LDPC Codes for Quantitative Group Testing with a Non-Binary Alphabet

Michael Lentmaier ${ }^{\dagger}$
Joint work with Mgeni Makambi Mashauri ${ }^{\dagger}$ and Alexandre Graell i Amat ${ }^{\ddagger}$
\dagger Department of Electrical and Information Technology, Lund University, Sweden
\ddagger Department of Electrical Engineering, Chalmers University of Technology, Sweden

Munich Workshop on Shannon Coding Techniques
TUM, April 5, 2024

Background: Group Testing

- We have a large population of items

Background: Group Testing

- We have a large population of items
- Very few of them are "defective" (probability of being defective, γ is very small)

- Goal: Identify \boldsymbol{x} : defective $\left(x_{i}=1\right)$, non-defective $\left(x_{i}=0\right)$

Background: Group Testing

- We have a large population of items
- Very few of them are "defective" (probability of being defective, γ is very small)

- Goal: Identify \boldsymbol{x} : defective $\left(x_{i}=1\right)$, non-defective $\left(x_{i}=0\right)$
- To reduce the number of tests: test the items in groups (pooling) [Dorfman1943]
- Rate, $\Omega=\frac{m}{n}$ (smaller is better)

Background: Group Testing

- We have a large population of items
- Very few of them are "defective" (probability of being defective, γ is very small)

- Goal: Identify \boldsymbol{x} : defective $\left(x_{i}=1\right)$, non-defective $\left(x_{i}=0\right)$
- To reduce the number of tests: test the items in groups (pooling) [Dorfman1943]
- Rate, $\Omega=\frac{m}{n}$ (smaller is better)
- Adaptive vs non-adaptive test design

Background: Group Testing

- We have a large population of items
- Very few of them are "defective" (probability of being defective, γ is very small)

- Goal: Identify \boldsymbol{x} : defective ($x_{i}=1$), non-defective ($x_{i}=0$)
- To reduce the number of tests: test the items in groups (pooling) [Dorfman1943]
- Rate, $\Omega=\frac{m}{n}$ (smaller is better)
- Adaptive vs non-adaptive test design
- We consider the asymptotic regime: $n \rightarrow \infty$

Background: Graphical Representation

- For non-adaptive group testing the pooling can be represented by a test matrix \boldsymbol{A}

$$
\left.\begin{array}{rl}
\boldsymbol{A}=\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \\
& x_{1} \\
x_{2} & x_{3}
\end{array} x_{4} x_{5} x_{6}\right) ~ .
$$

Background: Graphical Representation

- For non-adaptive group testing the pooling can be represented by a test matrix \boldsymbol{A}

$$
\left.\begin{array}{rl}
\boldsymbol{A}=\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \\
& x_{1} \\
x_{2} & x_{3}
\end{array} x_{4} x_{5} x_{6}\right) ~ .
$$

- The matrix can be represented by a bipartite graph G

- We consider the scenario where the graph is sparse

Non-quantitative vs Quantitative

- Non-quantitative: test result, $s_{i}=1$ if at least one item is defective otherwise $s_{i}=0$ (logical OR)

$$
\left(00\right.
$$

Non-quantitative vs Quantitative

- Non-quantitative: test result, $s_{i}=1$ if at least one item is defective otherwise $s_{i}=0$ (logical OR)

$$
\left(\begin{array}{cccccc}
\circ & \bullet & \circ & \circ & \circ & \circ \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- For quantitative group testing, a test result shows the number of defective items

$$
s_{i}=\sum_{j=1}^{n} x_{j} a_{i j} \rightarrow s=A x
$$

Quantitative Group Testing with Sparse Graphs: Prior work

- The test results show the number of defectives
- Best known scheme with sparse graph uses GLDPC [KAR2019]

$$
\boldsymbol{U}=\left(\right)
$$

- A t-error-correcting BCH code is used as a component code
- An additional row of ones to identify \# of defective items

Quantitative Group Testing with Sparse Graphs: Prior work

- The test results show the number of defectives
- Best known scheme with sparse graph uses GLDPC [KAR2019]
- A t-error-correcting BCH code is used as a component code
- An additional row of ones to identify \# of defective items

Quantitative Group Testing with Sparse Graphs: Prior work

- The test results show the number of defectives
- Best known scheme with sparse graph uses GLDPC [KAR2019]
- A t-error-correcting BCH code is used as a component code
- An additional row of ones to identify \# of defective items

Prior Work

- Density Evolution

For each iteration ℓ
$q^{(\ell)}$: probability a test sends resolved to item
$p^{(\ell)}$: probability a defective item is unresolved

Test to item:

$$
q^{(\ell)}=\sum_{i=0}^{t-1}\binom{d_{\mathrm{c}}-1}{i}\left(p^{(\ell-1)}\right)^{i}\left(1-p^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
$$

Item to test:

$$
p^{(\ell)}=\gamma\left(1-q^{(\ell-1)}\right)^{d_{v}-1}
$$

Prior Work

- Density Evolution

For each iteration ℓ
$q^{(\ell)}$: probability a test sends resolved to item $p^{(\ell)}$: probability a defective item is unresolved

Test to item:

$$
q^{(\ell)}=\sum_{i=0}^{t-1}\binom{d_{\mathrm{C}}-1}{i}\left(p^{(\ell-1)}\right)^{i}\left(1-p^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
$$

Item to test:

$$
p^{(\ell)}=\gamma\left(1-q^{(\ell-1)}\right)^{d_{v}-1}
$$

- Small number of tests for a large population size

Prior Work

- Density Evolution

For each iteration ℓ
$q^{(\ell)}$: probability a test sends resolved to item $p^{(\ell)}$: probability a defective item is unresolved

Test to item:

$$
q^{(\ell)}=\sum_{i=0}^{t-1}\binom{d_{\mathrm{C}}-1}{i}\left(p^{(\ell-1)}\right)^{i}\left(1-p^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
$$

Item to test:

$$
p^{(\ell)}=\gamma\left(1-q^{(\ell-1)}\right)^{d_{v}-1}
$$

- Small number of tests for a large population size
- Increasing t improves error correction
- Penalized by increasing number of tests

$$
m=n \frac{d_{v}}{d_{\mathrm{c}}}\left(t\left\lceil\log _{2}\left(d_{\mathrm{c}}+1\right)\right\rceil+1\right)
$$

Prior Work

- Density Evolution

For each iteration ℓ
$q^{(\ell)}$: probability a test sends resolved to item $p^{(\ell)}$: probability a defective item is unresolved

Test to item:

$$
q^{(\ell)}=\sum_{i=0}^{t-1}\binom{d_{\mathrm{C}}-1}{i}\left(p^{(\ell-1)}\right)^{i}\left(1-p^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
$$

Item to test:

$$
p^{(\ell)}=\gamma\left(1-q^{(\ell-1)}\right)^{d_{v}-1}
$$

- Small number of tests for a large population size
- Increasing t improves error correction
- Penalized by increasing number of tests

$$
m=n \frac{d_{\mathrm{v}}}{d_{\mathrm{c}}}\left(t\left\lceil\log _{2}\left(d_{\mathrm{c}}+1\right)\right\rceil+1\right)
$$

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability
- We can observe and utilize two events
- Syndrome equal zero:
$s_{i}^{(\ell)}=0$
Infer all items as 0 (non-defective)
- Syndrome equals test degree: $s_{i}^{(\ell)}=d_{\mathrm{c}}^{(\ell)}$ Infer all items as 1 (defective)

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability
- We can observe and utilize two events
- Syndrome equal zero:

$$
s_{i}^{(\ell)}=0
$$

Infer all items as 0 (non-defective)

- Syndrome equals test degree: $\quad s_{i}^{(\ell)}=d_{\mathrm{c}}^{(\ell)}$ Infer all items as 1 (defective)

?	?	?	?	?	?	$s^{(1)}$	$d_{\text {c }}{ }^{(1)}$
\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc		
0		1	1	1		3	3
1	1	0	1	0	0	2	3
0	1	1	0	1	0	2	3
1	0	1	0		1	2	3

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability
- We can observe and utilize two events
- Syndrome equal zero:

$$
{ }_{i}^{(\ell)}=0
$$

Infer all items as 0 (non-defective)

- Syndrome equals test degree: $\quad s_{i}^{(\ell)}=d_{\mathrm{c}}^{(\ell)}$

Infer all items as 1 (defective)

- We then peel off resolved items (reducing the syndrome accordingly)

?	?	1	1	1	?	$s^{(1)}$	$d_{\mathrm{c}}{ }^{(1)}$
\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc		
0	0	1	1	1		3	3
1	1	0	1	0	0	2	3
0	1	1	0	1	0	2	3
1	0	1	0	0	1	2	3

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability
- We can observe and utilize two events
- Syndrome equal zero:

$$
s_{i}^{(\ell)}=0
$$

Infer all items as 0 (non-defective)

- Syndrome equals test degree: $\quad s_{i}^{(\ell)}=d_{\mathrm{c}}^{(\ell)}$

Infer all items as 1 (defective)

- We then peel off resolved items (reducing the syndrome accordingly)
- This is repeated until no item to peel

?	0	1	1	1	?	$s^{(2)}$	$d_{\mathrm{c}}^{(2)}$
-	\bigcirc				\bigcirc		
$\text { / } 1$						1	2
0	1				0	0	1
1	0				1	1	2

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability
- We can observe and utilize two events
- Syndrome equal zero:

$$
s_{i}^{(\ell)}=0
$$

Infer all items as 0 (non-defective)

- Syndrome equals test degree: $\quad s_{i}^{(\ell)}=d_{\mathrm{c}}^{(\ell)}$

Infer all items as 1 (defective)

- We then peel off resolved items (reducing the syndrome accordingly)
- This is repeated until no item to peel

1	0	1	1	1	?			
\bigcirc					\bigcirc	$s^{(3)}$		$d_{\mathrm{c}}{ }^{(3)}$
1)			
1					0	1	1	1
1					1	1	1	2

Proposed scheme: Group Testing with LDPC

- With $t=0$ we loose local error correcting capability
- We can observe and utilize two events
- Syndrome equal zero:

```
                        si
```

 Infer all items as 0 (non-defective)
 ■ Syndrome equals test degree: $s_{i}^{(\ell)}=d_{\mathrm{c}}^{(\ell)}$
Infer all items as 1 (defective)

- We then peel off resolved items (reducing the syndrome accordingly)
- This is repeated until no item to peel

$$
\begin{array}{llllll}
1 & 0 & 1 & 1 & 1 & 0
\end{array}
$$

Density Evolution

- $p_{1}^{(\ell)}$: probability that a message from a defective is unresolved
- $q_{0}^{(\ell)}$: probability that a message to a non-defective is resolved
- $p_{0}^{(\ell)}$: probability a message from non-defective is unresolved
- $q_{1}^{(\ell)}$: probability that a message to a defective is resolved

From test to item

$$
\begin{aligned}
& q_{0}^{(\ell)}=\sum_{i=0}^{d_{\mathrm{c}}-1}\binom{d_{\mathrm{C}}-1}{i} \gamma^{i}(1-\gamma)^{d_{\mathrm{c}}-1-i}\left(1-p_{1}^{(\ell-1)}\right)^{i} \\
& q_{1}^{(\ell)}=\sum_{i=0}^{d_{\mathrm{c}}-1}\binom{d_{\mathrm{C}}-1}{i} \gamma^{i}(1-\gamma)^{d_{\mathrm{c}}-1-i}\left(1-p_{0}^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
\end{aligned}
$$

Density Evolution

- $p_{1}^{(\ell)}$: probability that a message from a defective is unresolved
- $q_{0}^{(\ell)}$: probability that a message to a non-defective is resolved
- $p_{0}^{(\ell)}$: probability a message from non-defective is unresolved
- $q_{1}^{(\ell)}$: probability that a message to a defective is resolved

From test to item

$$
\begin{aligned}
& q_{0}^{(\ell)}=\sum_{i=0}^{d_{\mathrm{c}}-1}\binom{d_{\mathrm{C}}-1}{i} \gamma^{i}(1-\gamma)^{d_{\mathrm{c}}-1-i}\left(1-p_{1}^{(\ell-1)}\right)^{i} \\
& q_{1}^{(\ell)}=\sum_{i=0}^{d_{\mathrm{c}}-1}\binom{d_{\mathrm{C}}-1}{i} \gamma^{i}(1-\gamma)^{d_{\mathrm{c}}-1-i}\left(1-p_{0}^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
\end{aligned}
$$

Density Evolution

- $p_{1}^{(\ell)}$: probability that a message from a defective is unresolved
- $q_{0}^{(\ell)}$: probability that a message to a non-defective is resolved
- $p_{0}^{(\ell)}$: probability a message from non-defective is unresolved
- $q_{1}^{(l)}$: probability that a message to a defective is resolved

From test to item

$$
\begin{aligned}
& q_{0}^{(\ell)}=\sum_{i=0}^{d_{\mathrm{c}}-1}\binom{d_{\mathrm{C}}-1}{i} \gamma^{i}(1-\gamma)^{d_{\mathrm{c}}-1-i}\left(1-p_{1}^{(\ell-1)}\right)^{i} \\
& q_{1}^{(\ell)}=\sum_{i=0}^{d_{\mathrm{c}}-1}\binom{d_{\mathrm{C}}-1}{i} \gamma^{i}(1-\gamma)^{d_{\mathrm{c}}-1-i}\left(1-p_{0}^{(\ell-1)}\right)^{d_{\mathrm{c}}-1-i}
\end{aligned}
$$

From item to test

$$
\begin{aligned}
& p_{0}^{(\ell)}=\left(1-q_{0}^{(\ell-1)}\right)^{d_{v}-1} \\
& p_{1}^{(\ell)}=\left(1-q_{1}^{(\ell-1)}\right)^{d_{v}-1} .
\end{aligned}
$$

Performance Comparison

- We consider two scenarios
- Fixing the proportion of defective items γ and changing the rate $\Omega=\frac{m}{n}$

Performance Comparison

- We consider two scenarios
- Fixing the proportion of defective
items γ and changing the rate $\Omega=\frac{m}{n}$

- Same as in previous work [KAR2019]

Performance Comparison

- We consider two scenarios
- Fixing the proportion of defective items γ and changing the rate $\Omega=\frac{m}{n}$

- Same as in previous work [KAR2019]

Minimum rate required for a fixed γ

Performance Comparison

- We consider two scenarios
- Fixing the proportion of defective items γ and changing the rate $\Omega=\frac{m}{n}$

- Same as in previous work [KAR2019]
- Fixing the rate Ω and changing γ

Minimum rate required for a fixed γ

Performance Comparison

- We consider two scenarios
- Fixing the proportion of defective items γ and changing the rate $\Omega=\frac{m}{n}$

- Same as in previous work [KAR2019]

■ Fixing the rate Ω and changing γ

- A new perspective considering A (code) as fixed

Minimum rate required for a fixed γ

Performance Comparison: Fixed Rate, $\Omega=5 \%$

Table: GLDPC Based

t	d_{v}	$\gamma_{\text {th }}$
1	2	0.2487
	3	0.3708
	4	0.3510
2	2	0.3983
	3	0.3372
	4	0.2884
3	2	0.3784
	3	0.3189
	4	0.2441
	2	0.3418
5	3	0.2686
	4	0.2014

Performance Comparison: Fixed Rate, $\Omega=5 \%$

Table: GLDPC Based

t	d_{v}	$\gamma_{\text {th }}$
1	2	0.2487
	3	0.3708
	4	0.3510
2	2	0.3983
	3	0.3372
	4	0.2884
3	2	0.3784
	3	0.3189
	4	0.2441
	2	0.3418
5	3	0.2686
	4	0.2014

Table: LDPC Based

d_{v}	$\gamma_{\text {th }}$
3	0.4555
4	0.5982
5	0.6416
6	0.6464
7	0.6353
10	0.5773

Performance Comparison: Fixed Rate, $\Omega=5 \%$

Table: GLDPC Based

t	d_{V}	$\gamma_{\text {th }}$
1	2	0.2487
	3	0.3708
	4	0.3510
	2	0.3983
2	3	0.3372
	4	0.2884
	2	0.3784
3	3	0.3189
	4	0.2441
	2	0.3418
5	3	0.2686
	4	0.2014

Table: LDPC Based

d_{v}	$\gamma_{\text {th }}$
3	0.4555
4	0.5982
5	0.6416
6	0.6464
7	0.6353
10	0.5773

Performance Comparison: Fixed Rate, $\Omega=5 \%$

Table: GLDPC Based

t	d_{V}	$\gamma_{\text {th }}$
1	2	0.2487
	3	0.3708
	4	0.3510
	2	0.3983
2	3	0.3372
	4	0.2884
	2	0.3784
3	3	0.3189
	4	0.2441
	2	0.3418
5	3	0.2686
	4	0.2014

Table: LDPC Based

d_{v}	$\gamma_{\text {th }}$
3	0.4555
4	0.5982
5	0.6416
6	0.6464
7	0.6353
10	0.5773

Performance Comparison: Fixed Rate, $\Omega=5 \%$

Table: GLDPC Based		
t	d_{\vee}	$\gamma_{\text {th }}$
	2	0.2487
1	3	0.3708
	4	0.3510
	2	0.3983
	3	0.3372
	4	0.2884
	2	0.3784
3	3	0.3189
	4	0.2441
	2	0.3418
5	3	0.2686
	4	0.2014

Table: LDPC Based	
d_{v}	γ_{th}
3	0.4555
4	0.5982
5	0.6416
6	0.6464
7	0.6353
10	0.5773

Improved Decoding with a Non-Binary Alphabet

- Idea: for a subset of tests, items occur only in bundles of size q

Improved Decoding with a Non-Binary Alphabet

- Idea: for a subset of tests, items occur only in bundles of size q
Example: $d_{\mathrm{v}}=3, d_{\mathrm{C}}=4$

$$
\begin{aligned}
& \quad q=2 \\
& x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}
\end{aligned}
$$

Improved Decoding with a Non-Binary Alphabet

- Idea: for a subset of tests, items occur only in bundles of size q
Example: $d_{\mathrm{v}}=3, d_{\mathrm{C}}=4$

$$
x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} .2=2,
$$

- Value of a bundle $z \in\{0, \ldots, q\}$: sum of included items

Improved Decoding with a Non-Binary Alphabet

- Idea: for a subset of tests, items occur only in bundles of size q

Example: $d_{\mathrm{v}}=3, d_{\mathrm{C}}=4$

$$
\begin{aligned}
& \\
& x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}
\end{aligned}
$$

- Value of a bundle $z \in\{0, \ldots, q\}$: sum of included items
- Compatible with standard testing: only test matrix structure affected

Improved Decoding with a Non-Binary Alphabet

- Idea: for a subset of tests, items occur only in bundles of size q

Example: $d_{\mathrm{v}}=3, d_{\mathrm{C}}=4$

$$
x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} .2=2
$$

- Value of a bundle $z \in\{0, \ldots, q\}$: sum of included items
- Compatible with standard testing: only test matrix structure affected

Factor graph representation:

$$
\mathcal{C N}_{\mathbf{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

$$
\mathcal{C} \mathcal{N}_{x}=\left\{c_{5}, c_{6}\right\}
$$

Local Decoding with q-ary Variables

Extension of the erasure decoder to $q>1$:

- messages: $\mu \in\{0, q, ?\}$
- Problem: can still only resolve $s=0$ and $s=d_{\mathrm{C}}$, no gain with q

Local Decoding with q-ary Variables

Extension of the erasure decoder to $q>1$:

- messages: $\mu \in\{0, q, ?\}$
- Problem: can still only resolve $s=0$ and $s=d_{\mathrm{C}}$, no gain with q

APP decoding (SISO):

- messages are probability vectors $\mu=[P(z=0), P(z=1), \ldots, P(z=q)]$, computed in a trellis
- Problem: complexity grows rapidly with degree d_{C} (even for $q=1$)

Local Decoding with q-ary Variables

Extension of the erasure decoder to $q>1$:

- messages: $\mu \in\{0, q, ?\}$
- Problem: can still only resolve $s=0$ and $s=d_{\mathrm{C}}$, no gain with q

APP decoding (SISO):

- messages are probability vectors $\mu=[P(z=0), P(z=1), \ldots, P(z=q)]$, computed in a trellis
- Problem: complexity grows rapidly with degree d_{C} (even for $q=1$)

Proposed decoder: motivated by works on counter braids [LM+2008][RG2018]

- messages $\mu=[L, U]$ consist of lower bound L and upper bound U on $z \in\{0, \ldots, q\}$
- complexity similar to erasure decoding, performance improves with larger q
[LM+2008] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, "Counter braids: A novel counter architecture for per-flow measurement," Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Annapolis, June 2008.
[RG2018] E. Rosnes and A. Graell i Amat, "Asymptotic analysis and spatial coupling of counter braids," IEEE Transactions on Information Theory, vol. 64, no. 11, 2018.

Local Decoding with q-ary Variables

Extension of the erasure decoder to $q>1$:

- messages: $\mu \in\{0, q, ?\}$
- Problem: can still only resolve $s=0$ and $s=d_{\mathrm{C}}$, no gain with q

APP decoding (SISO):

- messages are probability vectors $\mu=[P(z=0), P(z=1), \ldots, P(z=q)]$, computed in a trellis
- Problem: complexity grows rapidly with degree d_{C} (even for $q=1$)

Proposed decoder: motivated by works on counter braids [LM+2008][RG2018]

- messages $\mu=[L, U]$ consist of lower bound L and upper bound U on $z \in\{0, \ldots, q\}$
- complexity similar to erasure decoding, performance improves with larger q

Example:

[LM+2008] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, "Counter braids: A novel counter architecture for per-flow measurement," Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Annapolis, June 2008.
[RG2018] E. Rosnes and A. Graell i Amat, "Asymptotic analysis and spatial coupling of counter braids," IEEE Transactions on Information Theory, vol. 64, no. 11, 2018.

Message Passing between Bundles and Tests

$$
\mathcal{C N}_{\mathrm{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

$$
\mathcal{C} \mathcal{N}_{x}=\left\{c_{5}, c_{6}\right\}
$$

Message Passing between Bundles and Tests

$$
\mathcal{C N}_{\mathrm{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

Test to bundle:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)}=\max \left\{s(\mathrm{c})-\sum_{\mathrm{z}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{z}} \mathrm{U}_{\mathrm{z}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, 0\right\} \\
& \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)}=\min \left\{s(\mathrm{c})-\sum_{\mathrm{z}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{z}} \mathrm{~L}_{\mathrm{z}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, q\right\},
\end{aligned}
$$

Message Passing between Bundles and Tests

$$
\mathcal{C N}_{\mathrm{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

Test to bundle:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)}=\max \left\{s(\mathrm{c})-\sum_{\mathrm{z}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{z}} \mathrm{U}_{\mathrm{z}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, 0\right\} \\
& \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)}=\min \left\{s(\mathrm{c})-\sum_{\mathrm{z}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{z}} \mathrm{~L}_{\mathrm{z}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, q\right\},
\end{aligned}
$$

Bundle to test:

$$
\begin{aligned}
& L_{z \rightarrow c}^{(\ell)}=\max \left\{\max _{\mathrm{c}^{\prime} \in \mathcal{T}(\mathrm{z}) \backslash \mathrm{c}} \mathrm{~L}_{\mathrm{c}^{\prime} \rightarrow \mathrm{z}}^{(\ell-1)},\right. \\
& \left.\mathrm{L}_{\mathrm{f} \rightarrow \mathrm{z}}^{(\ell)}\right\} \\
& \mathrm{U}_{\mathrm{z} \rightarrow \mathrm{c}}^{(\ell)}=\min \left\{\min _{\mathrm{c}^{\prime} \in \mathcal{T}(\mathrm{z}) \backslash \mathrm{c}} \mathrm{U}_{\mathrm{c}^{\prime} \rightarrow \mathrm{z}}^{(\ell-1)}, \quad \mathrm{U}_{\mathrm{f} \rightarrow \mathrm{z}}^{(\ell)}\right\}
\end{aligned}
$$

$$
\mathcal{C N} \mathcal{N}_{x}=\left\{c_{5}, c_{6}\right\}
$$

Message Passing between Items and Tests

Message Passing between Items and Tests

$$
\mathcal{C N}_{\mathrm{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

Test to item:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{x}}^{(\ell)}=\max \left\{s(\mathrm{c})-\sum_{\mathrm{x}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{x}} \mathrm{U}_{\mathrm{x}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, 0\right\} \\
& \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{x}}^{(\ell)}=\min \left\{s(\mathrm{c})-\sum_{\mathrm{x}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{x}} L_{\mathrm{x}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, 1\right\}
\end{aligned}
$$

Message Passing between Items and Tests

$$
\mathcal{C \mathcal { N } _ { \mathrm { z } }}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

$$
\mathcal{C} \mathcal{N}_{\mathrm{x}}=\left\{\mathrm{c}_{5}, \mathrm{c}_{6}\right\}
$$

Test to item:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{x}}^{(\ell)}=\max \left\{s(\mathrm{c})-\sum_{\mathrm{x}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{x}} \mathrm{U}_{\mathrm{x}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, 0\right\} \\
& \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{x}}^{(\ell)}=\min \left\{s(\mathrm{c})-\sum_{\mathrm{x}^{\prime} \in \mathcal{T}(\mathrm{c}) \backslash \mathrm{x}} L_{\mathrm{x}^{\prime} \rightarrow \mathrm{c}}^{(\ell-1)}, 1\right\} .
\end{aligned}
$$

Item to test:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{x} \rightarrow \mathrm{c}}^{(\ell)}=\max \left\{\max _{\mathrm{c}^{\prime} \in \mathcal{T}_{s}(\mathrm{x}) \backslash \mathrm{c}} L_{\mathrm{c}^{\prime} \rightarrow \mathrm{x}}^{(\ell-1)}, \mathrm{L}_{\mathrm{f} \rightarrow \mathrm{x}}^{(\ell-1)}\right\} \\
& \mathrm{U}_{\mathrm{x} \rightarrow \mathrm{c}}^{(\ell)}=\min \left\{\min _{\mathrm{c}^{\prime} \in \mathcal{T}_{s}(\mathrm{x}) \backslash \mathrm{c}} U_{\mathrm{c}^{\prime} \rightarrow \mathrm{x}}^{(\ell-1)}, \mathrm{U}_{\mathrm{f} \rightarrow \mathrm{x}}^{(\ell-1)}\right\}
\end{aligned}
$$

Message Passing between Bundles and Items

$$
\mathcal{C N}_{\mathrm{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

Message Passing between Bundles and Items

$$
\mathcal{C N _ { z }}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

Bundle to item:

$$
\begin{aligned}
& L_{z \rightarrow f}^{(\ell)}=\max _{\mathrm{c} \in \mathcal{T}(\mathrm{z})} \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)} \text { and } \mathrm{U}_{\mathrm{z} \rightarrow \mathrm{f}}^{(\ell)}=\min _{\mathrm{c} \in \mathcal{T}(\mathrm{z})} \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)} \\
& \mathrm{L}_{\mathrm{f} \rightarrow \mathrm{x}}^{(\ell)}=\max \left\{\mathrm{L}_{\mathrm{z} \rightarrow \mathrm{f}}^{(\ell-1)}-\sum_{x^{\prime} \in \mathcal{N}(f) \backslash x} \mathrm{U}_{x^{\prime} \rightarrow f}^{(\ell-1)}, 0\right\} \\
& \mathrm{U}_{\mathrm{f} \rightarrow \mathrm{x}}^{(\ell)}=\min \left\{\mathrm{U}_{\mathrm{z} \rightarrow \mathrm{f}}^{(\ell-1)}-\sum_{x^{\prime} \in \mathcal{N}(f) \backslash x} \mathrm{~L}_{x^{\prime} \rightarrow f}^{(\ell-1)}, 1\right\},
\end{aligned}
$$

Message Passing between Bundles and Items

$$
\mathcal{C} \mathcal{N}_{\mathrm{z}}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}
$$

$$
\mathcal{C} \mathcal{N}_{\times}=\left\{c_{5}, c_{6}\right\}
$$

Bundle to item:

$$
\begin{aligned}
& L_{z \rightarrow f}^{(\ell)}=\max _{\mathrm{c} \in \mathcal{T}(\mathrm{z})} \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)} \text { and } \mathrm{U}_{\mathrm{z} \rightarrow \mathrm{f}}^{(\ell)}=\min _{\mathrm{c} \in \mathcal{T}(\mathrm{z})} \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{z}}^{(\ell)} \\
& \mathrm{L}_{\mathrm{f} \rightarrow \mathrm{x}}^{(\ell)}=\max \left\{\mathrm{L}_{\mathrm{z} \rightarrow \mathrm{f}}^{(\ell-1)}-\sum_{\mathrm{x}^{\prime} \in \mathcal{N}(\mathrm{f}) \backslash \mathrm{x}} \mathrm{U}_{\mathrm{x}^{\prime} \rightarrow \mathrm{f}}^{(\ell-1)}, 0\right\} \\
& \mathrm{U}_{\mathrm{f} \rightarrow \mathrm{x}}^{(\ell)}=\min \left\{\mathrm{U}_{\mathrm{z} \rightarrow \mathrm{f}}^{(\ell-1)}-\sum_{x^{\prime} \in \mathcal{N}(f) \backslash x} \mathrm{~L}_{x^{\prime} \rightarrow f}^{(\ell-1)}, 1\right\}
\end{aligned}
$$

Item to bundle:

$$
\mathrm{L}_{\mathrm{x} \rightarrow \mathrm{f}}^{(\ell)}=\max _{\mathrm{c} \in \mathcal{T}_{s}(\mathrm{x})} \mathrm{L}_{\mathrm{c} \rightarrow \mathrm{x}}^{(\ell-1)} \text { and } \mathrm{U}_{\mathrm{x} \rightarrow \mathrm{f}}^{(\ell)}=\min _{\mathrm{c} \in \mathcal{T}_{s}(\mathrm{x})} \mathrm{U}_{\mathrm{c} \rightarrow \mathrm{x}}^{(\ell-1)} .
$$

$$
\mathrm{L}_{\mathrm{f} \rightarrow \mathrm{z}}^{(\ell)}=\sum_{\mathrm{x} \in \mathcal{N}(\mathrm{f})} \mathrm{L}_{\mathrm{x} \rightarrow \mathrm{f}}^{(\ell)} \text { and } \mathrm{U}_{\mathrm{f} \rightarrow \mathrm{z}}^{(\ell)}=\sum_{\mathrm{x} \in \mathcal{N}(\mathrm{f})} \mathrm{U}_{\mathrm{x} \rightarrow \mathrm{~h}}^{(\ell)}
$$

Performance Evaluation

Simulation results:
$n=210000$ items
Fixed rate $\Omega=5 \%$, i.e., $m=10500$ tests

Performance Evaluation

Simulation results:
$n=210000$ items
Fixed rate $\Omega=5 \%$, i.e., $m=10500$ tests

Performance Evaluation

Simulation results:
$n=210000$ items
Fixed rate $\Omega=5 \%$, i.e., $m=10500$ tests

Performance Evaluation

Simulation results:
$n=210000$ items
Fixed rate $\Omega=5 \%$, i.e., $m=10500$ tests

Performance Evaluation

Simulation results:
$n=210000$ items
Fixed rate $\Omega=5 \%$, i.e., $m=10500$ tests

Density evolution thresholds: $\gamma_{\text {th }}$

q	$d_{\mathrm{v}, \mathrm{x}}$	$d_{\mathrm{v}}=4$	$d_{\mathrm{v}}=5$	$d_{\mathrm{v}}=6$	$d_{\mathrm{v}}=7$	$d_{\mathrm{v}}=8$
1		0.598	0.641	0.646	0.635	0.618
4	2	0.590	0.660	0.694	0.706	0.702
5	2	0.592	0.672	0.725	0.746	0.744
10	3	0.549	0.636	0.693	0.774	0.694

Performance Evaluation

Simulation results:
$n=210000$ items
Fixed rate $\Omega=5 \%$, i.e., $m=10500$ tests

Density evolution thresholds: $\gamma_{\text {th }}$

q	$d_{\mathrm{v}, \mathrm{x}}$	$d_{\mathrm{v}}=4$	$d_{\mathrm{v}}=5$	$d_{\mathrm{v}}=6$	$d_{\mathrm{v}}=7$	$d_{\mathrm{v}}=8$
1		0.598	0.641	0.646	0.635	0.618
4	2	0.590	0.660	0.694	0.706	0.702
5	2	0.592	0.672	0.725	0.746	0.744
10	3	0.549	0.636	0.693	0.774	0.694

Minimum Rate Ω_{th} for a Fixed γ

$\Omega_{\mathrm{th}}^{*}=\frac{d_{\mathrm{v}}}{d_{\mathrm{c}}}=\frac{m}{n}$
(smaller is better)

Minimum Rate Ω_{th} for a Fixed γ

$\Omega_{\mathrm{th}}^{*}=\frac{d_{\mathrm{v}}}{d_{\mathrm{c}}}=\frac{m}{n}$
(smaller is better)

Minimum Rate Ω_{th} for a Fixed γ

$\Omega_{\mathrm{th}}^{*}=\frac{d_{\mathrm{v}}}{d_{\mathrm{c}}}=\frac{m}{n}$
(smaller is better)

Minimum Rate Ω_{th} for a Fixed γ

$\Omega_{\mathrm{th}}^{*}=\frac{d_{\mathrm{v}}}{d_{\mathrm{c}}}=\frac{m}{n}$
(smaller is better)

Minimum Rate Ω_{th} for a Fixed γ

Consider a smaller range:

$$
\Omega_{\mathrm{th}}^{*}=\frac{d_{\mathrm{v}}}{d_{\mathrm{c}}}=\frac{m}{n}
$$

(smaller is better)

Observe:

best q depends on range of γ

Group Testing with Spatial Coupling

- Classical approach: test each block of items separately

Group Testing with Spatial Coupling

- Classical approach: test each block of items separately

- Spatial Coupling: Interconnect blocks (motivated by results in coding theory)

Spatial coupling: Performance for Fixed Rate ($q=1$)
Table: γ_{th} for $\Omega=5 \%$ with GLDPC Code-Based

t	d_{v}	$\omega=0$	$\omega=1$	$\omega=5$	$\omega=10$
1	3	0.3708	0.4166	0.4166	0.4166
	4	0.3510	0.4395	0.4425	0.4425
3	3	0.3189	0.4257	0.4379	0.4395
	4	0.2441	0.3662	0.4028	0.4028
5	3	0.2686	0.3784	0.4089	0.4089
	4	0.2014	0.3159	0.3769	0.3769

Spatial coupling: Performance for Fixed Rate ($q=1$)
Table: $\gamma_{\text {th }}$ for $\Omega=5 \%$ with GLDPC Code-Based

t	d_{v}	$\omega=0$	$\omega=1$	$\omega=5$	$\omega=10$
1	3	0.3708	0.4166	0.4166	0.4166
	4	0.3510	0.4395	0.4425	0.4425
3	3	0.3189	0.4257	0.4379	0.4395
	4	0.2441	0.3662	0.4028	0.4028
5	3	0.2686	0.3784	0.4089	0.4089
	4	0.2014	0.3159	0.3769	0.3769

$\rightarrow-\operatorname{GLDPC} t=3, d_{\mathrm{v}}=3$
$\square n=153000, L=200, \omega=5$
■ solid(coupled) dashed(uncoupled)

Spatial coupling: Performance for Fixed Rate ($q=1$)

Table: $\gamma_{\text {th }}$ for $\Omega=5 \%$ with GLDPC Code-Based

t	d_{v}	$\omega=0$	$\omega=1$	$\omega=5$	$\omega=10$
1	3	0.3708	0.4166	0.4166	0.4166
	4	0.3510	0.4395	0.4425	0.4425
3	3	0.3189	0.4257	0.4379	0.4395
	4	0.2441	0.3662	0.4028	0.4028
5	3	0.2686	0.3784	0.4089	0.4089
	4	0.2014	0.3159	0.3769	0.3769

Table: $\gamma_{\text {th }}$ for $\Omega=5 \%$ with LDPC Code-Based

d_{\vee}	$\omega=0$	$\omega=1$	$\omega=5$	$\omega=10$
4	0.5982	0.8423	0.8540	0.8540
5	0.6416	0.9682	1.0274	1.0250
6	0.6464	1.0044	1.1325	1.1327
10	0.5773	0.9188	1.2814	1.2816

Spatial coupling: Performance for Fixed Rate ($q=1$)

Table: $\gamma_{\text {th }}$ for $\Omega=5 \%$ with GLDPC Code-Based

t	d_{v}	$\omega=0$	$\omega=1$	$\omega=5$	$\omega=10$
1	3	0.3708	0.4166	0.4166	0.4166
	4	0.3510	0.4395	0.4425	0.4425
3	3	0.3189	0.4257	0.4379	0.4395
	4	0.2441	0.3662	0.4028	0.4028
5	3	0.2686	0.3784	0.4089	0.4089
	4	0.2014	0.3159	0.3769	0.3769

Table: $\gamma_{\text {th }}$ for $\Omega=5 \%$ with LDPC Code-Based

d_{\vee}	$\omega=0$	$\omega=1$	$\omega=5$	$\omega=10$
4	0.5982	0.8423	0.8540	0.8540
5	0.6416	0.9682	1.0274	1.0250
6	0.6464	1.0044	1.1325	1.1327
10	0.5773	0.9188	1.2814	1.2816

Proving threshold saturation: minimum Ω for a fixed $\gamma(q=1)$

- Vector admissible system: [YED2012] a recursion (f,g) with

$$
\boldsymbol{x}^{(\ell)}=\mathbf{f}\left(\boldsymbol{g}\left(\boldsymbol{x}^{(\ell-1)}\right) ; \varepsilon\right), \quad \boldsymbol{x}^{(0)}=\mathbf{1}, \varepsilon \in[0,1]
$$

where $\mathbf{f}(\boldsymbol{x})=\left[f_{1}(\boldsymbol{x}), \cdots, f_{d}(\boldsymbol{x})\right]$ and $\boldsymbol{g}(\boldsymbol{x})=\left[g_{1}(\boldsymbol{x}), \cdots, g_{d}(\boldsymbol{x})\right]$ are twice continuously differentiable and strictly increasing in all arguments.

Proving threshold saturation: minimum Ω for a fixed $\gamma(q=1)$

- Vector admissible system: [YED2012] a recursion (f,g) with

$$
\boldsymbol{x}^{(\ell)}=\mathbf{f}\left(\boldsymbol{g}\left(\boldsymbol{x}^{(\ell-1)}\right) ; \varepsilon\right), \quad \boldsymbol{x}^{(0)}=\mathbf{1}, \varepsilon \in[0,1]
$$

where $\mathbf{f}(\boldsymbol{x})=\left[f_{1}(\boldsymbol{x}), \cdots, f_{d}(\boldsymbol{x})\right]$ and $\boldsymbol{g}(\boldsymbol{x})=\left[g_{1}(\boldsymbol{x}), \cdots, g_{d}(\boldsymbol{x})\right]$ are twice continuously differentiable and strictly increasing in all arguments.

- Setting $\varepsilon=1-\frac{1}{d_{\mathrm{c}}}$ we get from density evolution equations:

$$
\begin{aligned}
\mathbf{f}\left(y_{0}, y_{1} ; \varepsilon\right) & =\left[\begin{array}{ll}
1-\left(1-y_{1}\right)^{\frac{\varepsilon}{1-\varepsilon}}, & 1-\left(1-y_{0}\right)^{\frac{\varepsilon}{1-\varepsilon}}
\end{array}\right] \\
\boldsymbol{g}\left(x_{0}, x_{1}\right) & =\left[\begin{array}{ll}
(1-\gamma) \cdot x_{0}^{d_{v}-1}, & \gamma \cdot x_{1}^{d_{v}-1}
\end{array}\right]
\end{aligned}
$$

- Threshold saturation occurs

Proving threshold saturation: minimum Ω for a fixed $\gamma(q=1)$

- Vector admissible system: [YED2012] a recursion (f,g) with

$$
\boldsymbol{x}^{(\ell)}=\mathbf{f}\left(\boldsymbol{g}\left(\boldsymbol{x}^{(\ell-1)}\right) ; \varepsilon\right), \quad \boldsymbol{x}^{(0)}=\mathbf{1}, \varepsilon \in[0,1]
$$

where $\mathbf{f}(\boldsymbol{x})=\left[f_{1}(\boldsymbol{x}), \cdots, f_{d}(\boldsymbol{x})\right]$ and $\boldsymbol{g}(\boldsymbol{x})=\left[g_{1}(\boldsymbol{x}), \cdots, g_{d}(\boldsymbol{x})\right]$ are twice continuously differentiable and strictly increasing in all arguments.

- Setting $\varepsilon=1-\frac{1}{d_{\mathrm{c}}}$ we get from density evolution equations:

$$
\begin{aligned}
\mathbf{f}\left(y_{0}, y_{1} ; \boldsymbol{\varepsilon}\right) & =\left[\begin{array}{ll}
1-\left(1-y_{1}\right)^{\frac{\varepsilon}{1-\varepsilon}}, & 1-\left(1-y_{0}\right)^{\frac{\varepsilon}{1-\varepsilon}}
\end{array}\right] \\
\boldsymbol{g}\left(x_{0}, x_{1}\right) & =\left[\begin{array}{ll}
(1-\gamma) \cdot x_{0}^{d_{v}-1}, & \gamma \cdot x_{1}^{d_{v}-1}
\end{array}\right]
\end{aligned}
$$

- Threshold saturation occurs
- The potential function is then given as

$$
\mathrm{U}(x ; \varepsilon)=\int_{0}^{1}\left((z(\lambda)-\mathbf{f}(\boldsymbol{g}(z(\lambda)) ; \varepsilon)) \boldsymbol{D g ^ { \prime }}(z(\lambda))\right) \cdot z^{\prime}(\lambda) \mathrm{d} \lambda
$$

Potential function ($q=1$)
$\mathrm{U}(\boldsymbol{x} ; \varepsilon)=(1-p) x_{1}^{d_{\mathrm{v}}-1}\left((1-\varepsilon) \frac{1-\left(1-p x_{2}^{d_{\mathrm{v}}-1}\right)^{\frac{1}{1-\varepsilon}}}{p x_{2}^{d_{\mathrm{v}}-1}}+\frac{\left(d_{\mathrm{v}}-1\right)}{d_{\mathrm{v}}} x_{1}-1\right)$

$$
+p x_{2}^{d_{v}-1}\left((1-\varepsilon) \frac{1-\left(1-(1-p) x_{2}^{d_{v}-1}\right)^{\frac{1}{1-\varepsilon}}}{(1-p) x_{1}^{d_{1}-1}}+\frac{\left(d_{v}-1\right)}{d_{\vee}} x_{2}-1\right)
$$

Potential threshold:

$$
\varepsilon^{*}=\sup \left\{\varepsilon \in[0,1] \mid \min _{x} \cup(x ; \varepsilon) \geq 0\right\}
$$

$d_{\mathrm{V}}=6, \gamma=1 \%$ with $\varepsilon^{*}=0.9924 . \mathrm{U}(\boldsymbol{x} ; \varepsilon)$ is above the $z=0$ plane since $\varepsilon=0.9667<\varepsilon^{*}$.

Potential thresholds $(q=1)$

$$
\begin{gathered}
\Omega_{\mathrm{th}}^{*}=\frac{d_{\mathrm{v}}}{d_{\mathrm{C}}}=d_{\mathrm{V}}\left(1-\varepsilon^{*}\right) \\
\varepsilon^{*}=\sup \left\{\varepsilon \in[0,1] \mid \min _{\boldsymbol{x}} \mathrm{U}(\boldsymbol{x} ; \varepsilon) \geq 0\right\}
\end{gathered}
$$

The minimum rate Ω_{th}^{*} for a fixed γ computed from the potential threshold ε^{*}.

Conclusions and Outlook

Conclusions

- Using a simple LDPC code significantly outperforms a GLDPC construction
- We can measure the performance by two different approaches
- Fixing the proportion γ and determining minimum rate Ω
- Fixing the rate, Ω and determining the maximum γ
with t-error-correcting component code

Conclusions and Outlook

Conclusions

- Using a simple LDPC code significantly outperforms a GLDPC construction
- We can measure the performance by two different approaches
- Fixing the proportion γ and determining minimum rate Ω
- Fixing the rate, Ω and determining the maximum γ
with t-error-correcting component code
- Bundling of tests: non-binary messages can further improve performance

Conclusions and Outlook

Conclusions

- Using a simple LDPC code significantly outperforms a GLDPC construction
- We can measure the performance by two different approaches
\square Fixing the proportion γ and determining minimum rate Ω
- Fixing the rate, Ω and determining the maximum γ
with t-error-correcting component code
- Bundling of tests: non-binary messages can further improve performance
- With spatial coupling we can improve the performance of the binary scheme
- Threshold saturation: with coupling the BP decoder achieves the potential threshold

Conclusions and Outlook

Conclusions

- Using a simple LDPC code significantly outperforms a GLDPC construction
- We can measure the performance by two different approaches
- Fixing the proportion γ and determining minimum rate Ω
- Fixing the rate, Ω and determining the maximum γ
with t-error-correcting component code
- Bundling of tests: non-binary messages can further improve performance
- With spatial coupling we can improve the performance of the binary scheme
- Threshold saturation: with coupling the BP decoder achieves the potential threshold

Outlook

- Spatial coupling with q-bundles
- Looking at soft message passing

