
4 0.3510 0.4395 0.4425 0.4425

3
3 0.3189 0.4257 0.4379 0.4395
4 0.2441 0.3662 0.4028 0.4028

5
3 0.2686 0.3784 0.4089 0.4089
4 0.2014 0.3159 0.3769 0.3769

■ n = 153 000, L = 200, ω = 5

■ solid(coupled) dashed(uncoupled)
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Proving threshold saturation: minimum Ω for a fixed γ (q = 1)
▶ Vector admissible system: [YED2012] a recursion (f,g) with

x(ℓ) = f
(

g(x(ℓ−1));ε

)
, x(0) = 1 , ε ∈ [0,1]

where f(x) = [f1(x), · · · , fd(x)] and g(x) = [g1(x), · · · ,gd(x)] are twice continuously
differentiable and strictly increasing in all arguments.

▶ Setting ε = 1− 1
dc

we get from density evolution equations:

f(y0,y1;ε) =
[
1− (1− y1)

ε

1−ε , 1− (1− y0)
ε

1−ε

]

g(x0,x1) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]

▶ Threshold saturation occurs

▶ The potential function is then given as

U(x;ε) =
∫ 1

0

((
z(λ )− f(g(z(λ ));ε)

)
Dg′(z(λ ))

)
· z′(λ )dλ

[YED2012] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of threshold saturation for coupled
vector recursions,” inProc. IEEE Inf. Theory Workshop (ITW), 2012.
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Potential function (q = 1)

U(x;ε) =(1−p)xdv−1
1


(1− ε)

1−
(

1−pxdv−1
2

) 1
1−ε

pxdv−1
2

+
(dv −1)

dv
x1 −1




+pxdv−1
2


(1− ε)

1−
(

1− (1−p)xdv−1
2

) 1
1−ε

(1−p)xdv−1
1

+
(dv −1)

dv
x2 −1




Potential threshold:

ε
∗ = sup{ε ∈ [0,1] |min

x
U(x;ε)≥ 0} .
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dv = 6, γ = 1% with ε∗ = 0.9924. U(x;ε) is above the z = 0 plane since ε = 0.9667 < ε∗.
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Potential thresholds (q = 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

4

5

6

7

8

9

10

11

γ [%]

Ω
∗ th

[%
]

dv = 3
dv = 4
dv = 5
dv = 6
dv = 7
dv = 10
dv = 15

Ω
∗
th =

dv

dc
= dv(1− ε

∗) .

ε
∗ = sup{ε ∈ [0,1] |min

x
U(x;ε)≥ 0} .

The minimum rate Ω∗
th for a fixed γ computed from the potential threshold ε∗.
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Conclusions and Outlook

Conclusions
▶ Using a simple LDPC code significantly outperforms a GLDPC construction
▶ We can measure the performance by two different approaches

■ Fixing the proportion γ and determining minimum rate Ω

■ Fixing the rate, Ω and determining the maximum γ

with t-error-correcting component code

▶ Bundling of tests: non-binary messages can further improve performance

▶ With spatial coupling we can improve the performance of the binary scheme
▶ Threshold saturation: with coupling the BP decoder achieves the potential threshold

Outlook
▶ Spatial coupling with q-bundles
▶ Looking at soft message passing
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